
~. Data General
Software Documentation

MP/AOS-SU
Programmer's Manual

093-000348-00

MP / AOS-SU Programmer's Manual

093-000348-00

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000348
©Data General Corporation, 1983
All Rights Reserved
Printed in the United States of America
Revision 00, October 1983
Licensed Material- Property of Data General Corporation

NOTICE
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE·
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE·TIME PERFOR·
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATA PREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPER­
NOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/aOOO, TRENDVIEW, SWAT,
CENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DC/l,
DC/CATE, DC/XAP, ECLIPSE MV/10000, CW/4000, CDC/1000, REV-UP, UNX/VS, XODIAC,
DEFINE, SLATE, microECLIPSE, DESKTOP CENERATION, BusiPEN, BusiCEN and BusiTEXT are U.S.
trademarks of Data General Corporation.

MP / AOS-SU Programmer's Manual
093-000348

Revision History: Effective with:

Original Release - October 1983 MP / AOS-SU Rev. 1.00

Preface

This manual is intended to serve experienced system programmers
who want a detailed knowledge of MP j AOS-SU software.

The manual contains 10 chapters. Chapter 1 introduces you to the
MP j AOS-SU system and facilities. Chapter 2 gives a general view of
programming with MPjAOS-SU. Chapters 3, 4, and 5 deal with the
management of files, programs and memory, respectively. Chapter 6
discusses multitasking. Input and output and user device support are
discussed in Chapters 7 and 8. The last two chapters contain a list of
miscellaneous calls and a dictionary of system calls and library
routines.

There are ten appendixes and an index for reference.

• If you have comments on this manual, please use the prepaid
Remarks Form that appears after the Index. We want to know
what you like and dislike about this manual.

• If you need additional manuals, please use the enclosed TIPS
order form (USA only) or contact your Data General sales
representative.

Throughout this manual we use the following conventions to illustrate
command dialogue formats:

COMMAND
SYSTEM CALL
INSTRUCTION

argument

Uppercase letters in THIS typeface indicate a
command, system call or instruction mnemonic.
You type an instruction mnemonic exactly as it
appears.

Lowercase italic is used to represent a com­
mand's or an instruction's argument when that
argument is a generic term. In your program,
you must replace this symbol with the exact
code for the argument you need; i.e. file 1.

Contacting Data
General

Conventions and
Abbreviations

•
IV Preface

Related Manuals

Licensed Material - Property of Data General Corporation

[optional]

CTRL-

<New-line>

argl/arg2

CR

Examples

This typeface, lower case italic, and brackets
denote an optional argument. Optional command
switches may appear within brackets as well. If
you use the argument or switch, do not write
the brackets into the code.

Depress and hold the Control key while you
press the character following CTRL-.

Represents a New-line character.

This typeface, lower case italic and a vertical
bar (I) denote that you have a choice between
argl or arg2; i.e. you may use either a filename
or a device as your argument.

Represents the Carriage Return key.

All programming examples appear in the following typefaces:

EFA <New-line>

The program's response appears as:

CALC+6: 012002

The following manuals also belong to the series of books about the
MP IOS/ MP I AOS-SU, and MP lAOS operating systems.

System Topics

MP / A DS-SU Command Line Interpreter (CLI) (DGC No. 093-000349)
describes the CLI program, the user's primary interface with the
MP I AOS-SU system. The manual provides a command dictionary
containing descriptions of command functions, formats and exam­
ples.

Loading and Generating MP / AOS-SU (DGC No. 093-000354) describes
how to install MP I AOS-SU software on microECLIPSE™ and
DESKTOP GENERA TIONTM computers. The manual also describes
the following utilities, including sample dialogues, as appropriate:

• SYSGEN, which generates custom tailored systems

• DINIT, which initializes disks

• FIXUP / which repairs disks

• MAKEBOOT, which prepares stand-alone programs and systems
for booting.

MP/ADS Macroassembler, Binder, and Library Utilities (DGC No.
069-4002lO) documents the MP lAOS macroassembler and binder as
well as the library file editor (LED) and system cross-reference
analyzer (SCAN). The manual includes programming examples and a
dictionary of assembler pseudo-ops.

MP/ADS-SU Debugger (DGC No. 093-000350) describes DEBUG, the
system utility that aids in detecting and correcting program runtime
errors. The manual provides a command dictionary that contains
command functions, formats and examples.

MP / ADS and MP / A DS-SU Advanced Program Development Utilities
(DGC No. 069-400208) describes the following utilities:

• TCS (Text Control System), which can maintain multiple versions
of a file, select the correct version to build a program, and find
text files

• BUILD, which creates a new version of a file from existing files,
thus minimizing effort and errors in program development

• FIND, which locates occurrences of strings in text files.

MP/ADS and MP/ADS-SU File Utilities (DGC NO. 093-000351)
describes the following utility programs, providing sample dialogues
for each.

• AOSMIC, which allows manipulation of MP / AOS, MP / AOS-SU,
and MP lOS disks and files on an AOS system

• FDISP, which can display the address and data content of a file
or compare two files, displaying parts that differ

• FLED, a disk file editor that allows examination and modification
of executable and data files, using a variety of formats

• FOXFIRE, which permits the transfer of files among MP lOS,
MP / AOS, MP / AOS-SU, and AOS operating systems

• MOVE, which allows the transfer of files among directories and
the backing up of directories to tape or diskette

• REFIT, which performs multi-module symbol cross references on
high level language source or listing files

• SCMP, which can compare two source programs, line by line

• TCOPY, which allows the transfer of data to and from tapes

• VAMP, a user-oriented file patch utility for building patch files
and installing patch code.

Editors
MP/ADS and MP/ADS-SU Slate Text Editor (DGC No. 069-400209)
documents the features of SLATETM, a screen and line-oriented text
editor.

MP/ADS SPEED Text Editor (DGC No. 0690400202) documents the
features of SPEED, the MP / AOS and MP / AOS-SU character-oriented
text editor.

Preface V

Licensed Material - Property of Data General Corporation

•
VI Preface

Licenl8d MMWial - Property of Data Genera' Corporation

Languages
SP /Pascal Programmer's Reference (DGC NO. 069-400203)
documents an extended Pascal for system programmers. SP /Pascal
has all of the features of MP /Pascal as well as special features
targeted for the MP / AOS, MP / AOS-SU, and AOS operating systems.

MP/FORTRAN IV Programmer's Reference (DGC No. 069-400033)
documents for system programmers a language based on ANSI! 1966
standard FORTRAN with extensions.

MP/BASIC Programmer's Reference (DGC No. 069-400005-01)
documents for new users a programming language based on ANSI!
standard BASIC with extensions.

MP/Pascal Programmer's Reference (DGC No. 069-400031)
documents for system programmers a Pascal-based language targeted
for the MP / OS operating system.

Communications
MP/HASP Reference (DGC No. 069-400050) describes the MP/HASP
I! workstation Emulator, a program which supports the simultaneous
transmission of up to five files between two computers linked by
telecommunication lines.

MP /RJEBO Reference (DGC No. 069-400040) describes the Remote
Job Entry Program that supports the batch transfer of files between
two computers linked by telecommunication lines.

MP/3270 Reference (DGC No. 069-400041) describes a program that
permits terminals on any Data General system to emulate IBM
Model 3277 terminals and exchange data with remote IBM or
IBM-emulating systems.

{)

MSCP Programmer's Reference (DGC No. 093-40~2) describes the
MP Synchronous Communications Package (MSCP), a set of program
calls that allow communcation with a remote station over a synchro­
nous line. MSCP is required for MP/RJE80, MP/HASP, MP/3270,
and user-defined communications programs using the Binary Syn­
chronous Communications protocol.

Contents

1. System Overview 4. Program Management

2. Programming with
MP/AOS-SU

Program Concepts 4-1
Transferring Control Between
Programs 4-1

Bootstrapping the System 2-1 Interprogram Communication ... 4-3
Shutting Down the System 2-1 Terminating a Program 4-3
System Calls 2-1 Break Files 4-4
System Call Options 2-3 Restarting the System 4-5
Nonpended Calls 2-3 System Call Summary 4-5
Accumulator Usage 2-3
Stacks 2-5 5. Memory Management
Naming Conventions 2-6 The MP / AOS-SU Mapping Capability . 5-2

Mnemonics 2-6 Memory Segments 5-3
Library Routines 2-6 Operating System Memory 5-4
Program Revision Number 2-7 Disk Buffer Area 5-4
Overlays 2-7 User Memory 5-5

3. File Management Extended Memory Management 5-6

Basic Organization 3-1 6. Multitasking
Hierarchical File Structure 3-1 Managing Tasks 6-1
The Device Directory 3-2 Parallel Call Errors 6-2
Root Directories 3-2 Task Priority 6-2
System Master Device 3-2 Scheduling 6-3
Pathnames 3-2 Intertask Communication 6-3
The Working Directory 3-3 Console Interrupt Tasks 6-3
The Searchlist 3-3 System Call/Library Routine
Pathname Prefixes 3-5 Summary 6-4
Links 3-5
File Element Size 3-6 7. Input and Output
File Types and Attributes 3-6 Overview .. _ 7-1
System Call/Library Routine I/O Channels7-2
Summary 3-8 File Positioning 7-3

I/O Buffers 7-3
Nonpended I/O 7-4
I/O Techniques 7-5
I/O Device Management 7-6

Licensed M_ial - Property of Oa .. General Corporation

Disks 7-6

Magnetic Tape 7-7

Character Devices: Terminals .7-7

Line Printers 7-12

System Call Summary 7-12

8. User Device Support
Facilities 8-1

Defining a Device Interrupt Service
Routine 8-1

Enabling and Disabling Access to all
Devices 8-5
Managing Data Channel Map Slots ... 8-6

System Call Summary 8-10

9. Miscellaneous System Calls
Clock/Calendar Calls 9-1

Reading a Message 9-2

10. Dictionary of System Calls and
Library Routines
Explanatory Notes 10-2

A. The ASCII Character set

B. DGC Standard Floating Point
Format
Sign B-2

Exponent B-2

Mantissa B-3

C. CLI Message Format
Arguments C-2

Switches C-2

D. I/O Device Codes

E. User Parameter Files

F. Using Overlays
Overlay Programming Considerations . F-l
Assembling Overlay Programs F-2

Binding Overlay Programs F-3

Overlay System Calls F-4

G. MP / AOS-SU Fatal and Booting
Error Messages
Fatal errors G-l

Booting Errors G-2

Licensed Material - Property of Da .. Goneral Corporation

H. The Magnetic Tape Handler
Magnetic Tapes H-2

Magnetic Tape Transports ... H-3
The Controllers ... H-3
Data Transfer ..
Tape Operations
Tape Commands .

. H-3
.. H-4

. H-4

I. Running MP/AOS-SU
Programs Under AOS
Cross Development on AOS

Assembling
Binding

· ... I-I
........... 1-2

... 1-2

Compatibility of System Calls 1-4

Program Management
Multitasking ...
File Management
I/O Device Management

· ... 1-4

. .1-5

· ... 1-5
............ 1-7

J. MP / AOS Library Routines

Table

3.1 File types
3.2
3.3

4.1

5.1

File attributes
Summary of file calls and library
routines

System calls ...

Memory call summary

.3-7
· .3-7

· .3-8

· .. 4-5

· .5-9

6.1 Multitasking call and routine summary 6-4

7.1 Disk(ette), console, line printer and
magnetic tape devices 7-6

7.2 Console characteristics 7-8
7.3 Programmable hardware

characteristics (?SCHAR with HC
option) 7-10

7.4 Baud rate for
Asynchronous / Synchronous Line
Multiplexor (ASLM) and Universal
Synchronous/Asynchronous
Multiplexor (USAM)

7.5 Hardware Characteristics for Disk

7.6
7.7
7.8
7.9

8.1

8.2

8.3

Devices
Control characters
Control sequence characters .
Line printer device characteristics
Input/Output and device system
calls.

User device interrupt handler
definition packet
Line interrupt handler definition
packet.
User device support system calls

· .7-10

.7-11

.7-11
· .. 7-12

.7-12

· .. 7-13

· ... 8-1

· ... 8-4
· .8-10

9.1 Clock/Calendar calls and routines 9-2

10.1 File types
10.2 Status flags in ?DSTW word

...... 10-11
· .10-25

Tables

10.3 File attributes
10.4 File types

... 10-47

· .10-47
.10-86 10.5 Console characteristics ..

10.6 Programmable hardware
characteristics (?SCHAR with HC
option) · .10-87

10.7 Baud rate for ASLM and US AM
multiplexors · .10-87

10.8 Hardware Characteristics for Disk
Devices

10.9 File attributes

.10-87
. .. 10-94

........ 10-100 10.10 Types of requests .

B.l Excess 64 representation of exponents . B-2

D.l MicroECLIPSE and microNOVA device
code assignments for disks, diskettes,
line printers, and magnetic tape devices

D.2

E.l

G.l
G.2

1.1

1.2

1.3

1.4

supported by MP / AOS-SU D-l
Standard microECLIPSE and
microNOVA I/O device codes

File types ..

MP / AOS-SU error codes
MP / AOS-SU booting errors

... D-2

... E-2

.... G-2
....... G-2

Conversions of MP / AOS-SU file types
when creating files under AOS .. 1-5
Conversions of AOS and AOS/VS file
types when opening files with
MP / AOS-SU programs1-6
Reversal in polarity between
MP / AOS-SU attributes and AOS access
privileges1-7

Correspondences between device
characteristics 1-7

Licensed Material - Property of Data General Corporation

1.5 MP / AOS-SU system calls supported
under MP Emulator . 1-8

1.6 MP / AOS-SU library routines supported
under the MP Emulator 1-8

1. 7 MP / AOS-SU system calls not supported
under MP Emulator 1-8

1.8 Device name mapping 1-9

J.l List of routines in library OSL.LB . J-2
J.2 List of routines in library MTA.LB . J-2
J.3 List of routines in library DCLP.LB . J-2

Licensed Material - Property of Data General Corporation

Illustrations

Figure

3.1 Sample device directory and file system 3-4
F.I Organization of sample program MPRG F-2

4.1 Program swapping via ?EXEC 4-2
4.2 ?EXEC with swap and chain options ... 4-3

H.I DGC magnetic tape transport H-2
H.2 Write enable ring H-2

4.3 Effect of ?RETURN and ?KILL 4-4
4.4 Break file name 4-4

5.1 Addressing with the MAP feature 5-2
5.2 System memory configuration 5-4
5.3 Organization of user logical address

space 5-5
5.4 Memory management 5-7
5.5 Mapping to a segment 5-8

7.1 Pended and unpended I/O 7-4

8.1 Data channel numbering scheme 8-7
8.2 Data channel map slots and their range

of corresponding logical addresses 8-7
8.3 ?GMRP call return physical page

number................... 8-8
8.4 Sequence of data channel mapping

operations 8-9

10.1 Task definition packet 10-14
10.2 Disk status packet 10-25
10.3 File status packet 10-34
10.4 Interrupt handler definition packet .. 10-51
10.5 Program information packet 10-54
10.6 Line interrupt handler definition

packet 10-62
10.7 Map segment packet 10-70
10.8 Sample delimiter table 10-89
10.9 ?TMSG packet 10-99

A.I ASCII Character Codes A-I

B.I Floating point formats B-2

Licensed Material - Property of Data Goneral Corpora~on

System Overview

The MP / AOS-SU system is a real-time operating system for 16-bit
DGC microECLIPSETM processors available in 7" x 9" packaging.
Processors must have the Character Instruction set. Currently,
MP / AOS-SU runs on the following micro ECLIPSE processors: S / 20
and C/30, and DESKTOP GENERATIONTM Model 10, Modell/SP,
Model 20, and Model 30.

MP / AOS-SU retains substantial compatibility with MP / AOS, a
multi-programming, real-time operating system for ECLIPSE and
microECLIPSE computers, and with MP /OS, a single-user system for
microNOVA, ENTERPRISE, MPT, MBC, and NOVA4 computers.
With the aid of the System Call Translator software package,
MP / AOS-SU programs can be developed and run under AOS, the
Advanced Operating System for ECLIPSE line computers, and under
AOS/VS, the Advanced Operating System/Virtual Storage for MV
family computers.

MP / AOS-SU provides sophisticated facilities such as multitasking,
flexible user management of system resources, and the ability to
access more than 32K words of memory from within a single user
program. The system features fast task switching, deterministic
scheduling of tasks strictly by priority, and low interrupt latency.
MP / AOS-SU also supports user-written device drivers.

The MP / AOS-SU operating system can be used to provide a basic
program development environment; to that end, a full range of
program development utilities, text editors and high-level languages
such as MP /FORTRAN IV, MP / and SP /Pascal, and MP /BASIC are
made available.

NOTE: Several utilities, for example SP/PASCAL, require the Floating-Point

Instruction Option.

1

Licensed Material - Property of Data General Corporation

1 -2 System Overview

Licensed Material - Property of Data Ganeral Corporation

Additionally, MP / AOS-SU provides an efficient basis for user­
designed applications such as real-time program control, data acquisi­
tion, and medical instrumentation. Features such as highly accurate
timing (including the ability to time to milliseconds when a 1000 Hz
clock frequency is selected at system generation), task synchroniza­
tion, nonpended system calls, and support for custom devices make
MP / AOS-SU particularly well suited to real time applications.

Using an interactive system generation utility, you can generate an
MP / AOS-SU system containing a desired subset of the full system's
power and tailor it to any configuration of memory boards and
peripherals. (See Loading and Generating MP / AOS-SU.

Programs communicate with the operating system through system
calls that you place in the program code. This manual describes the
operating system's facilities and the system calls that apply to them.

Programming with
MP/AOS-SU

Before beginning to work with the MP / AOS-SU operating system,
you must first bootstrap the system, i.e., bring it into memory. Since
the bootstrap procedure varies depending on the processor used, it is
necessary to refer to the appropriate Principles of Operation manual
for your CPU. A detailed discussion of bootstrapping also appears in
Loading and Generating MP / AOS-SU.

Anyone of the following procedures results in an orderly system
shutdown ensuring no loss of data:

a BYE command issued from the initial CLI

a ?BOOT system call issued from the running program

MP / AOS-SU supports a wide variety of system calls, command
macros which call on predefined system routines. Each system call
begins with a question mark. In assembly language, system calls are
coded in the user program just as instructions are.

MP / AOS-SU system calls allow the user to

• manage the logical address space
• manage dynamic memory segments
• create and maintain disk files and directories

• perform file input and output
• create and manage a multitasking environment
• define and access user devices
• perform data channel input and output with user devices.

Each system call macro in an assembly language program is expanded
at assembly time. Each system call macro name is associated with a
number. A complete list of system call mnemonics and their numbers
is included in parameter file SYSID.SR, which is distributed with
the release package. See Appendix E for more on parameter files.

2

Bootstrapping the
System

Shutting Down the
System

System Calls

Licensed Material - Property of Data General Corporation

2-2 Programming with MP/AOS-SU

licensed Material - Property of Dat8 General Corporation

A special system call (?EQT) offers users the option of setting up
system calls at runtime by specifying the desired system call number
and option in AC3 and setting up ACO through AC2 as defined for the
particular call to be executed.

This manual discusses the system calls in functional categories with
a chapter for each category. A detailed description of each system
call appears in the alphabetized "Dictionary of System Calls and
Library Routines" in Chapter 10.

When generating an MP / AOS-SU system you specify the maximum
number of concurrent system calls to be supported by that system.
The interactive SYSGEN utility is described in Loading and Generat­
ing MP/AOS-SU.

Error Codes

Except where noted, you must reserve two return locations for each
system call: an exception error return, and a normal return. After
the system has executed the call, MP / AOS-SU passes control either
to the error return or to the normal return, depending on the call's
outcome.

In either case, on return, accumulator 3 (AC3) contains the current
contents of the frame pointer. On an exception return, ACO contains
an unsigned 16-bit value representing the exception condition code
(error code) indicating the reason for the call's failure. All other
accumulators contain the values they had on input, unless otherwise
noted.

A unique text string is also associated with each error code. The CLI
(Command Line Interpreter) returns this string when the error occurs
during the execution of a CLI command. Use the ?ERMSG library
routine to read the text string associated with the error code during
the execution of the program.

The "Errors" list in the individual description of each system call
(Chapter 10) gives the most likely exception condition code mnemon­
ics and messages for that particular call. A complete list of fatal and
booting error codes is contained in your release package.

The system provides a file, ERMES, containing all currently defined
error codes and their corresponding mnemonics and text messages.
There are 2008 groups of exception condition codes for the operating
system, the utilities, and the other programs running in the system,
including user programs. Data General Corporation reserves code
groups 0 through 778 for the system. You can define the remaining
groups, numbered 1008 through 1778, To create a new ERMES error
message file with a structure like that of the supplied ERMES, but
with different contents, create a source file allocating an unused
code group and insert your own series of codes and messages. After
assembly, bind with a /ERMES switch.

If you wish your new ERMES file to include any of the DGC-supplied
error codes, set your searchlist to allow access to ERMES_OBS, the

error message object files supplied on your release media. You can
then bind the desired ERMES_OBS files along with your own to
generate a combined ERMES file.

Some system calls have options you may specify to modify the calls'
actions. Options are specified by two- or three-letter abbreviations,
which you code after the call's mnemonic in the program. For
instance, if you want to create a disk file with the ?CREATE call and
you wish to delete an existing file with the same name, use the
delete (DE) option by coding ?CREATE DE. You can specify more
than one option by separating the options' abbreviations with
commas, for example, ?OPEN CR, AP, which creates a file if none
exists and opens it for appending.

Some system calls, notably those that perform I/O, can take a
relatively long time to execute. Normally your program (or the
calling task in a multitasked program) is suspended from running
during this interval, resulting in a loss of potentially useful processor
time. Nonpended system calls eliminate this waste.

Specify a nonpended call by coding the NP option on any system call
allowing it. When you execute the call, instead of suspending your
task, the system creates a new task and assigns it the job of executing
your call. The task which issued the nonpended call is free to
continue operation. AC2 will contain the task identifier of the system
task executing your I/O. To avoid errors when using nonpended
calls, be sure to specify an appropriate number of additional tasks
(one for each concurrent nonpended call) when you generate the
system. See Loading and Generating MP / A DS-SU.

You cannot immediately assume that the results of the system call
are valid; for instance, if you read data with a ?READ NP system
call, you must still wait for the data to arrive before you can operate
on it. However, you can perform other types of computation while
waiting for the new data.

To determine when the nonpended call is complete, you must execute
the ? AWAIT system call. It enables you either to check the call's
progress or to suspend your program until the call is complete. You
must issue an ?AWAIT call to obtain the results of every nonpended
system call you execute; otherwise system memory space (a task
control block) is wasted.

System calls generally require arguments called inputs, which your
program must place in the proper accumulators before executing the
call. Some system calls also return outputs in accumulators. Only
ACO, ACl and AC2 are used for inputs and outputs; the system
always sets AC3 to the value of the frame pointer upon return from
a call. Any accumulators not used for outputs are returned to your
program unchanged.

Programming with MP/AOS-SU 2-3

System Call Options

N onpended Calls

Accumulator Usage

Licensed Material - Property of Data General Corporation

2-4 Programming with MP/AOS-SU

Licensed Material - Property of Data General Corporation

MP / AOS-SU system calls and library routines observe the following
conventions for accumulator usage.

• Input/output calls use ACO for the I/O channel number

• Multitasking calls use AC2 for the task identifier. Calls that
reference files use ACO for the byte pointer to the pathname

• Calls that require packets use AC2 for the packet address

• Error codes are returned in ACO.

Byte Pointers
Before issuing many of the system calls, you must load one or more
of the accumulators with input values, such as byte pointers.

A microECLIPSE computer word is 16 bits in length; its bit positions
are numbered left to right, from 0 to 15 inclusive. A byte is 8 bits in
length. A byte string consists of a sequence of bytes, packed left to
right in a series of one or more words.

The system call descriptions use unique mnemonics for the high­
order and low-order portions of 16-bit values. The term high-order
refers to the 8 most significant bits, Le., bits 0 through 7. The term
low-order refers to the 8 least significant bits, Le., bits 8 through 15.

A byte pointer consists of a single word with two fields. The left
field consists of bit positions 0 through 14, and it contains the
address of the word containing the selected byte. The right field
consists of the bit position 15. When the state of this bit equals 1, the
pointer selects the low-order (least significant) byte of a word, Le.,
bits 8 through 15; when the state of this bit equals 0, the pointer
selects the left (high-order, or most significant) byte of a word, Le.,
bits 0 through 7.

To point to a byte in a word whose address you have defined as a
variable (V), the value V*2 serves as a byte pointer to the left byte,
and V*2+ 1 points to the right byte.

Packets
Some system calls require or return more information than the
accumulators alone will hold. In this case, additional arguments are
passed in a packet. A packet is a block of consecutive words in an
address space. The system uses these words to obtain input specifica­
tions and/or to return output values.

The number of words in a packet depends on the particular call;
there is a mnemonic for each packet size. The first word of every
packet contains a number indicating the packet type; the system
checks this number for validity when handling the call.

There is also a mnemonic for each packet type. Using the mnemonic
instead of the current value assigned to it ensures that even if the
value is redefined, the call executes correctly, provided you
reassemble your program. The mnemonics and their current values
appear in parameter file OPARU.SR. (See Appendix E.)

The system uses the data you supply in a parameter packet to decide
how to execute a call. The location of data in a packet determines its
interpretation. There are two ways of setting up a parameter packet:
with absolute addressing or offset addressing.

Offset addressing (or offset words) consists of system-defined parame­
ters, also listed in OPARU.SR, which reference the words of the
parameter packet. The packets described in the system call dictio­
nary, Chapter 10, all use offset addressing. This ensures that if the
packet is redefined in a future release of MP / AOS-SU, the program
will still run correctly if reassembled, because Data General will
ensure that the word offsets still correspond to the appropriate data,
regardless of their location in the packet.

Some parameter packets contain flag words, in which each bit has a
special meaning. These bits are set with bit masks, system-defined
parameters listed in OP AR U .SR, each equal to a single set bit.

NOTE: You must set all reserved words in a parameter packet to zero.

See ?FST A T in Chapter 10 for an illustration of a packet.

Each MP / AOS-SU task that issues library calls must have a stack
area in memory for library calls to use. The stack size must be equal
to or greater than the value of the mnemonic ?STKMIN. You can
initialize the stack control words by using the assembler's .LOC
directive. When a program starts, the contents of locations 408 and
418 are the stack pointer and frame pointer, respectively. You also
must initialize location 428 with the stack limit, and you may
initialize location 438 with the address of a stack fault handling
routine.

The system calls the stack fault handling routine if your program
attempts to exceed the specified stack limit. The routine may perform
functions such as allocating more memory or simply shutting down
the program. Before calling the routine, the hardware pushes five
words onto the stack, whose contents (in the order pushed) are

• the accumulators ACO through AC3

• a word containing the carry in bit ° and the contents of the
program counter (where the overflow occurred) in bits 1-15

NOTE: Since the system handles stack overflow by pushing more words onto the
stack, make sure that the stack is actually five words larger than the size you

specify in the stack limit word. Otherwise, part of your program code may be

destroyed during the handling of the overflow. You should also allow for any stack

space the overflow handling routine itself may need.

If your program uses multitasking, each task must have its own
stack area. The stack pointer, frame pointer, stack limit and stack
fault handler address are specified in the ?CT ASK packet. In this
case, the system maintains the stack control words so that each task
always has its own unique values.

Programming with MP/AOS-SU 2-5

Stacks

Licensed Material - Property of Oats General Corporatton

2-6 Programming with MP/AOS-SU

Naming Conventions

Mnemonics

Library Routines

Licensed Material - Property of Data General Corporation

All symbols contammg a ? are reserved for the system's use. All
symbols starting with ER are reserved for system error codes.

All symbols, such as error codes and offsets in parameter tables, are
referred to by their defined mnemonics instead of their numeric
values.

Mnemonics which represent status flags have values that set the
named bit to 1 and all other bits to O. Thus you can use the mnemonic's
value in a logical AND to determine the flag setting. To set several
flags at once, code an assembler expression containing the sum of
several mnemonics.

All mnemonics for system calls, library routines, error codes and
other symbols used in this manual are defined in the file MASM.PS,
the assembler's permanent symbol table. Many of them are defined
in the user parameter filer OPARU.SR, a listing of which appears in
Appendix E of this manual. Refer to the parameter file to determine
the value of a symbol; usually though, you can use the mnemonics in
your program without knowing their values.

It should be stressed that parameter file values are reVlSlOn­
dependent; the user is urged to check release notices for the latest
information update.

MP / AOS-SU provides a number of convenient functions implemented
as library routines rather than system calls. A list of currently
available routines appears in Appendix J. Chapter 10/ "Dictionary of
System Calls and Library Routines" identifies and describes each
routine individually.

Library routines are called in the same way as system calls; however,
the code implementing the function is part of the user address spacer
rather than of system memory.

MP / AOS-SU library routines perform such functions as

• suspending the operation of a task or program for a specified time
period

• providing several timing facilities to support real-time operations
• setting the searchlist
• reading a message from an MP / AOS-SU error message file.

The system maintains a revision number in every program file to
help you track different versions of a program. This number consists
of a major and a minor revision number; each may range from 0 to
255. Set the number with the .REV assembler directive or the
Binder /REV = value keyword switch; read the number with the
?INFO call; and use the eLI REVISION command to read or set the
number.

Under MP / AOS-SU, overlay loading and release are accomplished
with library calls. The MP / AOS-SU overlay facility is flexible: the
exact distribution of overlay blocks is not specified until bind time;
hence, no program modification is needed to experiment with
different strategies. This makes it easy to reorganize overlays for
greatest efficiency.

Overlays are discussed further in Appendix F.

Programming with MP / AOS-SU

Program Revision
Number

Overlays

Licensed Material - Property of Data General Corporation

2-7

File Management

The MP / AOS-SU file system provides the user with simple, efficient
ways to communicate with input/output devices and to store and
retrieve data in files. Because all devices and files are handled by
the same system calls, it is easy to write device-independent
programs.

An MP / AOS-SU file is either an I/O device, such as a printer, or a
collection of data stored in a disk file. Since both kinds are handled
identically, we use the term file to refer to either.

A file is referenced by its filename, a string of one to fifteen
characters. The mnemonic ?MXFL contains the value for maximum
filename length. Legal characters in filenames are

• the letters a to z and A to Z; (You can use upper- and lower-case
interchangeably; the system considers them equivalent and uses
only upper-case internally.

• the digits 0 to 9
• the punctuation marks ?, $, _ (underscore) and .(period).

In general, a file's contents are entirely user-defined; however,
several types of files have special functions. In particular, there is a
type of file called a directory, which contains other files. Three
special directories used by the system (the device and the root
directories) are discussed below.

Any file in a directory may itself be a directory containing other
files. A directory within another directory is called a subdirectory.
Nesting of directories may continue indefinitely in this manner.

Files within directories are referenced by using the : character. For
example, X:Y references a file named Y in a directory named X. An
expression of this form is called a pathname. Pathnames are
explained in detail later in this chapter.

3

Basic
Organization

Hierarchical File
Structure

Licensed Material - Property of Data General Corporation

3-2 File Management

The Device Directory

Root Directories

System Master Device

Pathnames

Licensed Material - Property of Data General Corporation

The device directory is the highest directory in an MP / AOS-SU
system: it contains all others. This directory has the special symbol
@ as its filename.

The filenames in the device directory correspond to all the input/out­
put devices in the system. To reference a device, use its name
prefixed by @. Typical device names are @LPT for a line printer or
@DPHO for a diskette drive.

Since the device directory contains all I/O devices including disks,
it cannot be contained on any device. Thus, the device directory is
unique in the system in that it is not physically represented on any
disk. It is actually a table in MP / AOS-SU memory space and cannot
be accessed via the ?DIR system call.

Every disk device has a root directory which is the highest directory
on the device. The root directory and its subdirectories contain all
other files on a disk. The root directory is referenced by appending a
: to the device name, e.g., @DPHO:.

One disk unit in every MP / AOS-SU system is the system master
device; i.e., the device from which the operating system was
bootstrapped. The MP / AOS-SU system program files and many other
commonly-used files reside in this unit. For ease of reference,
MP / AOS-SU accepts the: character as a prefix which refers to the
root directory of the system master device. For example, if your
system's master device is @DPHO, then the path name :CLI.PR is
equivalent to @DPHO:CLI.PR.

The system allows one filename to be used simultaneously for several
files in different directories, but filenames must be unique within
anyone directory. The capacity to reference any file uniquely is
provided by pathnames. As its name suggests, a path name represents
a path through the directory structure to a particular file.

A pathname consists of a series of filenames separated by colons (:).
Pathnames may be up to 127 characters long. The ?MXPL parameter
specifies maximum path name length. All of the files named except
the last must be directories; each directory named must be a
subdirectory of the preceding one. For example, the pathname A:B:C
references a file called C in subdirectory B of directory A.

A pathname beginning at the device's root directory is called a
fully-qualified pathname, since it is guaranteed to identify only one
file in the entire system. An example of a fully-qualified pathname
is @DPHO:A:B:C.

When you supply a pathname as an argument to a system call or
library routine, it must be terminated by a null (zero) byte. The
system always uses this format when passing pathnames to your
program. Remember to allow sufficient buffer space to hold the
filename and the terminating null byte whenever you use a call that
returns a file- or pathname.

Figure 3.1 shows a typical fragment of an MP / AOS-SU file system.
The device directory contains several I/O devices including one disk
drive. The fully-qualified pathnames of these devices are shown in
bold type.

The disk's root directory contains three files named FILE1, FILE2
and DIR 1. DIR 1, a subdirectory of the root, contains two files called
X and Y. Their fully-qualified pathnames are also shown in bold
type.

An MP / AOS-SU system typically contains many more files than
Figure 3.1 shows. As directory structures become more complex,
pathnames become longer and more cumbersome. To reduce the
necessity of using long pathnames, the system assigns a working
directory to every program. The working directory may be thought
of as your current location in the file structure.

Whenever you reference a filename or pathname that is not fully
qualified, the system looks for the file in your working directory.
This enables you to use simple filenames instead of pathnames and
confines all file activity to the working directory. A pathname such
as A:B refers to a file called B in subdirectory A of your working
directory.

Since users typically create a directory for each project, this concept
allows related files to be kept together. You can change your current
working directory at any time with the ?DIR system call and
determine your current working directory with the ?GNAME call.
You can also perform these functions with the CLI DIR command.

Sometimes it is inconvenient to confine all one's work to a single
directory. For this reason, the system provides a searchlist, a concise
method of referencing multiple directories. The searchlist is simply
a list of pathnames of directories. If you use a filename that is not
fully qualified and if the named file is not in your working directory,
the system searches all the directories in your search list before
determining that the file does not exist. The system searches all
paths in this manner, except for those specified in a ?CREATE,
?DELETE or ?RENAME call. If the same filename exists in more
than one of the directories in the searchlist, the system uses the file
appearing in the first directory it encounters.

You can read your searchlist with the ?GLIST system call, and you
can clear or extend your searchlist with the ? ALIST call. There is
also a convenient ?SLIST library routine that establishes your
searchlist with one call and a CLI SEARCHLIST command that
reads or creates the searchlist. When the system is started up/ it sets
your searchlist to contain only the system master device's root
directory / :.

File Management

The Working
Directory

The Search list

Licensed Material - Property of Data General Corporation

3-3

3-4 File Management

DEVICE DIRECTORY

@
riTo -•• _J.1-. __________ ~ ..

DG-25991

TTl

LPT

DPHO

I •

I • L_·_

• I
• I
~-'

'I

~ ~
+ ROOT @DPHO:

FILE1

FILE2

DIR1

• • • • • •

Figure 3.1 Sample device directory and file system

Li_d Material - Pr~ of Data General Corporation

DISK

UNIT
@DPHO

@DPHO :DIR 1

X

y

• •
• •
• •

DISPLAY

@TIO

@DPHO :FILE 1

@DPHO :DIR 1:X

LINE

PRINTER

@LPT

The use of the @ and: characters in pathnames has already been
explained. Two other characters may be used as prefixes; i.e., they
may appear only at the beginning of a pathname.

The = character is equivalent to the pathname of the current
working directory. Use this character to reference files in the
working directory explicitly; the searchlist is not used if the file is
not found. The = character alone can also be used as the name of
the current working directory.

The T (uparrow) character, typed as and echoed as either T or ~,
refers to the parent directory, i.e. the one containing the current
working directory. For instance, if your current working directory
is @DPHO:A:B and you want to reference the file @DPHO:A:XYZ,
you can use the path name TXYZ. You can also use several Ts in
sequence: for instance, to reference @DPHO:X, you could use TTX.

NOTE: A pathname beginning with = or T is not, strictly speaking, a fully-qualified

pathname, since the exact meaning of the pathname depends on the current

working directory. However, such a pathname is like a fully-qualified pathname

because it specifies a directory; hence the searchlist is not scanned.

Links simplify file referencing by eliminating the need to type
lengthy pathnames. A link is a file of type ?DLNK containing a
pathname or a partial pathname. Generally, when a linkname
appears in a pathname, the system resolves it by replacing the
linkname with the contents of the link file. The exceptions are
discussed below. Links may contain up to 62 bytes.

Normally a link is resolved when it appears in a pathname. If,
however, a link is the last or the only filename in a pathname used
as argument to ?CREATE, ?DELETE, or ?RENAME system calls, the
link will not be resolved. This permits link creation, deletion, and
renaming.

If, for example, the pathname

A:B:file_C

is used as an argument to ?DELETE and if B is a link equivalent to
D:E, then the pathname is resolved to

and file_C is deleted.

If, however, the argument to ?DELETE is pathname

A:B

then link B itself is deleted, not directories 0 and E.

File Management 3-5

Path name Prefixes

Links

Licensed Material - Property of Data General Corporation

3-6 File Management

File Element Size

File Types and
Attributes

Licensed Material - Property of Data General Corporation

Creating, renaming, and deleting links can also be done by means of
CLI commands.

NOTE: The system does not validate the contents of a link entry until that entry is

used in a pathname resolution. Thus it is possible to create a link entry pointing to
a nonexistent pathname or containing illegal filename characters. The system

returns an error, however, if there is an attempt to use such a link in a pathname.

You can obtain information on the link entry (rather than its
resolution) with the ?FST A T system call.

If the link contents begin with a prefix (@, ., =, or ~, pathname
resolution begins at the directory indicated by the prefix. If the
link's contents do not start with a prefix, pathname resolution
continues at the point in the directory hierarchy where the link
entry was encountered.

The system allows you to optimize disk file organization by control­
ling the size of file elements. A file element consists of one or more
512-byte disk blocks physically contiguous on the disk surface. The
system allocates and deallocates file space in elements rather than
blocks.

You specify a file's element size when creating the file. A large
element size means that data in a file is organized in a number of
large groupings. Reading or writing the file can be done more
efficiently, since the disk heads do not need to be continuously
moved around the disk to find the proper data. Small element sizes
give the system greater freedom in allocating disk blocks and result
in relatively less unused (wasted) space. Choose the element size that
offers the best compromise between speed and efficient use of space.

One specific type of file, the directory, has already been mentioned.
Every file in the system has a 16-bit number that defines its type.
You can specify file type when creating a file with the ?CREATE
call; read file type with the ?FST A T call.

You may assign the file types any meaning that you find useful.
Table 3.1 summarizes the available file types.

Mnemonic Meaning

?DDIR Directory

?DSMN to ?DSMX Range of values for files used by the system:

?DBPG bootable {stand-alone} program file

?DBRK program break file

?DIDF MP/ISAM data file

?DIXF MP/ISAM index file

?DLlB library file

?DLNK link file

?DLOG System log file

?DMBS MP/BASIC save file

?DOBF object file

?DOLF overlay file

?DPRG program file

?DPST permanent symbol table

(used by assembler)

?DSTF symbol table file

?DTXT text file

?DUDF general-purpose data file

?DUMN to ?DUMX Range of values reserved for users

Table 3.1 File types

The system also maintains an attrihute word for each file. The right
half (bits 8-15) of this word is used or reserved by the system. The
left half (bits 0-7) is reserved for the user. As with file types, you may
assign any meanings you wish to these bits.

You can read a file's attributes with the ?GTATR call and change
them with the ?STATR call. Table 3.2 summarizes file attributes.

Mnemonic

?ATPM

?ATRD

?ATWR

?ATAT

Meaning

Permanent: the file may not be deleted or renamed while this bit

is set to 1.
Set by the system for directories and root directories of disks.

Read protect: this file may not be read.

Write protect: this file may not be written. Set by the system

for directories and root directories of disks.

Attribute protect: the attributes of this file may not be changed.

Set by the system for devices and root directories of disks only.

Table 3.2 File attributes

When the system creates an entry for a new file in a directory, the
current time and date are associated with the new filename.
Subsequently, the system updates the time and date to reflect the last
occasion on which the user accessed or modified the file. This

File Management 3-7

Licensed Material - Property of Data General Corporation

3-8 File Management

System Call / Library
Routine Summary

Licensed Material - Property of Data General Carporation

information can be obtained via the ?FST A T system call: packet
double word ?FTLA in ?FST A T returns the date and time the file
was last accessed; packet double word ?FTLM returns the date and
time the file was last modified.

Table 3.3 summarizes MP / AOS-SU system calls and library routines
for file management.

Mnemonic

?ALlST

?CREATE

?DELETE

?DIR

?FSTAT

?GLlST

?GNAME

?GNFN

?GTATR

?RENAME

?SLlST

?STATR

Function

Alter searchlist

Create a file

Delete a file

Select a working directory

Get file status including type,
attributes, size; can be used to
retrieve link contents.

Get current search list

Get fully-qualified path name;
scans searchlist if necessary

Library routine: get next filename;
retrieves names of files contained
in a directory

Get file attributes and file type

Rename a file; can be used to
move a file to a new directory

Library routine: set the searchlist

Set file attributes

Table 3.3 Summary of file calls and library routines

Input/Output

Options

DE (delete existing file with
same name)

CH (file is open on specified
channel number)

LNK (do not resolve links)

CH (file is open on specified
channel number)

PR (get path name of calling
program)

CH (file is open on specified
channel number)

LN (return file byte length)

DE (delete existing filename)

CH (file is open on specified

channel number)

Data transfers between your program and a device on file are detailed
in Chapter 7, "Input and Output".

Program
Management

MP / AOS-SU programming and multitasking capabilities enable
development of a wide range of applications systems. Extensive
system calls provide for complete user control of program space,
scheduling, and program I/O. This chapter describes the facilities
available for managing programs under MP / AOS-SU.

MP / AOS-SU system calls allow you to perform the following func­
tions:

• transfer control from one program to another
• pass a message (up to 2047 bytes in length) between programs
• create a "break file" containing the complete state of an interrupted

program
• shut down or restart the system.

The ?EXEC call changes the program that is running, while retaining
the program state (Le., the contents of the task control blocks (TCB's)
for each task, the channels, impure memory, current segment
mapping and relationships to it, the environment, and information
needed for restoring overlays).

NOTE: The CL option to the EXEC call can be used to close all channels for the
executed program except the standard input/output channels, ?INCH and ?OUCH.

The initial program (:CLI.PR), runs at swap level 1. When that
program issues a ?EXEC, it is swapped out, and the program replacing
it runs at level 2. A program created by that program runs at level 3,
and so on, up to a maximum swap level of eight. Figure 4.1 illustrates
program swapping.

4

Program Concepts

Transferring Control
Between Programs

4-2 .

