
t. DataGeneral
[)ata General Corporation, Westboro, Massachusetb 01580 --------------------

Customer Documentation

AOSNS, AOSNS II, and AOSIRT32
System Call Dictionary,

? A Through ?Q

093-000542--02

AOSNS, AOSNS II, and AOS/RT32
System Call Dictionary,

? A Through ?Q
093-000542-02

For the latest enhancements, cautions, documentation changes, and other
information on this product, please see the Release Notice (OB5-series)
supplied with the software.

Ordering No. 093-000542
Copyright © Data General Corporation, 1988, 1990, 1991
All Rights Reserved
Unpublished - all rights reserved under the copyright laws of the United States.
Printed in the United States of America
Rev. 02, December, 1991
Licensed Material- Property of Data General Corporation

Notice
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BYDGC PERSONNEL, LICENSEES,
AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF DGC' AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without prior notice,
and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE LICENSING OF
DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in
subparagraph (cX1Xii) of the Rights in Technical Data and Computer Software clause at [DFARS] 252.227-7013 (October
1988).

Data General Corporation
4400 Computer Drive
Westboro, MA 01580

--- - -------------

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,
ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT, PROXI, SWAT, TRENDVIEW, and
WALKABOUT are U.S. registered trademarks of Data General Corporation; and AOSMAGIC, AOSNSMAGIC,
AROSElPC, ArrayPlus, AV Object Office, AV Office, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection,
CEO ConnectionILAN, CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA,
CEO Wordview, CEOwrite, COBOL/SMART, COMPUCALC, CSMAGIC, DASHERlOne, DASHERl286,
DASHERI286-12c, DASHERl286-12j, DASHERl386, DASHERI386-16c, DASHERl386-25, DASHERl386-25k,
DASHERl386SX, DASHERl386SX-16, DASHERl386SX-20, DASHERl486-25, DASHER III486-33TE, DASHERILN,
DATA GENERAIJOne, DESKTOPIUX, 00/500, OO/AROSE, OOConnect, OOIDBUS, DGlFontstyles, OO/GATE,
OO/GEO, DGIHEO, DGIL, DGILIBRARY, DGIUX, DGIXAP, ECLIPSE MV/l000, ECLIPSE MV/1400,
ECLIPSE MVI2000, ECLIPSE MVI2500, ECLIPSE MV/3500, ECLIPSE MV/5000, ECLIPSE MV/5500,
ECLIPSE MV/5600, ECLIPSE MVn800, ECLIPSE MV/9300, ECLIPSE MVI9500, ECLIPSE MV/9600,
ECLIPSE MV/l0000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MVI20000, ECLIPSE MV/30000,
ECLIPSE MV/35000, ECLIPSE MV/40000, ECLIPSE MV/60000, FORMA-TEXT, GATEKEEPER, GDC/l000,
GDC12400, Intellibook, microECLIPSE, microMV, MVIUX, OpenMAC, PC Liaison, RASS, REV-UP, SLATE,
SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEOlElectronics, TURBO/4, UNITE, and XODIAC are
trademarks of Data General Corporation.

AOSNS, AOSNS II, and AOSIRT32 System Call Dictionary, ? A Through ?Q
093-000542-02

Revision History:
Original Release - October 1988
First Revision - February 1990
Second Revision - December 1991
Addendum 086-000195 - June 1992

Effective with:

AOSNS, Ret 7.70
AOSNS II, Ret 2.20
AOSIRT32, Ret 5.01

A vertical bar in the outer margin of a page indicates substantive change from the previous revision 0

this manual.

t. DataGeneraI
Addendum

Addendum to
AOSNS, AOSNS II, and

AOS/RT32 System Call Dictionary,
? A Through ?Q

086-{)0019S-QO

This addendum updates your manual 093-000542-02. Please see "Updating Your
Manual" If you are running AOSNS Revision 7.69, do not insert this addendum,
which becomes effective with AOSNS Revision 7.70.

Copyright ©Data General Corporation, 1992
All Rights Reserved
Unpublished - all rights reserved under the copyright laws of the United States.
Printed in the United States of America
Revision 00, June 1992
Licensed Material- Property of Data General Corporation
Ordering No. 086-000195

Notice
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BYDGCPE RSONNEL,LICENSEES,
AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF DGC' AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without prior notice,
and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OFDGCHARDWARE PRODUCTS AND THE LICEN SINGOFDGC
SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SmTABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in
subparagraph (cXl)(ii) of the Rights in Thchnical Data and Computer Software clause at [DFARS] 252.227-7013 (October
1988).

Data General Corporation
4400 Computer Drive
Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,
ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT, PROXI, SWAT, TRENDVIEW, and WALKABOUT
are U.S. registered trademarks of Data General Corporation; and AOSMAGIC, AOSlVSMAGIC, AROSEIPC, ArrayPlus,
AV Object Office, AV Office, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN,
CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite,
COBOUSMART, COMPUCALC, CSMAGIC, DASHERlOne, DASHERI286, DASHERI2~12c, DASHERI286-12j,
DASHERl386, DASHERl386-16c, DASHERl386-26, DASHERl386-26k, DASHERl386SX, DASHERl386SX-16,
DASHERl386SX-20, DASHERl4~26, DASHER III486-33TE, DASHERILN, DATA GENERAI.JOne, DESKTOPIUX,
DG/600, DG/AROSE, DGConnect, DGIDBUS, DG/Fontstyles, DG/GATE, DG/GEO, DGIHEO, DGIL, DGlLIBRARY,
DGIUX, DGIXAP, ECLIPSE MV/lOOO, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV12600, ECLIPSE MV/3600,
ECLIPSE MV/6000, ECLIPSE MV/6600, ECLIPSE MV/6600, ECLIPSE MVI'7800, ECLIPSE MV/9300,
ECLIPSE MVI9600, ECLIPSE MVI9600, ECLIPSE MV/lOOOO, ECLIPSE MV/16000, ECLIPSE MV/l8000,
ECLIPSE MVI20000, ECLIPSE MV/30000, ECLIPSE MV/36000, ECLIPSE MV/40000, ECLIPSE MV/60000,
FORMA-TEXT, GATEKEEPER, GDC/lOOO, GDCl2400, Intellibook, microECLIPSE, microMV, MVIUX, OpenMAC,
PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEOlElectronics,
TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

Addendum to
AOSNS, AOSNS II, and AOSIRT32 System Call Dictionary, ?A Through ?Q

086-000195-00

In the margins of replacement pages, a vertical bar indicates substantive technical
change from 093-000542-02.

The addendum number appears on all pages in this addendum.

Updating Your Manual

This addendum (086-000195-00) to AOSNS, AOSNS II, and AOSIRT32 System Call Dictionary,
? A Through ?Q introduces new information effective with AOSNS II Release 2.20, and AOSNS
Release 7.70. It also includes minor corrections.

To update your copy of 093-000542-02, please remove manual pages and insert addendum pages as
follows:

Remove Insert

TitlelN otice TitlelNotice

iii through vi iii through vi

old Contents new Contents

2-11 through 2-20 2-11 through 2-20

2-27/2-28 2-27/2-28

2-57/2-58 2-57/58 through 2-58.26

2-69/2-70 2-69/2-70

2-85/2-86 2-85/2-86

2-89/2-90 2-89/2-90

2-103/2-104 2-103/2-104

2-113/2-114 2-113/2-114

2-121/2-122 2-12112-122

2-159 through 2-164 2-159 through 2-164

2-171 through 2-174 2-171 through 2-174

2-203 through 2-216 2-203 through 2-216

2-259/2-260 2-259/2-260

2-269 through 2-272 2-269 through 2-272

2-287/2-288 2-287/2-288

2-295 through 2-304 2-295 through 2-304.9

2-307/2-308 2-307/2-308

2-337/2-338 2-337/2-338

2-405 through 2-410 2-405 through 2-410

2-415 through 2-418 2-415 through 2-418

2-473/2-474 2-473/2-474

2-525 through 2-530 2-525 through 2-530

2-535 through 2-548 2-535 through 2-548

2-555/2-556 2-555/2-556

Remove Insert

old Index new Index

old Document Set new Document Set

Where new material requires additional pages, the pages have a decimal and number suffix; for
example 5-21.1, 5-22.2.

Insert this updating sheet immediately behind the new TitlelN otice page.

Preface

The System Call Dictionary spans two manuals - one for system calls?A through ?Q, and the
other for system calls ?R through ?Z. Much information appears twice in these two manuals for
your ease of use. For example, the table of contents and indexes are identical. Chapter 2 in both
books has the same title, but their contents differ. Chapter 2 in manual 093-000543 is a
continuation of Chapter 2 in manual 093-000542, and is paginated accordingly. Appendixes A and
B follow Chapter 2 in the second manual.

This manual is intended for use by experienced assembly language programmers. Experienced
high-level language programmers can also use this manual to create programs that make direct
calls to the operating systems.

Organization
This manual is organized as follows:

Chapter 2 begins with a summary table of all AOSNS and AOSIRT32 system calls, followed by
detailed descriptions of all the system calls whose names begin with? A through ?Q.

Appendix A contains 12 program sets that illustrate AOSNS and AOSIRT32 system calls. We
have written 11 of the program sets in assembly language and the twelfth in
FORTRAN 77. The Appendix is located at the end of the complementary manual
ADS / VS, ADS / VS II, and ADS / RT32 System Call Dictionary, ?R Through ?Z
(093-000543).

Appendix B describes the format of the system log (SYSLDG) file, into which both AOSNS and
AOSNS II and privileged processes can write records that log the occurrence of
certain events. The Appendix is located at the end of the complementary manual
ADS / VS, ADS / VS II, and ADS / RT32 System Call Dictionary, ?R Through ?Z
(093-000543).

Related Documentation
As mentioned earlier, the complement of this manual is ADS / VS, ADS / VS II, and ADS / RT32
System Call Dictionary, ?R Through ?Z (093-000543). The following documents are ancillary to
both manuals.

• ADS/VS System Concepts (093-000335)

• Introduction to ADS / RT32 (069-400061)

• ADS / VS and ADS / VS II Error and Status Messages (093-000540)

• AOS/VS and AOS/VS II Glossary (069-000231)

086--000195 updates
093-000542

Licensed Material- Property or Data General Corporation iii

AOS/VS System Concepts and Introduction to AOS/RT32, listed at the beginning of this section,
contain a general description of operating system calls and how to use them. This manual and its
companion system call dictionary manual contain detailed descriptions of each AOSNS and
AOSIRT32 call. For your convenience, the system call descriptions in the two dictionaries are in
alphabetical order.

The Documentation Set, after the index in each manual, contains a complete annotated list of
AOSNS and AOSNS II manuals.

If you are not experienced with assembly language, we suggest that you read the following manuals
before you read this book:

• Fundamentals of Small Computer Programming (093-000090), which provides a general
introduction to Data General computers.

• ADS /VS Macroassembler (MASM) Reference Manual (093-000242), which gives detailed
information about the syntax of AOSNS assembly language and about the Macroassembler
utility.

• ECLIPSE® MV / Family (32-Bit) Systems Principles of Operation (014-001371), which explains
the processor-independent concepts and functions of ECLIPSE® MVlFamily systems to
assembly language programmers.

• ECLIPSE® MV / Family (32-BitJ Systems Instruction Dictionary (014-001372), which explains
each instruction in the ECLIPSE MVlFamily instruction set to assembly language
programmers. Processor-dependent information, available in machine-specific supplements,
complements this and the previous manual. An example of such information is found in the
manual ECLIPSE® MV /20000™ Series Systems Principles of Operation Supplement
(014-001169).

• ECLIPSE® MV / Family Instruction Reference Booklet (014-000702), which provides a brief
summary of the instruction set and register information. The reference booklet lists each
instruction by assembler-recognizable mnemonic with a shorthand description of its function.

• FORTRAN 77 Environment Manual (ADS / VS) (093-000288).

Update and Release Notices
Certain features of the operating systems may change from revision to revision. Therefore, please
refer to the current Release Notice for the most up-to-date information about functional changes
and enhancements. The Release Notice is usually in the utilities directory (:UTIL) on your system.
The filename of the AOSNS Model 3900 Update Notice is 078_000105_**; that of the AOSNS II
Release Notice is 085_000930_**. Suffixes (**) change with each revision. Your system manager
should be able to tell you the exact pathname of the Release Notice.

The AOSNS and AOSNS II Release and Update Notices contain the latest details about all the
system software, including enhancements and changes, notes and warnings. Notices are supplied
both as printed listings and as disk files that you can print. The manuals and the Notices comprise
the documentation for the system calls for AOSNS Revision 7.69, and for AOSNS II Revision 2.10.
There are no documentation-changes files for this manual.

You should read the Update and Release Notices. If you want to know the features of a release, or
have problems with a release, read the notice for solutions. The notices assume that you know the
operating system well- so parts of the notices may be difficult to understand until you do know
the system.

iv Licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

The Newsletter
Finally, you will find the ADS /VS Monthly Newsletter a useful source of information on the latest
enhancements to both AOSNS and AOSNS II.

Reader Please Note
Throughout this manual we use the following format conventions:

COMMAND required [optional] ...

Where Means

COMMAND You must enter the command (or its accepted abbreviation) as shown.

required You must enter some argument (such as a filename). Sometimes, we use

{
requ!red 1}
required 2

which means you must enter one of the arguments. Do not type the braces; they only
set oft'the choices.

[optional] You have the option of entering this argument. Do not type the brackets; they only
identify the argument as an option.

You may repeat the preceding entry.

Standard Symbols

Additionally, we use the following symbols:

Symbol

~

Means

Press the New Line, Carriage Return (CR), or Enter key on your terminal keyboard.

The CLI prompt.

<> Angle brackets indicate the paraphrase of an argument or statement. (You supply the
actual argument or statement.)

*
**

One asterisk indicates multiplication. For example, 2*3 means 2 multiplied by 3.

Two asterisks indicate exponentiation. For example, 2**3 means 2 raised to the third
power.

OS The operating system in the accumulator I/O, figure, and table categories.

Unless the text supplies a specific radix (as it often does), all memory addresses are octal values
and all other numbers are decimal values. To explicitly specify a decimal number, we sometimes use
a period after the last digit. To explicitly specify an octal number, we sometimes use the phrases
octal value or base eight. For example, the phrase "a baker's dozen cookies" has traditionally meant
13. = 15 base eight cookies.

In this manual, AOSNS means AOSNS, AOSNS II, or both, unless otherwise noted.

Finally, in examples we use

This typeface to show your entry.
This typeface to show system queries and responses.
This typeface to show listings and status displays.

086-000195 updates
093-000542

Licensed Material- Property 01 Data General Corporation v

Contacting Data General
Data General wants to assist you in any way it can to help you use its products. Please feel free to
contact the company as outlined below.

Manuals
If you require additional manuals, please use the enclosed TIPS order form (United States only) or
contact your local Data General sales representative.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free telephone
assistance is available with your hardware warranty and with most Data General software service
options. If you are within the United States or Canada, contact the Data General Customer Support
Center (CSC) by calling I-BOO-DG-HELPS. Lines are open from B:OO a.m. to 5:00 p.m., your time,
Monday through Friday. The center will put you in touch with a member of Data General's telephone
assistance staff who can answer your questions.

Joining Our Users Group
Please consider joining the largest independent organization of Data General users, the North
American Data General Users Group (NADGUG). In addition to making valuable contacts, members
receive FOCUS monthly magazine, a conference discount, access to the Software Library and
Electronic Bulletin Board, an annual Member Directory, Regional and Special Interest Groups, and

I much more. For more information about membership in the North American Data General Users
Group, call1-B00-253-3902 or 1-50B-443-3330.

End of Preface

vi Licensed Mllterial- Property d Data General Corporation
086-000195 updates

093-000542

Contents

Chapter 1 - Introducing the System Calls

Standard Format for System Calls .. 1-2
Parameter Packets .. 1-3
Parametric Coding .. 1-3
Other System Call Input ... , 1-4
Reserved Symbols .. 1-5
A Complete Example - Assembly Language. .. 1-5

General Step ... 1-5
Progra.m Listing .. 1-6
Program Construction .. 1-8
Program Execution .. 1-8

Error Codes 1-9
High-Level Language Interface ... 1-10

Chapter 2 - AOSNS, AOSNS II, and AOS/RT32 System Calls

Summary Table

?ALLOCATE
?ASSIGN
?AWIRE
?BLKIO
?BLKPR
?BNAME

?BRKFL
?CDAY
?CGNAM
?CHAIN
?CKVOL
?CLASS
?CLOSE
?CLRDV
?CLSCHED
?CLSTAT
?CMATRIX
?CON
?CONFIG
?CONINFO

?CPMAX
?CREATE
?CRUDA

086-000195 updates
093-000542

2-2

?A Through ?Q

Allocates disk blocks. ... 2-15
Assigns a character device to a process 2-17
Changes the wiring characteristics of the Agent. .. 2-18
Performs (reads/writes) block I/O 2·,19
Blocks a process .. 2-26
Determines whether process name/queue
name is on local or remote host. 2-28
Terminates a process and creates a break file 2-29
Converts a scalar date value. .. 2-31
Gets a complete pathname from a channel number. 2-32
Passes control from a Ring 7 caller to a new program. 2-33
Checks volume identifier of a labeled magnetic tape. 2-35
Gets or sets class IDs. .. 2-36
Closes an open channel. .. 2-38
Clears a device. .. 2-40
Enables, disables, or examines class scheduling 2-42
Returns class scheduling statistics. .. 2-45
Gets or sets the class matrix. .. 2-51
Becomes a customer of a specified server. 2-56
Display or reset current MRC routes 2--58
Request for addressing information
on a terminal or console .. 2-58.6
Sets maximum size for a control point directory (CPD) 2-58.26
Creates a fue or directory. ... 2-60
Creates a user data area (UDA) 2-70

Licensed Material- Property cI Data General Corporation vii

?CTERM
?CTOD
?CTYPE
?DACL
?DADID
?DCON
?DDIS
?DEASSIGN
?DEBL
?DEBUG
?DELAY

?DELETE
?DFRSCH

?DIR
?DQTSK

?DRCON
?DRSCH
?ENBRK
?ENQUE
?ERMSG
?ERSCH
?ESFF
?EXEC
?EXPO
?FDAY
?FEDFUNC
?FEOV
?FIDEF
?FIXMT

?FLOCK
?FLUSH
?FSTAT
?FTOD
?FUNLOCK
?GACL
?GBIAS
?GCHR
?GCLOSE
?GCPN
?GCRB

?GDAY
?GDLM
?GECHR
?GHRZ

viii

?A Through?Q

Terminates a customer process. .. 2-72
Converts a scalar time value. .. 2-74
Changes a process type .. 2-75
Sets, clears, or examines a default access control list. 2-77
Gets the PID of a process's father. 2-79
Breaks a connection (disconnects) in Ring 7 2-80
Disables access to all devices. .. 2-81
Cancels a character device. .. 2-82
Enables access to all devices. .. 2-83
Calls the Debugger utility. .. 2-84
Suspends a 16-bit task for a specified interval
(16-bit processes only). 2-85
Deletes a fIle entry .. 2-86
Disables task rescheduling and indicates
prior state of rescheduling. .. 2-88
Changes the working directory. 2-89
Removes from the queue one or
more previously queued tasks. 2-90
Breaks a connection (disconnects) 2-92
Disables scheduling. .. 2-93
Enables a break file. 2-94
Sends a message to IPC and spooler files. 2-98
Reads the error message file. .. 2-99
Enables multitask scheduling for the calling process 2-102
Flushes shared m.e memory pages to disk 2-103
Requests a service from EXEC 2-104
Sets, clears, or examines execute-protection status 2-141
Converts date to a scalar value 2-143
Interfaces to File Editor (FED) utility. .. 2-144
Forces end-of-volume on labeled magnetic tape 2-148
Defines a fast user device ... 2-149
Transmits a message from an
interrupt service routine in Ring O .•.••..................••...•••... 2-157
Locks an object .. 2-159
Flushes the contents of a shared page to disk. 2-162
Gets flie status information. .. 2-163
Converts time of day to a scalar value. .. 2-171
Unlocks an object. .. 2-172
Gets a flie entry's access control list (ACL) 2-174
Gets the current bias factor values 2-176
Reads device characteristics of a character device 2-177
Closes a flie previously opened for block I/O 2-183
Gets the terminal port number. .. 2-185
Gets the base of the current resource
(16-bit processes only). . .. 2-186
Gets the current date. ... 2-187
Gets a delimiter table .. 2-188
Get extended characteristics. 2-190
Gets the frequency of the system clock. 2-201

Licensed Material - Property 01 Data General Corporation
08~195 updates

093-000542

?GLINK
?GLIST
?GMEM
?GNAME
?GNFN
?GOPEN
?GPID
?GPORT
?GPOS
?GPRNM
?GRAPHICS
?GRNAME
?GROUP
?GSHPT
?GSID
?GTACP
?GTIME
?GTMES
?GTNAM
?GTOD
?GTRUNCATE
?GTSVL
?GUHPI
?GUNM
?GVPID
?HNAME
?IDEF
?IDGOTO
?IDKIL
?IDPRI
?IDRDY
?IDSTAT
?IDSUS
?IESS

?IFPU
?IHIST

?ILKUP
?IMERGE
?IMSG
?INIT
?INTWT
?IQTSK
?IREC
?IRMV
?ISEND
?ISPLIT

086-000195 updates
093-000542

?A Through ?Q

Gets the contents of a link entry. .. 2-202
Gets the contents of a search list 2-203
Returns the number of undedicated memory pages. 2-204
Gets a complete pathname. .. 2-205
Lists a particular directory's entries. 2-207
Opens a file for block I/O ... 2-210
Returns all active PIDs based on a host ID 2-217
Returns the PID associated with a global port number 2-219
Gets the current file-pointer position 2-220
Gets a program's pathname ... 2-222
Manipulates pixel maps. ... 2-223
Returns complete pathname of generic file. 2-239
Changes a group access control list of a process. 2-240
Lists the current shared partition size 2-243
Gets the system identifier. ... 2-244
Gets access control privileges 2-245
Gets the time, date, and time zone 2-247
Gets an initial IPC message ... 2-250
Returns symbol closest in value to specified input value. 2-256
Gets the time of day. .. 2-258
Truncates a disk file. .. 2-259
Gets the value of a user symbol. 2-261
Gets unique hardware processor identificatio n. 2-263
Gets the username of a process. .. 2-265
Gets the virtual PID of a process. 2-266
Gets a hostname or host identifier 2-267
Defines a user device. .. 2-269
Redirects a task's execution path. .. 2-278
Kills a task specified by its TID 2-279
Changes the priority of a task specified by its TID. 2-280
Readies a task specified by its TID 2-281
Returns task status word (16-bit processes only) 2-282
Suspends a task specified by its TID 2-,283
Initializes an extended state save (ESS) area
(16-bit processes only). . .. 2-284
Initializes the floating-point unit 2-285
Starts a histogram for a 16-bit process
(16-bit processes only). . .. 2-286
Returns a global port number. 2-288
Modifies a ring field within a global port number. .. 2-289
Receives an interrupt service message 2-290
Initializes a logical disk. ... 2-291
Defines a terminal interrupt task. 2-293
Creates a queued task manager. 2-294
Receives an IPC message. .. 2-295
Removes a user device ... 2-304.9
Sends an IPC message. .. 2-305
Finds the owner of a port (including its ring number) 2-308

Licensed Material- Property of Data General Corporation ix

?IS.R
?ITIME
?IXIT
?IXMT
?JPINIT
?JPMOV
?JPREL
?JPSTAT
?KCALL

?KHIST
?KILAD
?KILL
?KINTR
?KIOFF
?KION
?KWAIT
?LABEL
?LDUINFO
?LEFD
?LEFE
?LEFS
?LMAP
?LOCALITY
?LOGCALLS
?LOGEV
?LPCLASS
?LPCREA
?LPDELE
?LPSTAT
?MAPDV
?MBFC
?MBTC
?MDUMP

?MEM
?MEMI

?MIRROR
?MPHIST

?MYTID
?NTIME
?ODIS
?OEBL
?OPEN
?OPER
?OPEX

x

?A Through?Q

Sends and then receives an IPC message. 2-309
Returns the OS-format internal time. 2-313
Exits from an interrupt service routine 2-314
Transmits a message from an interrupt service routine 2-315
Initializes ajob processor ... 2-317
Moves a job processor to a new logical processor. .. 2-320
Releases a job processor. ... 2-322
Gets the status of a job processor. 2-324
Keeps the calling resource and acquires a new
resource (I6-bit processes only) 2-328
Kills a histogram. ... 2-329
Defines a kill-processing routine 2-330
Kills the calling task. .. 2-331
Simulates keyboard interrupt sequences. 2-332
Disables control-character terminal interrupts. .. 2-333
Re-enables control-character terminal interrupts. 2-334
Waits for a terminal interrupt. .. 2-335
Creates a label for a magnetic tape or diskette. 2-336
Obtain logical disk information 2-340
Disables LEF mode. ... 2-350
Enables LEF mode. ... 2-351
Returns the current LEF mode status. 2-352
Maps a lower ring. .. 2-353
Changes user locality. .. 2-354
Logs system calls .. 2-357
Enters an event in the system log file. 2-360
Gets/sets logical processor class assignments. 2-362
Creates a logical processor. ... 2-365
Deletes a logical processor. ... 2-367
Gets the status of a logical processor. 2-369
Maps a device into logical address space 2-373
Moves bytes from a customer's buffer 2-377
Moves bytes to a customer's buffer 2-379
Dumps the memory image from a
user-specified ring to a file ... 2-381
Lists the current unshared memory parameters. 2-383
Changes the number of unshared pages in
the logical address space. .. 2-384
Mirrors and synchronizes LDU images. .. 2-386
Starts a histogram on a uni - or multi -processor system
(32-bit processes only). . .. 2-394
Gets the priority and TID of the calling task. .. 2-399
Sets the time, date, and time zone. 2-400
Disables terminal interrupts. 2-403
Enables terminal interrupts. 2-404
Opens a file. .. 2-405
Creates and maintains an operator interface. 2-424
Communicates between the current process
and an operator process .. 2-437

licensed Material - Property of Data General Corporation
086--000195 updates

093-000542

?OVEX
?OVlUL
?OVLOD
?OVREL
?PCLASS
?PCNX
?PIDS
?PMTPF
?PNAME
?PRCNX
?PRDB/?PWRB
?PRI
?PRIPR
?PRKIL
?PROC
?PROFILE
?PRRDY
?PRSUS
?PSTAT
?PTRDEVICE
?PWDCRYP
?PWRB

Index

Document Set

?A Through?Q

Releases an overlay and returns (16-bit processes only) 2-509
Exits from an overlay and kills the calling task (16-bit processes only). 2-510
Loads and goes to an overlay (I6-bit processes only) 2-511
Releases an overlay area (16-bit processes only) 2-513
Gets a process's class and locality 2-514
Passes a connection from one server to another in Ring 7. 2-516
Gets information about PIDs. 2-517
Permits access to a protected file 2-519
Gets a full process name. .. 2-521
Passes a connection from one server to another. 2-523
Performs physical block I/O. .. 2-525
Changes the priority of the calling task. 2-530
Changes the priority of a process 2-531
Kills all tasks of a specified priority 2-533
Creates a process. ... 2-534
Performs a profile request .. 2-551
Readies all tasks of a specified priority. 2-558
Suspends all tasks of a specified priority. .. 2-559
Returns status information on a process. 2-560
Controls input from a pointer device 2-567
Performs a password data encryption request. .. 2-590
Performs physical block I/O. 2-592

Chapter 2 - AOSNS, AOSNS II, and AOS/RT32 System Calls
(Continued)

