¢y DataGeneral

Software Documentation

MP/AQOS-SU
Programmer’s Manual

093-000348-00

MP/AOS-SU Programmer’s Manual

093-000348-00

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000348

©Data General Corporation, 1983

All Rights Reserved

Printed in the United States of America

Revision 00, October 1983

Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE-
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPER-
NOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, SWAT,
GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L,
DG/GATE, DG/XAP, ECLIPSE MV/10000, GW/4000, GDC/1000, REV-UP, UNX/VS, XODIAC,
DEFINE, SLATE, microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S.
trademarks of Data General Corporation.

MP/AOS-SU Programmer’s Manual
093-000348

Revision History: Effective with:
Original Release - October 1983 MP/AOS-SU Rev. 1.00

Preface

This manual is intended to serve experienced system programmers
who want a detailed knowledge of MP/AOS-SU software.

The manual contains 10 chapters. Chapter 1 introduces you to the
MP/AO0S-SU system and facilities. Chapter 2 gives a general view of
programming with MP/AQS-SU. Chapters 3, 4, and 5 deal with the
management of files, programs and memory, respectively. Chapter 6
discusses multitasking. Input and output and user device support are
discussed in Chapters 7 and 8. The last two chapters contain a list of
miscellaneous calls and a dictionary of system calls and library
routines.

There are ten appendixes and an index for reference.

e If you have comments on this manual, please use the prepaid
Remarks Form that appears after the Index. We want to know
what you like and dislike about this manual.

e If you need additional manuals, please use the enclosed TIPS
order form (USA only) or contact your Data General sales
representative.

Throughout this manual we use the following conventions to illustrate
command dialogue formats:

COMMAND Uppercase letters in THIS typeface indicate a

SYSTEM CALL command, system call or instruction mnemonic.

INSTRUCTION You type an instruction mnemonic exactly as it
appears.

argument Lowercase italic is used to represent a com-

mand'’s or an instruction’s argument when that
argument is a generic term. In your program,
you must replace this symbol with the exact
code for the argument you need; i.e. file 1.

Contacting Data
General

Conventions and
Abbreviations

1 iranead Matarial - Pranartv of Nata (hanaral Carnaratinn

[)
l V Preface

Related Manuals

Licensed Material - Property of Data General Corporation

[optional] This typeface, lower case italic, and brackets
denote an optional argument. Optional command
switches may appear within brackets as well. If
you use the argument or switch, do not write
the brackets into the code.

CTRL- Depress and hold the Control key while you
press the character following CTRL-.

<New-line> Represents a New-line character.

argl/arg2 This typeface, lower case italic and a vertical

bar () denote that you have a choice between
argl or arg2; i.e. you may use either a filename
or a device as your argument.

CR Represents the Carriage Return key.

Examples

All programming examples appear in the following typefaces:
EFA <New-line>
The program'’s response appears as:

CALC+6: 012002

The following manuals also belong to the series of books about the
MP/0S, MP/AOS-SU, and MP/AOS operating systems.

System Topics

MP/AOS-SU Command Line Interpreter (CLI) (DGC No. 093-000349)
describes the CLI program, the user’'s primary interface with the
MP/AOS-SU system. The manual provides a command dictionary
containing descriptions of command functions, formats and exam-
ples.

Loading and Generating MP/AOS-SU (DGC No. 093-000354) describes
how to install MP/AOS-SU software on microECLIPSET™ and
DESKTOP GENERATION™ computers. The manual also describes
the following utilities, including sample dialogues, as appropriate:

¢ SYSGEN, which generates custom tailored systems
e DINIT, which initializes disks
e FIXUP, which repairs disks

¢ MAKEBOOT, which prepares stand-alone programs and systems
for booting.

MP/AOS Macroassembler, Binder, and Library Utilities (DGC No.
069-400210) documents the MP/AOS macroassembler and binder as
well as the library file editor (LED) and system cross-reference
analyzer (SCAN). The manual includes programming examples and a
dictionary of assembler pseudo-ops.

MP/AOS-SU Debugger (DGC No. 093-000350) describes DEBUG, the
system utility that aids in detecting and correcting program runtime
errors. The manual provides a command dictionary that contains
command functions, formats and examples.

MP/AOS and MP/AOS-SU Advanced Program Development Utilities
(DGC No. 069-400208) describes the following utilities:

e TCS (Text Control System), which can maintain multiple versions
of a file, select the correct version to build a program, and find
text files

e BUILD, which creates a new version of a file from existing files,
thus minimizing effort and errors in program development

e FIND, which locates occurrences of strings in text files.

MP/AOS and MP/AOS-SU File Utilities (DGC NO. 093-000351)
describes the following utility programs, providing sample dialogues
for each.

¢ AOSMIC, which allows manipulation of MP/AOS, MP/AQS-SU,
and MP/OS disks and files on an AOS system

e FDISP, which can display the address and data content of a file
or compare two files, displaying parts that differ

e FLED, a disk file editor that allows examination and modification
of executable and data files, using a variety of formats

e FOXFIRE, which permits the transfer of files among MP/0S,
MP/AOS, MP/AOS-SU, and AOS operating systems

e MOVE, which allows the transfer of files among directories and
the backing up of directories to tape or diskette

¢ REFIT, which performs multi-module symbol cross references on
high level language source or listing files

e SCMP, which can compare two source programs, line by line
e TCOPY, which allows the transfer of data to and from tapes

e VAMP, a user-oriented file patch utility for building patch files
and installing patch code.

Editors

MP/AOS and MP/AQOS-SU Slate Text Editor (DGC No. 069-400209)
documents the features of SLATET™, a screen and line-oriented text
editor.

MP/AOS SPEED Text Editor (DGC No. 0690400202) documents the
features of SPEED, the MP/AOS and MP/AOS-SU character-oriented
text editor.

Preface

Licensed Material - Property of Data General Corporation

\"/

[]
Vl Preface

Licensed Material - Property of Data General Corporation

Languages

SP/Pascal Programmer’s Reference (DGC NO. 069-400203)
documents an extended Pascal for system programmers. SP/Pascal
has all of the features of MP/Pascal as well as special features
targeted for the MP/AQS, MP/AOQS-SU, and AOS operating systems.

MP/FORTRAN IV Programmer’s Reference (DGC No. 069-400033)
documents for system programmers a language based on ANSII 1966
standard FORTRAN with extensions.

MP/BASIC Programmer's Reference (DGC No. 069-400005-01)
documents for new users a programming language based on ANSII
standard BASIC with extensions.

MP/Pascal Programmer's Reference (DGC No. 069-400031)
documents for system programmers a Pascal-based language targeted
for the MP/0S operating system.

Communications

MP/HASP Reference (DGC No. 069-400050) describes the MP/HASP
II workstation Emulator, a program which supports the simultaneous
transmission of up to five files between two computers linked by
telecommunication lines.

MP/RJE80 Reference (DGC No. 069-400040) describes the Remote
Job Entry Program that supports the batch transfer of files between
two computers linked by telecommunication lines.

MP/3270 Reference (DGC No. 069-400041) describes a program that
permits terminals on any Data General system to emulate IBM
Model 3277 terminals and exchange data with remote IBM or
IBM-emulating systems.

12
MSCP Programmer'’s Reference (DGC No. 093-40(¥l 2) describes the
MP Synchronous Communications Package (MSCP), a set of program
calls that allow communcation with a remote station over a synchro-
nous line. MSCP is required for MP/RJE80, MP/HASP, MP/3270,
and user-defined communications programs using the Binary Syn-
chronous Communications protocol.

1. System Overview

2. Programming with
MP/AOS-SU

Bootstrapping the System
Shutting Down the System
System Calls
System Call Options
Nonpended Calls
Accumulator Usage
Stacks ...
Naming Conventions
Mnemonics
Library Routines
Program Revision Number

Overlays

3. File Management

Basic Organization
Hierarchical File Structure
The Device Directory
Root Directories
System Master Device
Pathnames
The Working Directory
The Searchlist
Pathname Prefixes
Links
File Element Size
File Types and Attributes

System Call/Library Routine
Summary

Contents

4. Program Management

Program Concepts 4-1
Transferring Control Between

Programs 4-1
Interprogram Communication 4-3
Terminating a Program 4-3
Break Files 4-4
Restarting the System 4-5
System Call Summary 4-5

5. Memory Management

The MP/AO0S-SU Mapping Capability .5-2

Memory Segments 5-3
Operating System Memory 5-4
Disk Buffer Area 5-4
User Memory 5-5
Extended Memory Management 5-6

6. Multitasking

Managing Tasks 6-1
Parallel Call Errors 6-2
Task Priority 6-2
Scheduling 6-3
Intertask Communication 6-3
Console Interrupt Tasks 6-3
System Call/Library Routine
Summary 6-4

7. Input and Output

Overview 7-1
I/0 Channels 7-2
File Positioning 7-3
I/O0Buffers 7-3
Nonpended I/O 7-4
I1/0 Techniques 7-5
I/0 Device Management 7-6

Licensed Material - Property of Data General Corporation

8.

9.

Magnetic Tape 7-7
Character Devices: Terminals 7-7
Line Printers 7-12
System Call Summary 7-12
User Device Support
Facilities 8-1
Defining a Device Interrupt Service
Routine 8-1
Enabling and Disabling Access to all
Devices 8-5
Managing Data Channel Map Slots .. .8-6
System Call Summary 8-10
Miscellaneous System Calls
Clock/Calendar Calls 9-1
Reading a Message 9-2

10.Dictionary of System Calls and

Library Routines
Explanatory Notes 10-2

The ASCII Character set

DGC Standard Floating Point
Format

Sign ... B-2
Exponent B-2
Mantissa B-3
CLI Message Format

Arguments C-2
Switches C-2
I/0 Device Codes

User Parameter Files

Using Overlays

Overlay Programming Considerations _F-1
Assembling Overlay Programs F-2
Binding Overlay Programs F-3
Overlay System Calls = . F-4

MP/AOS-SU Fatal and Booting
Error Messages

Fatalerrors G-1
Booting Errors

Licensed Material - Property of Data General Corporation

H. The Magnetic Tape Handler

Magnetic Tapes
Magnetic Tape Transports
The Controllers
Data Transfer
Tape Operations
Tape Commands

I. Running MP/AOQOS-SU
Programs Under AOS

Cross Development on AOS
Assembling
Binding

Compatibility of System Calls
Program Management
Multitasking
File Management
I/0 Device Management

J. MP/AOS Library Routines

Table
3.1 Filetypes 3-7
3.2 File attributes 3-7
3.3 Summary of file calls and library

routines 3-8
4.1 Systemcalls 4-5
5.1 Memory call summary 5-9
6.1 Multitasking call and routine summary 6-4
7.1 Disk(ette), console, line printer and

magnetic tape devices 7-6
7.2 Console characteristics 7-8
7.3 Programmable hardware

characteristics (?SCHAR with HC

option) 7-10
7.4 Baud rate for

Asynchronous/Synchronous Line

Multiplexor (ASLM) and Universal

Synchronous/Asynchronous

Multiplexor (USAM) 7-10
7.5 Hardware Characteristics for Disk

Devices 7-11
7.6 Control characters 7-11
7.7 Control sequence characters 7-12
7.8 Line printer device characteristics 7-12
7.9 Input/Output and device system

calls 7-13
8.1 User device interrupt handler

definition packet 8-1
8.2 Line interrupt handler definition

packet 8-4
8.3 User device support system calls 8-10
9.1 Clock/Calendar calls and routines 9-2
10.1 Filetypes 10-11
10.2 Status flags in ?DSTW word 10-25

10.3
10.4
10.5
10.6
10.7

10.8

10.9

10.10 Types of requests

B.1

D.1

D.2

E.l

G.1
G.2

I.1

1.2

1.3

14

Tables

File attributes 10-47

Filetypes 10-47

Console characteristics 10-86

Programmable hardware

characteristics (?SCHAR with HC

option) 10-87

Baud rate for ASLM and USAM

multiplexors 10-87

Hardware Characteristics for Disk

Devices 10-87

File attributes 10-94
................ 10-100

Excess 64 representation of exponents . B-2

MicroECLIPSE and microNOVA device
code assignments for disks, diskettes,

line printers, and magnetic tape devices
supported by MP/AQS-SU D-1

Standard microECLIPSE and

microNOVA I/0 device codes D-2
Filetypes E-2
MP/AOS-SU error codes G-2
MP/AOS-SU booting errors G-2
Conversions of MP/AOS-SU file types

when creating files under AOS I-5
Conversions of AOS and AOS/VS file

types when opening files with

MP/AOS-SU programs I-6
Reversal in polarity between

MP/AO0S-SU attributes and AOS access
privileges 1-7
Correspondences between device
characteristics 1-7

Licensed Material - Property of Data General Corporation

1.5

1.6

1.7

1.8

J.1
J.2
J.3

MP/AOS-SU system calls supported

under MP Emulator 1-8
MP/AOQOS-SU library routines supported

under the MP Emulator 1-8
MP/AOS-SU system calls not supported

under MP Emulator 1-8
Device name mapping 19
List of routines in library OSL.LB J-2
List of routines in library MTA.LBJ-2

List of routines in library DCLP.LBJ-2

Licensed Material - Property of Data General Corporation

Figure
3.1 Sample device directory and file system 3-4
4.1 Program swapping via ?EXEC 4-2
4.2 ?EXEC with swap and chain options ...4-3
4.3 Effect of 7RETURN and ?KILL 4-4
4.4 Break filename 4-4
5.1 Addressing with the MAP feature 5-2
5.2 System memory configuration 5-4
5.3 Organization of user logical address

SPACe 5-5
5.4 Memory management 5-7
5.5 Mapping to asegment 5-8
7.1 Pended and unpended I/0 7-4
8.1 Data channel numbering scheme 8-7
8.2 Data channel map slots and their range

of corresponding logical addresses 87
8.3 ?GMRP call return physical page

number 8-8
8.4 Sequence of data channel mapping

operations 89
10.1 Task definition packet 10-14
10.2 Disk status packet 10-25
10.3 File status packet 10-34
10.4 Interrupt handler definition packet . . 10-51
10.5 Program information packet 10-54
10.6 Line interrupt handler definition

packet 10-62
10.7 Map segment packet 10-70
10.8 Sample delimiter table 10-89
10.9 ?TMSG packet 10-99
A.1 ASCII Character Codes A-1
B.1 Floating point formats= . .. B-2

Illustrations

F.1 Organization of sample program MPRG F-2
H.1 DGC magnetic tape transport H-2
H.2 Writeenablering H-2

Licensed Material - Property of Data General Corporation

System Overview

The MP/AOS-SU system is a real-time operating system for 16-bit
DGC microECLIPSE™ processors available in 7" x 9" packaging.
Processors must have the Character Instruction set. Currently,
MP/AOS-SU runs on the following microECLIPSE processors: S/20
and C/30, and DESKTOP GENERATIONTM Model 10, Model 10/SP,
Model 20, and Model 30.

MP/AOS-SU retains substantial compatibility with MP/AOS, a
multi-programming, real-time operating system for ECLIPSE and
microECLIPSE computers, and with MP/0S, a single-user system for
microNOVA, ENTERPRISE, MPT, MBC, and NOVA4 computers.
With the aid of the System Call Translator software package,
MP/AOS-SU programs can be developed and run under AQS, the
Advanced Operating System for ECLIPSE line computers, and under
AOS/VS, the Advanced Operating System/Virtual Storage for MV
family computers.

MP/AO0S-SU provides sophisticated facilities such as multitasking,
flexible user management of system resources, and the ability to
access more than 32K words of memory from within a single user
program. The system features fast task switching, deterministic
scheduling of tasks strictly by priority, and low interrupt latency.
MP/AOS-SU also supports user-written device drivers.

The MP/AOS-SU operating system can be used to provide a basic
program development environment; to that end, a full range of
program development utilities, text editors and high-level languages
such as MP/FORTRAN IV, MP/ and SP/Pascal, and MP/BASIC are
made available.

NOTE: Several utilities, for example SP/PASCAL, require the Floating-Point
Instruction Option.

Licensed Material - Property of Data General Corporation

1 "2 System Overview

Licensed Material - Property of Data General Corporation

Additionally, MP/AOS-SU provides an efficient basis for user-
designed applications such as real-time program control, data acquisi-
tion, and medical instrumentation. Features such as highly accurate
timing (including the ability to time to milliseconds when a 1000 Hz
clock frequency is selected at system generation), task synchroniza-
tion, nonpended system calls, and support for custom devices make
MP/AOS-SU particularly well suited to real time applications.

Using an interactive system generation utility, you can generate an
MP/AOS-SU system containing a desired subset of the full system’s
power and tailor it to any configuration of memory boards and
peripherals. (See Loading and Generating MP/AOS-SU.

Programs communicate with the operating system through system
calls that you place in the program code. This manual describes the
operating system's facilities and the system calls that apply to them.

Programming with 2
MP/AQOS-SU

Before beginning to work with the MP/AOS-SU operating system, Bootstrapping the
you must first bootstrap the system, i.e., bring it into memory. Since System

the bootstrap procedure varies depending on the processor used, it is

necessary to refer to the appropriate Principles of Operation manual

for your CPU. A detailed discussion of bootstrapping also appears in

Loading and Generating MP/AQOS-SU.

Any one of the following procedures results in an orderly system Shutting Down the
shutdown ensuring no loss of data: System

a BYE command issued from the initial CLI
a ?BOOT system call issued from the running program

MP/AOQOS-SU supports a wide variety of system calls, command System Calls
macros which call on predefined system routines. Each system call

begins with a question mark. In assembly language, system calls are

coded in the user program just as instructions are.

MP/AO0S-SU system calls allow the user to

¢ manage the logical address space

e manage dynamic memory segments

e create and maintain disk files and directories

e perform file input and output

¢ create and manage a multitasking environment

e define and access user devices

e perform data channel input and output with user devices.