DG-25992

Program Management

CLI.PR

Levell

?EXEC NEW.PR

Calling program

swapped out to

system swap file

Figure 4.1 Program swapping via 7EXEC

Licensed Material - Property of Data General Corporation

NEW.PR

Level 2

CLI.PR
Levell

New program

executes on a

higher program
swap level

within same
process

?EXEC NEXT.PR

Calling

program

swapped out

CLI.PR
Levell

NEXT.PR

Level 3

New program

executes on a

higher program
swap level

within the
same process

When a subsequent program executing on a higher swap level
terminates, the last swapped-out (not chained) program is reactivated.
As used in MP / AOS-SU, the term "parent program" pertains to the
push level relationships just described and has no hierarchical
connotations. That is to say, a parent program is merely the program
on the next numerically lower level to the current program.

Use the ?EXEC call with the chain option to change the program that
is running without saving the calling program's state. This procedure,
called chaining to a new program, speeds up the switch by overwrit­
ing the calling program with the new one, eliminating the time
needed to swap out the creating program. The new program retains
the same swap level as the calling program. Figure 4.2 illustrates
swap and chain options.

When a chained program terminates, it does not return to its calling
program; instead, it reactivates the last non-chained program,
regardless of the number of chained programs between them.

The initial program executed by MP / AOS-SU is always :CLI.PR,
which appears with the message "CLI,LOGON". This causes the
MP / AOS-SU CLI to look for and to execute a macro called LOGON .CLI.
See MP / AOS-SU Command Line Interpreter (CLI).

Program Management

?EXEC (SWAP) NEW.PR ?EXEC (CHAIN) PROGX.PR

New program
executes at

higher program
swap level

Chained program

executes on
same program

swap level as
calling program

Calling program is

swapped out

Calling program
is not

swapped out

DG-25993

Figure 4.2 7EXEC with swap and chain options

MP / AOS-SU programs can send messages to each other on the ?EXEC
and ?RETURN system calls. They can receive messages with the
?GTMSG system call.

The system maintains a buffer which holds one message at a time.
Because an ?EXEC or ?RETURN call which does not pass a message
clears the buffer contents, you must read the message before
executing either call.

A message can contain up to 2047 bytes in any format. However,
MP / AOS-SU uses a standard format for messages from the CLI. You
can use the library routine ?TMSG to translate CLI-format messages
into arguments and switches.

The ?RETURN system call allows a program to terminate itself.
?RETURN also allows you to create a break file to save the state of
your interupted program for later perusal.

Interprogram
Communication

Terminating a
Program

licensed Material - Property of Data General Corporation

4-3

4-4 Program Management

Break Files

DG-25995

?xxxxxx
'------y----I

Program name

Figure 4.4 Break file name

. BRK

Licensed Material - Property of Data General Corporation

Figure 4.3 illustrates the effect of ?RETURN.

Program termination via lRETURN
~ ______________ ~A~ ______________ ~

II From U swap level 1

PROG.PR

Levell

RefreShD

CLI.PR

Levell

DG-25994

Figure 4.3 Effect of 7RETURN

ilFrom any
swap level
other than 1

If the terminated program was running

Next highest
swapped program
reactivates

• on swap level 1 the system will restart ("refresh") the initial
program

• on a swap level higher than 1, the program at swap level n-l (i.e.,
the last non-chained program) reactivates.

NOTE: Typing BYE in the initial eLI does not generate a ?RETURN. Instead, it
shuts down the system.

When a ?RETURN call uses the BK option, MP / AOS-SU writes the
information about the terminating program and its state into a
break file in the current working directory. The name of the break
file is composed of a question mark (?) followed by the program
name and a .BRK extension. See Figure 4.4.

Any existing file of the same name in the current working directory
is overwritten .

The current memory image of the terminating program as well as
information about the program state, task states, user overlays in
use, attached segments, and all open files is written to the break file.

Break files are available for later perusal, but they are not restartable,
i.e., they cannot be reexecuted.

The ?BOOT system call allows you to shut down the system in an
orderly manner, ensuring that no data is lost. You can also use the
?BOOT call to restart the system from a specified disk or filename.

Table 4.1 lists MP / AOS-SU system calls for program management.
Task-specific calls are summarized in Table 6.1.

Call

?BOOT

?EXEC

?GTMSG

?IFPU

?RETURN

Function

Shut down or restart the system

Execute a program

Get the current message

Use floating point unit

Return to previous program

Table 4.1 System calls

Options

CL (close all channels except

for the standard console I/O

channels)

BK (create a break file)

Program Management 4-5

Restarting the System

System Call Summary

Licensed Material - Property of Data General Corporation

Memory
Management

MP / AOS-SU supports up to 1024K words (2 megabytes) of physical
address space, the maximum supported by microECLIPSE architec­
ture.

The MP / AOS-SU operating system makes use of the Memory
Allocation and Protection (MAP) feature of the hardware. The MAP
feature provides extended physical addressable memory for user
programs together with various protection features for the operating
system and for currently used program memory. Specific MAP
features are processor-dependent and are detailed in the Principles
of Operation manual appropriate to the given processor.

The typical MP / AOS-SU program development system consists
entirely of read/write memory (RAM). The MP / AOS-SU scheme of
memory organization and allocation offers the system designer
significant flexibility in memory use.

MP / AOS-SU main memory is available to a user program in logical
allocations of pages (blocks of lK words). One or more pages are
grouped into units called segments.

Each user program has a maximum logical address space of 32K
words (65536 bytes). However, the use of dynamic memory segments
with the hardware mapping feature enables a program to address all
physical memory not used by the system, provided the addressing
extends to no more than 32K words of physical memory at anyone
time.

Available memory is acquired by the program itself when the
program is executed. A program can define, attach, and map to
additional memory segments when needed.

A program can share one or more memory segments with other
programs. The responsibility of memory management rests with the
programmer who designs how programs will share user segments.

5

Licensed Material - Property of Data General Corporation

5-2 Memory Management

The MP / AOS-SU
Mapping Capability

Licensed Material - Property of Data General Corporation

MP / AOS-SU's dynamic memory arrangement is handled through a
number of system calls that allocate additional address space as
needed and release unneeded address space for use by other programs
in the MP / AOS-SU program environment. This chapter describes
the memory environment provided by MP / AOS-SU and the facilities
available for memory management.

With a mapped system, you can address up to 2 megabytes of memory.
This is done with the aid of the microECLIPSE address translation
hardware and the logical-to-physical address translation functions
set up by the operating system. (See Figure 5.1.)

The memory pages allocated to a user program are not necessarily
contiguous. The MAP feature allows a different logical-to-physical
address computation to be specified for each lK word of logical
memory.

The address translation function which correlates a logical address
to the corresponding allocated physical memory address is called an
address map.

./' 0 /'" 7"

I Logical address

~JJ /'"

Physical

Address memory

translation
feature

1/
jJ

./'

G [
A

Physical address
V

D~0542

Figure 5.1 Addressing with the MAP feature

MP / AOS-SU supports two address maps. One address map defines
user address translation functions transparent to the user. The second
map is a translation function for the data channel. User-written
device drivers can manipulate the data channel map. (See Chapter 8,
"User Device Support.")

In addition to translating addresses, mapping also provides

• validity protection for currently unused portions of the program's
logical address space (up to 32K words)

• write protection for certain blocks of allocated physical memory;
(under MP / AOS-SU, shared and overlay memory areas are write
protected.)

• indirect protection for the user program; (this prevents the
disabling of the system by an indirection loop, an indirection
chain exceeding 16 levels.)

• I/O protection controlling access to I/O devices. Under MP / AOS­
SU, the I/O protection bit and LEF (Load Effective Address) mode
are controlled simultaneously: with I/O enabled, LEF mode and
the I/O protection bit are disabled (and vice versa). Initially, I/O
protection and LEF mode are enabled in user programs, and can
be modified with system calls.

Memory Management

Each memory segment consists of a user-specified number of pages Memory Segments
(lK block units) of address space. A segment need not be a physically
contiguous area of memory. It is a logical entity and can be made up
of various available physical pages from different areas of main
memory. The system keeps track of segment units, so that, to the
user program, a segment can be addressed as a logical area of
contiguous locations.

Segments are allocated in multiples of physical pages; therefore, the
minimum segment size is one page (l K words). The largest allowable
size for a segment is ?MXSP.

licensed Material- Property of Data General Corporation

5-3

5-4 Memory Management

Operating System
Memory

Disk Buffer Area

Licensed Material - Property of Data General Corporation

Since the MP / AOS-SU operating system and user programs occupy
different memory areas, there is no danger of a user program
overwriting a portion of the system.

In order to optimize system and interrupt performance, the MP / AOS­
SU system runs in unmapped space~ (See Figure 5.2.)

Memory

available for user

• Disk and overlay
buffers

DG-25996

Kernel

• I nterrupt drivers

• Scheduler

• System data
structures

Figure 5.2 System memory configuration

- ___ --' 0

Mapped

user memory

Unmapped portion
of system memory
O-n=<31K

One portion of the system is the kernel. It occupies lower page zero
and can extend up to 31K words, depending on the type of system
generated. The kernel contains the interrupt drivers, the scheduler,
and major system data structures, as well as routines for their
manipulation. Since the kernel runs unmapped, interrupt perfor­
mance is maximized.

The disk buffer area for disk I/O serves to increase the efficiency of
data transfer and to minimize disk access. The size of the buffers is
predetermined; the number of buffers is a system generation
parameter. Depending on the demands placed on the system, these
buffers are used to store either file system data or user data as
needed.

In general, this software-maintained buffer cache is maintained on
an LR U (least recently used) basis: the buffer most recently filled is
last in line to be flushed to disk when new buffer space is required.

The user logical address space consists of impure and pure memory
areas.

Impure memory contains modifiable information. Pure memory can
consist of two separate areas, namely, shared and overlay memory,
neither of which is modifiable.

User memory is initially allocated in up to three memory segments
corresponding to the program's impure, shared, and overlay memory
needs.

The size of the impure and shared/overlay segments (up to 32K
words) is determined by MP / AOS-SU from the program header
information set up by the Binder.

The three default segments are automatically mapped into the new
program. Each receives a number 0-2 as follows:

Segment 0 Impure area

Segment 1 Shared area

Segment 2 Overlay node area

This allocation is illustrated in Figure 5.3.

~~
'> '-~ J Pure area

~31-m Overlay area

Shared area

(segment 1)

DG-{)8954

r lMEMI increases

or decreases size

of impure area

~-_--J

(segment 2)
_____ -' ?PPMN

current lowest

pure area word

read w. ?INFO

]

?PIMX (current highest impure
word; read w. ?INFO)

----------....j Impure area

~::::::===j 0 (segment 0)

Figure 5.3 Organization of user logical address space

MP / AOS-SU allocates impure, shared, and overlay memory to an
executing program in accordance with the information supplied by
the Binder in the .PR image. Note, however, that all such programs
are constrained in their total memory size by the amount of physical
memory available.

A program's pure memory area (segments 1 and 2) is fixed in size. In
contrast, the impure area (segment 0) is allowed to grow and shrink.

Memory Management 5-5

User Memory

Licensed Material - Property of Data General Corporation

5-6 Memory Management

Extended Memory
Management

licensed Material - Property of Data General Corporation

Modifying the Impure Area, Default Segment 0
The ?MEMI call allows you to request or to relinquish segment a
(impure memory) as needed, provided that

• sufficient physical memory is available
• the value of ?PHMA (highest impure memory address) is not

exceeded.

To ascertain the amount of space available between the current
impure code boundary and the limit of the impure segment, use the
?PIMX value returned in the ?INFO call's packet) and the highest
impure address (the ?PHMA value returned in the ?INFO call's
packet).

The difference is the number of words of available address space
that can be acquired to expand the impure segment, but it is necessary
to keep in mind the constraints mentioned at the beginning of this
section.

It is important to remember that ?MEMI specifies memory in words,
for MP / AOS compatibility, and that MP / AOS-SU only allocates
memory in one-page increments. Therefore, segment a's addressing
area increases in full page allocations, rather than by the specified
number of words. For example, when current impure is n pages, a
?MEMI request for one additional word results in the additional
allocation of an entire page, although ?MEMI reflects only the
addition of one word. Caution must be used because, while machine
instructions are not prohibited from accessing remaining page
locations beyond the impure boundary, MP / AOS-SU does not allow
system call results and/or inputs to access this area.

The dynamic segment facility allows for user management of
additional memory areas added to the program after the initial or
default segments are provided.

A program can, for example, define one or more additional memory
segments of any size up to ?MXSP pages, causing them to be attached
to its address space, and releasing them at will.

A user program can also map desired portions of memory segments
into user logical address space. This feature makes vastly enlarged
memory resources available to the program. Optionally the mapped
pages can be write protected. Figure 5.4 summarizes extended
memory management.

Memory Management

User program 2

7ASEG

User programs can define, attach to,
and map additional memory segments.

User-defined

memory segment

?CSEG

Attaches Defines additional

to segment
defined by
program 1

User program 1
maps into a user-defined
segment

DG-25997

Figure 5.4 Memory management

Defining Additional Memory Segments
A program can create a segment of any required size up to ?MXSP
pages with the ?CSEG call. (Note that at the time of this writing
?MXSP is set to 128.) The total number of memory segments an
MP / AOS-SU system will support, including default segments allocat­
ed to each user process, is a system generation parameter.

Each user-created segment is allocated a unique global segment
number which is returned by the ?CSEG call. The global segment
number is important for other programs that wish to attach and
map to the same segment.

The new segment is automatically attached to the creating program.
It is not, however, mapped in to any user address space.

All pages of a newly-created segment are initially zeroed. Dynamical­
ly allocated segments are unswappable while they are in use.

A program can deallocate a dynamic segment with a ?DSEG call and
free up the memory space for other programs, provided no other
program is attached to the segment. The termination of a program
causes MP / AOS-SU to issue a ?DSEG for every segment attached to
the program.

Creating a segment allocates physical memory. The physical memory
cannot be recovered until the creating program detaches the segment.
For example, a son program cannot recover the physical memory
associated with a segment held by its parent.

User program 1

Licensed Material - Property of Data General Corporation

5-7

5-8 Memory Management

Licensed Material - Property of Data General Corporation

Sharing Memory Segments
Once a segment has been created, several programs can utilize the
same memory segment by attaching to it with an explicit ? ASEG
call. The global segment number needed for the call can be passed by
the segment's creating program via the message facility described in
Chapter 4. Attaching to a segment does not map the segment to a
program; the ?ASEG call merely increments the segment's use count.
The total number of attached segments that an MP / AOS-SU system
will support is specified at system generation time.

Mapping Memory Segments Within a Program
The ?MSEG system call maps portions of memory segments into user
logical address space as illustrated by Figure 5.5.

Page # ?MSPB
(program logical
page(s) to be
mapped)

DG-25998

User program

Figure 5.5 Mapping to a segment

Memory segment # 7MSSN

Page # ?MSSP
start mapping

Mapping is done for specific logical pages of a segment.

The call requires the segment number, the segment's starting page
number and the total page count (or entire segment indicator) of the
segment being mapped, along with the program logical page number
to which mapping is being done.

Any number of consecutive pages can be mapped with a single call.

The ?MSEG call has a write-protect (WP) option that traps any
attempt to modify the protected mapped portion of the segment.

The mapping function includes the specified segment pages in the
map for the calling program, making the new memory space
addressable for that program. The former contents of those portions
of user logical address space which are mapped to a new segment
become inaccessible unless remapped.

Dynamically mapped segments, unlike the impure default segment,
are not swapped out and in by the ?EXEC and ?RETURN calls.

A second call is not necessary to unmap a segment. A subsequent
?MSEG call overwriting the same logical area serves to unmap all
physical pages of the segment mapped to that same area. (Managing
the mapping of a number of segment areas to a program is the
responsibility of the calling program.)

The default segments may be remapped with the ?MSEG call.
However, this will restore the entire default segment to its initial
mapping.

System Call/Library Routine Summary
MP / AOS-SU system calls for memory management are summarized
in Table 5.1.

Call

?ASEG

?CSEG

?DSEG

?MEMI

?MSEG

?OVLOD

?OVREL

Function

Attach a memory segment

Create a memory segment

Detach from a memory segment

Change impure memory allocation

Map a memory segment

Library routine: Load an overlay

Library routine: Release an overlay

Table 5.1 Memory call summary

Option

WP (write-protect mapped

pages)

Memory Management 5-9

Licensed Material - Property of Data General Corporation

Multitasking

Multitasking greatly simplifies certain types of programs, notably
those which must perform a number of operations in parallel. The
system allows you to divide a program into a number of subprograms
called tasks.

Multitasking is similar to multiprogramming, or timesharing, in
that multiple control paths are established. However, all tasks are
part of a single program, so they must share memory, I/O channels
and other system resources.

An example of a multitasking program is a multi-user editing system
that supports several people working at consoles. Under the MP / AOS­
SU system, you simply assign a separate task to each user, and the
system takes charge, deciding which user to service.

The total number of tasks supported by an MP / AOS-SU system is a
system generation parameter. Include in this number the maximum
number of tasks your program(s) will require so as to enable the
system to allocate memory for task control information.

You must count the task that the system creates for the new program
as part of the maximum number of tasks you specify for the system.
This number should also include provision for system tasks created
as a result of nonpended system calls issued by programs that execute
within the process. See Chapter 7 for a discussion of nonpended
calls.

At run time, you create tasks with the ?CT ASK system call. Creating
a task is similar to calling a subroutine, but the calling routine
continues to run: it does not wait for the called routine to exit. You
have the capability to control the contents of ACO, ACl, and AC2 in
the created task. AC3 is set to the address of a routine to which the
task should jump when it finishes running. Because of this accumula-

6

Managing Tasks

Licensed Material - Property of Data General Corporation

6-2 Multitasking

Parallel Call Errors

Task Priority

Licensed Material - Property of D8t8 General Corporation

tor handling, a task may be written to use the SAVE and R TN
instructions just like a subroutine.

When you create a task, the system assigns it a task identifier (TID),
a 16-bit number used with system calls to reference the task. A task
can retrieve its own identifier with the ?MYID call.

Tasks are deleted (killed) when they jump to the address in AC3. You
can also kill a task at any time with the ?KT ASK call. If you have
specified a kill post-processing routine for the task, it will be executed
at this time. This routine can perform such functions as deallocating
memory used by the task. When the routine is entered, AC2 will
contain the identifier of the task being killed, and AC3 will contain
a return address to which the routine will jump when it finishes
executing.

NOTE: A task kill post-processing routine may not execute system calls.

When you create a task, specify a routine to be called in case the task
causes a stack overflow. Before calling this routine the hardware
pushes five words onto the stack consisting of

• the accumulators ACO through AC3
• a word containing the carry in bit 0, and the contents of the

program counter (where the overflow occurred) in bits 1-15.

Since the system's handling of a stack overflow involves pushing
more words onto the stack, ensure that your stack is at least actually
five words larger than the size you specify in the stack limit word.
Otherwise, part of your program code may be destroyed during the
handling of the overflow. You should also allow stack space that may
be needed by the overflow handling routine itself.

If you do not specify an overflow handling routine, any stack error
will kill the task.

Stack overflow handling routines return using the POPB (Pop Block)
instruction rather than R TN.

A conflict may arise in a multi tasked program if one task executes
an ?EXEC or ?RETURN while another task has a system call in
progress. A similar situation may occur, even in a single-task
program, if you interrupt the program from the console. In these
cases, any outstanding calls will be aborted, and they will return an
error with code ERPCA (Parallel Call Abort Error J.

Tasks are scheduled by priority. A task priority is designated by a
number between 0 and 255; lower numbers represent higher
priorities.

You specify a task's priority when you create the task with the
?CTASK system call. A default priority of 1778 (127 10) is assigned by
the system to a program's initial task. A task can modify its own task
priority, as well as the priority of other tasks within the current
program with the ?PRI call.

At times you will need to suspend multitasking activity; for instance,
you may need to read and modify a critical memory location without
having some other task modify the same location at the same time.
Two system calls support this activity: ?DRSCH and ?ERSCH.

?DRSCH disables the task scheduler and ensures that no task runs
except the one that executed the ?DRSCH. When the task completes
the critical activity, it re-enables the scheduler with the ?ERSCH
call. You can also use ?DRSCH to determine whether or not
multitasking is currently enabled, as explained in Chapter 10,
"Dictionary of System Calls and Library Routines".

Tasks can suspend and enable multitasking and synchronize their
activities within their current program.

Tasks within the current program are able to control each other's
actions. The system permits synchronization of tasks' activities
through the ?PEND and ?UNPEND calls. When a task executes a
?PEND, it is suspended until a particular event occurs. The event is
specified by a 16-bit event number. This number must be used by
another task in a ?UNPEND call to unpend the pended task. ?UNPEND
can also unpend a particular task by specifying its task identifier.

Event numbers must be between zero and the value of the mnemonic
?EVMAX. Values between zero and mnemonic ?EVMIN are reserved
for system-defined events, which you may specify in a ?PEND call
but not in a ?UNPEND call. Values between ?EVMIN and ?EVMAX,
inclusive, may be used for either ?PEND or ?UNPEND. ?UNPEND
also allows you to pass a one-word message to ACO of the unpended
task.

When you unpend a task, it may take either the normal or error
return from its ?PEND call. If it takes an error return, the unpended
task should then examine the contents of ACO to determine the error
cause. Be sure that the value of the message word is not the same as
one of the ?PEND error codes; otherwise, a task that takes an error
return will be unable to determine the cause of the error.

To interrupt a program, users may type a CTRL-C CTRL-A sequence
on the console keyboard. To receive this interrupt, your program
must create a task pending on an event number equal to ?EVCH plus
the channel number of the console keyboard. When the user types
CTRL-C CTRL-A, the task unpends in error, that is, it takes the
ERCIN (console interrupt) error return. The task is then free to
perform such actions as accepting a command from the user or
terminating the program.

Multitasking

Scheduling

Intertask
Communication

Console Interrupt
Tasks

Licensed Material - Property of Data General Corporation

6-3

6-4 Multitasking

System Call / Library
Routine Summary

Licensed Material ~ Property of Data General Corporatton

MP / AOS-SU task management calls and library routines are summa­
rized in Table 6.1.

Mnemonic

?CTASK

?DELAY

?DRSCH

?ERSCH

?INFO

?KTASK

?MYID

?PEND

?PRI

?UNPEND

Function

Create a task

Library routine: delay execution of

a task

Disable task rescheduling

Enable task or rescheduling

Get program information

Terminate a task

Option

AW (await TCB if none avail­

able)

CK (take error return if multi­

tasking already disabled)

Get task or process ID and priority PRC (return process ID (one)
and task priority)

Suspend a task

Change task priority

Resume execution of a task BD (unpend all tasks)

ER (unpend at error return)

ID (unpend on task ID, not

event code)

Table 6.1 Multitasking call and routine summary

Input and Output

All data transfers between the user program and a device or file take
place via an I/O channel. Under MP / AOS-SU, the user program
controls the allocation and release of I/O channels.

When a channel is opened to a file, a file pointer indicates byte
position in the file. The positioning of the file pointer is user
controlled to permit random access to any byte in the file.

MP / AOS-SU generally buffers data transfers through a software
maintained buffer cache. Buffering is bypassed when entire disk
blocks are transferred. For cases in which it is important to keep the
user file updated between short transfers (e.g., for the creation of
checkpoint records), the FLUSH option on ?WRITE is provided. This
causes all file system data associated with the channel to be written
to disk before the ?WRITE call takes a return to the user program.

MP / AOS-SU provides nonpended I/O, allowing a task to continue
processing overlapped with that task's I/O. The system allows the
program to be notified when any of its nonpended calls (tasks) has
completed execution.

Options on the ?READ and ?WRITE system calls provide the user
with several techniques of data transfer, namely, dynamic and data
sensitive I/O.

I/O devices are divided into those with a block structure such as
disks and magnetic tape, and those without a block structure, i.e.,
character devices such as consoles and line printers. Magnetic tape
is supported as part of the MP / AOS-SU library.

User calls introduce disk devices to, and release them from, the
system. The system performs consistency checks on disks. Disks can
be MP / AOS-SU formatted by means of the DINIT utility. MP / AOS-SU
disk structure is identical to that used by MP / AOS and MP lOS. Disk
media are interchangeable between these three systems.

7

Overview

Licensed Material - Property of Data General Corporation

7 -2 Input and Output

I/O Channels

Licensed Material - Property of Data General Corporation

Terminals are handled as two devices, namely keyboards for input
and CRT consoles or printers for output. Console and line printer
characteristics are user modifiable and offer numerous facilities
without programming intervention. Predefined control characters
and control sequences are supported.

All data transfers between a user program and a device or file take
place via an I/O channe1. An I/O channel (not to be confused with a
data channel), is a system-defined data path.

To use an I/O channel, you must open it; i.e., you must connect it to
some device or file. Your program does this with the ?OPEN system
call. You specify the maximum number of I/O channels that can be
opened system-wide at anyone time when generating your MP / AOS­
SU system.

When you finish using an I/O channel, you can release (close) it
with the ?CLOSE system call. The ?INFO system call returns the
status of the first sixteen (16) I/O channels in your program.

An important feature of the MP / AOS-SU system is its ability to pass
I/O channels between programs: when a program performs an
?EXEC, the states of any active I/O channels are passed to the new
program. Thus the new program can perform input and output on
these channels without reopening them. I/O channels can be passed
regardless of whether the program performs the ?EXEC with the
chain or the swap option.

The passing of I/O channels is a useful form of communication; it
can also be potentially hazardous if the new program does not expect
to find any open channels. It is therefore a useful precaution to start
all programs by closing any unneeded I/O channels. MP / AOS-SU
provides two mechanisms for doing this:

• The CL option of ?EXEC closes all open I/O channels on behalf of
the new program, with the exception of the standard input and
output channels. All channels are restored after the EXECuted
program terminates.

• The ?RESET call allows the new program to close one or more of
the first sixteen I/O channels by specifying them in a I6-bit
mask. (Channels beyond the sixteenth must be individually
released via the ?CLOSE call.)

When a program performs a ?RETURN, the parent program resumes
execution with the same I/O status it had when it performed the
?EXEC.

Standard Input and Output Channels
The MP / AOS-SU CLI always opens two channels for console I/O
and always passes these two channels to other programs, since
almost all programs use them. The CLI always closes all other
channels before calling any program.

The standard input channel has the mnemonic ?INCH; in the initial
program, ?INCH is opened to device @TTI. The standard output
channel has the mnemonic ?OUCH and in the initial program it is
opened to device @TTO.

As soon as you open a channel to a disk file, the system tracks your
position in the file with a 32-bit file pointer. This pointer is the
number of the next byte in the file to be read or written. Normally
this pointer is simply incremented for each byte transferred, so that
the entire file is processed sequentially. When the pointer is zero,
the channel is positioned at the beginning of the file.

Use the ?GPOS system call to determine the file pointer's current
value for any channel. You can use the ?SPOS call to change the
value of this pointer, thus permitting random access to any byte in
the file.

As discussed in Chapter 5, MP / AOS-SU provides a software­
maintained buffer cache for disk I/O to minimize disk access and to
provide efficient sequential I/O. The ?CLOSE system call ensures
that all system buffers associated with a particular channel are
written (flushed) to the disk file. It is good practice to ?CLOSE a file
when it is no longer being used.

The buffering mechanism is bypassed when block-aligned data is
transferred. (See "Dynamic I/O.")

?WRITE/?READ Flush
During the normal ?WRITE to a file, there is no assurance that data
is written to the disk, even when ?WRITE returns normally: the
data may merely have been transferred to buffers. Typically the
data is written to disk either when the disk buffer currently holding
the data is needed for buffering other data, or when the file is
?CLOSEd. Since this may not be appropriate for certain applications,
MP / AOS-SU provides the FLUSH option on ?WRITE.

When a ?WRITE system call with the FLUSH option returns, the
user is assured that all file system data associated with the I/O
channel is written to disk. This helps ensure that the state of the file
is valid and updated between data transfers.

The FLUSH option on ?READ affects character devices only, causing
any characters currently held in the system buffer to be discarded.

Input and Output 7-3

File Positioning

I/O Buffers

licensed Material - Property of Data General Corporation

7 -4 Input and Output

Nonpended I/O

Licensed Material - Property of Data General Corporation

To eliminate the loss of processor time while I/O calls are executing,
you can use nonpended I/O calls.

Specify a nonpended I/O call by coding the NP option on the call.
When you execute the call, instead of suspending your task, the
system creates a new task and assigns it the job of executing the I/O
call, while the calling task continues its operation. See Figure 7.1.

Pended I/O

User program

DG-08940

Program

flow

~
IREAD

t

Figure 7.1 Pended and unpended I/O

Nonpended I/O

'11--------,
I) Task is :

1 created I
1 to execute I
: nonpended I
I call I
L ~~, __ J

Check task -L-=:t---:..

When you specify the NP option, AC2 returns the task identifier of
the system-created task which is executing your I/O. To avoid error
when using nonpended calls, the user must specify a sufficient
number of task control blocks (one for each nonpended call) when
the system is generated.

You cannot assume that the results of the system call are valid; if, for
instance, you read data with a ?READ NP system call, you must still
wait for the data to arrive before you can operate on it. You can,
however, perform other types of computation while waiting for the
new data.

To find out when the nonpended callis complete, execute an ?AWAIT
call. This call enables you either to check the nonpended call's
progress or to suspend your task until the call is complete. ?A WAIT
normally checks the status of a specific nonpended system task; an
option allows this call to check the status of any nonpended system
tasks.

When issuing ? AWAIT without options, you specify the particular
system call to be awaited by supplying a task identifier; this task
identifier is the one returned to you in AC2 by the system when you
executed the non-pended call.

When the call being executed by the task you specify is completed,
?AWAIT returns the nonpended call's outputs in ACO-2.

The AY option on ?AWAIT allows you to determine when any of
your non-pended system calls are completed, rather than only the
particular call you specified. In that case, ?AWAIT returns the task
identifier of the completed call in AC2. You can- then issue another
? AWAIT using the task identifier just returned to obtain the
completed call's outputs in the usual fashion.

All I/O is performed by means of the ?READ and ?WRITE system
calls. Options for these calls allow for a number of different I/O
techniques.

MP / AOS-SU transfers data either by byte count (dynamic I/O), or
until a delimiter is encountered (data-sensitive I/O).

The amount of data transferred and its placement (Le., whether or
not it is word/block aligned) determines whether or not the data is
buffered through the system.

Dynamic I/O
Dynamic I/O permits you to read or write any number of bytes with
a single system call. You specify the number of bytes to be transferred
in an accumulator; the data is then transferred directly between the
file and main memory, subject to buffering by the system.

Block aligned I/O is a special case of dynamic I/O which eliminates
system overhead for buffering, resulting in significantly increased
speed.

Data on disk devices is divided by hardware into blocks of 512
bytes. When you request a data transfer to part of a disk block, the
system stores the entire block in a system buffer before moving the
data to or from this buffer.

If you use the ?READ and ?WRITE calls to transfer entire disk
blocks, you eliminate the need for the system to buffer the transfer.
To accomplish this, your data must be block aligned:

• the file pointer must be a mUltiple of 512 before the transfer
• specify a request of 512 or more bytes to read or write
• specify a buffer that is word aligned in your address space.

The system performs block I/O whenever possible. For example, if
the request is for 600 bytes, but the buffer word alignment and file
pointer criteria are met, then that portion of the transfer is done by
block I/O.

For maximum efficiency, you should not mix dynamic block I/O
with conventional dynamic I/O operations.

Input and Output 7-5

I/O Techniques

licensed Material - Property of Data General Corporation

7 -6 Input and Output

I/O Device
Management

Disks

Licensed Material - Property of Data General Corporation

Data-Sensitive I/O
Data-sensitive I/O is performed by using the ?READ and ?WRITE
system calls with the DS option. In this case, the maximum number
of bytes to be transferred is specified. The system transfers bytes
until it encounters a delimiter. Default delimiters are defined as
bytes containing either a New Line (12s), Carriage Return (15s),
Form Feed (14s) or null (Os). The ?SCHS system call allows you to
define any character as a delimiter by specifying a new delimiter
table. As with dynamic 1/0/ data is transferred between the file and
main memory. After the transfer, the number of bytes moved is
placed in an accumulator.

If no delimiter is encountered after the maximum number of bytes
has been transferred, the ?READ or ?WRITE call returns error ERL TL

(Line is too long).

The MP / AOS-SU system divides I/O devices into two categories:
those with directory structures (MOUNTed disks) and those without
directory structures (character devices). Character devices include
consoles and line printers.

Table 7.1 lists the standard MP / AOS-SU I/O devices with their
mnemonics. Note that in a system with several character devices of
the same type, the mnemonic may be followed by a number, e.g.,
@TTIO. A list of microECLIPSE and microNOVA I/O device codes
appears in Appendix D.

Mnemonic

DPD

DPH

DPX
TIl

TIO

LPT

MTA

Device

10 Mbyte cartridge disk

12.5/25 Mbyte fixed disk

1.25 Mbyte diskette

360 Kbyte diskette

15 Mbyte fixed disk

315 Kbyte diskette

Console keyboard (input)

Console display (output)

Line printer

Magnetic tape

Table 7.1 Disk(ette). console. line printer and magnetic tape devices

The system provides two calls that mount disk devices and dismount
them so that you can remove disk units from the system to mount
new media on the drives. The ?MOUNT system call introduces a
disk to the system. The ?DISMOUNT system call shuts down a disk
device in a consistent manner, ensuring that any I/O data still in
system memory space will be written out. When the system is
started, only the system master device is mounted.

The system performs consistency checks at ?MOUNT and ?DIS­
MOUNT time. A flag on every MP / AOS-SU disk indicates whether it
was dismounted properly; i.e., the system did not crash or some
other circumstance did not impede dismounting. ?DISMOUNT sets
this flag and ?MOUNT tests it. If the flag is not set at ?MOUNT time,
you will have to run the disk FIXUP program to restore the disk to a
proper state. If this occurs for the system master device when you
start the system, the bootstrap loader automatically runs FIXUP. To
make sure you have the disk you want, you may also use ?MOUNT to
check its label (a user-specified disk ID name).

NOTE: You can only ?MOUNT an MP/AOS-SU-formatted disk. If a disk is not

properly formatted, use the DINIT utility to prepare it. DINIT is described in

MP/AOS-SU System Generation and Related Utilities.

If you wish to access a disk without using the MP / AOS-SU file
structure, you can ?OPEN it without first ?MOUNTing it. In this
case, the disk is treated as a single file with an element size equal to
the number of blocks on the disk.

You can use a ?DSTAT call to retrieve status information pertaining
to a disk. This call provides such data as the number of blocks in use
and the number of I/O errors that have occurred. ?DSTAT may only
be used on a ?MOUNTed disk.

MP / AOS-SU supports magnetic tape devices as part of its library. To
use a magnetic tape controller, include it in the total count of
?IDEF / ?LDEF device control tables (DCT's) specified at system
generation. (DCT's are discussed in Chapter 8.)

Magnetic tape devices are supported by the MOVE and TCOPY
utilities; in most cases you can, therefore, utilize these devices without
writing special programs. The MOVE and TCOPY utilities are
documented in MP / ADS and MP / A DS-SU File Utilities.

For direct access to magnetic tape devices without use of the MOVE
and TCOPY utilities, bind a task with MT A.LB, the tape routine
library. This introduces into the program the service routines
identifying the magnetic tape controller as a user device. Tape
operations are described in Appendix H of this manual.

Terminal devices have a number of unique attributes, since they
communicate directly with users. Terminals are logically handled as
two different devices: the keyboard for input and the printer or CRT
for output.

Input and Output 7-7

Magnetic Tape

Character Devices:
Terminals

Licensed Material - Property of Data General Corporation

7 -8 Input and Output

Set On Mnemonic

Input/Output ?CBIN

Input ?CECH

Input ?CEMM

Input ?CESC

Input ?CICC

Output ?CLST

Input/Output ?CNAS

Input ?CNED

Output ?CST

Output ?CUCO

Output ?C605

Input/Output ?C8BT

Input ?CPSQ

Table 7.2 Console characteristics

licensed Material - Property of Data General Corporation

Console Characteristics
Console characteristics are attributes that control the receiving and
transmission of data by the console. Table 7.2 summarizes console
characteristics.

Affects Meaning when

Both Binary mode: disables all special control characters; passes all

characters exactly as received (8 bits).

Output Echo mode: echoes all typed characters although some receive

special handling as described in text.

Output Echo characters exactly as input: turns off echoing of control

characters as T x.

Input Escape mode: handles Escape (338) the same as CTRL-C CTRL-A.

Both Ignore control characters except delimiters and characters inter-

preted by the system.
A

Output List mode: echoes Form-Feeds (0 148)as " L" to prevent them

from erasing CRT screen.

Both Non-ANSII-standard console: supports terminals using older stan-

dard for control characters by converting Carriage Returns (0158)

into New-Lines (0128), and vice versa, on input; on output, converts

New-Line to Carriage Return, followed by New-Line, followed by

null.

Output Do not echo delimiters.

Output Simulates tabs: converts all tab characters (011 8) to the appropriate
number of spaces; cursor moves to the beginning of the next

8-character tab column.

Output Convert to uppercase on output.

Both D200, D210 or similar device: uses cursor movement characters

to echo Rubout and CTRL-U by erasing characters from the screen.

The two characters following a 378 on input and a 208 on output

will be passed through uninterpreted.

Input 8-bit characters; the default is to mask all input characters to 7

bits, unless in binary mode.

Output Generate XOFF /XON characters on the associated output device
when the input ring buffer becomes full/empty.

Each characteristic is controlled by a bit in the device's characteris­
tics word. The system presets console characteristics to the values
you specify at system generation; you can later modify these
characteristics via system calls. Use ?GCHAR to display the current
setting of console characteristics and ?SCHAR to modify any or all of
the characteristics words.

Echoing characters is a typical system preprocessing function on a
console: normally, all characters received by the system from the
keyboard are echoed or retransmitted to the display, so that the user
can check the input. Most control characters are echoed in the
standard way, e.g., A A for CTRL-A. However, some control characters,
such as New Line, are echoed explicitly since they have special
meanings to the console. Others are assigned special meanings by
the system. See the sections entitled "Control Characters" and
"Control Sequences" and their tables.

To ensure compatibility with standard ASCII-7, the system normally
sets to 0 the high-order bit of any byte sent to or from a console.
Thus character values range from 0 to 1778. The ?SCHAR system
call with the ?C8BT characteristic bit can be set to disable this and
transmit/receive eight-bit characters.

The system also echoes Form Feeds as L to prevent them from
erasing the CRT screen (?CLST characteristic bit), executes Rubouts
(?C605 characteristic bit), and converts to uppercase on output (?CUCO
characteristic bit). The user can modify any of these characteristics
at will.

NOTE: All special character actions are disabled when you select binary mode for

I/O (?CBIN characteristic bit).

Options to ?SCHAR also allow the user to modify the number of
characters per line, the number of lines per page, and as described
in the next section, the terminal's hardware characteristics.

Hardware Characteristics
The device's hardware characteristics are user-specified when the
system is generated. For hardware with programmable characteris­
tics, options to the ?SCHAR system call allow the user to modify
these characteristics under software control.

Hardware characteristics consist of the following:

• number of stop bits
• parity type
• code level
• baud rate for Asynchronous/Synchronous Multiplexors (ASLM's

and USAM's)
• hardware characteristics for disk devices.

Input and Output 7-9

licensed Material - Property of Data General Corporation

7-10 Input and Output

licensed Material - Property of Data General Corporation

Stop bits are bits used to indicate the end of data transmission. The
number of stop bits is user-selectable within the range indicated in
Table 7.3.

Parity consists of an optional bit included with each transmitted
character for purposes of error checking. Table 7.3 indicates the
available types of parity.

Code level specifies the number of data bits per character; Table 7.3
specifies the selectable range.

Number of Parameter Parity Parameter Code Parameter
Stop Bits Level

?C1S None ?CNPR 5 bits ?C5BC

1.5 ?C15S Odd ?CODD 6 bits ?C6BC

2 ?C2S Even ?CEVN 7 bits ?C7BC

8 bits ?C8BC

Table 7.3 Programmable hardware characteristics (lSCHAR with HC option)

Baud rate indicates the rate of character transmission. As Table 7.4
indicates, the operating range extends from 50 to 19.2K baud.

Baud Rate Parameter

50 ?C0050

75 ?C0075

110 ?C011O

134.5 ?C1345

150 ?C0150

300 ?C0300

600 ?C0600

1200 ?C1200

1800 ?C1800

2000 ?C2000

2400 ?C2400

3600 ?C3600

4800 ?C4800

7200 ?C7200

9600 ?C9600

19.2K ?C192K

Table 7.4 Baud rate for Asynchronous/Synchronous Line Multiplexor (ASLM) and Universal

Synchronous/Asynchronous Multiplexor (USAM)

The ?GCHAR and ?SCHAR system calls with the HC option may also
be used to examine and modify the hardware characteristics of
programmable disk devices. See Table 7.5 for disk characteristics.

Mnemonic Meaning

?CDGC

?CMPT

Device is DGC mini-diskette

Device is MPT mini-diskette

Table 7.5 Hardware Characteristics for Disk Devices

Control Characters
The system assigns special functions to certain control characters.
These functions are summarized in Table 7.6.

Character Octal Function

Null 0 Standard delimiter: signals the end of a data

sensitive ?READ or ?WRITE

CTRL-C 3 Starts a control sequence (described below)

CTRL-D 4 Indicates end of terminal input file (not passed to

program)

New Line 12 Standard delimiter (like null)

Form Feed 14 Standard delimiter (like null)

Carriage Return 15 Standard delimiter (like null)

CTRL-O 17 Toggles: eliminates output to console; turns

console back on

CTRL-P 20 Reserved for future use*

CTRL-Q 21 Restarts output after CTRL-S

CTRL-R 22 Reserved for future use*

CTRL-S 23 Suspends output so you can read material on a

CRT screen

CTRL-T 24 Retypes the current line so you can check what
you have typed (hardcopy terminals)

CTRL-U 25 Deletes the current input line

CTRL-V 26 Reserved for future use*

Rubout 177 Deletes the last character you typed from the
current input line

Table 7.6 Control characters

• Reserved characters are ignored except in binary mode.

Input and Output 7-11

Licensed Material - Property of Data General Corporation

7-12 Input and Output

Line Printers

System Call Summary

Licensed Material - Property of Data General Corporation

Control Sequences
A control sequence is a CTRL-C followed by one of the characters
whose functions are described in Table 7.7.

Character Octal Function

CTRL-A

CTRL-B

CTRL-C

CTRL-D

CTRL-E

(Others)

2

3

4

5

Signals a console interrupt, which may be passed to

your program (See "Multitasking. ")

Causes termination of the program currently running

Reserved for future use *

Reserved for future use *

Terminates the current program and saves its state in a

break file (See "Program Management. ")

No function: character is passed to your program

Table 7.7 Control sequence characters

• Reserved characters are echoed, but not passed to your program except in binary mode.

The system's handling of line printers is similar to that of console
output. Each device has a characteristics word which is a subset of
the word for consoles. The system keeps track of the line and page
size for line printers just as it does for consoles.

The applicability of various characteristics to line printers is
summarized by Table 7.8

Characteristic LPT

?CBIN Used

?CECH Unused

?CEMM Unused

?CESC Unused

?CICC Used

?CLST Used

?CNAS Used

?CNED Unused

?CST Used

?CUCO Used

?C605 Unused

?C8BT Used

Table 7.B Line printer device characteristics

MP / AOS-SU system calls for Input/Output and device management
are summarized in Table 7.9.