?RCALL

?RCHAIN
?RDB/?WRB
?RDUDMWRUDA
?READ/?WR1TE
?REC
?RECNW
?RECREATE
?RELEASE
?RENAME
?RESCHED

086-000195 updates
093-000542

?R Through ?Z

Releases one resource and acquires a new one
(16-bit processes only) .. 2-594
Chains to a new procedure (I6-bit processes only) 2-595
Performs (reads/writes) block I/O. .. 2-596
Reads/writes a user data area (UDA). .. 2-602
Performs (reads/writes) record 1/0. .. 2-604
Receives an intertask message. 2-627
Receives an intertask message without waiting. 2-628
Recreates a file. ... 2-629
Releases an initialized logical disk. 2-630
Renames a file. ... 2-631
Reschedules current time slice (32-bit processes only) 2-633

Licensed Material - Property 0/ Data General Corporation xi

?RESIGN
?RETURN

?RINGLD
?RNAME

?RNGPR
?RNGST
?RPAGE
?RTODC
?RUNTM
?SACL
?SATR

?SBIAS
?SCHR
?SCLOSE
?SDAY
?SDBL
?SDLM
?SDPOL

?SDRT/?SERT
?SEBL
?SECHR
?SEND
?SERMSG

?SERT
?SERVE
?SGES
?SIGNL
?SIGWT
?SINFO

?SLIST
?SONS
?SOPEN
?SOPPF
?SPAGE
?SPOS
?SRCV
?SSHPT
?SSID
?SSND
?STMAP
?STOD
?STOM
?SUPROC

xii

?R Through ?Z

Resigns as a server. .. 2-634
Terminates the calling process and passes
the termination message to the father. .. 2-635
Loads a program file into a specified ring 2-637
Determines whether a pathname contains a
reference to a remote host. ... 2-639
Returns the .PR filename for a ring. .. 2-640
Stops ?RINGLD from loading lower rings 2-642
Releases a shared page. .. 2-643
Reads the time-of-day conversion data 2-645
Gets runtime statistics on a process. 2-648
Sets a new access control list (ACL) 2-650
Sets or removes the permanent attribute
for a file or directory. .. 2-653
Sets the bias factors. .. 2-655
Sets a character device's characteristics 2-656
Closes a file previously opened for shared access. 2-658
Sets the system calendar. .. 2-660
Disables a BSC line .. 2-661
Sets a delimiter table. ... 2-662
Defines a polling list or a poll-address/
select-address pair. ... 2-664
Disables/re-enables a relative terminal 2-667
Enables a BSC line. ... 2-669
Sets extended characteristics of a device. 2-679
Sends a message to a terminal. 2-681
Returns text for associated error code
(I6-bit processes only). . .. 2-683
Re-enables a relative terminal 2-685
Becomes a server. ... 2-685
Gets BSC error statistics. .. 2-686
Signals another task. .. 2-688
Signals another task and then waits for a signal. 2-690
Gets selected information about the current
operating system. ... 2-692
Sets the search list for the calling process. 2-695
Gets a list of son processes for a target PID. .. 2-696
Opens a file for shared access. 2-699
Opens a protected shared file 2-701
Performs a shared-page read 2-704
Sets the position of the file pointer 2-707
Receives data or a control sequence over a BSC line 2-709
Establishes a new shared partition 2-718
Sets the system identifier ... 2-719
Sends data or a control sequence over a BSC line. 2-720
Sets the data channel map .. 2-729
Sets the system clock. ... 2-732
Sets the time-out value for a device. .. 2-733
Enters, leaves, or examines Superprocess mode. 2-735

Licensed Material - Property 0/ Data General Corporation
086-000195 updates

093-000542

?SUS
?SUSER
?SYLOG
?SYSPRV
?TASK
?TERM
?TIDSTAT
?TLOCK
?TMSG
?TPID
?TPORT
?TRCON
?TRUNCATE
?TUNLOCK
?UBLPR
?UIDSTAT

?UNWIND

?UNWIRE
?UPDATE
?VALAD
?VALIDATE
?VCUST
?VMEM
?VRCUST
?VTFCREATE
?VTFKILL
?VTFMODIFY
?VTFSUS
?VTFXIT
?WALKBACK

?WDELAY

?WHIST
?WINDOW
?WIRE
?WRB
?WRITE
?WRUDA
?WTSIG
?WTVERR
?WTVSIG
?XCREATE
?XFSTAT
?XGTACP
?XINIT
?XMT

086-000195 updates
093-000542

?R Through ?Z

Suspends the calling task. .. 2-736
Enters, leaves, or examines Superuser mode. .. 2-737
Manipulates the system log fIles. .. 2-739
Enters, leaves, or examines a privilege state. 2-744
Initiates one or more tasks. .. 2-747
Terminates a process ... 2-754
Returns status of target task (32-bit processes only) 2-756
Protects a task from being redirected 2-757
Defines the termination message format 2-759
Translates a PID .. 2-769
Translates a local port number to its global equivalent. 2-770
Reads a task message from the process terminal. 2-771
Truncates a file at the current position. 2-773
Allows a task to be redirected 2-774
Unblocks a process .. 2-776
Returns the status of a task and an
unambiguous identifier. .. 2-777
Unwinds the stack and restores the previous
environment (I6-bit processes only) 2-778
Unwires pages previously wired 2-779
Flushes file descriptor information 2-780
Validates a logical address .. 2-781
Validates an area for Read or Write access. 2-782
Verifies a customer in Ring 7. .. 2-786
Changes the partition size of a process. 2-787
Verifies a customer in a specified ring 2-789
Creates a Virtual Timer Facility timer. 2-790
Kills a Virtual Timer Facility timer. 2-797
Modifies a Virtual Timer Facility timer. .. 2-799
Suspends or Restarts a Virtual Timer Facility timer. 2-804
Exits from a Virtual Timer Facility interrupt routine 2-806
Returns information about previous frames
in the stack (16-bit processes only) 2-807
Suspends a task for a specified time
(32-bit processes only). . .. 2-809
Starts a histogram (32-bit processes only) 2-810
Manipulates windows .. 2-813
Wires pages to the working set. 2-842
Writes block I/O. .. 2-844
Writes record I/O .. 2-844
Writes a user data area (UDA). 2-844
Waits for a signal from another task or process. 2-845
Waits for a Virtual Timer Facility error message 2-846
Waits for a Virtual Timer Facility signal. .. 2-848
Creates a flie or directory (extended) 2-849
Gets flie status information (extended). 2-862
Gets access control privileges (extended). 2-882
Initializes a logical disk (extended). 2-886
Transmits an intertask message. .. 2-898

Licensed Material - Property of Data General Corporation xiii

?R Through ?Z

?XMTW Transmits an intertask message and waits
for it to be received. ... 2-899

?XPSTAT Returns extended status information on a process. 2-900

Appendix A - Sample Programs

Program Set 1 - HEAR.SR, SPEAK.SR, SON.SR .. A-3
Program Set 2 - RUNTIME.SR .. A-II
Program Set 3 - RINGLOAD.SR, INRING.SR, and GATE.ARRAY.SR A-14
Program Set 4 -FILCREATE.SR ... A-19
Program Set 5 - WRITE.SR .. A-22
Program Set 6 - DLIST.SR ... A-26
Program Set 7 - NEWTASK.SR .. A-29
Program Set 8 - BOOMER.SR ... A-32
Program Set 9 - TIMEOUT.SR ... A-37
Program Set 10 - DIRCREATE.F77 and CHECK.F77 A-39
Program Set ll-CREATE_WINDOW.SR ... A-46
Program Set 12 - GRAPHICS_SAMPLE.SR ... A-56

Appendix B - System Log Record Format

Reporting the Contents of the SYSLOG File ... B-1
Reading the SYSLOG File .. B-1

Record Header Format .. B-2
SYSLOG Record Formats .. B-3

Anatomy of a System Log File Record .. B-20

Index

Document Set

xiv Licensed Material - Property d Data General Corporation
086-000195 updates

093-000542

Table

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-8.l.
2-8.2
2-8.3
2-8.4

2-8.5
2-8.6
2-8.7
2-8.8
2-8.9
2-8.10
2-8.11
2-8.12
2-8.13
2-8.14
2-8.15
2-8.16
2-8.17
2-8.18
2-8.19
2-8.20
2-8.21
2-8.22
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21

Tables

?A Through ?Q

Summary of AOSNS and AOSIRT32 System Calls 2-3
Contents of?BLKIO Packet .. 2-21
Contents of?CLASS Packet .. 2-37
Contents of ?CLSCHED Packet .. 2-44
Contents of ?CLSTAT Main Packet ... 2-48
Contents of ?CLSTAT Sub packet ... 2-50
Contents of ?CMATRIX Main Packet .. 2-53
Contents of ?CMATRIX Subpacket .. 2-54
Valid ?CONFIG_FUNCTION Function Codes 2-58.1
?CONFIG GET CURRENT ROUTE Function Subpacket Contents 2-58.3
?CONFIG RESET_MRD_CHANNEL Function Subpacket Contents 2-58.4
?CONFIG RESET _MRC _CONTROLLER Function
Sub packet Contents ... 2-58.5
Contents of the ?CONINFO Packet ... 2-58 .. 7

Input Values to ?CON_PKT.USER_FLGS Offset 2-58 .. 8
?CON _ RET _TYPES Return Buffer Console Types and Dermitions 2 - 58 .. 9
Contents of?CON_TCP _RET_TYPE Packet 2-58.10
Contents of?CON_XNS_RET_TYPE Packet 2-58.12

Contents of?CON_CON_RET_TYPE Packet 2-58.13
Contents of?CON_TNET_RET_TYPE Return Packet 2-58.14
Contents of?CON_ITC_MIN_DATAPacket 2-58.15
Contents of?CON_TSC_MIN_DATA Packet 2-58.16
Contents of?CON_PVC_RET_TYPE Packet 2-58.17
?CON_PVC_RET_TYPE Subpacket Types and Dermitions 2-58.18
Contents of?CON_PVC_NAME Subpacket 2-58.19
Contents of?CON_PVC_NAME_PORT Subpacket 2-58.20
Contents of?CON_PVC_IP Subpacket ... 2-58.21
Contents of?CON_PVC_IP _PORT Subpacket 2-58.22
Contents of?CON_PVC_ETH Subpacket 2-58.23
Contents of?CON_PVC_PORT Subpacket 2-58.24
Contents of?CON_PVC_NET Subpacket 2-58.25
Valid ?CREATE File Types ... 2-61
Contents of?CREATE IPC Packet .. ,. 2-63
Contents of ?CREATE Directory Packet ... 2-65
Contents of?CREATE Packet for Other File Types 2-67
Contents of ?ENBRK Packet ... 2-96
Flags for EXEC Functions ?XFXUN and ?XFXML 2-108
Contents of ?EXEC Packet for Tape Backup. .. 2-111
Contents of?EXEC Packet for Queue Requests 2-114
Contents of ?XFUSR Subpacket of ?EXEC System Call .. 2-125
Contents of AOSNS ?EXEC Packet for Hold, Unhold, or Cancel Queue Requests 2-128
Contents of?EXEC Packet for Status Information 2-129
Contents of ?EXEC Packet for Extended Status Information .. 2-130
Contents of Selected Offsets in the ?EXEC Packet for the ?XFMOD Function 2-135

086-000195 updates
093-000542

Licensed Material- Property 0/ Data General Corporation xv

Table

2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-33
2-34

?A Through ?Q

Queue Status Bit Definitions in Offset ?XQIFG 2-136
?EXEC Queue Types in Offset ?XQQT .. 2-138
Contents of ?FEDFUNC Packet to Evaluate a FED String .. 2-147
Contents of Map Dermition Entry. 2-154
Contents of?FLOCK Packet ... 2-161
Flags Returned in Offset ?SSTS ... 2-169
Contents of ?FUNLOCK Packet ... 2-173
Character Device Characteristics Words .. 2-178
Commonly Used Device Characteristics .. 2-181
Device Types for Rubout Echo and Cursor Controls. .. 2-200
Contents of ?GNFN Packet. .. 2-208

2 - 35 Filename Template Characters .. 2-208
2-36 Contents of?GOPEN Packet for IPC Files .. 2-211
2-37 Contents of Standard ?GOPEN Packet ... 2-212
2-38 Option Flags for Offset ?ODFI .. 2-215
2-39 Valid Format Options (DPM disks) ... 2-216
2-40 Contents of?GPID Packet .. 2-218
2-41 ?GRAPHICS Function Codes. .. 2-224
2-42 Contents of the ?GRAPHICS Main Packet .. 2-225
2-43 Contents of the ?GRAPH_OPEN_WINDOW_PlXELMAP Subpacket 2-227
2-44 Contents of the ?GRAPH_CREATE_MEMORY_PIXELMAP Subpacket 2-228
2-45 Contents of the ?GRAPH_PlXELMAP _STATUS Subpacket 2-230
2-46 Contents of the ?GRAPH_SET_CLIP.RECTANGLE Subpacket 2-231
2-47 Contents of the ?GRAPH_MAP_PIXELMAP Subpacket 2-233
2-48 Contents of the ?GRAPHICS_SET_DRAW_ORIGIN Subpacket 2-237
2-49 Contents of the ?GRAPHICS_GET_DRAW_ORIGIN Subpacket 2-238
2-50 Contents of?GROUP Packet .. 2-242
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-63.1
2-63.2
2-64
2-65
2-66
2-67
2-68
2-69
2-70

xvi

Contents of ?GTIME Packet. .. 2-249
Contents of?GTMES Packet .. 2-251
Input Parameters for Offset ?GREQ (Request Types) 2-252
Output from ?GTMES Requests ... 2-254
Contents of ?GTRUNCATE Packet. .. 2-260
Contents of?G UHPI Packet .. 2-264
Contents of Map Dermition Entry .. 2-274
Structure of?IHIST Array , , 2-287
Contents of ?INIT Packet ... 2-292
Contents of ?IREC Header .. 2-297
Termination Codes for 16-Bit Processes ... 2-298
Process Termination Codes in Offset ?IUFL for ?IREC and ?ISEND Headers 2-299
?TEXT Code Termination Messages Sent on an A -Type 32-Bit Process User Trap.. 2-301
?TRAP Termination Messages for A -Type 16-Bit Processes 2-303
Contents of Ter.mination Message from a 32-bit B- or C-Type Process 2-304.2
Contents of Termination Message from a 16-bit B- or C-Type Process 2-304.6
Contents of ?ISEND Header .. 2-306
Contents of ?IS.R Header ... 2-311
Contents of?JPINIT Packet ... 2-319
Contents of?JPMOV Packet ... 2-321
Contents of?JPREL Packet , ... 2-823
Contents of ?JPSTAT Main Packet. .. 2-::125

Licensed Material- Property of Data General Corporation
086-000195 updates

093-DOO542

Table

2-71
2-72
2-73
2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82
2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-95
2-96
2-97
2-97
2-98
2-99
2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117

?A Through ?Q

Contents of?JPSTAT General Information Subpacket 2-326
Contents of?JPSTAT Specific Information Subpacket 2-327
Contents of ?LABEL Packet .. 2-338
Contents of ?LDUINFO Main Packet. 2-341
Contents of?LDU_PKT Subpacket ... 2-344
?PIECE_PKT Subpacket Contents ... 2-348
Contents of ?LOCALITY Packet ... 2-356
Contents of ?LPCLASS Packet .. 2-364
Contents of ?LPCREA Packet ... 2-366
Contents of ?LPDELE Packet ... 2-368
Contents of?LPSTAT Main Packet ... 2-370
Contents of?LPSTAT General Information Subpacket 2-371
Contents of?LPSTAT Specific Information Subpacket 2-372
Contents of ?MAPDV Packet .. 2-376
Contents of ?MIRROR Packet ... 2-388
Contents of 16-Bit ?MIRROR Packet .. 2-391
Contents of ?MPHIST Packet ... 2-397
Structure and Contents of ?MPHIST Histogram Array .. 2-398
Contents of ?NTIME Packet. .. 2-402
Contents of?OPEN Packet .. 2-408
File Creation Options for Offset ?ISTI .. 2-413
Common File Types You Can Create with ?OPEN 2-414
Contents of ?OPEN Extension Packet for Pipes 2-417
Contents of Labeled Magnetic Tape Packet Extension .. 2-420
Contents of ?OPER Main Packet .. 2-426
Contents of?OPON Subpacket .. 2-427
Contents of ?OPOFF Subpacket ... 2-429
Contents of ?OPOFF Subpacket ... 2-430
Contents of?OPSEND Subpacket .. 2-431
Contents of ?OPRCV Subpacket ... 2-433
Contents of ?OPRESP Subpacket .. 2-434
Contents of ?OPINFO Subpacket .. 2-436
Contents of ?OPEX Main Packet .. 2-439
Contents of Access Command Subpacket ... 2-442
Contents of Align Command Subpacket .. 2-443
Contents of Batch_List Command Subpacket 2-444
Contents of Batch_Output Command Subpacket 2-445
Contents of Binary Command Subpacket ... 2-446
Contents of Brief Command Subpacket .. 2-447
Contents of Cancel Command Subpacket ... 2-448
Contents of Consolestatus Command Subpacket .. 2-450
Contents of Continue Command Subpacket .. 2-451
Contents of CPL Command Subpacket ... 2-452
Contents of Create Command Subpacket ... 2-453
?OPEX Queue Types in Offset ?ZCRQ ... , 2-453
Contents of Defaultforms Command Subpacket 2-454
Contents of Disable Command Su bpacket .. 2-455
Contents of Dismounted Command Subpacket 2-456

086-000195 updates
093-000542

Licensed Material - Property of Data General Corporation xvii

Table

2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-133
2-134
2-135
2-136
2-137
2-138
2-139
2-140
2-141
2-142
2-143
2-144
2-145
2-146
2-147
2-148
2-149
2-150
2-151
2-152
2-153
2-154
2-155
2-156
2-157
2-158
2-159
2-160
2-161
2-162
2-163
2-164
2-165
2-166

xviii

1A Through 1Q

Contents of Elongate Command Subpacket 2-457
Contents of Enable Command Subpacket 2-459
Contents of Even Command Subpacket .. 2-460
Contents of Flush Command Subpacket .. 2-461
Contents of Forms Command Subpacket .. 2-462
Contents of Halt Command Subpacket ... 2-463
Contents of Headers Command Subpacket .. 2-464
Contents of Hold Command Subpacket 2-465
Contents of Limit Command Subpacket .. 2-466
Contents of Logging Command Subpacket 2-468
Contents of LPP Command Subpacket ... 2-469
Contents of Mapper Command Subpacket .. 2-470
Contents of Mounted Command Subpacket 2-472
Contents of Mountstatus Command Subpacket .. 2-474
Contents of Operator Command Subpacket 2-476
Contents of Pause Command Subpacket 2-477
Contents of Premount Command Subpacket 2-478
Contents of Priority Command Subpacket .. 2-479
Contents of Prompts Command Subpacket 2-480
Contents of Qpriority Command Subpacket .. 2-482
Contents of Refused Command Subpacket .. 2-483
Contents of Release Command Subpacket .. 2-484
Contents of Restart Command Subpacket .. 2-485
Contents of Silence Command Subpacket .. 2-486
Contents of Spoolstatus Command Sub packet .. 2-488
Contents of Stack Command Subpacket .. 2-491
Contents of Start Command Subpacket .. 2-493
Contents of Status Command Subpacket ... 2-496
Contents of Stop Command Subpacket ... 2-499
Contents of Trailers Command Subpacket .. 2-500
Contents of U nhold Command Subpacket .. 2-501
Contents of U nitstatus Command Subpacket .. 2-503
Contents of U nlimit Command Subpacket .. 2-504
Contents of U nsilence Command Subpacket 2-505
Contents of Subpacket User-Command .. 2-507
Contents of Verbose Command Subpacket .. 2-508
Contents of?PCLASS Packet .. 2-515
Contents of?PIDS Packet ... 2-518
Contents of ?PMTPF Packet .. 2-520
Contents of ?PRDB/?PWRB Packet .. 2-527
?PRDBnpWRB Packet: Controller Status Words 2-528
Error Reports Returned in ?PRDB/?PWRB Offsets 2-529
Contents of ?PROC Packet .. 2-538
Privilege Bits in Offset ?PPRV .. 2-542
Contents of ?PROC Parameter Packet Extension for AOSNS and AOSIRT32 2-547
Contents of ?PROC Parameter Packet Extension for AOSNS II 2-548
Contents of ?PROFILE Parameter Packet .. 2-553
Contents of ?PSTAT Parameter Packet ... 2-563
?PTRDEVICE Function Codes. 2-568

Licensed Material - Property 0/ Data General Corporation
086-000195 updates

093-000542

Table

2-167
2-168
2-169
2-170
2-171
2-172
2-173
2-174

2-175
2-176
2-177
2-178

?A Through?Q

Contents of the ?PTRDEVICE Main Packet 2-570
Flags for Selecting Pointer Events (Flag Word ?PTRDEV_SET_EVTS.EVTS) 2-575
Flags for Selecting Buttons (Flag Word ?PTRDEV_SET_EVTS.BTNS) 2-576
Contents of the ?PTRDEV_SET_DELTA SUbpacket 2-577
Contents of the ?PTRDEV _LAST_EVENT Subpacket 2-578
Contents of the ?PTRDEV _SET_POINTER Subpacket .. 2-580
Contents of the ?PTRDEV_GET_PTR_STATUS Subpacket 2-582
Flags for Each Possible Pointer Device Event
(Flag Word ?PTRDEV _ GSTATUS.EVTS) ... 2-584
Contents of the ?PTRDEV _ GENERATE _EVENT Subpacket 2-586
Contents of the ?PTRDEV_GET_PTR_LOCATION Subpacket 2-588
Contents of the ?PTRDEV_GET_TABLET_LOCATION Subpacket 2-589
Contents of ?PWDCRYP Pack~t .. 2-591

?R Through ?Z

2 -179 Contents of ?RDB/?WRB Packet ... 2-598
2 -180 Contents of the Standard ?READ!?WRITE Packet 2-608
2-181
2-182
2-183
2-185

2-186
2-187
2-188
2-189
2-190
2-191
2-192
2-193
2-194
2-195
2-196
2-197
2-198
2-199
2-200
2-201
2-202
2-203
2-204
2-205
2-206
2-207
2-208
2-209
2-210
2-211
2-212

Contents of Screen - Management Packet Extension 2-613
Contents of Selected Field Translation Packet Extension .. 2-618
Contents of the New Screen Management Packet. .. 2-{;23
Supported (Y) and Unsupported (N) New Screen Management
Packet Features in AOSNS ... 2-626
Contents of?RNGPR Packet .. 2-641
Contents of ?RTODC Packet .. 2-647
Contents of?SEBL Packet .. 2-671
BSC Protocol Data-Link Control Characters (DLCC) .. 2-674
Contents of the ?SERMSG Packet. .. 2-684
Contents of?SGES Packet .. 2-687
Contents of ?SONS Packet .. 2-698
Contents of ?SOPPF Packet .. 2-702
Contents of ?SPAGE Packet 2-705
File-Pointer Settings .. 2-708
Contents of ?SRCV Packet .. 2-711
Masks Returned on ?SRCV System Calls ... 2-716
Contents of ?SSND Packet .. 2-722
?SSND Call Types .. 2-726
Contents of ?SYSPRV Packet 2-746
Contents of Standard Task Definition Packet 2-749
Contents of Extended Task Definition Packet 2-752
Contents of Termination Message a 32 - bit Process Receives 2-762
Contents of Termination Message a 16-bit Process Receives 2-766
?VALIDATE Functions and Their Codes .. 2-783
Contents of?VMEM Packet ... 2-788
Contents of?VTFCREATE Packet ... 2-792
Contents of ?VTFKILL Packet .. 2-798
Contents of?VTFMODIFY Packet ... 2-801
Histogram Array Structure ... 2-812
?WINDOW Function Codes ... 2-814
Contents of the ?WlNDOW Main Packet. .. 2-817

086-000195 updates
093-000542

Licensed Material- Property of Data General Corporation xix

Table

2-213
2-214
2-215
2-216
2-217

2-218
2-219
2-220
2-221
2-222
2-223
2-224
2-225
2-226
2-227
2-228
2-229
2-230
2-231
2-232
2-233
2-234
2-235
2-236
2-237
2-238

A-I

B-1

xx

?R Through ?Z

Contents of the ?WIN_ CREATE _WINDOW Subpacket .. 2-819
Contents of the ?WIN_DEFINE_PORTS Subpacket 2-824
Flags in Flag Word ?WIN_ SINT.FLAGS .. 2-829
Border Types (Offset ?WIN_SINT.BORDER_TYPE) 2-829
Flags in the ?WIN _GET _ USER_INTERFACE
Flag Word (Flag Word ?WIN_GINT.FLAGS) 2-830
Border Types (Offset ?WIN_GINT.BORDER_TYPE) 2-831
Contents of the ?WIN _ G TITLE Subpacket .. 2-832
Contents of the ?WIN_WINDOW_STATUS Subpacket 2-835
Contents of the ?WIN _DEVICE_STATUS Subpacket 2-839
Contents of ?XCREATE Main Packet .. 2-850
Valid ?XCREATE File Types ... 2-852
Contents of ?XCREATE Time-Block Subpacket 2-853
Contents of ?XCREATE Other Subpacket .. 2-854
Contents of ?XCREATE Directory Sub packet 2-856
Contents of?XCREATE IPC Sub packet .. 2-857
Contents of ?XCREATE Link Sub packet ... , 2-857
Valid ?XFSTAT File Types .. 2-863
?XFSTAT IPC File Status , , 2-867
?XFSTAT Status Flags .. 2-869
?XFSTAT Directory and Other Packet File Status 2-871
?XFSTAT Unit Packet File Status. .. 2-876
Contents of ?XG TACP Packet ... 2-884
Contents of ?XINIT Packet .. 2-889
Contents of 16-Bit ?XINIT Packet " , 2-894
Contents of ?XPSTAT Standard Parameter Packet .. 2-905
Contents of ?XPSTAT Extension Packet for AOSNS and AOSNS II 2-908

Sample Program Sets and their Descriptions .. A-I

SYSLOG Event Codes and Record Lengths ... B-3

Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

Figure

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-11.1
2-11.2
2-11.3
2-11.4
2-11.5
2-11.6

Figures

?A Through ?Q

Para1lletric Coding Example .. 1-3
Listing File of Program DIRCREATE.SR ... 1-6
Structure of?BLKIO Packet .. 2-20
Examples of Read Next Allocated Element Option 2-23
Structure of Physical I/O Controller Status Block 2-25
Structure of ?CLASS Packet. .. 2-37
Structure of ?CLOSE Packet ... 2-39
Structure of ?CLSCHED Packet .. 2-44
Structure of ?CLSTAT Main Packet 2-47
Structure of ?CLSTAT Sub packet .. 2-49
Structure of?CMATRIX Main Packet ... 2-52
Structure of ?CMATRIX SUbpacket ... 2-53
Addresses of?CMATRIX Main Packet and Its Subpacket Offsets 2-55
Structure of?CONFIG Main Packet ... 2-58.1
Structure of the ?CONFIG_GET_CURRENT_ROUTE Function SubPacket 2-58.2
Structure of the ?CONFIG_RESET_MRC_CHANNEL Function SubPacket 2-58.4
Structure of the ?CONFIG_RESET_MRC_CTRLR Function SubPacket 2-58.5
Structure of?CONINFO Main Packet ... 2-58.7
Structure of?CON_TCP _RET_TYPE Return Packet 2-58.10