Each system call macro in an assembly language program is expanded
at assembly time. Each system call macro name is associated with a
number. A complete list of system call mnemonics and their numbers
is included in parameter file SYSID.SR, which is distributed with
the release package. See Appendix E for more on parameter files.

Licensed Material - Property of Data General Corporation

2_2 Programming with MP/AQS-SU

Licensed Material - Property of Data General Corporation

A special system call (?EQT) offers users the option of setting up
system calls at runtime by specifying the desired system call number
and option in AC3 and setting up ACO through AC2 as defined for the
particular call to be executed.

This manual discusses the system calls in functional categories with
a chapter for each category. A detailed description of each system
call appears in the alphabetized “Dictionary of System Calls and
Library Routines” in Chapter 10.

When generating an MP/AOS-SU system you specify the maximum
number of concurrent system calls to be supported by that system.
The interactive SYSGEN utility is described in Loading and Generat-
ing MP/AQOS-SU.

Error Codes

Except where noted, you must reserve two return locations for each
system call: an exception error return, and a normal return. After
the system has executed the call, MP/AQS-SU passes control either
to the error return or to the normal return, depending on the call's
outcome.

In either case, on return, accumulator 3 (AC3) contains the current
contents of the frame pointer. On an exception return, ACO contains
an unsigned 16-bit value representing the exception condition code
(error code) indicating the reason for the call’s failure. All other
accumulators contain the values they had on input, unless otherwise
noted.

A unique text string is also associated with each error code. The CLI
(Command Line Interpreter) returns this string when the error occurs
during the execution of a CLI command. Use the ?ERMSG library
routine to read the text string associated with the error code during
the execution of the program.

The “Errors” list in the individual description of each system call
(Chapter 10) gives the most likely exception condition code mnemon-
ics and messages for that particular call. A complete list of fatal and
booting error codes is contained in your release package.

The system provides a file, ERMES, containing all currently defined
error codes and their corresponding mnemonics and text messages.
There are 2004 groups of exception condition codes for the operating
system, the utilities, and the other programs running in the system,
including user programs. Data General Corporation reserves code
groups O through 774 for the system. You can define the remaining
groups, numbered 100g through 177g. To create a new ERMES error
message file with a structure like that of the supplied ERMES, but
with different contents, create a source file allocating an unused
code group and insert your own series of codes and messages. After
assembly, bind with a /ERMES switch.

If you wish your new ERMES file to include any of the DGC-supplied
error codes, set your searchlist to allow access to ERMES_OBS, the

error message object files supplied on your release media. You can
then bind the desired ERMES_OBS files along with your own to
generate a combined ERMES file.

Some system calls have options you may specify to modify the calls’
actions. Options are specified by two- or three-letter abbreviations,
which you code after the call’'s mnemonic in the program. For
instance, if you want to create a disk file with the ?CREATE call and
you wish to delete an existing file with the same name, use the
delete (DE) option by coding ?CREATE DE. You can specify more
than one option by separating the options’ abbreviations with
commas, for example, ?70PEN CR, AP, which creates a file if none
exists and opens it for appending.

Some system calls, notably those that perform I/O, can take a
relatively long time to execute. Normally your program (or the
calling task in a multitasked program) is suspended from running
during this interval, resulting in a loss of potentially useful processor
time. Nonpended system calls eliminate this waste.

Specify a nonpended call by coding the NP option on any system call
allowing it. When you execute the call, instead of suspending your
task, the system creates a new task and assigns it the job of executing
your call. The task which issued the nonpended call is free to
continue operation. AC2 will contain the task identifier of the system
task executing your I/0. To avoid errors when using nonpended
calls, be sure to specify an appropriate number of additional tasks
(one for each concurrent nonpended call) when you generate the
system. See Loading and Generating MP/AOS-SU.

You cannot immediately assume that the results of the system call
are valid; for instance, if you read data with a ZREAD NP system
call, you must still wait for the data to arrive before you can operate
on it. However, you can perform other types of computation while
waiting for the new data.

To determine when the nonpended call is complete, you must execute
the AWAIT system call. It enables you either to check the call’s
progress or to suspend your program until the call is complete. You
must issue an PAWAIT call to obtain the results of every nonpended
system call you execute; otherwise system memory space (a task
control block) is wasted.

System calls generally require arguments called inputs, which your
program must place in the proper accumulators before executing the
call. Some system calls also return outputs in accumulators. Only
ACO, ACI1 and AC2 are used for inputs and outputs; the system
always sets AC3 to the value of the frame pointer upon return from
a call. Any accumulators not used for outputs are returned to your
program unchanged.

Programming with MP/AQS-SU 2_3

System Call Options

Nonpended Calls

Accumulator Usage

Licensed Material - Property of Data General Corporation

2_4 Programming with MP/AQOS-SU

Licensed Material - Property of Data General Corporation

MP/AOS-SU system calls and library routines observe the following
conventions for accumulator usage.

e Input/output calls use ACO for the I/0 channel number

e Multitasking calls use AC2 for the task identifier. Calls that
reference files use ACO for the byte pointer to the pathname

¢ Calls that require packets use AC2 for the packet address
e Error codes are returned in ACO.

Byte Pointers

Before issuing many of the system calls, you must load one or more
of the accumulators with input values, such as byte pointers.

A microECLIPSE computer word is 16 bits in length; its bit positions
are numbered left to right, from 0 to 15 inclusive. A byte is 8 bits in
length. A byte string consists of a sequence of bytes, packed left to
right in a series of one or more words.

The system call descriptions use unique mnemonics for the high-
order and low-order portions of 16-bit values. The term high-order
refers to the 8 most significant bits, i.e., bits 0 through 7. The term
low-order refers to the 8 least significant bits, i.e., bits 8 through 15.

A byte pointer consists of a single word with two fields. The left
field consists of bit positions O through 14, and it contains the
address of the word containing the selected byte. The right field
consists of the bit position 15. When the state of this bit equals 1, the
pointer selects the low-order (least significant) byte of a word, i.e.,
bits 8 through 15; when the state of this bit equals 0, the pointer
selects the left (high-order, or most significant) byte of a word, i.e.,
bits 0 through 7.

To point to a byte in a word whose address you have defined as a
variable (V), the value V*2 serves as a byte pointer to the left byte,
and V*2+1 points to the right byte.

Packets

Some system calls require or return more information than the
accumulators alone will hold. In this case, additional arguments are
passed in a packet. A packet is a block of consecutive words in an
address space. The system uses these words to obtain input specifica-
tions and/or to return output values.

The number of words in a packet depends on the particular call;
there is a mnemonic for each packet size. The first word of every
packet contains a number indicating the packet type; the system
checks this number for validity when handling the call.

There is also a mnemonic for each packet type. Using the mnemonic
instead of the current value assigned to it ensures that even if the
value is redefined, the call executes correctly, provided you
reassemble your program. The mnemonics and their current values
appear in parameter file OPARU.SR. (See Appendix E.)

The system uses the data you supply in a parameter packet to decide
how to execute a call. The location of data in a packet determines its
interpretation. There are two ways of setting up a parameter packet:
with absolute addressing or offset addressing.

Offset addressing (or offset words) consists of system-defined parame-
ters, also listed in OPARU.SR, which reference the words of the
parameter packet. The packets described in the system call dictio-
nary, Chapter 10, all use offset addressing. This ensures that if the
packet is redefined in a future release of MP/AOS-SU, the program
will still run correctly if reassembled, because Data General will
ensure that the word offsets still correspond to the appropriate data,
regardless of their location in the packet.

Some parameter packets contain flag words, in which each bit has a
special meaning. These bits are set with bit masks, system-defined
parameters listed in OPARU.SR, each equal to a single set bit.

NOTE: You must set all reserved words in a parameter packet to zero.

See ?FSTAT in Chapter 10 for an illustration of a packet.

Each MP/AOQOS-SU task that issues library calls must have a stack
area in memory for library calls to use. The stack size must be equal
to or greater than the value of the mnemonic ?STKMIN. You can
initialize the stack control words by using the assembler’s .LOC
directive. When a program starts, the contents of locations 40g and
41g are the stack pointer and frame pointer, respectively. You also
must initialize location 42g with the stack limit, and you may
initialize location 43g with the address of a stack fault handling
routine.

The system calls the stack fault handling routine if your program
attempts to exceed the specified stack limit. The routine may perform
functions such as allocating more memory or simply shutting down
the program. Before calling the routine, the hardware pushes five
words onto the stack, whose contents (in the order pushed) are

¢ the accumulators ACO through AC3

e a word containing the carry in bit O and the contents of the
program counter (where the overflow occurred) in bits 1-15

NOTE: Since the system handles stack overflow by pushing more words onto the
stack, make sure that the stack is actually five words larger than the size you
specify in the stack limit word. Otherwise, part of your program code may be
destroyed during the handling of the overflow. You should also allow for any stack
space the overflow handling routine itself may need.

If your program uses multitasking, each task must have its own
stack area. The stack pointer, frame pointer, stack limit and stack
fault handler address are specified in the 2CTASK packet. In this
case, the system maintains the stack control words so that each task
always has its own unique values.

Programming with MP/AOS-SU

Stacks

Licensed Material - Property of Data General Corporation

2-5

2_6 Programming with MP/AQS-SU

Naming Conventions

Mnemonics

Library Routines

Licensed Material - Property of Data General Corporation

All symbols containing a ? are reserved for the system'’s use. All
symbols starting with ER are reserved for system error codes.

All symbols, such as error codes and offsets in parameter tables, are
referred to by their defined mnemonics instead of their numeric
values.

Mnemonics which represent status flags have values that set the
named bit to 1 and all other bits to 0. Thus you can use the mnemonic’s
value in a logical AND to determine the flag setting. To set several
flags at once, code an assembler expression containing the sum of
several mnemonics.

All mnemonics for system calls, library routines, error codes and
other symbols used in this manual are defined in the file MASM.PS,
the assembler’s permanent symbol table. Many of them are defined
in the user parameter file, OPARU.SR, a listing of which appears in
Appendix E of this manual. Refer to the parameter file to determine
the value of a symbol; usually though, you can use the mnemonics in
your program without knowing their values.

It should be stressed that parameter file values are revision-
dependent; the user is urged to check release notices for the latest
information update.

MP/AOS-SU provides a number of convenient functions implemented
as library routines rather than system calls. A list of currently
available routines appears in Appendix J. Chapter 10, “Dictionary of
System Calls and Library Routines” identifies and describes each
routine individually.

Library routines are called in the same way as system calls; however,
the code implementing the function is part of the user address space,
rather than of system memory.

MP/AOS-SU library routines perform such functions as

» suspending the operation of a task or program for a specified time
period

* providing several timing facilities to support real-time operations

* setting the searchlist

* reading a message from an MP/AOS-SU error message file.

The system maintains a revision number in every program file to
help you track different versions of a program. This number consists
of a major and a minor revision number; each may range from O to
255. Set the number with the .REV assembler directive or the
Binder/REV=value keyword switch; read the number with the
?INFO call; and use the CLI REVISION command to read or set the
number.

Under MP/AOS-SU, overlay loading and release are accomplished
with library calls. The MP/AOS-SU overlay facility is flexible: the
exact distribution of overlay blocks is not specified until bind time;
hence, no program modification is needed to experiment with
different strategies. This makes it easy to reorganize overlays for
greatest efficiency.

Overlays are discussed further in Appendix F.

Programming with MP/AQS-SU

Program Revision
Number

Overlays

Licensed Material - Property of Data General Corporation

2-7

File Management

The MP/AQS-SU file system provides the user with simple, efficient
ways to communicate with input/output devices and to store and
retrieve data in files. Because all devices and files are handled by
the same system calls, it is easy to write device-independent
programs.

An MP/AQS-SU file is either an I/0 device, such as a printer, or a
collection of data stored in a disk file. Since both kinds are handled
identically, we use the term file to refer to either.

A file is referenced by its filename, a string of one to fifteen
characters. The mnemonic ?MXFL contains the value for maximum
filename length. Legal characters in filenames are

e the letters a to z and A to Z; (You can use upper- and lower-case
interchangeably; the system considers them equivalent and uses
only upper-case internally.

e the digits O to 9

¢ the punctuation marks ?, $, _ (underscore) and .(period).

In general, a file's contents are entirely user-defined; however,
several types of files have special functions. In particular, there is a
type of file called a directory, which contains other files. Three
special directories used by the system (the device and the root
directories) are discussed below.

Any file in a directory may itself be a directory containing other
files. A directory within another directory is called a subdirectory.
Nesting of directories may continue indefinitely in this manner.

Files within directories are referenced by using the : character. For
example, X:Y references a file named Y in a directory named X. An
expression of this form is called a pathname. Pathnames are
explained in detail later in this chapter.

3

Basic
Organization

Hierarchical File
Structure

Licensed Material - Property of Data General Corporation

3_2 File Management

The Device Directory

Root Directories

System Master Device

Pathnames

Licensed Material - Property of Data General Corporation

The device directory is the highest directory in an MP/AOS-SU
system: it contains all others. This directory has the special symbol
©@ as its filename.

The filenames in the device directory correspond to all the input/out-
put devices in the system. To reference a device, use its name
prefixed by @. Typical device names are @LPT for a line printer or
©@DPHO for a diskette drive.

Since the device directory contains all I/0 devices including disks,
it cannot be contained on any device. Thus, the device directory is
unique in the system in that it is not physically represented on any
disk. It is actually a table in MP/AOS-SU memory space and cannot
be accessed via the ?DIR system call.

Every disk device has a root directory which is the highest directory
on the device. The root directory and its subdirectories contain all
other files on a disk. The root directory is referenced by appending a
: to the device name, e.g., @ DPHO:..

One disk unit in every MP/AOS-SU system is the system master
device; i.e., the device from which the operating system was
bootstrapped. The MP/AOS-SU system program files and many other
commonly-used files reside in this unit. For ease of reference,
MP/AOS-SU accepts the : character as a prefix which refers to the
root directory of the system master device. For example, if your
system’s master device is @DPHO, then the pathname :CLI.PR is
equivalent to @ DPHO:CLI.PR.

The system allows one filename to be used simultaneously for several
files in different directories, but filenames must be unique within
any one directory. The capacity to reference any file uniquely is
provided by pathnames. As its name suggests, a pathname represents
a path through the directory structure to a particular file.

A pathname consists of a series of filenames separated by colons (:).
Pathnames may be up to 127 characters long. The ?MXPL parameter
specifies maximum pathname length. All of the files named except
the last must be directories; each directory named must be a
subdirectory of the preceding one. For example, the pathname A:B:C
references a file called C in subdirectory B of directory A.

A pathname beginning at the device’'s root directory is called a
fully-qualified pathname, since it is guaranteed to identify only one
file in the entire system. An example of a fully-qualified pathname
is @ DPHO:A:B:C.

When you supply a pathname as an argument to a system call or
library routine, it must be terminated by a null (zero) byte. The
system always uses this format when passing pathnames to your
program. Remember to allow sufficient buffer space to hold the
filename and the terminating null byte whenever you use a call that
returns a file- or pathname.

File Management 3-3

Figure 3.1 shows a typical fragment of an MP/AOS-SU file system.
The device directory contains several I/0 devices including one disk
drive. The fully-qualified pathnames of these devices are shown in
bold type.

The disk’s root directory contains three files named FILE1, FILE2
and DIR1. DIR1, a subdirectory of the root, contains two files called
X and Y. Their fully-qualified pathnames are also shown in bold

type.

An MP/AOS-SU system typically contains many more files than The Working
Figure 3.1 shows. As directory structures become more complex, Directory
pathnames become longer and more cumbersome. To reduce the

necessity of using long pathnames, the system assigns a working

directory to every program. The working directory may be thought

of as your current location in the file structure.

Whenever you reference a filename or pathname that is not fully
qualified, the system looks for the file in your working directory.
This enables you to use simple filenames instead of pathnames and
confines all file activity to the working directory. A pathname such
as A:B refers to a file called B in subdirectory A of your working
directory.

Since users typically create a directory for each project, this concept
allows related files to be kept together. You can change your current
working directory at any time with the ?DIR system call and
determine your current working directory with the ?GNAME call.
You can also perform these functions with the CLI DIR command.

Sometimes it is inconvenient to confine all one’s work to a single The Searchlist
directory. For this reason, the system provides a searchlist, a concise
method of referencing multiple directories. The searchlist is simply
a list of pathnames of directories. If you use a filename that is not
fully qualified and if the named file is not in your working directory,
the system searches all the directories in your searchlist before
determining that the file does not exist. The system searches all
paths in this manner, except for those specified in a ?CREATE,
?DELETE or ?RENAME call. If the same filename exists in more
than one of the directories in the searchlist, the system uses the file
appearing in the first directory it encounters.

You can read your searchlist with the ?GLIST system call, and you
can clear or extend your searchlist with the ?ALIST call. There is
also a convenient ?SLIST library routine that establishes your
searchlist with one call and a CLI SEARCHLIST command that
reads or creates the searchlist. When the system is started up, it sets
your searchlist to contain only the system master device's root
directory, :.

Licensed Material - Property of Data General Corporation

3_4 File Management

DEVICE DIRECTORY

@
Fro T o
| ™ I -
it
f -
'DPHO 1
I o |
| o °
L._’_-L.!_a

'
[/

@TTI

DISPLAY

KEYBOARD

DG-25991

@TT0

DISK
UNIT
@DPHO
@DPHO :FILE1
ROOT @DPHO:
FILE1 | e | DATA
FILE2 | &—
DIR1 *~— @DPHO :FILE2
[] []
o . DATA
[] []
@DPHO :DIR 1:X
@DPHO :DIR 1
x | e—o———m=1pATA
Y *—
°] @DPHO :DIR 1Y
L] []
el e DATA

W

LINE
PRINTER
@LPT

Figure 3.1 Sample device directory and file system

Licensed Material - Property of Data General Corporation

The use of the @ and : characters in pathnames has already been
explained. Two other characters may be used as prefixes; i.e., they
may appear only at the beginning of a pathname.