Call

?AWAIT

?CLOSE

?DISMOUNT

?DSTAT

?GCHAR

?GPOS

?MOUNT

?OPEN

?READ

?RESET

?SCHAR

?SCHS

?SPOS

?WRITE

Function

Await completion of nonpended system call

Close an I/O channel

Remove a disk from the system

Get disk status information

Get device characteristics

Get the file position

Introduce a disk to the system

Open an I/O channel

Read data from a device or file

Close multiple I/O channels

Set device characteristics

Set channel specifications

Set current file position

Write data to a device or file

Table 7.9 Input/Output and device system calls

Input and Output

Option

A Y (return when any nonpended call is complet­
ed)

CK (check call completion; error return if call

incomplete)

DE (delete the file)

CH {device is open on specified channel numbed

HC (return terminal's or disk's hardware charac­

teristics)

LL (return number of characters per line)

PG (return number of lines per page)

RS (return characteristics at time system was

booted)

AP (files: open for append; character devices:

suppress Form Feeds)

CR (create file)

DE (delete existing file)

EX (exclusive access)

NZ (don't zero blocks on allocation)

UC (unconditionally create file)

DS (data-sensitive read)

FL (character devices: flush buffer before read­
ing)

IX (only with DS: ignore input after maximum

byte count or delimiter)

NP (nonpended call)

CH (device is open on specified channel number)

HC (set terminal's or disk's hardware character­

istics)
LL (set number of characters per line)
PG (set number of lines per page)

RS (reset to boot-time value)

EF (cause error return on end-of-file on attempt
to extend file)

DS (data-sensitive write)

EF (cause end-of-file error return on attempt to

extend file) FL (flush current block to disk)

NP (nonpended call)

Licensed Material - Property of Data General Corporation

7-13

User Device
Support

MP / AOS-SU capabilities permit user control of I/O protection for
system and user devices, user-written device service routines, and
user manipulation of data channel map slots.

These facilities make it possible for programmers to perform input
and output with custom devices, to take advantage of their device's
interrupt facility, and to perform data transfers through data channel
control.

Peripheral devices, their input and output capabilities, as well as
input and output programming techniques are discussed at length in
the following two manuals:

• User's Manual Programmer's Reference Series, Peripherals
• The Microproducts Hardware Reference Series manual for your

peripheral.

The ?IDEF system call introduces a user device and its interrupt
routine to the system. (The maximum number of user devices
MP / AOS-SU will support is specified when the system is generated.)
As input to ?IDEF you specify an interrupt handler definition packet,
which is a block of memory containing the control data summarized
in Table 8.1. User-written device service routines reside in user
address space.

Word Mnemonic Contents

1 ?IHND Address of user device interrupt handler

2 ?IMSK Mask word

3 ?ISTK User interrupt stack address

5 ?IDAT Contents of AC2 at interrupt time

6 ?IHPR Reserved

Table 8.1 User device interrupt handler definition packet

8

Facilities

Defining a Device
Interrupt Service
Routine

Licensed Material - Prooertv of Data General Corooratinn

8-2 User Device Support

Licensed Material - Property of Data General Corporation

The system builds an internal device control table (DCT) based on
your packet specifications and enters this DCT into its interrupt
vector table, a hardware defined array. When the system detects an
interrupt request, it indexes into the interrupt vector table to locate
the correct device control table. The device control table in turn
points to the device's interrupt service routine.

The microECLIPSE hardware is capable of implementing up to
sixteen levels of priority interrupts. This is done with a 16-bit
priority mask. Each level of device priority is associated with a bit
in this mask. In order to suppress interrupts from any priority level,
the corresponding bit in the mask is set to l. The device's DCT
contains the current interrupt service mask (packet word ?IMSK in
the ?IDEF system call). Using this value, the Vector on Interrupting
Device Code (VCT) instruction updates this mask and therefore makes
the implementation of a priority interrupt system a straightforward
procedure. (For a discussion of the VCT instruction refer to the
Principles of Operation manual appropriate to your processor.)

When a device requests an interrupt, the processor automatically
transfers program control to the system's interrupt service routine.
This routine retrieves the device code of the interrupting device and
saves return information on the stack.

Before transferring program control to the device's service routine,
the system also

• loads AC2 with the contents of ?IDA T, a user-defined pointer to a
data area (see note below)

• uses the value of packet words ?ISTK and ?ISTL to initialize the
stack pointer and frame pointer to the user interrupt stack. This
permits the service routine to perform push/pop and similar
stack operations

• takes the current interrupt service mask and inclusively OR's it
with the interrupt service mask in the DCT. The OR operation
establishes which devices, if any, can interrupt the currently
executing interrupt service routine

• saves the current Load Effective Address (LEF) mode state

• enables the user map and disables LEF mode and I/O protection,
to permit the device service routine to issue input and output
instructions.

The user is responsible for restoring the interrupt mask if it has
been modified by the device interrupt handling routine.

NOTE: A comment on the use of ?IOA T is in order. This word is usually used to

point to a user-defined data area that describes the custom device or line device.

One use of such a data area is to store the device status returned at interrupt time

and then to ?IUNPENO a task waiting on device completion (usually, the 10 of this
task is also found in this user-defined data area).

Using this technique, interrupt routines are kept short and system
interrupt latency is minimized.

The only system calls permitted during a device interrupt service
routine are ?IUNPEND, ?STMP, and ?IXIT.

?IUNPEND enables the routine to communicate with other tasks.
The system call ?STMP discussed in the following sections sets up
data channel map slots to point to a buffer area in user space before
a channel transfer is initiated. Interrupts are always enabled after
?IUNPEND and ?STMP.

?IXIT returns control to the system and must be executed to exit
from the routine.

MP / AOS-SU restores LEF mode and I/O protection to their former
states upon exit from the device service routine.

Use the ?IRMV system call to deactivate device service routines.
Your program must deactivate such routines before the system
permits it to call another program with the ?EXEC call.

The system automatically deactivates any device interrupt service
routines upon program termination. Whenever possible, though,
explicit deactivation of such routines by the program via ?IRMV is
preferable. If a user device interrupts after its interrupt handling
routine has been disassociated from it, the interrupt is handled via
the standard system procedure for undefined interrupt processing.

Defining a Line Device Interrupt Service Routine
The ?LDEF system call allows the definition of an interrupt service
routine for a single line of an Asynchronous/Synchronous Line
Multiplexor (ASLM) or an Universal Synchronous/Asynchronous
Multiplexor (USAM). With this functionality, the user can elect to
control some of the devices connected to the multiplexor, while
leaving others under system control.

When a line multiplexor (either ASLM or USAM) is included in the
system configuration, MP / AOS-SU builds an internal device control
table (DCT) for the multiplexor and enters this DCT into its interrupt
vector table. The interrupt service mask for the line multiplexor is
included in its device control table.

Any ASLM or US AM line intended for a custom line device must be
identified together with its terminal device during the system
generation dialogue, and included in the total count of ?LDEF devices
requested by SYSGEN, the system generation utility. The system
uses this information to allocate space for a user ?LDEF DCT for
each user-controlled line.

When your program issues an ?LDEF call, the system builds the
actual user ?LDEF DCT containing the line number and the address
of its user interrupt service routine, as specified in inputs to the call.

User Device Support 8-3

Licensed Material - Property of Dat8 Gen .. al Corporation

8-4 User Device Support

Licensed Material - Property of Data General Corporation

As input to ?LDEF you specify a line interrupt handler definition
packet, a block of memory containing control data summarized in
Table 8.2. The packet format is similar to that used in the ?IDEF call
except for the fact that it contains no mask word, because the
interrupt service mask is already contained in the DCT for the
multiplexor device.

Word Mnemonic Contents

?LHND Address of interrupt handler

2 ?LSTK User interrupt stack address

3 ?LSTL User interrupt stack length

4 ?IDAT Contents of AC2 at interrupt time

5 ?LHPR Reserved

Table B.2 Line interrupt handler definition packet

When a line device interrupts, the system's interrupt service routine
locates the ASLM or USAM DCT, and the line number requesting
service. Next the system checks whether an ?LDEF has been issued
for the device connected to this line (that is, whether the line is
user-controlled); if so, the system locates the line's ?LDEF DCT.

Before transferring program control to the device's service routine,
the system

• saves return information on the stack

• loads AC2 with the contents of ?IDAT, a user-defined pointer to a
data area (see note below)

• uses the value of packet words ?LSTK and ?LSTL to initialize the
stack pointer and frame pointer to the user interrupt stack. This
permits the service routine to perform push/pop and similar
stack operations

• takes the current interrupt service mask and inclusively OR's it
with the interrupt service mask established by the system in the
DCT for the multiplexor device. The OR operation establishes
which devices, if any, can interrupt the currently executing
interrupt service routine

• saves the current Load Effective Address (LEF) mode state

• enables the user map and disables LEF and I/O protection mode
to permit the device service routine to issue input and output
instructions.

If the interrupt mask has been modified by the ?LDEF interrupt
handler, the user is responsible for restoring it.

NOTE: A comment on the use of ?IDAT is in order. This word is usually used to

point to a user-defined data area that describes the custom device or line device.

One use of such a data area is to store the device status returned at interrupt time

and then to ?IUNPENO a task waiting on device completion (usually, the 10 of this
task is also found in this user-defined data area).

Using this technique, interrupt routines are kept short and system
interrupt latency is minimized.

The only system calls permitted during a line device interrupt service
routine are ?IUNPEND, ?STMP, and ?LXIT. Note that interrupts are
always enabled after ?IUNPEND and ?STMP. ?LXIT returns control
to the system and must be executed to exit from the line device user
service routine.

MP / AOS-SU restores LEF and I/O protection mode to their former
states upon exit from the line device service routine.

Use the ?LRMV system call to deactivate line device service routines.
Your program must deactivate all such routines before the system
permits it to call another program with the ?EXEC call.

The system automatically deactivates any line device interrupt
service routines upon program termination. Whenever possible,
however, explicit deactivation of such routines by the program via
?LRMV is preferable.

The instruction format for LEF (Load Effective Address) and for I/O
instructions is identical; hence, LEF or I/O mode must be set to
enable the CPU to distinguish between these two classes of instruc­
tions. The ?ENBL/?DSBL system calls control the setting of I/O and
LEF modes.

No device I/O can occur while the CPU is in LEF mode. To issue I/O
instructions anywhere in a program at the task level, a user device
driver must, therefore, enable I/O with the ?ENBL command. This
permits I/O instructions to be issued to both system and user devices.
?DSBL disables access to all devices. These system calls are valid for
the entire program, rather than for the calling task only.

Initially, each program has LEF mode enabled. The user is cautioned
that when the CPU is in LEF mode, a user program can use the LEF
instruction, but may not issue I/O instructions because they would
be interpreted as LEF instructions. Similarly, any LEF instructions
issued when LEF mode is disabled are interpreted as I/O instructions.

Under MP / AOS-SU the ?ENBL/ ?DSBL calls simultaneously control
the I/O protection bit and the I/O-LEF mode. When I/O access is
enabled, both LEF mode and the I/O protection bit are disabled.
Similarly, when I/O access is disabled, LEF mode as well as the I/O
protection bit are enabled.

WARNING: Extreme care must be used when enabling I/O instructions, since
doing so allows the user to issue I/O instructions to any device.

The ?ENBL system call with the CK option can determine whether
the I/O mode is enabled. If I/O is enabled, the call will take the
error return ERSAD ("condition already exists"). The I/O mode test
is destructive: to restore LEF mode, execute a ?DSBL system call.

User Device Support

Enabling and
Disabling Access to all
Devices

licensed Material - Property of Data General Corporation

8-5

8-6 User Device Support

Managing Data
Channel Map Slots

Licensed Material - Property of Data General Corporation

The data channel facility enables direct data transfers between
memory and a register in the device controller. Data channel I/O
requires program control at both the start and end of each block
transfer.

Data channel transfers are performed across data channel maps in
units whose size is device specific. Data channel maps are translation
tables for the data channel. Devices using data channel maps use a
15-bit logical address.

All data channel I/O for DGC devices is pre-mapped by MP / AOS-SU
in conformance with the data channel capabilities of each device.

To enable data transfer through data channel with user built devices,
MP / AOS-SU allows you to access a portion of the data channel and
map it to your user address space.

The following steps summarize the sequence of operations for setting
up dat.a channel maps. The remainder of the chapter discusses these
operations at greater length.

Step 1:

Step 2:

Step 3:

Step 4:

Allocate data channel map slots (?ALMP).

Translate user logical address for the start of transfer
into a physical page number (?GMRP).

Set up data channel map. (Store user physical page
number in the appropriate data channel slot (?STMP),
where it serves as a pointer to a buffer in the user
address area.)

Initiate transfer - enable I/O (?ENBL).

Setting up the data channel maps can be executed from either the
driver (task level), or the device's interrupt service routine (interrupt
level); allocating the data channel map slots, obtaining the user
physical address, and enabling I/O must be performed at task level.

Data Channel Map Organization
The data channel map is lettered A. It contains 32 slots, or words.
MP / AOS-SU software convention is to number the slots consecutively
starting from 0 for the first slot in map A, through 31. Figure 8.1
illustrates this scheme.

Each data channel map slot word corresponds to a 1K word range of
logical data channel addresses, from 0 through 102410, These
addresses are also numbered consecutively within each map, from 0
for the first address in the first slot of each map, through 32767 10 for
the last address in the thirty-second slot. Figure 8.2 illustrates.

Data channel map Corresponding logical addresses

31 l- -., 31744 - 32768

• •
• •
• •
• •

Map slot • •
• •
• •

I-- .. 2048 - 3071

I-- .. 1024 - 2047
0 I- .. 0-1023

DG-26000

Figure 8.2 Data channel map slots and their range of corresponding logical addresses

User Device Support

Map slot

numbers

31

o
DG-25999

• • • •

Map type

A

Figure 8.1 Data channel numbering scheme

Licensed Material - Property of Data General Corporation

8-7

8-8 User Device Support

Licensed Material - Property of Data General Corporation

Data Channel Mapping via System Calls
Once the number of slots required for the particular data transfer is
determined, the program issues a request to allocate specific data
channel map slots for use by the device. (The number of data channel
map slots requested depends on the number of pages to be transferred
and on the characteristics of the device.! The ?ALMP system call
requests data channel map slot allocation.

Data channel addresses differ from logical addresses in the user
program. The starting map slot number returned is the user's
representation of the map slots allocated. The addresses represented
by these slots are associated with actual physical pages during a
?STMP call, when the data channel map is actually set up.

Following the allocation of data channel map slots, the user's logical
page number from which to transfer data out or in must be translated
into a physical page number in memory. (The user address space
contains 32 logical pages of 1024 words each.) The ?GMRP system
call performs this translation, returning a physical page number.
Figure 8.3 illustrates.

Program X

Logical address

space

Page 31 I-- \ Physical

memory

Program X
Logical

page #
for start

~
?GMRP call

"-
of data I Physical page no.
transfer ~ Translates user

• logical page number
• to physical · • page number • •

Page 0 ~

-- f- 0 - 1024 words

DG-26001

Figure 8.3 ?GMRP call returns physical page number

Upon completion of these steps, data channel mapping can take
place. The ?STMP call allows users to request data channel mapping
for each map slot previously allocated via ? ALMP.

When ?STMP is issued, the system stores the user's physical page
number into the data channel slot number specified. This slot number
indicates the range of logical addresses to which the slot in question
corresponds.

?STMP fills one slot at a time; it must be reissued for each of the data
channel map slots allocated.

User Device Support

Step 1.
1024
word

User logical
address

space

Data channel map slot number

allocated via ?ALMP -------. range of

Step 2.

User logical page

number translated
to physical page

number via

?GMRP

User logical page number

Data

channel

map

Map slot 31 ~"""" __ ~-I

Map slot 0 '"-____ -'

Physical memory

Physical page number

DG-26002

Figure 8.4 Sequence of data channel mapping operations

Figure 8.4 illustrates the sequence of the three steps just discussed,
from data channel map slot allocation through data channel mapping.

The mapping itself is done by the system. The user must, however,
be sure to compute the proper data channel addresses, i.e., to keep
track of the slots and their range of data channel logical addresses.

The user program is now ready to issue an I/O instruction. This
instruction identifies the device and loads the starting data channel
logical address into the accumulator. The starting logical address
permits the system to identify the slot containing the user's physical
page number, as well as the relative position from the beginning of
that page for starting the data transfer.

The starting data channel logical address can be anywhere within
the range of logical addresses corresponding to the particular user
slot allocated. For transfers which are aligned with page boundaries,
the starting data channel logical address is the first address of the
range. If, for example, the user has been allocated the fourth map
slot, the starting data channel logical address for a page aligned
transfer is 60008, the first address in the fourth slot range of
addresses.

Step 3.

User physical page
number is stored in

allocated map slot

via ?STMP

logical

addresses

User physical
page number

Licensed Material - Property of Data General Corporation

8-9

8-10 User Device Support

System Call Summary

Licensed Material - Property of Data General Corporation

For data transfers which are not page aligned, a word offset
specifying the position of the start of transfer relative to the beginning
of the page must be added to the beginning range address. Using the
previous example, if the transfer is to begin at the sixth word of the
user's physical page, a starting data channel logical address of 60008

+ 58 is loaded into the accumulator.

The data is then mapped to the correct user address area referenced
by the user physical page number contained in the allocated slot.

Data channel map slots are released with the ?DEMP call, or
automatically by program termination.

Table 8.3 summarizes the system calls available for user device
support.

Call

?ALMP

?DEMP

?DSBL

?ENBL

?GMRP

?IDEF

?IPEND

?IRMV

?IUNPEND

?IXIT

?LDEF

?LRMV

?LXIT

?STMP

Function

Allocate data channel map slots

Deallocate data channel map

slots

Disable I/O instructions/enable
LEF mode

Option

Enable I/O instructions/disable CK (take error return if I/O
LEF mode mode already enabled)

Get physical page number

Define an interrupt handling rou-

tine

Pend awaiting interrupt activity

Remove an interrupt handling

routine

Unpend a task from interrupt

handling routine

Exit from an interrupt handling
routine

Define a line interrupt handling
routine

Remove a line interrupt handling

routine

Exit from a line interrupt handling

routine

Set up data channel map

BD (unpend all tasks)

ER (unpended tasks take error
return from ?PEND, ?IPEND)

ID (unpend on task identifier,

not event number)

Table 8.3 User device support system calls

Miscellaneous
System Calls

The calls described in this chapter examine and or change system
features, such as the clock and calendar, or perform general functions,
such as returning interprogram messages.

The operating system maintains a 24-hour clock and a calendar. A
specification in the system generation dialogue allows you to set the
clock to anyone of several frequencies. See MP / AOS-SU System
Generation and Related Utilities for the complete system generation
dialogue.

The system clock expresses the current time and date in MP / AOS-SU
internal format, Le., a 32-bit number representing the number of
seconds elapsed since midnight, January 1, 1900. System call ?GTIME
returns time and date in internal format; library routines ?CTOD
and ?CDA Y accept a time and date in 32-bit MP / AOS-SU format and
return the hour, minute, and second, and the day, month, and year,
respectively.

Alternately, library routines ?GTOD and ?GDA Y read, decode, and
return system time and date expressed in conventional format, Le.,
as hours, minutes, and seconds, and as year, month, and day
respecti vel y.

You can set the system time and date to any specified value by using
the ?STIME system call and expressing the desired values in
MP / AOS-SU internal format, as explained above. (Use library
routines ?FTOD and ?FDA Y to convert the time and date, respective­
ly, from conventional format to MP / AOS-SU internal format.)

9

Clock / Calendar Calls

Licensed Material - Property of Data General Corporation

9-2 Miscellaneous System Calls

Reading a Message

Licensed Material - Property of Data General Corporation

System time and date can also be set by using library routines
?STOD and ?SDAY which accept input in conventional format (i.e.,
hours, minutes, seconds, and day, month, and year, respectively).
Alternately, you can set the date and time by using CLI commands.
Table 9.1 summarizes the clock / calendar system calls and library
routines and their interrelationship.

Call / Routine Action Format of input / output

?CDA Y (routine) Convert date from 32-bit Year, month, day

internal

?CTOD (routine) Convert time from 32-bit Hours, minutes, seconds

internal

?FDA Y (routine) Convert date to 32-bit 32-bit internal format

internal

?FTOD (routine) Convert time to 32-bit 32-bit internal format

internal

?GDA Y (routine) Get system date Year, month, day

?GTIME (call) Get system time/date 32-bit internal

?GTOD (routine) Get system time Hours, minutes, seconds

?SDA Y (routine) Set system date Year, month, day

?STIME (call) Set system time/date 32-bit internal

?STOD (routine) Set system time Hours, minutes, seconds

Table 9.1 Clock/Calendar calls and routines

The ?GTMSG call reads into a user-specified buffer any interprogram
message transmitted by the most recent ?EXEC, or ?RETURN system
call. The system maintains only one message at a time per program.
The message can be any string of up to 2047 bytes.

Use the ?TMSG library call to retrieve selected portions of an
interprogram message in CLI format.

Dictionary of
System Calls and
Library Routines

This chapter describes the MP / AOS-SU system calls and library
routines. Library routines are specifically identified as such after
their mnemonics and summary descriptions in the dictionary.

Tape commands, which are used in the same way as system calls
and library routines, are presented in dictionary format at the end
of Appendix H.

10

Licensed Material - Property of Data General Corporation

10-2 Dictionary of System Calls and Library Routines

Explanatory
Notes

Licensed Material - Property of Data General Corporation

For each entry in this chapter, we give the following information:

• the mnemonic that you place in your program code

• identification of the mnemonic as a library routine, if pertinent
{Unidentified mnemonics are system calls.}

• a description of the function performed, along with a figure
showing the format of the required packet (if any)

• tables specifying inputs, outputs, options, and error returns for
each call. The contents of the tables are briefly described below.

Inputs
The inputs table lists information which your program must place in
accumulators before executing a given call. Whenever this informa­
tion is affected by options to the call, the option and its effect are
included in the inputs table.

Outputs
The outputs table lists information which will be in the accumulators
when control returns to your program. Any accumulators not used
for outputs will be unchanged, except for AC3 which is always set to
the value of the frame pointer. When outputs are affected by options
to the call, the option and its effect are included in the outputs table.

Options
The options table lists and explains options available for each system
call.

Errors
The errors table lists the error codes likely to be returned if you use
a call improperly. Note that this list is not necessarily exhaustive:
under certain conditions, some calls may return codes other than
those listed. A complete list of the MP / AOS-SU error codes is
contained in Appendix G.

Error codes are returned in ACO.

For more general information on MP / AOS-SU programming, refer
to Chapter 2.

Dictionary of System Calls and Library Routines

Add a Name to the Searchlist

Appends the specified directory name to your searchlist.

ACO must contain a byte pointer to the pathname, which must be
terminated by a null byte. If ACO contains 0/ the searchlist is cleared;
i.e., all entries are removed. The maximum length of a searchlist is
five pathnames.

Inputs

AC Contents

ACO Byte pointer to pathname of directory (or 0)

Outputs
None

Options
None

Errors

Mnemonic

ERDOL

ERFDE

ERFIL

ERFTL

ERIFC

ERIFT

ERNAD

ERPWL

ERSTL

Meaning

Device is off line

File does not exist

Device read error

Filename too long

Invalid character in filename

Incorrect file type (not a directory)

Non-directory name in pathname

Device write error

Search list too long

?ALlST

Licensed Material - Property of Data General Corporation

10-3

10-4 Dictionary of System Calls and Library Routines

?AlMP

Ltcensed Material - Property of Data General Corporation

Allocate Data Channel Map Slots

This call directs the system to allocate data channel map slots to the
calling program.

In instances where the starting map slot number requested is not
available, the system allocates the next available slot number,
provided sufficient slots are left in the map to cover the total number
of slots requested. If not enough slots are left to satisfy the request,
?ALMP returns error ERMAP, Not enough map slots.

The starting map slot number returned in ACO indicates where in
the map the first slot is allocated. This map slot number is used as
input to the ?STMP call.

See Chapter 8 for discussion of data channel mapping.

Inputs

AC Contents

ACO Number of contiguous map slots requested

AC 1 Lowest acceptable slot number

0- 31 Data Channel Map A

Outputs

AC Contents

ACO Starting map slot number. Assignments are identical to the scheme

listed in AC 1 above.

Options
None

Errors

Mnemonic

ERMAP

Meaning

Not enough map slots

Dictionary of System Calls and Library Routines

Attach a Memory Segment

Attaches the calling program to a segment of memory without
mapping it to the caller's address space. Initially a program is both
attached and mapped to the segments making up its impure, shared,
and overlay areas.

A segment is an area of memory consisting of from 1 to ?MXSP
pages (lK word blocks). User created segments are identified and
referenced by means of a global segment number assigned when the
segment is created. See ?CSEG.

Once a new segment has been created, several programs may attach
to it.

The maximum number of attached segments for a given user program
is specified at system generation time.

Inputs

AC Contents

ACO Global segment number

Outputs
None

Options
None

Errors

Mnemonic

ERSAA

ERSDE

ERTMS

Meaning

Segment is already attached

Segment does not exist

Too many segments attached

?ASEG

Licensed Material - Property of Data General Corporation

10-5

10-6 Dictionary of System Calls and Library Routines

?AWAIT

Licensed Material - Property of Data General Corporation

Await Completion of a Non-pended System Call

Used in conjunction with any non-pended system call (NP option) to
determine if the call's action is finished.

For example, if you executed a non-pended ?READ, you would use
?AWAIT to determine that the input data was available before you
began to operate on it. You specify the particular system call to be
AWAITed by a task identifier, which must be the one returned to
you in AC2 by the system when you executed the non-pended call.

If the non-pended call is not yet finished, the task that executed
?AWAIT is suspended until the non-pended call completes execution,
unless you use the CK option described below.

NOTE: You must issue a successful ?AWAIT for every non-pended system call;
otherwise a task control block (TeB) will be wasted.

The AY option causes ?AWAIT to return when any non-pended call
is completed rather than awaiting the completion of a specific call.
In that case, AC2 returns the task ID of the completed task. Your
program will then need to issue an ?AWAIT with that task ID so as
to receive the completed task's output.

The A Y option may be used in conjunction with the CK option.

Inputs

AC Contents

AC2 Task identifer for non-pended call

Outputs

AC

ACO-2

Option:
AY: no input

Contents

All accumulators are set to the outputs of the non-pended call.
Those not used for outputs are set to their values at the time of the
non-pended call.

AC2 Task identifier of completed task if A Y option is used.

Options

Mnemonic

AY

CK

Meaning

Return when any non-pended call is completed

Check: if the non-pended call is not yet complete, do not

suspend this task; instead, return the ERTIP error code.

Errors

Mnemonic

ERTID

ERTIP

Dictionary of System Calls and Library Routines

Meaning

Invalid task identifier

Task in progress: the non-pended call is still executing (CK
option only)

NOTE: This call may also return any error codes produced by the non-pended call.

Licensed M_al - Property 01 Data General Corporation

10-7

10-8 Dictionary of System Calls and Library Routines

?BOOT

Licensed Material - Property of Data General Corporation

Restart the System

Causes the current MP / AOS-SU system to be shut down and a new
bootstrap loader to be read from the specified disk device and
executed. The system name must be terminated by a null byte. All
I/O channels are closed; all disk devices are dismounted.

?BOOT can also start a bootable program file (type ?DBPG). Specify
the pathname of the program file instead of a device name.

If no device is specified, the system shuts down but does not restart.

Inputs

AC Contents

ACO Byte pointer to device name or boatable program filename (zero to
shut down system)

Outputs
None

Options
None

Errors

Mnemonic

ERFDE

ERRAD

ERWAD

ERFIL

ERPWL

ERDOL

ERNAD

ERFTL

ERIFC

Meaning

File does not exist

Read access denied

Write access denied

Device read error

Device write error

Device off line

Non-directory name in pathname

File name too long

Invalid character in filename

Dictionary of System Calls and Library Routines

Convert System Time / Date to Date (library routine)

Accepts a time and a date in 32-bit MP / ADS-SU format and returns
the day, month and year. The year is an offset from a base of 190010,

Inputs

AC Contents

ACO High order 16 bits of time

AC 1 Low order 16 bits of time

Outputs

AC Contents

ACO Day (range 1-31 10)

AC 1 Month (range 1-1210)

AC2 Year (minus 1900) result expressed in octal

Options
None

Errors
None

?CDAY

Licensed Material - Property of Data General Corporatton

10-9

10-10 Dictionary of System Calls and Library Routines

1CLOSE

Licenoed M ial - Property of Data Ger.al Corporation

Close an I/O Channel

Removes the specified I/O channel's connection to a device or file.

If any data from previous ?WRITE calls is in a system buffer, it is
written to the file. No more I/O may be performed on the channel
until it is reopened.

Inputs

AC Contents

ACO Channel number

Outputs
None

Options

Mnemonic

DE

Errors

Mnemonic

ERICN

ERFIL

ERPWL

ERDOL

ERPRM

Meaning

Delete the file

Meaning

Invalid channel number

Device read error

Device write error

Device is off line

Permanent file: cannot be deleted

NOTE: If you wish data from ?WRITE calls written to the file before you close the
I/O channel, use ?WRITE with the FL option.

Dictionary of System Calls and Library Routines

Create a File

Creates an entry for the specified pathname in the directory structure.

The pathname must be terminated by a null byte. You must specify
the file type and element size. No attributes are set except for
?ATPM (permanent) and ?ATWR (write-protect) in the case of
directories. File attributes and element size are discussed in Chapter
3. Table 3.2 lists file attributes.

Table 10.1 lists the file types available. You may not create new files
in the device directory. However, to simplify device-independent
programming, the system gives a normal return if a program attempts
to ?CREATE a device that already exists.

Mnemonic Meaning

?DDIR Directory

?DSMN to ?DSMK Range of values for files used by the system:

?DBPG bootable (stand-alone) program file

?DBRK program break file

?DIDF MP/ISAM data file

?DIXF MP /ISAM index file

?DUB library file

?DLNK link file

?DLOG System log file

?DMBS MP/BASIC save file

?DOBF object file

?DOLF overlay file

?DPRG program file

?DPST permanent symbol table
(used by assembler)

?DSTF symbol table file

?DTXT text file

?DUDF general-purpose data file

?DUMN to ?DUMX Range of values reserved for users

Tabla 10.1 Fila types

NOTES: If the specified pathname is not fully qualified, the file is created in the

working directory. The searchlist is not scanned.

All directories specified in the pathname must already exist.

?CREATE

licensed Material - Property of Data General Corporation

10-11

10-12 Dictionary of System Calls and Library Routines

licensed Material - Property of Data GeneraJ Corporation

Inputs

AC Contents

ACO Byte pointer to pathname

AC 1 Type of file to create

AC2 File element size in disk blocks; pathname to link, if creating type

?DLNK

Outputs
None

Options

Mnemonic

DE

Errors

Mnemonic

ERDOL

ERFIL

ERFTL

ERIFC

ERIFT

ERNAD

ERNAI

ERPRM

ERPWL

ERSPC

ERWAD

Meaning

If the file already exists, delete the old one

Meaning

Device is off line

Device read error

Filename too long

Invalid character in filename

Invalid file type

Non-directory name in path name

File already exists (DE option not used)

Permanent file: cannot be deleted (DE option only)

Device write error

Insufficient file space

Write access denied

Dictionary of System Calls and Library Routines

Create a Memory Segment

Causes a segment of N pages (1 K word blocks) of memory to be
allocated to the calling program. Segment size may range between 1
and ?MXSP pages. All pages of a newly created segment are zeroed.

?CSEG assigns the newly created segment a global segment number
returned in ACO. This global segment number is used to reference
the segment in memory management operations such as attaching,
detaching, or mapping.

?CSEG causes the newly created segment to be attached to the calling
program by means of an implicit ?ASEG call. The new segment is
not, however, mapped to a user address space. See ?MSEG for
mapping.

User created segments are not swapped in and out by the ?EXEC or
?RETURN calls, nor are they written to break files.

When a new user program is initiated, default memory segments
corresponding to its pure, impure, and overlay memory are allocated
to it. See Chapter 5 for discussion.

Inputs

AC Contents

ACO Number of pages to allocate

Outputs

AC Contents

ACO Global segment number

Options
None

Errors

Mnemonic

ERNEM

ERNFS

ERTMS

Meaning

Not enough memory

No free segment

Too many segments attached

?CSEG

Licensed Material - Property of Data General Corporation

10-13

10-14 Dictionary of System Calls and Library Routines

Mnem.
?TYPE
?TPRI

?TSTA
?TSTB

?TSTL

?TSTE

?TAC2
?TUSP

?TKPP

DG-{)7385

1CTASK

Type: ?TDP Length: ?TLN

Packet type (?TDP)

Reserved I Priority
Starting address

Stack base (start address)

Stack limit (end address)

Stack error handler address

New task's AC2

New task's ?USP word
Kill post-processing address

0123456 7 B 9101112131415

o Undefined

Figure 10.1 Task definition packet

Licensed Material - Property of Data General Corporation

Create a Task

Introduces a new task to the scheduler.

The maximum number of tasks for any given program is specified
during system generation. AC2 must contain the address of a task
definition packet, in which you specify the new task's parameters as
defined in Figure 10.1 below.

If you specify zero in offset ?TSTE, the system will provide a stack
error handling routine. In this case, the task will be killed if it
overflows its stack.

If you specify zero in offset ?TKPP, the system assumes that you do
not wish to perform any kill post-processing for the task. (A kill
post-processing routine can perform functions such as deallocating
memory used by the task. See discussion in Chapter 6.)

?USP (Unique Storage Position) is one dedicated memory location in
lower page zero. Each time a new task is scheduled, the current
contents of the ?USP location are saved internally and ?USP is set to
the value associated with the new task.

An error is returned if no task control block (TCE) is available to
support the new task, unless the A W option is specified as described
in the Options table.

A default priority of 177 a(12710) is assigned by the system to a
program's initial task.

Inputs

AC Contents

ACO Passed to new task

ACl

AC2 Address of task definition packet

Outputs

AC Contents

AC2 Task identifier of the new task

Options

Mnemonic Meaning

AW If no TCB is available, wait for one to be freed

Errors

Mnemonic

ERNOT

ERSTS

ERADR

ERPRP

Meaning

No free TCBs

Invalid stack definition

Invalid start address

Invalid priority

Dictionary of System Calls and Library Routines 10-15

licensed Material - Property of Data General Corporation

10-16 Dictionary of System Calls and Library Routines

?CTOD

Licensed Material - Property of Data General Corporation

Convert System Time / Date to Time of Day (Jibrary routine)

Accepts a time and date in 32-bit MP / AOS-SU format and returns
the hour, minute, and second.

Inputs

AC Contents

ACO High order 16 bits of time

AC 1 Low order 16 bits of time

Outputs

AC Contents

ACO Second (range 0-59 10)

AC 1 Minute (range 0-59 10)

AC2 Hour (range 0-2310 (midnight to 11 pm). (expressed in octa!))

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Delay Execution of a Task (library routine)

Causes the calling task to be suspended for the length of time specified.

The time, specified in milliseconds, is a 32-bit quantity you place in
two accumulators. You may use the ?MSEC library routine to convert
hours/minutes/seconds to milliseconds. If you set both accumulators
to 0, your task will be delayed for the system default timeout interval
(about one minute).

If you set both accumulators to -I, your task will be delayed
indefinitely.

This routine uses the ?PEND system call, so if scheduling is disabled,
it will be reenabled after suspending the calling task.

Inputs

AC Contents

ACO High order 16 bits of the delay time

AC 1 Low order 16 bits of the delay time

Outputs
None

Options
None

Errors
None

?DELAY

Licensed Material - Property of Data General Corporation

10-17

10-18 Dictionary of System Calls and Library Routines

?DELETE

Licensed Material - Property of Data General Corporation

Delete a File

Removes the specified file from the directory structure and returns
its disk space to the system.

The path name must be terminated by a null byte. If the file is open,
the filename is removed from the directory, but the disk blocks are
not released until all channels open to the file are closed.

If the last or only filename in the pathname is a link, the link itself
is deleted, not its resolution.

Directories containing files cannot be deleted, nor can devices be
deleted. However, for the sake of compatibility, ?DELETE does not
take an error return if you attempt to delete a device.

NOTE: If the specified pathname is not fully qualified, and the file is not found in
the working directory, the ERFDE error return is taken. The searchlist is not
scanned.

Inputs

AC Contents

ACO Byte pointer to path name

Outputs
None

Options
None

Errors

Mnemonic

ERFDE

ERPRM

ERDID

ERNAD

ERFTL

ERIFC

ERFIL

ERPWL

ERDOL

Meaning

File does not exist

Permanent file: cannot be deleted

Directory is not empty

Non-directory name in pathname

Filename too long

Invalid character in filename

Device read error

Device write error

Device is off line

Dictionary of System Calls and Library Routines

Deallocate Data Channel Map Slots

This call releases data channel map slots held by a program.

Inputs

AC Contents

ACO Starting map slot number. Slot assignment is identical to that used
during the allocation call (?ALMP):

0- 31 Map A

AC 1 Number of slots to be deallocated

Outputs

AC Contents

AC 1 Number of slots deallocated

Options
None

Errors

Mnemonic

ERSNU

Meaning

Slot(s) not in use

?DEMP

Licensed Matarial - Property of Data General Corporation

10-19

10-20 Dictionary of System Calls and Library Routines

1DIR

Licansad Material - Property of Data General Corporation

Select a Working Directory

Sets the specified directory to be your current working directory.

The pathname must be terminated by a null byte. If an error occurs,
the current working directory is unchanged.

If the specified pathname is not fully qualified, and the directory is
not found in the current working directory, the searchlist is scanned.

Inputs

AC Contents

ACO Byte pointer to path name

Outputs
None

Options
None

Errors

Mnemonic

ERIFT

ERFDE

ERNAD

ERFTL

ERIFC

ERFIL

ERPWL

ERDOL

Meaning

Invalid file type (not a directory)

File does not exist

Non-directory name in path name

Filename too long

Invalid character in pathname

Device read error

Device write error

Device is off line

Dictionary of System Calls and Library Routines

Remove a Disk From the System

Causes the specified disk device to be disabled from further I/O
activity and prepares the disk to be removed from the drive.

The device name must be terminated by a null byte. Any data left in
memory from previous I/O is flushed to the disk, and all pointers
and directories on the disk are left in an orderly state. A flag is set
on the disk to indicate that it was successfully ?DISMOUNTed.

Inputs

AC Contents

ACO Byte pointer to device name

Outputs
None

Options
None

Errors

Mnemonic

ERFDE

ERNAD

ERFTL

ERIFC

ERFIL

ERPWL

ERDOL

ERDAI

ERDNM

ERIOD

Meaning

File does not exist

Non-directory name in pathname

Filename too long

Invalid character in filename

Device read error

Device write error

Device off line

Device in use (some I/O channels are open)

Device is not mounted

Specified name is not a device

?DISMOUNT

Licensed Material - Property of Data General Corporation

10-21

10-22 Dictionary of System Calls and Library Routines

?DRSCH

Licensed Material - Property of Data General Corporation

Disable Task Rescheduling

Disables system scheduling, suspending the execution of all other
tasks.

NOTE: System calls executing in system space continue execution and are

suspended only upon their return.

Multitasking resumes only when an ?ERSCH call is executed, or
when this task executes a ?PEND. If multitasking is already disabled,
this call has no effect.

You can use ?DRSCH to determine whether multitasking is enabled
by using the CK option described below. Since this is a "destructive
test," you may then need to execute an ?ERSCH to restore the
scheduler's state.

Inputs
None

Outputs
None

Options

Mnemonic

CK

Errors

Mnemonic

ERSAD

Meaning

Check: if multitasking is already disabled, causes the program
to take an error return with code ERSAD

Meaning

Condition already exists (CK option only)

Dictionary of System Calls and Library Routines

Disable I/O Instructions

This command simultaneously enables the LEF (Load Effective
Address) mode and the I/O protection bit in the user's map status
word.

When LEF mode is on, user programs may use the Load Effective
Address instruction, but may not issue I/O instructions. (Any I/O
instructions will be interpreted as LEF instructions and can therefore
not be carried out.) LEF mode is on when anMP / AOS-SU program is
started.

I/O instructions are initially enabled in interrupt handling routines.

Inputs
None

Outputs
None

Options
None

Errors
None

?DSBL

Licensed Material - Property of Data General Corporation

10-23

10-24 Dictionary of System Calls and Library Routines

7DSEG

Liconoed M"';II - "'-of Data Goneral Corporation

Detach From a Memory Segment

Detaches the calling program from a memory segment. * If the
segment is currently mapped to the caller's address space it is
unmapped, leaving validity protected pages in its place. If the calling
program is the only program attached to the segment, the segment is
released and its memory is returned to the system. The termination
of a program causes an implicit ?DSEG to be issued for every segment
attached to that program.

You cannot detach from default segments 0 (impure memory). 1
(overlay memory), and 2 (pure memory). Use ?MEMI to recover
impure memory pages.

Inputs

AC Contents

ACO Segment number

Outputs
None

Options
None

Errors

Mnemonic Meaning

ERSNA Segment not attached

°A segment is an area of memory consisting of 1 to ?MXSP pages (1K word bloclcs). User created
segments are identified and referenced by means of a global segment number assigned when the

segment is created. See ?CSEG.

Dictionary of System Calls and Library Routines

Get a Disk's Status Information

Retrieves status information about the specified disk.

?DST AT may be used only on a ?MOUNTed disk.

You specify the disk by its pathname, which must be terminated by
a null byte. The status information is placed in a packet, which has
the format shown in Figure 10.2 below.

DG-07386

Mnem.
?TYPE

?DFB

?DAB

?DTMX
?DTAL

?DTSW

?DRER
?DUER

Type: 7DSP Length: 7DLN

Packet type (?DSP)

Number of free disk blocks (2 words)

Number of allocated disk blocks (2 words)

Maximum number of files
(Internal status information)

I I I I (Status flags)

Number of recoverable errors
N umber of unrecoverable errors

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o Undefined

Figure 10.2 Disk status packet

The status flags in the ?DSTW word are described in Table 10.2
below.

Mnemonic

?OLE 1

?DLE2

?DME1

?OME2

Meaning when 1

Bad primary label block

Bad secondary label block

Bad primary MDV (internal information)

Bad secondary MDV

Table 10.2 Stlltus flII9s in 7DSTW word

Inputs

AC Contents

ACO Byte pointer to device name of disk

AC2 Address of packet

Outputs

None

Options

None

7DSTAT

Licensed Material - Property of Data General Corporation

10-25

10-26 Dictionary of System Calls and Library Routines

Licensed Material - Property of Data General Corporation

Errors

Mnemonic

ERBTL

ERDOL

ERFDE

ERFIL

ERFTL

ERIFC

ERIOD

ERMPR

ERPWL

Meaning

Buffer too long

Device is off line

File does not exist

Device read error

Filename is too long

Invalid character in filename

Specified device is not a disk

Invalid packet address

Device write error

Dictionary of System Calls and Library Routines

Enable I/O Instructions

Upon completion of this system call, the calling process can issue
I/O instructions at the task level.

When I/O is enabled, both LEF (Load Effective Address) mode, and
I/O protection are disabled. Any LEF instructions issued while I/O
mode is enabled are interpreted as I/O instructions by the hardware.
I/O instructions are always enabled by the system upon entry to a
user interrupt handling routine.