2-11.7 Structureof?CON_XNS_RET_TYPE Return Packet 2-58.11
2-11.8 Structure of?CON_CON_RET_TYPE Return Packet 2-58.12
2-11.9 Structure of?CON_TNET_RET_TYPE Return Packet 2-58.13
2-11.10 Structure of?CON_ITC_MIN_DATA Return Packet 2-58.14
2-11.11 Structure of?CON_TSC_MIN_DATA Return Packet 2-58.15
2-11.12 Structure of?CON_PVC_RET_TYPE Return Packet 2-58.16
2-11.13 Structure of?CON PVC NAME Return Packet 2-58.19 - -
2-11.14 Structure of?CON_PVC_NAME_PORT Return Packet 2-58.20
2-11.15 Structure of?CON_PVC_IP Return Packet 2-58.21
2-11.16 Structure of?CON_PVC_IP _PORT Return Packet 2-58.22
2-11.17 Structure of?CON_PVC_ETH Return Packet 2-58.23
2-11.18 Structure of?CON_PVC_PORT Return Packet 2-58.24
2-11.19 Structure of?CON_PVC_NET Return Packet 2-58.25
2-12 Structure of?CPMAX packet ... 2-59
2-13 Structure of?CREATE IPC Packet .. 2-62
2-14 Structure of?CREATE Time Block ... 2-63
2-15 Structure of?CREATE Directory Packet ... 2-64
2-16 Structure of?CREATE Packet for Other File Types 2-66
2-17 Structure of?CRUDA Packet ... 2-71
2-18 Structure of?DELETE Packet .. 2-87
2-19 Extended Task Definition Packet ... 2-91
2 - 20 Structure of ?ENBRK Packet .. 2-96
2-21 Error Code Structure in ERMES File ... 2-100
2-22 Structure of?EXEC Packet for Unlabeled Mount Function ?XFMUN 2-106
2-23 Structure of?EXEC Extended Packet for Unlabeled Mount Function ?XFXUN 2-107

086-000195 updates
093-000542

Licensed Material - Property of Data General Corporation xxi

Figure 1A Through 1Q

2 - 24 Structure of ?EXEC Packet for Labeled Mount Function ?XFMLT 2-107
2 - 25 Structure of ?EXEC Extended Packet for Labeled Mount Function ?XFXML 2-108
2-26 Structure of?EXEC Packet for Dismounting a Tape, ?XFDUN 2-109
2-27 Structure of?EXEC Packet for Tape Backup 2-110
2 - 28 Structure of ?EXEC Packet for Queue Requests 2-113
2 - 29 Structure of the IPC Print Notification Message from ?EXEC .. 2-123
2-30 Structure of?XFUSR Subpacket of?EXEC System Call 2-124
2-31 Structure of AOSNS ?EXEC Packet for Hold, Unhold, or Cancel Queue Requests 2-127
2-32 Structure of?EXEC Packet for Status Information 2-129
2 - 33 Structure of ?EXEC Packet for Extended Status Information 2-130
2-34 Structure of?EXEC Packet for a MOUNT Queue Request. .. 2-131
2-35 Structure of?EXEC Packet for Dismounting a Unit (extended request) 2-132
2-36 Structure of?EXEC Packet for Changing Queuing Parameters 2-133
2-37 Structure of?EXEC Packet for Obtaining Queue Names 2-137
2 - 38 Structure of ?EXEC Packet for Obtaining QDISPLAY Information 2-139
2-39 Structure of?FEDFUNC Packet to Change Radix 2-145
2-40 Structure of?FEDFUNC Packet to Open Symbol Table File 2-145
2-41 Structure of?FEDFUNC Packet to Evaluate a FED String 2-145
2-42 Structure of?FEDFUNC Packet to Disassemble an Instruction 2-146
2-43 Structure of?FEDFUNC Packet to Insert a Temporary Symbol 2-146
2-44 Structure of?FEDFUNC Packet to Delete a Temporary Symbol 2-147
2-45 Structure of Device Control Table (DCT) ... 2-152
2-46 Structure of Map Definition Table ... 2-153
2 - 47 Structure of ?FLOCK Packet .. 2-160
2-48 Structure of?FSTAT Packet for Unit Files , 2-165
2-49 Structure of?FSTAT Packet for IPC Files .. 2-166
2-50 Structure of?FSTAT Packet for Directory Files 2-167
2-51 Structure of?FSTAT Packet for Other File Types 2-168
2-52 Structure of?SSTS Packet .. 2-169
2-53 Structure of ?FUNLOCK Packet 2-173
2 - 54 Structure of ?GACL Packet. .. 2-175
2-55 Structure of?GNFN Packet ... 2-208
2-56 Structure of?GOPEN Packet for IPC Files 2-211
2-57 Structure of Standard ?GOPEN Packet.. 2-212
2-58 Structure of?GOPEN Packet Extension. .. 2-215
2-59 Structure of?GPID Packet .. 2-218
2-60 Structure of?GPOS Packet .. 2-221
2-61 Structure of the ?GRAPHICS Main Packet .. 2-225
2-62 Structure of the ?GRAPH _ OPEN_ WINDOW _ PIXELMAP Subpacket 2-226
2-63 Structure of the ?GRAPHICS_CREATE_MEMORY_PIXELMAP Sub packet 2-228
2-64 Structure of the ?GRAPH_PIXELMAP _STATUS Subpacket 2-229
2-65 Structure of the ?GRAPH_SET_CLIP _RECTANGLE Sub packet 2-231
2-66 Structure of the ?GRAPH _MAP _ PIXELMAP Sub packet 2-233
2-67 Structure of the ?GRAPH_ WRITE_PALETTE Subpacket 2-235
2-68 Structure of the ?GRAPH _READ_PALETTE Subpacket 2-236
2-69 Structure of the ?GRAPHICS_SET_DRAW_ORIGIN Subpacket 2-237
2-70 Structure of the ?GRAPHICS_GET_DRAW_ORIGIN Subpacket 2-238
2-71 Structure of?GROUP Packet .. 2-241
2-72 Structure of?GROUP log entry .. 2-241

xxii Lioensed Material- Property of Data General Corporation
086-000195 updates

093-000542

Figure

2-73
2-74
2-75
2-76
2-77
2-78
2-78.1
2-79
2-80
2-81
2-82

?A Through?Q

Structure of ?GTIME Packet .. 2-248
Structure of?GTMES Packet .. 2-251
Structure of ?GTRUNCATE Packet .. 2-260
Structure of ?GUHPI Packet .. 2-264
Structure of Device Control Table (DCT) for 32-Bit Processes 2-271
Structure of Device Control Table (DCT) for 16-Bit Processes 2-272
Structure of Extended Packet for 16-Bit Processes 2-272
Structure of Map Definition Table ... 2-273
Structure of?IHIST Packet ... 2-287
Structure of ?IREC Header. .. 2-296
Structure of Offset ?IUFL .. 2-298

2-82.1 Structure of Termination Message from a 32-bit B- or C-Type Process 2-304.1
2-82.2 Structure of Termination Message from a 16-bit B- or C-Type Process 2-304.4
2 - 83 Structure of ?ISEND Header .. 2-306
2-84 Structure of?IS.R Header ... 2-310
2 - 85 Structure of? JPINIT Packet .. 2-318
2-86 Structure of?JPMOV Packet .. 2-321
2-87 Structure of?JPREL Packet. .. 2-323
2-88 Structure of?JPSTAT Main Packet .. 2-325
2-89 Structure of?JPSTAT General Information Sub packet 2-326
2-90 Structure of?JPSTAT Specific Information Subpacket 2-326
2-91 Structure of?LABEL Packet .. 2-337
2-92 Structure of?LDUINFO Main Packet .. 2-341
2-93 Structureof?LDU_PKT Sub packet .. 2-343
2-94 Structure of?LDU_PKT Array Record ... 2-346
2 -95 Structure of ?PIECE _ PKT Sub packet .. 2-347
2-96 Structure of?LOCALITY Packet ... 2-355
2-97 Structure of?LOGEV Event Logging Format 2-361
2-97.1 Structure of Termination Message from a 32-bit B- or C-Type Process 2-304.1
2-97.2 Structure of Termination Message from a 16-bit B- or C-Type Process 2-304.4
2-98 Structure of ?LPCLASS Packet 2-363
2 - 99 Structure of ?LPCREA Packet .. 2-366
2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116

Structure of ?LPDELE Packet .. 2-368
Structure of ?LPSTAT Main Packet 2-370
Structure of?LPSTAT General Information Subpacket 2-371
Structure of?LPSTAT Specific Information Subpacket 2-371
Structure of?MAPDV Packet .. 2-375
Structure of ?MBFC Packet ... 2-378
Structure of ?MBTC Packet ... 2·,380
Structure of ?MIRROR Packet .. 2-387
Structure of ?MIRROR Subpacket ... 2-390
Structure of 16-Bit ?MIRROR Packet .. 2-390
Structure of 16-Bit ?MIRROR Subpacket .. 2-393
Structure of ?MPHIST Packet .. 2-396
Structure of ?NTIME Packet .. 2-401
Structure of?OPEN Packet ... 2-407
Sample Delimiter Table ... 2-416
Structure of?OPEN Extension Packet for Pipes 2-416
Structure of Labeled Magnetic Tape Packet Extension 2-419

086-000195 updates
093-000542

Licensed Material- Property a Data General Corporation xxiii

Figure

2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-133
2-134
2-135
2-136
2-137
2-138
2-139
2-140
2-141
2-142
2-143
2-144
2-145
2-146
2-147
2-148
2-149
2-150
2-151
2-152
2-153
2-154
2-155
2-156
2-157
2-158
2-159
2-160
2-161
2-162
2-163
2-164
2-165

xxiv

?A Through?Q

Structure of ?OPER Main Packet .. 2-425
Structure of?OPON Subpacket .. 2-427
Structure of ?OPOFF Subpacket .. 2-429
Structure of ?OPSEND Sub packet ... 2-432
Structure of ?OPRCV Subpacket .. 2-432
Structure of ?OPRESP Sub packet ... 2-434
Structure of ?OPINFO Subpacket .. 2-435
Structure of ?OPEX Main Packet .. 2-438
Structure of Access Command Subpacket .. 2-442
Structure of Align Command Subpacket .. 2-443
Structure of Batch _List Command Subpacket 2-444
Structure of Batch_Output Command Sub packet .. 2-445
Structure of Binary Command Subpacket .. 2-446
Structure of Brief Command Subpacket .. 2-447
Structure of Cancel Command Subpacket .. 2-448
Structure of Consolestatus Command Subpacket 2-449
Structure of Continue Command Sub packet 2-451
Structure of CPL Command Subpacket .. 2-452
Structure of Create Command Subpacket .. 2-453
Structure of Defaultforms Command Subpacket .. 2-454
Structure of Disable Command Subpacket .. 2-455
Structure of Dismounted Command Subpacket .. 2-456
Structure of Elongate Command Subpacket .. 2-457
Structure of Enable Command Subpacket .. 2-458
Structure of Even Command Sub packet .. 2-460
Structure of Flush Command Subpacket .. 2-461
Structure of Forms Command Subpacket ... 2-462
Structure of Halt Command Subpacket .. 2-463
Structure of Headers Command Subpacket 2-464
Structure of Hold Command Subpacket .. 2-465
Structure of Limit Command Sub packet .. 2-466
Structure of Logging Command Sub packet 2-467
Structure of LPP Command Subpacket .. 2-469
Structure of Mapper Command Subpacket .. 2-470
Structure of Mounted Command Subpacket .. 2-472
Structure of Mountstatus Command Subpacket 2-473
Structure of Operator Command Subpacket 2-476
Structure of Pause Command Sub packet ... 2-477
Structure of Premount Command Subpacket .. 2-478
Structure of Priority Command Subpacket .. 2-479
Structure of Prompts Command Subpacket 2-480
Structure of Qpriority Command Subpacket 2-481
Structure of Refused Command Subpacket 2-483
Structure of Release Command Subpacket .. 2-484
Structure of Restart Command Subpacket .. 2-485
Structure of Silence Command Subpacket .. 2-486
Structure of Spoolstatus Command Subpacket 2-487
Structure of Stack Command Subpacket .. 2-491
Structure of Start Command Sub packet .. 2-492

Licensed Material- Property 0/ Data General Corporation
086-000195 updates

093-000542

Figure

2-166
2-167
2-168
2-169
2-170
2-171
2-172
2-173
2-174
2-175
2-176
2-177
2-178
2-179
2-180
2-181
2-182
2-183
2-184
2-185
2-186
2-187
2-188
2-189
2-190
2-191
2-192
2-193
2-194
2-195
2-196
2-197

2-198
2-199
2-200
2-201
2-202
2-203
2-204
2-205
2-206
2-207
2-208
2-209
2-210
2-211
2-212

?A Through ?Q

Structure of Status Command Subpacket .. 2-495
Structure of Stop Command Subpacket .. 2-499
Structure of Trailers Command Subpacket 2-500
Structure of U nhold Command Sub packet .. 2-501
Structure of Unitstatus Command Subpacket 2-502
Structure of U nlimit Command Subpacket .. 2-504
Structure of U nsilence Command SUbpacket .. 2-505
Structure of User-Command Subpacket ... 2-506
Structure of Verbose Command Sub packet .. 2-508
Structure of ?PCLASS Packet ... 2-515
Structure of ?PIDS Packet .. 2-518
Structure of ?PMTPF Packet 2-520
Structure of ?PRDBtlPWRB Packet 2-526
Structure of ?PROC Packet ... 2-537
Structure of ?PROC Extension Packet for AOSNS and AOSIRT32 2-546
Structure of ?PROC Extension Packet for AOSNS II .. 2-546
Structure of ?PROFILE Parameter Packet .. 2-552
Structure of ?PROFILE Field Descriptor Packet .. 2-553
Structure of?PSTAT Memory Descriptor ... 2-561
Structure of?PSTAT Packet ... 2-562
Structure of the ?PTRDEVlCE Main Packet 2-569
Tablet States .. 2-572
An Example of a Tablet Area Menu .. 2-573
Structure of the ?PTRDEV _SET_EVENTS Subpacket 2-573
Structure of the ?PTRDEV_SET_DELTA Subpacket 2-576
Structure of the ?PTRDEV_LAST_EVENT Subpacket 2-577
Subpacket for ?PTRDEV_SET_POINTER Subpacket 2-579
Structure of the ?PTRDEV_GET_PTR_STATUS Subpacket 2-581
Structure of the ?PTRDEV _ GENERATE _EVENT Subpacket .. 2-585
Structure of the ?PTRDEV _GET_PTR_LOCATION Subpacket 2-587
Structure of the ?PTRDEV_GET_TABLET_LOCATION Subpacket 2-589
Structure of ?PWDCRYP Packet ... 2-591

?R Through ?Z

Structure of ?RDB/?WRB Packet .. 2-597
Structure of ?RDUDA/?WRUDA Packet .. 2-603
Structure of ?READ/?WRITE Packet ... 2-605
Structure of Screen Management Packet Extension .. 2-606
Structure of Selected Field Translation Packet Extension 2-606
Structure of New Screen Management Packet Extension 2-606
Structure of Screen - Management Packet Extension. .. 2-612
Structure of Selected Field Translation Packet Extension 2-617
Selected Field Translation Packet Sample Listing 2-619
Structure of ?RENAME Packet 2-632
Structure of ?RNG PR Packet .. 2-641
Structure of ?RTODC Packet 2-646
Structure of ?RUNTM Packet ... 2-649
Structure of ?SACL Packet .. 2-652
Structure of ?SATR Packet .. 2-654

086-000195 updates
093-000542

Licensed Material- Property 01 Data General Corporation xxv

Figure

2-213
2-214
2-215
2-216
2-217
2-218
2-219
2-220
2-221
2-222
2-223
2-224
2-225
2-226
2-227
2-228
2-229
2-230
2-231
2-232
2-233
2-234
2-235
2-236
2-237
2-238
2-239
2-240
2-241
2-242
2-243
2-244
2-245
2-246
2-247
2-248
2-249
2-250
2-251
2-252
2-253
2-254
2-255
2-256
2-257
2-258
2-259
2-260
2-261

xxvi

?R Through ?Z

Polling List Defined by a Control Station ... 2-666
Poll and Select Addresses Defmed by a Tributary .. 2-666
Structure of?SEBL Packet .. 2-670
Station Identification System Call Sequence 2-673
Structure of the ?SERMSG Packet ... 2-684
Structure of ?SGES Packet .. 2-686
Structure of ?SINFO Packet .. 2-693
Structure of ?SONS Packet. .. 2-697
Structure of ?SOPPF Packet .. 2-702
Structure of?SPAGE Packet .. 2-705
Structure of ?SRCV Packet .. 2-710
ITB Receive Buffer Format .. 2-717
Structure of?SSND Packet .. 2-721
Structure of ?SYLOG Exclusion Bit Map Packet .. 2-743
Structure of ?SYSPRV Packet ... 2-745
Structure of Standard Task Definition Packet .. 2-748
Stack Parameters for Initiating One or More Tasks 2-750
Extended Task Definition Packet .. 2-751
Structure of Termination Message a 32-bit Process Receives 2-761
Structure of Termination Message a 16-bit Process Receives. .. 2-764
Structure of?UIDSTAT Packet .. 2-777
Structure of ?VMEM Packet .. 2-788
Structure of ?VTFCREATE Packet .. 2-791
Execution of Two Virtual Timers .. 2-796
Structure of ?VTFKILL Packet .. 2-798
Structure of ?VTFMODIFY Packet .. 2-800
Structure of?WHIST Packet .. 2-811
Sample Histogram Parameters .. 2-811
Structure of the ?WINDOW Main Packet ... 2-816
Structure of the ?WIN _CREATE_WINDOW Subpacket 2-818
Structure of the ?WIN_DEFINE_PORTS Subpacket 2-823
Structure of the ?WIN_SET_USER_INTERFACE Subpacket 2-828
Structure of the ?WIN_GET_USER_INTERFACE Subpacket 2-830
Structure of the ?WIN_GET_TITLE Subpacket 2-831
Structure of the ?WIN_GTITLE Subpacket 2-832
Structure of the ?WIN_ WINDOW_STATUS Subpacket .. 2-834
Structure of the ?WIN_DEVICE_STATUS Subpacket 2-838
Structure of the ?WIN _RETURN_GROUP _ WINDOWS Subpacket 2-840
Structure of the ?WIN_RETURN_DEVICE_ WINDOWS Subpacket 2-841
Structure of ?XCREATE Main Packet .. 2-850
Structure of ?XCREATE Time-Block Subpacket 2-853
Structure of ?XCREATE Other Subpacket .. 2-854
Structure of ?XCREATE Directory Subpacket .. 2-855
Structure of ?XCREATE IPC Sub packet .. 2-856
Structure of ?XCREATE Link Sub packet ... 2-857
Example of ?XCREATE Main Packet for TXT File 2-858
Example of ?XCREATE Other Sub packet for TXT File 2-858
Example of ?XCREATE Main Packet for DIR File 2-859
Example of ?XCREATE Time Subpacket for DIR File 2-859

Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

Figure

2-262
2-263
2-264
2-265
2-266
2-267
2-268
2-269
2-270
2-271
2-272
2-273
2-274
2-275
2-276
2-277
2-278
2-279
2-280
2-281

A-I
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-I0
A-II
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
B-1
B-2
B-3
B-4

?R Through ?Z

Example of ?XCREATE Directory Subpacket for DIR File 2-860
Example of ?XCREATE Main Packet for IPC File .. 2-860
Example of ?XCREATE IPC Subpacket for IPC File 2-861
Example of ?XCREATE Main Packet for LNK File .. 2.861
Example of ?XCREATE Link Subpacket for LNK File .. 2-861
Structure of ?XFSTAT IPC Packet ... 2-866
Structure of ?XFSTAT Directory Packet .. 2-870
Structure of?XFSTAT Other Packet ... 2-873
Structure of?XFSTAT Unit Packet .. 2-875
Example of Pathname Supplied. .. 2-879
Example of Directory Type Grouping. .. 2-881
Structure of ?XGTACP Packet 2-883
Structure of ?XINIT Packet ... 2-888
Structure of ?XINIT Subpacket 2-892
Structure of 16-Bit ?XINIT Packet 2-893
Structure of 16-Bit ?XINIT Subpacket ... 2-897
Structureof?XPSTATPacket ... 2-902
Structure of ?XPSTAT Standard Memory Descriptor .. 2-904
Structure of ?XPSTAT Extended Memory Descriptor (AOSNS and AOSNS II) 2-904
Structure of ?XPSTAT Extension Packet for AOSNS and AOSNS II 2-909

Listing of Program HEAR.SR ... A-3
Listing of Program SPEAK.SR .. A-7
Listing of Program SON.SR ... A-9
Listing of Program RUNTIME.SR .. A-II
Listing of Program RINGLOAD.SR ... A-14
Listing of Program INRING.SR .. A-16
Listing of Program GATE.ARRAY.SR ... A-17
Listing of Program FILCREATE.SR ... ' ... A-19
Listing of Program WRITE.SR ... A-22
Listing of Program DLIST.SR .. A-26
Listing of Program NEWTASK.SR ... A-29
Listing of Program BOOMER.SR ... A-32
Listing of Program TIMEOUT.SR ... A-37
Listing of Program DIRCREATE.F77 ... A-4I
File DIRCREATE_SYMBOLS .. A-41
File DIRCREATE _ SYMBOLS.F77.IN ... A-42
Listing of Subroutine CHECK.F77 .. A-42
File CHECK_SYMBOLS ... A-43
File CHECK_SYMBOLS.F77.IN .. A-43
Listing of Program CREATE _ WINDOW.SR A-46
Code to Turn Permanence On in Program CREATE_WINDOW A-55
Code to Turn Permanence Off in Program CREATE_WINDOW A-55
Listing of Program GRAPHICS_SAMPLE.SR A-57
Possible Results of Executing Program GRAPHICS_SAMPLE A-76
Log Record Header ... B-2
Log Record Codes, Events, and Message Lengths, Excluding Header B-12
An Octal and Decimal DISPLAY ofa System Log File B-20
Octal and Decimal Versions ofa SYSLOG Record B-21

086-000195 updates
093-000542

Licensed Material- Property 01 Data General Corporation xxvii

Chapter 1
Introducing the System Calls

AOSNS, AOSNS II, and AOS/RT32 support a wide variety of system calls. System calls are
command macros that call on predefined routines in the operating system. The system calls you
code into a program allow you to

• Manage processes

• Manage logical address space

• Establish interprocess communications

• Maintain disk files

• Perform file input and output

• Manage a multitasking environment

• Define and gain access to user devices

• Establish customer/server connections between processes

• Perform input and output in blocks, rather than in records or lines

• Use the virtual timer facility (AOS/RT32 only)

You are probably familiar with the Command Line Interpreter (CLI) program. Typically it accepts
statements (i.e., command lines) from a terminal, interprets them, and turns them over to the
operating system for execution. An example is the command line

) CREATE/DIRECTORY NEW_DIR)

Here, the CLI calls on the operating system to create a directory named NEW _DIR. More
specifically, this CLI command results in an execution of the ?CREATE system call. Your programs
can also call on the operating system to perform both functions that the CLI accepts (such as
creating a directory file via ?CREATE) and functions that the CLI does not accept (such as getting
the next name in a directory file - the function of system call ?GNFN).

Chapter 2 describes each of the AOSNS, AOSNS II, and AOS/RT32 system calls in alphabetical
order. Also, each system call description includes a list of the error codes that are most likely to
occur with the particular system call.

All memory addresses are octal and all other numbers are decimal unless otherwise specified.

We assume that you are writing assembly language programs that make system calls. However,
you may write high-level language programs that also make direct calls to the operating system. In
this latter case, see the general explanation later in this chapter.

In this manual, AOSNS means AOSNS, AOSNS II, or both, unless otherwise noted.

093--000542 Licensed Material - Property of Data General Corporation 1-1

Standard Format for System Calls

You must begin each system call with a question mark. Unless otherwise noted, you must reserve
two return locations for each system call: a normal return (good return) and an error return Chad
return). The standard format for a system call is

?CALL_NAM E [packet address]
error retu rn
normal retu rn

where

[packet address]

error return

normal retu rn

is an optional argument to the system call macro. (See the next section,
"Parameter Packets," for more explanation.) Some system calls don't have
parameter packets. ?DACL is an example. Do not type the brackets; they only
identify the argument as an option.

is a required error return for the system call. (An error return must be a
single word instruction.)

is a required normal return for the system call. (A normal return need not be
a single word instruction; that is, a doubleword instruction would still be a
normal return.)

Although most system calls conform to the standard format, there are exceptions. The exceptions
are noted in the individual system call descriptions. An example is ?RETURN, which does not have
a normal return.

When the operating system executes a system call successfully, it takes the normal return.
However, if the system call fails, the operating system takes the error return. It returns an error
code in ACO that tells you why the system call failed.

Frequently, an error code does not indicate an actual error in your program, but rather indicates an
exception. For example, you may want to check for error code ERFDE (File Does Not Exist), and
then take another action. For simplicity, however, all exception codes are called error codes.

AC1, AC2, and AC3 represent accumulator 1, accumulator 2, and accumulator 3, respectively. The
contents of ACO, AC1, and AC2 after a system call completes depend on the system call you issued.
AC3, however, almost always contains the current frame pointer. There are very few references to
AC3 in this manual. These references are in the descriptions of the following system calls:

• ?BRKFL
• ?IREC (Table 2-63 and Table 2-64)

• ?IXMT
• ?TASK
• ?WALKBACK

1-2 Licensed Material- Property of Data General Corporation 093-000542

Parameter Packets
Some system calls require a parameter packet (or simply packet). A packet is a set of consecutive
words that you set aside in your address space. The operating system uses these words to obtain
your input specifications to a system call and/or return output values from a system call. After you
set up a packet, you specify the packet address in one of the following ways.

• Load the packet's address into AC2 before you issue the system call.

• Provide the packet address as an argument to the system call macro, which will load the packet
address into AC2 for you.

An individual word or doubleword in a packet is called an offset of the packet.

Parametric Coding

Parametric coding means writing your code using mnemonics (symbols listed in PARU.32.SR,
PARU_LONG.SR, and PARU.16.SR) to refer to all error codes, packet offsets, and packet values,
regardless of how the offsets are ordered in the packet figures.

You should always code parametrically because the packet figures are not true physical
representations. Therefore, the exact order of the offsets may vary from one operating system
revision to the next. The mnemonics, however, will always correspond to the correct packet offsets.
The system call packet in Figure 1-1 is an example of parametric coding.

START: ?OPEN CONSOLE
error return
normal return

Issue call, with packet address "CONSOLE"
as argument. Supply your own error return
and good return.

iElsewhere in the program, set up the ?OPEN packet (at the
i address specified by "CONSOLE") .

CONSOLE: . BLK ?IBLT

.LOC CONSOLE+?ISTI

. WORD ?IEXO!?OFIN

.LOC CONSOLE+?ISTO

. WORD 0

.LOC CONSOLE+?IBAD

. DWORD CBUFFER*2

Reserve enough words for packet
(?IBLT=packet length).

Location of offset ?ISTI, the
file specifications word.

Exclusive open, use as input.

Location of offset ?ISTO, the file
type.

Use defaults for ?ISTO.

Location of offset ?IBAD, a byte
pointer to the I/O buffer.

CBUFFER is the console buffer.

Continue coding parametrically for the rest of the packet.

Figure 1-1. Parametric Coding Example

We made the packet figures, for each system call requiring a parameter packet, as close as possible
to PARU.32.SR, to PARU_LONG.SR, and to PARU.16.SR (for calls with 16-bit packets). We also
made the sample packets as close as possible to the packets defined in these parameter files. This
arrangement helps you during debugging with the symbolic debugger utility program, since you
can use the packet figure to easily match its offsets with the values displayed by the debugger.

093-000542 Licensed Material - Property of Data General Corporation 1-3

Within some of the packet offsets (for example, those in the 110 system calls ?OPEN, ?READ,
?WRITE), you must use bit masks to select options. For example, in Figure 1-1, the specification
?IEXO!?OFIN was fonned by applying the OR operator to bit masks ?IEXO and ?OFIN to select
two options within the word ?1ST!. In other cases, you may need to set individual bits in a word.
The notation for doublewords is

1 S(bit-position)

and, provided that you have specified single words via the MASM macro .ENABLE WORD, the
notation for single words is

18(bit-position)

The 8 operator generates a 32-bit integer and the B operator generates a 16-bit integer. Thus, the
180 notation sets bit 0 (leftmost) of a 32-bit doubleword to generate 20000000000, and the 1BO
notation sets bit 0 (leftmost) of a 16-bit single word to generate 100000. Other examples are

. ENABLE DWORD and 181 generates 10000000000

. ENABLE DWORD and 182 generates 04000000000

. ENABLE DWORD and 1829 generates 00000000004

. ENABLE DWORD and 1831 generates 00000000001

. ENABLE WORD and 1B1 generates 040000

. ENABLE WORD and 1B2 generates 020000

. ENABLE WORD and 1B12 generates 000010

. ENABLE WORD and 1B15 generates 000001

You can also use the B operator with DWORD enabled. Another approach is to use .WORD or
.DWORD with respective B or 8 operators. Two corresponding examples are

.WORD 1B15

.DWORD 182

Other System Call Input

Before you can issue many of the system calls, you must load one or more of the accumulators with
input values, such as byte pointers. All accumulators are 32 bits wide under A08NS and
A081RT32, as are all byte pointers.