The = character is equivalent to the pathname of the current
working directory. Use this character to reference files in the
working directory explicitly; the searchlist is not used if the file is
not found. The = character alone can also be used as the name of
the current working directory.

The | (uparrow) character, typed as ~and echoed as either | or
refers to the parent directory, i.e. the one containing the current
working directory. For instance, if your current working directory
is @DPHO:A:B and you want to reference the file @ DPHO:A:XYZ,
you can use the pathname [XYZ. You can also use several [s in
sequence: for instance, to reference @DPHO:X, you could use 1]X.

NOTE: A pathname beginning with = or [is not, strictly speaking, a fully-qualified
pathname, since the exact meaning of the pathname depends on the current
working directory. However, such a pathname is like a fully-qualified pathname
because it specifies a directory; hence the searchlist is not scanned.

Links simplify file referencing by eliminating the need to type
lengthy pathnames. A link is a file of type ?DLNK containing a
pathname or a partial pathname. Generally, when a linkname
appears in a pathname, the system resolves it by replacing the
linkname with the contents of the link file. The exceptions are
discussed below. Links may contain up to 62 bytes.

Normally a link is resolved when it appears in a pathname. If,
however, a link is the last or the only filename in a pathname used
as argument to ?CREATE, ?DELETE, or PZRENAME system calls, the
link will not be resolved. This permits link creation, deletion, and
renaming.

If, for example, the pathname
A:B:file_C

is used as an argument to ?DELETE and if B is a link equivalent to
D:E, then the pathname is resolved to

A:D:E:file_C

and file_C is deleted.

If, however, the argument to ?DELETE is pathname
A:B

then link B itself is deleted, not directories D and E.

File Management

Pathname Prefixes

Links

Licensed Material - Property of Data General Corporation

3-5

3_6 File Management

File Element Size

File Types and
Attributes

Licensed Material - Property of Data General Corporation

Creating, renaming, and deleting links can also be done by means of
CLI commands.

NOTE: The system does not validate the contents of a link entry until that entry is
used in a pathname resolution. Thus it is possible to create a link entry pointing to
a nonexistent pathname or containing illegal filename characters. The system
returns an error, however, if there is an attempt to use such a link in a pathname.

You can obtain information on the link entry (rather than its
resolution) with the ?FSTAT system call.

If the link contents begin with a prefix (@, :, =, or ", pathname
resolution begins at the directory indicated by the prefix. If the
link’s contents do not start with a prefix, pathname resolution
continues at the point in the directory hierarchy where the link
entry was encountered.

The system allows you to optimize disk file organization by control-
ling the size of file elements. A file element consists of one or more
512-byte disk blocks physically contiguous on the disk surface. The
system allocates and deallocates file space in elements rather than
blocks.

You specify a file's element size when creating the file. A large
element size means that data in a file is organized in a number of
large groupings. Reading or writing the file can be done more
efficiently, since the disk heads do not need to be continuously
moved around the disk to find the proper data. Small element sizes
give the system greater freedom in allocating disk blocks and result
in relatively less unused (wasted) space. Choose the element size that
offers the best compromise between speed and efficient use of space.

One specific type of file, the directory, has already been mentioned.
Every file in the system has a 16-bit number that defines its type.
You can specify file type when creating a file with the ?CREATE
call; read file type with the ?FSTAT call.

You may assign the file types any meaning that you find useful.
Table 3.1 summarizes the available file types.

Mnemonic Meaning
?DDIR Directory
?DSMN to ?DSMX Range of values for files used by the system:

?DBPG bootable (stand-alone) program file
?DBRK program break file
?DIDF MP/ISAM data file
?DIXF MP/ISAM index file
?DLIB library file

?DLNK link file

?DLOG System log file
?DMBS MP/BASIC save file
?DOBF object file

?DOLF overlay file

?DPRG program file

?DPST permanent symbol table
(used by assembler)

?DSTF symbol table file

?DTXT text file

?DUDF general-purpose data file
?DUMN to ?DUMX Range of values reserved for users

Table 3.1 File types

The system also maintains an attribute word for each file. The right
half (bits 8-15) of this word is used or reserved by the system. The
left half (bits 0-7) is reserved for the user. As with file types, you may
assign any meanings you wish to these bits.

You can read a file's attributes with the ?GTATR call and change
them with the ?STATR call. Table 3.2 summarizes file attributes.

Mnemonic Meaning
?ATPM Permanent: the file may not be deleted or renamed while this bit
is set to 1.

Set by the system for directories and root directories of disks.
?ATRD Read protect: this file may not be read.

?ATWR Write protect: this file may not be written. Set by the system
for directories and root directories of disks.

?ATAT Attribute protect: the attributes of this file may not be changed.
Set by the system for devices and root directories of disks only.

Table 3.2 File attributes

When the system creates an entry for a new file in a directory, the
current time and date are associated with the new filename.
Subsequently, the system updates the time and date to reflect the last
occasion on which the user accessed or modified the file. This

File Management

Licensed Material - Property of Data General Corporation

3-7

3—8 File Management

System Call/Library

Routine Summary

Licensed Material - Property of Data General Corporation

information can be obtained via the ?FSTAT system call: packet
double word ?FTLA in ?FSTAT returns the date and time the file
was last accessed; packet double word ?FTLM returns the date and
time the file was last modified.

Table 3.3 summarizes MP/AQS-SU system calls and library routines
for file management.

Mnemonic Function Options
?ALIST Alter searchlist
?CREATE Create a file DE (delete existing file with
same name)
?DELETE Delete a file
?DIR Select a working directory
?FSTAT Get file status including type, CH (file is open on specified
attributes, size; can be used to channel number)
retrieve link contents. LNK (do not resolve links)
?GLIST Get current searchlist
?GNAME Get fully-qualified pathname; CH (file is open on specified
scans searchlist if necessary channel number)
PR (get pathname of calling
program)
?GNFN Library routine: get next filename;
retrieves names of files contained
in a directory
?GTATR Get file attributes and file type CH (file is open on specified
channel number)
LN (return file byte length)
?RENAME Rename a file; can be used to DE (delete existing filename)
move a file to a new directory
?SLIST Library routine: set the searchlist
?STATR Set file attributes CH (file is open on specified
channel number)

Table 3.3 Summary of file calls and library routines

Input/Output
Data transfers between your program and a device on file are detailed
in Chapter 7, “Input and Output”.

Program 4
Management

MP/AOS-SU programming and multitasking capabilities enable
development of a wide range of applications systems. Extensive
system calls provide for complete user control of program space,
scheduling, and program I/0. This chapter describes the facilities
available for managing programs under MP/AOS-SU.

MP/AO0S-SU system calls allow you to perform the following func- Program Concepts
tions:

¢ transfer control from one program to another

e pass a message (up to 2047 bytes in length) between programs

e create a “break file” containing the complete state of an interrupted
program

¢ shut down or restart the system.

The ?EXEC call changes the program that is running, while retaining Transferring Control
the program state (i.e., the contents of the task control blocks (TCB's) Between Programs
for each task, the channels, impure memory, current segment

mapping and relationships to it, the environment, and information

needed for restoring overlays).

NOTE: The CL option to the EXEC call can be used to close all channels for the
executed program except the standard input/output channels, ?2INCH and ?0UCH.

The initial program (:CLI.PR), runs at swap level 1. When that
program issues a 7EXEC, it is swapped out, and the program replacing
it runs at level 2. A program created by that program runs at level 3,
and so on, up to a maximum swap level of eight. Figure 4.1 illustrates
program swapping.

P I P U I Y T S I T

4-2 -

Program Management

?EXEC NEW.PR

Level 1

Calling program
swapped out to
system swap file

DG-25992

?EXEC NEXT.PR

NEW.PR NEXT.PR
Level 2 Level 3
CLI.PR ; ; NEW.PR ﬁ >
Level 1 Level 2
CLI.PR
Level 1

NEW.PR
CLI.PR

New program
executes on a
higher program
swap level
within same
process

New program
executes on a
higher program
swap level
within the
same process

Calling
program
swapped out

Figure 4.1 Program swapping via ?EXEC

Licensed Material - Property of Data General Corporation

When a subsequent program executing on a higher swap level
terminates, the last swapped-out (not chained) program is reactivated.
As used in MP/AQOS-SU, the term “parent program” pertains to the
push level relationships just described and has no hierarchical
connotations. That is to say, a parent program is merely the program
on the next numerically lower level to the current program.

Use the ?EXEC call with the chain option to change the program that
is running without saving the calling program's state. This procedure,
called chaining to a new program, speeds up the switch by overwrit-
ing the calling program with the new one, eliminating the time
needed to swap out the creating program. The new program retains
the same swap level as the calling program. Figure 4.2 illustrates
swap and chain options.

When a chained program terminates, it does not return to its calling
program; instead, it reactivates the last non-chained program,
regardless of the number of chained programs between them.

The initial program executed by MP/AO0S-SU is always :CLI.PR,
which appears with the message “CLI,LOGON". This causes the
MP/AOS-SU CLI to look for and to execute a macro called LOGON.CLI.
See MP/AOS-SU Command Line Interpreter (CLI).

Program Management

?EXEC (SWAP) NEW.PR ?EXEC (CHAIN) PROGX.PR

NEW.PR | PROGX.PR

Level 2
CLI.PR

_ Level 2
CLI.PR ?<

Level 1

Level 1

CLI.PR CLI.PR

New program Chained program
executes at executes on
higher program same program
swap level swap level as

calling program

Calling program is Calling program
swapped out is not
swapped out

DG-25993

Figure 4.2 ?EXEC with swap and chain options

MP/AOS-SU programs can send messages to each other on the ?EXEC Interprogram
and ?RETURN system calls. They can receive messages with the Commumnication
?GTMSG system call.

The system maintains a buffer which holds one message at a time.
Because an ?EXEC or ?RETURN call which does not pass a message
clears the buffer contents, you must read the message before
executing either call.

A message can contain up to 2047 bytes in any format. However,
MP/AOS-SU uses a standard format for messages from the CLI. You
can use the library routine ?TMSG to translate CLI-format messages
into arguments and switches.

The ?RETURN system call allows a program to terminate itself. Terminating a
?RETURN also allows you to create a break file to save the state of Program
your interupted program for later perusal.

Licensed Material - Property of Data General Corporation

4—4 Program Management

Break Files

Figure 4.3 illustrates the effect of ZRETURN.

Program termination via 2RETURN
A

From From any
swap level 1 swap level
other than 1

PROG.PR

Level 4 Level 3

Level 1

-

Refresh

—

CLI.PR
Next highest
swapped program
reactivates

Level 1

2 XXX XXX . BRK

| S —
Program name

DG-25995

Figure 4.4 Break file name

Licensed Material - Property of Data General Corporation

DG-25994

Figure 4.3 Effect of 7RETURN
If the terminated program was running

e on swap level 1 the system will restart (“refresh”) the initial
program

e on a swap level higher than 1, the program at swap level n-1 (i.e.,
the last non-chained program) reactivates.

NOTE: Typing BYE in the initial CLI does not generate a ?RETURN. Instead, it
shuts down the system.

When a ?RETURN call uses the BK option, MP/AOS-SU writes the
information about the terminating program and its state into a
break file in the current working directory. The name of the break
file is composed of a question mark (?) followed by the program
name and a .BRK extension. See Figure 4.4.

Any existing file of the same name in the current working directory
is overwritten.

The current memory image of the terminating program as well as
information about the program state, task states, user overlays in
use, attached segments, and all open files is written to the break file.

Break files are available for later perusal, but they are not restartable,
i.e., they cannot be reexecuted.

The ?BOOT system call allows you to shut down the system in an
orderly manner, ensuring that no data is lost. You can also use the
?BOOT call to restart the system from a specified disk or filename.

Table 4.1 lists MP/AOS-SU system calls for program management.
Task-specific calls are summarized in Table 6.1.

Call Function Options

?BOOT Shut down or restart the system

?EXEC Execute a program CL (close all channels except
for the standard console I/0
channels)

?GTMSG Get the current message

?IFPU Use floating point unit

?RETURN Return to previous program BK (create a break file)

Table 4.1 System calls

Program Management

Restarting the System

System Call Summary

Licensed Material - Property of Data General Corporation

4-5

Memory
Management

MP/AOS-SU supports up to 1024K words (2 megabytes) of physical
address space, the maximum supported by microECLIPSE architec-
ture.

The MP/AOS-SU operating system makes use of the Memory
Allocation and Protection (MAP) feature of the hardware. The MAP
feature provides extended physical addressable memory for user
programs together with various protection features for the operating
system and for currently used program memory. Specific MAP
features are processor-dependent and are detailed in the Principles
of Operation manual appropriate to the given processor.

The typical MP/AOQOS-SU program development system consists
entirely of read/write memory (RAM). The MP/AOS-SU scheme of
memory organization and allocation offers the system designer
significant flexibility in memory use.

MP/AOS-SU main memory is available to a user program in logical
allocations of pages (blocks of 1K words). One or more pages are
grouped into units called segments.

Each user program has a maximum logical address space of 32K
words (65536 bytes). However, the use of dynamic memory segments
with the hardware mapping feature enables a program to address all
physical memory not used by the system, provided the addressing
extends to no more than 32K words of physical memory at any one
time.

Available memory is acquired by the program itself when the
program is executed. A program can define, attach, and map to
additional memory segments when needed.

A program can share one or more memory segments with other
programs. The responsibility of memory management rests with the
programmer who designs how programs will share user segments.

Licensed Material - Property of Data General Corporation

5-2 Memory Management

The MP/AOS-SU
Mapping Capability

Licensed Material - Property of Data General Corporation

MP/AO0S-SU’s dynamic memory arrangement is handled through a
number of system calls that allocate additional address space as
needed and release unneeded address space for use by other programs
in the MP/AOS-SU program environment. This chapter describes
the memory environment provided by MP/AOS-SU and the facilities
available for memory management.

With a mapped system, you can address up to 2 megabytes of memory.
This is done with the aid of the microECLIPSE address translation
hardware and the logical-to-physical address translation functions
set up by the operating system. (See Figure 5.1.)

The memory pages allocated to a user program are not necessarily
contiguous. The MAP feature allows a different logical-to-physical
address computation to be specified for each 1K word of logical
memory.

The address translation function which correlates a logical address
to the corresponding allocated physical memory address is called an
address map.

Logical address

Physical

Address memory
translation
feature

Physical address :>

DG-00542

Figure 5.1 Addressing with the MAP feature

MP/AOS-SU supports two address maps. One address map defines
user address translation functions transparent to the user. The second
map is a translation function for the data channel. User-written
device drivers can manipulate the data channel map. (See Chapter 8,
“User Device Support.”)

In addition to translating addresses, mapping also provides

¢ validity protection for currently unused portions of the program'’s
logical address space (up to 32K words)

e write protection for certain blocks of allocated physical memory;
(under MP/AOS-SU, shared and overlay memory areas are write
protected.)

e indirect protection for the user program; (this prevents the
disabling of the system by an indirection loop, an indirection
chain exceeding 16 levels.)

¢ I/0 protection controlling access to I/0 devices. Under MP/AOS-
SU, the I/0 protection bit and LEF (Load Effective Address) mode
are controlled simultaneously: with I/0 enabled, LEF mode and
the I/0 protection bit are disabled (and vice versa). Initially, I/0
protection and LEF mode are enabled in user programs, and can
be modified with system calls.

Each memory segment consists of a user-specified number of pages
(1X block units) of address space. A segment need not be a physically
contiguous area of memory. It is a logical entity and can be made up
of various available physical pages from different areas of main
memory. The system keeps track of segment units, so that, to the
user program, a segment can be addressed as a logical area of
contiguous locations.

Segments are allocated in multiples of physical pages; therefore, the
minimum segment size is one page (1K words). The largest allowable
size for a segment is ?MXSP.

Memory Management

Memory Segments

Licensed Material - Property of Data General Corporation

5-3

5_4 Memory Management

Operatlng SYStem Since the MP/AOS-SU operating system and user programs occupy
different memory areas, there is no danger of a user program
MemorY overwriting a portion of the system.

In order to optimize system and interrupt performance, the MP/AQS-
SU system runs in unmapped space. (See Figure 5.2.)

Memory

_
—

available for user % Mapped
%

22

user memory

C

-

® Disk and overlay
buffers 31K—

_

Ve

Kernel
e Interrupt drivers N
e Scheduler T]

Unmapped portion
e System data ppedp

of system memory
structures 0-n= < 31K

0__J

DG-25996

Figure 5.2 System memory configuration

One portion of the system is the kernel. It occupies lower page zero
and can extend up to 31K words, depending on the type of system
generated. The kernel contains the interrupt drivers, the scheduler,
and major system data structures, as well as routines for their
manipulation. Since the kernel runs unmapped, interrupt perfor-
mance is maximized.

Disk Buffer Area The disk buffer area for disk I/0 serves to increase the efficiency of
data transfer and to minimize disk access. The size of the buffers is
predetermined; the number of buffers is a system generation
parameter. Depending on the demands placed on the system, these
buffers are used to store either file system data or user data as
needed.

In general, this software-maintained buffer cache is maintained on
an LRU (least recently used) basis: the buffer most recently filled is
last in line to be flushed to disk when new buffer space is required.

Licensed Material - Property of Data General Corporation

The user logical address space consists of impure and pure memory
areas.

Impure memory contains modifiable information. Pure memory can
consist of two separate areas, namely, shared and overlay memory,
neither of which is modifiable.