When the CK option is used, ?ENBL determines whether I/O
instructions are enabled. This is a destructive test: it may be necessary
to execute a ?DSBL system call to restore LEF mode.

Inputs
None

Outputs
None

Options

Mnemonic

CK

Errors

Mnemonic

ERSAD

Meaning

Check is I/O mode is already enabled. CK causes the program
to take an error return (ERSAD).

Meaning

Condition already exists (returned on CK option only)

?ENBL

Licensed Material - Property of Data General Corporation

10-27

10-28 Dictionary of System Calls and Library Routines

?EQT

Licensed Material - Pr-'Y of Data Go""'al Corporation

Set Up System Call

Allows users the option of setting up system calls at runtime. The
user specifies the desired system call number and option in AC3 and
sets up the contents of accumulators 0 through 2 as defined for the
particular call to be executed.

Inputs

AC Contents

ACO As defined for selected call

AC 1 As defined for selected call

AC2 As defined for selected call

AC3 Number and options of desired system call

Outputs

AC Contents

ACO As defined for selected call

AC 1 As defined for selected call

AC2 As defined for selected call

Options
None

Errors
As defined for selected call.

Dictionary of System Calls and Library Routines

Retrieve a System Error Message (library routine)

Reads a message from the MP / AOS-SU error message file :ERMES.
If the specified error code has no corresponding message, then the
text Unknown error code n is returned, where n is the error code in octal.
If the error file cannot be found, the message Error code n is returned.

Inputs

AC Contents

ACO Error code

AC 1 Byte pointer to message buffer

AC2 Buffer size in bytes

Outputs

AC Contents

AC2 Actual length of message

Options
None

Errors

Mnemonic

ERBTL

ERDOL

ERFIL

ERIRB

ERNMC

ERPWL

Meaning

Buffer extends into system space

Device off line

Device read error

Buffer too short

No more I/O channels

Device write error

?ERMSG

Licensed Material - Property of Data General Corporation

10-29

10-30 Dictionary of System Calls and Library Routines

?ERSCH

licensed Material - Property of Data General Corporation

Enable Task Rescheduling

Directs the system scheduler to begin scheduling other tasks. This
call has no effect if the requested scheduling mode is already enabled.

Inputs
None

Outputs
None

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Execute a Program

Starts execution of the specified program file. The new program
runs at a numerically higher swap level than the initiating program,
unless a program chain is specified. A maximum of eight swap levels
is possible.

You may specify either a program swap, where the new program
runs as a descendant, or a chain, in which case the state of the old
program is not saved.

The following sections apply regardless of whether the executing
program is swapped or chained.

The path name must be terminated by a null byte. Unless the CL
option is used, files associated with any open I/O channels are made
available to the new program. (However, an error is returned if the
calling program has any files opened exclusively and tries to pass its
channels.) The CL option closes all channels except ?INCH and
?OUCH. You may pass a message of up to 2,047 bytes to the new
program.

NOTE: ?EXEC returns in error if any user device interrupt handlers are active.

Inputs

AC Contents

ACO Byte pointer to pathname

AC 1 Byte pointer to message (if message length is nonzero)

AC2 Bit 0: 0 = swap 1 = chain

Outputs

AC

AC1

?ECCP

?ECEX

?ECRT

Bit 1: 1 = start new program at the debugger starting address

Bits 5 - 15: message length (0 if no message)

Contents

Only in case of error return

Error code in ACO was returned by the called program

Error code was returned by the system; the called program did not
run

Error code was caused by ?RETURN which was unable to resume

the parent program; in this case, control is passed to the

"grandparent" program; i.e., program level is decreased by 2

?ECBK Error code was returned by the system while trying to write a break

file

?ECAB Error code was returned by the system to indicate an abnormal
program termination such as a console abort

AC2 Length of returned message

?EXEC

Licensed Material - Property of Data General Corporation

10-31

10-32 Dictionary of System Calls and Library Routines

Ucensed M_ill - Property 01 Olt. Generll Corporation

Options

Mnemonic

CL

Errors

Mnemonic

ERABK

ERABT

ERBTL

ERDOL

EREXS

ERFDE

ERFIL

ERFTL

ERIFC

ERIFT

ERIRB

ERNAD

ERPCA

ERSPC

ERPWL

ERUIH

ERVNS

ERNDP

Meaning

Close all channels except ?INCH and ?OUCH

Meaning

Called program terminated by CTRL-C CTRL-E (break file)
sequence from console

Called program terminated by CTRL-C CTRL-B sequence from
console

Message buffer too long

Device off line

Attempt to swap beyond program level 8

File does not exist

Device read error

Filename too long

Invalid character in pathname

Invalid file type (not a program file)

Message buffer too short

Non-directory name in pathname

Some other task has already issued an ?EXEC or ?RETURN

Insufficient file space

Device write error

User device interrupt handlers are active

Program file is for a different revision of the MP/AOS-SU
system

No Debugger present (returned when user specifies Debugger
starting address)

Dictionary of System Calls and Library Routines

Convert Date (library routine)

Accepts input in the form of day, month, and year, and converts it
into MP / AOS-SU internal format (a 32-bit number representing the
number of seconds elapsed since midnight, January 1, 1900).

Note that the year input in AC2 is an offset from a base of 1900.

Inputs

AC Contents

ACO Day (range 1-31 10)

AC1 Month (range 1-1210)

AC2 Year (minus 1900, result expressed in octal)

Outputs

AC Contents

ACO High order 16 bits of date

AC 1 Low order 16 bits of date

Options
None

Errors

Mnemonic

ERANG

Meaning

Range error

7FDAY

Licensed Material - Property of Data General Corporation

10-33

10-34 Dictionary of System Calls and Library Routines

?FSTAT

Licensed Material - Property of Data General Corporation

Get a File's Status Information

Returns a packet of information about the specified file.

The file may be specified by channel number, if you have a channel
open to it. Otherwise, you can specify the file by its pathname,
which must be terminated by a null byte. The status information is
placed in a block, which has the format shown in Figure 10.3 below.

DG-C7387

Mnem.
?TYPE
?FTYP

?FATR
?FESZ
?FTLA

?FTLM
?FLEN

Type: ?FSP Length: ?FLN

Packet type (?FSP)

File type

Attribute word
File element size (in blocks)

Date and time of last access
Date and time of last modification (2 words)

Length of file (in bytes) (2 words)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 10.3 File status packet

NOTE: If the specified file is a device, the contents of the ?FESZ, ?FTLA and
?FTLM words are not applicable. If the file is a character device, the ?FLEN word
is also unused.

If the LNK option is used and the last filename in the pathname is a
link, information on the link itself is returned, not on its resolution.
In that case, the contents of ACl are interpreted as a byte pointer to
the ?MXLL byte area to receive the link's resolution pathname.

Inputs

AC Contents

ACO Byte pointer to path name

Options:

CH: channel number

AC 1 Options:
LNK: Byte pointer to ?MXLL
byte area to receive link·s resolution pathname

AC2 Address of packet

Outputs
None

Options

Mnemonic

CH

LNK

Errors

Mnemonic

ERBTL

ERDOL

ERFDE

ERFIL

ERFTL

ERICN

ERIFC

ERMPR

ERNAD

ERPWL

Dictionary of System Calls and Library Routines

Meaning

ACO contains a channel number instead of a byte pointer to a

pathname

Do not resolve links

Meaning

Buffer too long

Device is off line

File does not exist

Device read error

Filename is too long

Invalid channel number

Invalid character in filename

Invalid packet address

Non-directory name in pathname

Device write error

Licensed Material - Property of Data General Corporation

10-35

10-36 Dictionary of System Calls and Library Routines

?FTOD

Licensed Material - Pr~ of DatI General Corporation

Convert Time of Day (library routine)

Accepts input in the form of seconds, minutes, hour, and converts it
into MP / ADS-SU internal format, i.e., a 32-bit number representing
the number of seconds elapsed since midnight, January 1, 1900.

Inputs

AC Contents

ACO Seconds (range 0-59 10)

AC 1 Minutes (range 0-59 10)

AC2 Hour (range 0-23 10 (midnight to 11 pm expressed in octa!))

Outputs

AC Contents

ACO High order 16 bits of time

AC 1 Low order 16 bits of time

Options
None

Errors

Mnemonic

ERANG

Meaning

Range error

Dictionary of System Calls and Library Routines

Get Device Characteristics

Places the characteristics word of the specified device into an
accumulator.

The device name must be terminated by a null byte. See ?SCHAR for
a list of characteristics.

Inputs

AC Contents

ACO Byte pointer to device name

Options:

CH: Channel number

Outputs

AC Contents

AC 1 Device characteristics word

Options:

Options

Mnemonic

CH

HC

LL

PG

RS

HC: hardware characteristics
LL: number of characters per line

PG: number of lines per page

RS: characteristics at system boot

Meaning

ACO contains a channel number instead of a byte pointer to a
path name.

Return device's hardware characteristics in AC 1 (for hardware

with programmable characteristics only). See ?SCHAR.1

Return the number of characters per line in AC 1 .

Return the number of lines per page in AC 1 .

Return value of characteristics at the time system was booted.

1 The He option must be used for disk devices.

7GCHAR

Licensed Material - Property of Data General Corporation

10-37

10-38 Dictionary of System Calls and Library Routines

Licensed Material - Property of Data General Corporation

Errors

Mnemonic

ERFDE

ERFTL

ERIFC

ERIFT

ERNAD

Meaning

File does not exist

Filename too long

Invalid character in filename

Not a character device

Non-directory name in pathname

If the CH option is used, ?GCHAR returns the characteristics for the
device open on the channel specified in ACO. An error is returned if
the channel is not open on a character device.

If the RS option is used, ?GCHAR returns the device characteristics
as they were when the system was booted.

Dictionary of System Calls and Library Routines

Get the Current Date (library routine)

Gets the system time, decodes it into year, month, and day, and
returns these values in accumulators. The year is an offset from a
base at 1900.

Inputs
None

Outputs

AC Contents

ACO Day (range 1-31 10)

AC 1 Month (range 1-1210)

AC2 Year (minus 1900; result expressed in octal)

Options
None

Errors
None

7GDAV

Licensed Material - Property of Data General Corporation

10-39

10-40 Dictionary of System Calls and Library Routines

?GLlST

Licensed Material - Property of Data General Corporation

Get the Searchlist

Retrieves the contents of your current searchlist into a buffer.

The searchlist is represented by a series of pathnames, separated by
commas and terminated by a null byte. All pathnames are fully
qualified; i.e., they start at the device directory.

Inputs

AC Contents

ACO Byte pointer to buffer

AC 1 Length of buffer in bytes

Outputs

AC Contents

AC 1 Length of searchlist (not counting final null byte)

Options
None

Errors

Mnemonic

ERIRB

ERBTL

ERFIL

ERDOL

Meaning

Buffer too short

Buffer too long

Device read error

Device off line

Dictionary of System Calls and Library Routines

Get Physical Page

This call returns a physical page number corresponding to a logical
page number in the user program.

NOTE: A logical page is 1024 words long.

Inputs

AC Contents

AC2 Logical page number in user program

Outputs

AC Contents

AC2 Physical page number

Options
None

Errors
None

?GMRP

licensed Material - Property of Data General Corporation

10-41

10-42 Dictionary of System Calls and Library Routines

?GNAME

licensed Material - Property of Data General Corporation

Get the Fully-Qualified Pathname

Accepts a filename or pathname and returns a fully-qualified
pathname (one that starts at the device directory) corresponding to
it. If no such file is found in the current working directory, and no
prefixes (@, A, or =) are present, then ?GNAME resolves the filename
through the searchlist looking for the filename. The output path name
is placed in a buffer and terminated with a null byte.

The input filename may contain prefixes; this enables you to find
the name of your current working directory by calling ?GNAME
with the filename =. You can also use ?GNAME CH to determine
the name ofthe file that is open on a specified I/O channel, ?GNAME
PR to determine the name of the currently running program.

Inputs

AC Contents

ACO Byte pointer to filename

Options:
CH: channel number

PR: ignored

AC 1 Byte pointer to buffer for pathname

AC2 Length of path name buffer in bytes

Outputs

AC Contents

AC2 Length of returned path name in bytes (not counting final null byte)

Options

Mnemonic

CH

PR

Meaning

ACO contains a channel number

Get the path name of the calling program (ACO is ignored)

Errors

Mnemonic

ERBTL

ERDOL

ERFDE

ERFIL

ERFTL

ERIFC

ERIRB

ERNAD

Meaning

Buffer too long

Device off line

File does not exist

Device read error

Filename too long

Invalid character in filename

Buffer too short

Non-directory name in pathname

Dictionary of System Calls and Library Routines 10-43

Licensed Material - Property of Data General Corporation

10-44 Dictionary of System Calls and Library Routines

?GNFN

Licensed Material - Property of Data General Corporation

Get Next Filename in Working Directory (library routine)

Retrieves filenames from the specified directory. Each filename is
placed in a buffer in your memory space and terminated by a null
byte.

To use this call, you ?OPEN the directory and place the I/O channel
number returned by the ?OPEN call into ACO. Then each call to
?GNFN will return one filename. An EREOF (end-of-filel error return
is taken after the last filename has been read.

Inputs

AC Contents

ACO Channel number

AC 1 Byte pointer to filename buffer

AC2 Length of buffer

Outputs

AC Contents

AC2 Length of returned filename (not counting the terminating null byte)

Options
None

Errors

Mnemonic

ERBTL

ERDOL

EREOF

ERFIL

ERIRB

ERPWL

Meaning

Buffer too long

Device off line

End of file encountered

Device read error

Buffer too short

Device write error

Dictionary of System Calls and Library Routines

Get the File Position

Retrieves the 32-bit file pointer for the specified I/O channel and
places it in two accumulators. The file pointer points to the next
byte to be read or written.

Inputs

AC Contents

ACO Channel number

Outputs

AC Contents

AC 1 High order 16 bits of file pointer

AC2 Low order 16 bits of file pointer

Options
None

Errors

Mnemonic

ERDOL

ERFIL

ERICN

ERIOD

ERPWL

Meaning

Device off line

Device read error

Invalid channel number

Invalid operation for device

Device write error

?GPOS

Licensed Material - Property of Data General Corporation

10-45

10-46 Dictionary of System Calls and Library Routines

?GTATR

Licensed Material - Property of Data General Corporation

Get File Attributes

Places the attribute word and type number of the specified file in
two accumulators.

The pathname must be terminated by a null byte. Tables 10.3 and
10.4 list file attributes and file types respectively.

If the CH option is used, attributes are returned for the file open on
the channel specified in ACO.

If the LN option is used, AC 1 and AC2 return the length of the file in
bytes instead of the file attribute and the file type.

Inputs

AC Contents

ACO Byte pointer to pathname or channel number if CH option is used

Outputs

AC

AC1

AC2

AC1-2

Options

Mnemonic

CH

LN

Errors

Mnemonic

ERDOL

ERFDE

ERFIL

ERFTL

ERIFC

ERNAD

ERPWL

Contents

Attribute word

File type

Options
LN: File byte length (AC 1-high order 16-bits, AC2-low order 16

bits)

Meaning

Input a channel number instead of a byte pointer to a pathname

in ACO

Return file byte length instead of file attribute and file type in

AC1-2

Meaning

Device off line

File does not exist

Device read error

Filename too long

Invalid character in filename

Non-directory name in path name

Device write error

Dictionary of System Calls and Library Routines

Mnemonic

?ATPM

?ATRD

?ATWR

?ATAT

Meaning

Permanent: the file may not be deleted or renamed while this

bit is set to 1; set by the system for directories and root

directories of disks

Read protect: this file may not be read

Write protect: this file may not be written; set by the system

for directories and root directories of disks.

Attribute protect: the attributes of this file may not be changed.

(This bit is used by the system for devices and root directories

of disks only.)

Table 10.3 File attributes

Mnemonic Meaning

?DDIR Directory

?DSMN to ?DSMX Range of values for files used by the system:

?DBPG Boatable (stand-alone) program file

?DBRK program break file

?DIDF MP/ISAM data file

?DIXF MP/ISAM index file

?DUB library file

?DLNK link file

?DLOG System log file

?DMBS MP/BASIC save file

?DOBF objective file

?DOLF overlay file

?DPRG program file

?DPST permanent symbol table

(used by assembler)

?DSTF symbol table file

?DTXT text file

?DUDF general-purpose data file

?DUMN to ?DUMX Range of values reserved for users

Table 10.4 File types

Licensed Material - Property of Data General Corporation

10-47

10-48 Dictionary of System Calls and Library Routines

?GTIME

Licensed Material - Property of Data General Corporation

Get the Current System Time and Date

Gets the current time and date, in MP / AOS-SU internal format.

Internal format is a 32-bit number representing the number of
seconds elapsed since midnight, January 1, 1900. You may also use
the ?GDAY and ?GTOD library calls to retrieve this number in
decoded form.

Inputs
None

Outputs

AC Contents

ACO High order 16 bits of system time

AC 1 Low order 16 bits of system time

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Get an Interprogram Message

Reads the current interprogram message into a buffer.

This message may have been transmitted by an ?EXEC or a
?RETURN, whichever occurred most recently. The system maintains
only one message at a time per program.

The message may be any string of up to 2,047 bytes. If you a specify
a buffer that is too short, your program will take the error return but
AC 1 will contain the actual message length; thus, you can try again
after allocating more memory.

Inputs

AC Contents

ACO Byte pointer to message buffer

AC 1 Length of buffer in bytes

Outputs

AC Contents

AC 1 Actual length of message

Options
None

Errors

Mnemonic

ERIRB

ERBTL

Meaning

Buffer too short

Buffer too long

?GTMSG

Licensed Material - Property of Data General Corporation

10-49

10-50 Dictionary of System Calls and Library Routines

?GTOD

licensed Material - Property of Data General Corporation

Get the Current Time of Day (library routine)

Gets the system time, decodes it into hours, minutes, and seconds,
and returns these values in accumulators. The hour ranges from 0 to
23.

Inputs
None

Outputs

AC Contents

ACO Seconds (range 0-59 10)

AC 1 Minutes (range 0-59 10)

AC2 Hours (range 0-23 10) (midnight to 11 pm) (expressed in octal)

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Define an Interrupt Handling Routine

Informs the system that your program will handle interrupts from
the specified device. You must specify an interrupt handler packet
for the device. The format of this packet is shown in Figure 10.4.

D~8549

Mnem.
?TYPE

?IHND

?IMSK
?ISTK

?ISTL

?IDAT

?IHPR

Type: 11TYP Length: 1ITLN

IDEF packet type (?ITYP)

Address of interrupt handler

Mask word
User interrupt stack address

User interrupt stack length

Contents of AC2 at interrupt time
Reserved

0123456789101112131415

Figure 10.4 Interrupt handler definition packet

User device handlers execute in user process space.

Packet word ?IMSK contains the interrupt mask word to be OR'd
with the current interrupt mask so as to establish the new level of
priority interrupts. The user is responsible for maintaining the
interrupt mask while in the device interrupt handling routine.

On entry to the service routine, the system enables the user map,
and disables LEF (Load Effective Address) mode to allow the device
handler to issue I/O instructions. ?IDAT, whose value can be any
user-defined data, is placed in AC2, and the stack pointer and frame
pointer to the user interrupt stack are initialized, using packet words
?ISTK and ?ISTL.

NOTE: One user interrupt stack is required for each ?IDEF call.

Inputs

AC Contents

ACO Device code

AC2 Address of packet

Outputs
None

Options
None

?IDEF

Licensed Material - Property of Data General Corporation

10-51

10-52 Dictionary of System Calls and Library Routines

Ucensed Matertal - Property of Data General Corporation

Errors

Mnemonic

ERADR

ERDVC

ERIPT

ERMPR

ERUIH

Meaning

Invalid routine address

Invalid device code

Invalid packet type

Invalid packet address

Service routine already defined for this device

Dictionary of System Calls and Library Routines

Initialize for Floating Point

Applicable only to processors configured with the optional floating
point support. ?IFPU indicates that the calling program is going to
use floating point. The call must be issued prior to any floating point
instruction. ?IFPU clears the floating point status register without
affecting the floating accumulators, and it causes the floating point
status to become part of the task state for all tasks in the calling
program. The initial contents of the floating point accumulators are
undefined.

WARNING: Failure to issue this call prior to the use of floating point instructions
will yield indeterminate results.

Inputs
None

Outputs
None

Options
None

Errors
None

?IFPU

Licensed Material - Property of Data General Corporation

10-53

10-54 Dictionary of System Calls and Library Routines

11NFO

Licensed Material - Property of Data General Corporation

Get Program Information

Retrieves a packet containing information about a program's current
memory allocation and running state. The format of the packet is
given in Figure 10.5 below.

DG-07388

Mnem.
?TYPE

?PPMN
?PPMX

?PIMN
?PIMX

?PREV

?PLEV

?PHMA

?POCH*

Type: ?PIP Length: ?PLN

Packet type (?PIP)

Lowest pure address
Highest pure address

Lowest impure address
Highest impure address

Program revision number

Current program level

Highest address available to user

I/O channel status mask
o 1 2 3 4 5 6 7 8 9 10 111213 14.15

o Undefined

*In the ?POCH word, each bit (0 - 15) is set
to 1 if the corresponding I/O channel is open.

Figure 10.5 Program information packet

Pure memory, whose lower and upper bounds are specified by the
contents of packet words ?PPMN and ?PPMX, is comprised of two
areas: overlay memory and shared memory. Thus, ?PPMN (lowest
pure address) refers to the lowest overlay address or to the beginning
of the shared area if no overlay is used. ?PPMX (highest pure memory
address) refers to the highest address of shared memory or to the end
of the overlay area if there is no shared area. If the program uses
neither shared nor overlay memory areas, the contents of ?PPMN
and ?PPMX are undefined. See Figure 5.3.

In the ?POCH word, each bit (0-15) is set to 1 if the corresponding
I/O channel is open. Information is provided for the first 16 channels
only.

Inputs

AC Contents

AC2 Address of packet

Outputs
None

Options
None

Errors

Mnemonic

ERIPT

ERMPR

Meaning

Invalid packet type

Invalid packet address

Dictionary of System Calls and Library Routines 10-55

Licensed Material - Property of Data General Corporation

10-56 Dictionary of System Calls and Library Routines

?IPEND

Ltcensed Mat.iel - Property of Data General Corporation

Pend Awaiting Interrupt Activity

This call allows the pending of a task with interrupts off. If interrupts
have been disabled by the user program, ?IPEND guarantees that the
pend is internally queued before interrupts are re-enabled. In all
other respects, ?IPEND functions in the same manner as ?PEND.
Interrupts are reenabled after the completion of ?IPEND.

The calling task is suspended from execution until a specified event
occurs. The event is defined by a I6-bit number which can be used
by another task in an ?UNPEND, or ?IUNPEND call. Event numbers
must be greater than or equal to 0 and less than or equal to ?EVMAX.
When execution resumes, the system passes a message word from
the task which executed the ?UNPEND or ?IUNPEND.

The calling task can also resume execution in response to an
?UNPEND ID or ?IUNPEND ID call, or after a timeout interval
elapses. The length of the interval in milliseconds is specified as a
32-bit number in two accumulators. You can also request the system
default timeout interval (about one minute) by setting both accumula­
tors to zero.

NOTE: An ?IPEND call with a timeout value of -1 will pend indefinitely.

Inputs

AC Contents

ACO Event number

AC 1 High order word of timeout duration

AC2 Low order word of timeout duration

Outputs

AC Contents

ACO Message word from ?UNPEND!?IUNPEND

Options

None

Errors

Mnemonic

ERTMO

EREVT

Meaning

Timeout interval has elapsed

Invalid event number

Dictionary of System Calls and Library Routines

Remove an Interrupt Handling Routine

Informs the system that your program will no longer handle
interrupts from the specified device. Any further interrupts from
the specified device are treated as undefined interrupts.

Inputs

Outputs
None

Options
None

Errors

Mnemonic

ERDVC

ERNUl

Contents

Device code

Meaning

Invalid device code

No handling routine currently defined, or you attempted to
remove the system's control of a standard I/O device

?IRMV

licensed Material - Property of Data General Corporation

10-57

10-58 Dictionary of System Calls and Library Routines

?IUNPEND

Licensed Material - Property of Data General Corporation

Un pend a Task from Interrupt Handling Routine

Resumes execution of the specified task. This call functions in a
manner identical to the ?UNPEND call. The difference is that only
?IUNPEND may be used by an interrupt handler. ?IUNPEND may
not be used at any other time.

You can specify the task to be unpended either by its identifier or by
a I6-bit event number. Event numbers must be greater than or equal
to ?EVMIN and less than or equal to ?EVMAX.

If you specify an event number that several tasks are waiting for,
only one task is unpended, unless you use the BD option to unpend
all waiting tasks.

The system unpends tasks on event on a first in, first out basis: the
first task pended is the first unpended, regardless of time remaining
in its timeout interval.

You can also specify that the unpended task take the error return
from its ?PEND or ?IPEND call.

Inputs

AC Contents

ACO Message word to unpended task

AC2 Event number or task identifier if ID option is used

Outputs

AC Contents

ACO Number of tasks unpended

Options

Mnemonic

BD

ER

ID

Meaning

Unpend all tasks waiting for this event

Causes the unpended task(s) to take the error return from the
?PEND or ?IPEND calls

AC2 contains a task identifier, not an event number

NOTE: Do not specify the BD and ID options together.

Errors

Mnemonic

EREVT

ERTID

Meaning

Invalid event number

Invalid task identifier

Dictionary of System Calls and Library Routines 10-59

Licensed Material - Property of Data General Corporation

10-60 Dictionary of System Calls and Library Routines

71XIT

Licensed Material· Property of Data General Corporation

Exit From an Interrupt Handling Routine

Returns the system to normal operation after completion of a user
interrupt handler. All interrupt service routines must exit by this
call.

Inputs
None

Outputs
None

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Kill a Task

Terminates execution of the specified task.

If a kill post-processing routine * is defined for the task, it will be
executed. If the killed task has an outstanding system call, that call
will be aborted; the degree of completion that the outstanding call
reaches is undefined.

Inputs

AC Contents

AC2 Task identifier, or zero to kill this task

Outputs
None

Options
None

Errors

Mnemonic

ERTID

Meaning

Invalid task identifier

·A kil/ post-processing routine can perform functions such as deal/ocating memory used by the task.

See discussion in Chapter 6.

?KTASK

Licensed Material - Property of Data General Corporation

10-61

10-62 Dictionary of System Calls and Library Routines

?LDEF

Licensed Material 4 Property of Data General Corporation

Define a Line Interrupt Handling Routine

Informs the system that your program will handle interrupts from
the specified line device. The line dedicated to the user device must
have been specified at system generation time.

?LDEF is intended for use with asynchronous and asynchronous/syn­
chronous Line multiplexors (ASLM's and USAM's.) This call allows
some of the devices connected to the multiplexor to be controlled by
the user, while others remain under system control.

Custom line device service routines execute within the user program
space.

You must specify a line interrupt handler packet in the format
shown below for the line device.

Before transferring control to the line device's user service routine,
the system enables the user map and disables LEF (Load Effective
Address) and I/O protection mode to allow the device handler to
issue I/O instructions. Packet word ?IDAT, whose value can be any
user-defined data, is placed in AC2; the stack pointer and frame
pointer to the user interrupt stack are initiated, using packet words
?LSTK and ?LSTL.

The user line interrupt routine is responsible for clearing the
interrupt.

The only system calls permitted at interrupt time are ?IUNPEND,
?STMP and ?LXIT.

Mnem.

?TYPE

?LHND
?LSTK
?LSTL

?IDAT

?LHPR

DG-09101

Type: 7lTYP Length: 7L TLN

LDEF packet type (?L TYP)

Address of interrupt handler

User interrupt stack address

User interrupt stack length
Contents of AC2 at interrupt time

Reserved

Figure 10.6 Line interrupt handler definition packet

Inputs

AC Contents

ACO Device code

AC 1 Line number

AC2 Address of packet

Outputs
None

Options
None

Errors

Mnemonic

ERADR

ERDVC

ERDAI

ERIDF

ERIPT

ERMPR

ERUIH

Meaning

Invalid routine address

Invalid device code

Device is in use

Out of ?IDEF DCT's

Invalid packet type

Invalid packet address

Service routine already defined

Dictionary of System Calls and Library Routines 10-63

licensed Material - Property of Data General Corporation

10-64 Dictionary of System Calls and Library Routines

?lRMV

Licensed Material - Property of D8t8 General Corporation

Remove a Line Interrupt Handling Routine

Informs the system that your program will no longer handle
interrupts from the specified line device. Any further interrupts
from the specified line device are serviced by the system.

Inputs

AC Contents

ACO Device code

AC 1 Line number

Outputs
None

Options
None

Errors

Mnemonic

ERDVC

ERNUl

Meaning

Invalid device code

No handler currently defined

Dictionary of System Calls and Library Routines

Exit from a Line Interrupt Handling Routine

Returns the system to normal operation after completion of a user
line interrupt service routine. All service routines for user line
devices must exit by means of this call.

Inputs
None

Outputs
None

Options
None

Errors
None

?LXIT

licensed Material - Property of Data General Corporation

10-65

10-66 Dictionary of System Calls and Library Routines

?MEMI

Licensed Material - Property of Data General Corporation

Change Impure Memory Allocation

Allocates or releases sections of the program impure memory area
(segment 0). See Chapter 5 for discussion of segments.

Memory is always added or removed at the top of the impure area.
Use ?INFO to determine the maximum additional impure area
available: (area between ?PIMX (current highest impure address)
and ?PHMA (highest possible impure address), 1. Pure memory
consists of the shared and overlay areas).

NOTES: ?MEMI specifies memory operations in word units, whereas the hardware

allows memory operations within an address space only in page (1 K word)

multiples.

If the user's current impure is exactly N pages, a request to ?MEMI of a single

additional word results in the additional allocation of an entire page. The definition

of user impure (segment 0) now reflects the actual page added; ?MEMI and ?INFO,

on the other hand, reflect only the addition of the single word requested. The user

is advised to access only the actual memory requested with ?MEMI.

Inputs

AC Contents

ACO Number of words to allocate (if positive) or release (if negative)

Outputs

AC Contents

AC 1 New highest impure address

Options
None

Errors

Mnemonic

ERMEM

Meaning

Invalid request: attempt to acquire or release too much memory

Dictionary of System Calls and Library Routines

Introduce a Disk to the System

Prepares the specified disk device for I/O.

This call must be executed before any directories on the disk can be
accessed.

The system checks a flag on the disk to see if it was properly
?DISMOUNTed. If it was not, your program takes the error return
with code ERFIX, and you must run the Disk FIXUP program.

The system can also check the disk label (or disk ID), if any, to
verify that the correct disk is mounted. (Disk ID is optionally assigned
by the user during disk initialization. See Chapter on DINIT in
Loading and Generating MP / A DS-SU.)

A nonzero value in AC2 causes the system to return the disk ID,
regardless of whether or not an ID check was requested. The value
of AC2 is read as the byte address of a buffer into which the system
returns the disk ID (terminated by a null byte).

Inputs

AC Contents

ACO Byte pointer to device name

AC1 Byte pointer to disk ID, or zero to suppress ID check

AC2 If nonzero, byte pointer to buffer to receive the disk ID

Outputs

None

Options

None

Errors

Mnemonic

ERDOL

ERFDE

ERFIL

ERFIX

ERFTL

ERIFC

ERLAB

ERNAD

ERPWL

Meaning

Device off line

File does not exist

Device read error

Disk requires FIXUP

Filename too long

Invalid character in filename

Disk label does not match specified one

Non-directory name in path name

Device write error

?MOUNT

Licensed Material - Property of Data General Corporation

10-67

10-68 Dictionary of System Calls and Library Routines

1MSEC

Licenoed Material - Property of Data Goneral Corporation

Convert a Time to Milliseconds (library routine)

Accepts a time in the form hours/minutes/seconds and returns a
single 32-bit number representing the equivalent number of millisec­
onds. All inputs will be range checked; Le., the hours must range
from 0 to 23, and both the minutes and seconds must range from 0 to
59.

Inputs

AC Contents

ACO Seconds

AC1 Minutes

AC2 Hours

Outputs

AC Contents

ACO High order 16 bits of the time in milliseconds

AC 1 Low order 16 bits of the time in milliseconds

Options
None

Errors

Mnemonic

ERANG

Meaning

Input out of range

Dictionary of System Calls and Library Routines

Map a Memory Segment

Maps all or part of a specified local or global segment * into the
program logical address space, as specified by the ?MSEG packet.
See Figure 10.7. The program must be attached to the specified
segment before mapping is attempted.

The segment number being mapped is specified in packet word
?MSSN. IF you supply a default segment number 0, I, or 2, the entire
default segment is restored. The remaining fields in the packet are
ignored.

Packet word ?MSSP specifies the starting page number within that
segment. The program logical page number at which to start mapping
is specified by packet word ?MSPB. Mapping continues through
sequential segment and program pages, until the total number of
requested segment pages (specified in packet word ?MSNB), have
been mapped.

If the WP option is used,. the mapped pages will be write protected.
This means that the calling program will encounter a write protect
trap if it attempts to modify the contents of the newly mapped area.

The old contents of those portions of user logical address space
which are mapped to a new segment become inaccessible unless
remapped.

You can use the ?MSEG call to remap default segments. Note,
however, that remapping will restore the entire default segment to
its initial mapping.

User mapped segments are not swapped in or out by the ?EXEC or
?RETURN calls .

• A segment is an area of memory consisting of 1 to ?MXSP pages (IK word blocks). User created

segments are identified and referenced by means of a global segment number assigned when the

segment is created. See ?CSEG.

Inputs

1::2
Outputs

None

Options

Mnemonic

WP

Contents

Packet address

Meaning

Write protect the pages mapped

?MSEG

Licensed Material - Property of Data General Corporation

10-69

10-70 Dictionary of System Calls and Library Routines

Ucensed Material - Property of Data General Corporation

Errors

Mnemonic

ERIMA

ERMLS

ERSDE

ERSNA

Mnem.
?TYPE

?MSSN

?MSSP

?MSPB

?MSNB

DG-08550

Meaning

Segment map area is not within 0-31

Request is longer than segment

Segment does not exist

Segment not attached

Type: ?MSP Length: ?MSLN

Map segment type (?MSP)

Segment number

Segment page number (0 to N where the segment has N + 1 pages)

Process logical page number (0 to N where N = < 31)

Number of segment pages to map (-1 indicates the entire segment
should be mapped.)

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Figure 10.7 Map segment packet

Dictionary of System Calls and Library Routines

Get Task or Process * Identity

Places the calling task's identifier and priority in two accumulators.
The PRC option causes the process identifier to be returned in AC2 .

• MP/AOS-SU is a sing/e- process operating system. The process (PRe) option is included for MP/AOS

compatibility.

Inputs
None

Outputs

AC Contents

ACO Task priority

AC2 Task identifier

Options

Mnemonic

PRC

Errors
None

Option:

PRC: process identifier = 1

Meaning

AC2 return process information

7MYID

licensed Material - Property of Data General Corporation

10-71

10-72 Dictionary of System Calls and Library Routines

10PEN

Licensed Miter .. ' - Property of Data General Corporation

Open an I/O Channel

Returns an I/O channel to a specified device or disk file.

The pathname must be terminated by a null byte. The system returns
a channel number to you in an accumulator. When a file is opened,
the file pointer is set to zero (the first byte of the file), unless the AP
option is used as detailed below.

File element size is discussed in Chapter 3.

When you allocate new blocks to a disk file, the system writes zeroes
to all bytes in these blocks, unless the NZ option is used.

If you open a channel to a character output device, the system sends
a Form Feed character (148) to it, unless the AP option is used.

For a list of file types, see Table 10.1.

Inputs

AC Contents

ACO Byte pointer to pathname

AC 1 Options:
CR: File type
DE: File type

UC: File type

AC2 Options:

Outputs

CR: File element size
DE: File element size
UC: File element size

Contents

Channel number.

Dictionary of System Calls and Library Routines

Options

Mnemonic

AP

CR

DE

EX

NZ

UC

Meaning

For files, opens for appending; sets the file pointer to the end

of the file. For character output devices, suppresses the sending

of a Form Feed character.

If the file does not exist, creates it.

Deletes any existing copy of the file, then creates it.

Exclusive access: no other program may use the file while this

channel is open (gives an error return with code EREOP if the

file is already in use.)

Don't zero new elements on allocation.

Unconditionally creates the file (gives an error return if the file

already exists).

NOTE: If you specify either the DE or UC option, the searchlist is not used in

resolving the file. If the file does not exist in the working directory, it is created

there.

Errors

Mnemonic

ERDOL

EREOP

ERFDE

ERFIL

ERFTL

ERIFC

ERIOO

ERNAD

ERNAE

ERNMC

ERPRM

ERPWL

Meaning

Device off line

File in use (EX option only), or file already ?OPENed with EX

option

File does not exist

Device read error

Filename too long

Invalid character in filename

Illogical option combination

Non-directory name in path name

File already exists (UC option only)

No more channels

Permanent file: cannot be deleted

Device write error

Licensed Material - Property of Data General Corporation

10-73

10-74 Dictionary of System Calls and Library Routines

10VLOD

Licenaed Mataia' - Property of Data General Corporation

Load an Overlay (library routine)

Checks to see if the specified overlay is currently in its node. If it is
not, the overlay is loaded into the node.

If the node is occupied by another overlay, the calling task is pended
until the node becomes available.

Inputs

AC Contents

ACO Overlay descriptor

NOTE: For information about the format of overlay descriptors, see Appendix F,
"Using Overlays. "

Outputs

AC Contents

AC 1 Base address of overlay start

Options
None

Errors

Mnemonic

EROVN

Meaning

Invalid overlay descriptor

Dictionary of System Calls and Library Routines

Release an Overlay (library routine)

Releases control of the specified overlay, and unpends any pended
tasks awaiting that node.

If several tasks are pended awaiting different overlays for the node,
the system selects one by the same selection method used by the
?UNPEND call.

Inputs

AC Contents

ACO Overlay descriptor

NOTE: For information about the format of overlay descriptors, see Appendix F,
"Using Overlays. "

Outputs
None

Options
None

Errors

Mnemonic

EROVN

EROVC

Meaning

Invalid overlay descriptor

Specified overlay is not currently loaded

70VREL

licensed Material - Property of Data General Corporation

10-75

10-76 Dictionary of System Calls and Library Routines

1PEND

Ucenoed Material - Property of Data General Corporation

Suspend a Task

Causes the calling task to become suspended from execution until a
specified event occurs. The event is defined by a I6-bit number
which may be used by another task in an ?UNPEND call. Event
numbers must be greater than or equal to 0 and less than or equal to
?EVMAX. When execution resumes, the system passes a message
word from the task which executed the ?UNPEND.

The calling task may also resume execution in response to an
?UNPEND ID call or after a timeout interval elapses. The length of
the interval in milliseconds is specified as a 32-bit number in two
accumulators. You may also request the system default timeout
interval (about one minute) by setting both accumulators to O.

NOTE: A ?PEND with a timeout value of -1 will pend forever.

If ?PEND is issued when task scheduling is disabled, ?PEND
re-enables scheduling after blocking the calling task.

To suspend a task while interrupts are disabled, issue ?IPEND,
rather than ?PEND. ?IPEND guarantees that the pend is internally
queued before interrupts are reenabled.

A program may receive console interrupts by creating a task which
pends until an event number equal to ?EVCH plus the channel
number of the user's console keyboard occurs. This task is unpended
when the user types the control sequence CTRL-C CTRL-A on the
keyboard.

Inputs

AC Contents

ACO Event number

AC 1 High order word of timeout duration

AC2 Low order word of timeout duration

Outputs

AC Contents

ACO Message word from ?UNPEND

Options
None

Errors

Mnemonic

ERCIN

EREVT

ERTMO

Meaning

Console interrupt

Invalid event number

Timeout interval has elapsed

Dictionary of System Calls and Library Routines 10-77

licensed Material - Property of Data General Corporation

10-78 Dictionary of System Calls and Library Routines

?PRI

Licensed Material - Property of Data General Corporation

Change Task Priority

Sets the value of the specified task's priority. Priorities may range
from 0 to 255; lower values have higher priorities.

Inputs

AC Contents

ACO New task priority

AC2 Task identifier: zero means this task

Outputs
None

Options
None

Errors

Mnemonic

ERTID

Meaning

Invalid task identifier

Dictionary of System Calls and Library Routines

Read Data From a Device or File

Reads one or more bytes from the specified I/O channel.

?READ may operate in dynamic or data-sensitive mode. For dynamic
input, you specify the number of bytes to be read, as well as the
address at which to store the data.

If you are reading from a disk, you can improve the efficiency of
your program by transferring entire disk blocks. This method
eliminates system overhead for buffering. To execute block-aligned
transfers you must

• set the file pointer to a multiple of 512 before the transfer;
• specify a multiple of 512 bytes to read;
• specify a buffer which is word aligned in your address space.

For data-sensitive I/O (DS option), you specify a maximum number
of bytes, and reading proceeds until a delimiter is read. Delimiters
may be either the default delimiters New-Line (12a), Carriage Return
(15a), Form Feed (14a), or null (Oa), or any characters specified by a
user delimiter table. (See ?SCHS for a discussion of delimiter tables.)
The delimiter is counted in the returned number of bytes read, and
the delimiter character actually appears in the buffer.

NOTE: When you execute a data-sensitive ?READ, you may encounter the end of
file before finding a delimiter. Similarly, on a dynamic ?READ there may not be as
many bytes left as you requested. In either case, the call will take the error return,
but the data will be read and AC2 will contain the number of bytes read, including
the delimiter. The delimiter character will also be included in the buffer.

Inputs

AC Contents

ACO Channel number

AC 1 Byte pointer to buffer to receive data

AC2 Byte count (dynamic)
Options:

DS: maximum byte count

Outputs

AC Contents

AC2 Actual number of bytes read, including terminator

Option:

NP: system task ID

?READ

Licensed Material - Property of Data General Corporation

10-79

10-80 Dictionary of System Calls and Library Routines

Licensed Material - Property of Oeta Gen 1 Corpor.tion

Options

Mnemonic

DS

FL

IX

NP

Errors

Mnemonic

ERBTL

EREOF

ERICN

ERIRB

ERLTL

ERNOT

ERRAD

Meaning

Data-sensitive read

For character devices: causes any characters currently held in
the system to be discarded. (Flush type ahead.)

Only checked if the DS option is selected: ignore input after
maximum byte count is reached, or until a delimiter is typed.
The default returns an error, ERL TL if the byte count is
exceeded.

Nonpended call. Returns system task ID in AC2.

Meaning

Buffer is too long

End of file encountered

Invalid channel number

Buffer too short

Line too long: too many bytes without a delimiter (DS option
only)

No free task control blocks (NP option only)

Read access denied

Dictionary of System Calls and Library Routines

Rename a File

Give a new pathname to a disk file. The new and old pathnames
must both be on the same disk device. If a file with the new
pathname already exists, the call gives an error return, unless the
DE option is specified. The file must not be open. If the last filename
in the pathname pointed to by ACO is a link, the link itself is
renamed, not the link resolution.

NOTE: If the new pathname points to a different directory, you can effectively

"move" the file into the new directory.

If the specified new pathname is not fully qualified, and the file is
not found in the working directory, it is created there. The searchlist
is not scanned.