Each system call description uses unique mnemonics for the high-order and low-order portions of
32-bit values. The high-order portion of a 32-bit value consists of the 16 most significant bits; that
is, bits 0 through 15. The low-order portion of a 32-bit value consists of the 16 least significant
bits; that is, bits 16 through 31.

Under A08NS and A081RT32, you must define both the high-order and the low-order portions of
32-bit doublewords. For example, if you pass -1 to indicate the default value of a 32-bit
doubleword, you must set both the high-order and the low-order portions of the word to-1.

There are two methods of setting both the high- and low-order halves of a doubleword:

1. The preferred method (Method 1)

.LOC

. DWORD

1-4

CON80LE+?IBAD
-1

Licensed Material - Property of Data General Corporation 093-000542

This method sets both the high- and low-order bits to -1 with one easy-to-read MASM
pseudo-operation.

2. The other method (Method 2)

.LOC
• WORD

.LOC
• WORD

CONSOLE+?IBAD
-1

CONSOLE+?IBAL
-1

Set high-order bits to -1.

; Set low-order bits to -1 .

This method sets the high- and low-order bits to -1 with separate MASM pseudo-operations.

There is no advantage to using Method 2. Therefore, we advise you to use Method 1. Because
Method 1 is simpler than Method 2, this manual does not list low-order packet offsets. The
parameter (PARU) files, especially PARU.16, do contain these offsets.

Reserved Symbols

Data General reserves all symbols that begin with a question mark (?) for its internal products,
including AOSNS and AOSIRT32. Don't define symbols beginning with? because assembler errors,
unexpected results, or worse can occur. A worst case scenario is your using a symbol that invokes
an internal system call which, in turn, alters your program or data in a non-obvious but
troublesome way. Of course, you frequently use DG-created symbols beginning with ? to invoke
system calls and to communicate with the system calls. This manual contains hundreds of such
symbols. Two of them are ?DACL, a system call name, and ?GRRH, an offset in the parameter
packet for system call ?RUNTM.

A Complete Example - Assembly Language

This section describes an assembly language program that, when executed, creates directory file
NEW_DIR and makes it the working directory. The program issues the system calls ?CREATE,
which requires a parameter packet, and ?DIR, which does not require a parameter packet.

These system calls have the same effects as the respective CLI commands

) CREATE/DIRECTORY NEW_DIR)

) DIR NEW_DIR)

It's worth noting that your CLI (Command Line Interpreter) is a process executing a program
named CLI.PR. The CLI accepts these two command lines, one at a time, and interprets them.
Then the CLI loads accumulators, creates any necessary parameter packets, and makes the
respective system calls ?CREATE and ?DIR.

The point of this section is to list the general steps of writing assembly language programs that
make system calls. This section also contains a comprehensive example, based on sample program
DIRCREATE.SR, from which you can easily generalize.

General Step
Unlike high-level language programs, assembly language requires no special interface to the
symbols and values in SYSID.32, PARU.32, PARU_LONG, MASM_32CHAR, and PARU.16. Write

093-000542 Licensed Material - Property of Data General Corporation 1-5

your program according to the rules of assembly language as explained in the manuals listed in the
"Related Documentation" section of the Preface. While you write your program, code its system
calls according to their documentation in this manual.

Program Listing
Figure 1-2 contains the listing file DIRCREATE.LS that the Macroassembler created from source
program file DIRCREATE.SR.

SOURCE: DIRCREATE MASM 06.00.00.00 27-AUG-85 10:12:04 PAGE 1

01 .TITLE DIRCREATE
02 .ENT DIRCREATE
03 .NREL
04
05 DIRCREATE:
06 000000 UC 122071 000100 XLEFB 0,NEWDIR*2 Byte pointer
07 to new
08 directory's

09 000002 UC 124531
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

000011

000012

000014
000015

000021
000022

000026

UC 105470

UC 122071

UC 124531
UC 150531

UC 104470
UC 150531

UC 101770

000054

29 000027 UC 00000000012
30 00000000027 UC
31 000027 UC 000012
32
33
34
35
36 00000000030 UC
37 000030 UC 177777
38

name
WSUB 1,1 0 in AC1
?CREATE DIRPKT Create the direc-

tory according
to its parameter
packet.

WBR ERROR ; Error return
; Make newly created directory

NEW DIR the default one.
XLEFB O,NEWDIR*2 ; Byte pointer

WSUB
WSUB
?DIR
WBR
WSUB
?RETURN
WBR

DIRPKT:
.BLK
.LOC
. WORD

.LOC

. WORD

to new direc-
; tory's name

1,1 0 in AC1
2,2 0 in AC2

Move to NEW DIR.
ERROR
2,2 Execute a normal

return to AOS/VS.
ERROR

?CLTH ; Packet length
DIRPKT+?CFTYP
0*400+?FDIR Left byte is 0,

right specifies
a standard (non
control point)
directory.

DIRPKT+?CHFS
-1 ; Hashframe size is

the default.

Figure 1-2. Listing File of Program DIRCREATE.SR (continued)

1-6 Licensed Material - Property of Data General Corporation 093-000542

SOURCE: DIRCREATE MASM 06.00.00.00 27-AUG-85 10:12:04 PAGE

01 00000000031 UC . LaC DIRPKT+?CTIM
02 000031 UC 37777777777 .DWORD -1 ; Time block is cur-
03 rent date, time.
04 00000000033 UC . LaC DIRPKT+?CACP
05 000033 UC 37777777777 .DWORD -1 ; ACL same as caller's
06 00000000035 UC . LaC DIRPKT+?CMSH
07 000035 UC 00000000000 .DWORD 0 ; Set to zero for
08 ; type ?FDIR.
09 00000000037 UC . LaC DIRPKT+?CMIL
10 000037 UC 177777 .WORD -1 ; Default number of
11 index levels.
12 00000000040 UC . LaC DIRPKT+?CMRS
13 000040 UC 000000 .WORD 0 ; Reserved.
14 00000000041 UC . LaC DIRPKT+?CLTH i End of packet

000041 UC 047105 053537
042111 051000

NEWDIR: .TXT "NEW DIR" ; Directory name

2

15
16
17
18
19
20
21
22
23
24
25

000045 UC 153211
00000150000

ERROR: WLDAI ?RFEC+?RFCF+?RFER,2 iError

000053 UC 175270

XREF: DIRCREATE

?CACP 00000000004
?CFTYP 00000000000
?CHFS 00000000001
?CLTH 00000000012
?CMIL 00000000010
?CMRS 00000000011
?CMSH 00000000006
?CREATE 00000000000
?CTIM 00000000002
?DIR 00000000000
?FDIR 00000000012
?RETURN 00000000000
?RFCF 00000100000
?RFEC 00000010000
?RFER 00000040000
?SYST 00000000000
?XCALL 00000000001

DIRCREAT 00000000000
DIRPKT 00000000027

ERROR 00000000045
NEWDIR 00000000041

NO ASSEMBLY ERRORS

?RETURN
WBR

. END

MASM 06.00.00.00

2/04
1/30
1/36
1/29 2/14
2/09
2/12
2/06

MA 1/10
2/01

MA 1/22
1/31

MA 1/25 2/22
2/19
2/19
2/19

MA 1/11 1/23
1/11 1/11
2/23 2/23

EN 1/02 1/05#
1/11 1/28#
2/06 2/09
1/14 1/23
1/06 1/17

ERROR

DIRCREATE

27-AUG-85 10:12:04

1/26 2/23
1/23 1/23 1/26

2/25
1/30 1/36 2/01
2/12 2/14
1/26 2/19# 2/23
2/16#

Figure 1-2. Listing File of Program DIRCREATE.SR (concluded)

093-000542 Licensed Material - Property of Data General Corporation

ireturn

PAGE 3

1/26

2/04

1-7

Program Construction
First, be sure you have at least Read access to files MASM.PR, MASM.PS, and LINKPR. File
MASM.PR is the Macroassembler. MASM.PS is a MASM.PR-created file that includes
SYSID.32.SR, PARU.32.SR, and PARU_LONG.SR in a special format. Typically, files MASM.PR,
MASM.PS, and LINKPR are in directory :UTIL.

Next are the commands that show the construction of program file DIRCREATE.PR from source
file DIRCREATE.SR. All filename suffixes appear for emphasis; you frequently can ignore them
during commands to the Macroassembler and Link. The output from the Macroassembler and Link
programs doesn't occur in the following commands.

) DELETEJ2=IGNORE DIRCREATE.LS ~
) COMMENT Create object file DIRCREATE.OB and list file ~
) COMMENT DIRCREATE.LS from DIRCREATE.SR. ~
) XEO MASM/L=DIRCREATE.LS DIRCREATE.SR)

) COMMENT Create program file DIRCREATE.PR from object file DIRCREATE.OB. ~
) XEO LINK DIRCREATE.OB ~
) COMMENT Program file DIRCREATE.PR is now ready for execution.)

Program Execution
Next is the dialog that shows the execution of program file DIRCREATE.PR. Read it carefully to
see what happens when directory file NEW _DIR does not exist prior to executing DIRCREATE.PR,
and then what happens when NEW _DIR does exist prior to executing DIRCREATE.PR.

) COMMENT EXECUTE DIRCREATE.PR after making sure that NEW_DIR doesn't exist. ~
) DELETE/2=IGNORE NEW_DIR ~
) DIRECTORY ~
UDD4:ALICE
) DATE; TIME ~
27-AUG-85
10:14:40
) XEO DIRCREATE.PR ~

) COMMENT There were no errors when ?CREATE and ?DIR executed, so no errors ~
) COMMENT were reported. ~
) FILESTATUS/ASSORT NEW_DIR ~

DIRECTORY:UDD4:ALICE

DIR 27-AUG-85 10:14:48 o

1-8 Licensed Material - Property of Data General Corporation 093-000542

) DIRECTORY ~
:UDD4:ALICE
) COMMENT The ?DIR call in DIRCREATE.PR executed successfully, but ~
) COMMENT NEW_DIR was the current directory only during the rest ~

) COMMENT of the life of process DIRCREATE.PR. When the process)
) COMMENT terminated, the directory, :UDD4:ALlCE, of the parent)
) COMMENT process once again became the current directory.)
) DIRECTORY NEW_DIR ~

) FILESTATUS)

) COMMENT As expected, the FILESTATUS command returns no information ~
) COMMENT because directory NEW_DIR is empty. ~
) DIRECTORY'" ~

) COMMENT We're back in directory ALICE. Execute DIRCREATE.PR)

) COMMENT again, and see what happens when ?CREATE tries to ~
) COMMENT create a file (NEW_DIR) that already exists. ~
) XEQ DIRCREATE.PR)

ERROR
FILE NAME ALREADY EXISTS
ERROR: FROM PROGRAM
XEQ,DIR CREATE. PR

) COMMENT Notice how ?RETURN reported the error and terminated)
) COMMENT the process.)

Error Codes

When a system call takes an error return, it places an error code in ACO. Each error code has an
octal value and a mnemonic that represents the code. In addition, each error code has a text
message associated with it.

You will find the manual AOS / VS II Error and Status Messages useful as you read the error codes.

The error codes whose format is ERxxx come from file PARU.32.SR. The error codes that begin
with "ER_" come from file MASM_32CHAR.PS.

09~542 Licensed Material - Property of Data General Corporation 1-9

High-Level Language Interface

The previous section explained how assembly language programs can interface with the operating
system. High-level language programs can also make system calls. These high-level languages are

• Ada
• BASIC

• C
• COBOL
• FORTRAN77
• Pascal

• PIlI

The principle for writing code that makes system calls is the same for each of these languages. For
any system call in any language, follow these four steps:

1. Read about the system call in this manual. Note the inputioutput values of the accumulators
and, if any, the parameter packet.

2. Read the language's documentation for its technique for making system calls.

3. Assign values to accumulator variables and to, if any, an array that becomes the parameter
packet.

NOTE: In a high-level language statement where you define an ASCII character string that
will be assigned to an accumulator, you must terminate the string with a null
character. If the string does not end with a NL, FF, CR or null character, an error
occurs.

For example,

CHARACTER*8 NEW_DIR / 'TEST_DIR<O>' /
ACO = BYTEADDR(NEW_DIR)

The first FORTRAN statement defines the NEW _DIR byte pointer and the text string,
TEST_DIR, which terminates with a null character. The second statement loads the string into
ACO.

4. Write the statement that makes the system call. The statement includes or refers to the
accumulator variables.

For example, suppose you want to create a FORTRAN 77 program that does the same things as
assembly language program DIRCREATE.SR. The corresponding four steps in the creation of
DIRCREATE.F77 would be as follows.

1. Read the documentation of ?CREATE (with emphasis on the directory option) and ?DIR in
this system call dictionary.

2. Read the chapter about the system interface function, ISYS, in the FORTRAN 77
Environment Manual (AOS / VS).

3. Use 4-byte integer variables for the values of ACO, ACl, and AC2 when preparing for
?CREATE (whose FORTRAN 77 counter part is most likely 4-byte integer variable

1-10 Licensed Material - Property of Data General Corporation 093-000542

ISYS_CREATE) and for ?DIR (correspondingly ISYS_DIR). Create an array of2-byte
integer variables that is the parameter packet for ?CREATE. Use the BYTEADDR and
WORDADDR functions as needed for byte addresses and word addresses, respectively.

4. Use the ISYS function to make the system call. The four arguments to this function are the
system call identifier, contents of ACO, contents of ACl, and contents of AC2. The result
that ISYS returns is either 0 for no error, or the error code that the operating system
placed in ACO.

Appendix A contains FORTRAN 77 program DIRCREATE.F77 that has the same functionality as
assembly language program DIRCREATE.SR.

End of Chapter

093-000542 licensed Material - Property of Data General Corporation 1-11

Chapter 2
AOSNS, AOSNS II, and AOS/RT32

System Calls

This chapter contains the system calls for all three operating systems. The calls appear in
alphabetical order.

Most calls apply equally to the operating systems. The classes of exceptions to this statement are

• System calls that apply to AOSNS. An example is ?JPSTAT.

• System calls that apply to AOSIRT32 only. An example is ?FIDEF.

• System calls that behave differently on the operating systems. An example is ?PSTAT.

In each of these three cases we indicate that operating system differences occur. In the third case
we list the specific differences wherever they occur - accumulators, parameter packet, etc.

The categories of information we supply for each system call follow.

• N arne and function.

• Summary of operating system differences (if any).

• Syntax of the assembly language statement call, including error and normal returns.

• Accumulator input and output.

• Error codes.

• Why you might use the call.

• Who can use (i.e., issue) the call, in terms of required process privileges and file access rights.

NOTE: This category applies only to AOSNS. Under AOSIRT32, all processes have all process
privileges and all files have the same access control list: +,OW ARE.

• What the call does.

• A figure to show the structure of the parameter packet (if any); this figure is helpful while you
are using the debugger and need to examine/change the contents of the packet.

• A table to show the contents of the parameter packet (if any); this table is helpful while you are
preparing the contents of the packet during the coding step of program development.

• Notes and references to related documentation (if any). The references are only to other parts of
this manual.

• Sample packet (if any).

093-000542 Licensed Material - Property of Data General Corporation 2-1

Also, you will find the sample programs in Appendix A helpful as you code the system calls in your
programs. Use this manual's index to look for sample programs that issue specific system calls. For
example, the index entries for system call ?GTMES include pointers to sample programs
BOOMER.SR, DLIST.SR, and TIMEOUT.SR. The index entries for these three sample programs
contain their actual page numbers.

Remember - this manual does not explain software concepts, such as the definition of a directory
and how you use the CLI program to create and move to directories. Read the AOS /VS System
Concepts Manual and Introduction to AOS / RT32 for general information about the functionality of
system calls. Read this manual for specific information about how to implement these system calls
from your programs.

Summary Table

Table 2-1 summarizes all AOSNS, AOSNS II, and AOSIRT32 system calls, and groups them
according to their functions. It also indicates operating system differences. The functions, which
appear in Table 2-1 in the following order, are

• AOSIRT32 system calls

• Memory management

• Process management

• File creation and management

• File input/output

• Debugging

• Windowing

• Multitasking

• Interprocess communications

• Connection management

• Multiprocessor management

• Class scheduling

• AOSNS system resources

• User devices

• Bisynchronous communications

• 16-bit processes

There are six columns of information in Table 2-1. Their contents are

• System call name.

• System call description.

• Y to indicate that AOSNS supports the system call, or nothing to indicate otherwise.

• Y to indicate that AOSNS II supports the system call, or nothing to indicate otherwise.

• Y to indicate that AOSIRT32 supports the system call, or nothing to indicate otherwise.

• Y to indicate there is a difference in functionality or coding between AOSNS, AOSNS II and
AOSIRT32 or nothing to indicate otherwise. As explained earlier in the chapter, we indicate the
specific differences wherever they occur - accumulator, parameter packet, etc.

2-2 Licensed Material - Property of Data General Corporation 093--000542

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

I I
I Function: AOS/RT32 System Calls I
I---IAOS/

System Calli Description VS
AOS/
VSII

I
AOS/ I OS
RT321Diff

===========1=== ====1====
?FIDEF
?FIXMT

?VMEM
?VTFCREATE
?VTFKILL
?VTFMODIFY

?VTFSUS

?VTFXIT

?WTVERR

?WTVSIG

System Call

I
I Defines a fast user device.

Transmits a message from an interrupt
service routine within Ring O.
Changes the partition size of a process.
Creates a Virtual Timer Facility timer.
Kills a Virtual Timer Facility timer.
Modifies a Virtual Timer Facility timer.

Suspends or restarts a Virtual Timer
Facility Timer.
Exits from a Virtual Timer Facility
interrupt routine.
Waits for a Virtual Timer Facility error
message.
Waits for a Virtual Timer Facility
signal.

Function: Memory Management

Description

I
Y I
Y I

Y
Y
Y
Y

Y

Y

I Y
I
I Y
I
I

__ I_-
I
I

AOS/IAOS/ AOS/ OS
VS IVSII RT32 Diff

=========== ===

?ESFF
?FLUSH

?GMEM

?GSHPT
?LMAP

?MEM

?MEMI

?PMTPF
?RPAGE
?SCLOSE

?SOPEN
?SOPPF
?SPAGE
?SSHPT
?UNWIND

?VALAD
?VAL I DATE

093-000542

Flushes shared file memory pages to disk Y
Flushes the contents of a shared page to Y
disk.
Returns the number of undedicated memory Y
pages.
Lists the current shared partition size. Y
Maps a lower ring. Y

Lists the current un shared memory
parameters.
Changes the number of unshared pages in
the logical address space.
Permits access to a protected file.
Releases a shared page.
Closes a file previously opened for
shared access.

Opens a file for shared access.
Opens a protected shared file.
Performs a shared-page read.
Establishes a new shared partition.
Unwinds the stack and restores the
previous environment.

Validates a logical address.
Validates an area for Read or Write
access.

Licensed Material - Property 01 Data General Corporation

Y

Y

Y
Y
Y

Y
Y
Y
Y
Y

Y
Y

Y
Y

Y

Y
Y

I

Y
Y

Y

Y
Y

Y I Y
I

Y I Y
I

Y I Y
Y I Y
Y I Y

I
I

Y I Y
Y I Y
Y I Y
Y I Y
Y I Y

I
I

Y I Y
Y I Y

I
I

__ 1_-

Y

(continued)

2-3

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

I I
I I Function: Process Management I
I I (continued) I I I I
I I---IAOS/IAOS/IAOS/I OS I
ISystem Calli Description VS IVSIIIRT321Diffi
=========== === ---- ====1==== ====1

2-4

?AWIRE

?BLKPR
?BRKFL

?CHAIN

?CTYPE

?DADID
?ENBRK
?EXPO

?GBIAS
?GPID

?GUNM
?GVPID
?HNAME
?KHIST
?LOCALITY

?MDUMP

?MPHIST

?PCLASS
?PIOS
?PNAME

?PRIPR
?PROC
?PROFILE
?PSTAT
?RESCHED

Changes the wiring characteristics of
the Agent.
Blocks a process.
Terminates a process and creates a break
file.
Passes control from a Ring 7 caller to a
new program.
Changes a process type.

Gets the PIO of a process's father.
Enables a break file.
Sets, clears, or examines
execute-protection status.
Gets the current bias factor values.
Returns all active PIDs based on a host
ID.

Gets the username of a process.
Gets the virtual PID of a process.
Gets a hostname or host identifier.
Kills a histogram.
Changes user locality.

Oumps the memory image from a
user-specified ring to a file.
Starts a histogram on a uni- or
multiprocessor system.
Get a process's class and locality.
Gets information about PIOs.
Gets a full process name.

Y

Y
Y

Y

Y

Y
Y
Y

Y
Y

Y
Y
Y
Y
Y

Y

Y

Y
Y
Y

Changes the priority of a process. Y
Creates a process. Y
Performs a profile request. Y
Returns status information on a process. Y
Reschedules current time slice. Y

Licensed Material - Property of Data General Corporation

I I
Y I I

I I
Y I Y I
Y I I

Y

Y

Y
Y
Y

Y
Y

Y
Y
Y
Y
Y

Y

Y

Y
Y
Y

Y
Y
Y
Y
Y

Y

Y

Y

Y

Y
Y

Y

Y
Y

Y

Y
Y

Y
Y

Y
Y

Y

Y
Y

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(contlnued)

~542

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

1

Function: Process Management 1

(concluded) 1 1 1
---IAOSI I AOSI lAO SI OS

System Call Description IVS VSIIIRT32 Diff
===========

?RETURN

?RINGLD

?RNGPR
?RNGST
?RUNTM

?SBIAS
?SONS

?SUPROC

?SUSER

?SYSPRV

?TERM
?TPID
?UBLPR
?UNWIRE
?WHIST

?WIRE
?XPSTAT

093-000542

===

Terminates the calling proceSSj passes
the termination message to the father.
Loads a program file into a specified
ring.
Returns the .PR filename for a ring.
Stops ?RINGLD from loading lower rings.
Gets runtime statistics on a process.

Sets the bias factors.
Gets a list of son processes for a
target PID.
Enters, leaves, or examines Superprocess
mode.
Enters, leaves, or examines Superuser
mode.
Enters, leaves, or examines a process
state.

Terminates a process.
Translates a PID.
Unblocks a process.
Unwires pages previously wired.
Starts a histogram.

Wires pages to the working set.
Returns extended status information on
a process.

Licensed Material - Property of Data General Corporation

Y Y Y

Y Y Y

Y Y Y
Y Y Y
Y Y Y

Y Y
Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y I
Y Y Y I
Y Y Y 1
Y Y Y 1
Y Y Y 1

1
Y Y Y 1
y Y Y 1 y

1
1

__ 1_-
(continued)

2-5

2-6

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

I
I Function: File Creation and Management I I
--- AOSI IAOSI IAOS/ OS

System Call Description VS VSII RT32 Diff
=========== ===

?CGNAM

?CKVOL

?CPMAX

?CREATE
?DACL

?DELETE
?DIR
?FLOCK
?FSTAT
?FUNLOCK

?GACL
?GLINK
?GLIST
?GNAME
?GNFN

?GPRNM
?GRNAME

?GROUP
?GTACP
?INIT
?LDUINFO
?MIRROR

?RECREATE
?RELEASE
?RENAME
?RNAME

?SACL

?SATR

?SLIST

?SYLOG
?XCREATE
?XFSTAT
?XGTACP
?XINIT

Gets a complete pathname from a channel
number.
Checks volume identifier of a labeled
magnetic tape.
Sets maximum size for a control point
directory.
Creates a file or directory.
Sets, clears, or examines a default
access control list.

Deletes a file entry.
Changes the working directory.
Locks an object.
Gets file status information.
Unlocks an object.

Y

Y

Y

Y
Y

Y
Y
Y
Y
Y

Gets a file entry's access control list. I Y
Gets the contents of a link entry. I Y
Gets the contents of a search list. I Y
Gets a complete pathname. I Y
Lists a particular directory's entries. I Y

Gets a program's pathname.
Returns complete pathname of generic
file.
Changes group ACL list.
Gets access control privileges.
Initializes a logical disk.
Obtains logical disk information.
Mirrors and synchronizes LDU images.

Recreates a file.
Releases an initialized logical disk.
Renames a file.
Determines whether a pathname contains
a reference to a remote host.
Sets a new access control list.

I
I Y
I Y
I
I

Y
Y

Y

y

Y
Y
Y

y

Sets or removes the Permanence attribute Y
for a file or directory.
Sets the search list for the calling Y
process.
Manipulates the system log file. Y
Creates a file or directory (extended).
Gets file status information (extended).
Gets ACL privileges (extended).
Initializes a logical disk (extended). Y

Licensed Material - Property of Data General Corporation

y

Y

y

Y
Y

y
y
y

Y
Y

Y
Y
Y
Y
Y

y
y

y
y
y
y
y

y

Y
Y
Y

y

Y

y

Y
Y
Y
Y
Y

y

Y

y
Y

y
y

y

Y
Y
Y
Y
Y

Y
Y

Y

y
y
Y
Y

y

y

y

Y

y

y

y

Y

Y

y

y

Y

Y

(contlnued)

093-000542

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

1

1 Function: File Input/Output 1

1 (continued) 1 1 1

1

1

1

1 ---IAOS/IAOS/IAOS/ OS
Diff 1 System Call Description VS IVSIIIRT32

=========== ===

?ALLOCATE
?ASSIGN
?BLKIO
?CLOSE
?CRUDA

?DEASSIGN
?FEOV

?GCHR

?GCLOSE

?GDLM

?GECHR
?GOPEN
?GPOS
?GTRUNCATE
?INTWT

?KINTR
?KIOFF

?KION

?KWAIT
?LABEL

?ODIS
?OEBL
?OPEN
?PRDB
?PWRB

?RDB/?WRB
?RDUDA/
?WRUDA
?READ/
?WRITE

093-000542

Allocates disk blocks. Y
Assigns a character device to a process. Y
Performs (reads/writes) block I/O. Y
Closes an open channel. Y
Creates a user data area. Y

Deassigns a character device. Y
Forces end-of-volume on labeled magnetic Y
tape.
Reads device characteristics of a Y
character device.
Closes a file previously opened for Y
block I/O.
Gets a delimiter table. Y

Get extended characteristics.
Opens a file for block I/O.
Gets the current file-pointer position.
Truncates a disk file.
Defines a terminal interrupt task.

Simulates keyboard interrupt sequences.
Disables control-character terminal
interrupts.
Re-enables control-character terminal
interrupts.
Waits for a terminal interrupt.
Creates a label for a magnetic tape.

Disables terminal interrupts.
Enables terminal interrupts.
Opens a file.
Performs physical block Reads.
Performs physical block writes.

Performs (reads/writes) block I/O.
Reads/writes a user data area.

Performs (reads/writes) record I/O.