User memory is initially allocated in up to three memory segments
corresponding to the program'’s impure, shared, and overlay memory
needs.

The size of the impure and shared/overlay segments (up to 32K
words) is determined by MP/AOS-SU from the program header
information set up by the Binder.

The three default segments are automatically mapped into the new
program. Each receives a number 0-2 as follows:

Segment O Impure area
Segment 1 Shared area
Segment 2 Overlay node area

This allocation is illustrated in Figure 5.3.

Shared area

(segment 1)
Pure area
Overlay area
(segment 2)
?PPMN
?MEMI increases current lowest
or decreases size pure area word
of impure area read w. ?INFO

?PIMX (current highest impure

% word; read w. ?INFO)
% Impure area

0 (segment O)

DG-08954

Figure 5.3 Organization of user logical address space

MP/AOQOS-SU allocates impure, shared, and overlay memory to an
executing program in accordance with the information supplied by
the Binder in the .PR image. Note, however, that all such programs
are constrained in their total memory size by the amount of physical
memory available.

A program’s pure memory area (segments 1 and 2) is fixed in size. In
contrast, the impure area (segment 0) is allowed to grow and shrink.

Memory Management

User Memory

Licensed Material - Property of Data General Corporation

9-5

5_6 Memory Management

Extended Memory
Management

Licensed Material - Property of Data General Corporation

Modifying the Impure Area, Default Segment 0

The ?MEMI call allows you to request or to relinquish segment O
(impure memory) as needed, provided that

e sufficient physical memory is available
e the value of ?PHMA (highest impure memory address) is not
exceeded.

To ascertain the amount of space available between the current
impure code boundary and the limit of the impure segment, use the
?PIMX value returned in the ?INFO call's packet) and the highest
impure address (the ?PHMA value returned in the ?INFO call’s
packet).

The difference is the number of words of available address space
that can be acquired to expand the impure segment, but it is necessary
to keep in mind the constraints mentioned at the beginning of this
section.

It is important to remember that ?MEMI specifies memory in words,
for MP/AOS compatibility, and that MP/AOS-SU only allocates
memory in one-page increments. Therefore, segment 0’s addressing
area increases in full page allocations, rather than by the specified
number of words. For example, when current impure is n pages, a
?MEMI request for one additional word results in the additional
allocation of an entire page, although ?MEMI reflects only the
addition of one word. Caution must be used because, while machine
instructions are not prohibited from accessing remaining page
locations beyond the impure boundary, MP/AQOS-SU does not allow
system call results and/or inputs to access this area.

The dynamic segment facility allows for user management of
additional memory areas added to the program after the initial or
default segments are provided.

A program can, for example, define one or more additional memory
segments of any size up to ?MXSP pages, causing them to be attached
to its address space, and releasing them at will.

A user program can also map desired portions of memory segments
into user logical address space. This feature makes vastly enlarged
memory resources available to the program. Optionally the mapped
pages can be write protected. Figure 5.4 summarizes extended
memory management.

Memory Management

5-7

User programs can define, attach to,
and map additional memory segments.

User-defined
memory segment

— \

n pages

User program 2

User program 1

?CSEG N

|

—] Attaches

dined by ———

defined by

program 1 :

DG-25997

Defines additional
memory segment

User program 1

\—- maps into a user-defined
segment

Figure 5.4 Memory management

Defining Additional Memory Segments

A program can create a segment of any required size up to ?MXSP
pages with the ?CSEG call. (Note that at the time of this writing
?MXSP is set to 128.) The total number of memory segments an
MP/AO0S-SU system will support, including default segments allocat-
ed to each user process, is a system generation parameter.

Each user-created segment is allocated a unique global segment
number which is returned by the ?CSEG call. The global segment
number is important for other programs that wish to attach and
map to the same segment.

The new segment is automatically attached to the creating program.
It is not, however, mapped in to any user address space.

All pages of a newly-created segment are initially zeroed. Dynamical-
ly allocated segments are unswappable while they are in use.

A program can deallocate a dynamic segment with a ?DSEG call and
free up the memory space for other programs, provided no other
program is attached to the segment. The termination of a program
causes MP/AOS-SU to issue a ?DSEG for every segment attached to
the program.

Creating a segment allocates physical memory. The physical memory
cannot be recovered until the creating program detaches the segment.
For example, a son program cannot recover the physical memory
associated with a segment held by its parent.

Licensed Material - Property of Data General Corporation

5—8 Memory Management

Licensed Material - Property of Data General Corporation

Sharing Memory Segments

Once a segment has been created, several programs can utilize the
same memory segment by attaching to it with an explicit ?ASEG
call. The global segment number needed for the call can be passed by
the segment’s creating program via the message facility described in
Chapter 4. Attaching to a segment does not map the segment to a
program; the ?ASEG call merely increments the segment’s use count.
The total number of attached segments that an MP/AOS-SU system
will support is specified at system generation time.

Mapping Memory Segments Within a Program

The ?MSEG system call maps portions of memory segments into user
logical address space as illustrated by Figure 5.5.

User program Memory segment # ?MSSN

w
-
=

Page # ?MSPB
(program logical
page(s) to be
mapped)

Page # ?MSSP
start mapping

o
0000000

DG-25998

Figure 5.5 Mapping to a segment
Mapping is done for specific logical pages of a segment.

The call requires the segment number, the segment’s starting page
number and the total page count (or entire segment indicator) of the
segment being mapped, along with the program logical page number
to which mapping is being done.

Any number of consecutive pages can be mapped with a single call.

The ?MSEG call has a write-protect (WP) option that traps any
attempt to modify the protected mapped portion of the segment.

The mapping function includes the specified segment pages in the
map for the calling program, making the new memory space
addressable for that program. The former contents of those portions
of user logical address space which are mapped to a new segment
become inaccessible unless remapped.

Dynamically mapped segments, unlike the impure default segment,
are not swapped out and in by the ?EXEC and ?RETURN calls.

A second call is not necessary to unmap a segment. A subsequent
?MSEG call overwriting the same logical area serves to unmap all
physical pages of the segment mapped to that same area. (Managing
the mapping of a number of segment areas to a program is the
responsibility of the calling program.)

The default segments may be remapped with the ?MSEG call.
However, this will restore the entire default segment to its initial
mapping.

System Call/Library Routine Summary
MP/AOS-SU system calls for memory management are summarized
in Table 5.1.

Call Function Option

?ASEG Attach a memory segment

?CSEG Create a memory segment

?DSEG Detach from a memory segment

?MEMI Change impure memory allocation

?MSEG Map a memory segment WP (write-protect mapped
pages)

?0VLOD Library routine: Load an overlay

?0VREL Library routine: Release an overlay

Table 5.1 Memory call summary

Memory Management

Licensed Material - Property of Data General Corporation

5-9

Multitasking

Multitasking greatly simplifies certain types of programs, notably
those which must perform a number of operations in parallel. The
system allows you to divide a program into a number of subprograms
called tasks.

Multitasking is similar to multiprogramming, or timesharing, in
that multiple control paths are established. However, all tasks are
part of a single program, so they must share memory, I/0 channels
and other system resources.

An example of a multitasking program is a multi-user editing system
that supports several people working at consoles. Under the MP/AOS-
SU system, you simply assign a separate task to each user, and the
system takes charge, deciding which user to service.

The total number of tasks supported by an MP/AOS-SU system is a
system generation parameter. Include in this number the maximum
number of tasks your program(s) will require so as to enable the
system to allocate memory for task control information.

You must count the task that the system creates for the new program
as part of the maximum number of tasks you specify for the system.
This number should also include provision for system tasks created
as a result of nonpended system calls issued by programs that execute
within the process. See Chapter 7 for a discussion of nonpended
calls.

At run time, you create tasks with the 2CTASK system call. Creating
a task is similar to calling a subroutine, but the calling routine
continues to run: it does not wait for the called routine to exit. You
have the capability to control the contents of ACO, AC1, and AC2 in
the created task. AC3 is set to the address of a routine to which the
task should jump when it finishes running. Because of this accumula-

6

Managing Tasks

Licensed Material - Property of Data General Corporation

6_2 Multitasking

Parallel Call Errors

Task Priority

Licensed Material - Property of Data General Corporation

tor handling, a task may be written to use the SAVE and RTN
instructions just like a subroutine.

When you create a task, the system assigns it a task identifier (TID),
a 16-bit number used with system calls to reference the task. A task
can retrieve its own identifier with the ?MYID call.

Tasks are deleted (killed) when they jump to the address in AC3. You
can also kill a task at any time with the ?KTASK call. If you have
specified a kill post-processing routine for the task, it will be executed
at this time. This routine can perform such functions as deallocating
memory used by the task. When the routine is entered, AC2 will
contain the identifier of the task being killed, and AC3 will contain
a return address to which the routine will jump when it finishes
executing.

NOTE: A task kill post-processing routine may not execute system calls.

When you create a task, specify a routine to be called in case the task
causes a stack overflow. Before calling this routine the hardware
pushes five words onto the stack consisting of

¢ the accumulators ACO through AC3
¢ a word containing the carry in bit 0, and the contents of the
program counter (where the overflow occurred) in bits 1-15.

Since the system’s handling of a stack overflow involves pushing
more words onto the stack, ensure that your stack is at least actually
five words larger than the size you specify in the stack limit word.
Otherwise, part of your program code may be destroyed during the
handling of the overflow. You should also allow stack space that may
be needed by the overflow handling routine itself.

If you do not specify an overflow handling routine, any stack error
will kill the task.

Stack overflow handling routines return using the POPB (Pop Block)
instruction rather than RTN.

A conflict may arise in a multitasked program if one task executes
an ?EXEC or ?RETURN while another task has a system call in
progress. A similar situation may occur, even in a single-task
program, if you interrupt the program from the console. In these
cases, any outstanding calls will be aborted, and they will return an
error with code ERPCA (Parallel Call Abort Error).

Tasks are scheduled by priority. A task priority is designated by a
number between O and 255; lower numbers represent higher
priorities.

You specify a task’s priority when you create the task with the
?CTASK system call. A default priority of 177g (127,) is assigned by
the system to a program'’s initial task. A task can modify its own task
priority, as well as the priority of other tasks within the current
program with the ?PRI call.

At times you will need to suspend multitasking activity; for instance,
you may need to read and modify a critical memory location without
having some other task modify the same location at the same time.
Two system calls support this activity: ?DRSCH and ?ERSCH.

?DRSCH disables the task scheduler and ensures that no task runs
except the one that executed the ?DRSCH. When the task completes
the critical activity, it re-enables the scheduler with the ?ERSCH
call. You can also use ?DRSCH to determine whether or not
multitasking is currently enabled, as explained in Chapter 10,
“Dictionary of System Calls and Library Routines”.

Tasks can suspend and enable multitasking and synchronize their
activities within their current program.

Tasks within the current program are able to control each other’s
actions. The system permits synchronization of tasks’ activities
through the ?PEND and ?UNPEND calls. When a task executes a
?PEND, it is suspended until a particular event occurs. The event is
specified by a 16-bit event number. This number must be used by
another task ina 7ZUNPEND call to unpend the pended task. ?7UNPEND
can also unpend a particular task by specifying its task identifier.

Event numbers must be between zero and the value of the mnemonic
?EVMAX. Values between zero and mnemonic ?EVMIN are reserved
for system-defined events, which you may specify in a ?PEND call
but not in a ?UNPEND call. Values between ?EVMIN and ?EVMAX,
inclusive, may be used for either ?PEND or ?UNPEND. ?UNPEND
also allows you to pass a one-word message to ACO of the unpended
task.

When you unpend a task, it may take either the normal or error
return from its ?PEND call. If it takes an error return, the unpended
task should then examine the contents of ACO to determine the error
cause. Be sure that the value of the message word is not the same as
one of the ?PEND error codes; otherwise, a task that takes an error
return will be unable to determine the cause of the error.

To interrupt a program, users may type a CTRL-C CTRL-A sequence
on the console keyboard. To receive this interrupt, your program
must create a task pending on an event number equal to ?EVCH plus
the channel number of the console keyboard. When the user types
CTRL-C CTRL-A, the task unpends in error, that is, it takes the
ERCIN (console interrupt) error return. The task is then free to
perform such actions as accepting a command from the user or
terminating the program.

Multitasking 6_3
Scheduling

Intertask
Communication

Console Interrupt
Tasks

Licensed Material - Property of Data General Corporation

6_4 Multitasking

SYStem Call/ Library MP/AO0S-SU task management calls and library routines are summa-
Routine Summary rized in Table 6.1.

Mnemonic Function Option

?CTASK Create a task AW (await TCB if none avail-
able)

?DELAY Library routine: delay execution of

a task

?DRSCH Disable task rescheduling CK (take error return if multi-
tasking already disabled)

?ERSCH Enable task or rescheduling

?INFO Get program information

?KTASK Terminate a task

?MYID Get task or process ID and priority PRC (return process ID (one)
and task priority)

?PEND Suspend a task

?PRI Change task priority

?UNPEND Resume execution of a task BD (unpend all tasks)

ER (unpend at error return)
ID (unpend on task ID, not
event code)

Table 6.1 Multitasking call and routine summary

Licensed Material - Property of Data General Corporation

Input and Output

All data transfers between the user program and a device or file take
place via an I/0 channel. Under MP/AOS-SU, the user program
controls the allocation and release of I/0 channels.

When a channel is opened to a file, a file pointer indicates byte
position in the file. The positioning of the file pointer is user
controlled to permit random access to any byte in the file.

MP/AOS-SU generally buffers data transfers through a software
maintained buffer cache. Buffering is bypassed when entire disk
blocks are transferred. For cases in which it is important to keep the
user file updated between short transfers (e.g., for the creation of
checkpoint records), the FLUSH option on ?WRITE is provided. This
causes all file system data associated with the channel to be written
to disk before the ?WRITE call takes a return to the user program.

MP/AOS-SU provides nonpended I/0, allowing a task to continue
processing overlapped with that task’s I/0. The system allows the
program to be notified when any of its nonpended calls (tasks) has
completed execution.

Options on the ?READ and ?WRITE system calls provide the user
with several techniques of data transfer, namely, dynamic and data
sensitive 1/0.

1/0 devices are divided into those with a block structure such as
disks and magnetic tape, and those without a block structure, i.e.,
character devices such as consoles and line printers. Magnetic tape
is supported as part of the MP/AOS-SU library.

User calls introduce disk devices to, and release them from, the
system. The system performs consistency checks on disks. Disks can
be MP/AOS-SU formatted by means of the DINIT utility. MP/AQS-SU
disk structure is identical to that used by MP/AOS and MP/OS. Disk
media are interchangeable between these three systems.

7

Overview

Licensed Material - Property of Data General Corporation

7_2 Input and Output

I/0 Channels

Licensed Material - Property of Data General Corporation

Terminals are handled as two devices, namely keyboards for input
and CRT consoles or printers for output. Console and line printer
characteristics are user modifiable and offer numerous facilities
without programming intervention. Predefined control characters
and control sequences are supported.

All data transfers between a user program and a device or file take
place via an I/0 channel. An 1/0 channel (not to be confused with a
data channel), is a system-defined data path.

To use an I/0 channel, you must open it; i.e., you must connect it to
some device or file. Your program does this with the 20PEN system
call. You specify the maximum number of I/0 channels that can be
opened system-wide at any one time when generating your MP/AOS-
SU system.

When you finish using an I/0 channel, you can release (close) it
with the ?CLOSE system call. The ?INFO system call returns the
status of the first sixteen (16) I/0 channels in your program.

An important feature of the MP/AOS-SU system is its ability to pass
I1/0 channels between programs: when a program performs an
?EXEC, the states of any active I/0 channels are passed to the new
program. Thus the new program can perform input and output on
these channels without reopening them. I/0 channels can be passed
regardless of whether the program performs the ?EXEC with the
chain or the swap option.

The passing of I/0 channels is a useful form of communication; it
can also be potentially hazardous if the new program does not expect
to find any open channels. It is therefore a useful precaution to start
all programs by closing any unneeded I/0 channels. MP/AOS-SU
provides two mechanisms for doing this:

e The CL option of ?EXEC closes all open I/0 channels on behalf of
the new program, with the exception of the standard input and
output channels. All channels are restored after the EXECuted
program terminates.

e The ?RESET call allows the new program to close one or more of
the first sixteen I/0 channels by specifying them in a 16-bit
mask. (Channels beyond the sixteenth must be individually
released via the ?CLOSE call.)

When a program performs a RETURN, the parent program resumes
execution with the same I/0 status it had when it performed the
?EXEC.

Standard Input and Output Channels

The MP/AOS-SU CLI always opens two channels for console I/0
and always passes these two channels to other programs, since
almost all programs use them. The CLI always closes all other
channels before calling any program.

The standard input channel has the mnemonic ?INCH; in the initial
program, ?INCH is opened to device @TTI. The standard output
channel has the mnemonic 20UCH and in the initial program it is
opened to device @TTO.

As soon as you open a channel to a disk file, the system tracks your
position in the file with a 32-bit file pointer. This pointer is the
number of the next byte in the file to be read or written. Normally
this pointer is simply incremented for each byte transferred, so that
the entire file is processed sequentially. When the pointer is zero,
the channel is positioned at the beginning of the file.

Use the ?GPOS system call to determine the file pointer’s current
value for any channel. You can use the ?SPOS call to change the
value of this pointer, thus permitting random access to any byte in
the file.

As discussed in Chapter 5, MP/AOS-SU provides a software-
maintained buffer cache for disk I/0 to minimize disk access and to
provide efficient sequential I/0. The ?CLOSE system call ensures
that all system buffers associated with a particular channel are
written (flushed) to the disk file. It is good practice to ?CLOSE a file
when it is no longer being used.

The buffering mechanism is bypassed when block-aligned data is
transferred. (See “Dynamic 1/0.")