Inputs

AC Contents

ACO Byte pointer to current path name

AC 1 Byte pointer to new pathname

Outputs

None

Options

Mnemonic

DE

Errors

Mnemonic

ERDOL

ERFDE

ERFIL

ERFTL

ERIFC

ERIFT

ERNAD

ERPRM

ERPWL

ERREN

Meaning

If the new filename exists, delete that file before renaming.

Meaning

Device off line

File does not exist

Device read error

Filename too long

Invalid character in filename

Illegal file type (attempt to rename a device)

Non-directory name in pathname

Permanent file: cannot be renamed

Device write error

Attempt to rename across devices or to rename a root directory
or an open file

?RENAME

Licensed Material - Property of Data General Corporation

10-81

10-82 Dictionary of System Calls and Library Routines

?RESET

Licensed Material - Property of Data General Corporation

Close Multiple I/O Channels

Closes I/O channels, as specified by a 16-bit mask that you place in
ACO. No error is produced if you attempt to close a channel that is
already closed. Only the first 16 channels may be closed with
?RESET.

NOTE: Channels ?INCH and ?OUCH are set up by the system for standard input

and output; therefore, it is generally convenient for you to keep them open.

Inputs

AC Contents

ACO Any bit (0 - 15) set to 1 causes the corresponding channel to be

closed

Outputs
None

Options
None

Errors

Mnemonic Meaning

ERDOL Device off line

ERFIL Device read error

ERPWL Device write error

Dictionary of System Calls and Library Routines

Return to the Previous Program Level

Terminates the program, and resumes execution of the parent
program if the returning program runs from a level other than 1.
You may cause the parent to take the error retmn from its ?EXEC
call. All I/O channels are closed: however, the parent program will
have the same I/O status that it did when it performed its ?EXEC.
Segments are implicitly detached from the returning program. You
may pass an error code and/or a message of up to 2,047 bytes to the
parent program.

When execution of the parent program is resumed, that program's
segment environment is restored.

If a ?RETURN is executed from a program executing at swap levell,
the system will restart refresh the initial program.

?RETURN never takes the error return. If the parent program cannot
be resumed, an error code is passed to the "grandparent" program,
Le., two program levels previous instead of one.

If you specify the BK option, ?RETURN creates a break file from the
current program in the current working directory. The name of the
break file is composed of a question mark (?) followed by the program
name and a .BRK extension, for example:

?program-name.BRK

Any existing file of the same name in the curent working directory
is overwritten.

The current memory image of the terminating program as well as
information about the program state, task states, user overlays in
use, attached segments, and all open files is written to the break file.

Inputs

AC Contents

ACO Error code to return to parent program; if zero, the parent will take

the normal return from its ?EXEC call

AC 1 Byte pointer to message (if AC2 is nonzero)

AC2 Message length in bytes

?RETURN

Licensed Material - Property of Data General Corporatton

10-83

10-84 Dictionary of System Calls and Library Routines

Li_ Material - Property 01 Data General Corporation

Outputs
None

Options

Mnemonic

BK

Errors
None (See text.)

Meaning

Save program state in a break file.

Dictionary of System Calls and Library Routines

Set Device Characteristics

Sets the characteristics of the specified device.

The device name must be terminated by a null byte. The characteris­
tics are summarized in Table 10.5.

Inputs

AC Contents

ACO Byte pointer to device name

AC 1 Options:

Outputs

None

Options

Mnemonic

CH*

HC**

LL

PG

RS

HC device's characteristics word
LL characters per line

PG lines per page

Meaning

Input a channel number instead of a byte pointer to a path name
in ACO.

Set device's hardware characteristics in AC 1 (for hardware

with programmable characteristics only).

Set the number of characters per line to the value in AC 1.

Set the number of lines per page to the value in AC 1 .

Reset characteristics to their value at boot time.

(Does not reset lines per page or characters per line.)

'If the CH option is used, characteristics are set for the device opened on the channel specified in ACO.

This does not render the characteristics channel specific: an error will be returned if the channel is not

open on a device .

•• The HC option must be used for disk devices.

?SCHAR

Licensed Material - Property of Data General Corporation

10-85

10-86 Dictionary of System Calls and Library Routines

Set On

Input/Output

Input

Input

Input

Input

Output

Input/Output

Input

Output

Output

Output

Input/Output

Input

Mnemonic

?CBIN

?CECH

?CEMM

?CESC

?CICC

?CLST

?CNAS

?CNED

?CST

?CUCO

?C605

?C8BT

?CPSQ

Table 10.5 Console characteristics

licensed Material - Property of Data General Corporation

Affects

Both

Output

Output

Input

Both

Output

Both

Output

Output

Output

Both

Input

Output

Meaning when 1

Binary mode: disables all special control characters; passes all

characters exactly as received (8 bits).

Echo mode: echoes all typed characters although some receive

special handling as described in text.

Echo characters exactly as input: turns off echoing of control

characters as Tx.

Escape mode: handles Escape (338) the same as CTRL-C CTRL-A.

Ignore control characters except delimiters and characters inter­

preted by the system.

List mode: echoes Form-Feeds (0148) as ~L to prevent them from

erasing CRT screen.

Non-ANSII-standard console: supports terminals using older stan­

dard for control characters by converting Carriage Returns (0158)

into New-Lines (0128), and vice versa, on input; on output, converts

New-Line to Carriage Return, followed by New-Line, followed by

null.

Do not echo delimiters.

Simulates tabs: converts all tab characters (011 8) to the appropriate

number of spaces; cursor moves to the beginning of the next

8-character tab column.

Convert to uppercase on output.

D200, D210 or similar device: uses cursor movement characters

to echo Rubout and CTRL-U by erasing characters from the screen.

The two characters following a 378 on input and a 208 on output

will be passed through uninterpreted.

8-bit characters; the default is to mask all input characters to 7

bits, unless in binary mode.

Generate XOFF/XON characters on the associated output device

when the input ring buffer becomes full/empty.

NOTE: Not all characteristics have meaning for all devices. (See Chapter 7, "'/0
Device Management".)

If you specify the LL option and set the line length to -1, neither line
length checking nor automatic wrap-around will be done.

The HC option is for hardware with programmable characteristics
and disks only. These characteristics are: number of stop bits, parity,
code level, and baud rate for Asynchronous/Synchronous Line
Multiplexors (ASLM's) and Universal Synchronous Asynchronous
Multiplexors (USAM's).

If the HC option is selected, ACI will contain the device's characteris­
tics in the following format, as summarized in Tables 10.6 through
10.8. Unused bits must be zero for terminal devices.

Dictionary of System Calls and Library Routines

Number of Parameter Parity Parameter Code

Stop Bits Level

?C1S None ?CNPR 5 bits

1.5 ?C15S Odd ?CODD 6 bits

2 ?C2S Even ?CEVN 7 bits

8 bits

Table 10.6 Programmable hardware characteristics (lSCHAR with HC option)

Baud Rate Parameter

50 ?C0050

75 ?C0075

110 ?C0110

134.5 ?C1345

150 ?C0150

300 ?C0300

600 ?C0600

1200 ?C1200

1800 ?C1800

2000 ?C2000

2400 ?C2400

3600 ?C3600

4800 ?C4800

7200 ?C7200

9600 ?C9600

19.2K ?C192K

Table 10.7 Baud rate for ASLM and USAM multiplexors

ASLM and USAM characteristics may change at any time.

Mnemonic

?CDGC

?CMPT

Meaning

Device is DGC mini-diskette

Device is MPT mini-diskette

Table 10.8 Hardware Characteristics for Disk Devices

Parameter

?C5BC

?C6BC

?C7BC

?C8BC

Licensed Material - Property of Data General Corporation

10-87

10-88 Dictionary of System Calls and Library Routines

Ucenl8d Material - Property of Data General Corpcwation

Errors

Mnemonic

ERDOL

ERFDE

ERFIL

ERFTL

ERICH

ERIFC

ERIFT

ERNAD

ERPWL

Meaning

Device off line

File does not exist

Device read error

Filename too long

Invalid characteristics

Invalid character in filename

Not a character device

Non-directory name in path name

Device write error

Dictionary of System Calls and Library Routines

Set Channel Specifications

Changes a number of input characteristics on a per channel basis.

NOTE: ?SCHS works for disk I/O as well as character I/O.

Setting AC2 to a value other than -1 changes the line delimiters used
by ?READ and ?WRITE: if you set AC2 to 0, the default delimiters
New-line (12a), Carriage Return (15a), Form Feed (14a), or null (OOa)
are used. If you wish to use a different set of characters as delimiters,
set AC2 with the value of a word pointer to a delimiter table.

A delimiter table consists of 16 consecutive 16-bit words which form
a table of 256 bits. Each bit in this table represents an eight-bit
character. Reading from left to right, the first bit (bit 0) of the first
word represents the null character (000). Likewise, the last bit (bit
15) of the last word in this table represents the binary character 377.

Setting any bit in this table to 1 indicates that the character
represented by this bit will be a delimiter in data-sensitive records
transmitted over that channel. Figure 10.8 shows a delimiter table
with bits set to make null (000), Carriage Return (15a), and Rubout
(177 a) data-sensitive record delimiters.

The specifications established by this call are passed to descendants
on an ?EXEC call, if the channel itself is passed.

Bit 0 1 2 3 4 5 6 7 8

Null """
Word 0 1 0 0 0 0 0 0 0 0
Word 1 0 0 0 0 0 0 0 0 0
Word 2 0 0 0 0 0 0 0 0 0

• Word 7 0 0 0 0 0 0 0 0 0
•

Word 14 0 0 0 0 0 0 0 0 0
Word 15 0 0 0 0 0 0 0 0 0

DG-07389

Figure 10.8 Sample delimiter table

Inputs

AC Contents

ACO Channel number

AC 1 Specifications

AC2 Word pointer to delimiter table

o --+ use default delimiters

-1 --+ don't change delimiters

Outputs

None

9 10 11 12 13 14 15
Return~

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 1
Rubout..A

0 0 0 0 0 0 0
0 0 0 0 0 0 0

1SCHS

licensed Material- Property of Data General Corporation

10-89

10-90 Dictionary of System Calls and Library Routines

Licensed Material - Property of Data General Corporation

Options
None

Errors
None

Specifications

Mnemonic

?CUCI

Meaning

Uppercase input: convert all input characters to uppercase

before putting in user buffer (does not affect the echo); only for

character I/O.

Dictionary of System Calls and Library Routines

Set the System Calendar (library routine)

Allows a program to adjust the system's internal calendar during
execution. The routine accepts a date in day, month and year format
and sets the system calendar to these values. Note that the year must
be expressed as an offset from a base of 1900.

Inputs

AC Contents

ACO Day (range 1-31 10)

AC 1 Month (range (1-12 10)

AC2 Year (minus 1900; result expressed in octal)

Outputs
None

Errors

Mnemonic

ERANG

Meaning

Range error

7SDAY

Licensed Material - Property of Data General Corporation

10-91

10-92 Dictionary of System Calls and Library Routines

7SLlST

Licensed Material - Property of Data General Corporation

Set the Searchlist (library routine)

Sets the searchlist to the specified list of fully-qualified pathnames.

The searchlist may contain up to five pathnames, which must be
separated by commas, with no intervening blanks, and the list must
be terminated by a null byte. (This is the format returned by the
?GLIST system call.)

Inputs

AC Contents

ACO Byte pointer to list of path names

Outputs
None

Errors

Mnemonic

ERDOL

ERFIL

ERFTL

ERIFC

ERIFT

ERNAD

ERPWL

ERSTL

Meaning

Device off line

Device read error

Filename too long

Invalid character in filename

Filename is not a directory

Non-directory name in path name

Device write error

Searchlist is too long

Dictionary of System Calls and Library Routines

Set the Current File Position

Sets the file pointer for the specified I/O channel to a specific byte.

Normally, if you try to position past the current end of the file, the
system will extend the file as needed. However, an attempt to exceed
the file size will produce an error if

• You have specified the EF option (described below).
• You have opened a disk device as a file, since the end of file for a

disk is a physical limitation. (There is no space left.)

Inputs

AC Contents

ACO Channel number

AC 1 High order 16 bits of file position

AC2 Low order 16 bits of file position

Outputs
None

Options

Mnemonic

EF

Errors

Mnemonic

ERDOL

EREOF

ERFIL

ERICN

ERIOD

ERPWL

Meaning

If the program attempts to position past the end of file, give an

error return with code EREOF.

Meaning

Device off line

End of file encountered

Device read error

Invalid channel number

Invalid operation for device

Device write error

?SPOS

Licensed Material - Property of Data General Corporation

10-93

10-94 Dictionary of System Calls and Library Routines

?STATR

Licensed Material - Property of Data General Corporation

Set File Attributes

Sets the attributes of the specified file.

The filename must be terminated by a null byte. The attributes are
defined in Table lO.9. The right half of the attribute word (bits 8-15)
is used or reserved by the system. The left half (bits 0-7) is reserved
for user-defined attributes.

The CH option causes the attributes to be set for the file open on the
channel specified in ACO.

Mnemonic

?ATPM

?ATRD

?ATWR

?ATAT

Meaning

Permanent: the file may not be deleted or renamed while this

bit is set to 1; set by the system for directories and root

directories of disks.

Read protect: this file may not be read.

Write protect: this file may not be written; set by the system

for directories and root directories of disks.

Attribute protect: the attributes of this file may not be changed.

This bit is used by the system for devices and root directories

of disks only.

Table 10.9 File attributes

Inputs

AC Contents

ACO Byte pointer to path name

AC 1 Attribute word

Outputs
None

Options

Mnemonic

CH

Meaning

Input a channel number instead of a byte pointer to a pathname

in ACO

Errors

Mnemonic

ERATP

ERBTL

ERFDE

ERFTL

ERIAT

ERIFC

ERIRB

ERNAD

Meaning

File is attribute protected

Buffer extends into system space

File does not exist

Filename too long

Invalid attribute word

Invalid character in filename

Buffer too short

Non-directory name in pathname

Dictionary of System Calls and Library Routines 10-95

licensed Material - Property of Data General Corporation

10-96 Dictionary of System Calls and Library Routines

?STIME

Licensed Material - Property of Data General Corporation

Set the Current System Time and Date

Sets the system time and date to the specified value. You must use
the MP / AOS-SU internal format, a 32-bit number representing the
number of seconds since midnight, January 1, 1900. (Use library
routines ?FTOD and ?FDAY to convert the time and day, respectively,
from conventional to MP / AOS-SU internal format.)

Inputs

AC Contents

ACO High order 16 bits of system time

AC 1 Low order 16 bits of system time

Outputs
None

Options
None

Errors
None

Dictionary of System Calls and Library Routines

Set Up Data Channel Map

This call allows the user control over any of the data channel maps.

The input to ACO is the logical data channel slot allocated to the user
by ? ALMP. The input to AC 1 is the physical page number correspond­
ing to a user logical address as returned by ?GMRP.

?STMP sets up one data channel map slot at a time.

?STMP can be issued from an interrupt handler routine. Note that
interrupts are always enabled upon completion of ?STMP.

Inputs

AC Contents

ACO User"s logical data channel slot. The numbering scheme is identical

to that used in the? ALMP call requesting the allocation:

0-31 Data Channel Map A

AC 1 Physical page number (returned by ?GMRP)

Outputs
None

Options
None

Errors
None

?STMP

Licensed Material - Property of Data General Corporation

10-97

10-98 Dictionary of System Calls and Library Routines

?STOD

Licensed Material - Property of Data General Corporation

Set the System Clock (library routine)

Allows a program to adjust the system clock at runtime. ?STOD
accepts a time of day expressed in seconds, minutes, hours, and sets
the system clock to the values specified.

Inputs

AC Contents

ACO Seconds (range 0-59 10)

AC 1 Minutes (range 0-59 10)

AC2 Hour (range 0-23 (midnight to 11 pm), expressed in octal)

Outputs
None

Options
None

Errors

Mnemonic

ERANG

Meaning

Range error

Dictionary of System Calls and Library Routines

Translate a eLI-Format Message (library routine)

Retrieves selected portions of an interprogram message in eLI format.

The specified message must be terminated by a null byte. This call
uses a packet; its format is given in Figure 10.9 below.

DG-07390

Type: depends on request' Length: ?GTLN

Mnem.

?GREO

?GAR

?GSW

?GRES

Request type •

Argument number

Switch specifier'

Byte pointer to result buffer
o 1 2 3 4 5 6 7 8 9 1011 12131415

Figure 10.9 7TMSG packet

• See Table 10. 10 for request type.

Inputs

AC Contents

ACO Byte pointer to message buffer

AC2 Address of packet

Outputs

AC Contents

ACO Depends on request type

AC 1 Depends on request type

Outputs

None

Errors

Mnemonic

ERBTL

ERIRB

ERNAR

ERNSS

Meaning

Buffer extends into system space

Buffer too short

No argument for specified ?GAR.

No such switch (for ?GSWI only)

?TMSG

Licensed Material - Property of Data General Corporation

10-99

10-100 Dictionary of System Calls and Library Routines

Mnemonic

?GARG

?GCMD

?GCNT

?GSWC

?GSWI

?GSWM

?GSWS

?GTSW

Meaning

Copy the argument specified by ?GAR

to the result buffer.

Get the message: issue a ?GTMSG call
and place the message in the buffer

pointed to by ?GRES.

Get the argument count.

Return the number of switches present

on the specified argument.

Test if the switch specified by the

switch number in ?GSW is attached to

the argument specified by ?GAR. If
found, copy the switch value (if any) to

the result buffer.

Functions like ?GTSW, except that it

tests for the presence of switches for

which a minimum number of unique

characters has been specified in AC 1.

E.g., if you use a /OPTIONS switch and

you specify AC 1 = 3, ?GSWM detects

/OPT, /OPTI ... /OPTIONS, but not lOP.

Get the switch set: check for single­

letter switches, and set the correspond­

ing bits in ACO and AC 1 .

Test if the switch specified by the byte

pointer in ?GSW is attached to argu­

ment specified by ?GAR. If so, copy its

value (if any) to the result buffer.

Outputs

ACO

Argument length

Length of message

Number of arguments

Number of switches

AC1

Unused

Unused

Unused

o if the switch has no Length of returned string.

value. >0 for the length

of the switch value.

Test result*

Flags for / A through /P
(bit 0 = /A, bit 1 = /B,

bit 15 = /P)

Test result*

Flags for /0 through /Z

(bit 0 = /0, bit 9 = /Z,
bits 10-15 unused).

Unused

Table 10.10 Types of requests

Licensed Material - Property of Data General Corporation

• Test results are:

- 1 if the switch was not found.

o if the switch has no value.

< 0 for the length of the switch value.

NOTES: The command or program name is referenced as the Oth argument.

?TMSG regards upper- and lower-case letters as equivalent on input; on output it

converts all letters to uppercase.

You must place your message into the buffer pointed to by ?GRES before issuing

the ?GTMSG call. To do this, issue a ?GCMD or ?GTMSG call.

Dictionary of System Calls and Library Routines

Resume Execution of a Task

Resumes execution of the specified task.

You can specify the task to be unpended either by its identifier or by
a I6-bit event number. Event numbers must be greater than or equal
to ?EVMIN and less than or equal to ?EVMAX.

If you specify an event number that several tasks are waiting for,
only one task is unpended, unless you use the BD option to unpend
all waiting tasks.

The system unpends tasks on event on a first in, first out basis: the
first task pended is the first unpended, regardless of time remaining
in its timeout interval.

You can also specify that the unpended task take the error return
from its ?PEND or ?IPEND call.

Inputs

AC Contents

ACO Message word to unpended task(s)

AC2 Event code or task identifier (lD option)

Outputs

AC Contents

ACO Number of tasks unpended

Options

Mnemonic

BD

ER

ID

Meaning

Unpends all tasks waiting for this event

Unpends task(s) at the error return

AC2 contains task identifier, not event code

NOTE: Do not specify the BO and 10 options together.

Errors

Mnemonic

EREVT

ERTID

Meaning

Invalid event number

Invalid task identifier

1UNPEND

Licensed Material - Property of Data General Corporation

10-101

10-102 Dictionary of System Calls and Library Routines

?WRITE

licensed Material - Property of Data General Corporation

Write Data to a Device or File

Writes data to the device or file on the specified I/O channel. You
can write data using either dynamic or data-sensitive mode.

To use dynamic writing, you must specify the number of bytes to be
written.

If you are writing to a disk, you can improve the efficiency of your
program by transferring entire disk blocks. To do this you must

Set the file pointer to a multiple of 512 before the transfer.

Specify a multiple of 512 bytes to write.

Specify a buffer which is word aligned in your address space.

Data-sensitive writing is selected by the DS option. In this case, you
specify the maximum number of bytes to transfer; the system then
writes until it has either written one of the default delimiters -
New-Line (12a), Carriage Return (15a), Form-Feed (14a) or null (OOa)
or until it has written a delimiter specified by a delimiter table. (See
?SCHS for a discussion of delimiter tables.)

If you attempt to write past the end of file, your program will take
the error return if you specified the EF option. If you did not specify
the option, the system will extend the file as needed.

After the transfer, AC2 will contain the number of bytes written,
whether or not the error return was taken.

The FL option delays the return of ?WRITE until all outstanding
blocks associated with the channel have been flushed to disk. This
option can be of use in establishing check points.

Inputs

AC Contents

ACO Channel number

AC 1 Byte pointer to data to write

AC2 Byte count (dynamic)

Option:

DS: maximum byte count

Outputs

AC Contents

AC2 Number of bytes written

Option:

NP: System task ID

Options

Mnemonic

EF

FL

NP

DS

Errors

Mnemonic

ERBTL

ERDOL

EREOF

ERFIL

ERICN

ERIRB

ERLTL

ERNOT

ERPWL

ERWAD

Dictionary of System Calls and Library Routines

Meaning

Cause an error return if the program attempts to write past the

end of file

Return after written data has been flushed to disk

Non-pended call; (system task ID returned in AC2)

Data-sensitive write

Meaning

Buffer too long

Device off line

End of file encountered

Device read error

Invalid channel number

Buffer too short

Too many bytes without a delimiter (DS option only)

No free task control blocks (NP option only)

Device write error

Write access denied

Licensed Material - Property of Data General Corporation

10-103

The ASCII
Character set

I~;~I! 010 It*'ll t H _

1;f,(,1 011It.~ t I ~.~~
litWit 012 1111 t J lali
l!t~10131. tK .,]

IM014 ll1lt L _t
1~I{t01511. t M MI1
I!~.I 016"&1 t N .l~j
I~$II 01711\1 t 0 Iff,'~tt~

Ii. 020 ~~wa t p l~.!\I'
1~l'i 021 I'~i t Q IIItVi
lill1 022 III t R Ifak1
I~t.)l 0231.'~ t S ftlll}) 9uwt ;fdtru%'3tr5k:cc:

rill II.~ t ~_jl !£wrt 024k!=l T ~*

l!i1J025 1111 t u ~.1
Iw.~l 026 1111 t v ~a.3
161.1 0271i~.1 t w 1.~1

1~;Bij 030 I~~.I t x kt.i)
I"¥,j 1"';1 r ji!"'~ ;'~1(031i1l!<,"z t y ;:.' ,

I$lf.ll 032 ~,"l t z ~.1J
["fit'l [1.1 ~1 !11Kft't 033S't_L ESC dttutr

W~'(I{I 0341~. t, .#~1
~~1.1 03511!I:J t I b1.l~3
~:~1 036 ~~J!I t t b\i_:fS1
P:~.'11 037 f1i~it1 t - &1Ii'?'1

KEY
DECIMAL OCTAL HEX SYMBOL

fillJ 040 ~.I SPACE I
tIl041.tt! I
81 0421.j'Q~~nl
~.0431.1 #

114 044 111 $

'. 045 1113 %
1iiiR1'1 lh2BllI l\'B,~j 046 _Ill &

(111 047 MI .. ;""I
.~ 050 t~.!J (I
fi{~f~. 051 i*.) I
I.; 052181 * I
fl.l 053 111«4 + I '.fl 054&illit"o:",,,,[
I.) 0551~I.l -'II' 056 t~.1''':'OD
~,%tiii&, [§;_I"I" " C#~i\;! 057 ~%~',!j I

'fl;i 060 ~.l 0
11«11 061 lil)l] 1
l.j062~. 2
IJt~l 063 tllTl 3
l.~' 064 r8tl 4
lltl 065 ~t.~ 5
1.1 066 n~I~1 6
it_I 067 t.~ 7

r\W~ 070 r\.~ 8

C~\~ 071 [{i11 9

tt.tj 072 tifl14 :
Ivll:' 073 '1-'1 ;
!'~'! R'iBoAl < l}~Vl 07 4 fx~:~

~}.i 0751~lll -
1;1~1';~ 076 [.\1 >
f:'I!:1 077 t~#l'l ?