Licensed Material - Property of Data General Corporation

Y
Y
Y
Y
Y

Y
Y

Y

Y
Y

y
y
Y
Y
Y

Y
Y

Y

Y
Y
Y
Y
Y

Y
Y

Y

Y

Y

Y
Y
Y
Y
Y

Y
Y

Y

Y
Y

Y
Y
Y
Y
Y

Y
Y

Y

Y

Y
Y
Y

Y

Y

Y

Y

Y
Y
Y
Y
Y

Y
Y

Y

Y

Y
Y
Y
Y
Y

y
y

y

Y

Y

Y

Y

Y

y

y

y

1
__ 1_-

(continued)

2-7

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

1

Function: File Input/Output 1

(concluded) 1 1 1
---IAOS/IAOS/IAOS/ OS

System Call Description VS VSIIIRT32 Diff
=========== === ====1====

?SCHR

?SDLM
?SECHR

?SEND
?SPOS

?STOM
?TRUNCATE

?UPDATE
?WRB
?WRITE

?WRUDA

System Call

2-8

===========

?DEBUG
?GTNAM

?GTSVL

Sets a character device's
characteristics.
Sets a delimiter table.
Set extended characteristics of a
device.
Sends a message to a terminal.
Sets the position of the file pointer.

Sets the time-out value for a device.
Truncates a file at the current
position.
Flushes file descriptor information.
Writes block I/O.
Writes record I/O.

Writes a user data area.

Function: Debugging

Description
===

Calls the Debugger utility.
Returns symbol closest in value to
specified input value.
Gets the value of a user symbol.

Licensed Material - Property of Data General Corporation

Y Y Y

Y Y Y
Y Y Y

Y Y Y Y
Y Y Y

Y Y Y Y
Y Y Y

Y Y Y Y
Y Y Y Y
Y Y Y

Y Y Y Y

1

1

AOS/ AOS/ AOS/ OS 1

VS VSII RT32 Diffl
====1

I
y Y Y I
Y Y I

I
Y Y I

I I
__ 1 __ .1

(continued)

093-000542

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

I I
I Function: Windowing I
I---IAOS/

System Calli Description VS
AOS/
VSII

I
AOS/I OS
RT321Diff

===========1=== ====1====
?GRAPHICS
?PTRDEVICE
?WINDOW

System Call
===========

?DFRSCH

?DQTSK

?DRSCH
?ERSCH

?IDGOTO

?IDKIL
?IDPRI

?IDRDY
?IDSUS
?IFPU

?IQTSK
?KILAD
?KILL
?MYTID

?PRI

093-000542

Manipulates pixel maps.
Controls input from a pointer device.
Manipulates windows.

Function: Multitasking
(continued)

Y
Y
Y

Y
Y
Y

I
I
I
I
I

__ 1_-

Description
AOS/ AOS/ AOS/ OS
VS VSII RT32 Diff

===

Disables task rescheduling and indicates Y
prior state of rescheduling.
Dequeues one or more previously queued Y
tasks.
Disables scheduling. Y
Enables multi task scheduling for the Y
calling process.
Redirects a task's execution path. Y

Kills a task specified by its TID. Y
Changes the priority of a task specified Y
by its TID.
Readies a task specified by its TID. Y
Suspends a task specified by its TID. Y
Initializes the floating-point unit. Y

Creates a queued task manager. Y
Defines a kill-processing routine. Y
Kills the calling task. Y
Gets the priority and TID of the calling Y
task.
Changes the priority of the calling Y
task.

Licensed Material - Property of Data General Corporation

Y Y

Y Y

Y Y
Y Y

Y Y

Y Y
Y Y

Y Y
Y Y
Y Y

Y Y
Y Y
Y Y
Y Y

Y Y
I
I

__ 1_-
(continued)

2-9

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

I
Function: MUltitasking I

(concluded) I I
---IAOS/IAOSI AOSI OS

System Call Description VS VSII RT32 Diff
=========== === ==== ====

?PRKIL
?PRRDY

?PRSUS

?REC
?RECNW

?SUS
?TASK
?TIDSTAT
?TLOCK
?TRCON

?TUNLOCK
?UIDSTAT

?WDELAY
?XMT
?XMTW

Kills all tasks of a specified priority. Y
Readies all tasks of a specified Y
priority.
Suspends all tasks of a specified Y
priority.
Receives an intertask message. Y
Receives an intertask message without Y
waiting.

Suspends the calling task. Y
Initiates one or more tasks. Y
Returns status of target task. Y
Protects a task from being redirected. Y
Reads a task message from the process Y
terminal.

Allows a task to be redirected. Y
Returns the status of a task and an Y
unambiguous identifier.
Suspends a task for a specified time. Y
Transmits an intertask message. Y
Transmits an intertask message and waits Y
for it to be received.

Y
Y

Y

Y
Y

Y
Y
Y
Y
Y

Y
Y

Y
Y
Y

Y
Y

Y

Y
Y

Y
Y
Y
Y

Y
Y

Y
Y
Y

Function: Interprocess Communications
--- AOSI AOSI AOSI OS

System Call Description VS VSII RT32 Diffl
=========== ===

?GCPN
?GPORT

?ILKUP
?IMERGE

?IREC

?ISEND
?ISPLIT

?IS.R
?TMSG
?TPORT

Gets the terminal port number. Y
Returns the PID associated with a global Y
port number.
Returns a global port number. Y
Modifies a ring field within a global Y
port number.
Receives an IPC message. Y

Sends an IPC message. Y
Finds the owner of a port (including its Y
ring number) .
Sends, and then receives an IPC message. Y
Defines the termination message format. Y
Translates a local port number to its Y
global equivalent.

Y
Y Y

Y Y
Y Y

Y Y

Y Y
Y Y

Y Y
Y Y
Y Y

(contlnued)

2-10 Licensed Material - Property of Data General Corporation 093-000542

Table 2-1. Summary of AOSNS and AOS/RT32 System Calls

I I
I Function: Connection Management I
I---IAOS/

System Calli Description IVS

I
AOS/IAOS/
VSIIIRT32

I
I

OS I
Diffl

=========== ===1==== ====1
?CON

?CTERM
?DCON

?DRCON
?MBFC

?MBTC
?PCNX

?PRCNX

?RESIGN
?SERVE

?SIGNL
?SIGWT

?VCUST
?VRCUST
?WTSIG

System Call
===========

?JPINIT
?JPMOV

?JPREL
?JPSTAT

086-000195 updates
093-000542

Becomes a customer of a specified
server.
Terminates a customer process.
Breaks a connection (disconnects) in
Ring 7.
Breaks a connection (disconnects).
Moves bytes from a customer's buffer.

Moves bytes to a customer's buffer.
Passes a connection from one server to
another in Ring 7.
Passes a connection from one server to
another.
Resigns as a server.
Becomes a server.

Signals another task.
Signals another task, and then waits for
a signal.
Verifies a customer in Ring 7.
Verifies a customer in a specified ring.
Waits for a signal from another task or
process.

I
I Y

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y
Y

Y
Y
Y

Y

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y
Y

Y
Y
Y

Y

Y
Y

Y
Y

I
Y I
Y I

I
Y I

I
Y I
Y I

I
Y I
Y I

I
Y I
Y 1

Y I
I

I I
__ 1 ____ 1_-

1 I
Function: Multiprocessor Management I I

--IAOS/IAOS/ AOS/ OS
Description IVS IVSII RT32 Diff

===1====1====
I I

Initializes a job processor. I Y I Y
Moves a job processor to a new logical I Y 1 Y
processor.
Releases a job processor.
Gets the status of a job processor.

I I
I Y 1 Y
I Y I Y
1 I

--------------______ 1 __ 1_- ___ _

I
I
I
I
I
I
I
I
I
I
I
I
I
I

(contlnued)

Licensed Material - Property of Data General Corporation 2-11

I

System Call

?CLASS
?CLSCHED

?CLSTAT
?CMATRIX
?LPCLASS

?LPCREA
?LPDELE
?LPSTAT

Table 2-1. Summary of AOSNS and AOS/RT32 System Calls

Function: Class Scheduling

Description
===

Gets or sets class IDs.
Enables, disables, or examines class
scheduling.
Returns class scheduling statistics.
Gets or sets the class matrix.
Gets/sets logical processor class
assignments.

Creates a logical processor.
Deletes a logical processor.
Gets the status of a logical processor.

AOS/ AOS/
VS VSII

y Y
Y Y

Y Y
Y Y
Y Y

Y Y
Y Y
Y Y

1

Function: AOS/VS System Resources 1 1

I
1

AOS/I OS
RT321Diff
====1====

1

1

1

1

1

1

1

1

1

1

1

1

__ 1 __ -

---IAOS/IAOS/ AOS/ OS
System Call Description IVS IVSII RT32 Diff
=========== ===

?BNAME

?CDAY
?CONFIG

?CONINFO

?CTOD
?ENQUE
?ERMSG

?EXEC
?FDAY
?FEDFUNC
?FTOD
?GDAY

?GHRZ
?GSID
?GTIME
?GTMES
?GTOD

?GUHPI
?ITIME
?LOGCALLS
?LOGEV
?NTIME

?OPER

?OPEX

?PWDCRYP

?RTODC

2-12

Determines whether process name/queue Y
name is on local or remote host.
Converts a scalar date value. Y
Displays or resets the current message
based reliable (MRC) device routes.
Requests addressing information on a
terminal or a console.
Converts a scalar time value. Y
Sends a message to IPC and spooler files Y
Reads the error message file. Y

Requests a service from EXEC.
Converts date to a scalar value.
Interfaces to File Editor utility.
Converts time of day to a scalar value.
Gets the current date.

Gets the frequency of the system clock.
Gets the system identifier.
Gets the time, date, and time zone.
Gets an initial IPC message.
Gets the time of day.

Gets unique hardware processor ID.
Returns the OS-format internal time.
Logs system calls.
Enters an event in the system log file.
Sets the time, date, and time zone.

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Creates and maintains an operator Y
interface.
Communicates between the current process Y
and an operator process.
Performs a password data encryption Y
request.
Reads the time-of-day conversion data. Y

Licensed Material- Property of Data General Corporation

Y

Y
Y

Y

Y
Y
Y

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Y

Y

Y

Y
Y
Y

Y
Y
Y
Y

Y
Y

Y
Y

Y
Y

Y 1

1

Y 1

1

Y 1 1
__ 1 __ 1

(continued)

086-000195 updates
09~542

Table 2-1. Summary of AOSNS and AOS/RT32 System Calls

I I
I I Function: AOS/VS System Resources
I 1---
ISystem Calli Description
1=========== ===
I
I ?SDAY
I
I ?SINFO

?SSID
?STOD

Sets the system calendar.

Gets selected information about the
current operating system.
Sets the system identifier.
Sets the system clock.

I
Function: User Devices I

AOS/ AOS/
VS VSII
---- ----

Y Y

Y Y

Y Y
Y Y

AOS/
RT32

Y

Y

Y
Y

I
I

---IAOS/ AOS/IAOS/
System Call Description VS VSIIIRT32
=========== === ====1====

?CLRDV
?DDIS
?DEBL
?IDEF
?IMSG

?IRMV
?IXIT
?IXMT

?LEFD
?LEFE

?LEFS
?MAPDV

?STMAP

Clears a device. Y
Disables access to all devices. Y
Enables access to all devices. Y
Defines a user device. Y
Receives an interrupt service message. Y

Removes a user device. Y
Exits from an interrupt service routine. Y
Transmits a message from an interrupt Y
service routine.
Disables LEF mode. Y
Enables LEF mode. Y

Y
Y
Y
Y
Y

Y
Y
Y

Y
Y

Returns the current LEF mode status.
Maps a device into logical address
space.

Y Y
Y I Y

I
Sets the data channel map. Y I Y

1

__ I_-

I
I
I
I
1
1
1

I 1 1

Y
Y
Y
Y
Y

Y
Y
Y

Y
Y

Y
Y

Y

Function: Bisynchronous Communications I 1 1 1

os
Diff

Y

OS
Diff

Y

---IAOS/IAOS/IAOS/I OS
System Call
===========

?SDBL
?SDPOL

?SDRT/
?SERT
?SEBL
?SERT

?SGES
?SRCV

?SSND

Description IVS IVSIIIRT321Diff
===1==== ====1====

1 1
Disables a BSC line. 1 Y
Defines a polling list or a 1 Y
poll-address/select-address pair. 1
Disables/re-enables a relative 1 Y
terminal. I
Enables a BSC line. 1 Y
Re-enables a relative terminal. 1 Y

1

Gets BSC error statistics. 1 Y
Receives data or a control sequence
a BSC line.

over 1 Y

Sends data or a control sequence over a
BSC line.

1

1 Y
1

1

Y
Y

Y

Y
Y

Y
Y

Y

Y
Y

Y

Y
Y

Y
Y

Y

____________ --1----
(continued)

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation 2-13

System Call

?DELAY

?GCRB
?IDSTAT
?IESS
?IHIST

?KCALL

?OVEX
?OVKIL

?OVLOD
?OVREL

?RCALL

?RCHAIN
?SERMSG
?WALKBACK

2-14

Table 2-1. Summary of AOSNS and AOSIRT32 System Calls

1

Function: 16-bit Processes 1 1 1
---IAOSI IAOSI lAO SI
Description IVS IVSIIIRT32

=== ====1====
Suspends a 16-bit task for a specified
interval.
Gets the base of the current resource.
Returns task status word.
Initializes an extended state save area.
Starts a histogram for a 16-bit process.

Keeps the calling resource and acquires
a new resource.
Releases an overlay and returns.
Exits from an overlay and kills the
calling task.
Loads and goes to an overlay.
Releases an overlay area.

Releases one resource and acquires a
new one.
Chains to a new procedure.
Returns text for associated error code.
Returns information about previous
frames in the stack.

Y

Y
Y
Y
Y

Y

Y
Y

Y
Y

I Y
I
1 Y
1 Y
1 Y
1

1
__ 1 __ __

1

Y 1 Y
1

Y
Y
Y
Y

Y

Y
Y

Y
Y

1 Y
1 Y
1 Y
1 y

y

y

Y

Y
Y

Y Y

Y Y
Y Y
Y Y

(conc

I
I

OS I
Diffl
====1

I
I
I

1
I
1

__ .1
uded)

Licensed Material - Property 0/ Data General Corporation
086-000195 updates

093-000542

?ALLOCATE Allocates disk blocks.

?ALLOCATE ?RDBI?WRB packet address
error return
normal return

Input
ACO Reserved (Set to 0.)

AC1 Channel number

AC2 Address of the ?RDBf?WRB

Error Codes in ACO

Output
ACO Undefined

AC1 Number of bytes allocated
(number of blocks * 512)

AC2 Unchanged
packet

ERCPD Control point directory maximum exceeded
ERFNO Channel not open
ERICB Insufficient contiguous disk blocks
ERSIM Simultaneous requests on same channel
ERVWP Invalid word pointer passed as a system call argument
ERWAD Write access denied
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II file with ?ODTL value supplied in ?GOPEN packet
File system error codes

Why Use It?
?ALLOCATE makes sure that subsequent I/O will not cause a calling process to exceed its control
point directory's maximums.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have obtained a channel
number to the file, via ?GOPEN or ?SOPEN, before issuing ?ALLOCATE. Also, you must have had
Write access to the file at the time of the ?GOPEN or ?SOPEN call.

What It Does
? ALLOCATE allocates disk blocks for specified data elements and initializes to zero those elements
that do not actually exist. If the data elements already exist, the contents do not change and
?ALLOCATE takes the normal return. ?ALLOCATE pends only the task within the process that
issues ?ALLOCATE.

The operating system determines the actual number of data elements to allocate from the
information that u supply in the following ?RDBI?WRB packet offsets:

?PSTI Right byte: number of data blocks to allocate
Left byte: ignored

?PRNH

086-000195 updates
093-000542

Starting data block number (doubleword)

licensed Material- Property of Data General Corporation 2-15

I

?ALLOCATE Continued

The operating system ignores all other offsets in the ?RDBf?WRB packet.

Note that to use ?ALLOCATE, the file must have been opened with ?GOPEN or ?SOPEN, not with
?OPEN.

Notes
• See the descriptions of ?GOPEN, ?SOPEN, and ?RDBI?WRB in this chapter.

2-16 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?ASSIGN Assigns a character device to a process.

AOSNS

?ASSIGN
error return
normal return

Input Output

ACO Byte pointer to the name ACO
of the device to assign

ACI Reserved (Set to 0.) ACI

AC2 Reserved (Set to 0.) AC2

Error Codes in ACO

Assign error - already your device
Illegal device type

Unchanged

Undefined

Undefined

ERASS
ERIDT
ERIFL
ERVBP

lAC (Intelligent Asynchronous Controller) failure
Invalid byte pointer passed as a system 11 argument

Why Use It?
?ASSIGN allows you to link a character device exclusively to your process until you issue
?DEASSIGN or your process terminates. You can issue ?ASSIGN against a device if you want to
close it periodically without the risk of losing it to another process.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
? ASSIGN assigns the character device that you specify in ACO to the calling process. When you
assign a device to a process, you are reserving the device for the exclusive use of that process. Once
you assign a device to a process, it remains the exclusive property of that process until the process
terminates or breaks the assignment by issuing ?DEASSIGN. You cannot assign a device that is
currently assigned to another process (such as a device enabled for spooling.)

Notes
• See the description of ?DEASSIGN in this chapter.

• See the descriptions of ?OPEN and ?CLOSE in this chapter for information on implicit device
assignnlents and deassignments.

OSB-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-17

?AWIRE Changes the wiring characteristics of the Agent.

?AWIRE
error return
normal return

Input

ACO Not used (Set to 0.)

ACI Set ?AWENT to wire the
entire Agent;
Set ?AWUDS to wire only the
areas of the Agent required
to support user devices

AC2 Reserved (Set to 0.)

Error Codes in ACO

Illegal process type

AOSNS

Output

ACO Unchanged

ACI Unchanged

AC2 Unchanged

ERPTY
ERPRE Invalid parameter passed as system call argument

Why Use It?

Use the ?AWIRE system call to unwire Agent pages if your process is resident for the purpose of
supporting user devices. This will free up several pages of physical memory which can be used for
other purposes. While this may seem to degrade efficiency of a resident process, it actually
increases the efficiency of the system as a whole.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

This call allows a resident process to change the wiring characteristics of the Agent portion of the
operating system. Processes that ?PROC declares resident and processes that do a ?CTYPE against
themselves to become resident will, by default, have their entire Agent wired. This is done to
decrease the number of page faults taken by resident processes, thereby increasing their efficiency.
However, resident processes that wish to support user-defined devices, and do not need the
increased efficiency of a wired Agent can decrease their working set size by issuing the ?AWIRE
system call with ?AWUDS set in ACO. This will cause the Agent to unwire all pages, except those
required for user device support. This will also free up several pages of physical memory so they
can be used for other purposes. If, after issuing the ?AWIRE system call with ?AWUDS set in ACO,
the process would like to wire the entire Agent again to increase efficiency, the process can reissue
the ?AWIRE system call with ?AWENT set in ACO. This will cause the Agent to wire its entire
address space. If multiple ?AWIRE system calls are issued with the same option, they will take the
normal return, but will have no effect.

2-18 Licensed Material- Property of Data General Corporation
086-000195 updates

093-{)()0542

?BLKIO Performs (reads/writes) block I/O.

?BLKIO [packet address]
error return
normal return

Operating System Differences
AOSIRT32 does not support modified sector 1/0.

Input
ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?BLKIO
packet unless you pass
the address as an argument
to the system call.

Error Codes in ACO

Output
ACO Undefined

AC 1 Undefined

AC2 Address of the packet.

ER32U Record too large for this device when using ?BM32R for a 32-bit record number
ERDIO Attempt to issue MCA direct I/O with outstanding requests
EREOF End of file
ERVWP Invalid word pointer passed as system call argument
ERPUF Physical unit failure
ERFAD File access denied
ERRAD Read access denied
ERSPC File space exhausted
ERWAD Write access denied
ERIOT Wrong type I/O for open type
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify file with ?ODTL value supplied in ?GOPEN packet (write block only)

Why Use It?
Use ?BLKIO for block reads or writes, or for physical block reads or writes (see ?RDBf?WRB and
?PRDBI?PRWB.) ?BLKIO is particularly useful for its read next allocated element feature when
you're reading files with many unallocated elements.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have Read access to the
file that you want to read from and Write access to the file that you want to write to.

What It Does
?BLKIO performs block 1/0 on a file. This system call combines the functionality of the ?RDBf?WRB
(block 1/0) and ?PRDBI?PWRB (physical block 1/0) system calls, and includes some additional
functionality. When you use ?BLKIO for a block read, a block write, a physical block read, or a
physical block write, the system call acts EXACTLY like the ?RDBI?WRB and ?PRDBf?PWRB
system calls. (For details, refer to the sections on these system calls in this chapter.)

086-000195 updates
093-000542 Licensed Material - Property 0/ Data General Corporation 2-19

I

?BLKIO Continued

In addition, ?BLKIO allows you to read the next allocated element in a disk file skipping
unallocated blocks. Writing to any disk block in an element allocates the element to be read. Note
that the read next allocated element option can only be used if the call is for a read and physical I/O
has not been selected.

The ability to read the next allocated element is especially useful if you're reading a large file with
many unallocated elements; ?BLKIO skips over these elements and reads only from the allocated
ones. As a result, if you read a long file using this option, you save time. (?RDB reads every
element, allocated or not.) You can see some illustrations of this feature later in the discussion of
?BLKIO.

Before you can issue ?BLKIO against a file, you must open the file with the ?GOPEN system call.
You must also set up a parameter packet of length ?BLTH in your address space. Figure 2-1 shows
the structure of the packet, and Table 2-2 describes its contents.

Under AOSNS only, ?BLKIO also allows you to perform modified sector I/O on disks that support
this hardware feature. Modified sector I/O must be used in conjunction with physical block I/O.
This type of I/O allows you to read and to clear only the modified blocks of a disk unit. However,
modified sector I/O does not function under AOSNS II.

2-20

o 7 8 15 16 31
------------+------------+-------------------------1

?BPVB Reserved (must be 0) 1 Bit status flags 1 ?BSTS
-------------------------+-------------------------1

?BCHN Channel number 1 Reserved (set to 0) 1 ?BERR
-------------------------+-------------------------1

?BADR Data buffer address 1 ?BADL
---1

?BBLN Block number of first block to be transferred 1 ?BBLL
------------+------------+-------------------------

?BBLC Reserved 1 No. blocks 1 Last block byte count ?BLBB
(must be 0) 1 to transfer 1

------------+------------+-------------------------
?BTBC Total number of bytes read or written ?BTBL

?BBAN First disk block actually transferred (read ?BBAL
next allocated element only)

-------------------------+-------------------------
?BBAC Number of disk blocks 1 Address of physical I/O ?BPER

transferred (read next 1 controller status
allocated element only) 1 block -- high order bits

-------------------------+-------------------------
?BPEL Address of physical I/O 1 Reserved (must be 0)

controller status 1

block -- low order bits 1

-------------------------+-------------------------
?B32N 32-bit record number for tape

-------------------------+-------------------------
Reserved (must be 0) 1 Reserved (must be 0)

-------------------------+-------------------------
?BLTH = packet length

Figure 2-1. Structure of?BLKlO Packet

Licensed Material - Property d Data General Corporation
086--000195 updates

093-000542

093-000542

Table 2-2. Contents of ?BLKIO Packet

Offset Contents
======== ==

?BPVB Reserved (must be 0).

?BSTS To write a block use

?BCHN

?BERR

?BADR

?BADL

?BBLN

?BBLL

?BMIO

To perform physical block I/O use
?BMPIO

To read the next allocated element use
?BMNAB

To perform modified sector I/O use
?BMNMB

To perform extended I/O (32-bit record #) use
?BM32R (AOS/VS II 2.10 only.)

When the bit is set to I, the system call
uses a 32-bit record number contained in
?B32N. If the bit is not set, the
operating system assumes it is a 16-bit
request. The operating system
gets the record number from the field
?BBLN, which contains a file number and
record number.

If the ?B32N bit is set to 1 and the
?BLKIO system call packet is not for tape,
the operating system ignores the bit.

Other bit
?BMDIO
?BMEOR

?BMAFE

status flags are
direct I/O for MCAs.
enable VFU load/end of tape
override.
safe write block for magnetic
tape.

Channel number (obtained with ?GOPEN).

Reserved (must be 0).

Address of data buffer in your address space
(high-order bits) .

Address of data buffer (low-order bits) .

File block number of first disk block to be
transferred (high-order bits); file
number or -1 for magnetic tape; link
number for MCA.

File block number of first disk block to be
transferred (low-order bits); block
number for tape; retry count for MCA.

(continued)

Licensed Material - Property of Data General Corporation

•

•

•
•

2-21

I

?BLKIO Continued
Table 2-2. Contents of ?BLKIO Packet

Offset Contents
======== ==

?BBLC

?BLBB

?BTBC

?BTBL

?BBAN

?BBAL

?BBAC

?BPER

?BPEL

?B32N

High byte: reserved (must be 0).

Low byte: number of blocks to transfer.

Number of bytes in the last disk or tape
block transferred; number of bytes in last
MCA transmission.

Total number of bytes read or written (high
order bits) .

Total number of bytes read or written (low
order bits) .

Block # of first disk block transferred--for
read next allocated element only.
(high order bits.)

Block # of first disk block transferred
(high order bits.)

Number of disk blocks actually transferred-
for read next allocated element only.

Address of physical I/O controller status
block (high-order bits) .

Address of physical I/O controller status
block (low-order bits) .

Reserved (must be 0).

32-bit record number for tape. When ?BM32R
is set to 1, use this offset for the magnetic
tape record number.

Reserved (must be 0).

Reserved (must be 0).

(concluded)

Offset ?BSTS must contain a command to indicate the kind of I/O you wish to perform. For
example, to write a physical block, you must use the masks ?BMIO and ?BMPIO. To read the next
allocated block, just use the mask ?BMNAB.

?BSTS may also include some optional flags for magnetic tapes and MeAs. For details, see
?RDBI?WRB in this chapter.

Offset ?BADR points to the data buffer you reserved in your logical address space for the block I/O
transfer. If you read or write disk blocks, use offsets ?BBLN and ?BBLL to indicate the relative
block number of the first disk block you want to transfer. (For details of how ?BBLN and ?BBLL
are used with tapes and MCAs, see ?RDBI?WRB in this chapter. Note that ?BBLN and ?BBLL
correspond to ?PRNH and ?PRNL, respectively.)

If you are writing disk blocks, use offset ?BLBB to indicate the number of bytes in the last block
you wish to transfer. If you set this offset to 0, the system sets the bytes in the last block to 512, the

2-22 Licensed Material - Property of Data General Corporation 093-000542

default. (For using ?BLBB with tapes or MCAs, see ?RDBnWRB in this chapter. Note that ?BLBB
corresponds to ?PRCL.)

Reading Allocated Blocks

If you use mask ?BMNAB in offset ?BSTS, ?BLKIO reads the next allocated element in a disk file.
With this option, the call uses the starting block number that you've indicated in offset ?BBLN and
the number of blocks you want transferred (?BBLC), to determine where in the file to begin the
read for the next allocated element. This form of the ?BLKIO call returns the file block number of
the first block in the next allocated element into offset ?BBAN and the number of blocks it actually
transferred into offset ?BBAC and the last byte count in ?BLBB. See Figure 2-2 for examples. The
value of ?BBAC is one of the following, depending on which happens first. Blocks will be read until
an unallocated block is reached, the number of blocks specified in offset ?BBCL has been satisfied,
or the end-of-file is reached, whichever occurs first.

Figure 2-2 gives some examples of how the read next allocated element option works. The
illustration assumes 4-block elements (that is, an element size of 4), with slashes indicating that a
block has been written to.

093-000542

element 0 element 1
1---------1 1---------1

0 1 1 4 1 / / / / 1
1---------1 1---------1

1 1 1 5 1 1
1---------1 1---------1

2 1 1 6 1 1
1---------1 1---------1

3 1 1 7 1 / / / / 1
1---------1 1---------1

element 2 element 3
1---------1 1---------1

8 1 1 12 1 1
1---------1 1---------1

9 1 1 13 1 1
1---------1 1---------1

10 1 1 14 1 / / / / 1
1---------1 1---------1

11 1 1 15 1 1
1---------1 1---------1

1) IF
?BBLN = 0 and ?BBLC = 15

THEN
The read begins with block 4
?BBAN = 4 and ?BBAC = 4

Element 0 has not been written to and so is
unallocated, and element 2 is also unallocated,
causing the read to terminate.