?WRITE/?READ Flush

During the normal ?WRITE to a file, there is no assurance that data
is written to the disk, even when ?WRITE returns normally: the
data may merely have been transferred to buffers. Typically the
data is written to disk either when the disk buffer currently holding
the data is needed for buffering other data, or when the file is
?CLOSEd. Since this may not be appropriate for certain applications,
MP/AOS-SU provides the FLUSH option on ?WRITE.

When a ?WRITE system call with the FLUSH option returns, the
user is assured that all file system data associated with the I/0
channel is written to disk. This helps ensure that the state of the file
is valid and updated between data transfers.

The FLUSH option on ?READ affects character devices only, causing
any characters currently held in the system buffer to be discarded.

Input and Output

File Positioning

I/0 Buffers

Licensed Material - Property of Data General Corporation

7-3

7_4 Input and Output
Nonpended I/0

Licensed Material - Property of Data General Corporation

To eliminate the loss of processor time while I/0 calls are executing,
you can use nonpended 1/0 calls.

Specify a nonpended I/0 call by coding the NP option on the call.
When you execute the call, instead of suspending your task, the
system creates a new task and assigns it the job of executing the I/0
call, while the calling task continues its operation. See Figure 7.1.

Pended I/0
Nonpended 1/0

User program

User program

Program
flow

Program
flow

Task is
created

to execute
nonpended
call

=)

?READ NP

?READ

PAWAIT

}

Check task

|

—————

DG-08940

Figure 7.1 Pended and unpended I/0O

When you specify the NP option, AC2 returns the task identifier of
the system-created task which is executing your I/0. To avoid error
when using nonpended calls, the user must specify a sufficient
number of task control blocks (one for each nonpended call) when
the system is generated.

You cannot assume that the results of the system call are valid; if, for
instance, you read data with a 7ZREAD NP system call, you must still
wait for the data to arrive before you can operate on it. You can,
however, perform other types of computation while waiting for the
new data.

To find out when the nonpended call is complete, execute an AWAIT
call. This call enables you either to check the nonpended call’s
progress or to suspend your task until the call is complete. 2AWAIT
normally checks the status of a specific nonpended system task; an
option allows this call to check the status of any nonpended system
tasks.

When issuing PAWAIT without options, you specify the particular
system call to be awaited by supplying a task identifier; this task
identifier is the one returned to you in AC2 by the system when you
executed the non-pended call.

When the call being executed by the task you specify is completed,
?AWAIT returns the nonpended call’s outputs in ACO-2.

The AY option on ?AWAIT allows you to determine when any of
your non-pended system calls are completed, rather than only the
particular call you specified. In that case, PAWAIT returns the task
identifier of the completed call in AC2. You can then issue another
?AWAIT using the task identifier just returned to obtain the
completed call’s outputs in the usual fashion.

All 1/0 is performed by means of the ?READ and ?WRITE system
calls. Options for these calls allow for a number of different I/0
techniques.

MP/AOS-SU transfers data either by byte count (dynamic I/0), or
until a delimiter is encountered (data-sensitive 1/0).

The amount of data transferred and its placement (i.e., whether or
not it is word/block aligned) determines whether or not the data is
buffered through the system.

Dynamic I/0

Dynamic 1/0 permits you to read or write any number of bytes with
a single system call. You specify the number of bytes to be transferred
in an accumulator; the data is then transferred directly between the
file and main memory, subject to buffering by the system.

Block aligned I/0 is a special case of dynamic I/0 which eliminates
system overhead for buffering, resulting in significantly increased
speed.

Data on disk devices is divided by hardware into blocks of 512
bytes. When you request a data transfer to part of a disk block, the
system stores the entire block in a system buffer before moving the
data to or from this buffer.

If you use the ?READ and ?WRITE calls to transfer entire disk
blocks, you eliminate the need for the system to buffer the transfer.
To accomplish this, your data must be block aligned:

e the file pointer must be a multiple of 512 before the transfer
¢ specify a request of 512 or more bytes to read or write
» specify a buffer that is word aligned in your address space.

The system performs block I/0 whenever possible. For example, if
the request is for 600 bytes, but the buffer word alignment and file
pointer criteria are met, then that portion of the transfer is done by
block I/0.

For maximum efficiency, you should not mix dynamic block I/0
with conventional dynamic I/0 operations.

Input and Output

I/0 Techniques

Licensed Material - Property of Data General Corporation

7-5

7-6 Input and Output

I/0 Device
Management

Disks

Licensed Material - Property of Data General Corporation

Data-Sensitive I/0

Data-sensitive I/0 is performed by using the ?READ and ?WRITE
system calls with the DS option. In this case, the maximum number
of bytes to be transferred is specified. The system transfers bytes
until it encounters a delimiter. Default delimiters are defined as
bytes containing either a New Line (12g), Carriage Return (15g),
Form Feed (14g) or null (Og). The ?SCHS system call allows you to
define any character as a delimiter by specifying a new delimiter
table. As with dynamic 1/0, data is transferred between the file and
main memory. After the transfer, the number of bytes moved is
placed in an accumulator.

If no delimiter is encountered after the maximum number of bytes
has been transferred, the ?READ or ?WRITE call returns error ERLTL
(Line is too long).

The MP/AO0S-SU system divides I/0 devices into two categories:
those with directory structures (MOUNTed disks) and those without
directory structures (character devices). Character devices include
consoles and line printers.

Table 7.1 lists the standard MP/AQOS-SU 1/0 devices with their
mnemonics. Note that in a system with several character devices of
the same type, the mnemonic may be followed by a number, e.g.,
@TTIO. A list of microECLIPSE and microNOVA I/0 device codes
appears in Appendix D.

Mnemonic Device
DPD 10 Mbyte cartridge disk
DPH 12.5/25 Mbyte fixed disk

1.25 Mbyte diskette
360 Kbyte diskette
15 Mbyte fixed disk

DPX 315 Kbyte diskette

TTI Console keyboard (input)
TTO Console display (output)
LPT Line printer

MTA Magnetic tape

Table 7.1 Disk(ette), console, line printer and magnetic tape devices

The system provides two calls that mount disk devices and dismount
them so that you can remove disk units from the system to mount
new media on the drives. The ?MOUNT system call introduces a
disk to the system. The ?DISMOUNT system call shuts down a disk
device in a consistent manner, ensuring that any I/0 data still in
system memory space will be written out. When the system is
started, only the system master device is mounted.

The system performs consistency checks at ?MOUNT and ?DIS-
MOUNT time. A flag on every MP/AOS-SU disk indicates whether it
was dismounted properly; i.e., the system did not crash or some
other circumstance did not impede dismounting. ?DISMOUNT sets
this flag and ?MOUNT tests it. If the flag is not set at ?MOUNT time,
you will have to run the disk FIXUP program to restore the disk to a
proper state. If this occurs for the system master device when you
start the system, the bootstrap loader automatically runs FIXUP. To
make sure you have the disk you want, you may also use ?MOUNT to
check its label (a user-specified disk ID name).

NOTE: You can only ?MOUNT an MP/AOS-SU-formatted disk. If a disk is not
properly formatted, use the DINIT utility to prepare it. DINIT is described in
MP/AQOS-SU System Generation and Related Utilities.

If you wish to access a disk without using the MP/AOS-SU file
structure, you can ?0PEN it without first 2MOUNTing it. In this
case, the disk is treated as a single file with an element size equal to
the number of blocks on the disk.

You can use a ?DSTAT call to retrieve status information pertaining
to a disk. This call provides such data as the number of blocks in use
and the number of I/0 errors that have occurred. ?DSTAT may only
be used on a ?MOUNTed disk.

MP/AOS-SU supports magnetic tape devices as part of its library. To
use a magnetic tape controller, include it in the total count of
?IDEF/?LDEF device control tables (DCT's) specified at system
generation. (DCT's are discussed in Chapter 8.)

Magnetic tape devices are supported by the MOVE and TCOPY
utilities; in most cases you can, therefore, utilize these devices without
writing special programs. The MOVE and TCOPY utilities are
documented in MP/AOS and MP/AOS-SU File Utilities.

For direct access to magnetic tape devices without use of the MOVE
and TCOPY utilities, bind a task with MTA.LB, the tape routine
library. This introduces into the program the service routines
identifying the magnetic tape controller as a user device. Tape
operations are described in Appendix H of this manual.

Terminal devices have a number of unique attributes, since they
communicate directly with users. Terminals are logically handled as
two different devices: the keyboard for input and the printer or CRT
for output.

Input and Output

Magnetic Tape

Character Devices:
Terminals

Licensed Material - Property of Data General Corporation

7-7

7_8 Input and Output

Console Characteristics

Console characteristics are attributes that control the receiving and
transmission of data by the console. Table 7.2 summarizes console

characteristics.

Set On Mnemonic Affects Meaning when

Input/Output ?CBIN Both Binary mode: disables all special control characters; passes all
characters exactly as received (8 bits).

Input ?CECH Output Echo mode: echoes all typed characters although some receive
special handling as described in text.

Input ?CEMM Output Echo characters exactly as input: turns off echoing of control
characters as | x. :

Input ?CESC Input Escape mode: handles Escape (33g) the same as CTRL-C CTRL-A.

Input ?CICC Both Ignore control characters except delimiters and characters inter-

preted by the system.

Output ?CLST Output List mode: echoes Form-Feeds (014g)as "L to prevent them
from erasing CRT screen.

Input/Output ?CNAS Both Non-ANSIlI-standard console: supports terminals using older stan-
dard for control characters by converting Carriage Returns (015g)
into New-Lines (012g), and vice versa, on input; on output, converts
New-Line to Carriage Return, followed by New-Line, followed by

null.
Input ?CNED Output Do not echo delimiters.
Output ?CST Output Simulates tabs: converts all tab characters (0 11g) to the appropriate

number of spaces; cursor moves to the beginning of the next
8-character tab column.

Output ?CUCO Output Convert to uppercase on output.

Output ?7C605 Both D200, D210 or similar device: uses cursor movement characters
to echo Rubout and CTRL-U by erasing characters from the screen.
The two characters following a 37g on input and a 20g on output
will be passed through uninterpreted.

Input/Output ?7C8BT Input 8-bit characters; the default is to mask all input characters to 7
bits, unless in binary mode.

Input ?CPSQ Output Generate XOFF/XON characters on the associated output device
when the input ring buffer becomes full/empty.

Table 7.2 Console characteristics

Each characteristic is controlled by a bit in the device's characteris-
tics word. The system presets console characteristics to the values
you specify at system generation; you can later modify these
characteristics via system calls. Use ?GCHAR to display the current
setting of console characteristics and ?SCHAR to modify any or all of
the characteristics words.

Licensed Material - Property of Data General Corporation

Echoing characters is a typical system preprocessing function on a
console: normally, all characters received by the system from the
keyboard are echoed or retransmitted to the display, so that the user
can check the input. Most control characters are echoed in the
standard way, e.g., A for CTRL-A. However, some control characters,
such as New Line, are echoed explicitly since they have special
meanings to the console. Others are assigned special meanings by
the system. See the sections entitled ‘Control Characters’” and
“Control Sequences’’ and their tables.

To ensure compatibility with standard ASCII-7, the system normally
sets to O the high-order bit of any byte sent to or from a console.
Thus character values range from O to 177g. The ?SCHAR system
call with the ?C8BT characteristic bit can be set to disable this and
transmit/receive eight-bit characters.

The system also echoes Form Feeds as "L to prevent them from
erasing the CRT screen (?CLST characteristic bit), executes Rubouts
(?C605 characteristic bit), and converts to uppercase on output (?CUCO
characteristic bit). The user can modify any of these characteristics
at will.

NOTE: All special character actions are disabled when you select binary mode for
1/0 (?CBIN characteristic bit).

Options to ?SCHAR also allow the user to modify the number of
characters per line, the number of lines per page, and as described
in the next section, the terminal’s hardware characteristics.

Hardware Characteristics

The device’'s hardware characteristics are user-specified when the
system is generated. For hardware with programmable characteris-
tics, options to the ?SCHAR system call allow the user to modify
these characteristics under software control.

Hardware characteristics consist of the following:

¢ number of stop bits

e parity type

e code level

¢ baud rate for Asynchronous/Synchronous Multiplexors (ASLM's
and USAM’'s)

e hardware characteristics for disk devices.

Input and Output

Licensed Material - Property of Data General Corporation

7-9

7_ 1 O Input and Output

Licensed Material - Property of Data General Corporation

Stop bits are bits used to indicate the end of data transmission. The
number of stop bits is user-selectable within the range indicated in

Table 7.3.

Parity consists of an optional bit included with each transmitted
character for purposes of error checking. Table 7.3 indicates the
available types of parity.

Code level specifies the number of data bits per character; Table 7.3
specifies the selectable range.

Number of Parameter Parity Parameter Code Parameter
Stop Bits Level
1 ?C1S None ?CNPR 5 bits ?2C5BC
1.5 ?C15S Odd ?CODD 6 bits ?C6BC
2 ?C2S Even ?CEVN 7 bits ?C78BC
8 bits ?2C8BC

Table 7.3 Programmable hardware characteristics (?SCHAR with HC option)

Baud rate indicates the rate of character transmission. As Table 7.4
indicates, the operating range extends from 50 to 19.2K baud.

Baud Rate Parameter
50 ?C0050
75 ?C0075
110 ?C0110
134.5 ?C1345
150 ?C0150
300 ?C0300
600 ?C0600
1200 ?C1200
1800 ?C1800
2000 ?2C2000
2400 ?C2400
3600 ?C3600
4800 ?C4800
7200 ?C7200
9600 ?2C9600
19.2K ?C192K

Table 7.4 Baud rate for Asynchronous/Synchronous Line Multiplexor (ASLM) and Universal
Synchronous/Asynchronous Multiplexor (USAM)

The ?GCHAR and ?SCHAR system calls with the HC option may also
be used to examine and modify the hardware characteristics of
programmable disk devices. See Table 7.5 for disk characteristics.

Mnemonic Meaning
?CDGC Device is DGC mini-diskette
?CMPT Device is MPT mini-diskette

Table 7.5 Hardware Characteristics for Disk Devices

Control Characters

The system assigns special functions to certain control characters.

These functions are summarized in Table 7.6.

Character Octal Function

Null 0 Standard delimiter: signals the end of a data
sensitive ?READ or ?WRITE

CTRL-C 3 Starts a control sequence (described below)

CTRL-D 4 Indicates end of terminal input file (not passed to
program)

New Line 12 Standard delimiter (like null)

Form Feed 14 Standard delimiter (like null)

Carriage Return 15 Standard delimiter (like null)

CTRL-O 17 Toggles: eliminates output to console; turns
console back on

CTRL-P 20 Reserved for future use*

CTRL-Q 21 Restarts output after CTRL-S

CTRL-R 22 Reserved for future use*

CTRL-S 23 Suspends output so you can read material on a
CRT screen

CTRL-T 24 Retypes the current line so you can check what
you have typed (hardcopy terminals)

CTRL-U 25 Deletes the current input line

CTRL-V 26 Reserved for future use*

Rubout 177 Deletes the last character you typed from the

current input line

Table 7.6 Control characters

*Reserved characters are ignored except in binary mode.

Input and Output

Licensed Material - Property of Data General Corporation

7-11

7- 1 2 Input and Output

Control Sequences
A control sequence is a CTRL-C followed by one of the characters
whose functions are described in Table 7.7.

Character Octal Function

CTRL-A 1 Signals a console interrupt, which may be passed to
your program (See '‘Multitasking."’)

CTRL-B 2 Causes termination of the program currently running

CTRL-C 3 Reserved for future use *

CTRL-D 4 Reserved for future use *

CTRL-E 5 Terminates the current program and saves its state in a
break file (See "‘Program Management.’’)

(Others) - No function: character is passed to your program

Table 7.7 Control sequence characters

*Reserved characters are echoed, but not passed to your program except in binary mode.

Line Printers The system’s handling of line printers is similar to that of console
output. Each device has a characteristics word which is a subset of
the word for consoles. The system keeps track of the line and page
size for line printers just as it does for consoles.

The applicability of various characteristics to line printers is
summarized by Table 7.8

Characteristic LPT
?CBIN Used
?CECH Unused
?CEMM Unused
?CESC Unused
?CICC Used
?CLST Used
?CNAS Used
?CNED Unused
?CST Used
?Cuco Used
?C605 Unused
?C8BT Used

Table 7.8 Line printer device characteristics

System Call Summary MP/AOS-SU system calls for Input/Output and device management
are summarized in Table 7.9.

Licensed Material - Property of Data General Corporation

Input and Output

Call Function Option

?AWAIT Await completion of nonpended system call AY (return when any nonpended call is complet-
ed)
CK (check call completion; error return if call
incomplete)

?CLOSE Close an 1/0O channel DE (delete the file)

?DISMOUNT Remove a disk from the system

?DSTAT Get disk status information

?GCHAR Get device characteristics CH (device is open on specified channel number)
HC (return terminal’s or disk’s hardware charac-
teristics)
LL (return number of characters per line)
PG (return number of lines per page)
RS (return characteristics at time system was
booted)

?GPOS Get the file position

?MOUNT Introduce a disk to the system

?0PEN Open an 1/0 channel AP (files: open for append; character devices:
suppress Form Feeds)
CR (create file)
DE (delete existing file)
EX (exclusive access)
NZ (don’t zero blocks on allocation)
UC (unconditionally create file)

?READ Read data from a device or file DS (data-sensitive read)
FL (character devices: flush buffer before read-
ing)
IX (only with DS: ignore input after maximum
byte count or delimiter)
NP (nonpended call)

?RESET Close multiple 1/0 channels

?SCHAR Set device characteristics CH (device is open on specified channel number)
HC (set terminal’s or disk’s hardware character-
istics)
LL (set number of characters per line)
PG (set number of lines per page)
RS (reset to boot-time value)

?SCHS Set channel specifications

?SPOS Set current file position EF (cause error return on end-of-file on attempt
to extend file)

?WRITE Write data to a device or file DS (data-sensitive write)

EF (cause end-of-file error return on attempt to
extend file) FL (flush current block to disk)
NP (nonpended call)

Table 7.9 Input/Output and device system calls

Licensed Material - Property of Data General Corporation

7-13

User Device
Support

MP/AOS-SU capabilities permit user control of I/0 protection for
system and user devices, user-written device service routines, and
user manipulation of data channel map slots.