1;.11 1 00 t\~i1 @

Figure A.1 ASCII Character Codes

KEY
DECIMAl OCTAL HEX SYMBOL

E~~111 01 @~.lj A

~}.~ 102 ~;.lh~1 B
~o;"<'-"'P0~ ~t'~4<'_

1%f1f! 1 03 ~.I C

~~~J 1 04 ~\"'tl D 

[;\~) 1 05 f1~~ E 

~?}a'! 106 !J;:_~ F 
~\V", p,J ~~'~~'S<~ 

t~1~ll 07 E~~ll G 

n~~lll 0 l;~~l H 

F\~1~,1111 fi*~ I 

~t4~ 112 ~;.;1 J b\;",' ,,1 ~""'&'>-:1 

t\'lll;;;1113 f;_it K 

fl~~ll14 t~~! L 

1;~1'1115 ffi~.j M 

f~~j 116t\:.~1 N 

1t~'i';1117 e.j~ 0 

1~1120 E~*~l p 

(;f'fi12l f?I1'11 Q 

1?)~)1122 ~:~l R 

I;;;~>~ 123 ~;'1I~ S 
_ . /i <~ ~i'W Y"~ 

[~j124~M~ T 

1'1i~1! 125!rB?J u 

I~\~H 126 t'.il V 

P'1'1 127 f~f;fll W 

[~$q 130 [l.:'l X 

F~~1131 I,~';':l y 

r9,c!1132 !i:~':1 z 

l;1~4J 1331;.ll [ I 
li~~li1134Ij~J ' I 
f't1l~ 135 i'.~ I I 
1~'1136 t~;lto~ I 
1\!:_:J137 k;"i~;--I 
1;{~1140 I:'~~~ '0':'" I 

A 

KEY 
DECIMAL OCTAL HEX SYMBOL 

'.~1141 [!i'1.J a .,,1 142 r;.~~·1 b 

c.~a 143 r!~J c 

l:J.J 144 ~\~!l d 

l!i4~j 145 !\~I e 

tg1 146 r~~l f 

!'.d 147 ~·.·~~·.1 g 

e.J 150 I)'.~l h 

1.1 151 !~~1 i 

11J~j 152 b~1 j 

E;l~fj 153 ~.~j k 

t~.11541;i~1 I 

~1.11551 •• ··l m ~i'",'t',J .:"'", • 

It~.~ilI156 t,~el n 

t'f~1~l157 E~l 0 

il):r~ 160 1l*>1 p 

fl~~la 161 ttll q 

li1f~~ 1621.~ 1 r 
iil:lliitI163! ;t. 31 5 i<C{f;t, .'_ • 

l~'1164 !'~ltl t 

E,~~!t 165 1'151 u I 
t,J:t1166!:re1 v 

[1~'il~ 167 F 7~1 w 

l~~;1170 !?Si x 

rtJ·~!11711;1~ 'I y 

[t~~·ll72 L tA I z 

r:f~tj 173 ,,,.I [ I 
1:(1~j174 r~\1 I I 
t~l:j 175 h~1 J I 
t~~~l1761'EI ,~" I 
!:*~il'll77I·~~·I·?.!~,,1 

DG-05495 

Licensed Material· Property of Data General Corporation 





DGC Standard 
Floating Point 

Format 

Word for word, floating point format (Figure B.ll provides a much 
larger range than integer format, at the expense of some precision. It 
also provides the ability to operate on fractions. The maximum 
range of floating point format is equivalent to a 16-word multiple­
precision integer. In addition, floating point operations are executed 
faster than most multiple-precision integer operations. 

We represent a floating point value using a four-byte number for 
single precision or an eight-byte number for double precision. The 
four- or eight-byte aggregate contains three fields: 

• a fractional part called the mantissa which is normalized at the 
end of all floating point operations; that is, the mantissa's value is 
adjusted to be greater than or equal to 1/16 and less than 1; 

• an exponent, which is adjusted to maintain the correct value of 
the number; 

• a sign. 

To operate on a number in memory employing the floating point 
arithmetic instructions, the number must be word aligned; that is, 
bit 0 of the first byte of the number is bit 0 of the first word of a 
two-word or four-word area in memory. 

B 

Licensed Material - Property of Data General Corporation 



B-2 DGC Standard Floating Point Format 

Sign 

Exponent 

Licensed Material - Property of Data General Corporation 

The magnitude of a floating point number is defined as 

MANTISSA X 16(TRUE VALUE OF THE EXPONENT) 

The magnitude of a single- or double-precision number is thus in the 
approximate range: 

-7.237 x 1075 TO 7.237 x 1075 

We represent zero in floating point by a number with all bits zero, 
known as true zero. When a calculation results in a zero mantissa, 
the number is automatically converted to a true zero. 

DG-05496 

Single precision 14 bytes) 

II Byte 0 1 Byte 1 1 
o 7 8 15 16 

Byte 2 1 
23 .. 

Byte 3 

24 31 
J 

lE~ Mantissa 16 hex digits) 

Sign 

l Word ahgned for all floating point operations: 

Double precision 18 bytes) 

II Byte 01 
o 1 7 

F 
Sign 

I Byte 1 I 
8 15 

I Byte 4 1 
32 39 

Byte 2 I Byte 3 

16 23 24 31 

I Byte 5 I I Byte 6 I 
40 47 48 53 

Mantissa 114 hex digits) 

l Word aligned for all floating point operations: 

Figure B.1 Floating point formats 

Byte 7 

54 63 

Bit 0 of the first byte is the sign bit. If the sign bit is 0, the number 
is positive. If the sign bit is 1, the number is negative. 

The right-most seven bits of the first byte contain the exponent. We 
use excess 64 representation. For both positive and negative expo­
nents, the value is the true value of the exponent plus 64. Table B.l 
illustrates this. 

Exponent Field 

a 
64 

127 

True Value of Exponent 

-64 

o 
63 

Tablfl B. 7 Excflss 64 rflprflsflntation of flxponflnts 



DGC Standard Floating Point Format 

Bytes 1 to 3 (single precision) or bytes 1 to 7 (double precision) 
contain the mantissa. By definition, the binary point lies between 
byte 0 and byte 1 of a floating point number. To keep the mantissa's 
value in the range 1/16 to 1, the results of each floating point 
calculation are normalized. A mantissa is normalized by shifting it 
left one hex digit (four bits) at a time, until the high-order four bits 
(the left-most four bits of byte 1) represent a nonzero quantity. For 
every hex digit shifted, the exponent decreases by one. 

Mantissa 

Licensed Material - Property of Data General Corporation 

B-3 





CLI Message Format 

This appendix describes the format of messages passed to programs 
from the CLI (Command Line Interpreter) by MP / AOS-SU. The 
syntax the CLI provides to the user is more complex than that 
described here: a number of features, such as command repetition 
and filename templates, are interpreted by the CLI and not passed to 
programs. This appendix only describes the format of CLI messages 
as the program sees them. You can use the ?TMSG library routine to 
translate these messages. 

For more information on the CLI command language, see MP / AOS-SU 
eLI Manual. 

C 

Licensed Material - Property of Oats General Corporation 



C-2 eLi Message Format 

Arguments 

Switches 

Licensed Material - Property of Data General Corporation 

CLI messages consist of a program name, which may be followed by 
one or more arguments. An argument may consist of a filename, 
function name or any other string of characters. If the message 
contains multiple arguments, they are separated by commas. The 
last argument (or the program name itself if there are no arguments) 
is always followed by a null byte. 

Switches are modifiers that can follow the program name or any 
argument. All switches are preceded by a slash (/) and can consist of 
one or more characters. Switches have two forms: simple and 
keyword. A simple switch can take this form: 

PROGRAM_NAME /switciLname 

A keyword switch can take this form: 

PROGRAM_NAME /switciLname=value 

Value may be any number, filename, etc. 

Consider the following example of a command to MASM, the 
MP / AOS-SU Macroassembler program. You might type a CLI com­
mand on your console: 

) X MASM/U/L=@LPT DEFS/S PROG 

The X is the minimum unique abbreviation of XEQ. MASM is the 
name of the program you want to run. /U is a simple switch: it 
instructs MASM to include user symbols in the object file it generates. 
/L=@LPT is a keyword switch: it instructs MASM to send the 
listing file to the line printer (device name @LPT). The arguments 
DEFS and PROG are the names of two files to be assembled. The /S 
following DEFS is a simple switch: it tells MASM to skip that file on 
the second assembly pass. 

As a result of this command the CLI creates an interprogram message 
in the form: 

) MASM/U/L=@LPT,DEFS/S,PROG (plus a terminating null byte) 

As you can see, the X has been removed. Also, all strings of spaces 
have been converted to single commas, and all lowercase characters 
have been converted to uppercase. A trailing null byte has been 
appended to terminate the message and tabs have been treated as 
blanks. 



I/O Device Codes 

Table D.l contains device code assignments for microECLIPSE and 
microNOV A disk(ette) and magnetic tape devices supported under 
MP / AOS-SU. Table D.2 lists all standard microECLIPSE and 
microNOV A device codes. 

Octal 

Device 
Code 

17 

17 

17 

20 

22 

Mnemonic 

LPT 

LP2 

LPB 

DPH 

MTA 

Priority 

Mask 
Bit 

12 

12 

12 

7 

10 

Device Name 

PIO (programmed I/O) line printer 

Data channel (or PIO) line printer 

Data channel line printer 

DGC minidiskette 

Magnetic tape controller 

D 

Model No. 

4034A-D,G/H, or LP2 with 

PIO controller 

LP2 with data channel con-

troller 

4215/19,4244/5 

E6267-A (single) 

E6267-B (dual) 

6123 

26 DPH 7 12.5 or 25-Mbyte fixed disk and/or 1.25-Mbyte 6098/99/6100/6103 
diskettes 6097 

26 DPH 7 15-Mbyte fixed disk E6271 (internal) 
E6271-A (add-on) 

27 DPD 7 10-Mbyte cartridge disk 6095 

33 DPX 10 31 5-Kbyte diskette subsystem 6038/6039 

57 LPT1 12 Second PIO line printer 

57 LP21 Second data channel line printer 

57 LPB1 Second data channel line printer 

66 DPH1 7 Second 12.5 or 25-Mbyte fixed disk and/or 

1.25-Mbyte diskettes 

67 DPD1 7 Second 10-Mbyte cartridge disk 

73 DPX1 10 Second 3 1 5-Kbyte diskette subsystem 

Table 0.1 MicroECLIPSE and microNOVA device code assignments for disks. diskettes. line printers. and magnetic tape devices supported by 

MP/AOS-SU 

Licensed Material - Property of Data General Corporation 



D-2 I/O Device Codes 

Octal Mnemonic Priority Device Name 

Device Bit 

Code Mask 

01 APL Auto program load register 

02 PAR Parity checking 

03 MAP Memory allocation and protection 

04 

05 

06 

07 

10 TIl 14 TTY input 

11 TIO 15 TTY output 

12 PTR 11 Paper tape reader 

13 

14 RTC 13 Real-time clock 

15 

16 

17 LPT 12 Line printer 

20 DPH 

21 ADCV 8 A-D converter 

22 MTA 10 Magnetic tape 

23 DACV 8 D-A converter 

24 NVM 10 I/O memory 

25 NVM1 10 I/O memory 

26 DPH 7 [10] 12.5- or 25-Mbyte disk and 1.25-Mbyte 
diskettes or 15-Mbyte mini-winchester 

27 DPD 7 [10] 10-Mbyte cartridge disk 

30 

31 

32 

33 DPX 10 3 1 5-Kbyte diskette subsystem 

34 MUX 8 [9] Sync/async multiplexor 

35 CRC 8 Cyclic Redundancy Checker] 

36 

37 

40 

Table 0.2 Standard microECLIPSE and microNOVA I/O device codes 

Licensed Material - Property of Data Gen .... 1 Corpor.tion 



I/O Device Codes D-3 

Octal Mnemonic Priority Device Name 

Device Bit 

Code Mask 

41 

42 DID 5 Digital I/O interface 

43 PIT 11 Programmable interval timer 

44 MUX1 8 Second sync/ async controller 

45 CRC 8 Second cyclic redundancy checker con-

troller 

46 

47 VID 6 Video interface 

50 TIl 1 14 Async controller/remote restart receiver 

51 TI01 15 Async controller/remote restart transmit-

ter 

52 PTR1 11 Second paper tape reader 

53 

54 RTC1 13 Second real-time clock 

55 

56 

57 LPT1 12 Second line printer 

60 

61 ADCV1 8 Second A-D interface 

62 

63 DACV1 8 Second D-A interface 

64 SNVM 10 I/O memory 

65 SNVM1 10 I/O memory 

66 DPH1 7 [10] Second 12.5- or 25-Mbyte disk and 
1.25-Mbyte diskettes or 15-Mbyte mini-

winchester 

67 DPD1 7 [10] Second 10-Mbyte cartridge disk 

70 

71 

72 

73 DPX 10 Second 3 1 5-Kbyte diskette subsystem 

74 

75 

76 

77 CPU Central processor and console functions 

Table 0.2 Standard microECLIPSE and microNOVA liD device codes {continued} 

Licensed Material - Property of Data General Corporation 





User Parameter 
Files 

MP / AOS-SU systems include a set of parameter files. These are 
assembler source files that contain symbol definitions without any 
executable code. You use these files to prepare permanent symbol 
tables for the Macroassembler, using the /S function switch which 
skips the second assembly pass (produces no .OB file) and saves the 
Macroassembler's symbol table, renaming it MASM.PS. For more 
detailed information on IS, see MP / AOS-SU Macroassembler, Binder, 
and Library Utilities. 

Table E.l describes the MP / AOS-SU parameter files. Please note 
that the MP / AOS-SU parameter files are identical with MP / AOS 
parameter files. Ignore information pertaining to system calls and 
options that MP / AOS-SU does not support. 

This appendix contains an assembled copy of three parameter files, 
OPARU.SR, MP_OS_ERCOD.SR, and MP_AOS_ERCOD.SR. (See 
Figures E.l through E.3). Refer to the listing to find out the numeric 
value of an MP / AOS-SU symbol. The list of error codes in 
MP _OS_ERCOD.SR and MP / AOS_ERCOD.SR is particularly useful 
when debugging programs. 

NOTE: This listing of OPARU.SR, MP _OS_ERCOD.SR, and MP/AOS_ERCOD.SR 
reflects the state of the system at the time this manual was printed. The values of 
some mnemonics may change from time to time. If there is any doubt about the 
value of a symbol, check the copies of OPARU.SR, MP _OS_ERCOD.SR, and 
MP/AOS_ERCOD.SR that were released with your system, as well as your latest 
release notice. 

E 

Licensed Material - Property of Data General Corporation 



E-2 User Parameter Files 

Licensed Material - Property of Data General Corporatton 

File Contents 

EBID.SR 

MP/AOS_ERCOD.SR 

MP _OS_ERCOD.SR 

NSKID.SR 

The basic ECLIPSE instruction set 

Additional MP/AOS-SU error codes 

MP/OS error codes 

Conditional skip mnemonics that simplify program­
ming and improve program readability 

OPARU.SR 

OSYSID.SR 

SCALL.SR 

Mnemonics used with system calls 

Definitions of system call numbers 

Definition of system calls 

Table E.1 Parameter files 

0001 OPARU MP/MASM Assembler Rev 03.10 04/12/82 14:59:30 

02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 

. title oparu 

OPARU - User Parameter file 

Symbol definition requirements are the following: 
1) All symbols of the form ?xxxx are reserved for 

defining parameters used jointly by the operating 
system and user assembled programs. 

2) All symbols of the form ERxxx are reserved for 
defining operating system error codes. 

3) Oon't add symbols to OPARU unless they conform to 
these rules. 

.ejec 

0002 OPARU 
01 
02 000000 i=O 
03 000000 .dusr FQ1 = i 
04 000001 .dusr FQ2 = i 
05 000002 .dusr FQ3 = i 
06 000003 .dusr FQ4 = i 
07 
08 
09 
10 
11 
12 
13 

000100 .dusr ?NMCH = 64. 

000000 .dusr ?INCH = 00 
000001 .dusr ?OUCH = 01 

Number of channels 

Default console input channel 
Default console output channel 



14 
15 000001 .dusr ?EVMIN = 01 
16 075777 .dusr ?EVMAX = 075777 
17 076000 .dusr ?EDMI = 076000 
18 077777 .dusr ?EDMX = 077777 
19 076000 .dusr ?EVCH = ?EDMI 
20 
21 000017 .dusr ?MXFL = 15. 
22 000177 .dusr ?MXPL = 127. 
23 000017 .dusr ?SVNL = 017 
24 000003 .dusr ?MXLD = 03 
25 000077 .dusr ?MXLL = 63. 
26 000005 .dusr ?MXSL = 5 
27 000200 .dusr ?MXSP = 128. 
28 000400 .dusr ?mxtk = 256. 
29 000040 .dusr ?mxov = 32. 
30 
31 000010 .dusr ?mxsw = 8. 
32 000377 .dusr ?MXPR = 255. 
33 
34 
35 ; FILE TYPES 
36 
37 177772 .dusr ?DLPT = -6 
38 177773 .dusr ?DCHR = -5 
39 177774 .dusr ?DDVC = -4 
40 177775 .dusr ?DDIR = -3 
41 177776 .dusr ?DMSG = -2 
42 177777 .dusr ?DPSH = -1 
43 
44 000000 .dusr ?DSMN = 00 
45 000100 .dusr ?DSMX = 0100 
46 000101 .dusr ?DUMN = ?DSMX+1 
47 000200 .dusr ?DUMX = 0200 
48 
49 SYSTEM TYPES 
50 
51 000000 .dusr ?DOBF = ?DSMN 
52 000001 .dusr ?DSTF = ?DOBF+1 
53 000002 .dusr ?DPRG = ?DSTF+1 
54 000003 .dusr ?DOLF = ?DPRG+1 
55 000004 .dusr ?DBPG = ?DOLF+1 
56 000005 .dusr ?DPST = ?DBPG+1 
57 000006 .dusr ?DLIB = ?DPST+1 
58 000007 .dusr ?DUDF = ?DLIB+1 

; Minimum user pend event 
; Maximum user pend event 
; minimum DG event code 
; maximum DG event code 
; Channel 0 ~C~A event code 

; Maximum filename length 
; Maximum pathname length 
; maximum server name length 
; maximum link depth 
; maximum link length 
; maximum number of search list entries 
; Maximum segment size (in pages) 
; maximum number of tasks 
; max number of user overlays 
; per process 
; max swap level 

lowest priority. highest value 
; specifiable 

; Lineprinter 
; Character device 
; Disk (directory device) 
; Directory 
; message file 
; swap (push) file 

System min 
System max 
User minimum 
User maximum 

OB file 
Symbol table file 
Program file 
Overlay file 
Bootable program file 
Permanent symbol file (x.PS) 
Library file (x.LB) 
User data file 

User Parameter Files 

Licensed Material - Property of Data General Corporation 

E-3 



E-4 User Parameter Files 

Ucensed Material - Property of Data General Corporation 

59 
60 

000010 .dusr ?DTXT = ?DUDF+1 
000011 .dusr ?DBRK = ?DTXT+1 

0003 OPARU 
01 
02 
03 
04 
05 
06 
07 
08 

000012 .dusr ?DIDF = ?DBRK+1 
000013 .dusr ?DIXF = ?DIDF+1 
000014 .dusr ?DLNK = ?DIXF+1 
000015 .dusr ?DBBS = ?DLNK+1 
000016 .dusr ?DMBS = ?DBBS+1 
000100 .dusr ?DLOG = ?DSMX 

; Text File 
; Break file 

; MP/ISAM data file 
; MP/ISAM index file 
; Link 
; MP/Business Basic save file 

MP/Basic save file 
; System log file 

09 
10 

; MP/OS FILE ATTRIBUTES 

11 
12 
13 
14 
15 
16 
17 
18 

000001 .dusr ?ATPM = 01 
000002 .dusr ?ATRD = 02 
000004 .dusr ?ATWR = 04 
000010 .dusr ?ATAT = 8. 
000020 .dusr ?ATDC = 16. 
000100 .dusr ?ATZR = 64. 

; Permanent file, can't be deleted 
Can't be read 
Can't be written 
Attributes can't be changed 
Delete on last close (user can't set) 
Don't zero blocks on allocation 

19 
20 

; MP/OS DEVICE CHARACTERISTICS 

21 000000 i=O 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

100000 .dusr ?CST = 1BO 
040000 .dusr ?CNAS = 1B1 
020000 .dusr ?CESC = 1B2 
010000 .dusr ?CECH = 1B3 
004000 .dusr ?CLST = 1B4 
002000 .dusr ?CBIN = 1B5 
001000 .dusr ?C605 = 1B6 
000400 .dusr ?CUCO = 1B7 
000200 .dusr ?C8BT = 1B8 
000100 .dusr ?CNED = 1B9 
000040 .dusr ?CEMM = 1B10 
000020 .dusr ?CICC = 1B11 

Simulate tabs if asserted 
If asserted, device is not ANSI standard 
If asserted, handle escape as ACAA sequence 
If asserted, echo input to output 
If asserted, echo form feed as AL 
If asserted, input is in binary form (8 bit) 
If asserted, device is 605x series 
Convert lowercase as uppercase 
8 bit characters 
Do not echo delimiters 
Echo characters exactly as input 
Ignore control characters (Oexcept 

delimiters and system chars) 

38 
39 

; MP/OS USER DEFINABLE CHANNEL CHARACTERISTICS. 

40 
41 000000 i=O 



42 
43 
44 
45 
46 

177700 .dusr DUMO = 1777B9 
000040 .dusr ?CUCI = 1B10 

; Place holder 
; convert input to uppercase 

47 
48 

; MP/OS CHARACTER DEVICE HARDWARE CHARACTERISTICS WORD. 

49 
50 
51 
52 
53 
54 

000001 .dusr ?BSTP = 1 
000003 .dusr ?BPAR = 3 
000005 .dusr ?BLVL = 5 
000017 .dusr ?BRAT = 15. 

55 000000 i=O 
56 
57 
58 
59 
60 

140000 .dusr ?CSTP = 3B1 
030000 .dusr ?CPAR = 3B3 
006000 .dusr ?CLVL = 3B5 
001760 .dusr RES1 = 77B11 

0004 OPARU 
01 000017 .dusr ?CRAT = 17B15 
02 
03 040000 .dusr ?C1S = 040000 
04 140000 .dusr ?C2S = 0140000 
05 100000 .dusr ?C15S = 100000 
06 

000000 .dusr ?CNPR = 00 
010000 .dusr ?CODD = 010000 
030000 .dusr ?CEVN = 030000 

000000 .dusr ?C5BC = 00 
002000 .dusr ?C6BC = 02000 
004000 .dusr ?C7BC = 04000 
006000 .dusr ?C8BC = 06000 

; placement of stop bit description 
; placement of parity description 
; placement of code level 
; placement of code rate 

; Stop bit mask 
; Parity mask 
; Code level mask 
; reserved 

; Line rate mask 

; 1 Stop bit 
; 2 Stop bits 
; 1.5 Stop bits 

; No parity 
; Odd parity 
; Even parity 

; 5 bits 
; 6 bits 
; 7 bits 
; 8 bits 

07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

ALM clock selection. 

000011 .dusr ?cckO = 9. 
000017 .dusr ?cck1 = 15. 
000000 .dusr ?cck2 = 0 
000001 .dusr ?cck3 = 1 

; clock 0 
; clock 1 
; clock 2 
; clock 3 

; Baud rate selection (not valid for ALMs). 

User Parameter Files E-5 

licensed Material - Property of Data General Corporation 



E-6 User Parameter Files 

Licensed Material - Property of Dat8 General Corporation 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

000000 .dusr ?C0050 = 00 
000001 .dusr ?C0075 = 01 
000002 .dusr ?C0110 = 02 
000003 .dusr ?C1345 = 03 
000004 .dusr ?C0150 = 04 
000005 .dusr ?C0300 = 05 
000006 .dusr ?C0600 = 06 
000007 .dusr ?C1200 = 07 
000010 .dusr ?C1800 = 8. 
000011 .dusr ?C2000 = 9. 
000012 .dusr ?C2400 = 10. 
000013 .dusr ?C3600 = 11. 
000014 .dusr ?C4800 = 12. 
000015 .dusr ?C7200 = 13. 
000016 .dusr ?C9600 = 14. 
000017 .dusr ?C192K = 15. 

.dusr ?C1800 = 8. 

Log file event codes 

; Baud rate is 50 
Baud rate is 75 
Baud rate is 110 
Baud rate is 134.5 
Baud rate is 150 
Baud rate is 300 
Baud rate is 600 
Baud rate is 1200 
Baud rate is 1800 

; Baud rate is 2000 
; Baud rate is 2400 

Baud rate is 3600 
; Baud rate is 4800 
; Baud rate is 7200 
; Baud rate is 9600 
; Baud rate is 19200 
; Baud rate is 1800 

===========Baud rate is ==== 

000001 .dusr ?LSTR = 1 
000002 .dusr ?LEND = 2 
000004 .dusr ?LDER = 4 
001777 .dusr ?LXYZ = 1023. 

;Logging start 
;Logging end 
;Device error 
;Memory error 

MP/OS packets are all typed. The zero'th word of each and 
every packet must contain the type code for that packet. 
The actual packet begins at offset 1. The packet length 
includes the type word. 

0005 OPARU 
01 
02 
03 
04 
05 
06 
07 

MP/OS packet types 

000000 .dusr ?PIP = 00 
000001 .dusr ?TDP = 01 
000002 .dusr ?FSP = 02 

Rev 0 program information packet 
Rev 0 task definition packet 
Rev 0 file status packet 



08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

000003 .dusr ?DSP = 03 
000004 .dusr ?ISP = 04 
000045 .dusr ?PRP = 045 
000046 .dusr ?EPIP = 046 
000047 .dusr ?SIP = 047 
000410 .dusr ?SRTP = 0410 
000411 .dusr ?SWTP = 0411 
000412 .dusr ?SRP = 0412 
000413 .dusr ?s.RP = 0413 
000414 .dusr ?ITYP = 0414 
000415 .dusr ?LTYP = 0415 
000416 .dusr ?HSTP = 0416 
000417 .dusr ?HDTP = 0417 
000420 .dusr ?MSP = 0420 
000421 .dusr ?IOP = 0421 
000422 .dusr ?GSTP = 0422 

; Rev 0 disk status packet 
; Rev 0 MP/ISAM call packet 
; Mp/aos proc packet 
; Mp/aos extended info packet 
; Mp/aos system information packet 
; Mp/aos read task status packet 
; Mp/aos write task status packet 
; Mp/aos IPC packet 
; Mp/aos send/receive packet 
; Mp/aos IDEF driver packet 
; Mp/aos line IDEF driver packet 
; Mp/aos histogramming packet 
; Mp/aos histogramming termination packet 
; Mp/aos map segment 
; Mp/aos segment 110 
; Mp/aos get statistics packet 

29 THE PROGRAM INFORMATION PACKET USED BY THE ?INFO CALL 
30 
31 
32 
33 000000 i=O 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

000000 .dusr ?TYPE = i 
000001 .dusr ?PPMN = i 
000002 .dusr ?PPMX = i 
000003 .dusr ?PIMN = i 
000004 .dusr ?PIMX = i 
000005 .dusr ?PREV = i 
000006 .dusr ?PLEV = i 
000007 .dusr ?PHMA = i 
000010 .dusr ?POCH = i 

44 000011 .dusr ?PLN = l?n4 
45 
46 
47 
48 

;Offset of type word in the packet 
Lowest pure (Ocode) address 

; Highest pure address 
; Lowest impure (Odata) address 
; Highest impure address 
; Program revision number 
; Program level 
; Highest memory available 
; Open channel mask 

49 
50 

THE TASK DEFINITION PACKET USED BY THE ?CTASK CALL 

51 
52 

User Parameter Files 

Licensed Material - Property of Data General Corporation 

E-7 



E-8 User Parameter Files 

licensed Material - Property of Data General Corporation 

53 000000 i=O 
54 
55 
56 
57 
58 
59 
60 

000001 .dusr ?TPRI = i 
000002 .dusr ?TSTA = i 
000003 .dusr ?TSTB = i 
000004 .dusr ?TSTL = i 
000005 .dusr ?TSTE = i 

0006 OPARU 
01 
02 
03 
04 
05 

000006 .dusr ?TAC2 = i 
000007 .dusr ?TUSP = i 
000010 .dusr ?TKPP = i 

06 000011 .dusr ?TLN = 1?n5 

Task priority (00 =< x =< 255) 
Task starting address 
Stack base 
Stack limit 
Stack error handler 
(OO=>System default) 

New task's initial ac2 
New task's initial ?usp 
Task kill post-processing 
(00 => none) 

07 
08 
09 
10 
11 
12 
13 

THE FILE STATUS PACKET USED BY THE ?FSTAT CALL 

14 000000 i=O 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

000001 .dusr ?FTYP = i 
000002 .dusr ?FATR = i 
000003 .dusr ?FESZ = i 
000004 .dusr ?FTLA = i 
000006 .dusr ?FTLM = i 
000010 .dusr ?FLEN = i 
000012 .dusr ?FLN = 1?n6 

; File type 
Attributes 
Element size 
Time last accessed (two words) 
Time last modified (two words) 
File length in bytes (two words) 

27 THE MESSAGE PACKET USED BY THE ?TMSG CALL 
28 
29 
30 
31 000000 i=O 
32 
33 
34 
35 

000000 .dusr ?GREQ = i 
000001 .dusr ?GNUM = i 
000002 .dusr ?GSW = i 

;Packet/request type (see below) 
Argument number 

; Switch specifier 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

000003 .dusr ?GRES = i 
000004 .dusr ?GTLN = l?n7 

B.P. to buffer receiving switch 

PACKET / REQUEST TYPES (?GREQ) 

000000 .dusr ?GCMD = 00 
000001 .dusr ?GCNT = ?GCMD+1 
000002 .dusr ?GARG = ?GCNT+1 
000003 .dusr ?GTSW = ?GARG+1 
000004 .dusr ?GSWS = ?GTSW+1 
000005 .dusr ?GSWI = ?GSWS+1 

Get entire message 
Get argument count 
Get argument 
Test a switch 
Get (alphabetic) switches 
Test for switch # ?GSW 

The disk status packet used by the ?DSTAT call 

000000 i=O 
100000 .dusr ?DWRP = 1BO 
040000 .dusr ?DLE1 = 1B1 
020000 .dusr ?DLE2 = 1B2 
010000 .dusr ?DME1 = 1B3 
004000 .dusr ?DME2 = 1B4 

Disk status word (see below) 
Disk is write protected 
Primary label block is bad 
Secondary label block is bad 
Primary MDV block is bad 
Secondary MDV block is bad 

0007 OPARU 
01 
02 000000 i=O 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 

000001 .dusr ?DFB = i 
000003 .dusr ?DAB = i 
000005 .dusr ?DTMX = i 
000006 .dusr ?DTAL = i 
000007 .dusr ?DSTW = i 
000010 .dusr ?DRER = i 
000011 .dusr ?DUER = i 
000012 .dusr ?DLN = l?n9 

; Two word # of free blocks 
; Two word # of allocated blocks 
; Maximum possible # of files 
; Current # of allocated DITs 

Disk status word 
Number of recoverable disk errors 
Number of unrecoverable disk errors 

User Parameter Files E-9 

Licensed Material - Property of Data General Corporation 



E-IO User Parameter Files 

Licensed Material - Property of Data General Corporation 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

The packet used by the ?PROC call 

000000 i=O 
; Bytepointer to message 
; Length of message 

000001 .dusr ?RMBP = i 
000002 .dusr ?RMLN = i 
000003 .dusr ?RCHO = i 
000004 .dusr ?RCH1 = i 
000005 .dusr ?RSLI = i 
000006 .dusr ?RDIR = i 
000007 .dusr ?RPRI = i 
000010 .dusr ?RMCH = i 
000011 .dusr ?RMTC = i 
000012 .dusr ?RMEM = i 
000013 .dusr ?RMAS = i 
000014 .dusr ?RMON = i 
000015 .dusr ?PRLN = 1?n10 

; Bytepointer to channel 0 
; Bytepointer to channel 1 

Bytepointer to searchlist 
Bytepointer to working dir. 

; Initial priority 
; Max. number of channels 
; Max. number of TCBs 
; Max. memory 
; Max number of attached segments 
; Max number of overlay nodes 

Extended ?INFO packet 

000000 i=O 
100000 .dusr ?PBLK = 1BO 
077770 .dusr RES2 = 7777B12 
000004 .dusr ?PROT = 1B13 
000001 .dusr ?efln = 1?n11 

; Process status 
; Process is blocked 

reserved 
; Process is the root process 

; ?PPMN - ?PHMA are the same as the ?INFO call packet 

000000 i=O 
000001 .dusr ?PTIM = i 
000003 .dusr ?PCPU = i 
000005 .dusr ?PBIO = i 
000007 .dusr ?PCIO = i 
000011 .dusr ?PCHN = i 
000012 .dusr ?PTSK = i 

Elapsed time 
CPU time 
110 blocks 
Characters transfered 
Number of open channels 

; Number of active tasks 

0008 OPARU 
01 000013 .dusr ?PASG = i Number of attached segments 



02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

000014 .dusr ?PSTS = i 
000015 .dusr ?PPRI = i 
000016 .dusr ?ELN = 1?n12 

Process status 
Process priority 

System information packet 

000000 i=O 
000001 .dusr ?SREV = i 
000002 .dusr ?SMEM = i 
000003 .dusr ?SFMP = i 
000004 .dusr ?SPRC = i 
000005 .dusr ?SIDS = i 
000006 .dusr ?SSBD = i 
000007 .dusr ?SLN = 1?n13 

; System rev. number 
Number of memory pages (1k) 

; Number of free memory pages 
; Number of concurrent procs 
; Bytepointer to buffer for system ID 
; Bytepointer to buffer for system 

Debugger signals and classes 

Breakpoint signals 

020000 .dusr ?SGBP = 020000 

000000 .dusr ?SGUS = 00 
000001 .dusr ?SGBK = 01 
000002 .dusr ?SGB2 = 02 
000003 .dusr ?SGCD = 03 
000004 .dusr ?SGEX = 04 
000005 .dusr ?SGOL = 05 

; System call signals 

040000 .dusr ?SGSC = 040000 

000006 .dusr ?SGCL = 06 

Breakpoint signal class 

Unknown SVC 
Primary breakpoint SVC 
Secondary breakpoint SVC 

; ACAD (enter debugger) 
; ?EXEC issued 
; Overlay loaded 

; System call signal class 

; System call SVC 

User Parameter Files E-ll 

Licensed Material - Property of Dat8 General Corporation 



E-12 User Parameter Files 

licensed Material - Property of Data General Corporation 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

; Signals 7 - 17 are used by MP/AOS. 
; but a debugger never sees them. 

; User catchable signals 

010000 .dusr ?SGUC = 010000 

000020 .dusr ?SGSO = 020 
000021 .dusr ?SGFE = 021 
000022 .dusr ?SGCE = 022 

; Abort signals 

User catchable signal class 

Stack overflow 
Floating point exception 

; Commercial instruction exception 

0009 OPARU 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

100000 .dusr ?SGAS = 0100000 

000023 .dusr ?SGJO = 023 
000024 .dusr ?SGVT = 024 
000025 .dusr ?SGWP = 025 
000026 .dusr ?SGIO = 026 
000027 .dusr ?SGIT = 027 
000030 .dusr ?SGCB = 030 
000031 .dusr ?SGCE = 031 
000032 .dusr ?SGRI = 032 
000033 .dusr ?SGRT = 033 
000034 .dusr ?SGRB = 034 
000035 .dusr ?SGKL = 035 
000036 .dusr ?SGKB = 036 

Abort signal class 

User jump 0 
Validity trap 

; Write protection trap 
; 1/0 protection trap 
; Indirection protection trap 

"C"B 
"C"E 
Reserved instruction trap 
Process termination ( ?RETURN ) 
Process termination ( ?RETURN BK ) 
Process termination ( ?KILL ) 
Process termination ( ?KILL BK ) 

Write task status packet 

This packet is identical to the read task status packet for offsE 
?SACO thru ?SAF3 

28 000000 i=O 
29 000001 .dusr ?SACO = i Tasks ACO 



User Parameter Files 

000002 .dusr ?SAC1 = i Tasks AC1 
000003 .dusr ?SAC2 = i Tasks AC2 
000004 .dusr ?SAC3 = i Tasks AC3 
000005 .dusr ?SPCC = i ; PC and carry 
000006 .dusr ?SSSP = i Stack pOinter 
000007 .dusr ?SSFP = i Frame pOinter 
000010 .dusr ?SUSP = i USP 
000011 .dusr ?SSSL = i Stack limit 
000012 .dusr ?SFPS = i Floating point status 
000014 .dusr ?SFAO = i Floating ACO 
000020 .dusr ?SFA1 = i Floating AC1 
000024 .dusr ?SFA2 = i ; Floating AC2 
000030 .dusr ?SAF3 = i ; Floating AC3 

000034 .dusr ?SWLN = 1?n14 Length of write status packet 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

Read task status packet 

57 

000000 i=O 
100000 .dusr ?STWT = 1BO 
040000 .dusr ?STDR = 1B1 
020000 .dusr ?STUS = 1B2 

58 000000 i=O 
59 
60 

000000 .dusr ?scmn = i 
000034 .dusr ?stst = i 

0010 OPARU 
01 000035 .dusr ?SPRI = i 
02 000036 .dusr ?SPNK = i 
03 000037 .dusr ?STMO = i 
04 000041 .dusr ?STOL = i 
05 000042 .dusr ?SRLN = 1?n16 
06 
07 
08 
09 
10 
11 

Tasks status 
;B13 Task is waiting 
;B14 - Task did a ?DRSCH 
;B15- Task is in user space 

common fields in read and write status pkt 
task status 

Task priority 
Tasks pend key 
Timeout 
Last overlay loaded 

Licensed Material - Property of DatI General Corporation 

E-13 



E-14 User Parameter Files 

licensed Material - Property of Data General Corporation 

12 
13 
14 
15 
16 
17 

IPC packet format 

18 000000 i=O 
19 
20 
21 
22 

000001 .dusr ?ITLM = i 
000002 .dusr ?IMAD = i 
000003 .dusr ?IMLN = i 

23 000004 .dusr ?IPCLN = l?n17 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Send/Receive packet 

33 000000 i=O 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

000002 .dusr ?ISAD = i 
000003 .dusr ?ISDL = i 
000004 .dusr ?IRAD = i 
000005 .dusr ?IRLN = i 
000006 .dusr ?ISRLN = l?n18 

?IDEF offsets 

000000 i=O 
000001 .dusr ?IHND = i 
000002 .dusr ?IMSK = i 
000003 .dusr ?ISTK = i 
000004 .dusr ?ISTL = i 
000005 .dusr ?IDAT = i 
000006 .dusr ?IHPR = i 
000007 .dusr ?ITLN = l?n19 

; Timeout in seconds 
; Message byte address 
; Message length (bytes) 

Send message address 
Send message length (Obytes) 
Receive buffer address 
Receive buffer length (Obytes) 

handler address 
Mask word 
Stack address 
Stack length 
AC2 at into time 
Power recovery address 



58 
59 
60 

Line IDEF packet offsets 

0011 OPARU 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

000000 i=O 
000001 .dusr ?LHND = i 
000002 .dusr ?LSTK = i 
000003 .dusr ?LSTL = i 
000004 .dusr ?LDAT = i 
000005 .dusr ?LHPR = i 
000006 .dusr ?LTLN = 1?n20 

Handler address 
Stack address 
Stack length 
AC2 at into time 
Power recovery address 

13 Histogram start packet 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

000000 i=O 
000001 .dusr ?HTIK = i 
000002 .dusr ?HBUF = i 
000003 .dusr ?HLEN = i 
000004 .dusr ?HSAD = i 
000005 .dusr ?HEAD = i 
000006 .dusr ?HELN = 1?n21 

Ticks per second 
Buffer address 

; Buffer length 
Starting hist. address 

; Ending hist. address 

27 Histogram stop packet 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

000000 i=O 
000001 .dusr ?HETH = i 
000002 .dusr ?HETL = i 
000003 .dusr ?HSTH = i 
000004 .dusr ?HSTL = i 
000005 .dusr ?HUTH = i 
000006 .dusr ?HUTL = i 
000007 .dusr ?HIDH = i 
000010 .dusr ?HIDL = i 

40 000011 .dusr ?HDLN = 1?n22 

Elapsed time high 
Elapsed time low 
Time in system high 
Time in system low 
Time in user high 
Time in user low 
Time in idle loop high 

; Time in idle loop low 

User Parameter Files E-15 

licensed Material - Property of Data General Corporation 



E-16 User Parameter Files 

Licensed Material - Property of Data General Corporation 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

Map segment packet 

000000 i=O 
000001 .dusr ?MSSN = i 
000002 .dusr ?MSSP = i 
000003 .dusr ?MSPP = i 
000004 .dusr ?MSNP = i 

Segment 1/0 packet 

0012 OPARU 
01 000000 i=O 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 

000001 .dusr ?IOCH = i 
000002 . dusr ?lOSN = i 
000003 .dusr ?IOFP = i 

000005 .dusr ?lOSP = i 
000006 .dusr ?lOSO = i 
000007 .dusr ?lOBC = i 
000010 .dusr ?lOBT = i 

Segment number 
Segment page number 
Process page number 
Number of pages 

Channel number 
Segment number 
file position for start of transfer 
updated to reflect cur position 
Segment page number 
byte offset from above page number 
Number of bytes to transfer 
count of bytes actually transfered 

14 Get system statistics packet 
15 
16 
17 
18 
19 000000 i=O 
20 
21 
22 
23 

000001 .dusr ?GIDT = i 
000003 .dusr ?GSYT = i 

Idle time (milliseconds) 
Time spent in system space 



All of the following parameters/macros are assembler 
parameters and do not need to be included for Pascal 

000062 .dusr ?STKMIN = 50. 
000016 .dusr ?USP = 016 

; Minimum stack size 
; User stack pOinter 

User Parameter Files 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

; Define the default frame pOinter relative offsets into the save block 

177774 .dusr ?OACO = -4 
177775 .dusr ?OAC1 = -3 
177776 .dusr ?OAC2 = -2 
177777 .dusr ?OFP = -1 
000000 .dusr ?ORTN = 00 

000001 .dusr ?TMP = 01 

Original ACO 
Original AC1 
Original AC2 
Original Frame Pointer 
Return address and Carry bit 

First free stack loc reI to FP 

the real-time program description block; 
this is a packet produced for programs 
bound with the /SA or /SP switches. It 
is based on the symbol ?ZSPA. 

0013 OPARU 
01 
02 000000 i=O 

MP/AOS programs only. 

Licensed Material - Property of Data General Corporation 

E-17 



E-18 User Parameter Files 

licensed Material - Property of Data General Corporation 

03 000000 .dusr ?RUSP = i 
04 000001 .dusr ?RUSL = i 
05 000002 .dusr ?RUSB = i 
06 000003 .dusr ?RUST = i 
07 000004 .dusr ?RSII = i 
08 000005 .dusr ?REII = i 
09 000006 .dusr ?RTMT = i 
10 000007 .dusr ?RTSI = i 
11 000010 .dusr ?RTEI = i 
12 000011 .dusr ?RTSP = i 
13 000012 .dusr ?RTEP = i 
14 000013 .dusr ?RTLN = 1?n26 
15 
16 
17 
18 

; ?USP word 
; User stack limit 
; User stack base 
; User starting address 
; Start of impure initialization area 
; End of impure initialization area 
; Highest available memory address 
; Start of user impure area 
; End of user impure area 
; Start of user pure area 
; End of user pure area 

**00000 TOTAL ERRORS. 00000 PASS 1 ERRORS 
0014 OPARU 

DUMO 177700 3/43# 
FQ1 000000 2/03# 
FQ2 000001 2/04# 
FQ3 000002 2/05# 
FQ4 000003 2/06# 
L?NO 000004 2107# 9/40 9/41 9/42 9/43 
L?N1 000001 3/36# 
L?N10 000015 7/37# 
L?N11 000001 7/50# 8/03 
L?N12 000016 8/04# 
L?N13 000007 8/18# 
L?N14 000034 9/43# 9/44 9/60 
L?N15 000001 9/57# 10/01 
L?N16 000042 10/05# 
L?N17 000004 10/23# 
L?N18 000006 10/39# 
L?N19 000007 10/55# 
L?N2 000001 3/45# 
L?N20 000006 11/08# 
L?N21 000006 11/23# 
L?N22 000011 11/40# 
L?N23 000005 11/54# 
L?N24 000011 12/10# 



User Parameter Files E-19 

L?N25 000005 12/24# 
L?N26 000013 13/14# 
L?N3 000001 4/02# 
L?N4 000011 5/44# 
L?N5 000011 6/04# 6/06 
L?N6 000012 6/22# 
L?N7 000004 6/37# 

0015 OPARU 

L?N8 000001 7/01# 7/09 
L?N9 000012 7111# 
RES1 001760 3/60# 
RES2 077770 7/48# 
?ATAT 000010 3/14# 
?ATDC 000020 3/15# 
?ATPM 000001 3/11# 
?ATRD 000002 3/12# 
?ATWR 000004 3/13# 
?ATZR 000100 3/16# 
?BLVL 000005 3/52# 
?BPAR 000003 3/51# 
?BRAT 000017 3/53# 
?BSTP 000001 3/50# 
?C0050 000000 4/26# 
?C0075 000001 4/27# 
?C0110 000002 4/28# 
?C0150 000004 4/30# 
?C0300 000005 4/31# 
?C0600 000006 4/32# 
?C1200 000007 4/33# 
?C1345 000003 4/29# 
?C15S 100000 4/05# 
?C1800 000010 4/34# 
?C192K 000017 4/41# 
?C1S 040000 4/03# 
?C2000 000011 4/35# 
?C2400 000012 4/36# 
?C2S 140000 4/04# 
?C3600 000013 4/37# 
?C4800 000014 4/38# 
?C5BC 000000 4/11# 

Licensed Material - Property of Data General Corporation 



E-20 User Parameter Files 

?C605 001000 3/29# 
?C6BC 002000 4/12# 
?C7200 000015 4/39# 
?C7BC 004000 4/13# 
?C8BC 006000 4/14# 
?C8BT 000200 3/31# 
?C9600 000016 4/40# 
?CBIN 002000 3/28# 
?CCKO 000011 4/19# 
?CCK1 000017 4/20# 
?CCK2 000000 4/21# 
?CCK3 000001 4/22# 
?CECH 010000 3/26# 
?CEMM 000040 3/33# 
?CESC 020000 3/25# 
?CEVN 030000 4/09# 
?CICC 000020 3/34# 
?CLST 004000 3/27# 
?CLVL 006000 3/59# 
?CNAS 040000 3/24# 
?CNED 000100 3/32# 
?CNPR 000000 4107# 
?CODD 010000 4/08# 
?CPAR 030000 3/58# 
?CRAT 000017 4/01# 
?CST 100000 3/23# 
?CSTP 140000 3/57# 

0016 OPARU 

?CUCI 000040 3/44# 
?CUCO 000400 3/30# 
?DAB 000003 7/05# 
?DBBS 000015 3/04# 3/05 
?DBPG 000004 2/55# 2/56 
?DBRK 000011 2/60# 3/01 
?DCHR 177773 2/38# 
?DDIR 177775 2140# 
?DDVC 177774 2/39# 
?DFB 000001 7/04# 
?DIDF 000012 3/01# 3/02 
?DIXF 000013 3/02# 3/03 
?DLE1 040000 6/57# 
?DLE2 020000 6/58# 
?DLlB 000006 2/57# 2/58 

Licensed Material - Property of Data General Corporation 



User Parameter Files E-21 

?DLN 000012 7/11# 
?DLNK 000014 3/03# 3/04 
?DLOG 000100 3/06# 
?DLPT 177772 2/37# 
?DMBS 000016 3/05# 
?DME1 010000 6/59# 
?DME2 004000 6/60# 
?DMSG 177776 2/41# 
?DOBF 000000 2/51# 2/52 
?DOLF 000003 2/54# 2/55 
?DPRG 000002 2/53# 2/54 
?DPSH 177777 2/42# 
?DPST 000005 2/56# 2/57 
?DRER 000010 7/09# 
?DSMN 000000 2/44# 2/51 
?DSMX 000100 2/45# 2/46 3/06 
?DSP 000003 5/08# 
?DSTF 000001 2/52# 2/53 
?DSTW 000007 7/08# 
?DTAL 000006 7/07# 
?DTMX 000005 7106# 
?DTXT 000010 2/59# 2/60 
?DUDF 000007 2/58# 2/59 
?DUER 000011 7110# 
?DUMN 000101 2/46# 
?DUMX 000200 2/47# 
?DWRP 100000 6/56# 
?EDMI 076000 2/17# 2/19 
?EDMX 077777 2/18# 
?EFLN 000001 7150# 
?ELN 000016 8/04# 
?EPIP 000046 5/11# 
?EVCH 076000 2/19# 
?EVMAX 075777 2/16# 
?EVMIN 000001 2/15# 
?FATR 000002 6/17# 
?FESZ 000003 6/18# 
?FLEN 000010 6/21# 
?FLN 000012 6/22# 
?FSP 000002 5/07# 
?FTLA 000004 6/19# 
?FTLM 000006 6120# 
?FTVP 000001 6/16# 
?GARG 000002 6/43# 6/44 

Licensed Material - Property of Data General Corporation 



E-22 User Parameter Files 

0017 OPARU 

?GCMD 000000 6/41# 6/42 
?GCNT 000001 6/42# 6/43 
?GIDT 000001 12/21# 
?GNUM 000001 6/34# 
?GREQ 000000 6/33# 
?GRES 000003 6/36# 
?GSTP 000422 5/23# 
?GSW 000002 6/35# 
?GSW1 000005 6/46# 
?GSWS 000004 6/45# 6/46 
?GSVT 000003 12/22# 
?GTLN 000004 6/37# 
?GTSW 000003 6/44# 6/45 
?HBUF 000002 11/19# 
?HDLN 000011 11/40# 
?HDTP 000417 5/20# 
?HEAD 000005 11/22# 
?HELN 000006 11/23# 
?HETH 000001 11/32# 
?HETL 000002 11/33# 
?HIDH 000007 11/38# 
?HIDL 000010 11/39# 
?HLEN 000003 11/20# 
?HSAD 000004 11/21# 
?HSTH 000003 11/34# 
?HSTL 000004 11/35# 
?HSTP 000416 5/19# 
?HTIK 000001 11/18# 
?HUTH 000005 11/36# 
?HUTL 000006 11/37# 
?IDAT 000005 10/53# 
?lHND 000001 10/49# 
?1HPR 000006 10/54# 
?lMAD 000002 10/21# 
?1MLN 000003 10/22# 
?lMSK 000002 10/50# 
?1NCH 000000 2/12# 
?lOBC 000007 12/08# 
?1OBT 000010 12/09# 
?1OCH 000001 12/02# 
?lOFP 000003 12/04# 
?1OP 000421 5/22# 

Licensed Material - Property of Data General Corporation 



User Parameter Files E-23 

?IOSN 000002 12/03# 
?IOSO 000006 12/07# 
?IOSP 000005 12/06# 
?IPCLN 000004 10/23# 
?IRAD 000004 10/37# 
?IRLN 000005 10/38# 
?ISAD 000002 10/35# 
?ISDL 000003 10/36# 
?ISP 000004 5/09# 
?ISRLN 000006 10/39# 
?ISTK 000003 10/51# 
?ISTL 000004 10/52# 
?ITLM 000001 10/20# 
?ITLN 000007 10/55# 
?ITYP 000414 5/17# 
?LDAT 000004 11/06# 
?LDER 000004 4/51# 

0018 OPARU 

?LEND 000002 4/50# 
?LHND 000001 11/03# 
?LHPR 000005 11/07# 
?LSTK 000002 11/04# 
?LSTL 000003 11/05# 
?LSTR 000001 4/49# 
?LTLN 000006 11/08# 
?LTYP 000415 5/18# 
?LXYZ 001777 4/52# 
?MSNP 000004 11/53# 
?MSP 000420 5/21# 
?MSPP 000003 11/52# 
?MSSN 000001 11/50# 
?MSSP 000002 11/51# 
?MXFL 000017 2121# 
?MXLD 000003 2/24# 
?MXLL 000077 2/25# 
?MXOV 000040 2/29# 
?MXPL 000177 2/22# 
?MXPR 000377 2/32# 
?MXSL 000005 2/26# 
?MXSP 000200 2/27# 
?MXSW 000010 2/31# 
?MXTK 000400 2/28# 
?NMCH 000100 2/10# 
?OACO 177774 12/43# 

Licensed Material - Property of Data General Corporation 



E-24 User Parameter Files 

?OAC1 177775 12/44# 
?OAC2 177776 12/45# 
?OFP 177777 12/46# 
?ORTN 000000 12/47# 
?OUCH 000001 2/13# 
?PASG 000013 8/01# 
?PBIO 000005 7157# 
?PBLK 100000 7147# 
?PCHN 000011 7/59# 
?PCIO 000007 7/58# 
?PCPU 000003 7156# 
?PHMA 000007 5/42# 
?PIMN 000003 5/38# 
?PIMX 000004 5/39# 
?PIP 000000 5/05# 
?PLEV 000006 5/41# 
?PLN 000011 5/44# 
?POCH 000010 5/43# 
?PPMN 000001 5/36# 
?PPMX 000002 5/37# 
?PPRI 000015 8/03# 
?PREV 000005 5/40# 
?PRLN 000015 7/37# 
?PROT 000004 7/49# 
?PRP 000045 5/10# 
?PSTS 000014 8/02# 
?PTIM 000001 7/55# 
?PTSK 000012 7/60# 
?RCHO 000003 7/27# 
?RCH1 000004 7/28# 
?RDIR 000006 7/30# 
?REII 000005 13/08# 
?RMAS 000013 7/35# 

0019 OPARU 

?RMBP 000001 7/25# 
?RMCH 000010 7/32# 
?RMEM 000012 7/34# 
?RMLN 000002 7/26# 
?RMON 000014 7136# 
?RMTC 000011 7/33# 
?RPRI 000007 7/31# 
?RSII 000004 13/07# 
?RSLI 000005 7129# 

Licensed Material - Property of Data General Corporation 



User Parameter Files E-25 

?RTEI 000010 13/11# 
?RTEP 000012 13/13# 
?RTLN 000013 13/14# 
?RTMT 000006 13/09# 
?RTSI 000007 13/10# 
?RTSP 000011 13/12# 
?RUSB 000002 13/05# 
?RUSL 000001 13/04# 
?RUSP 000000 13/03# 
?RUST 000003 13/06# 
?SACO 000001 9129# 
?SAC1 000002 9/30# 
?SAC2 000003 9/31# 
?SAC3 000004 9/32# 
?SAF3 000030 9/42# 
?SCMN 000000 9/59# 
?SFAO 000014 9/39# 
?SFA1 000020 9/40# 
?SFA2 000024 9/41# 
?SFMP 000003 8/14# 
?SFPS 000012 9/38# 
?SGAS 100000 9/02# 
?SGB2 000002 8/34# 
?SGBK 000001 8/33# 
?SGBP 020000 8/30# 
?SGCB 000030 9/09# 
?SGCD 000003 8/35# 
?SGCE 000031 8/58# 9/10# 
?SGCL 000006 8/43# 
?SGEX 000004 8/36# 
?SGFE 000021 8/57# 
?SGIO 000026 9/07# 
?SGIT 000027 9/08# 
?SGJO 000023 9/04# 
?SGKB 000036 9/15# 
?SGKL 000035 9/14# 
?SGOL 000005 8/37# 
?SGRB 000034 9/13# 
?SGRI 000032 9/11# 
?SGRT 000033 9/12# 
?SGSC 040000 8/41# 
?SGSO 000020 8/56# 
?SGUC 010000 8/54# 
?SGUS 000000 8/32# 
?SGVT 000024 9/05# 

Licensed Material - Property of Data General Corporation 



E-26 User Parameter Files 

?SGWP 000025 9/06# 
?SIDS 000005 8/16# 
?SIP 000047 5/12# 
?SLN 000007 8/18# 
?SMEM 000002 8/13# 

0020 OPARU 

?SPCC 000005 9/33# 
?SPNK 000036 10/02# 
?SPRC 000004 8/15# 
?SPRI 000035 10/01# 
?SREV 000001 8/12# 
?SRLN 000042 10/05# 
?SRP 000412 5/15# 
?SRTP 000410 5/13# 
?SSBD 000006 8/17# 
?SSFP 000007 9/35# 
?SSSL 000011 9/37# 
?SSSP 000006 9/34# 
?STDR 040000 9/55# 
?STKMIN 000062 12/37# 
?STMO 000037 10/03# 
?STOL 000041 10/04# 
?STST 000034 9/60# 
?STUS 020000 9/56# 
?STWT 100000 9/54# 
?SUSP 000010 9/36# 
?SVNL 000017 2/23# 
?SWLN 000034 9/44# 
?SWTP 000411 5/14# 
?s..RP 000413 5/16# 
?TAC2 000006 6/01# 
?TDP 000001 5/06# 
?TKPP 000010 6/03# 
?TLN 000011 6/06# 
?TMP 000001 12/49# 