(continued)

Figure 2-2. Examples of Read Next Allocated Element Option

Licensed Material - Property of Data General Corporation 2-23

?BLKIO Continued

2) IF
?BBLN = 5 and ?BBLC = 15

THEN
The read begins with block 5, and
?BBAN = 5 and ?BBAC = 3

Element 2 is unallocated, so the read ends. ?BBAN =
5 because, although block 5 has not been written to,
other blocks (4 and 7) in the element have, which
means Element 1 is allocated.

3) IF
?BBLN = 7 and ?BBLC = 15

THEN
The read begins with block 7, and
?BBAN = 7 and ?BBAC = 1

Element 2 is unallocated, so the read ends.

4) IF
?BBLN = 2 and ?BBLC = 3

THEN
The read begins with block 4, and
?BBAN = 4 and ?BBAC = 3

Element 0 is unallocated, so element 1 is used. The
read terminates because the number of blocks
requested (?BBLC or 3) has been reached since it is
less than or equal to the number of blocks (4) in
the element.

5) IF
?BBLN = 10 and ?BBLC = 30

THEN
The read begins with block 12
?BBAN = 12 and ?BBAC = 4

Element 2 is unallocated, so Element 3 is used, but
the file ends before the read can be satisfied, so
EREOF (end of file) is returned.

(concluded)

Figure 2-2. Examples of Read Next Allocated Element Option

Physical Block 1/0

For ?BLKIO to perform physical block I/O on a disk or tape unit, you must select ?BMPIO in offset
?BSTS, plus indicate whether you want to write or read (?BMIO to write). In addition, offset
?BPER must point to a block of words that you have reserved for controller status information
about the block transfer. The block must be ?BPBLT words long. Figure 2-3 shows the structure of
the block.

Into this reserved block, ?BLKIO returns the relative block number of the last block transferred,
plus eight controller status words. The words ?BRBB through ?BCS8 are identical to offsets ?PRBB
through ?PCS8 in the ?PRDBI?PWRB packet (see Figure 2-3 and Table 2-157 for details). For
interpretations of this status block, refer to Table 2-158 and Table 2-159 in the description of
system calls ?PRDB and ?PWRB.

2-24 Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
-------------------+-------------------

?BRBB Number of blocks I Controller status ?BCSI
transferred I word 1
successfully I

-------------------+-------------------
?BCS2 Controller status I Controller status ?BCS3

word 2 1 word 3
-------------------+-------------------

?BCS4 Controller status I Controller status ?BCS5
word 4 I word 5

-------------------+-------------------
?BCS6 Controller status 1 Controller status ?BCS7

word 6 1 word 7
-------------------+-------------------

?BCS8 Controller status 1

word 8 1

-------------------1
?BPBLT = packet length

Figure 2-3. Structure of Physicall / 0 Controller Status Block

For ?BLKIO to perform modified sector I/O to a disk unit, you must select ?BMNMB in offset
?BSTS. Since modified sector I/O works in conjunction with physical block I/O, ?BMPIO in offset
?BSTS must also be selected (refer to physical block I/O discussion, above).

When performing modified sector I/O, offset ?BBLC must contain the number of blocks to transfer,
plus one block for the modified sector bit map. The first block (256 words) of the transfer contains
the modified sector bit map. For more information on modified sector I/O, refer to the manual
Programmer's Reference Series: Models 6236/6237 and Models 6239/6240 Disk Subsystems.

NOTE: Modified sector I/O is only valid when used on a disk that supports this hardware feature.

Notes

Currently, this support is only available for 354-megabyte and 592-megabyte "DPJ" disk
subsystems. However, modified sector I/O does not function under AOSNS II.

• See ?RDBI?WRB and ?PRDBI?PWRB in this chapter.

O93-«J0542 Licensed Material - Property of Data General Corporation 2-25

?BLKPR Blocks a process.

?BLKPR
error return
normal return

Input Output

ACO One of the following: ACO Unchanged

• Byte pointer to the name of the
target process

• PID of the target process

• -1 to block the calling process
(This causes the OS to
ignore ACl.)

AC1 One of the following: AC1 Unchanged

• -1 if ACO contains a byte
pointer

• o if ACO contains a PID

• AC1 is ignored if ACO contains
-1

AC2 Reserved (Set to 0.) AC2 Undefined

Error Codes in ACO

ERMPR
ERPRE
ERPNM
ERPOR
ERPRH
ERPRV
ERVBP

System call parameter address error
Invalid system call parameter, ACO was not -1 and AC1 was not 0 or-1
Illegal process name format
PID is out of range for this process
Attempt to access a process not in hierarchy
You must have Superprocess mode turned on to access another process
Invalid byte pointer to name of target process passed in ACO

Why Use It?
?BLKPR gives you partial control over the system scheduler. You can use ?BLKPR to block one
process in favor of another process, or to stop a large job temporarily.

Who Can Use It?
A process can issue ?BLKPR to block any process subordinate to it. However, if the calling process
is in Superprocess mode, it can block any process. There are no restrictions concerning file access.

What It Does
?BLKPR allows the calling process to block itself.

2-26 Licensed Material - Property of Data General Corporation 093-000542

When the operating system blocks a process, it also suspends all tasks in the process until a
?UBLPR system call is issued against that process. Suspension on that event is independent
of - and has no effect on - the state of any other suspensions that may be in force against a task.

Notes
• See the description of ?UBLPR in this chapter.

086-000195 updates
093--000542 Licensed Material- Property 0{ Data General Corporation 2-27

I

?BNAME

?BNAME
error return
normal return

Input
ACO Byte pointer to the

process name/queue name

AC1 Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO
ERPNM Illegal process name

Determines whether process name/queue
name is on local or remote host.

Output
ACO One of the following:

• 0 if process name/queue name is on
local host

• Bits 17 through 31 contain host ID
if process name/queue name is on
remote host

• -1 ifreference is remote and host
has zero host ID

ACI Unchanged

AC2 Unchanged

The input process name/queue name does not contain a colon (:).

Why Use It?
You can use ?BNAME to find out if a particular process or queue is on a local host or on a remote
host.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?BNAME determines whether a particular process or queue is on a local or a remote host. To use
?BNAME, you must specify a process name or queue name in ACO. Then, the operating system
examines the name to decide whether the process/queue is on a local or a remote host. If the host is
remote, or if the process name or the queue name contains the local host name, the operating
system returns the host ID in Bits 17 thro.ugh 31 of ACO.

If the host ID does not exist in directory :NET, ?BNAME assumes the case of a local host.

2-28 licensed Material- Property a Data General Corporation
086--000195 updates

093-000542

?BRKFL Terminates a process and creates a break file.

?BRKFL
error return
normal return

Input

ACO One of the following:

• Byte pointer to the name
of the target process

• PID of the target process

• -1 to terminate the calling
process

AC lOne of the following:

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

• -1 if ACO contains a byte pointer

• 0 if ACO contains a PID

• AC1 is ignored if ACO contains-1

AC2 One of the following:

• Byte pointer to the break file's
filename

• -1 to use the default break file
filename

Error Codes in ACO

AC2 Unchanged

ERPRH
ERVBP

Attempt to access a process not in hierarchy
Invalid byte pointer to name of target process passed in ACO

Why Use It?

?BRKFL is useful when you are debugging a program, because it allows you to save the current
state variables of a terminated process.

Who Can Use It?
The calling process must have Write or Append access to the target process's initial directory. The
process that is terminating must have Write or Append access to its initial directory. The calling
process can request a break file only for itself or for a subordinate process. In Superprocess mode,
the calling process can request a break file for any process.

093-000542 Licensed Material - Property of Data General Corporation 2-29

?BRKFL Continued

What It Does

?BRKFL terminates the process that you specify in ACO (the caller or another process) and creates
a break file in the terminated process's initial directory. The break file contains the current state of
the target process at the time that it terminates. Specifically, the operating system copies the
following words to the break file:

Status Word

BRACD
BRACl
BRAC2
BRAC3
BRPC
BRTID
BRFP
BRSP
BRSL
BRSB

Contents

Value of ACO
Value of ACl
Value of AC2
Value of AC3
Value of the program counter (PC)
Task identifier (TID)
Value of the stack frame pointer
Value of the stack pointer
Value of the stack limit
Value of the stack base

(Refer to the current AOSNS Release Notice for more information on the contents of a break file.)

When you issue ?BRKFL, either load AC2 with a byte pointer to the filename you want to assign to
the break file, or use the system-generated default filename. The default filename is

?pid.time.BRK

where

pid

time

is the 5-digit PID of the target process.

is the time of the termination (and break file creation) in the form
hours_minutes_seconds.

If the operating system cannot create the break file (for example, if creating a break file causes the
target process's initial directory to exceed its disk space, or if the caller lacks proper access to the
target process's initial directory), it takes the error return for ?BRKFL. Note, however, that the
target process still terminates.

You can terminate your current process and create a break file by typing Ctrl-C Ctrl-E at your
terminal. Also, you can direct the operating system to create a break file when the process traps by
setting the ?PBRK parameter in the ?PROC packet for a process.

Notes

• See the descriptions of ?PROC and ?MDUMP in this chapter.

2-30 Licensed Material - Property of Data General Corporation 093-000542

?CDAY Converts a scalar date value.

?CDAY
error return
normal return

Input

ACO Scalar date you wish to
convert (from a base value
of 31 December 1967) in
Bits 16 through 31

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Day from 0 through 31

ACI Month from 1 through 12

AC2 Year minus 1900 (The result
is expressed in octal.)

Although the system calendar maintains the current date as day, month, and year, the date is
sometimes expressed as a scalar value. For example, scalar notation appears in the ?FSTAT packet
and in the time block for ?CREATE. Thus, ?CDAY can be a useful conversion tool for both ?FSTAT
and ?CREATE.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?CDAY converts the scalar value for a date that you specify in ACO to its equivalent in days,
months, and years. The scalar value for a date equals the number of days that have elapsed since
31 December 1967 (the base value).

093-000542 Licensed Material - Property of Data General Corporation 2-31

?CGNAM Gets a complete pathname from a channel number.

?CGNAM
error retu rn
normal return

Input Output

ACO Byte pointer to a receive
buffer for the pathname

AC 1 Channel number of the
target file

AC2 Byte length of the
receive buffer

Error Codes in ACO

ERCIU
ERFDE

Channel in use
File does not exist

ERFNO Channel not open
ERICN Illegal channel number

ACO Unchanged

ACl Unchanged

AC2 Actual length of the pathname,
excluding the terminator

ERIRB Insufficient room in buffer (The buffer that you specified in ACO is too small to
accommodate the pathname.)

ERMPR System call parameter address error
ERVBP Invalid byte pointer passed as a system call argument
ER_FS_INVALID_PATHNAME_BYTE_PTR

Invalid byte pointer to pathname

Why Use It?
A file's pathname identifies its position in the directory structure. Therefore, you need the
pathname as input for many of the file-maintenance system calls. ?CGNAM is a simple tool that
allows you to get this information.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have obtained a channel
number, via ?OPEN or ?GOPEN, before issuing ?GGNAM. There are no other restrictions
concerning file access.

What It Does
?CGNAM returns the complete pathname of the file whose channel number you specify in AC 1.
Before you issue ?CGNAM, set up a receive buffer for the pathname and use a byte pointer in ACO
to address it. In addition, load AC2 with the buffer length, and load ACl with the target file's
channel nUlnber. (The operating system returns the target file's channel number in the ?OPEN
packet.)The operating system returns the file's complete pathname, starting with the root, to the
receive buffer that you specify.

Notes

• See the description of?OPEN in this chapter.

2-32 Licensed Material - Property of Data General Corporation 093-000542

?CHAIN Passes control from a Ring 7 caller to a new program.

?CHAIN
error return

Input

ACO Byte pointer to the new
program's pathname

AC1 Flag bits (all others = 0):

Bit 30 = 1 to flush outstanding IPC
messages
Bit 30 = 0 to retain (do not flush)
outstanding IPC messages

Bit 31 = 0 to pass control to the new
program's entry point
Bit 31 = 1 to pass control to the user
debugger

AC2 One of the following:

• o if there is no IPC message

• Address of the IPC message
header for the new program, if
there is an IPC message

Error Codes in ACO

Execute access defined

Output

ACO Undefined

AC1 Undefined

AC2 Undefined

EREAD
ERICH
ERMEM
ERVBP
ERVWP

B- or C-type process cannot chain to the target program
Insufficient memory available
Invalid byte pointer to name of rget process passed in ACO
Invalid word pointer as a system call argument

Why Use It?

?CHAIN is a way of tying together several steps of a long, complex program set, where each
program is a separate segment image. ?CHAIN's main function is to provide compatibility with
16-bit AOS programs, as the 32-bit address space of the MV Family provides room for almost
unlimited code and data. In general, try to minimize the use of ?CHAIN, especially in new
applications.

In a customer/server relationship, you can use ?CHAIN to tie a customer process to a new program.
As long as the connection is from Ring 7, ?CHAIN does not affect the customer process's connection
with the server. The operating system sends the server an IPC message to notify it when a
customer process issues ?CHAIN. Also, ?CHAIN preserves connections for Ring 3 when a customer
chains (provided the connection existed before the ?CHAIN).

093-000542 Licensed Material - Property of Data General Corporation 2-33

?CHAIN Continued
Do not issue ?CHAIN while a customer process has requests to servers outstanding. Also, if a
customer process chains to a new program, do not issue ?MBFC or ?MBTC against that customer
process, unless you can verify the validity of the customer's buffer.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Execute access to
the new program's file.

What It Does

?CHAIN must originate from a Ring 7 segment image only. When a Ring 7 process issues ?CHAIN,
the operating system releases the resources that the process was using, and then executes a new
program. ?CHAIN transfers the following attributes to the new program:

• The username, process name, PID, terminal, search list, and working directory of the calling
process.

• The generic file associations of the calling process (for example, the filenames associated with
the generic files @INPUT, @OUTPUT, @LIST, and @DATA).

• The privileges, process type, and priority of the calling process in Ring 7.

?CHAIN does not pass open files, protected shared file grants, or inner rings to the new program.
Instead, it closes all files and flushes all unfulfilled 1/0. It also removes any user-defined device
definitions and destroys inner ring segments. As a result, the ?CHAIN has the effect of terminating
all processes created by the inner rings and breaking all connections involving these inner rings.

You can ?CHAIN between processes of different types (i.e., 16-bit processes and 32-bit processes).
This is useful if you lack the privilege to create unlimited sons.

Do not set Bit 30 of AC1 jfyou want the operating system to pass outstanding IPCmessages to the
new program. If you want to send a specific IPC message, load AC2 with the address of the IPC
header.

Set Bit 31 of AC1 if you want the new program to start in the debugger. Note, however, that if the
calling program was started in the debugger, then the new program always starts in the debugger,
regardless of the value of Bit 31.

The contents of each accumulator is undefined after a ?CHAIN. Because control passes to the new
program, ?CHAIN has no normal return.

2-34 Licensed Material - Property of Data General Corporation 093-000542

?CKVOL Checks volume identifier of a labeled magnetic tape.

?CKVOL
error return
normal return

Input

ACO Byte pointer to the unit's
pathname

AC 1 Byte pointer to the volume
identifier (volid) string

AC2 Bit masks:

?XMIBM if the labels are

?OPDL

?OPDM

?OPDH

?OPAM

in IBM format
if the density mode
is 800 bpi
if the density mode
is 1600 bpi
if the density mode
is 6250 bpi
for automatic
density mode selection

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERVOL Incorrect labeled tape volume mounted

File system error codes

Why Use It?

?CKVOL allows you to make sure the correct labeled tape volume is mounted before you read from
or write to the tape.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?CKVOL checks the volume identifier (volid) of a labeled magnetic tape against a volid that you
(the user) supply.

?CKVOL compares the volid that AC1 points to with the volid of the labeled tape that is mounteon
the unit whose pathname ACO points to. If these two volids are not the same, the operating system
returns error code ERVOL in ACO. If the volids are the same, the operating system takes the
normal return.

093-000542 Licensed Material - Property of Data General Corporation 2-35

?CLASS Gets or sets class IDs.

?CLASS [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?CLASS
packet, unless you specify
the address as an argument
to ?CLASS

Error Codes in ACO

Cannot delete class 0
Class in use
Illegal bit map
Parameter address error

AOSNS

Output

ACO Unchanged

AC1 Unchanged

AC2 Address of the ?CLASS packet

ERCLO
ERCLU
ERIMP
ERMPR
ERPRV Caller not privileged for this action

Why Use It?

Use this system call to receive or supply the class IDs that AOSNS uses to schedule classes.

Who Can Use It?

For the "get" version of this call, there are no special process privileges needed to issue it, and there
are no restrictions concerning file access. For the "set" version of this call, you must have System
Manager privilege to issue it, but there are no restrictions concerning file access.

What It Does

This system call's parameter packet contains get/set code and a class bit map. The get/set code
indicates whether AOSNS will obtain the class bit map or else will change the class bit map and
also change the current configuration of classes. The class bit map identifies which classes are
legal; you may then specify them in the class scheduling matrix and LP class hierarchy. There are
16 classes with IDs between 0 and 15, inclusive.

2-36 Licensed Material - Property of Data General Corporation 093-000542

Suppose, in response to a "get" code, AOSNS sets a bit in the class bit map. This means the
corresponding class is valid. For example, if AOSNS has set bits 0, 4, and 5 in the map, then
classes with ID values 0, 4, and 5 are valid. Other classes, such as those with ID values 1 and 3, are
invalid and will cause errors if you try to use them.

If you want to change the class IDs that AOSNS is currently using, issue the ?CLASS call with a
"set" code. AOSNS will read the class bit map. It wil1 add/delete classes according to the bits you
set. However, you cannot delete a class that appears in the class scheduling matrix; neither can you
delete class 0 - the class that exists when AOSNS first comes up.

Figure 2-4 shows the structure of the ?CLASS parameter packet, and Table 2-3 describes its
contents.

o 15 16 31
1---------------------+--------------------1
1 Packet identifier 1

1 1
1---------------------+--------------------1
1 Function code (not 1 Get/set code 1 ?CL_PKT.
1 used; set to 0.) 1 ID . 1 GETSET
1---------------------+--------------------1
1 Class bit map 1

1 1
1---------------------1

?CL_PKT_LEN = packet length

Figure 2-4. Structure of ?CLASS Packet

Table 2-3. Contents of ?CLASS Packet

1

Offset 1 Contents 1

==================== ===1
?CL_PKT.PKT_ID
(doubleword)

Packet identifier. Place ?CL_PKT_PKTID here. 1

Function code. Not used (set to 0).

Get/set code. Place the value of ?CL_GET
here to obtain the class bit map. Place the
value of ?CL SET here to update the bit map;
also place the new bit map in offset
?CL_PKT.CLMAP.

1

1

1

1

1

1

1

1

1

1

The class bit map. You obtain it or set it 1

according to the value in offset ?CL_PKT.GETSET. I
1

_____________________ ---1

~542 Licensed Material - Property of Data General Corporation 2-37

?CLOSE Closes an open channel.

?CLOSE [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?CLOSE
packet, unless you specify
the address as an argument
to ?CLOSE

Error Codes in ACO

Output

ACO Undefined

ACl Undefined

AC2 Address of the ?CLOSE packet

ERACU
ERCIU
ERPRE
ERSIM
ERVWP

Attempt to close unopen channel/device
Channel in use
Invalid system call parameter
Simultaneous requests on same channel
Invalid word pointer passed as a system call argument

Why Use It?

Mer you read from or write to an open I/O channel, issue ?CLOSE to close the channel. This
allows the operating system to update the associated file's status information and to free the
channel so that it can be used again.

Normally, if a process terminates, the operating system automatically closes all its open channels.
However, if a process terminates abnormally (for example, because of a Ctrl-C Ctrl-B sequence or
a user trap), the operating system flushes all buffers of any open channels before it closes the
channels.

When you issue ?CLOSE against a labeled tape file, the operating system writes the user trailer
labels from the area that you specify in offset ?ELUT of the ?OPEN packet extension.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have obtained a channel
number, via ?OPEN or ?GOPEN, before issuing ?CLOSE. There are no other restrictions
concerning file access.

What It Does
?CLOSE closes an open channel and frees the channel number that the operating system assigned
to that channel.

?CLOSE requires the I/O packet shown in Figure 2-5. You can specify the address of the packet as
an argument to ?CLOSE, or you can load AC2 with a byte pointer to the packet address before you

issue ?CLOSE.

2-38 Licensed Material - Property of Data General Corporation 093-000542

As Figure 2-5 shows, ?CLOSE uses the same 1/0 packet as ?OPEN, ?READ, and ?WRITE. Only
one 1/0 parameter applies to ?CLOSE:

• Channel number, offset ?ICR, which is the number of the channel you want to close. (The
operating system returns the channel number to offset ?ICR after the ?OPEN.)

Also, there are no extended packets for ?CLOSE.

o 15 16 31
-------------------------+-------------------------1

?ICH Channel number 1 1 ?ISTI
-------------------------+-------------------------1

?ISTO 1 1 ?IMRS
-------------------------+-------------------------

?IBAD
-------------------------+-------------------------

?IRES 1 ?IRCL
-------------------------+-------------------------

?IRLR 1 ?IRNW
-------------------------+-------------------------

?IRNH

?IFNP

?IDEL

?IOSZ = packet length

Figure 2-5. Structure of ?CLOSE Packet

Notes

• See the descriptions of?OPEN, ?READ, and ?WRITE in this chapter for more information on
1/0 parameters.

09:HlOO542 Licensed Material - Property of Data General Corporation 2-39

?CLRDV Clears a device.

?CLRDV
error return
normal return

Input

ACO contains either:

• Byte pointer to the terminal
name

• Channel (number) on which
the device is opened

ACl contains the following:

Bit 0 = 0 if ACO contains
a byte pointer

Bit 0 = 1 if ACO contains
a channel number

AC2 option:

• ?CDRXON - receive XON
(simulate Ctrl-Q)

• ?CDSBRK - send a break

Error Codes in ACO

File does not exist
Illegal channel

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERFDE
ERICN
ERIFD Illegal function for device (Returned when trying to transmit a break to a device that

does not support the transmit break function, or receiving XON on an input-only
device.)

ERIFT
ERPRE
ERPRV
ERVBP

Illegal file type
Invalid system call parameter
Caller not privileged for this action
Invalid byte pointer passed as system call argument

Why Use It?

The receivE~ XON option is useful in restarting output on a line that cannot be restarted by any of
the typical methods (i.e., Ctrl-Q, hold, etc.). For example, if a line is in binary mode, it will not
recognize control sequences, thus Ctrl-Q will not be interpreted as an XON command. It also is
useful in restarting output on asynchronous lines that have nonkeyboard devices, such as printers.
These lines may be held on Ctrl-S from characters generated by line noise.

The send break option offers a simple method of sending a break. Some devices, such as
COMSWI'I'CH, respond to a break.

2-40 Licensed Material - Property of Data General Corporation 093-000542

Who Can Use It?

See the following section "What It Does" for an explanation ofPID and target device ownership
requirements.

What It Does

?CLRDV allows you two options: to simulate an XON or to transmit a break to an asynchronous
line. The first option, ?CDRXON, lets you restart output by simulating and sending XON to a
device. (When you type Ctrl-Q, you simulate this function.)

?CLRDV allows a process to simulate XON as long as the process is PID 2, has the System
Manager privilege ON, or owns the target device.

The second option, ?CDSBRK, lets you send a break from the asynchronous controller (lAC, MCPl,
etc.) to the device. The break condition lasts until a ?WRITE is issued on the line or the
characteristics change. Examples of events that result in a characteristics change are a ?SECHR
system call, a CLI CHARACTERISTICS command or environment POP command, and a process
termination.

?CLRDV allows a process to send a break as long as the process is PID 2, has the System Manager
privilege ON, or owns the target device.

The following devices support the ?CDSBRK option:

• lAC

• MCPl

• LAC

• DRT on the following machines:

- ECLIPSE MV/1400™ DC

- ECLIPSE MV/2000™ DC

- ECLIPSE MV/2500™ DC

The following devices do not support the ?CDSBRK option:

• CPI/24

• The system console

• DRT on the following machines:

- DS/4000 series

- ECLIPSE MV/4000™ DC

- ECLIPSE MV/4000 SC

- ECLIPSE MV/7800™ C

- ECLIPSE MV17800 DCX

093-000542 Licensed Material - Property of Data General Corporation 2-41

?CLSCHED Enables, disables, or examines class scheduling.

?CLSCH ED [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?CLSCHED
packet, unless you specify
the address as an argument
to ?CLSCHED

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?CLSCHED packet

ERPRV
ERCSO

Caller not privileged for this action
Class scheduling is enabled

Why Use It?

Use this sys,tem call to enable or disable class scheduling for a specified set of LPs. You may also
accumulate class scheduling statistics.

Who Can Use It?

For the enable or disable version of this call, you must have System Manager privilege to issue it,
but there are no restrictions concerning file access. For the examine version of this call, there are
no special privileges needed to issue it, and there are no restrictions concerng file access.

What It Does

You implement this system call in one of two basic ways: enable class scheduling with
accumulation of statistics, or simply accumulate statistics about class scheduling with class
scheduling disabled. You cannot enable class scheduling and disable accumulation of statistics.

For class scheduling, use this call to turn class scheduling on or off according to logical processors
you specify. When an LP's class scheduling is on, AOSNS uses the LP's class hierarchy and time
interval allotments to select processes. When an LP's class scheduling is off, AOSNS ignores the
LP's class hierarchy and time interval allotments; AOSNS also eliminates certain scheduling and
accounting overhead.

For statistical accumulation, use this call to accumulate statistics that show how AOSNS is
allotting processor time. This accumu1ation occurs according to logical processors you specify. It
always occurs when class scheduling is enabled and can occur without class scheduling if desired.
Use the ?CLSTAT call to view the accumulated statistics.

2-42 Licensed Material - Property of Data General Corporation 093-000542

Use the ?CLSCHED packet entries as follows:

• Use the get/set offset (?CLS_PKT.GETSET) to indicate whether you want to obtain the system
class schedule settings or to set them. Place ?CLS_GET in the offset in the former case or
?CLS_SET in the offset in the latter case.

• Use the accumulate/schedule offset (?CLS_PKT.FLAVOR) to indicate which LP setting you wish
to get/set: statistical accumulation or class scheduling.

• Offset ?CLS_PKT.LPMAP contains an LP bit map. Bit ° corresponds to LPID 0, etc. When using
the "set" code, a 1 bit tells AOSNS to turn class scheduling or accumulation on for the
corresponding LP; a ° bit tells AOSNS to turn class scheduling or accumulation offfor that LP.
AOSNS does not return an error if an LP is already in the desired scheduling or accumulation
mode.

Similay, if you enter the "get" code, AOSNS uses the LP bit map to tell you which LPs have
class scheduling or accumulation enabled.

Note the following rules that apply to enabling/disabling class scheduling and statistical
accumulation:

• Enabling class scheduling for an LP has AOSNS automatically turn on statistical accumulation
for the LP.

• Disabling class scheduling for an LP has AOSNS automatically tum off statistical accumulation
for the LP.

• However, you may tum on statistical accumulation for an LP, regardless of whether you have
enabled or disabled class scheduling.

• You cannot disable statistical accumulation if the LP has class scheduling enabled.

Given these rules, the easiest way to configure your LP scheduling and accumulation is to

• Issue the scheduling version of ?CLSCHED first.

• Then issue the accumulation version of ?CLSCHED.

Figure 2-6 shows the structure of the ?CLSCHED parameter packet, and Table 2-4 describes its
contents.