These facilities make it possible for programmers to perform input
and output with custom devices, to take advantage of their device's
interrupt facility, and to perform data transfers through data channel
control.

Peripheral devices, their input and output capabilities, as well as
input and output programming techniques are discussed at length in
the following two manuals:

e User's Manual Programmer’s Reference Series, Peripherals
e The Microproducts Hardware Reference Series manual for your
peripheral.

The ?IDEF system call introduces a user device and its interrupt
routine to the system. (The maximum number of user devices
MP/AOS-SU will support is specified when the system is generated.)
As input to ?IDEF you specify an interrupt handler definition packet,
which is a block of memory containing the control data summarized
in Table 8.1. User-written device service routines reside in user
address space.

Word Mnemonic Contents

1 ?IHND Address of user device interrupt handler
2 ?2IMSK Mask word

3 ?ISTK User interrupt stack address

5 ?IDAT Contents of AC2 at interrupt time

6 ?IHPR Reserved

Table 8.1 User device interrupt handler definition packet

3

Facilities

Defining a Device
Interrupt Service
Routine

Licensed Material - Propertv of Data General Corporation

8_2 User Device Support

Licensed Material - Property of Data General Corporation

The system builds an internal device control table (DCT) based on
your packet specifications and enters this DCT into its interrupt
vector table, a hardware defined array. When the system detects an
interrupt request, it indexes into the interrupt vector table to locate
the correct device control table. The device control table in turn
points to the device's interrupt service routine.

The microECLIPSE hardware is capable of implementing up to
sixteen levels of priority interrupts. This is done with a 16-bit
priority mask. Each level of device priority is associated with a bit
in this mask. In order to suppress interrupts from any priority level,
the corresponding bit in the mask is set to 1. The device’s DCT
contains the current interrupt service mask (packet word ?IMSK in
the ?IDEF system call). Using this value, the Vector on Interrupting
Device Code (VCT) instruction updates this mask and therefore makes
the implementation of a priority interrupt system a straightforward
procedure. (For a discussion of the VCT instruction refer to the
Principles of Operation manual appropriate to your processor.)

When a device requests an interrupt, the processor automatically
transfers program control to the system'’s interrupt service routine.
This routine retrieves the device code of the interrupting device and
saves return information on the stack.

Before transferring program control to the device's service routine,
the system also

¢ loads AC2 with the contents of ?2IDAT, a user-defined pointer to a
data area (see note below)

o uses the value of packet words ?ISTK and ?ISTL to initialize the
stack pointer and frame pointer to the user interrupt stack. This
permits the service routine to perform push/pop and similar
stack operations

e takes the current interrupt service mask and inclusively OR’s it
with the interrupt service mask in the DCT. The OR operation
establishes which devices, if any, can interrupt the currently
executing interrupt service routine

¢ saves the current Load Effective Address (LEF) mode state

¢ enables the user map and disables LEF mode and I/0 protection,
to permit the device service routine to issue input and output
instructions.

The user is responsible for restoring the interrupt mask if it has
been modified by the device interrupt handling routine.

NOTE: A comment on the use of ?IDAT is in order. This word is usually used to
point to a user-defined data area that describes the custom device or line device.
One use of such a data area is to store the device status returned at interrupt time
and then to ?2IlUNPEND a task waiting on device completion (usually, the ID of this
task is also found in this user-defined data area).

Using this technique, interrupt routines are kept short and system
Interrupt latency is minimized.

The only system calls permitted during a device interrupt service
routine are ?2IUNPEND, ?STMP, and ?IXIT.

?IUNPEND enables the routine to communicate with other tasks.
The system call ?STMP discussed in the following sections sets up
data channel map slots to point to a buffer area in user space before
a channel transfer is initiated. Interrupts are always enabled after
?IUNPEND and ?STMP.

?IXIT returns control to the system and must be executed to exit
from the routine.

MP/AQOS-SU restores LEF mode and I/0 protection to their former
states upon exit from the device service routine.

Use the ?2IRMV system call to deactivate device service routines.
Your program must deactivate such routines before the system
permits it to call another program with the ?EXEC call.

The system automatically deactivates any device interrupt service
routines upon program termination. Whenever possible, though,
explicit deactivation of such routines by the program via ?2IRMV is
preferable. If a user device interrupts after its interrupt handling
routine has been disassociated from it, the interrupt is handled via
the standard system procedure for undefined interrupt processing.

Defining a Line Device Interrupt Service Routine

The ?LDEF system call allows the definition of an interrupt service
routine for a single line of an Asynchronous/Synchronous Line
Multiplexor (ASLM) or an Universal Synchronous/Asynchronous
Multiplexor (USAM). With this functionality, the user can elect to
control some of the devices connected to the multiplexor, while
leaving others under system control.

When a line multiplexor (either ASLM or USAM) is included in the
system configuration, MP/AOS-SU builds an internal device control
table (DCT) for the multiplexor and enters this DCT into its interrupt
vector table. The interrupt service mask for the line multiplexor is
included in its device control table.

Any ASLM or USAM line intended for a custom line device must be
identified together with its terminal device during the system
generation dialogue, and included in the total count of ?LDEF devices
requested by SYSGEN, the system generation utility. The system
uses this information to allocate space for a user ?LDEF DCT for
each user-controlled line.

When your program issues an ?LDEF call, the system builds the
actual user ?LDEF DCT containing the line number and the address
of its user interrupt service routine, as specified in inputs to the call.

User Device Support

Licensed Material - Property of Data General Corporation

8-3

8_4 User Device Support

Licensed Material - Property of Data General Corporation

As input to ?LDEF you specify a line interrupt handler definition
packet, a block of memory containing control data summarized in
Table 8.2. The packet format is similar to that used in the ?IDEF call
except for the fact that it contains no mask word, because the
interrupt service mask is already contained in the DCT for the
multiplexor device.

Word Mnemonic Contents

1 ?LHND Address of interrupt handler

2 LSTK User interrupt stack address

3 ?LSTL User interrupt stack length

4 ?IDAT Contents of AC2 at interrupt time
5 ?LHPR Reserved

Table 8.2 Line interrupt handler definition packet

When a line device interrupts, the system'’s interrupt service routine
locates the ASLM or USAM DCT, and the line number requesting
service. Next the system checks whether an ?LDEF has been issued
for the device connected to this line (that is, whether the line is
user-controlled); if so, the system locates the line’s ?LDEF DCT.

Before transferring program control to the device’s service routine,
the system

e saves return information on the stack

¢ loads AC2 with the contents of ?IDAT, a user-defined pointer to a
data area (see note below)

¢ uses the value of packet words ?LSTK and ?LSTL to initialize the
stack pointer and frame pointer to the user interrupt stack. This
permits the service routine to perform push/pop and similar
stack operations

e takes the current interrupt service mask and inclusively OR'’s it
with the interrupt service mask established by the system in the
DCT for the multiplexor device. The OR operation establishes
which devices, if any, can interrupt the currently executing
interrupt service routine

e saves the current Load Effective Address (LEF) mode state

¢ enables the user map and disables LEF and I/0 protection mode
to permit the device service routine to issue input and output
instructions.

If the interrupt mask has been modified by the ?LDEF interrupt
handler, the user is responsible for restoring it.

NOTE: A comment on the use of ?IDAT is in order. This word is usually used to
point to a user-defined data area that describes the custom device or line device.
One use of such a data area is to store the device status returned at interrupt time
and then to ?IUNPEND a task waiting on device completion (usually, the ID of this
task is also found in this user-defined data area).

Using this technique, interrupt routines are kept short and system
interrupt latency is minimized.

The only system calls permitted during a line device interrupt service
routine are ?IUNPEND, ?STMP, and ?LXIT. Note that interrupts are
always enabled after 2IUNPEND and ?STMP. ?LXIT returns control
to the system and must be executed to exit from the line device user
service routine.

MP/AOS-SU restores LEF and I/0 protection mode to their former
states upon exit from the line device service routine.

Use the 2LRMV system call to deactivate line device service routines.
Your program must deactivate all such routines before the system
permits it to call another program with the ?EXEC call.

The system automatically deactivates any line device interrupt
service routines upon program termination. Whenever possible,
however, explicit deactivation of such routines by the program via
?7LRMV is preferable.

The instruction format for LEF (Load Effective Address) and for I/0
instructions is identical; hence, LEF or I/0 mode must be set to
enable the CPU to distinguish between these two classes of instruc-
tions. The ?ENBL/?DSBL system calls control the setting of I/0 and
LEF modes.

No device I/0 can occur while the CPU is in LEF mode. To issue I/0
instructions anywhere in a program at the task level, a user device
driver must, therefore, enable I/0 with the ?ENBL command. This
permits I/0 instructions to be issued to both system and user devices.
?DSBL disables access to all devices. These system calls are valid for
the entire program, rather than for the calling task only.

Initially, each program has LEF mode enabled. The user is cautioned
that when the CPU is in LEF mode, a user program can use the LEF
instruction, but may not issue I/0 instructions because they would
be interpreted as LEF instructions. Similarly, any LEF instructions
issued when LEF mode is disabled are interpreted as I/0 instructions.

Under MP/AOS-SU the ?ENBL/?DSBL calls simultaneously control
the I/0 protection bit and the I/O-LEF mode. When I/0 access is
enabled, both LEF mode and the I/0 protection bit are disabled.
Similarly, when I/0 access is disabled, LEF mode as well as the I/0
protection bit are enabled.

WARNING: Extreme care must be used when enabling 1/O instructions, since
doing so allows the user to issue I/0 instructions to any device.

The ?ENBL system call with the CK option can determine whether
the I/0 mode is enabled. If I/0 is enabled, the call will take the
error return ERSAD (“condition already exists”). The I/0 mode test
is destructive: to restore LEF mode, execute a ?DSBL system call.

User Device Support 8—5

Enabling and
Disabling Access to all
Devices

Licensed Material - Property of Data General Corporation

8_6 User Device Support

Managing Data
Channel Map Slots

Licensed Material - Property of Data General Corporation

The data channel facility enables direct data transfers between
memory and a register in the device controller. Data channel I/0
requires program control at both the start and end of each block
transfer.

Data channel transfers are performed across data channel maps in
units whose size is device specific. Data channel maps are translation
tables for the data channel. Devices using data channel maps use a
15-bit logical address.

All data channel I/0 for DGC devices is pre-mapped by MP/AOS-SU
in conformance with the data channel capabilities of each device.

To enable data transfer through data channel with user built devices,
MP/AO0S-SU allows you to access a portion of the data channel and
map it to your user address space.

The following steps summarize the sequence of operations for setting
up data channel maps. The remainder of the chapter discusses these
operations at greater length.

Step 1: Allocate data channel map slots (?7ALMP).

Step 2: Translate user logical address for the start of transfer
into a physical page number (?GMRP).

Step 3: Set up data channel map. (Store user physical page
number in the appropriate data channel slot (?STMP),
where it serves as a pointer to a buffer in the user
address area.)

Step 4: Initiate transfer - enable I/0 (?ENBL).

Setting up the data channel maps can be executed from either the
driver (task level), or the device’s interrupt service routine (interrupt
level); allocating the data channel map slots, obtaining the user
physical address, and enabling I/0 must be performed at task level.

User Device Support 8_7

Data Channel Map Organization

The data channel map is lettered A. It contains 32 slots, or words.
MP/AOS-SU software convention is to number the slots consecutively
starting from O for the first slot in map A, through 31. Figure 8.1
illustrates this scheme. 31

Map slot
numbers Map type

A

Each data channel map slot word corresponds to a 1K word range of
logical data channel addresses, from O through 1024,,. These
addresses are also numbered consecutively within each map, from 0
for the first address in the first slot of each map, through 32767, for
the last address in the thirty-second slot. Figure 8.2 illustrates.

0

DG-25999

Data channel map Corresponding logical addresses
([3 »> 31744 - 32768

Figure 8.1 Data channel numbering scheme

Map slot <

__________ 2048 - 3071

—————————— > 1024 - 2047
0 (F————— 0-1023

DG-26000

Figure 8.2 Data channel map slots and their range of corresponding logical addresses

Licensed Material - Property of Data General Corporation

8—8 User Device Support

Licensed Material - Property of Data General Corporation

Data Channel Mapping via System Calls

Once the number of slots required for the particular data transfer is
determined, the program issues a request to allocate specific data
channel mabp slots for use by the device. (The number of data channel
map slots requested depends on the number of pages to be transferred
and on the characteristics of the device.) The ?ALMP system call
requests data channel map slot allocation.

Data channel addresses differ from logical addresses in the user
program. The starting map slot number returned is the user’s
representation of the map slots allocated. The addresses represented
by these slots are associated with actual physical pages during a
?STMP call, when the data channel map is actually set up.

Following the allocation of data channel map slots, the user’s logical
page number from which to transfer data out or in must be translated
into a physical page number in memory. (The user address space
contains 32 logical pages of 1024 words each.) The ?GMRP system
call performs this translation, returning a physical page number.
Figure 8.3 illustrates.

Program X

Logical address

space
Page 31 G Physical
memory
Program X
Logical
page #
for start *&_‘ ?GMRP call
of data E: [> Physical page no.
transfer Translates user
. logical page number
. to physical
: page number
L]
_—o - 1024 words

DG-26001

Figure 8.3 ?GMRP call returns physical page number

Upon completion of these steps, data channel mapping can take
place. The ?STMP call allows users to request data channel mapping
for each map slot previously allocated via 2ALMP.

When ?STMP is issued, the system stores the user’s physical page
number into the data channel slot number specified. This slot number
indicates the range of logical addresses to which the slot in question
corresponds.

?STMP fills one slot at a time; it must be reissued for each of the data
channel map slots allocated.

User Device Support

8-9

Step 1.

allocated via ?ALMP
User logical
address [

space

Physical memory

Data channel map slot number

1024
word
range of
logical
addresses

Step 2. User logical page number
User logical page w/
number translated __
to physical page Ej Data
number via \s__ channel
?GMRP map

Map slot 31

/
—~
Map slot O

/Physmal page number

DG-26002

Step 3.

User physical page
number is stored in
allocated map slot
via ?STMP

User physical
page number

Figure 8.4 Sequence of data channel mapping operations

Figure 8.4 illustrates the sequence of the three steps just discussed,
from data channel map slot allocation through data channel mapping.

The mapping itself is done by the system. The user must, however,
be sure to compute the proper data channel addresses, i.e., to keep
track of the slots and their range of data channel logical addresses.

The user program is now ready to issue an I/0 instruction. This
instruction identifies the device and loads the starting data channel
logical address into the accumulator. The starting logical address
permits the system to identify the slot containing the user’s physical
page number, as well as the relative position from the beginning of
that page for starting the data transfer.

The starting data channel logical address can be anywhere within
the range of logical addresses corresponding to the particular user
slot allocated. For transfers which are aligned with page boundaries,
the starting data channel logical address is the first address of the
range. If, for example, the user has been allocated the fourth map
slot, the starting data channel logical address for a page aligned
transfer is 6000g, the first address in the fourth slot range of
addresses.

Licensed Material - Property of Data General Corporation

8-10

User Device Support

System Call Summary

Licensed Material - Property of Data General Corporation

For data transfers which are not page aligned, a word offset
specifying the position of the start of transfer relative to the beginning
of the page must be added to the beginning range address. Using the
previous example, if the transfer is to begin at the sixth word of the
user’s physical page, a starting data channel logical address of 6000g
+ 5g is loaded into the accumulator.

The data is then mapped to the correct user address area referenced
by the user physical page number contained in the allocated slot.

Data channel map slots are released with the ?DEMP call, or
automatically by program termination.

Table 8.3 summarizes the system calls available for user device
support.

Call Function Option
?ALMP Allocate data channel map slots
?DEMP Deallocate data channel map
slots
?DSBL Disable 1/0 instructions/enable
LEF mode
?ENBL Enable I/0 instructions/disable CK (take error return if 1/0
LEF mode mode already enabled)
?GMRP Get physical page number
?IDEF Define an interrupt handling rou-
tine
?IPEND Pend awaiting interrupt activity
?IRMV Remove an interrupt handling
routine
?IUNPEND Unpend a task from interrupt BD (unpend all tasks)
handling routine ER (unpended tasks take error
return from ?PEND, ?IPEND)
ID (unpend on task identifier,
not event number)
2AXIT Exit from an interrupt handling
routine
?LDEF Define a line interrupt handling
routine
?LRMV Remove a line interrupt handling
routine
AXIT Exit from a line interrupt handling
routine
?STMP Set up data channel map

Table 8.3 User device support system calls

Miscellaneous
System Calls

The calls described in this chapter examine and or change system
features, such as the clock and calendar, or perform general functions,
such as returning interprogram messages.

The operating system maintains a 24-hour clock and a calendar. A
specification in the system generation dialogue allows you to set the
clock to any one of several frequencies. See MP/AOS-SU System
Generation and Related Utilities for the complete system generation
dialogue.

The system clock expresses the current time and date in MP/AOS-SU
internal format, i.e., a 32-bit number representing the number of
seconds elapsed since midnight, January 1, 1900. System call ?GTIME
returns time and date in internal format; library routines ?CTOD
and ?CDAY accept a time and date in 32-bit MP/AOS-SU format and
return the hour, minute, and second, and the day, month, and year,
respectively.