?TPRI 000001 5/55# 
?TSTA 000002 5/56# 
?TSTB 000003 5/57# 
?TSTE 000005 5/59# 
?TSTL 000004 5/58# 
?TUSP 000007 6/02# 
?TYPE 000000 5/35# 
?USP 000016 12/38# 

licensed Material - Property of Dat8 General Corporation 



User Parameter Files 

0001 MERCO MP/MASM Assembler Rev 03.10 04/12/82 15:13:32 

02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

.title mercod 

ERCOO error codes 

; start of error codes 

040001 .dusr ERNAR = 040001 
040002 .dusr ERBTL = 040002 
040003 .dusr ERIRB = 040003 
040004 .dusr ERPRM = 040004 
040005 .dusr ERREN = 040005 
040006 .dusr ERDVC = 040006 
040007 .dusr ERDA I = 040007 
040010 .dusr ERDFT = 040010 
040011 .dusr ERDOL = 040011 
040012 .dusr ERFIL = 040012 
040013 .dusr ERPWL = 040013 
040014 .dusr ERDID = 040014 
040015 .dusr ERLAB = 040015 
040016 .dusr ERFIX = 040016 
040017 .dusr EREOF = 040017 
040020 .dusr ERUIH = 040020 
040021 .dusr ERNAE = 040021 
040022 .dusr ERFDE = 040022 
040023 .dusr EREOP = 040023 
040024 .dusr ERATP = 040024 
040025 .dusr ERFTL = 040025 
040026 .dusr ERIFT = 040026 
040027 .dusr ERIOO = 040027 
040030 .dusr ERSTS = 040030 
040031 .dusr ERSPC = 040031 
040032 .dusr ERMPR = 040032 
040033 .dusr ERMWT = 040033 
040034 .dusr ERIAT = 040034 

; *Argument does not exist 
; *Buffer too long 
; Buffer too short 
; Cannot delete permanent file 
;*Renaming error (file is open, cross device) 
;*Invalid device code 
; Device is in use 
;*Fatal device error 
;*Device is off line 

Device read error 
; Device write error 
; Directory delete error 
;*Disk label does not match disk name 
; Disk requires fixup 
; End of file 
;*Extant user interrupt handler 
; File already exists 
; File does not exist 
;*File is in use 
;*File is attribute protected 
; File name is too long 

Illegal file type 
Illegal option combination 
Invalid stack definition (too small, system space) 
Insufficient file space 
Invalid address 

;*Multiple waiters for single NPSC 
;*Invalid attributes 

Licensed Material- Property of Dat8 General Corporation 

E-27 



E-28 User Parameter Files 

Licensed Material - Property of Data General Corporation 

11 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

040035 .dusr ERICN = 040035 
040036 .dusr ERIFC = 040036 
040037 .dusr ERICH = 040037 
040040 .dusr EREVT = 040040 
040041 .dusr ERMEM = 040041 
040042 .dusr ERIOD = 040042 
040043 .dusr ERPRP = 040043 
040044 .dusr ERADR = 040044 
040045 .dusr ERTID = 040045 
040046 .dusr ERLTL = 040046 
040047 .dusr ERNDP = 040047 
040050 .dusr ERNMC = 040050 
040051 .dusr ERNOT = 040051 
040052 .dusr ERNUl = 040052 
040053 .dusr ERNAD = 040053 
040054 .dusr ERNSY = 040054 
040055 .dusr ERTMO = 040055 
040056 .dusr ERANG = 040056 
040057 .dusr ERRAD = 040057 
040060 .dusr ERSTL = 040060 

0002 MERCO 
01 
02 040061 .dusr ERNSS = 040061 
03 040062 .dusr ERTIP = 040062 
04 040063 .dusr ERWAD = 040063 
05 040064 .dusr ERYSL = 040064 
06 040065 .dusr ERISC = 040065 
07 040066 .dusr ERINT = 040066 
08 040067 .dusr ERRNA = 040067 
09 040070 .dusr ERCIN = 040070 
10 040071 .dusr ERABT = 040071 
11 040072 .dusr ERIPT = 040072 
12 040073 .dusr ERPCA = 040073 
13 040074 .dusr ERVNS = 040074 
14 040075 .dusr ERDNM = 040075 
15 040076 .dusr ERMLD = 040076 
16 040077 .dusr EROVN = 040077 
17 040101 .dusr EREXS = 040101 
18 040102 .dusr ERNOV = 040102 
19 040103 .dusr EROVC = 040103 
20 040104 .dusr ERATD = 040104 
21 040105 .dusr ERUSD = 040105 
22 040106 .dusr ERNEM = 040106 
23 040107 .dusr ERABK = 040107 

; Invalid channel number 
; Invalid character in pathname 
;*Invalid characteristics 
;*Invalid event number ( > ?EVMAX or < ?EVMIN ) 
; Invalid memory request 
;*Invalid operation for device 

Invalid priority 
Invalid process address 
Invalid task identifier 
Line is too long 

;*No debugger present 
; No free channels 
; No free TCB available 
;*No such user interrupt service routine exists 
; Non-directory entry in pathname 
;*Non-system name specified 
;*Pend timeout 
;*Range error 
; Read access denied 
;*Searchlist overflow 

; or a value of 0 was on PROC packet 
;*Switch not found 
;*Task in progress 
; Write access denied 
;*Program internal error 
;*Illegal system call 
;*Internal error 
;*No available resource 
;*Console interrupt (ACAA) 
;*Son terminated via ACAB 
;*Illegal packet type 
;*Call aborted due to program management call 
; Program file format revision not supported 
;*Device not mounted 
;*Maximum link depth exceeded 
; Invalid overlay descriptor 
; Attempt to exceed maximum swap level 
;*No overlays defined for this program 
;*Specified overlay is not currently in use 
;*AII tasks have died 
;*User and system debuggers can not coexist 
; Not enough memory 
;*Son terminated via ACAE 



24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

040110 .dusr ERESZ = 040110 
040111 .dusr ERIFF = 040111 
040112 .dusr ERJMO = 040112 
040113 .dusr ERSAO = 040113 
040114 .dusr ERIWC = 040114 
040115 .dusr ERBMT = 040115 
040116 .dusr ERUOE = 040116 
040117 .dusr ERFTH = 040117 
040120 .dusr EROCR = 040120 
040121 .dusr ERTWL = 040121 
040122 .dusr ERIRN = 040122 
040123 .dusr ERIFN = 040123 
040124 .dusr ERLET = 040124 
040125 .dusr ERTNO = 040125 
040126 .dusr ERPET = 040126 
040127 .dusr ERBOT = 040127 
040130 .dusr ERTMR = 040130 
040131 .dusr ERTFE = 040131 
040132 .dusr ERBRK = 040132 
040133 .dusr ERFRM = 040133 
040134 .dusr ERPRT = 040134 
040135 .dusr ERORN = 040135 
040136 .dusr ERN SO = 040136 

;*Invalid element size 
;*Invalid file format (Obad SA file) 
;*User PC is equal to zero 

User Parameter Files 

;*Scheduling already disabled (Of rom ?ERSCH.CK) 
;*Illegal word count (0 <2 ) 
;*Bad or runaway tape. or format error 
;*Uncorrectable data error (Oparity. etc) 
;*Fatal tape hardware error 
;*Odd number of chars read from tape 
;*Tape write lock 
;*Illegal record number 
;*Illegal file number 
; Logical EOT encountered 
;*Tape drive not open 
;*Physical end of tape 
;*Unexpected beginning of tape 
;*Too many records in tape file (0 >65.563) 

Tape format error 
Comm. device break error 
Comm. device framing error 
Comm .. device parity error 
Comm. device receiver overrun 
No such device 

Started adding MP/AOS specific error codes here. 

Note: The * is a MP/OS specific error code which has no 
AOS counterpart. 

; MP/OS error classes returned on ?EXEC 

000000 .dusr ?ECCP = 0 
000001 .dusr ?ECEX = 1 

000002 .dusr ?ECRT = 2 

code returned by called program 
the error occurred while attempting the 
; ?EXEC. the called program did not run 

; the error occurred on a ?RETURN which 

0003 MERCO 
01 did not complete. this error is seen 

by the grandparent of the program 
attempted the ?RETURN 

02 
03 
04 
05 
06 

000003 .dusr ?ECBK = 3 

000004 .dusr ?ECAB = 4 

the error occurred while trying to 
; write a breakfile 
the error returned indicates an 

Licensed Material - Property of Data General Corporation 

E-29 



E-30 User Parameter Files 

07 ; abnormal termination (Oe.g. ACAB) a~ 

08 ; opposed to the usual ?RETURN 
09 
10 

**00000 TOTAL ERRORS. 00000 PASS 1 ERRORS 
0004 MERCO 

ERABK 040107 2123# 
ERABT 040071 2/10# 
ERADR 040044 1/48# 
ERANG 040056 1/58# 
ERATO 040104 2/20# 
ERATP 040024 1/32# 
ERBMT 040115 2/29# 
ERBOT 040127 2/39# 
ERBRK 040132 2/42# 
ERBTL 040002 1/14# 
ERCIN 040070 2/09# 
ERDA! 040007 1/19# 
ERDFT 040010 1/20# 
ERDID 040014 1/24# 
ERDNM 040075 2/14# 
ERDOL 040011 1/21# 
ERDVC 040006 1/18# 
EREOF 040017 1/27# 
EREOP 040023 1/31# 
ERESZ 040110 2/24# 
EREVT 040040 1/44# 
EREXS 040101 2/17# 
ERFDE 040022 1/30# 
ERFIL 040012 1/22# 
ERFIX 040016 1/26# 
ERFRM 040133 2/43# 
ERFTH 040117 2/31# 
ERFTL 040025 1/33# 
ERIAT 040034 1/40# 
ERICH 040037 1/43# 
ERICN 040035 1/41# 
ERIFC 040036 1/42# 
ERIFF 040111 2/25# 
ERIFN 040123 2/35# 
ERIFT 040026 1/34# 
ERINT 040066 2107# 
ERIOD 040042 1/46# 

Licensed Material· Property of Data General Corporation 



User Parameter Files E-31 

ERIOO 040027 1/35# 
ERIPT 040072 2/11# 
ERIRB 040003 1/15# 
ERIRN 040122 2134# 
ERISC 040065 2/06# 
ERIWC 040114 2/28# 
ERJMO 040112 2/26# 
ERLAB 040015 1/25# 
ERLET 040124 2/36# 
ERLTL 040046 1/50# 
ERMEM 040041 1/45# 
ERMLD 040076 2/15# 
ERMPR 040032 1/38# 
ERMWT 040033 1/39# 
ERNAD 040053 1/55# 
ERNAE 040021 1/29# 
ERNAR 040001 1/13# 
ERNDP 040047 1/51# 
ERNEM 040106 2/22# 
ERNMC 040050 1/52# 
ERNOT 040051 1/53# 
ERNOV 040102 2/18# 

0005 MERCO 

ERNSD 040136 2/46# 
ERNSS 040061 2/02# 
ERNSY 040054 1/56# 
ERNUl 040052 1/54# 
EROCR 040120 2/32# 
ERORN 040135 2/45# 
EROVC 040103 2/19# 
EROVN 040077 2/16# 
ERPCA 040073 2/12# 
ERPET 040126 2/38# 
ERPRM 040004 1/16# 
ERPRP 040043 1/47# 
ERPRT 040134 2/44# 
ERPWL 040013 1/23# 
ERRAD 040057 1/59# 
ERREN 040005 1/17# 
ERRNA 040067 2/08# 
ERSAD 040113 2/27# 
ERSPC 040031 1/37# 
ERSTL 040060 1/60# 

Licensed Material - Property of Data General Corporation 



E-32 User Parameter Files 

ERSTS 040030 1/36# 
ERTFE 040131 2/41# 
ERTID 040045 1/49# 
ERTIP 040062 2/03# 
ERTMO 040055 1/57# 
ERTMR 040130 2140# 
ERTNO 040125 2/37# 
ERTWL 040121 2/33# 
ERUDE 040116 2/30# 
ERUIH 040020 1/28# 
ERUSD 040105 2/21# 
ERVNS 040074 2/13# 
ERWAD 040063 2/04# 
ERYSL 040064 2/05# 
?ECAB 000004 3/06# 
?ECBK 000003 3/04# 
?ECCP 000000 2/57# 
?ECEX 000001 2/58# 
?ECRT 000002 2/60# 

Licensed Material - Property of Data GeneraJ Corporation 



User Parameter Files E-33 

000010ERCO MP/MASM Assembler Rev 03.10 04/12/821 15:13:54 
.title oercod 

02 
03 
04 
05 053136 .dusr ERNPC = 053136 ;*no debugee process started 
06 053137 .dusr ERNSG = 053137 ;*no outstanding signal 
07 053140 .dusr ERNOB = 053140 ;*no process to debug 
08 053141 .dusr ERRLN = 053141 ;*invalid relative device number 
09 053142 .dusr ERMAP = 053142 ;*insufficient map slots 
10 053143 .dusr ersdb = 053143 ; fatal disk error in system data base 
11 ; (MOV or Label) 
12 053144 .dusr ERPIO = 053144 ;invalid process identifier 
13 053145 .dusr ERKIL = 053145 ;on ?EXEC. process was killed by ?KILL 
14 053146 .dusr ERTSK = 053146 ;* on ?PROC invalid value for max # tasks 
15 053147 .dusr ERCHN = 053147 ;* on ?PROC. too many channels specified 
16 053150 .dusr ERISZ = 053150 Illegal segment size 
17 053151 .dusr ERNFS = 053151 No free segment 
18 053152 .dusr ERSNA = 053152 Segment is not attached 
19 053153 .dusr ERSAA = 053153 Segment is already attached 
20 053154 .dusr ERTMS = 053154 Too many segment attaches 
21 053155 .dusr ERSOE = 053155 Segment does not exist 
22 053156 .dusr ERIMA = 053156 Segment map area is not within 0-31 
23 053157 .dusr ERMLS = 053157 ; Request is longer than segment 
24 053160 .dusr ERRST = 053160 ; internal error indicatingg non-quiescent 
25 ; ... path should be reset. 
26 053161 .dusr ERFRZ = 053161 ; internal error indicating non-quiescent 
27 ; ... path should be frozen. 
28 053162 .dusr ERNMF = 053162 No more fcbs are available 
29 053163 .dusr ersto = 053163 stack overflow 
30 053164 .dusr erfex = 053164 floating exception 
31 053165 .dusr ercme = 053165 commercial exception 
32 053166 .dusr ervtp = 053166 validity trap 
33 053167 .dusr erwpt = 053167 write protect trap 
34 053170 .dusr eriot = 053170 io protection trap 
35 053171 .dusr eritp = 053171 indirection protection trap 
36 053172 .dusr erari = 053172 alpha reserved instruction trap 
37 053173 .dusr ertad = 053173 invalid target address 
38 053174 .dusr errnf = 053174 resource not found (returned by 
39 q manipulation routines) 
40 053175 .dusr erdir = 053175 a value of 0 was specified on proc packet 
41 053176 .dusr erxqt = 053176 XQT of XQT 
42 053177 .dusr eridf = 053177 Out of idef OCTs 
43 053200 .dusr erhis = 053200 Already histogramming PIO 
44 053201 .dusr erifp = 053201 FPU has previously been initialized 
45 053202 .dusr ernon = 053202 attempt to input more overlay nodes 
46 than user has allocated 

Licensed Material - Property of D8t8 General Corporation 



E-34 User Parameter Files 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

053203 .dusr erslt = 053203 
053204 .dusr erdcm = 053204 
053205 .dusr erpor = 053205 
053206 .dusr ersmb = 053206 
053207 .dusr ercbs = 053207 
053210 .dusr ercbc = 053210 
053211 .dusr ersrv = 053211 
053212 .dusr ersve = 053212 
053213 .dusr ersvl = 053213 
053214 .dusr ercxl = 053214 
053215 .dusr erisn = 053215 
053216 .dusr ersrn = 053216 
053217 .dusr ernbc = 053217 
053220 .dusr erlgb = 053220 

0002 OERCO 
01 053221 .dusr ermtp = 053221 
02 053222 .dusr ersnu = 053222 
03 053223 .dusr eridc = 053223 
04 053224 .dusr eriic = 053224 
05 
06 ; end of error codes 
07 
08 

; ?ALMP slot number error 
; ?ALMP request could not be filled 

invalid port 
; receive buffer too small 
; connection broken by server 
; connection broken by customer 
; invalid server 

server already exists 
server limit exceeded 
connection limit exceeded 
invalid server name format 
server has been removed and has no connections 

; no broken connections 
; log buffer request error 

; memory trap 
slots not in use 
Invalid data channel option for uEclipse 
invalid system call at interrupt level 

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS 
0003 OERCO 

ERARI 053172 1/36# 
ERCBC 053210 1/52# 
ERCBS 053207 1/51# 
ERCHN 053147 1/15# 
ERCME 053165 1/31# 
ERCXL 053214 1/56# 
ERDCM 053204 1/48# 
ERDIR 053175 1/40# 
ERFEX 053164 1/30# 
ERFRZ 053161 1/26# 
ERHIS 053200 1/43# 
ERIDC 053223 2/03# 
ERIDF 053177 1/42# 
ERIFP 053201 1/44# 
ERIIC 053224 2/04# 
ERIMA 053156 1/22# 
ERIDT 053170 1/34# 

Licensed Material - Property of Dat8 General Corporation 



User Parameter Files E-35 

ERISN 053215 1/57# 
ERISZ 053150 1/16# 
ERITP 053171 1/35# 
ERKIL 053145 1/13# 
ERLGB 053220 1/60# 
ERMAP 053142 1/09# 
ERMLS 053157 1/23# 
ERMTP 053221 2/01# 
ERNBC 053217 1/59# 
ERNDB 053140 1/07# 
ERNFS 053151 1/17# 
ERNMF 053162 1/28# 
ERNON 053202 1/45# 
ERNPC 053136 1/05# 
ERNSG 053137 1/06# 
ERPID 053144 1/12# 
ERPOR 053205 1/49# 
ERRLN 053141 1/08# 
ERRNF 053174 1/38# 
ERRST 053160 1/24# 
ERSAA 053153 1/19# 
ERSDB 053143 1/10# 
ERSDE 053155 1/21# 
ERSLT 053203 1/47# 
ERSMB 053206 1/50# 
ERSNA 053152 1/18# 
ERSNU 053222 2/02# 
ERSRN 053216 1/58# 
ERSRV 053211 1/53# 
ERSTO 053163 1/29# 
ERSVE 053212 1/54# 
ERSVL 053213 1/55# 
ERTAD 053173 1/37# 
ERTMS 053154 1/20# 
ERTSK 053146 1/14# 
ERVTP 053166 1/32# 
ERWPT 053167 1/33# 
ERXQT 053176 1/41# 

Licensed Material - Property of Data General Corporation 





Using Overlays 

Only pure code (specified by the assembler .NREL 1 directive) can be 
placed in an overlay. If any overlay object files contain impure code, 
the Binder places that code in the main program's impure area. 

If a .ENTO directive is found in a routine that you do not bind into 
an overlay, then the Binder sets the overlay descriptor to -1. The 
?OVLOD and ?OVREL system calls perform no action if they are 
called with a -1 descriptor. This means that you can wait until 
bind time to decide whether or not to put a routine in an overlay. 

The system preloads each node with the code of its first overlay; 
therefore, these overlays will already be in main memory when 
your program begins to run. 

When you use ?OVLOD to request an overlay that is already loaded, 
the system does not load a new copy. 

An overlay routine can not call another overlay into the same node. 
Any attempt to do so will suspend task execution indefinitely. 

To protect multitasked programs, the system maintains a use count 
for each overlay node. This count is incremented whenever a task 
executes a ?OVLOD for the node and decremented whenever a task 
executes a ?OVREL. 

F 

Overlay 
Programming 
Considerations 

Licensed Material - Property of DatI General Corporation 



F-2 Using Overlays 

Main program 

(Overlays) 

Overlay node 1 

Overlay node 0 

DG-{)5537 

Figure F.1 Organization of sample program 

MPRG 

Assembling 
Overlay Programs 

Licensed Material - Property of Data General Corporation 

When a task requests an overlay, some other task may be using a 
different overlay in the same node. In this case, the requesting task 
is pended until the node's use count becomes zero. The system then 
loads the new overlay and unpends any tasks waiting for it. 
Multitasking is discussed in Chapter 8. 

If your program is not multitasked, and you neglect to release an 
overlay, then the next ?OVLOD that requests a different overlay for 
the node will "hang" your program, that is, block it from execution 
indefinitely. 

A program may contain up to 128 nodes; each node may have up to 

256 overlays. Overlay mode space is allocated with a granularity of 
256 words. The overlay area (all nodes) is allocated with a granularity 
of lK word. 

To illustrate the use of overlays, we will discuss a typical program 
called MPRG. The programmer has decided that six subroutines are 
used infrequently and should therefore be placed in overlays. Some 
of these subroutines call each other, so two overlay nodes are needed. 
One node is to hold three subroutines, A, Band C, each in its own 
overlay. In the other node are two overlays: one contains subroutine 
D and another contains two subroutines, E and F. Figure F.l 
illustrates the organization of the program MPRG. 

To use overlays with a program, you must declare the names of the 
entry points of the overlay routines and the names of the overlays 
themselves. You use the assembler's .EXTN directive to declare all 
these names external symbols. 

The overlays' names must be placed in your program's data area so 
that they can be referenced at run time. The Binder will replace the 
names with overlay descriptors used by the system calls. 

The format of an overlay descriptor is shown in the following 
diagram: 

I . I NODE NUMBER OVERLAY NUMBER 

o 8 15 

NOTE: * Reserved for future use. 

For normal programming, there is no need for you to know this 
format; it is included here only for the sake of completeness. 



The code for our sample program, MPRG, contains declarations in 
the following form: 

;MAIN PROGRAM DECLARATIONS 

.EXTN OVL l,OVL2,OVL3, 

.EXTN OVL4,OVL5 

.EXTN A,B,C,D,E,F 

DESC1: OVL 1 

DESC2: OVL2 

DESC3: OVL3 

DESC4: OVL4 

DESC5: OVL5 

.A: A 

.B: B 

.C: C 

.D: D 

.E: E 

.F: F 

;Overlay descriptors 

;Subroutine entries 

Within the overlay source files, you must declare all the entry points 
with the .ENT directive and all the overlay names with the .ENTO 
directive. 

Each of the six subroutines contains declarations in the following 
form: 

;SUBROUTINE DECLARATIONS (subroutine A) 

.ENTO OVL 1 ;Overlay descriptor 

.ENT A ;Name of entry 

A: ;(subroutine entry point) 

It is not necessary for you to explicitly allocate space for the overlay 
nodes. The Binder takes care of this. 

After assembling the main program and the overlays, you use the 
Binder to determine the actual distribution of nodes and overlays. 
The Binder then creates the program and overlay files. 

Using Overlays 

Binding Overlay 
Programs 

Licensed Material - Property of Data General Corporation 

F-3 



F-4 Using Overlays 

Overlay System 
Calls 

Licensed Material - Property of Data General Corporation 

Our sample program MPRG has seven object modules: MPRG.OB for 
the main program and A.OB, B.OB, etc. for the subroutines. The 
programmer binds the program using the command: 

X BINO MPRG !* A ! B ! C *! !* 0 ! E F *! 

This command contains special symbols defining the overlay struc­
ture to the Binder. The symbols !* and *! indicate the start and end 
of an overlay node, respectively. The symbol ! defines separate 
overlays within a node. For instance, the string 

!* D ! E F *! 

identifies an overlay node with two overlays: one for D and another 
for E and F. 

You must use delimiters (such as spaces) to separate the symbols!, !*, 
and *! from each other and from the object program names. 

The Binder analyzes the command and allocates space for the overlay 
nodes. Each node will be allocated enough memory to hold its largest 
overlay. The Binder then assigns values to the overlay descriptors 
and places these values in locations DESCI through DESC5 of the 
main program. The Binder also resolves the references to the 
subroutine entries. The result of the binding process is a program 
file, MPRG.PR, and an overlay file, MPRG.OL. 

For more information on binding overlays, refer to MP/AOS-SU 
Macroassembler, Binder, and Library Utilities. 

Two system calls support overlays: ?OVLOD and ?OVREL. You use 
the ?OVLOD call to load the overlay into its node. You then jump to 
the desired entry address. After exiting from the routine, you use the 
?OVREL call to release the overlay. 

The main program in our example must contain calls to manipulate 
the overlays, as the following example shows. 

MPRG: 

LDA O,OVL 1 

?OVLOD 

JMP ERROR 

JSR @.A 

LDA O,OVL 1 

?OVREL 

JMP ERROR 

;MAIN PROGRAM OVERLAY CODE 

;Initialization. (start of program) 

;Get descriptor for routine. 

;Load the overlay. 

;(Error return) 

;Call the subroutine. 

;Then set up for ?OVREL. 

;Release the overlay. 

;(Error return) 



MP / ADS-SU Fatal 
and Booting Error 

Messages 

There are some conditions under which the MP / AOS-SU may detect 
an error condition from which it cannot recover. Such errors are 
called fatal errors, and are extremely rare. The most common cause 
of fatal errors is erroneous behavior by a user program, such as 
overwriting part of system memory. 

When the system detects a fatal error, it shuts itself down at once to 
prevent further loss of data. At this time it types a message on the 
console: 

FATAL ERROR CODE: 

followed by six octal numbers. 

The code is a number which identifies the cause of the error, as 
listed in the table. The six numbers are the contents of the 
accumulators (ACO-AC3), the stack pointer, and the frame pointer. 
You should write down these numbers as well as the error code, 
since they may be of use to you or Data General personnel in finding 
the cause of the error. 

G 

Fatal errors 

Licensed Material - Property of Data General Corporation 



G-2 MP/AOS-SU Fatal and Booting Error Messages 

Booting Errors 

Licensed Materia' - Property of Data Genera' Corporation 

MP / ADS-SU error codes and their meanings are listed in Table G.l 
below. 

Code Meaning 

o Internal system call error 

1 System checksum error 

2 System infinite loop 

3 I/O or other error occured during a shutdown or bootstrap operation 

4 System unable to clear an interrupt from an unknown device 

5 An interrupt was received with a device code greater than 76a 

6 The system was unable to execute :CLI.PR 

7 System overlay error 

10 Internal inconsistency 

11 Error return taken where none possible 

12 Power failure detected 

13 System stack overflow 

14 Memory parity error 

Table G.1 MP / AOS-SU error codes 

Booting errors may occur while booting a system from the console. 
When such errors are detected, the response to them occurs before 
the MP / ADS-SU start-up message appears. The bootstrapping process 
halts and a message appears on the console: 

ERROR = 

followed by the error code, an octal number ranging from 0 through 
4. This error code identifies the cause of the error. Codes and their 
meanings are listed in Table G.2. When Error = 0, an additional 
number is printed after the zero; it indicates the status of the disk. 

Code Meaning 

o Disk error. Second number printed is the status of the disk. 

2 

3 

4 

Label block checksum error. You should boot another system disk 
and run FIXUP on the disk with the label block checksum error. 

Checksum error while loading system (usually indicates a problem 
with memory). 

No system installed on disk. 

No FIXUP installed on disk. 

Table G.2 MP/AOS-SU booting errors 



The Magnetic Tape 
Handler 

MP / AOS-SU supports magnetic tape devices as part of its library. To 
use the magnetic tape controllers, an MP / AOS-SU program must 
first be bound with the tape routine library. 

The library tape routines interface with the tape system by using the 
operating system's capability to support custom device handling 
routines. (See Chapter 10, User Device Support.) When you generate 
an MP / AOS-SU system, respond to the SYSGEN query 

Number of ?idef l?ldef device dcts? 

by specifying one ?idef dct (device control table) for every tape 
controller to be used. MP / AOS-SU system generation is discussed in 
detail in Loading and Generating MP / A DS-SU. 

H 

Licensed Material - Property of Data General Corporation 



B-2 The Magnetic Tape Handler 

PH-00046 

Figure H.1 DGC magnetic tape transport 

Magnetic Tapes 

PH-Q8689 

Figure H.2 Write enable ring 

Licensed Material - Property of Data General Corporation 

The tape operations discussed in this appendix provide the MP / AOS­
su system access to magnetic tape drives. (Figure R.I.) The DGC 
magnetic tape equipment handles the large reels of half-inch tape 
that are standard throughout the industry. 

A tape system consists of a controller and up to eight tape drives. 
The 6021/6026 and the 6123/6125 controllers read and write tapes 
in two types of industry-compatible tape subsystems: i.e., NRZI or 
PE format. 

Tape operations include reading from tape, writing to tape, moving 
tape to a new position and opening and closing the tape drive. Error 
recovery and return is also provided. Data transfers are of full 
two-byte words, grouped into records, which in turn may be grouped 
into files. Each byte transferred includes a parity bit which is used 
for error checks. Tape commands are used in the same way as 
system calls and library routines. They are presented in dictionary 
format at the end of this chapter. 

The basic recording medium is a magnetic material coated on one 
side of a long half inch strip of tape usually made of mylar. The tape 
is held on large interchangeable reels which accommodate up to 
2,400 feet per reel and are mounted on the supply hub of any 
conforming transport. When the transport is recording or reading 
information, the tape is moved from the supply reel past read/write 
heads to a take-up reel. As the tape moves, the heads define parallel 
data tracks along its surface. There are either seven or nine tracks 
on the tape; each track has both a read head and a write head. 

Every tape has two physical markers indicating its extremities: the 
loadpoint marker and the end-of-tape marker. The markers are 
reflective strips sensed by photoelectric cells in the transport. 

At least 10 feet in from the beginning of the reel is the loadpoint 
marker, which is the logical beginning of the tape (BOT). The 
transport automatically positions the tape at the BOT upon loading; 
reverse commands automatically stop at this marker. The BOT also 
provides an absolute reference point for all tape operations. A 
loadpoint gap of at least three inches precedes the first record on the 
tape. 

The end-of-tape marker (EaT) is at least 14 feet from the physical 
end of the tape. When the drive passes the EaT marker, MP / AOS-SU 
sets the tape command error and status bit to one. This does not, 
however, inhibit the drive from performing I/O. 



An annular groove is molded into the back of every reel. The 
controller cannot write on the tape unless the supply reel has a 
plastic (write enable) ring in this groove. By removing the ring, the 
operator can protect the data on the tape from accidental destruction 
such as overwriting or erasure (Figure H.2). 

DGC uses two industry-compatible systems for recording data on 
tape: Non-Return to Zero for Ones (NRZI) and Phase Encoded (PE). 
These systems format the tape and record data bits differently. NRZI 
tape drives operate on either a seven- or nine-track format, at 556 
and 800 bits per inch (bpi) and in even or odd parity. PE tape drives 
operate on a nine-track format at 1600 bpi. Every transport 
accommodates two reels, one for supply and one for takeup. 

In either type of subsystem, only one drive can be reading, writing 
or positioning the tape at anyone time, but any number of drives 
can be rewinding simultaneously. 

The 6021/6026 and the 6123/6125 controllers have device code 22, 
mnemonic MT A. The 6021/6026 control reads and writes tapes in 
both NRZI and PE formats, and it can move tape backward or 
forward to a new position. The 6123/6125 controller uses the PE 
recording method with a "streaming" mode tape drive for optimal 
performance. 

The Magnetic Tape Handler 

Magnetic Tape 
Transports 

The Controllers 

Data is stored as a "magnetic event" on the tape by the write head in Data Transfer 
the transport. As the tape moves past the write head, a sequence of 
data bits is written along the length of the tape. The number of data 
bits per inch (bpi) determines the data density for that transport. 

Industry-compatible tape transports contain either seven or nine 
write heads, allowing simultaneous recording of a number of parallel 
tracks along the length of the tape. The data bits written simulta-
neously by a number of heads, one bit in each track, define a 
character on the tape. Each character, therefore, appears laterally, 
across the width of the tape. 

A character is composed of a number of data bits and one parity bit 
used for error checking. Seven-track magnetic tape contains a six-bit 
byte of data and a parity bit in each character; a nine-track tape 
contains an eight-bit byte of data and a parity bit. 

Transfers between memory and the controller are of full words of 
two bytes each, regardless of whether the tape contains six- or 
eight-bit bytes. 

To write, the controller divides the words into data bytes and 
reassembles them when reading. 

Licensed Material - Property of Oats General Corporation 

B-3 



H-4 The Magnetic Tape Handler 

Tape Operations 

Tape Commands 

Licensed Material - Property of Data General Corporation 

Depending on the particular transport, the data transfer rate ranges 
from 3,480 words per second to 36,000 words per second. 

Records and Files 
Data is grouped into records, composed of groups of words ranging 
in length from 2 to 4,096 words per record. The record is the 
smallest unit of information that can be addressed on tape. 

To separate adjacent records, the controller automatically erases a 
segment of tape between them. The tape transport can only stop the 
tape in one of these inter-record gaps (IRG). 

Records may be grouped together into files. Tape files, therefore, are 
groups of physically contiguous records; they should not be confused 
with disk files whose data are not necessarily contiguous. 

The controller separates files from each other by an end-ai-file 
indicator which is a three inch gap followed by an end-of-file mark 
- a special record containing a single, special data character and its 
longitudinal parity check character. The number of files which can 
be placed on a reel of tape depends on the length of the tape, the 
density of information, the number of words per record and the 
number of records per file. 

To run the tape, the program must select a transport and a command; 
all commands require the specification of parity. This information 
is passed by the program through AC2, as follows: 

AC2 bits 13-15: drive number (0 - 7) 
bit 9: parity (0 = odd, 1 = even) 

Default parity is odd, and, for most operations, odd parity is desirable. 

NOTE: When writing in even parity, the program must take care not to supply a 

word containing a zero data byte in the recording format selected. This would 

result in a missing character (a blank line) which might be interpreted as an 

inter-record gap. 

Error Checking 
The tape passes the read heads immediately after it passes the write 
heads. This allows a read-after-write system of error checking by 
means of a combination of lateral and longitudinal parity checks. 
The same combination of checks is also performed after a record is 
read. 

Preparation of a magnetic tape subsystem involves initializing the 
transport and positioning the tape. You can then issue the desired 
read or write commands. The remainder of this chapter discusses 
the routines for initializing, positioning, reading, writing and closing 
the drive. 



The commands for these operations are used in the same manner as 
system calls and library routines. After assembly, the program must 
be bound with a tape routine library, MT A.LB for use under 
MP / AOS-SU or MMT A.LB for use under AOS. For example: 

BIND <your modules> MTA.LB 

or 

X MBIND/AOS <your modules> MMTA.LB 

The following six routines are presented in dictionary format. For 
each entry in this chapter, we give the following information: 

• the mnemonic that you place in your program code 
• a description of the function performed 
• tables summarizing inputs, outputs and errors. The contents of 

these tables are described below. 

Inputs 
This table lists information which your program must place in 
accumulators before executing the call. 

Outputs 
This table lists information which will be in the accumulators when 
control returns to your program. 

Errors 
This table lists the error codes likely to be returned if you use a call 
improperly. Error codes are returned in ACO. 

The Magnetic Tape Handler H-5 

Licensed Material - Property of Data General Corporation 



H-6 The Magnetic Tape Handler 

?TClOS 

Licensed Material - Property of Data General Corporation 

Close Tape Drive 

Issues a rewind command to the specified drive and then removes it 
from the system. After the last open tape drive has been closed, a 
?IRMV system call is performed, removing the tape controller from 
the system as well. The library routine invoked by this call also 
issues a ?DEMP system call to release the data channel map slots 
obtained by ?TOPEN. 

Inputs 

AC Contents 

AC2 Tape drive number (0-7), parity. 

Outputs 
None 

Errors 

Mnemonic 

ERTNO 

ERDOL 

Meaning 

Tape drive not open. 

Device off line. 



Get Current File and Record Number 

Gets the current file and record number of the specified tape drive. 

Inputs 

AC Contents 

AC2 Tape drive number (0-7), parity. 

Outputs 

AC Contents 

ACO File number. 

AC 1 Record number. 

Errors 

Mnemonic Meaning 

ERTNO Tape drive not open. 

The Magnetic Tape Handler B-7 

?TGPOS 

Licensed Material - Property of Data General Corporation 



H-8 The Magnetic Tape Handler 

7TOPEN 

Licensed Material· Property of Data General Corporation 

Open a Tape Drive 

Introduces the specified drive to the system. If no previously opened 
drives are on the system, an ?IDEF system call is performed in order 
to set up the interrupt handler. The drive is then rewound and ready 
for use. The library routine invoked by this call also issues an 
?ALMP system call for five data channel map slots on map A. 

Inputs 

AC Contents 

AC2 Tape drive number (0-7), parity. 

Outputs 
None 

Errors 

Mnemonic 

ERDOL 

ERDAI 

Meaning 

Device off line. 

Device already in use. 



Read a Record 

Reads a record of n words, 

2 <= n <= 4096 

from the specified tape. If the currently positioned record is larger 
than n words, only n words are read, and the remainder is ignored. 
The next ?TREAD issued will start reading from the beginning of 
the next record. If the current record is less than n words, it is read 
in its entirety, but reading does not proceed beyond the record's end. 
The number of words actually read is always returned in ACI. 

Inputs 

AC Contents 

ACO Address of the first word in memory to receive the data read. 

AC 1 Number of words to be read. 

AC2 Tape drive number (0-71. parity. 

Outputs 

AC Contents 

ACO Address of last word read, + 1. 

AC1 Number of words actually read. 

Errors 

Mnemonic 

ERTNO 

ERIWC 

EREOF 

ERPET 

EROCR 

ERBMT 

Meaning 

Tape drive not open. 

Illegal word count ( <2 I. 
End of file encountered. 

Physical end of tape encountered. 

Odd number of characters read. 

Bad or runaway tape, or format error. 

The Magnetic Tape Handler H-9 

?TREAD 

Licensed Material - Property of Data General Corporation 



H-IO The Magnetic Tape Handler 

1TSPOS 

Licensed Material - Property of Data General Corporation 

Position Tape 

Positions the tape on the specified drive immediately before the file 
or record to be accessed. 

If the given file number is too large, the tape is positioned at the 
logical end of tape (EDT), and an error is returned. 

If the given record number is too large, the tape is positioned at the 
end of the given file, and an error is returned. 

When you specify 

FILE -1 /RECORD 0 

as your file or record number, the tape is positioned at the logical 
EDT. This facilitates the process of appending to existing files or 
records. Use of any other negative numbers for either file or record 
will produce an error. 

To rewind the tape, you specify 

FILE O/RECORD 0 

Inputs 

AC Contents 

ACO File number. 

AC1 Record number. 

AC2 Tape drive number (0-7), parity. 

Outputs 
None 

Errors 

Mnemonic 

ERIFN 

ERIRN 

ERTNO 

ERPET 

ERFTH 

ERBOT 

ERTMR 

Meaning 

Illegal file number. 

Illegal record number. 

Tape drive not open. 

Physical end of tape encountered. 

Fatal tape hardware error. 

Unexpected beginning of tape. 

Too many records in tape file ( >65.536). 



Write a Record to Tape 

Transfers n words from memory to the specified tape drive, when n 
> = 2. If n = 0, an EOF is written. If n = - 1, a logical end-of-tape 
is written. If n = 1 or n < - 1, no write operation is performed, 
and an error is returned. 

While any record length between two and 4,096 words is legal, 
excessively short records will cause more tape to be used in the IRGs 
(inter-record gaps) than in the data stored. Very long records, on the 
other hand, make error recovery difficult. Hence, a record length of 
about 2 or 4K words is recommended for most applications. 

If a record length of over 4,096 words is specified, only 4,096 words 
will actually be written, but the contents of AC 1 will reflect this 
fact. 

Inputs 

AC Contents 

ACO Address of first word in memory to be written. 

AC1 Number of words to be written. If AC1 = 0, an EOF is written. If 
AC 1 = - 1, a logical end of tape (EOT) is written. 

AC2 Tape drive number (0-7), parity. 

Outputs 

AC Contents 

AC 1 Actual number of words written. Unchanged if original input to 
AC 1 was 0 or - 1. 

Errors 

Mnemonic 

ERTNO 

ERIWC 

ERTWL 

ERPET 

ERBMT 

ERFTH 

ERUDE 

Meaning 

Tape drive not open. 

Illegal word count «2). 

Tape is write-locked. 

Physical end of tape encountered. 

Bad or runaway tape, or format error. 

Fatal tape hardware error. 

Uncorrectable data error. 

The Magnetic Tape Handler B-ll 
1TWRITE 

licensed Material - Property of Data General Corporation 





Running 
MPjADS-SU 

Programs Under 
ADS 

The MP System Call Translator software package supplied with 
MP / AOS-SU may aid in the development of MP / AOS-SU programs 
on ECLIPSE line computers under the Advanced Operating System 
(AOS). The System Call Translator translates a subset of MP / AOS-SU 
calls into their AOS and AOS/VS counterparts. Programs developed 
under MP / AOS-SU using this subset of calls can thus be transported 
to AOS and AOS/VS by rebinding them with the System Call 
Translator object module and subroutine library file. 

Some programs developed under AOS and AOS/VS using the System 
Call Translator can be moved to MP / AOS-SU with no modification 
except for rebinding. The MP / AOS-SU Macroassembler and Binder 
are two such programs. Using the System Call Translator under AOS, 
for example, they require only rebinding to be moved to MP / AOS-SU. 
This allows the same sources to be used over the entire ECLIPSE and 
mircoECLIPSE computer line. This means, for example, that you 
might be able to write programs in SP I Pascal under AOS and run 
them on MP / AOS-SU simply by rebinding. 

I 

Cross 
Development on 
ADS 

Licensed Material· Property of Data General Corporation 



1-2 Running MP/AOS-SU Programs Under AOS 

Assembling 

Binding 

licensed Material - Property of Data General Corporation 

NOTE: For the mechanics of moving files to and from an MP/AOS-SU disk, refer 
to the documentation of the following programs in MP/AOS and MP/AOS-SU File 

Utilities. 

• AOSMIC, the AOS file transfer utility; 
• the MOVE utility, if your system has magnetiic tape; 
• the FOXFIRE file transfer utility, if you are transferring files over 

an asynchronous line. 

The System Call Translator consists of three parts: the assembler's 
permanent symbol table, MASM.PS; a translator object module, 
MICREM.OB; and a subroutine library file, MMSL.LB. 

MASM.PS, the assembler's permanent symbol table, has been pre­
pared using the standard MP / AOS-SU parameter files. You assemble 
your program with this file, instead of the usual MASM.PS. file. The 
translator object module and the subroutine library file contain 
preassembled code which translates your MP / AOS-SU system calls 
into the AOS environment. 

To develop an MP / AOS-SU program under AOS, you must assemble 
it using MMASM, the Macroassembler. You type the following CLI 
command: 

X MMASM pathname {. .. pathname] <J> 

Each pathname represents the pathname of one or more files to be 
assembled. 

NOTE: Be sure that the MASM.PS that MMASM sees is the Translator's MASM.PS 
previously discussed. 

After assembling your MP / AOS-SU program file, you must bind or 
link the file. 

Binding Under AOS 
Under AOS, type the command line 

X MBIND/AOS pathname [ ... pathname] <J> 

For this command to work properly, MICREM.OB, the translator 
object module, and MMSL.LB, the translator subroutine library file, 
must be on your searchlist, as well as the AOS run-time library 
URT.LB. Pathname represents the pathname of one or more object 
files to be bound. 

The result of this process is the program file, progname.PR, which 
can be run on an AOS system. 



Running MP/AOS-SU Programs Under AOS 

Translating a program prepared under AOS into an MP/AOS.PR file 
is a simple operation. Once you have assembled with the Translator's 
MASM.PS, rebind the file as follows: 

X MBIND/MPAOS pathname {. .. pathnameJ <l> 

As before, pathname represents the pathname of one or more object 
files to be bound. 

For more information, refer to the Binder section in MP / AOS-SU 
Macroassembler, Binder and Library Utilities. 

Linking under AOS/VS 

You must use the AOS/VS LINK utility to produce an MP I AOS-SU 
program file to run on an AOS/VS systems. 

See AOS/VS Link and File Editor User's Manual for information on 
the LINK utility. You may be wise to use MLINK.CLI as an example 
of how to link a cross-development program. MLINK.CLI is released 
as part of your cross-development set. 

Pay attention to the following when linking your program file for 
cross development: 

• You must reach the following files via your searchlist or link then 
to the directory in which you keep your MP I AOS-SU files: 
VS_MICREM.OB, VSMSL.LB, and URTl6.LB 

• Order the LINK command line so that the VS_MICREM.OB 
module precedes all user library and user modules 

• Order the LINK command line so that VSMSL.LB immediately 
precedes URTl6.LB 

• The value you specify for the IT ASKS = switch should equal the 
number of tasks required by the program, plus 2 (the number 
required by the system call translator) 

• The value you specify for ?NT AS should be the same as the 
number of tasks in the program 

• Overlaid programs built by link must explicitly load overlay 0 
prior to using it 

• Explicitly include the LINK switch ITASKS= when linking 
assembly language programs that use the .TSK directive. The 