093-000542 Licensed Material - Property of Data General Corporation 2-43

?CLSCHED Continued

?CLS_PKT.
PK'I'_ID

?CLS_PKT.
FUNC

?CLS_PKT.
FLAVOR

?CLS_PKT.
LPMAP

(low' order)

o 15 16 31
---------------------+--------------------1

Packet identifier 1

1

---------------------+--------------------1
Function code (not 1 Get/set system 1

used i set to 0.) 1 settings code 1

---------------------+--------------------1
Schedule/accumulate 1 Bit map of logical 1

code 1 processor IDs 1

1 1

---------------------+--------------------1
Bit map of logical 1

processor IDs 1

1

---------------------1
?CLS_PKT_LEN = packet length

Figure 2-6. Structure of ?CLSCHED Packet

Table 2-4. Contents of ?CLSCHED Packet

?CLS_PKT.
GETSET

?CLS_PKT.
LPMAP

(high order)

1

Offset Contents 1

====================
?CLS_PKT.PKT_ID
(double-word)

?CLS PKT.FUNC

?CLS PKT.GETSET

?CLS_PKT.LPMAP
(double-word)

=======================================:==========1
Packet identifier. Place ?CLS_PKT_PKTID here. 1

Function code. Not used (set to 0).

Code word into which you place ?CLS_GErr when
you want to obtain system settings and ?CLS_SET
when you want to set system settings.

Code word into which you place ?CLS_ACC when
you want to get/set LP statistical accumulation
or ?CLS_SCHED when you want to get/set LP class
scheduling. You can specify both values when
you want to find out which logical processors
are accumulating statistics.

Bit map of the logical processors, with bit 0
corresponding to LP 0, etc.

1

1

Notes

• When you initially create an LP, class scheduling and statistics accumulation are disabled.

• AOSNS maintains scheduling statistics from the time that it creates an LP. If you turn
statistics accumulation off and on, the statistics will not include information about the processes
that were scheduled when the accumulation was off.

• AOSNS returns an error if you do not have the appropriate privilege (System Manager) to issue
this call.

• AOSNS continues to maintain LP class hierarchies, class IDs, and the class matrix whether or
not class scheduling is enabled. This means ?LPCLASS, ?CLASS, and ?CMATRIX calls work
correctly whether or not class scheduling is in use.

2-44 Licensed Material - Property of Data General Corporation 093-000542

?CLSTAT Returns class scheduling statistics.

?CLST AT [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?CLSTAT
packet, unless you specify
the address as an argument
to ?CLSTAT

Error Codes in ACO

Illegal function code
LP does not exist

AOSNS

Output

ACO Unchanged

ACl Unchanged

AC2 Address of the ?CLSTAT packet

ERICD
ERLNE
ERPRV Caller not privileged for this action

Why Use It?

Use this system call to obtain information about the allocation of a logical processor's CPU time.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

The ?CLSTAT call supports a main packet and an optional subpacket. The main packet provides
information about the division of an LP's CPU time among the user community. The subpacket
indicates how CPU time is used among various portions of AOSNS. You tell AOSNS whether or
not to place information in the subpacket by the value you place in offset ?CLST _PKT.FUNC of the
main packet.

093-000542 licensed Material - Property of Data General Corporation 2-45

?CLSTAT Continued
Many of the offsets are 4 words long and contain a time value. Here is the format of the time value:

• It's 64 bits long.

• Its frequency is (2**18)*(10**4) = 2,621,440,000 cycles per second.

• Bit number n (n is between 0 and 63) changes every (2**(63-n))/((2**18)*(10**4)) seconds. So,
for exanlple:

- Bit 45 set and the others off represents 100 microseconds.

- Bit 31 set and the others off represents 1.6384 seconds.

- Bit 20 set and the others off represents 3,355 seconds.

- Bit 6 set and the others off represents about 1 year, 9 months.

• I t rolls over every 223 years.

Figure 2-7 shows the structure of the ?CLSTAT main packet, and Table 2-5 describes its contents.
Figure 2-8 shows the structure of the ?CLSTAT subpacket, and Table 2-6 describes its contents.

2-46 Licensed Material - Property of Data General Corporation 093-000542

?CLST_PKT.
PKT_ID

?CLST_PKT.
INTERVALS

?CLS'r_PKT.
TOTAL

?CLST_PKT.
USER

?CLS'r_PKT.
USER_MOM

?CLST_PKT.
CLASS

?CLST_PKT.
CLASS + 56.

?CLST_PKT.
SUBPKT

093-000542

o 15 16 31
---------------------+--------------------

Packet identifier

---------------------+--------------------
Subpacket indicator 1 Logical processor ?CLST_PKT.
code 1 ID LPID

---------------------+--------------------
Number of time intervals

Total CPU usage, continued

--1
Total CPU usage, concluded 1

1

--1
Ring 1-7 CPU usage, continued 1

1

--1
Ring 1-7 CPU usage, concluded 1

1

--1
Ring 1-7 CPU usage by mother processor, 1

continued 1

Ring 1-7 CPU usage by mother processor,
continued

Class 0 CPU usage, continued

Class 0 CPU usage, concluded

Class 15. CPU usage, continued
1

--1
Class 15. CPU usage, concluded 1

1

--1
Word pointer to subpacket 1

1

--1
?CLST_PKT_LEN = packet length

Figure 2-7. Structure of ?CLSTAT Main Packet

Licensed Material - Property of Data General Corporation 2-47

?CLSTAT Continued

Table 2-5. Contents of ?CLSTAT Main Packet

1
1 Offset 1 Contents
1======:==============1===

2-48

?CLST_PKT.PKT_ID 1

(double-word) 1

1

1

1

1

1

1

1

1

I
?CLST PKT. INTERVALS I
(doubleword) I

?CLST_PKT.TOTAL
(four words)

?CLS~r_PKT . USER
(four words)

?CLS~r_PKT. USER_MOM
(four words)

?CLSrr_PKT. CLASS
(f our words)

?CLSrr_PKT. CLASS+56.
(four words)

?CLSrr_PKT. SUBPKT
(doubleword)

I
1

1

1

1

I
1

Packet identifier. Place ?CLST_PKT_PKTID here.

Subpacket indicator code. Place ?CLST_AOSVS
here to indicate the presence of a subpacket or
?CLST_NONE to indicate its absence.

Logical processor ID. Place the ID of the LP,
about which you want class scheduling
statistics, here.

AOS/VS returns the number of scheduling time
intervals that have elapsed.

AOS/VS returns the total amount of CPU time
that the logical processor (i.e., its
job processors) has used.

AOS/VS returns the total amount of CPU time
that the logical processor has used in rings
1 through 7.

AOS/VS returns the total amount of CPU time
that the logical processor has used in rings
1 through 7 on the mother processor (i.e., the
LP couldn't run on a child processor). This
value is included in offset ?CLST_PKT.USER.

AOS/VS returns the total amount of CPU time
that scheduling class number 0 used.

AOS/VS returns the total amount of CPU time
that scheduling class number 15. has used.

If you specified a subpacket in offset
?CLST_PKT.FUNC, then place its word address
here.

Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
--\

?CLST_AOSVS. Subpacket identifier
PKT_ID

?CLST_AOSVS. Total system CPU usage, continued
SYSTEM

Total system CPU usage, concluded

?CLST_AOSVS. Core manager CPU usage, continued
COREM

Core manager CPU usage, concluded

?CLST_AOSVS. System manager CPU usage, continued
SYSMGR

System manager CPU usage, concluded

?CLST_AOSVS. Disk manager CPU usage, continued
DISK

Disk manager CPU usage, concluded

?CLST_AOSVS. System call CPU usage, continued
SYSCALLS

?CLST_AOSVS.
SYSCALLS_MOM

System call CPU usage, concluded

System call CPU usage (mother processor
only), continued

System call CPU usage (mother processor
only), concluded

?CLST_AOSVS. Daemon call CPU usage, continued
DAEMON

Daemon call CPU usage, concluded

?CLST_AOSVS. Idle CPU usage, continued
IDLE

Idle CPU usage, concluded

?CLST_AOSVS. Interrupt CPU usage, continued
INT

Interrupt CPU usage, concluded
\--

?CLST_AOSVS. \ System residue, continued
RESIDUE \

\--
\ System residue, concluded
\--

?CLST_AOSVS_LEN = subpacket length

Figure 2-8. Structure of ?CLSTAT Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-49

?CLSTAT Continued
Table 2-6. Contents of ?CLST AT Subpacket

2-50

Offset
====================

?CLST_AOSVS.PKT_ID
(doubleword)

?CLST_AOSVS.SYSTEM
(four words)

?CLST_AOSVS.COREM
(four words)

?CLST_AOSVS.SYSMGR
(four words)

?CLS'T_AOSVS . DISK
(four words)

?CLS'T_AOSVS.
SYSCALLS

(four words)

?CLsrr_AOSVS.
SYSCALLS_MOM

(four words)

?CLSrr_AOSVS . DAEMON
(four words)

?CLsrr_AOSVS. IDLE
(four words)

? CLSrr_AOSVS . INT
(four words)

?CLsrr_AOSVS.
RESIDUE

(four words)

1

Contents 1

==1
Subpacket identifier. Place the value of 1

?CLST_AOSVS PKTID here. 1

1

AOS/VS returns the amount of total system
CPU usage.

AOS/VS returns the amount of core memory manager
CPU usage.

AOS/VS returns the amount of system manager
CPU usage.

AOS/VS returns the amount of disk manager
CPU usage.

AOS/VS returns the amount of system call CPU
usage.

AOS/VS returns the amount of system call CPU
usage (mother processor only) .

AOS/VS returns the amount of daemon call CPU
usage.

AOS/VS returns the amount of idle CPU usage.

AOS/VS returns the amount of interrupt CPU
usage.

AOS/VS returns the amount of system residue
time.

Licensed Material - Property of Data General Corporation 093-000542

?CMATRIX Gets or sets the class matrix.

?CMA TRIX [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?CMATRIX
packet, unless you specify
the address as an argument
to ?CMATRIX

Error Codes in ACO

Illegal class ID
Illegal locality value

AOSNS

Output

ACO Unchanged

AC1 Unchanged

AC2 Address of the ?CMATRIX packet

ERICI
ERILV
ERPRV Caller not privileged for this action

Why Use It?

Use ?CMATRIX to receive the current class locality scheduling matrix from AOSNS or to modify
this matrix.

Who Can Use It?

For the "get" version of this call, there are no special process privileges needed to issue it, and there
are no restrictions concerning file access. For the "set" version of this call, you must have System
Manager privilege to issue it, but there are no restrictions concerning file access.

What It Does

The following list describes the format of the class locality scheduling matrix in ?CMATRIX's
subpacket.

• The matrix consists of 256 cells, with 2 words in each cell. Each cell contains a user locality, a
program locality, and the corresponding class ID.

• User locality values and program locality values appear consecutively in the 2 bytes of the first
word in each cell. Both values are between 0 and 15 inclusive.

• The class ID corresponding to a user/program locality value is in the word following the locality
value. A class ID value is between 0 and 15 inclusive.

093-000542 Licensed Material - Property of Data General Corporation 2-51

?CMA TRIX Continued

Specifying the "get" code in the main packet has AOSNS return the class matrix in the subpacket.
Specifying the "set" code in the main packet and supplying a class matrix in the subpacket has
AOSNS update its scheduling practices for the indicated users, programs, and classes. However -
this updating does not affect processes that are currently running; their classes are not modified.
When AOS/VS creates processes after ?CMATRIX it gives them their class values aecording to the
new matrix" Use ?LOCALITY to change the class of a process that is currently running.

When you issue ?CMATRIX, indicate as many or as few cells of the matrix as you wish. Here are
the rules:

• Place the number of cells (2-word sets) you want to access in the cell count offset of the main
packet.

• Supply that many sets of user locality, program locality, and class ID values in the subpacket.

• If you use the "set" version of the call, supply the desired class ID values in the matrix.

• If you use the "set" version of the call and supply duplicate specifications (i.e., multiple values
for the same cell), AOSNS will use the last class ID value given for the cell.

• If you use the "get" version of the call, AOSNS returns the class IDs associated with the
user/program locality pairs that you specified.

Figure 2-9 shows the structure of the ?CMATRIX main packet, and Table 2-7 describes its
contents. Figure 2-10 shows the structure of the ?CMATRIX subpacket, and Table 2-8 describes its
contents.

2-52

?CMA'J'_PKT.
PKT __ ID

?CMA'I'_PKT.
FUNC

?CMA'I~ PKT.
COUNT

?CMA'I'_PKT.
MATHIX

(low order)

o 15 16 31
---------------------+--------------------1

Packet identifier 1

1

---------------------+--------------------1
Function code (not 1 Get/set code 1

used; set to 0). 1 1
---------------------+--------------------1
Class bit map 1 Word pointer to 1

1 subpacket 1

1 1

---------------------+--------------------1
Word pointer to 1

subpacket 1

1

---------------------1
?CMAT_PKT_LEN = packet length

Figure 2-9. Structure of ?CMATRIX Main Packet

Licensed Material - Property of Data General Corporation

?CMAT_PKT.
GETSET

?CMAT_PKT.
MATRIX

(high order)

093-000542

Table 2-7. Contents of ?CMATRIX Main Packet

Offset Contents
==================== ===

?CMAT_PKT.PKT_ID
(doubleword)

Packet identifier. Place ?CMAT_PKT_PKTID here.

Function code. Not used (set to 0).

Get/set code. Place the value of ?CMAT_GET
here to obtain the class scheduling matrix in
the subpacket. Place the value of ?CMAT_SET
here to update the matrix; also place the
matrix's new values in the subpacket.

?CMAT PKT.COUNT The number of cells (2 words in each cell)
in the subpacket.

Word address of the subpacket.

o 7 8 15 16 31
---------+-----------+---------------------

?CMAT_CELL. User I Program I Class ID value ?CMAT_CELL.
LOC localityl locality I CLASS

---------+-----------+--------------------
?CMAT_CELL. User I Program I Class ID value ?CMAT_CELL.

LOC+2 locality I locality I CLASS+2
---------+-----------+--------------------

?CMAT_CELL. User I Program I Class ID value ?CMAT_CELL.
LOC+4 localityl locality I CLASS+4

?CMAT_CELL.
LOC +

?CMAT_PKT.

---------+-----------+--------------------

---------+-----------+--------------------
User I Program I Class ID value
localityl locality I

I I

?CMAT_CELL.
CLASS +

?CMAT_PKT.
COUNT*2 - 2 I I COUNT*2 - 1

---------+-----------+--------------------
?CMAT_PKT.COUNT*2 = packet length

Figure 2-10. Structure of ?CMATRIX Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-53

?CMATRIX Continued

Table 2-8. Contents of ?CMATRIX Subpacket

2-54

Offset
====================

?CMAT_CELL.CLASS

?CMAT_CELL.CLASS+2

? CMA.T _CELL. LOC +
?CMA.T_PKT. COUNT*2-2

?CMAT_CELL.CLASS +
?CMAT_PKT.COUNT*2-2

Contents
=======================================:==========
User locality (left byte) and program locality
(right byte) pair for the first cell.

Class 10 of the first cell.

User locality (left byte) and program locality
(right byte) pair for the second cell.

Class 10 of the second cell.

User locality (left byte) and program locality
(right byte) pair for the third cell.

Class 10 of the third cell.

User locality (left byte) and program locality
(right byte) pair for the last cell.

Class 10 of the last cell.

Licensed Material - Property of Data General Corporation 093-000542

It's possible to look at the offsets in Table 2-8 another way. Figure 2-11 shows a relation between
the ?CMATRIX main packet and its subpacket.

+-------------+
1 Main Packet 1
+-------------+

o 15 16 31
1-------------------------------------1

?CMAT_PKT.PKT_ID 1 Packet Identifier 1
1-------------------------------------1

1-------------------------------------1
?CMAT_PKT. MATRIX 1 MATRIX __ ADDR (Subpacket word address) 1 ------+

093-000542

1-------------------------------------1 1
1

1

1

1

+--+
1

1

1

1

1

I
1

+-------->

+-----------+
1 Subpacket 1

+-----------+
o 15 16 31
------------------+------------------

MATRIX_ADDR + ?CMAT_CELL.LOC
MATRIX_ADDR + ?CMAT_CELL.CLASS

------------------+------------------
(MATRIX_ADDR+2) + ?CMAT_CELL.LOC
(MATRIX_ADDR+2) + ?CMAT_CELL.CLASS

------------------+------------------
(MATRIX_ADDR+4) + ?CMAT_CELL.LOC
(MATRIX_ADDR+4) + ?CMAT_CELL.CLASS

------------------+------------------

------------------+------------------
(MATRIX_ADDR+2*n-2)

+ ?CMAT_CELL.LOC
(MATRIX_ADDR+2*n-2)

+ ?CMAT_CELL.CLASS

------------------+------------------

\
> Cell 1

/ Address

\
> Cell 2

/ Address

\
> Cell 3

/ Address

\
\ Cell n
/ Address

/

Figure 2-11. Addresses of ?CMATRIX Main Packet and Its Subpacket Offsets

Licensed Material - Property of Data General Corporation 2-55

?CON Becomes a customer of a specified server.

?CON
error return
normal return

Input Output

ACO One of the following:

• PID of the server

• Byte pointer to the server's
process name

AC 1 Bit masks:

?MCPID

?MCOBIT

?M:CRNG

if ACO contains a
byte pointer

(optional) to
suppress the
obituary message
when the server
issues ?DCON,
?RESIGN, or ?CHAIN,
or terminates

if AC2 contains a

ACO PID of the server

AC1 Unchanged

ring number
(If?MCRNG is not set,
the OS assumes Ring 7.)

AC2 Contains the following:

• Bits 0 through 28 are reserved
(Set to 0.)

• Bits 29 through 31 contain the
server ring number if ?MCRNG is
set in AC1

Error Codes in ACO
Connection has been broken

AC2 Unchanged

ERCBK
ERCCS Cannot connect to self (ACO contains the caller's PID, or a byte pointer to the caller's

ERNAS
ERPNM
ERPRH
ERRNI
ERVBP

process name.)
Process is not a server (that is, the target process)
Illegal process name
Attempt to access process not in hierarchy
Ring number invalid
Invalid byte pointer passed as a system call argument

Why Use It?
?CON establishes a connection so that you can use the connection-management facility. The
connection-management facility lets you issue the IPC system calls, ?ISEND, ?IREC, and ?IS.R,
even though the customer process does not have the ?PVIP privilege.

2-56 Licensed Material - Property of Data General Corporation 093-000542

Who Can Use It?
You need no special process privileges to issue this call. There are no restrictions concerning file
access. However, you must connect to a valid server process. After the connection, the server
process has access to the memory in the ring from which you issued the call. So you should use
?CON to connect cooperating processes.

What It Does
?CON defines the calling process as a customer of an existing server process that you specify in
ACO, and it directs the operating system to create a corresponding connection-table entry. The
connection takes place between the caller's PID/ring and a specified server's PID/ring pair.

If the target process is not a declared server (it has not already issued ?SERVE), ?CON fails on
error code ERNAS. If the caller tries to connect with itself, ?CON fails and returns error code
ERCCS.

If the connection already exists, ?CON resets the status according to the bit mask ?MCOBIT.
However, if the customer is trying to reconnect an already broken connection, but the server has
not broken it, ?CON fails on error code ERCBK.

When a server disconnects, the operating system sends (by default) an obituary message to the
customer. To suppress this message, set ?MCOBIT in ACl.

You cannot connect segment images within the same process.

Notes
• See the description of ?DCON in this chapter.

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation 2--57

?CONFIG Display or reset current MRC routes.

?CONFIG [packet address]
error return
normal return

Input
ACO
ACI
AC2

Reserved (set to 0)
Reserved (set to 0)
Address of the ?CONFlG
packet, unless specified as

an argument to ?CONFlG

Error codes returned in ACO

AOSNSII

Output
ACO
ACI
AC2

Caller not privileged for this action
Reserved value not zero
Illegal function code
Illegal packet id
System call parameter address error
Invalid system call parameter

Unchanged or an error code
Unchanged
Address of the ?CONFlG packet

ERPRV
ERRVN
ERlCD
ERPKT
ERMPR
ERPRE
ERVWP
ERUNC
ERIDT

Invalid address passed as system call argument
Device unknown to host
Illegal device name type

Why Use It?
Use ?CONFIG to either determine the current Message-Based Reliable (MRC) device routes on a
system, or to return diverted MRC devices to their primary routes on a specified MRC channel or
controller. For MRC devices, primary routes are user-defined and edited in VSGEN, but secondary
routes are solely defined by VSGEN and are not user-selectable. A diverted MRC device is one
using a secondary route.

Who Can Use it?
Any user who has the access devices privilege.

What It Does
The ?CONFIG system call consists of a main packet and three subpacket functions. The first
subpacket function obtains the current route information for a specified MRC device. The other two
subpacket functions reset the routes of diverted devices on either a designated channel, or on a
controller.

The ?CONFIG_GET CURRENT_ROUTE function returns the current route, the primary route, and
the device reset-pending status for a valid MRC device name. The ?CONFIG_RESET_MRC_CHAN
function resets the current working routes back to their primary routes, if these are available, for
all the diverted MRC devices on the designated channel. The
?CONFIG_RESET_MRC_CONTROLLER function resets the current working routes back to their
primary routes, if these are available, for all the diverted MRC devices on the designated controller.

2-58 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

The ?CONFIG call does not change device routing from primary to secondary routes. Figure 2-11.1
shows the structure of the ?CONFIG main packet.

o 15 16 31
1---------------------+--------------------1
1 Unique Packet Id 1

+---------------------+--------------------+
?CONFIG_FUNCTION 1 Function 1 Reserved (Set to 0) 1 ?CONFIG_

1 (see Table 2-8.1) 1 1 PK'I'_RES
+---------------------+--------------------+

?CONFIG_SUBPKT 1 Subpacket Address 1

+---------------------+--------------------+

Figure 2-11.1. Structure of ?CONFIG Main Packet

The valid function codes for offset ?CONFIG_FUNCTION are described in Table 2-8.1.

Table 2-8.1. Valid ?CONFIG_FUNCTION Function Codes

1

1 Function Code 1 What It Lets You Do 1
1===============================1==:1

1 1
1 Specifies the MRC unit name for the 1

1 requested route information. 1

1 The current route, primary route, I

1 the unit number, and the reset pending
1 flags are all returned.
1

I
1

1

1

1

1

Specifies the MRC channel's device code
for the primary channel requiring
resetting. This function attempts to
reset all the diverted MRC devices on
this channel.

Specifies the MRC channel's device code,
and the node number of the primary
controller requiring resetting.

The channel's device code is the 3-bit
IOC, 6-bit device code combination,
in which bits 7-9 of the single word
contain the IOC number, and bits 10-15
contain the device code.

This function attempts to reset all the
diverted MRC devices on this controller.

1 __________________________________+ I

086-000195 updates
093-000542 Licensed Material - Property d Data General Corporation 2-58.1

?CONFIG Continued

The ?CONFIG_GET_CURRENT_ROUTE function accepts as input a byte pointer to the MRC unit
name string. ?CONFIG_GET_CURRENT_ROUTE returns the currently active route components,
the primary route components, the unit number, and a flag word. The caller must determine
whether or not the routes are diverted and require resetting.

The ?CONFIG_GET_CURRENT_ROUTE subpacket structure is shown in Figure 2-11.2, and its
contents are described in Table 2-8.2.

?CONFIG_GCR_
SPKT_ID

?CONFIG._GCR_
UNIT_BP

?CONFIG_
GCR_CCHAN

?CONFIG_GCR
CCTRLR

?CONFIG_GCR
PC HAN

?CONFIG_GCR_
PCTRLR

?CONFIG_GCR_
UNIT_NO

o 15 16 31
1---------------------+--------------------1
1 Unique Subpacket Id I

1 1
+---------------------+--------------------+

Byte Pointer to Unit name

+---------------------+--------------------+
1 Current Channel 1 Current System 1 ?CONFIG_
1 Device Code 1 Interface (SI) 1 GCR_CPIN
1 1 Node number 1
+---------------------+--------------------+
1 Current Controller 1 Current 1 '?CONFIG_
, Node 1 Chassis Id 1 GCR_CCHAS
+---------------------+--------------------+
1 Primary Channel 1 Primary System 1 ?CONFIG_
1 Device Code 1 Interface Node 1 GCR_PPIN
1 1 number 1
+---------------------+--------------------+
1 Primary 1 Primary 1 ?CONFIG_
1 Controller Node 1 Chassis Id 1 GCR_PCHAS
+---------------------+--------------------+
1 Unit Number 1 Flag Word 1 ?CONFIG_
1 1 1 GCR_FLAG
+---------------------+--------------------+

Figure 2-11.2. Structure of the ?CONFIG_GET_CURRENT_ROUTE Function Subpacket

2-58.2 Licensed Material - Property d Data General Corporation
086--000195 updates

093-000542

Table 2-8.2. Contents of ?CONFIG_GET_CURRENT_ROUTE Function Subpacket

1

1 Offset 1 Contents 1
1=====================1===1

086-000195 updates
093-000542

A unique subpacket identifier (input value) .

A byte pointer to the null terminated unit name
string for the MRC device (input value).

The channel's device code for the specified unit
in the current route (output value) .

The 81 node number in the current route to the
device (output value) .

The controller's node number for the specified
unit in the current route (output value) .

The chassis identifier of the chassis in the
current route (output value) .

The channel's device code for the specified unit
in the primary route (output value) .

The SI node number in the primary route to the
device (output value).

The controller's node number for the specified
unit in the primary route (output value).

The primary route chassis identifier (output
value) .

The unit number for the specified unit (output
value) .

An output flag containing the following bit
definitions:

?CONFIG GCR RESET_BIT
is pending.

o if no reset operation

?CONFIG GCR RESET_BIT
operation pending.

1 if there is a reset

For a disk device, a reset to the new
route for the device occurs once the disk is
initialized.

For tape devices, a reset to the new route
occurs when a tape file is next opened on the
device.

Licensed Material- Property of Data General Corporation 2-58.3

?CONFIG Continued

What ?CONFIG_RESET _MRC_CHAN Does

The ?CONFIG_RESET_MRC_CHAN function accepts as input the device code of the primary
channel whose devices require resetting. After hardware repair, resetting the route on the failed
channel results in diverted devices on that channel being rerouted to their primary routes.

?CONFIG_RESET_MRC_CHAN immediately tries to reroute all active diverted devices initialized
or opened by a ?GOPEN system call. The reset request does not affect current deviees using
primary routes.

For inactive MRC disk and tape devices, ?CONFIG_RESET_MRC_CHAN sets an internal flag so
that the device route is reset when the device is next accessed. The operating system detects the
flag and reroutes the device as soon as a newly initialized disk is accessed, or a file is opened on the
tape device.

The ?CONFIG_RESET_MRC_CHANNEL subpacket structure is shown in Figure 2-11.3, and its
contents are described in Table 2-8.3.

?CONFIG_RCH_
SPKT_ID

o 15 16 31
1---------------------+--------------------1
1 Unique Subpacket Id 1

1 1
+---------------------+--------------------+

?CONFIG_RCH_CHAN 1 Channel Device 1 Reserved 1 ?CONFIG_
1 Code 1 (set to 0) 1 RCH_RES
+---------------------+--------------------+

Figure 2-11.3. Structure of the ?CONFIG_RESET_MRC_CHANNEL Function Subpacket

Table 2-8.3 ?CONFIG_RESET_MRD_CHANNEL Function Subpacket Contents

1

1 Offset 1 Contents 1
1=====================1===1
1 ?CONFIG_RCH_SPKT_ID 1 A unique subpacket identifier (an input value) . 1
1 1 1
1 ?CONFIG_RCH_CHAN 1 The to be reset primary channel's device code 1
1 1 (an input value). 1
1 1 1
1 ?CONFIG_RCH_RES 1 Reserved (set to 0). 1
1 I 1

I I 1

2-58.4 Licensed Material - Property of Data General Corporation
086-000195 updates

09:HlOO542

What ?CONFIG_RESET_MRC_CTRLR does

The ?CONFIG_RESET_MRC_CTRLR function accepts as input the channel's device code, and the
primary controller's node number for the controller whose devices require resetting. This function
operates the same as the ?CONFIG_RESET_MRC_CHAN function. The channel's device code is
required to uniquely identify a controller's node when a configuration contains multiple chassis.