Alternately, library routines ?GTOD and ?GDAY read, decode, and
return system time and date expressed in conventional format, i.e.,
as hours, minutes, and seconds, and as year, month, and day
respectively.

You can set the system time and date to any specified value by using
the ?STIME system call and expressing the desired values in
MP/AOS-SU internal format, as explained above. (Use library
routines ?FTOD and ?FDAY to convert the time and date, respective-
ly, from conventional format to MP/AQS-SU internal format.)

Clock/Calendar Calls

Licensed Material - Property of Data General Corporation

9-2

Miscellaneous System Calls

Reading a Message

Licensed Material - Property of Data General Corporation

System time and date can also be set by using library routines
?STOD and ?SDAY which accept input in conventional format (i.e.,
hours, minutes, seconds, and day, month, and year, respectively).
Alternately, you can set the date and time by using CLI commands.
Table 9.1 summarizes the clock/calendar system calls and library
routines and their interrelationship.

Call/Routine

Action

Format of input/output

?CDAY (routine)

?CTOD (routine)

?FDAY (routine)

?FTOD (routine)

?GDAY (routine)
?GTIME (call)
?GTOD (routine)
?SDAY (routine)
?STIME (call)
?STOD (routine)

Convert date from 32-bit
internal

Convert time from 32-bit
internal

Convert date to 32-bit
internal

Convert time to 32-bit
internal

Get system date
Get system time/date
Get system time
Set system date
Set system time/date

Set system time

Year, month, day

Hours, minutes, seconds

32-bit internal format

32-bit internal format

Year, month, day

32-bit internal

Hours, minutes, seconds
Year, month, day

32-bit internal

Hours, minutes, seconds

Table 9.1 Clock/Calendar calls and routines

The ?GTMSG call reads into a user-specified buffer any interprogram
message transmitted by the most recent ?EXEC, or ?ZRETURN system
call. The system maintains only one message at a time per program.
The message can be any string of up to 2047 bytes.

Use the ?TMSG library call to retrieve selected portions of an
interprogram message in CLI format.

Dictionary of
System Calls and
Library Routines

This chapter describes the MP/AOS-SU system calls and library
routines. Library routines are specifically identified as such after
their mnemonics and summary descriptions in the dictionary.

Tape commands, which are used in the same way as system calls
and library routines, are presented in dictionary format at the end
of Appendix H.

10

Licensed Material - Property of Data General Corporation

1 0_2 Dictionary of System Calls and Library Routines

Explanatory
Notes

Licensed Material - Property of Data General Corporation

For each entry in this chapter, we give the following information:

¢ the mnemonic that you place in your program code

e identification of the mnemonic as a library routine, if pertinent
(Unidentified mnemonics are system calls.)

e a description of the function performed, along with a figure
showing the format of the required packet (if any)

» tables specifying inputs, outputs, options, and error returns for
each call. The contents of the tables are briefly described below.

Inputs

The inputs table lists information which your program must place in
accumulators before executing a given call. Whenever this informa-
tion is affected by options to the call, the option and its effect are
included in the inputs table.

Outputs

The outputs table lists information which will be in the accumulators
when control returns to your program. Any accumulators not used
for outputs will be unchanged, except for AC3 which is always set to
the value of the frame pointer. When outputs are affected by options
to the call, the option and its effect are included in the outputs table.

Options
The options table lists and explains options available for each system
call.

Errors

The errors table lists the error codes likely to be returned if you use
a call improperly. Note that this list is not necessarily exhaustive:
under certain conditions, some calls may return codes other than
those listed. A complete list of the MP/AOQOS-SU error codes is
contained in Appendix G.

Error codes are returned in ACO.

For more general information on MP/AOS-SU programming, refer
to Chapter 2.

Dictionary of System Calls and Library Routines

Add a Name to the Searchlist
Appends the specified directory name to your searchlist.

ACO must contain a byte pointer to the pathname, which must be
terminated by a null byte. If ACO contains O, the searchlist is cleared;
i.e., all entries are removed. The maximum length of a searchlist is
five pathnames.

Inputs
AC Contents
ACO Byte pointer to pathname of directory (or O)
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERDOL Device is off line
ERFDE File does not exist
ERFIL Device read error
ERFTL Filename too long
ERIFC Invalid character in filename
ERIFT Incorrect file type (not a directory)
ERNAD Non-directory name in pathname
ERPWL Device write error
ERSTL Searchlist too long

?ALIST

Licensed Material - Property of Data General Corporation

10-3

1 0_4 Dictionary of System Calls and Library Routines

?ALMP

Licensed Material - Property of Data General Corporation

Allocate Data Channel Map Slots

This call directs the system to allocate data channel map slots to the
calling program.

In instances where the starting map slot number requested is not
available, the system allocates the next available slot number,
provided sufficient slots are left in the map to cover the total number
of slots requested. If not enough slots are left to satisfy the request,
?ALMP returns error ERMAP, Not enough map slots.

The starting map slot number returned in ACO indicates where in
the map the first slot is allocated. This map slot number is used as
input to the ?STMP call.

See Chapter 8 for discussion of data channel mapping.

Inputs
AC Contents
ACO Number of contiguous map slots requested
AC1 Lowest acceptable slot number
0- 31 Data Channel Map A
Outputs
AC Contents
ACO Starting map slot number. Assignments are identical to the scheme
listed in AC1 above.
Options
None
Errors
Mnemonic Meaning
ERMAP Not enough map slots

Dictionary of System Calls and Library Routines

Attach a Memory Segment

Attaches the calling program to a segment of memory without
mapping it to the caller’'s address space. Initially a program is both
attached and mapped to the segments making up its impure, shared,
and overlay areas.

A segment is an area of memory consisting of from 1 to ?MXSP
pages (1K word blocks). User created segments are identified and
referenced by means of a global segment number assigned when the
segment is created. See ?CSEG.

Once a new segment has been created, several programs may attach
to it.

The maximum number of attached segments for a given user program
is specified at system generation time.

Inputs
AC Contents
ACO Global segment number
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERSAA Segment is already attached
ERSDE Segment does not exist
ERTMS Too many segments attached

?ASEG

Licensed Material - Property of Data General Corporation

10-5

1 0—6 Dictionary of System Calls and Library Routines

?AWAIT

Licensed Material - Property of Data General Corporation

Await Completion of a Non-pended System Call

Used in conjunction with any non-pended system call (NP option) to
determine if the call’s action is finished.

For example, if you executed a non-pended ?READ, you would use
?AWAIT to determine that the input data was available before you
began to operate on it. You specify the particular system call to be
AWAITed by a task identifier, which must be the one returned to
you in AC2 by the system when you executed the non-pended call.

If the non-pended call is not yet finished, the task that executed
?AWAIT is suspended until the non-pended call completes execution,
unless you use the CK option described below.

NOTE: You must issue a successful PAWAIT for every non-pended system call;
otherwise a task control block (TCB) will be wasted.

The AY option causes PAWAIT to return when any non-pended call
is completed rather than awaiting the completion of a specific call.
In that case, AC2 returns the task ID of the completed task. Your
program will then need to issue an 2AWAIT with that task ID so as
to receive the completed task’s output.

The AY option may be used in conjunction with the CK option.

Inputs
AC Contents
AC2 Task identifer for non-pended call
Option:
AY: no input
Outputs
AC Contents
ACO-2 All accumulators are set to the outputs of the non-pended call.
Those not used for outputs are set to their values at the time of the
non-pended call.
AC2 Task identifier of completed task if AY option is used.
Options
Mnemonic Meaning
AY Return when any non-pended call is completed
CK Check: if the non-pended call is not yet complete, do not
suspend this task; instead, return the ERTIP error code.

Dictionary of System Calls and Library Routines 1 0_7

Errors
Mnemonic Meaning
ERTID Invalid task identifier
ERTIP Task in progress: the non-pended call is still executing (CK
option only)

NOTE: This call may also return any error codes produced by the non-pended call.

Licensed Material - Property of Data General Corporation

1 0_8 Dictionary of System Calls and Library Routines

?BOOT

Licensed Material - Property of Data General Corporation

Restart the System

Causes the current MP/AQOS-SU system to be shut down and a new
bootstrap loader to be read from the specified disk device and
executed. The system name must be terminated by a null byte. All
I/0 channels are closed; all disk devices are dismounted.

?BOOT can also start a bootable program file (type ?DBPG). Specify
the pathname of the program file instead of a device name.

If no device is specified, the system shuts down but does not restart.

Inputs
AC Contents
ACO Byte pointer to device name or bootable program filename (zero to
shut down system)
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERFDE File does not exist
ERRAD Read access denied
ERWAD Write access denied
ERFIL Device read error
ERPWL Device write error
ERDOL Device off line
ERNAD Non-directory name in pathname
ERFTL File name too long
ERIFC Invalid character in filename

Dictionary of System Calls and Library Routines 1 0_9

Convert System Time/Date to Date (library routine) ?CDAY

Accepts a time and a date in 32-bit MP/AOS-SU format and returns
the day, month and year. The year is an offset from a base of 1900,

Inputs

AC Contents

ACO High order 16 bits of time
AC1 Low order 16 bits of time
Outputs

AC Contents

ACO Day (range 1-314¢)

AC1 Month (range 1-1244)
AC2 Year (minus 1900) result expressed in octal
Options
None

Errors

None

Licensed Material - Property of Data General Corporation

1 O" 1 0 Dictionary of System Calls and Library Routines

?CLOSE Close an 1/0 Channel
Removes the specified I/0 channel’s connection to a device or file.

If any data from previous ?WRITE calls is in a system buffer, it is
written to the file. No more I/0 may be performed on the channel
until it is reopened.

Inputs
AC Contents
ACO Channel number
Outputs
None
Options
Mnemonic Meaning
DE Delete the file
Errors
Mnemonic Meaning
ERICN Invalid channel number
ERFIL Device read error
ERPWL Device write error
ERDOL Device is off line
ERPRM Permanent file: cannot be deleted

NOTE: If you wish data from ?WRITE calls written to the file before you close the
1/O channel, use ?WRITE with the FL option.

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Create a File
Creates an entry for the specified pathname in the directory structure.

The pathname must be terminated by a null byte. You must specify
the file type and element size. No attributes are set except for
?ATPM (permanent) and ?ATWR (write-protect) in the case of
directories. File attributes and element size are discussed in Chapter
3. Table 3.2 lists file attributes.

Table 10.1 lists the file types available. You may not create new files
in the device directory. However, to simplify device-independent
programming, the system gives a normal return if a program attempts
to ?2CREATE a device that already exists.

Mnemonic Meaning
?DDIR Directory
?DSMN to ?DSMK Range of values for files used by the system:
?DBPG bootable (stand-alone) program file
?DBRK program break file
?DIDF MP/ISAM data file
?DIXF MP/ISAM index file
?DLIB library file
?DLNK link file
?DLOG System log file
?DMBS MP/BASIC save file
?DOBF object file
?DOLF overlay file
?DPRG program file
?DPST permanent symbol table
(used by assembler)
?DSTF symbol table file
?DTXT text file
?DUDF general-purpose data file
?DUMN to ?DUMX Range of values reserved for users

Table 10.1 File types

NOTES: If the specified pathname is not fully qualified, the file is created in the
working directory. The searchlist is not scanned.

All directories specified in the pathname must already exist.

?CREATE

Licensed Material - Property of Data General Corporation

10-11

1 0—1 2 Dictionary of System Calls and Library Routines

Inputs

AC

Contents

ACO
AC1
AC2

Byte pointer to pathname
Type of file to create

File element size in disk blocks; pathname to link, if creating type
?DLNK

Outputs
None

Options

Mnemonic

Meaning

DE

If the file already exists, delete the old one

Errors

Mnemonic

Meaning

ERDOL
ERFIL
ERFTL
ERIFC
ERIFT
ERNAD
ERNA!
ERPRM
ERPWL
ERSPC
ERWAD

Device is off line

Device read error

Filename too long

Invalid character in filename

Invalid file type

Non-directory name in pathname

File already exists (DE option not used)
Permanent file: cannot be deleted (DE option only)
Device write error

Insufficient file space

Write access denied

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Create a Memory Segment

Causes a segment of N pages (1K word blocks) of memory to be
allocated to the calling program. Segment size may range between 1
and ?MXSP pages. All pages of a newly created segment are zeroed.

?CSEG assigns the newly created segment a global segment number
returned in ACO. This global segment number is used to reference
the segment in memory management operations such as attaching,
detaching, or mapping.

?CSEG causes the newly created segment to be attached to the calling
program by means of an implicit 2ASEG call. The new segment is
not, however, mapped to a user address space. See ?MSEG for
mapping.

User created segments are not swapped in and out by the ?EXEC or
?RETURN calls, nor are they written to break files.

When a new user program is initiated, default memory segments
corresponding to its pure, impure, and overlay memory are allocated
to it. See Chapter 5 for discussion.

Inputs
AC Contents
ACO Number of pages to allocate
Outputs
AC Contents
ACO Global segment number
Options
None
Errors
Mnemonic Meaning
ERNEM Not enough memory
ERNFS No free segment
ERTMS Too many segments attached

?CSEG

Licensed Material - Property of Data General Corporation

10-13

10-14

?CTASK

Mnem.
?TYPE
?TPRI
?TSTA
?TSTB
?TSTL
?TSTE
?TAC2
?TUSP
?TKPP

DG-07385

Type: 2TDP Length: ?TLN

Packet type (?TDP)

Reserved] Priority
Starting address

Stack base (start address)
Stack limit (end address)
Stack error handler address
New task’s AC2

New task’'s ?USP word

] Kill post-processing address
0123456 789101112131415

D Undefined

Figure 10.1 Task definition packet

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Create a Task
Introduces a new task to the scheduler.

The maximum number of tasks for any given program is specified
during system generation. AC2 must contain the address of a task
definition packet, in which you specify the new task’s parameters as
defined in Figure 10.1 below.

If you specify zero in offset ?TSTE, the system will provide a stack
error handling routine. In this case, the task will be killed if it
overflows its stack.

If you specify zero in offset ?TKPP, the system assumes that you do
not wish to perform any kill post-processing for the task. (A kill
post-processing routine can perform functions such as deallocating
memory used by the task. See discussion in Chapter 6.)

?USP (Unique Storage Position) is one dedicated memory location in
lower page zero. Each time a new task is scheduled, the current
contents of the ?USP location are saved internally and ?USP is set to
the value associated with the new task.

An error is returned if no task control block (TCB) is available to
support the new task, unless the AW option is specified as described
in the Options table.

A default priority of 1774(127,4) is assigned by the system to a
program’s initial task.

Inputs

AC Contents

ACO Passed to new task

AC1

AC2 Address of task definition packet
Outputs

AC Contents

AC2 Task identifier of the new task
Options

Mnemonic Meaning

AW If no TCB is available, wait for one to be freed

Dictionary of System Calls and Library Routines

Errors
Mnemonic Meaning
ERNOT No free TCBs
ERSTS Invalid stack definition
ERADR Invalid start address
ERPRP Invalid priority

Licensed Material - Property of Data General Corporation

10-15

1 0" 1 6 Dictionary of System Calls and Library Routines

?CTOD Convert System Time/Date to Time of Day (library routine)

Accepts a time and date in 32-bit MP/AOS-SU format and returns
the hour, minute, and second.

Inputs
AC Contents
ACO High order 16 bits of time
AC1 Low order 16 bits of time
Outputs
AC Contents
ACO Second (range 0-59)
AC1 Minute (range 0-59()
AC2 Hour (range 0-23,4 (midnight to 11 pm), (expressed in octal))
Options
None
Errors
None

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Delay Execution of a Task (library routine)
Causes the calling task to be suspended for the length of time specified.

The time, specified in milliseconds, is a 32-bit quantity you place in
two accumulators. You may use the ?MSEC library routine to convert
hours/minutes/seconds to milliseconds. If you set both accumulators
to 0, your task will be delayed for the system default timeout interval
(about one minute).

If you set both accumulators to -1, your task will be delayed
indefinitely.

This routine uses the ?PEND system call, so if scheduling is disabled,
it will be reenabled after suspending the calling task.

Inputs

AC Contents

ACO High order 16 bits of the delay time
AC1 Low order 16 bits of the delay time

Outputs
None
Options
None

Errors
None

?DELAY

Licensed Material - Property of Data General Corporation

10-17

1 0_ 1 8 Dictionary of System Calls and Library Routines

?DELETE

Licensed Material - Property of Data General Corporation

Delete a File

Removes the specified file from the directory structure and returns
its disk space to the system.

The pathname must be terminated by a null byte. If the file is open,
the filename is removed from the directory, but the disk blocks are
not released until all channels open to the file are closed.

If the last or only filename in the pathname is a link, the link itself
is deleted, not its resolution.

Directories containing files cannot be deleted, nor can devices be
deleted. However, for the sake of compatibility, ?DELETE does not
take an error return if you attempt to delete a device.

NOTE: If the specified pathname is not fully qualified, and the file is not found in
the working directory, the ERFDE error return is taken. The searchlist is not
scanned.

Inputs
AC Contents
ACO Byte pointer to pathname
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERFDE File does not exist
ERPRM Permanent file: cannot be deleted
ERDID Directory is not empty
ERNAD Non-directory name in pathname
ERFTL Filename too long
ERIFC Invalid character in filename
ERFIL Device read error
ERPWL Device write error
ERDOL Device is off line

Dictionary of System Calls and Library Routines 1 0_ 1 9

Deallocate Data Channel Map Slots ?DEMP

This call releases data channel map slots held by a program.