.TSK directive. The .TSK directive determine the number of tasks 
to be created by the program. The value entered with the 
ITASKS= switch must equal the number of tasks the user 
requires, plus the 2 required by the system call translator. When 
setting the values of ?NT AS, specify the number of user tasks 
utilized. 

Once you have linked the program file with your version of the 
MLINK.CLI macro, it is executable under AOS/VS. 

Licensed Material - Property of Oats General Corporation 

1-3 



1-4 Running MP/AOS-SU Programs Under AOS 

Compatibility of 
System Calls 

Program Management 

Licensed Material· Property of Dat8 General Corporation 

You can translate the program, which is executable under into a 
MP / AOS-SU .PR file to run on MP / AOS-SU system. To do so, rebind 
the file as follows: 

X MBIND/MPAOS patchname [ ... pathnamej <J> 

Pathname represents the patchname of one or more object files to be 
bound. 

Since the AOS environment differs from that of MP / AOS-SU, there 
are some differences in the actions of some system calls. These are 
detailed in the following paragraphs. 

The translator converts AOS error codes into their MP / AOS-SU 
counterparts. If the error code has no MP / AOS-SU counterpart, your 
program receives the AOS code. You should be aware that a different 
error may be returned by the Call Translator than by MP / AOS-SU. 

The ?RETURN call with the BK option uses the AOS convention for 
the break file name: 

?pid.time.BRK 

where pid is your process LD. and time is the current time of day. 
Also, a program terminated with a ?RETURN BK may not pass a 
message to the parent program. 

The ?EXEC call, where the complete pathname given to ?EXEC is 
CLLPR, invokes AOS CLI with the appropriate message format. The 
user's message must be in the MP / AOS-SU CLI format with the CLI 
as the zero argument. 

NOTE: Attempting to ?EXEC any program named CLI.PR other than ADS CLl.PR 
will cause the program to fail on start-up. 

Due to AOS restrictions, some or all the messages passed by ?EXEC 
will be capitalized. 

An ?EXECuted program will fail if it attempts to use an exclusively 
opened channel passed from the parent. 

The ?BOOT call does not perform a bootstrap. It attempts to return 
to the user's CLI no matter how many levels down that CLI is. The 
message gives the reason for returning and the name of the specified 
bootstrap device or file in one of two forms: 

MP Emulator shutdown 

MP Emulator booting: <file name> 

Under the Call Translator, ?ERMSG reads from MERMES, which 
must, therefore, be locatable through the searchlist. 



Running MPjAOS-SU Programs Under AOS 

Unlike MP / AOS-SU the Call Translator's handling of overlays does 
not use a channel internally. You should also be aware that overlay 
node sizing is larger under the Call Translator. Hence, programs 
with many nodes which fit under MP / AOS-SU may not fit under the 
Call Translator. Further, under the Call Translator the first overlay 
in any node is not preloaded by the system; you must therefore issue 
an ?OVLOD to load it. 

The Call Translator limits a program to 30 tasks. 

The allocation scheme for task identifiers used under the Call 
Translator is unrelated to that used under MP / AOS-SU. 

Avoid running tasks at priority zero (0), since such tasks will compete 
with Call Translator tasks running at priority zero and may cause 
them to function incorrectly. 

Task scheduling under the Call Translator is somewhat different 
than under MP / AOS-SU. Hence, care should be taken to force 
scheduling of tasks through ?PEND and ?DRSCH calls and through 
setting different priorities. 

The ?PEND call for a CTRL-C CTRL-A works only for @TTIO. 

AOS supports file type numbers which are somewhat different from 
MP / AOS-SU file types. The System Call Translator converts MP / AOS­
SU file types to their AOS counterparts when you create files. It also 
converts AOS and AOS/VS file types to their MP / AOS-SU counter­
parts when you open files created by AOS programs. The 
correspondences between file types are summarized in Tables I.l 
and I.2. 

MP/AOS-SU 

?DDIR 

?DIDF 

?DIXF 

?DLNK 

?DMBS 

?DPRG 

?DTXT 

?DUDF 

AOS and 
AOS/VS 

?FDIR 

?DMAX-1 

?DMAX 

?FLNK 

?DMAX-2 

?FPRG 

?FTXT 

?FUDF 

Meaning 

Directory 

MP !ISAM data file 

MP jlSAM index file 

Link 

MPjBASIC save file 

Program file 

Text file 

User data file 

Table 1.1 Conversions of MP/ AOS-SU file types when creating files under AOS 

NOTE: All file types not mentioned in the table above are converted to ?FUDF. 

Multitasking 

File Management 

Licensed Material - Property of Data General Corporation 

1-5 



1-6 Running MP/AOS-SU Programs Under AOS 

Licensed Material - Property of Data General Corporation 

AOS 

and AOS/VS 

?DMAX 

?DMAX-1 

?DMAX-2 

?FCPD 

?FDIR 

?FDKU 

?FGFN 

?FLNK 

?FLPU 

?FPRG 

?FTXT 

?FUDF 

MP/ AOS-SU 

?DIXF 

?DIDF 

?DMBS 

?DDIR 

?DDIR 

?DDVC 

?DCHR 

?DLNK 

?DLPT 

?DPRG 

?DTXT 

?DUDF 

Meaning 

MP/ISAM index file 

MP/ISAM data file 

MP /BASIC save file 

AOS control point directory 

Directory 

Disk unit 

AOS generic file 

Link 

Line printer 

Program file 

Text file 

User data file 

Table 1.2 Conversions of AOS and AOS/VS file types when opening files with MP/ AOS-SU 

programs 

NOTE: All file types not mentioned in the table above are converted to ?DUDF. 

Under AOS the system call ?RENAME is not supported across 
directories. 

When you use the ?OPEN call with a CR (create) option, the System 
Call Translator does not use the element size supplied with the call. 
Instead, the default element size one is used. 

No more than three non-pended calls may run concurrently. The 
user must specify additional TCB's (task control blocks) for calls 
non-pended. 

Under the Call Translator, the searchlist has a maximum length of 
511 characters and no error is produced if it contains more than five 
pathnames. 

Due to AOS restrictions, the Call Translator allows no more than 
eight directory tree levels. 

The call ?FSTAT CH on a disk unit where the channel is exclusively 
open may return an incorrect file length. 

File attributes are also handled differently on the two systems. The 
MP / AOS-SU System Call Translator intercepts the references in 
your program to all file attributes except permanence and translates 
them into elements on the access control list (ACL) of the file. The 
ACL is a file protection feature provided by AOS, which is described 
fully in the Advanced Operating System (ADS) Programmer's Manual. 

The correspondences between attributes and access types are summa­
rized in Table 1.3. 

NOTE: There is a reversal in polarity between the two systems: setting the 

MP/AOS-SU read protect attribute for a file means that it may not be read; i.e, 



Running MP/ADS-SU Programs Under ADS 

setting this attribute is tantamount to removing the ADS read access privilege (R). 
Conversely, setting the ADS R (read access privilege) for a file means that it may 
be read. (This conversion is handled by the Translator.} 

MP I AOS-SU Attributes AOS Access Privileges 

Read protection: may not be read 

Write protection: may not be written 

R : read access 

W : write access 

Attribute protection: may not change attributes 0: owner access 

Table 1.3 Reversal in polarity between MP/AOS-SU attributes and AOS access privileges 

The permanence attribute is handled identically under the AOS and 
MP / AOS-SU systems. 

The AOS and MP / AOS-SU systems have different formats for device 
characteristics. The ?GCHAR and ?SCHAR calls perform the conver­
sion between characteristics, so that the difference is transparent to 
your program. Note, however, that if you use the HC option with 
?GCHAR or ?SCHAR, the following occurs: the ?GCHAR call returns 
a zero; the ?SCHAR call executes successfully, but ignores the HC 
option. 

Special caution is also in order when you use the ?GCHAR and 
?SCHAR calls with @TTI and @TTO. Refer to discussion following 
Table 1.5. ?SCHAR with the LL option and a line length set to 1 
allows only 256 characters per line, the maximum line length under 
AOS. 

Table 1.4 summarizes the correspondences between device character­
istics for AOS and MP / AOS-SU. 

MP/AOS-SU 
Name 

?CBIN 

?CECH 

?CEMM 

?CESC 

?CICC 

?CLST 

?CNAS 

?CNED 

?CST 

?CUCO 

?C605 

?CaBT 

AOS Name 

Supported for @TII, @TIO, @TII1, @TI01, @LPT 

?CEOC 

?CEOS 

?CESC 

Not supported 

Not supported 

?CNAS 

Supported for @TII, @TIO, @TII1, @TI01, @LPT 

?CST 

?CUCO 

?C605 

Supported for @TII, @TIO, @TII1, @TI01, @LPT 

Table 1.4 Correspondences between device characteristics 

?DST AT does not store information in the packet. It simply validates 
its input parameters and then exits. 

I/O Device 
Management 

LicenSBd M8tsri8' - ProptKty of o8t8 GtmsrBl Corpor8tion 

[-7 



1-8 Running MP/AOS-SU Programs Under AOS 

Licensed Material - Property of Data General Corporation 

Tables 1.5 and 1.6 list the calls and library routines supported by the 
Call Translator. The MP / AOS calls listed in Table 1.7 are not 
supported by the Call Translator and produce an error return with 
code ERISC (illegal system call) when attempted. 

?ALlST ?EXEC ?MEMI ?SPOS 

?AWAIT ?FSTAT ?MYID ?STATR 

?BOOT ?GCHAR ?OPEN ?STIME 

?CLOSE ?GLlST ?PEND ?UNPEND 

?CREATE ?GNAME ?PRI ?WRITE 

?CTASK ?GPOS ?READ 

?DELETE ?GTATR ?RENAME 

?DIR ?GTIME ?RESET 

?DRSCH ?GTMSG ?RETURN 

?DSTAT ?INFO ?SCHAR 

?ERSCH ?KTASK ?SCHS 

Table 1.5 MP/AOS-SU system calls supported under MP Emulator 

?CDAY ?POPEN 

?CTOD ?PWRIT 

?DELAY ?SLlST 

?ERMSG ?SDAY 

?FDAY ?STOD 

?FTOD ?TCLOS 

?GDAY ?TGPOS 

?GNFN ?TMSG 

?GTOD ?TOPEN 

?MSEC ?TREAD 

?OVLOD ?TSPOS 

?OVREL ?TWRITE 

?PCLOS 

Table 1.6 MP / AOS-SU library routines supported under the MP Emulator 

?ALMP ?IPEND 

?ASEG ?IRMV 

?CSEG ?IUNPEND 

?DEMP ?IXIT 

?DISMOUNT ?KILL 

?DSBL ?LDEF 

?DSEG ?LRMV 

?ENBL ?LXIT 

?EQT ?MOUNT 

?GMRP ?MSEG 

?IDEF ?STMP 

?IFPU 

Table 1.7 MP/AOS-SU system calls not supported under MP Emulator 



Running MP/AOS-SU Programs Under AOS 

There is mapping between the MP / AOS-SU system and AOS for the 
various devices, shown in Table 1.8. The System Call Translator 
recognizes the MP / AOS-SU device name and converts it to its AOS 
counterpart. 

MP/AOS-SU 
Device 
Name 

@TTI 

@TTO 

@TT11 

@TT01 

AOS Device Name 

@Input (or @null if the program is batched) 

@Output 

@Data 

@List 

Table 1.8 Device name mapping 

Because the characteristics for @TTI and @TTO both map into the 
generic AOS device @CONSOLE, you should exercise caution when 
using the calls ?GCHAR and ?SCHAR. 

Setting any of the characteristics usable by both input and output on 
@TTI will also affect @TTO, and vice versa. In particular, the 
following sequence will cause problems. 

?GCHAR @TTO 

?SCHAR @ TTO ; new characteristics 

?GCHAR @TTl 

?SCHAR @ TTl; new characteristics 

?SCHAR @ TTO ; restore characteristics 

?SCHAR @ TTl; restore characteristics 

This sequence will not restore characteristics properly, since the 
?SCHAR @TTO call changes some of the characteristics of @TTI 
before the ?GCHAR @TTI saves them. 

Licensed Material - Property of Data General Corporation 

1-9 



1-10 Running MP/AOS-SU Programs Under AOS 

licensed Material - Property of Dat8 General Corporation 

Instead, use this sequence for both @TTI and @TTO: 

?GCHAR @TTO 

?GCHAR @TTl 

?SCHAR @TTO 

?SCHAR @TTl 

?SCHAR @ TTO ; restore characteristics 

?SCHAR @ TTl; restore characteristics 

In addition, issue ?SCHS calls for channel specifications (console 
input or output) only after issuing ?SCHAR calls that affect portions 
of the console. If you issue the ?SCHS call before the ?SCHAR call, 
the effects of the ?SCHs may be lost. 



MP / AOS Library 
Routines 

MP / AOS-SU offers three libraries of subroutines. These are OSL.LB, 
a library of miscellaneous routines, MT A.LB, the magnetic tape 
library, and DCLP.LB, a library of routines for accessing the data 
channel line printer. 

The OSL.LB library is automatically included in your BIND line, but 
you must specifically list either the magnetic tape or the data channel 
line printer libraries MT A.LB and DCLP .LB if you wish them bound 
with your program. 

Table J.1 lists the routines in library OSL.LB. Tables J.2 and J.3 list 
the routines in libraries MTA.LB and DCLP.LB, respectively. 

J 

Licensed Material - Property of Data General Corporation 



J-2 MP/AOS Library Routines 

Licensed Material - Property of Data General Corporation 

Routine 

?CDAY 

?CTOD 

?DELAY 

?ERMSG 

?FDAY 

?FTOD 

?GDAY 

?GNFN 

?GTOD 

?MSEC 

?OVLOD 

?OVREL 

?SDAY 

?SLlST 

?STOD 

?TMSG 

Function 

Convert system time/date to date 

Convert system time/date to time of day 

Delay execution of a task 

Retrieve a system error message 

Convert a date to internal format 

Convert a time to internal format 

Get the current date 

Get next filename in working directory 

Get the current time of day 

Convert a time to milliseconds 

Load an overlay 

Release an overlay 

Set the system calendar 

Set the searchlist 

Set the system clock 

Translate a CLI-format message 

Table J.1 List of routines in library OSL.LB 

Routine 

?TCLOS 

?TGPOS 

?TOPEN 

?TREAD 

?TSPOS 

?TWRITE 

Function 

Close tape drive 

Get current file and record number 

Open tape drive 

Read a record 

Position tape 

Write a record to tape 

Table J.2 List of routines in library MTA.LB 

Routine 

?PCLOS 

?POPEN 

?PWRIT 

Function 

Close line printer 

Open line printer 

Write to line printer 

Table J.3 List of routines in library OCLP.LB 



Within this index, "f' or "ff' after a page number 
means "and the following page" (or "pages"). 
Commands, calls, and acronyms are in uppercase letters 
(e.g., CREATE); all others are lowercase. 

: symbol 3-2 
:?SYSDIR 4-4 

A 

absolute addressing 2-5 
access control list (ACL) 1-6 
accumulator usage 2-3 
add name to searchlist lO-3 
address maps, see address translation 
address space, physical, supported 5-1 
address translation 

address maps 5-lf 
data channel 5-3 
memory allocation and protection (MAP) 5-lf 

?ALIST lO-3 
allocate data channel map 10-4 
?ALMP lO-4 
AOSMIC 1-2 
?ASEG 10-5 
assembler permanent symbol table 2-6 
assembling overlay programs F-2 
Asynchronous/Synchronous Line Multiplexor (ASLM), 

see multiplexors 
attach a memory segment 5-9, lO-5 
attribute protect lO-47 
attribute word 

see file attribute word 
? AWAIT lO-6f 
await completion of nonpended call lO-6f 

B 

baud rate for multiplexor, 
programmable, range 7-lO, lO-86f 

beginning of tape marker, 
(BOT) see magnetic tape 

binding overlay programs F-2 
block aligned I/O lO-79, lO-lO2 

definition 7-5 

block, see disk block 
?BOOT lO-8 
booting errors, error codes G-2 
bootstrap loader 

runs FIXUP program 7-7 
specifying new lO-8 

bootstrapping MP / AOS-SU 2-1 
BOT marker, see magnetic tape 
break file lO-83 

creating 4-3 
name 4-4 

Index 

.BRK extension, denotes break file 10-83 
buffer cache 

see I/O buffers 
byte pointer, fields 2-4 

c 
calendar system calls 9-lf 
?CDA Y 9-2, lO-9 
chaining, see program chaining 
change impure memory allocation lO-66 
change task priority lO-78 
character devices 7-7 

console characteristics 7-8 
terminals 7-7f 

characteristics word lO-37f 
consoles 7-8 

characteristics 
consoles, display, modify current 7-7f 

user modifiable 7-8 
line printers 7-12, lO-85f 

hardware, user modifiable 7-9, lO-85f 
checkpoint records 7-3 
CLI message 

arguments C-2 
switches C-2 

clock system calls 9-1f 
clock, see system clock 
clock/calendar calls 9-lf 
?CLOSE lO-lO 
close an I/O channel lO-lO 
close multiple I/O channels lO-82 
close tape drive H-6 
code level, programmable 7-9, lO-86 



computer word 
high-order portion 2-4 
length 2-4 
low-order portion 2-4 

console interrupt tasks, pend on ?EVCH 6-3 
consoles, see character devices 
control characters 7-2,7-11 

predefined 7-11 
special functions 7-11 

control sequences 7-3 
console interrupt task 6-3 
predefined 7-11 
special functions 7-11 

convert date 10-33 
convert system time/date 10-9, 10-16 
convert time of day 10-36 
convert time to milliseconds 10-68 
?CREATE lO-11f 
create a file 1O-1lf 
create a memory segment 5-9, 10-13 
create a task 1O-14f 
?CSEG 10-13 
?CTASK 1O-14f 
?CTOD 9-2, 10-16 
CTRL-C CTRL-A 10-76 

console interrupt task 6-3 
ERIN returned in ERCIN 6-3 

B 

data channel I/O, for custom devices 8-4ff 
data channel map organization 8-7 
data channel map slots 10-19 
data channel map 

setting up sequence 8-6 
slot logical addresses 8-7 
slot mapping 8-8 
slot numbering 8-6 
starting logical address 8-7 

starting slot humber, 
returned ? ALMP 8-6ff 

data-sensitive I/O 10-79, 10-102 
DCLP.LB routines, list J-2 

data channel library J-l 
DCT, device control table 8-2 
deallocate channel map slots 10-19 
default delimiters 10-89 

see also I/O, data sensitive 
default memory segments 10-13 
default timeout interval 10-76 
define an interrupt handling routine 1O-5lf 
define line interrupt handler 1O-62f 
?DELAY 10-17 
delay task execution 10-17 
?DELETE 10-18 
delete a file 10-18 
delimiter table 

for user-defined delimiters 
7-6, 10-79, 10-89, 10-102 
number, specify at SYSGEN 7-6 

delimiters 10-89 
see also I/O, data sensitive 

?DEMP 10-19 
detach a memory segment 5-9, 10-24 
device control table, (DCT) 8-2 
device directory 3-1 

filename 3-2 
device interrupt routine 

calls permitted in 8-5 
calls, list 8-10 
deactivating with ?IRMV 8-3 
defining with ?IDEF 8-1 
exiting from with ?IXIT 8-3 
see also line device 

device, system, master 3-2 
devices, I/O, codes D-lf 
DINIT program, formats disk 7-7 
?DIR 10-20 
directory 

definition 2-7 
device 3-1 
nesting 3-1 
root (disk devices) 3-2 
subdirectory 3-1 
system, (:?SYSDIR) 3-2 
working 3-4 

disable I/O instructions 10-23 
disable task rescheduling 10-22 
disk block, definition 7-5 
disk devices 7-7 
disk formatting, software (DINIT) 7-7 
disk label, checking with ?MOUNT 7-7 
disk repair, FIXUP program 7-7 
disk, status information, ?DSTAT 7-7f 
disk ID, see disk label 
?DISMOUNT 10-21, 10-67 
?DRSCH 10-22 
?DSBL 10-23 
?DSEG 10-24 
?DST AT 1O-25f 
dynamic I/O, see I/O, dynamic 

E 

EBID.SR parameter file E-2 
echoing characters 7-9 
element size, disk files, 

specified on ?CREA TE 1O-1lf 
emulator, see program translation 
enable I/O instructions 10-27 
enable task rescheduling 10-30 
?ENBL 10-27 
EDT marker, see magnetic tape 
?EQT 10-28 
ERMES file 10-29 

user-defined codes 2-3 
ERMES_OBS 2-2 
?ERMSG 10-29 
error checking, with parity bits, 

magnetic tape H-4 



error codes 2-3 
booting errors, list G-2 
fatal and booting 2-2 
fatal errors G-1 
message file (ERMES) 2-3 
naming (ER prefix) 2-6 
parameter file E-1 
reading text of (?ERMSG) 2-2 
user defined file 2-2 

errors, fatal, see fatal errors 
?ERSCH 10-30 
event number, for task synchronization 6-3 
?EVMAX 10-76 
?EVMIN value, min. event number, 

see multitasking 
exception returns 2-2 
excess 64 representation B-2 
?EXEC 1O-3lf 
?EXEC 

closing all open channels, CL option 
7-2 

dynamic segments unswapped 5-9 
passes active I/O channels 7-2 
with chain option 4-2 

execute a program 1O-3lf 
exit from interrupt handling routine 10-60 

from line interrupt handler 10-65 
exponent, floating point B-1 

F 

fatal errors, messages G-1 
?FDA Y 9-2, 10-33 
file attribute word 

reading, changing 3-7 
returned by ?FST A T 1O-34f 
returned by ?GTATR 10-46f 

file attributes 10-94, 1-7 
list 10-47, 10-92 
set with ?STATR 10-92 

file creating, time / date information 3-7f 
file element size 

defined 3-6 
returned by ?FST A T 1O-34f 
specified on ?CREATE lO-11f 

file length 
bytes, returned by ?FST AT 1O-34f 
bytes, returned by ?GTATR 1O-46f 

file management, system calls, table 3-8 
file name 

legal characters 3-1 
length 3-1 
symbols 3-2 
unique referencing 3-1 

file pointer 7-3, 7-3, 10-45, 10-79, 10-93, 
10-102 

display, set current value 7-3 
file protection, see file attribute word 

file referencing, master device root directory 3-2 
devices (@) 3-1 
disk root directory 3-2 
via link file 3-5 
via pathname 3-2 
via search list 3-4 
via working directory 3-4 
within directory (:) 3-1 

file transfer utilities, AOSMIC, MOVE, FOXFIRE 
1-2 

file type 
returned by ?FST AT 1O-34f 
returned by ?GT A TR 1O-46f 
specified on ?CREA TE 10-11 f 

file types 
break file 4-3 
directory 3-1 
link files 3-5 
list 1O-1lf, 10-47 
specifying 3-6 
summary 3-6 

file, definition 3-1 
files 

magnetic tape H-4 
random access, controlled by file pointer 

7-3 
filestatus information, returned by ?FST AT 

10-34f 
FIXUP program, disk repair program 7-7 
floating point 10-53 

exponent B-2 
format B-1 
magnitude B-2 
mantissa B-3 
operations, word aligned numbers 

B-1 
sign B-2 
value, representation B-lf 

flush option, on ?WRITE, ?READ 7-3, 7-3 
format, internal, see time/date information 
FOXFIRE 1-2 
?FST A T 1O-34f 
?FTOD 9-2, 10-36 
fully-qualified pathname 3-2 

G 

?GCHAR 1O-37f 
?GDA Y 9-2, 10-39 
get a disk's status information 1O-25f 
get a file's status information 10-34f 
get an interprogram message 10-49 
get current date 10-39 
get current file/record number H-7 
get device characteristics 1O-37f 
get file attributes 1O-46f 
get next filename 10-44 
get physical page 10-41 
get program information 1O-54f 
get system error message 10-29 
get task and process identity 10-71 



get the current system time and date 10-48 
get the current time of day 10-50 
get the file position 10-45 
get the fully-qualified pathname 1O-42f 
get the searchlist 10-40 
?GLIST 10-40 
global segment number 5-9, 10-13 
?GMRP 10-41 
?GNAME 1O-42f 
?GNFN 10-44 
?GPOS 10-45 
?GTATR 10-47 
?GTIME 9-2, 10-48 
?GTMSG 9-2, 10-49 
?GTOD 9-2, 10-50 

H 

hardware characteristics 
baud rate, multiplexor 7-10 
code level 7-9, 1O-86f 
multiplexor baud rate 1O-86f 
parity type 7-9, 1O-86f 
stop bits 7-9, 1O-86f 
terminals specify at SYSGEN 7-9 

I 

I/O buffers 
bypassed in block I/O 7-3 
flushed on ?CLOSE, ?EXEC CL 7-3 
software cache 7-3 

I/O calls 7-12 
I/O channel 7-2 
I/O channel number, returned by ?OPEN lO-72f 
I/O channels, specified at SYSGEN 7-2 

closing (?RESET, ?EXEC CL) 7-2 
defined 7-2 
information on, ?INFO 7-2 
opening (?OPEN) 7-2 
passing between programs, on ?EXEC 7-2 
releasing (?CLOSE) 7-2 
standard input, ?INCH 7-3 

output, ?OUCH 7-3 
status after ?RETURN 7-3 

I/O device management 7-6 
I/O devices 

codes D-lf 
disks, accessing as single file 7-7 
disks, label check at mount/ dismount 

7-7 
disks, mounting (?MOUNT) 7-7 
disks, releasing (?DISMOUNT) 7-7 
disks, status information, ?DSTAT 7-7 
line printers 7-12 
management 7-6 
see also magnetic tape 
terminals, consoles, printers, and 

keyboards 7-7f 
I/O overview 7-1 

I/O protection 5-3, 10-27 
enabling/disabling 8-2, 8-2f 

I/O protection bit 10-23 
I/O techniques 7-4 
I/O 

data channel, see data channel I/O 
data sensitive 

default delimiters 7-6 
transfer up to delimiter 7-6 
user-defined delimiters, via ?SCHS 7-6 

dynamic 10-79, 10-102 
block aligned 7-5 
transfer by byte count 7-5 

nonpended 7-4 
check completion any task, ?AWAIT AY 7-4 
check completion of task, ?AWAIT 7-4 

?IDEF 1O-5lf 
?IFPU 10-53 
impure memory 5-5 
?INCH 1O-3lf, 10-82 

standard input channel 7-3 
indirect protection 5-3 
indirection loop 5-3 
?INFO 1O-54f, 10-66 

system call, returns channel status 7-2 
initial task, see task, initial 
initialize for floating point 10-53 
internal format 9-2, 10-48, 10-96 
interprogram message 

passed by ?EXEC, ?RETURN 9-lf 
read with ?GTMSG, ?TMSG 9-2 

interrupt service routine, 
see system interrupt routine 

intertask communication 6-3 
introduce a disk to the system 10-67 
?IPEND 10-56 
?IRMV 10-57 
?IUNPEND 1O-58f 
?IXIT 10-60 

K 

kernel, unmapped system memory 5-4 
keyword switch C-2 
kill a task 10-61 
kill post-processing routine 6-2 
?KT ASK 10-61 

L 

?LDEF 1O-62f 
LEF (Load Effective Address), see LEF mode 
LEF mode, enabling/disabling 8-2ff, 10-23, 

1O-27,lO-51f 
libraries, OSL.LB, MTA.LB, DCLP.LB J-l 
library routines 

coding 2-6 
functions 2-6 
summary list 2-6 

line device routine, defining with ?LDEF 8-3 



line printer characteristics 7-2, 7-12 
LINK 1-3 
link file 

beginning with prefix 3-6 
creating 3-5f 
definition 3-5 
deleting 3-5, 10-18 
information on, ?FST A T 3-6 
length 3-5 
renaming 3-5 
resolution 3-5 
validation 3-5f 

load an overlay 10-74 
loadpoint marker, see magnetic tape 
logical address, translation with ?GMRP 8-8 
logical address space, see user memory 5-1 
?LRMV 10-64 
?LXIT 10-65 

M 

macroassembler, permanent symbol tables, 
MASM.PS 2-6, E-1, 1-2 

magnetic tape controllers, device code MTA H-2f 
magnetic tape 

character format H-3 
commands H-4 
data organization, records, files H-4 
data transfer rate H-4 
drives H-4 
end-of-file indicator H-4 
end-of-file mark H-4 
error checking H-4 
files H-4 
inter-record gaps (IRG) H-4 
markers H-2 
operations H-2, h-4 
records H-4 
routine library H-l 
specify at SYSGEN H-1 
supported by library 7-7 
supported by MOVE utility 7-7 
system H-2 
transports H-3 
write enable ring H-3 

mantissa B-1 
map a memory segment 5-9, 1O-69f 
MAP feature 5-1, 5-1f 
MAP functions 

I/O protection 5-3 
indirect protection 5-3 
validity protection 5-3 
write protection 5-3 

master device, see system master device 
?MEMI10-66 

modifies impure memory 5-6 
specifies memory in words 5-6 

memory allocation and protection (MAP) 5-1 
memory management, system calls 5-9 

memory organization 
pages 5-1 
segments 5-1ff 

defined 5-1 
system, unmapped (kernel) 5-4 

memory segment see memory organization 
memory segments 

dynamic segments unswapped 5-9 
mapping to user space, (?MSEG) 5-7 
number in system 5-7 
unmapping from user space 5-9 

memory 
?MXSP maximum segment size 10-13, 

10-24, 10-69f 
extended, management 5-6 
user-defined, see user program 

MICREM.OB translator object module 1-2 
MMASM 1-2 
MMSL.LB 1-2 
MMTA.LB H-5 
mnemonics 

defined, MASM.PS, OPARU.sR 2-6 
setting status flags 2-6 

?MOUNT 10-67 
?MOUNT system call, MP / AOS-SU formatted disk only 

7-7 
MOVE utility 1-2 

supports magnetic tape 7-7 
MP system call translator 

files 1-2 
operating procedures 1-2 

MP _AOS_ERCOD.SR, error code parameter file, 
listing E-27 

MP _OS_ERCOD.SR, error code parameter file, 
listing E-2 

?MSEC 10-68 
?MSEG 1O-69f 

system call 5-7 
MT A device code H-3 
MTA.LB library J-1 

routines, list J-2 
tape library, see also magnetic tape 

multiplexors, line interrupt routine 8-4 
programmable baud rate 7-10, 10-86f, 

1O-86f 
see also hardware characteristics 

multitasking, kill post-processing routine 6-2 
calls 6-3 
console interrupt task 6-3 
creating tasks (?CTASK) 6-1 
definition 6-1 
initial task, default priority 6-2 
killing tasks (?KT ASK) 6-2 
max tasks specify at SYSGEN 6-2 
nonpended calls 6-1 
parallel call errors 6-2 
scheduling, ?DRSCH, ?ERSCH 6-3 
specify tasks per program 6-1 
stack overflow routine 6-2 
task priority, specify 6-2 



task synchronization, ?PEND, ?UNPEND 6-3 
event number 6-3 

?MXSP value, max segment size see memory 
?MYID 10-71 

N 

naming conventions 
error codes (ER prefix) 2-6 
system calls (? prefix) 2-6 

non-return to zero for ones see NRZI 
nonpended calls 

checking completion ?AWAIT 2-3 
NP option 2-3 

nonpended I/O 7-1, 7-3, 10-79 
NP option (nonpended call) 7-4 
NRZI tape format, non return to zero for ones 

H-3 
NSKID.SR parameter file E-2 

o 
offset addressing 2-5 
OPARU.SR parameter file 2-6, E-1f 

system call mnemonics, listing E-33 
?OPEN lO-72f 
open an I/O channel lO-72f 
open tape drive h-8 
OSL.LB library J-1 

routines, list J-2 
?OUCH, standard output channel 7-3, 10-31f, 

10-82 
overlay descriptor 10-75, F-1 
overlay node F-2 

area 5-5 
use count F-1 

overlays 2-7 
assembling F-2 
binding F-2 
program example F-2 
programming F-l 
routines, ?OVLOD, ?OVREL, F-1, F-3, 1O-74f 

?OVLOD 10-74 
?OVREL 10-75 

p 

packets 2-4 
addressing 2-5 
flag words 2-5 
mnemonics, defined OP AR U .SR 2-4 
reserved words, setting 2-5 

panic, see fatal errors 
parameter files 2-1 

defined E-1 
listings E-2 

parent program, see program swapping 
parity bits, magnetic tape H-3 
parity type (programmable) 7-9, 1O-86f 

pathnames 
fully-qualified 3-2 
in link files 3-5f 
length 3-2 
prefixes (@ : = A) 3-5 
syntax 3-2 

PE tape format, phase encoded H-3 
?PEND 1O-76f 
pend awaiting interrupt activity 10-56 
phase encoded tape format H-3 
physical page number, 

for data channel I/O returned, ?GMRP 8-8 
position tape H-lO 
?PRI10-78 
priority, task, see task priority 
program control, transferring between programs 4-1 
program management calls 4-4 
program swap level 

after chaining 4-2 
after swapping 4-2 
maximum 4-1 

program termination 
chained programs 4-2 
effects 4-3 
swapped programs 4-2 
via ?RETURN 4-3 

program translation 
break files 1-4 
compatibility of calls 1-4 
file management 1-4f 
I/O device management 1-7 
operating procedures 1-2 

program, termination BK option 4-4 
protection, see MAP functions 
pure memory, defined 5-5 

R 

?READ 1O-79f 
read a record h-9 
read data from a device or file 10-79 
read protect 10-47 
release an overlay 10-75 
remove a disk 10-21 
remove an interrupt handling routine 10-57 
remove line interrupt handler 10-64 
?REN AME 10-81 
rename a file 10-81 
?RESET 10-82 
restarting the system 10-8 
resume task execution 10-101 
?RETURN 1O-83f 
?RETURN system call 

dynamic segments unswapped 5-9 
restore channel states 7-2 

return to previous program level 1O-83f 



revision number, program 
read via ?INFO 2-7 
read, via CLI 2-7 
set via assembler 2-7 
set via binder 2-7 
set via CLI 2-7 

root directory, disk devices 3-2 

s 
?SCHAR 1O-85f 
scheduling, tasks, see multitasking 6-3 
?SCHS 1O-89f 
?SDAY 9-2, 10-91 
searchlist 

clearing, extending ?ALIST 3-4 
defined 3-4 
initial contents (:) 3-4 
managing, via CLI 3-4 
reading (?GLIST) 3-4 
setting (?SLIST) 3-4 

segments see memory organization 
segments, attached, number in system 5-7 
select a working directory 10-20 
set channel specifications 1O-89f 
set device characteristics 1O-85f 
set file attributes 1O-94f 
set searchlist 10-92 
set system calendar 10-91 
set the current file position 10-93 
set the current system time and date 10-96 
set the system clock 10-98 
set up data channel map 10-97 
set up system call 10-28 
shared area (memory) 5-4 
shared memory 5-5 
shutting down the system 2-1 
sign, floating point B-1 
simple switch C-2 
?SLIST 10-92 
?SPOS 10-93 
stack fault handling routine 2-5 
?ST A TR 1O-94f 
status flags, setting 2-6 
?STIME 9-2, 10-96 
?STMP 10-97 
?STOD 9-2, 10-98 
stop bits (programmable) 

range, ?SCHAR HC 10-86 
range 7-9 

suspend a task 10-76 
swapping, see program swapping 
switches 

keyword switch C-2 
simple switch C-2 

SYSGEN utility 2-2 
SYSID.SR parameter file 2-1, E-2 
system call translator, see program translation 

system calls 
coding (? prefix) 2-1 
concurrent, max in system 2-2 
defined (SYSID.SR) 2-1 
functions 2-1 
mnemonics 2-1 
normal, error returns 2-2 
options, coding 2-3 

nonpended calls coding 2-3 
packets 2-4 
set up at runtime ?EQT 2-1 

system clock 
data in internal format 9-lf 
expresses time/date 9-lf 
user-selected frequency 9-1 

system interrupt routine 8-1 
system master device 3-2 

mounted at startup 7-7 
system time 10-50 

T 

task control block 10-14 
task identifier (TID) 

assigned on task creation 6-2 
retrieving (?MYID) 6-2 

task priority 
initial task 6-2 
user-specified (?CT ASK) 6-2 

task stacks 
initializing, .LOC 2-5 
minimum size (?STKMIN) 2-5 
stack fault handler 2-5 

task, see multitasking 
tasks 

per program, specify at SYSGEN 6-1 
system-created, per nonpended call 6-1 
system-created, per program 6-1 
systemwide, specify at SYSGEN 6-1 

?TCLOS H-6 
terminals, see character devices 
terminate programs, effects of ?RETURN 4-3 
?TGPOS H-7 
TID, task identifier number 6-2 
time/date information 

convert, internal ?FTOD, ?FDAY 9-1f 
decoded format, ?CTOD, ?CDA Y 9-lf 
definition 9-lf 
internal format, ?GTIME 9-1f 
library routines 9-lf 
readable format, ?GTOD, ?GDAY 9-1f 
set with CLI 9-lf 
set with routines, ?STOD, ?SDAY 9-lf 
set, ?STIME, internal format 9-lf 
system calls 9-lf 

timeout interval 10-76 
?TMSG 9-2, 10-99f 
?TOPEN H-8 
translate a CLI-format message 1O-99f 



translator object module 1-2 
subroutine library file 1-2 

?TREAD H-9 
true zero B-2 
?TSPOS H-I0 
?TWRITE H -11 

u 
?UNPEND 10-10 1 
unpend task from interrupt handling routine 

1O-58f 
use count, overlay nodes F-l 
user devices, number, specify at SYSGEN 8-1 
user memory 

attached segments, maximum number 5-7 
attaching to segments, (?ASEG) 5-8 
defined segments, global numbering 5-7 

extended 5-6 
impure area, segment 0 5-5 

user modifiable 5-5 
impure, finding space left 5-6 

highest (?PHMA value) 5-6 
highest (?PIMX value) 5-6 

logical address space 5-1 
overlay node area, segment 2 5-5 
segments deallocating (?DSEG) 5-7 

defined 5-1 
local numbering 5-5 
mapping, (?MSEG) 5-8 
defining (?CSEG) 5-7 
possible size 5-3 

shared area, segment 1 5-5 
user-defined segments, I/O 5-7 

user program 
maximum logical address space 5-4 
memory allocation, pages 5-1 

?USP (Unique Storage Position) 10-14 

v 
validity protection 5-3 

w 
word aligned number, 

for floating point operations B-1 
working directory 

changing (?DIR) 3-4/ 10-20 
displaying (?GNAME) 3-4 
managing, via CLI 3-4 

?WRITE 1O-102f 
write a record to tape h-ll 
write data to a device or file 1O-102f 
write enable ring, see magnetic tape 
write protect 10-47 
write protection 5-3 



LJ.JI 
;:';1 
-J I 

fal 
~I 
01 
Q. 

~. 
3' 
«I 

S· 
l)' 

4. Data General 
users 
group Installation Membership Form 

Name ____________________________ ___ Position __________________________________ __ Date __________ _ 

Company. Organization or School ____________________________________________________________________ _ 

Address ___________________________ _ City _____________________ State ________ Zip ______ _ 

Telephone: Area Code __________ No. _____________ _ Ext. 

o OEM o Batch (Central) 

o End User o Batch (Via RJE) 
o System House o On-Line Interactive 
o Government 

Qty. Installed I Qty. On Order 0 HASP 0 X.25 

0 HASP II 0 SAM 

0 RJE80 0 CAM 

0 RCX 70 0 XODIACTM 

0 RSTCP o DG/SNA 

0 4025 o 3270 

o Other 

Specify 

0 ________ _ 

_ • Data General 
Data General Corporation. Westboro. Massachusetts 01580. (617) 366-8911 



FOLD 

TAPE 

FOLD 

IIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772 

Postage will be paid by addressee: 

t. Data General 
ATTN: Users Group Coordinator (C-228) 
4400 Comput er Drive 
Westboro, MA 01581 

FOLD 

TAPE 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 



_. Data General TP ____ _ 

TIPS ORDER FORM 
Technical Information & Publications Service 

BILL TO: SHIP TO: (if different) 

COMPANY NAME COMPANY NAME 

ADDRESS ADDRESS 

CITY CITY 

STATE ZIP STATE ZIP 

ATTN: ATTN: 

DESCRIPTION 
UNIT LINE TOTAL 

QTY MODEL II PRICE DISC PRICE 

(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL 

Tax Exempt II Sales Tax 
or Sales Tax (if applicable) 

Shipping 

TOTAL 

METHOD OF PAYMENT --------- SHIP VIA 
o Check or money order enclosed 0 DGC will select best way (U.P.S or Postal) 

For orders less than $100.00 
o Other: 

o Charge my 0 Visa 0 MasterCard o U.P.S. Blue Label 
Acc't No. ____ Expiration Date ___ _ o Air Freight 

o Other 
o Purchase Order Number: _______ _ 

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING. -------' 

Person to contact about this order ____________ Phone ______ _ 

Mail Orders to: 

Data General Corporation 
Attn: Educational ServicesrrIPS F019 
4400 Computer Drive 
Westboro, MA 01580 
Tel. (617) 366-8911 ext. 4032 

DISCOUNTS APPLY TO 
MAIL ORDERS ONLY 

Buyer's Authorized Signature 
(agrees to terms & conditions on reverse side) 

Title 

DGC Sales Representative (If Known) 

012-1780 

Extension 

Date 

Badge II 

[~l 



DATA GENERAL CORPORATION 
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE 

TERMS AND CONDITIONS 

Data General Corporation ("DGC") provides its Technical Infonnation and Publications Service (TIPS) solely in accordance with the following 
tenns and conditions and more specifically to the Customer signing the Educational Services TIPS Order Fonn shown on the reverse hereof 
which is accepted by DGC. 

1. PRICES 
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or 
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Fonn shown on the reverse hereof Prices are 
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to 
collect or pay on the sale, license or delivery of the materials provided hereunder. 

2. PAYMENT 
Tenns are net cash on or prior to delivery except where satisfactory open account credit is established, in which case tenns are net thirty (30) 
days from date of invoice. 

3. SHIPMENT 
Shipment will be made F.O.B. Point of Origin. DGC nonnally ships either by UPS or U.S. Mail or other appropriate method depending upon 
weight, unless Customer designates a specific method and/or carrier on the Order Fonn. In any case, DGC assumes no liability with regard 
to loss, damage or delay during shipment. 

4. TERM 
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until tenninated by either party upon 
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC 
publications will be governed by the tenns and conditions of this Agreement. 

5. CUSTOMER CERTIFICATION 
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub· licensee of the software which is the subject 
matter of the publication(s) ordered hereunder. 

6. DATA AND PROPRIETARY RIGHTS 
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such 
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details 
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the tenns and 
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into 
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure. 

7. DISCLAIMER OF WARRANTY 
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT­
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER. 

8. LIMITATIONS OF LIABILITY 
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC­
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN 
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS. 

9. GENERAL 
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order 
Fonn. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These tenns and con­
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written 
communications, agreements and understandings. These tenns and conditions shall prevail notwithstanding any different, conflicting or addi­
tional tenns and coriditions which may appear on any order submitted by Customer. 

DISCOUNT SCHEDULES 

DISCOUNTS APPLY TO MAIL ORDERS ONLY. 

LINE ITEM DISCOUNT 

5-14 manuals of the same part number - 20% 
15 or more manuals of the same part number - 30% 

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY. 



_. DataGeneral 

TIPS ORDERING PROCEDURE: 

Technical literature may be ordered through the Customer Education Service's Technical Information 
and Publications Service (TIPS). 

1. Turn to the TIPS Order Form. 

2. Fill in the requested information. If you need more space to list the items you are ordering, use an 
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal" 
on the form. 

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the 
back of the TIPS Order Form.) 

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.) 

If your order totals less than 100.00, enclose a certified check or money order for the total (include 
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling. 

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified, 
orders are normally shipped U.P.S. 

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order 
Form. 

7. Sign on the line provided on the form and enclose with payment. Mail to: 

TIPS 
Educational Services - M.S. F019 
Data General Corporation 
4400 Computer Drive 
Westboro, MA 01580 

8. We'll take care of the rest! 





User Documentation Remarks Form 
Your Name ___________________ Your Title ______________ _ 

Company ________________________________________________________________________ _ 

Street __________________________________________________________________________ ___ 

City _________________________________________ State ______ Zip ______ _ 

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your 
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond. 
Thank you. 
Manual Title _______________________ _ Manual No. ________ _ 

Who are youl o EDP Manager o Analyst/Programmer OOther _______________ _ 

o Senior Systems Analyst o Operator 

What programming language(s) do you usel _________________________ _ 

How do you use this manuall (List in order: 1 = Primary Use) ____________________ _ 

_ Introduction to the product __ Tutorial Text _ Other 
_ Reference _ Operating Guide 

About the manual: Is it easy to readl 
Is it easy to understandl 
Are the topics logically organizedl 
Is the technical information accuratel 
Can you easily find what you wantl 
Does it tell you everything you need to know 
Do the illustrations help youl 

Yes Somewhat 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

No 
o 
o 
o 
o 
o 
o 
o 

If you have any comments on the software itself, please contact Data General Systems Engineering. 
If you wish to order manuals, use the enclosed TIPS Order Form (USA only). 

Remarks: 

Dille 



I I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772 

POSTAGE WILL BE PAID BY ADDRESSEE 

t. ·DataGeneral 
User Documentation, M.S. E-111 
4400 Computer Drive 
Westborough, Massachusetts 01581 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 



User Documentation Remarks Form 
Your Name ___________________ Your Title ______________ _ 

Company ____________________________________ _ 

Street _____________________________________ ___ 

City _____________________ State ______ Zip ______ _ 

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your 
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond. 
Thank you. 

Manual Title ________________________ Manual No. ________ _ 

Who are youl OEDP Manager o Analyst/Programmer OOther ________ _ 

o Senior Systems Analyst o Operator 

What programming language(s) do you usel ___________________________ _ 

How do you use this manuall (List in order: I = Primary Use) ____________________ _ 

_ Introduction to the product __ Tutorial Text _ Other 
_ Reference _ Operating Guide 

About the manual: Is it easy to readl 
Is it easy to understandl 
Are the topics logically organizedl 
Is the technical information accurate? 
Can you easily find what you wanH 
Does it tell you everything you need to know 
Do the illustrations help youl 

Yes Somewhat 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

No 
o 
o 
o 
o 
o 
o 
o 

If you have any comments on the software itself, please contact Data General Systems Engineering. 
If you wish to order manuals, use the enclosed TIPS Order Form (USA only). 

Remarks: 

Dille 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01 772 

POSTAGE WILL BE PAID BY ADDRESSEE 

t. DataGeneral 
User Documentation, M.S. E-lll 
4400 Computer Drive 
Westborough, Massachusetts 01581 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 





Data General Corporation, Westboro, MA 01580 1111111111111111111111111111111111111111111111111111111111111111I11111 