Inputs
AC Contents
ACO Starting map slot number. Slot assignment is identical to that used
during the allocation call (?ALMP):
0-31 MapA
AC1 Number of slots to be deallocated
Outputs
AC Contents
AC1 Number of slots deallocated
Options
None
Errors
Mnemonic Meaning
ERSNU Slot(s) not in use

Licensed Material - Property of Data General Corporation

1 0_20 Dictionary of System Calls and Library Routines

?DIR Select a Working Directory
Sets the specified directory to be your current working directory.

The pathname must be terminated by a null byte. If an error occurs,
the current working directory is unchanged.

If the specified pathname is not fully qualified, and the directory is
not found in the current working directory, the searchlist is scanned.

Inputs
AC Contents
ACO Byte pointer to pathname
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERIFT Invalid file type (not a directory)
ERFDE File does not exist
ERNAD Non-directory name in pathname
ERFTL Filename too long
ERIFC Invalid character in pathname
ERFIL Device read error
ERPWL Device write error
ERDOL Device is off line

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Remove a Disk From the System

Causes the specified disk device to be disabled from further I/0
activity and prepares the disk to be removed from the drive.

The device name must be terminated by a null byte. Any data left in
memory from previous I/0 is flushed to the disk, and all pointers
and directories on the disk are left in an orderly state. A flag is set
on the disk to indicate that it was successfully ?DISMOUNTed.

Inputs
AC Contents
ACO Byte pointer to device name
Outputs
None
Options
None
Errors
Mnemonic Meaning
ERFDE File does not exist
ERNAD Non-directory name in pathname
ERFTL Filename too long
ERIFC Invalid character in filename
ERFIL Device read error
ERPWL Device write error
ERDOL Device off line
ERDAI Device in use (some I/O channels are open)
ERDNM Device is not mounted
ERIOD Specified name is not a device

?DISMOUNT

Licensed Material - Property of Data General Corporation

10-21

l 0_22 Dictionary of System Calls and Library Routines

?DRSCH Disable Task Rescheduling

Disables system scheduling, suspending the execution of all other
tasks.

NOTE: System calls executing in system space continue execution and are
suspended only upon their return.

Multitasking resumes only when an ?ERSCH call is executed, or
when this task executes a ?PEND. If multitasking is already disabled,
this call has no effect.

You can use ?DRSCH to determine whether multitasking is enabled
by using the CK option described below. Since this is a “destructive
test,”” you may then need to execute an ?ERSCH to restore the
scheduler’s state.

Inputs
None
Outputs
None
Options
Mnemonic Meaning
CK Check: if multitasking is already disabled, causes the program
to take an error return with code ERSAD
Errors
Mnemonic Meaning
ERSAD Condition already exists (CK option only)

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Disable 1/ O Instructions

This command simultaneously enables the LEF (Load Effective
Address) mode and the I/0 protection bit in the user’'s map status
word.

When LEF mode is on, user programs may use the Load Effective
Address instruction, but may not issue I/0 instructions. (Any I/0
instructions will be interpreted as LEF instructions and can therefore
not be carried out.) LEF mode is on when an MP/AOS-SU program is
started.

I/0 instructions are initially enabled in interrupt handling routines.

Inputs
None

Outputs
None
Options
None

Errors
None

?DSBL

Licensed Material - Property of Data General Corporation

10-23

1 0-24 Dictionary of System Calls and Library Routines

?DSEG

Licensed Material - Property of Data General Corporation

Detach From a Memory Segment

Detaches the calling program from a memory segment.” If the
segment is currently mapped to the caller's address space it is
unmapped, leaving validity protected pages in its place. If the calling
program is the only program attached to the segment, the segment is
released and its memory is returned to the system. The termination
of a program causes an implicit ?DSEG to be issued for every segment
attached to that program.

You cannot detach from default segments O (impure memory), 1
(overlay memory), and 2 (pure memory). Use ?MEMI to recover
impure memory pages.

Inputs

AC Contents

ACO Segment number

Outputs
None

Options
None

Errors

Mnemonic Meaning

ERSNA Segment not attached

°A segment is an area of memory consisting of 1 to ?MXSP pages (1K word blocks). User created
segments are identified and referenced by means of a global segment number assigned when the
segment is created. See ?CSEG.

Dictionary of System Calls and Library Routines

Get a Disk’s Status Information
Retrieves status information about the specified disk.
?DSTAT may be used only on a ?MOUNTed disk.

You specify the disk by its pathname, which must be terminated by
a null byte. The status information is placed in a packet, which has
the format shown in Figure 10.2 below.

Type: ?DSP Length: ?DLN

Mnem.
?TYPE Packet type (?DSP)
?DFB Number of free disk blocks (2 words)
?DAB Number of allocated disk blocks (2 words)
?DTMX Maximum number of files
?DTAL (Internal status information)
otsw | [[[| (status flags)
?DRER Number of recoverable errors
?DUER Number of unrecoverable errors
01 23 456 7 8 9101112131415

D Undefined

DG-07386

Figure 10.2 Disk status packet

The status flags in the ?DSTW word are described in Table 10.2
below.

Mnemonic Meaning when 1

?DLE1 Bad primary label block

?DLE2 Bad secondary label block

?DME1 Bad primary MDV (internal information)
?DME2 Bad secondary MDV

Table 10.2 Status flags in ?DSTW word

Inputs

AC Contents

ACO Byte pointer to device name of disk
AC2 Address of packet

Outputs

None

Options

None

?DSTAT

Licensed Material - Property of Data General Corporation

10-25

l 0_26 Dictionary of System Calls and Library Routines

Licensed Material - Property of Data General Corporation

Errors

Mnemonic Meaning

ERBTL Buffer too long

ERDOL Device is off line

ERFDE File does not exist

ERFIL Device read error

ERFTL Filename is too long

ERIFC Invalid character in filename
ERIOD Specified device is not a disk
ERMPR Invalid packet address
ERPWL Device write error

Dictionary of System Calls and Library Routines

Enable 1/0 Instructions

Upon completion of this system call, the calling process can issue
1/0 instructions at the task level.

When I/0 is enabled, both LEF (Load Effective Address) mode, and
1/0 protection are disabled. Any LEF instructions issued while I/0
mode is enabled are interpreted as I/0 instructions by the hardware.
1/0 instructions are always enabled by the system upon entry to a
user interrupt handling routine.

When the CK option is used, ?ENBL determines whether I/0
instructions are enabled. This is a destructive test: it may be necessary
to execute a ?DSBL system call to restore LEF mode.

Inputs
None
Outputs
None
Options
Mnemonic Meaning
CK Check is I/0 mode is already enabled. CK causes the program
to take an error return (ERSAD).
Errors
Mnemonic Meaning
ERSAD Condition already exists (returned on CK option only)

?ENBL

Licensed Material - Property of Data General Corporation

10-27

1 0—28 Dictionary of System Calls and Library Routines

?EQT

Licensed Material - Property of Data General Corporation

Set Up System Call

Allows users the option of setting up system calls at runtime. The
user specifies the desired system call number and option in AC3 and
sets up the contents of accumulators O through 2 as defined for the

particular call to be executed.

Inputs
AC Contents
ACO As defined for selected call
AC1 As defined for selected call
AC2 As defined for selected call
AC3 Number and options of desired system call
Outputs
AC Contents
ACO As defined for selected call
AC1 As defined for selected call
AC2 As defined for selected call
Options
None
Errors

As defined for selected call.

Dictionary of System Calls and Library Routines 1 0_29

Retrieve a System Error Message (library routine) ?ERMSG

Reads a message from the MP/AOS-SU error message file :ERMES.
If the specified error code has no corresponding message, then the
text Unknown error code n is returned, where n is the error code in octal.
If the error file cannot be found, the message Error code n is returned.

Inputs
AC Contents
ACO Error code
AC1 Byte pointer to message buffer
AC2 Buffer size in bytes
Outputs
AC Contents
AC2 Actual length of message
Options
None
Errors
Mnemonic Meaning
ERBTL Buffer extends into system space
ERDOL Device off line
ERFIL Device read error
ERIRB Buffer too short
ERNMC No more I/O channels
ERPWL Device write error

Licensed Material - Property of Data General Corporation

1 0-30 Dictionary of System Calls and Library Routines

?ERSCH Enable Task Rescheduling

Directs the system scheduler to begin scheduling other tasks. This
call has no effect if the requested scheduling mode is already enabled.

Inputs
None

Outputs
None

Options
None

Errors
None

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines

Execute a Program

Starts execution of the specified program file. The new program
runs at a numerically higher swap level than the initiating program,
unless a program chain is specified. A maximum of eight swap levels
is possible.

You may specify either a program swap, where the new program
runs as a descendant, or a chain, in which case the state of the old
program is not saved.

The following sections apply regardless of whether the executing
program is swapped or chained.

The pathname must be terminated by a null byte. Unless the CL
option is used, files associated with any open I/0 channels are made
available to the new program. (However, an error is returned if the
calling program has any files opened exclusively and tries to pass its
channels.) The CL option closes all channels except ?INCH and
?0UCH. You may pass a message of up to 2,047 bytes to the new
program.

NOTE: ?EXEC returns in error if any user device interrupt handlers are active.

Inputs
AC Contents
ACO Byte pointer to pathname
AC1 Byte pointer to message (if message length is nonzero)
AC2 Bit 0: 0 = swap 1 = chain
Bit 1: 1 = start new program at the debugger starting address
Bits 5 - 15: message length (O if no message)
Outputs
AC Contents
AC1 Only in case of error return

?ECCP Error code in ACO was returned by the called program

?ECEX Error code was returned by the system; the called program did not
run

?ECRT Error code was caused by ?RETURN which was unable to resume
the parent program; in this case, control is passed to the
“‘grandparent’’ program; i.e., program level is decreased by 2

?7ECBK Error code was returned by the system while trying to write a break
file

?ECAB Error code was returned by the system to indicate an abnormal
program termination such as a console abort

AC2 Length of returned message

?EXEC

Licensed Material - Property of Data General Corporation

10-31

l 0_32 Dictionary of System Calls and Library Routines

Options
Mnemonic Meaning
CL Close all channels except ?INCH and ?OUCH
Errors

Mnemonic Meaning

ERABK Called program terminated by CTRL-C CTRL-E (break file)
sequence from console

ERABT Called program terminated by CTRL-C CTRL-B sequence from
console

ERBTL Message buffer too long

ERDOL Device off line

EREXS Attempt to swap beyond program level 8

ERFDE File does not exist

ERFIL Device read error

ERFTL Filename too long

ERIFC Invalid character in pathname

ERIFT Invalid file type (not a program file)

ERIRB Message buffer too short

ERNAD Non-directory name in pathname

ERPCA Some other task has already issued an ?EXEC or ?RETURN

ERSPC Insufficient file space

ERPWL Device write error

ERUIH User device interrupt handlers are active

ERVNS Program file is for a different revision of the MP/AQS-SU
system

ERNDP No Debugger present (returned when user specifies Debugger
starting address)

Licensed Material - Property of Data General Corporation

Dictionary of System Calls and Library Routines 1 0_33

Convert Date (library routine) ?FDAY

Accepts input in the form of day, month, and year, and converts it
into MP/AOS-SU internal format (a 32-bit number representing the
number of seconds elapsed since midnight, January 1, 1900).

Note that the year input in AC2 is an offset from a base of 1900.

Inputs
AC Contents
ACO Day (range 1-314()
AC1 Month (range 1-12,()
AC2 Year (minus 1900, result expressed in octal)
Outputs
AC Contents
ACO High order 16 bits of date
AC1 Low order 16 bits of date
Options
None
Errors
Mnemonic Meaning
ERANG Range error

Licensed Material - Property of Data General Corporation

10-34

Dictionary of System Calls and Library Routines

?FSTAT

Licensed Material - Property of Data General Corporation

Get a File's Status Information
Returns a packet of information about the specified file.

The file may be specified by channel number, if you have a channel
open to it. Otherwise, you can specify the file by its pathname,
which must be terminated by a null byte. The status information is
placed in a block, which has the format shown in Figure 10.3 below.

Type: ?FSP Length: ?FLN
Mnem.
?TYPE Packet type (?FSP)
?FTYP File type
?FATR Attribute word

?FESZ File element size (in blocks)
?FTLA Date and time of last access
FTLM Date and time of last modification (2 words)
?FLEN Length of file (in bytes) (2 words)
01 2 3 4 5 6 7 8 9 10111213 14 15

DG-07387

Figure 10.3 File status packet

NOTE: If the specified file is a device, the contents of the ?FESZ, ?FTLA, and
?FTLM words are not applicable. If the file is a character device, the ?FLEN word
is also unused.

If the LNK option is used and the last filename in the pathname is a
link, information on the link itself is returned, not on its resolution.
In that case, the contents of AC1 are interpreted as a byte pointer to
the ?MXLL byte area to receive the link’s resolution pathname.

Inputs
AC Contents
ACO Byte pointer to pathname
Options:
CH: channel number
AC1 Options:
LNK: Byte pointer to ?MXLL
byte area to receive link’s resolution pathname
AC2 Address of packet
Outputs
None

Dictionary of System Calls and Library Routines

Options
Mnemonic Meaning
CH ACO contains a channel number instead of a byte pointer to a
pathname
LNK Do not resolve links
Errors
Mnemonic Meaning
ERBTL Buffer too long
ERDOL Device is off line
ERFDE File does not exist
ERFIL Device read error
ERFTL Filename is too long
ERICN Invalid channel number
ERIFC Invalid character in filename
ERMPR Invalid packet address
ERNAD Non-directory name in pathname
ERPWL Device write error

Licensed Material - Property of Data General Corporation

10-35

1 0_36 Dictionary of System Calls and Library Routines

?FTOD

Licensed Material - Property of Data General Corporation

Convert Time of Day (library routine)

Accepts input in the form of seconds, minutes, hour, and converts it
into MP/AOS-SU internal format, i.e., a 32-bit number representing
the number of seconds elapsed since midnight, January 1, 1900.

Inputs
AC Contents
ACO Seconds (range 0-594¢)
AC1 Minutes (range 0-59)
AC2 Hour (range 0-23 4 (midnight to 11 pm expressed in octal))
Outputs
AC Contents
ACO High order 16 bits of time
AC1 Low order 16 bits of time
Options
None
Errors
Mnemonic Meaning
ERANG Range error

Get Device Characteristics

Dictionary of System Calls and Library Routines

?GCHAR

Places the characteristics word of the specified device into an

accumulator.

The device name must be terminated by a null byte. See ?SCHAR for

a list of characteristics.

Inputs
AC Contents
ACO Byte pointer to device name
Options:
CH: Channel number
Outputs
AC Contents
AC1 Device characteristics word
Options:
HC: hardware characteristics
LL: number of characters per line
PG: number of lines per page
RS: characteristics at system boot
Options
Mnemonic Meaning
CH ACO contains a channel number instead of a byte pointer to a
pathname.
HC Return device's hardware characteristics in AC1 (for hardware
with programmable characteristics only). See ?SCHAR.
LL Return the number of characters per line in AC1.
PG Return the number of lines per page in AC1.
RS Return value of characteristics at the time system was booted.

"The HC option must be used for disk devices.

Licensed Material - Property of Data General Corporation

10-37

1 0-38 Dictionary of System Calls and Library Routines

Licensed Material - Property of Data General Corporation

Errors
Mnemonic Meaning
ERFDE File does not exist
ERFTL Filename too long
ERIFC Invalid character in filename
ERIFT Not a character device
ERNAD Non-directory name in pathname

If the CH option is used, ?GCHAR returns the characteristics for the
device open on the channel specified in ACO. An error is returned if
the channel is not open on a character device.

If the RS option is used, ?GCHAR returns the device characteristics
as they were when the system was booted.

Dictionary of System Calls and Library Routines 1 0_39

Get the Current Date (l/ibrary routine) ?GDAY

Gets the system time, decodes it into year, month, and day, and
returns these values in accumulators. The year is an offset from a
base at 1900.

Inputs
None

Outputs

AC Contents

ACO Day (range 1-3140)
AC1 Month (range 1-12,,)
AC2 Year (minus 1900; result expressed in octal)

Options
None

Errors
None

Licensed Material - Property of Data General Corporation

1 0_40 Dictionary of System Calls and Library Routines

?GLIST

Licensed Material - Property of Data General Corporation

Get the Searchlist
Retrieves the contents of your current searchlist into a buffer.

The searchlist is represented by a series of pathnames, separated by
commas and terminated by a null byte. All pathnames are fully
qualified; i.e., they start at the device directory.

Inputs
AC Contents
ACO Byte pointer to buffer
AC1 Length of buffer in bytes
Outputs
AC Contents
AC1 Length of searchlist (not counting final null byte)
Options
None
Errors
Mnemonic Meaning
ERIRB Buffer too short
ERBTL Buffer too long
ERFIL Device read error
ERDOL Device off line

Dictionary of System Calls and Library Routines 1 0—4 1

Get Physical Page ?GMRP

This call returns a physical page number corresponding to a logical
page number in the user program.

NOTE: A logical page is 1024 words long.

Inputs

AC Contents

AC2 Logical page number in user program

Outputs

AC Contents

AC2 Physical page number

Options
None

Errors
None

Licensed Material - Property of Data General Corporation

1 0—42 Dictionary of System Calls and Library Routines

?GNAME

Licensed Material - Property of Data General Corporation

Get the Fully-Qualified Pathname

Accepts a filename or pathname and returns a fully-qualified
pathname (one that starts at the device directory) corresponding to
it. If no such file is found in the current working directory, and no
prefixes (@, ", or =) are present, then ?GNAME resolves the filename
through the searchlist looking for the filename. The output pathname
is placed in a buffer and terminated with a null byte.

The input filename may contain prefixes; this enables you to find
the name of your current working directory by calling ?GNAME
with the filename =. You can also use ?GNAME CH to determine
the name of the file that is open on a specified I/0 channel, ?GNAME
PR to determine the name of the currently running program.

Inpu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>