For inactive MRC disk and tape devices, ?CONFIG_RESET_MRC_CTRLR sets an internal flag so
that the device route is reset when the device is next accessed. The operating system detects the
flag and reroutes the device as soon as a newly initialized disk is accessed, or a file is opened on the
tape device.

The ?CONFIG_RESET_MRC_CONTROLLER subpacket structure is shown in Figure 2-11.4, and
its contents are described in Table 2-8.4.

?CONFIG_RCR_
SPKT_ID

o 15 16 31
1---------------------+--------------------1
1 Unique Subpacket Id 1

1 1
+---------------------+--------------------+

?CONFIG_RCR_CHAN 1 Channel 1 Controller node 1
1 Device Code 1 number 1
+---------------------+--------------------+

1

1

1

1

1

1

?CONFIG 1

RCR_CTRLRI
1

1
__ 1

Figure 2-11.4. Structure of the ?CONFIG_RESET_MRC_CTRLR Function Subpacket

Table 2-8.4 ?CONFIG_RESET _MRC_ CONTROLLER Function Subpacket Contents

1

Offset 1 Contents 1

=====================1===1
?CONFIG_RCR_SPKT_ID 1 A unique subpacket identifier (an input value) . 1

1 1
?CONFIG_RCR_CHAN 1 Is the channel's device code in the connection 1

1 between the host and the controller whose 1

1 devices require resetting (an input value) . 1

1 1
?CONFIG_RCR_CTRLR 1 The primary controller'S node number of 1

1 the controller whose devices require 1

1 resetting (an input value) . 1

1 1

---------------------1 1

Notes
You can issue ?CONFIG_RESET_MRC_CHAN and ?CONFIG_RESET_MRC_CTRLR calls against I
a tape device while it is in use, and the call will not affect the active 110 on the tape device. To
verify the reset occurred after the subsequent access to the disk or tape device, issue a ?CONFIG
with the ?CONFIG_GET_CURRENT_ROUTE subpacket function.

086-000195 updates
093-000542 Licensed Material - Property of Data General Corporation 2-58.5

?CONINFO Request for addressing information
on a terminal or console.

AOSNSII

?CONINFO [packet address]
error return
normal return

Input
ACO Reserved (set to zero)

ACI Reserved (set to zero)

AC2 Address of the ?CONINFO main
packet, unless specified as an
argument to ?CONINFO

Error codes returned in ACO
Illegal channel number
Invalid function for this device
Illegal file type
Illegal packet ID
Illegal system call parameter

Output:
ACO Unchanged or error code

ACI Unchanged

AC2 Unchanged

ERICN
ERIFD
ERIFT
ERPKT
ERPRE
ERPRV
ERVBP

Caller not privileged for this action
Invalid byte pointer passed as a system
call argument

ERIRB
ERVWP

Insufficient room in buffer
Invalid word pointer passed as a system
call argument

Why Use It?
Use ?CONINFO to get console addressing information. Due to the layering of some network
protocols, ?CONINFO may only resolve information from the caller's host or the last host that
routed the connection. Any console generated by VSGEN in the :PER directory can be verified with
?CONINFO. The console does not have to be active.

Who Can Use It?
The ?CONINFO system call is a 32-bit system call, and is for use only in AOSNS II. The caller
must be PID 2, or have the System Manager privilege turned on, or be the process that owns the
console.

What It Does
The ?CONINFO system main packet contains input and output parameters. On input, you provide
the unique packet id, a pointer to a buffer for return data, the length of the return data buffer, the
channel number of the target console (or a byte pointer to the name of the target console), and a
flag specifying which target parameter you supplied.

In addition, if you supply a byte pointer, you must include the length of the console name buffer.
The return data buffer must be at least ?CON_UBUF _LEN words long, and is defined in
PARU_LONG.SR.

2-58.6 Licensed Material- Property of Data General Corporation
086-000195 updates

09:Hl00542

On output, the ?CONINFO main packet lists the amount of data placed in the return buffer. Errors
are returned in ACO. The return data buffer contains the requested information.

Figure 2-11.5 contains the ?CONINFO main packet structure, and Table 2-8.5 lists the contents of
the ?CONINFO main packet.

1
o 15 16 31 I
1-------------------------+-------------------------1 I

?CON_PKT. 1 Packet identifier; set to ?CON_PKT_PKT_ID 1 I

PKT_ID 1 1 1
+-------------------------+-------------------------+ I

?CON_PKT. I Channel number on which the target device is open 1 1
CHAN_NUM 1 If you use ?CON_PKT.CON_PTR, set this to 0 I I

+-------------------------+-------------------------+ I
?CON_PKT. 1 A word pointer to the return data buffer 1 I

RBUF _PTR 1 I 1

+-------------------------+-------------------------+ 1
?CON_PKT. 1 Return data buffer 1 Number of data words in I?CON_PKT.I

RBUF_LEN 1 length in words 1 the return data buffer 1 RDATA_LEN 1
+-------------------------+-------------------------+ I

?CON_PKT. I A byte pointer to the buffer for the console name I I
CON_PTR 1 1 1

+-------------------------+-------------------------+ I
?CON_PKT. The byte length of the Input indicator flags I?CON_PKT. I

CON_LEN console name buffer about target device IUSER_FLGSI
parameters. 1 1
Set unused flags to 0 1 1
See Table 2-8.6 1 1

+-------------------------+-------------------------+ 1
?CON_PKT_LEN = packet length I

--1
Figure 2-11.5. Structure of ?CONINFO Main Packet

Table 2-8.5. Contents of the ?CONINFO Packet

I
1 Offset 1 Contents I
1====================1===1
1 1
1 ?CON_PKT.PKT_ID I ?CON_PKT_PKTID is a unique packet identifier.
1 1
1 ?CON_PKT.CHAN_NUM 1

1 1
1 I
I 1
I 1
1 ?CON_PKT.RBUF_PTR 1

1 1
1 ?CON_PKT.RBUF_LEN 1

I 1
1 ?CON_PKT.RDATA_LEN 1

1 1
1 1
1 ?CON_PKT.CON_PTR 1

1 I
I I
1 I
I ?CON_PKT.CON_LEN 1

I I
1 1
1 1

The channel number on which the target device is
open. When using this parameter,
?CON_PKT.CON_PTR and ?CON_PKT.CON_LEN must be
zero or an ERPRE error will result.

A word pointer to a buffer for return data.

The word length of the return data buffer.

The number of words of data in the return
data buffer.

A byte pointer to the name of the target console.
When using this parameter, ?CON_PKT.CHAN_NUM
must be set to zero or an ERPRE error will result.

The byte length of the buffer holding the console
name. When this parameter is supplied

?CON_PKT.CHAN_NUM must be set to zero or an ERPRE
error will result.

1------------------_1---

086-000195 updates
093-000542 Lioensed Material- Property of Data General Corporation 2-58.7

?CONINFO Continued

Table 2-8.6. Input Values to ?CON_PKT.USER_FLGS Offset

Offset
================

?CON __ PKT.
USER_FLGS

Contents
===

An input flag value indicating that either a byte
pointer to the target device name, or the channel
number parameter, was supplied.

Unused flags must be set to zero or you generate an
ERPRE error. The valid flags are:

- ?CON_PKT.USER_FLGS.NAME = 1 means the user has
supplied a byte pointer to the name of the
target device. If this bit is set, the channel
number, ?CON_CHAN_NUM, must be set to ZE~ro.

- ?CON_PKT.USER_FLGS.CHAN = 1 means the user
supplied the channel number of the target device.
If this bit is set, the byte pointer
?CON_CON_PTR, and the length of the name buffer,
?CON_CON_LEN, must both be set to zero.

Return Packet Types
In each return packet in the return data buffer, a value in the first offset (word 0) denotes the type
of active connection, or the type of session and session's console. Connection and session types, and
their values, are defined in Table 2-8.7.

Return Packets and Line Numbers

Each return packet also contains the Terminal Services (TS) target console line number. In the
packet for "soft" controllers, the Hne numbers are zero relative. Thus, when VSGEN generates
"150." Telnet consoles for a Telnet connection across a LAN, the Telnet line numbers range from
o to 149.

Line numbers for directly connected lAC consoles are relative to each TS engine. Thus when
VSGEN generates 128 Intelligent TermController CITC) TermServer consoles, each of the four TS
engines on the ITC owns 32 Hnes, and each engine's line numbers range from 0 to 31.

2-58.8 licensed Material - Property 01 Data General Corporation
086-000195 updates

093-000542

Table 2-8.7. ?CON_RET_ TYPES Return Buffer Console Types and Definitions

I
I Offset 1 Description 1
1============1===1

Word 0 ?CON_TCP_RET_TYPE = 1 indicates that the target
console is a TermServer console connected through
an Intelligent TermController (ITC) , or a local-bus
terminal controller (LTC) running Transport
Control Protocol/Internet Protocol (TCP/IP) software.

?CON_XNS_RET_TYPE = 2 indicates that the target
console is a TermServer console connected through an
ITC or LTC controller running Xerox Network
Services (XNS) software.

?CON_CON_RET_TYPE = 6 indicates that the target console
is a CON. These consoles may be Intelligent
Asynchronous Controller (lAC) consoles, RingO
Dual Universal Asynchronous Receiver and Transmitter
(DUART) consoles, operator's consoles, or consoles using
teletype input and teletype output (TTI-TTO).

?CON_TNET_RET_TYPE = 11 indicates that the target
console is a TCP/IP connection (TCON) established
over RingO Telnet software.

?CON_ITC_MIN_DATA = 14 indicates no network data is
available on an lTC/LTC connection, because of
some error on the transport engine.

?CON_TSC_MIN_DATA = 15 indicates no network data is
available for a ringO (TCON) network connection.

?CON_PVC_RET_DATA = 16 indicates that the target
console is an ITC or LTC controller, and the connection
is a permanent virtual circuit (PVC) defined on the
controller.

?CON_ TCP _RET _TYPE Return Type = 1

AOSNS II returns the packet for a TermServer connection established through an ITC or an LTC
controller using TCPIIP. The TCPIIP packet is shown in Figure 2-11.6, and the packet contents are
in Table 2-8.8.

086--000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-58.9

o 15 16 31
1-------------------------+--------------------------1

?CON_PKT . 1 1 1 ?CON PKT.
RBUF_PTR.I Transport Control 1 System flags 1 RBUF_PTR.
TYPE 1 Protocol (TCP) return 1 1 SYS_FLGS

1 type 1 1

+-------------------------+--------------------------+
?CON_PKT. 1 ?CON_PKT.

RBUF_PTR.I Terminal services line
LIN_NUM 1 number

Controller device
code

1 RBUF_PTR.
1 DVC_

1 1 CODE
+-------------------------+--------------------------+

?CON_PKT. 1 I?CON_PKT.
RBUF_PTR.I Terminal services
ENG_N1JM 1 engine number

Reserved (Set to 0) 1 RBUF _PTR. 1

1 RSVD
1 1

+-------------------------+-------------------------+
?CON_PKT. 1

RBUF_PTR 1 Internet protocol (IP) address
TCP_ADD 1

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF_PTR.I Internet protocol (IP) port number
TCP_PORT 1

+-------------------------+--------------------------+

Figure 2-11.6. Structure of ?CON _TCP _RET _TYPE Return Packet

Table 2-8.8. Contents of ?CON_ TCP _RET_TYPE Packet

1

Offset 1 Contents 1

============================+===1
?CON_PKT. RBUF_PTR. TYPE I ?CON_TCP_RET_TYPE = 1 identifies the type 1

1 of packet returned (see Table 2-8.7 for a 1

1 list of types). 1

1

?CON_PKT.RBUF_PTR.SYS_FLGS 1 Valid only for ?CON_CON RET TYPE 6.
1 Otherwise zero is returned.
1

?CON_PKT.RBUF_PTR.LIN_N11M 1 The console terminal services line number
in decimal.

2-58.10

The device code of the controller in octal.

The terminal services controller engine
number that owns the line
(ranges from 0 to n) .

Reserved. (Set to 0)

The caller's IP address in decimal.
The address is in four contiguous bytes.
Each byte contains a decimal triplet
from 000 to 255, with the most significant
byte on on the left. For examplE~,
107.212.019.036 is an IP address.

The caller's IP port number in dE~cimal.

licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?CONINFO Continued

AOSNS II returns this packet for a TermServer connection established through an ITC or an LTC
controller using Xerox Network Services (XNS).

The packet structure is shown in Figure 2-11.7. Table 2-8.9 describes each offset.

o 15 16 31
1-------------------------+-------------------------1

?CON_PKT. 1 1 1 ?CON_PKT.
RBUF_PTR.I Xerox Network Services 1 System flags 1 RBUF_PTR.
TYPE 1 (XNS) return type 1 1 SYS_FLGS

+-------------------------+-------------------------+
?CON_PKT. 1 I?CON_PKT.

RBUF_PTR.I Terminal services line Controller device 1 RBUF_PTR.
LIN_NUM 1 number code 1 DVC

1 1 CODE
+-------------------------+-------------------------+ 1

?CON_PKT. 1 1 1 ?CON_PKT . I
RBUF_PTR.I Terminal services I Reserved (Set to 0) RBUF_PTR. I
ENG_NUM 1 engine number 1 RSVD I

1 1 1
+-------------------------+-------------------------+ 1

?CON_PKT. 1 1 1
RBUF_PTR.I Ethernet address (tripleword) 1 1

ETH_ADD 1 I 1

+ +-------------------------+ 1
1 1

1 I
+-------------------------+ I

1

--__ 1

086-000195 updates
093-000542

Figure 2-11.7. Structure of ?CON _XNS JlET _TYPE Return Packet

Licensed Material - Property of Data General Corporation 2-58.11

Table 2-8.9. Contents of ?CON_XNS_RET _TYPE Packet

1

Offset 1 Contents 1

============================+===1

?CON_PKT.RBUF_PTR.ETH_ADD
(tripleword)

?CON_XNS_RET_TYPE = 2 identifies the type
of packet returned (see Table 2-8.7 for a
list of types).

Valid only for ?CON_CON_RET_TYPE = 6.
Otherwise zero is returned.

The console terminal services line number
in decimal.

The device code of the TermServer
controller in octal.

The terminal services controller engine
number that owns the line (ranges
from 0 to n) .

Reserved. (Set to 0)

The Ethernet address of the TermServer
box--12 hexadecimal digits.

?CON_CON_RET _TYPE Return Type = 6
AOSNS II returns this packet for consoles directly connected to lACs, modem lines, RingO
DUARTS, Opcons, and consoles using TTl-TTO. The packet structure is shown in Figure 2-11.8.
Table 2-8.10 describes each offset.

o 15 16 31
1-------------------------+--------------------------1

?CON PKT. 1 1 1 ?CON_PKT.
RBUF_PTR.I Console return type 1 System flags 1 RBUF_PTR.
TYPE 1 1 1 SYS_FLGS

+-------------------------+--------------------------+
?CON PKT. 1

RBUF _PTR. 1 Terminal services line
LIN_NUM 1 number

1

Controller device
code

1 ?CON_PKT.
1 RBUF_PTR.
1 DVC_
1 CODE

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF_PTR.I Terminal services
ENG_NUM I engine number

I
+-------------------------+

Figure 2-11.8. Structure of ?CON_CON_RET_TYPE Return Packet

1

1

1

2-58.12 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

?CONINFO Continued
Table 2-8.10. Contents of ?CON_CON_RET_TYPE Packet

Offset Contents
============================+===

?CON_CON_RET_TYPE = 6 identifies the type
of packet returned (see Table 2-8.7 for a
list of types).

Returns one of the following values:

?CON_PKT.RBUF_PTR.SYS_FLGS.OPCON = 1
if the target console is the system
operator's console.

?CON_PKT.RBUF_PTR.SYS_FLGS.MODEM = 1
if the target console's modern
characteristic is switched on.

The terminal services console line number
in decimal.

The controller device codes, for example

DUART = 34 (octal)
TTI-TTO = 11 (octal)
IAC = 41 (octal)

The terminal services controller engine
number that owns the line (ranges
from 0 to n) .

?CON_TNET_RET_TYPE Return Type = 11

The RingO Telnet connection (TCON) return packet is shown in Figure 2-11.9, and the packet
contents are in Table 2-8.11.

1

o 15 16 31 1

1-------------------------+-------------------------1 1
?CON_PKT. I 1 I ?CON_PKT. 1

RBUF_PTR.I Telnet return type 1 System flags 1 RBUF_PTR.I
TYPE 1 1 1 SYS_FLGS 1

+-------------------------+-------------------------+ 1

?CON_PKT. I I?CON_PKT. I
RBUF_PTR. I Terminal services line Reserved (set to 0) I RBUF_PTR. I
LIN_NUM I number. I TNET_ I

1 1 RSVD 1
+-------------------------+-------------------------+ I

? CON PKT. 1 1 I
RBUF PTR. I Internet protocol (IP) address 1 I

IP_ADD I 1 1
+-------------------------+-------------------------+ 1

?CON PKT. 1 I 1
RBUF PTR. I Internet protocol (IP) port number I I
IP_PORT I 1 I

+-------------------------+-------------------------+ 1

---_1

086-000195 updates
093-000542

Figure 2-11.9. Structure of ?CON _TNET _RET _TYPE Return Packet

Licensed Material- Property 01 Data General Corporation 2-58.13

Table 2-8.11. Contents of ?CON_ TNET _RET _ TYPE Return Packet

1

1 Offset 1 Contents
1============================+===

?CON_PKT.RBUF_PTR.TYPE ?CON_TNET_RET_TYPE = 11 identifies the
type of packet returned
(see Table 2-8.7 for a list of types.)

?CON_PKT.RBUF_PTR.SYS_FLGS Valid only for ?CON_CON_RET_TYPE = 6.
Otherwise zero is returned.

?CON_PKT.RBUF_PTR.LIN_NUM The console terminal services line number
in decimal.

?CON_PKT.RBUF_PTR.IP_ADD The caller's IP address in decimal.
1 (see page NO TAG for a description) . 1

1 1
?CON_PKT.RBUF_PTR.IP_PORT 1 The caller's IP port number in decimal. 1

1 1
__________________________ 1 1

?CON_ITC_MIN_DATA Return Type = 14

AOSNS II returns the ?CON_ITC_MIN_DATA packet for a TermServer console established
through an ITC or an LTC controller using XNS or TCP when no network connection data is
available. The condition can occur when there is no connection on the TermServer line, or when
there is a connection, but the transport created the connection without any ?CONINFO data for the
line. Revision incompatibility between TS software and your TermServer network software can also
produce this condition.

The ?CON_.ITC_MIN_DATA packet structure is shown in Figure 2-11.10. Table 2-8.12 describes
each offset.

o 15 16 31
1-------------------------+--------------------------1

?CON_PKT. 1 1 1 ?CON_PKT.
RBUF _.PTR. 1 ITC minimum data return 1 System flags 1 RBUF _PTR.
TYPE 1 type 1 1 SYS_FLGS

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF_PTR.I Terminal services line
LIN_NUM 1 number

1

Controller device
code

1 ?CON_PKT.
1 RBUF_PTR.
1 DVC_
1 CODE

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF_PTR.I Terminal services
ENG_NUM 1 engine number

I
+-------------------------+

Figure 2-11.10. Structure of ?CON _lTC_MIN _DATA Return Packet

2-58.14 Licensed Material - Property 0/ Data General Corporation
086-000195 updates

093-000542

?CONINFO Continued

Table 2-8.12. Contents of ?CON_ITC_MIN_DATA Packet

1

1 Offset 1 Contents
1============================+===
1

1 ?CON_PKT.RBUF_PTR.TYPE ?CON_ITC_MIN_DATA = 14 identifies the type
of packet returned (see Table 2-8.7 for a
list of types).

1

1

Valid only for ?CON_CON_RET_TYPE = 6.
Otherwise zero is returned.

The console terminal services line number
in decimal.

The device code of the TermServer
controller in octal.

The terminal services controller engine
number that owns the line (ranges
from 0 to n) .

?CON_TSC_MIN_DATA Return Type = 15

AOSNS II returns the ?CON_TSC_MIN_DATA packet for a RingO "soft" controller (TCON) when
there is no connection on the console and no network information available.

The ?CON_TSC_MIN_DATA packet structure is shown in Figure 2-11.11, and Table 2-8.13
describes each offset.

o 15 16 31
1-------------------------+-------------------------1

?CON_PKT. 1 1 1 ?CON_PKT .
RBUF_PTR.I TSC minimum data 1 System flags 1 RBUF_PTR.
TYPE 1 return type 1 1 SYS_FLGS

+-------------------------+-------------------------+
?CON_PKT. 1

RBUF_PTR.I Terminal services line
LIN_NUM 1 number

086-000195 updates
093-000542

1

+-------------------------+

Figure 2-11.11. Structure of?CON_TSC_MIN_DATAReturn Packet

Licensed Material - Property of Data General Corporation 2-58.15

Table 2-8.13. Contents of ?CON_ TSC_MIN_DATA Packet

1

1 Offset 1 Contents 1
1============================+===1
1 1 1
1 ?CON_PKT.RBUF_PTR.TYPE 1 ?CON_TSC_MIN_DATA = 15 identifies the type 1
1 1 of packet returned (see Table 2-8.7 for a 1
1 1 list of types). I

1 1 1

1 ?CON_PKT.RBUF_PTR.SYS_FLGS 1 Valid only for ?CON_CON_RET_TYPE = 6. 1

1 1 Otherwise zero is returned. 1

1 1 1
1 ?CON_PKT.RBUF_PTR.LIN_NUM 1 The console terminal services line number 1

1 1 in decimal. 1

1 1 1

?CON_PVC_RET_TVPE Return Type = 16

AOSNS II returns the ?CON_PVC_RET_TYPE packet for a TermServer connection established
through an ITC or an LTC controller using PVCs over either the XNS or TCP protocols. The packet
contains the controller device code, the number of the TS engine owning the line, and the line
number on the engine that owns the console. The packet also contains a PVC subtype field
describing the format of the data defining the PVC connection address.

The packet's first seven words are common to all PVC packets. The ?CON_PVC_RET_TYPE packet
structure is shown in Figure 2-11.12, and Table 2-8.14 describes each offset.

1

o 15 16 31 I
1-------------------------+-------------------------1 I

?CON_PKT. 1 1 1 ?CON_PKT . 1

RBUF_PTR.I Permanent Virtual 1 System flags 1 RBUF_PTR.I
TYPE 1 Connection return type 1 1 SYS_FLGS 1

+-------------------------+--------------------------+
?CON_PKT. I

RBUF_PTR.I Terminal services line
LIN_NUM 1 number

I

Controller device
code

1 ?CON_PKT.
1 RBUF_PTR.
1 DVC_
1 CODE

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF_PTR.I Terminal services
ENG_NOM 1 engine number

1

Reserved (Set to 0)
1 ?CON_PKT.
I RBUF_PTR.
1 RSVD
1

+-------------------------+--------------------------+
?CON_PKT. 1

RBUF _PTR. 1 PVC sub-type
SUB_TYPE I

2-58.16

+-------------------------+
1

1

1

1

Permanent Virtual Connection data
defined by the sub-type value

+-------------------------+-------------------------"+

Figure 2-11.12. Structure of?CON_PVC_RET_TYPE Return Packet

Licensed Material - Property of Data General Corporation
088-000195 updates

093-000542

Table 2-8.14. Contents of ?CON_PVC_RET_TYPE Packet

1

1 Offset 1 Contents 1
1============================+===1

086-000195 updates
093-000542

?CON_PVC_RET_TYPE = 16 identifies the type
of packet returned (see Table 2-8.7 for a
list of types).

Valid only for ?CON_CON_RET_TYPE = 6.
Otherwise zero is returned.

The console terminal services line number
in decimal.

The device code of the controller.

The terminal services controller engine
number that owns the line (ranges
from 0 ton).

Reserved. (Set to 0)

A value in the subpacket defining one of
seven different types of data returned from
the ITC describing the PVC connection
address.

The values are:

?CON_PVC_NAME = 0
?CON_PVC_NAME_PORT 1
?CON_PVC_IP = 2
?CON_PVC_IP_PORT = 3
?CON_PVC_ETH = 4
?CON_PVC_PORT = 5
?CON_PVC_NET = 6

Licensed Material - Property of Data General Corporation 2-58.17

?CONINFO Continued

?CON_PVC _RET _ TYPE Subpackets

The ?CON_PVC_RET_TYPE packet returns a PVC subtype and its corresponding subpacket.
The first six words of the subpacket are identical to ?CON_PVC_RET_TYPE. The subtypes begin at
Word 7 in each subpacket. In the following sections, the PVC-specific content of the subpackets is
enumerated in PVC subtype order.

The subtypes and their values, are defined in Table 2-8.15.

Table 2-8.15. ?CON_PVC_RET _TYPE Subpacket Types and Definitions

Offset Definitions
=======:=====================+===

I
?CON_PKT.RBUF_PTR.SUB_TYPE I

I
I
I
I
I
I
I

?CON_PVC_NAME = 0 is the host name upon
which the TermServer console connection is
established through an ITC or an LTC
controller using PVCs over either an XNS
or TCP protocol. The connection's host
name is returned.

?CON_PVC_NAME_PORT = 1 is a TermServer
connection established through
an ITC or an LTC controller using PVCs
over an XNS or TCP protocol. The
connection's host name and port are
returned.

?CON_PVC_IP = 2 is a TermServer
connection established through
an ITC or an LTC controller using PVCs
over TCP protocol. The console's IP address
is returned.

?CON_PVC_IP_PORT = 3 is a TermServer
connection established through
an ITC or an LTC controller using PVCs
over TCP protocol. The console's IP address
and port are returned.

?CON_PVC_ETH = 4 is a TermServer
connection established through
an ITC or an LTC controller using PVCs over
XNS protocol. The console's Ethernet
address is returned.

?CON PVC PORT = 5 is a TermServer
con~ection established through
an ITC or an LTC controller using PVCs
over XNS protocol. The console's port
number is returned.

?CON_PVC_NET = 6 is a TermServer
connection established through
an ITC or an LTC controller using PVCs over
XNS protocol. The console's network
address, port number, and Ethernet address
is returned.

2-58.18 Licensed Material- Property 01 Data General Corporation
086-000195 updates

O9:HXJ0542

?CON_PVC_NAME Subtype = 0 - The packet contains the first six words as described in
Figure 2-11.12 on page 2-58.16. The PVC_specific data in the ?CON_PVC_NAME packet structure
are shown in Figure 2-11.13, and Table 2-8.16 describes each offset.

o 15 16 31
1------------------------+--------------------------

?CON_PKT. 1 1 ?CON_PKT.
RBUF_PTR.I PVC sub-type 1 Length of name string RBUF_PTR.

NAME_LEN SUB_TYPE 1 1

+------------------------+--------------------------
?CON_PKT. 1

RBUF_PTR.I
NAME 1

24-byte name field. The ASCII return string is
terminated by a null character

+------------------------+--------------------------+

Figure 2-11.13. Structure of ?CON _PVC _NAME Return Packet

Table 2-8.16. Contents of ?CON_PVC_NAME Subpacket

I
1 Offset I Contents I

1============================+===1

086-000195 updates
093-000542

?CON_PVC_NAME = 0 identifies the type of
PVC data (see Table 2-8.15 for a
list of types.)

The length of the ASCII name string
in ?CON_PKT.RBUF_PTR.NAME in bytes.

The name bound to an XNS or TCP physical
address for the connection. The name is a
null-terminated ASCII string with a
maximum length of 24 bytes.

Licensed Material- Property of Data General Corporation 2-58.19

?CONINFO Continued

?CON_PVC_NAME_PORT Subtype = 1 - The packet contains the first six words as
described in Figure 2-11.12 on page 2-58.16. The PVC-specific data, shown in the
?CON_PVC_NAME_PORT packet structure in Figure 2-11.14. Each offset is described in Table
2-8.17.

o 15 16 31
1------------------------+--------------------------

?CON_PKT. 1 1
RBUF _PTR. 1 PVC sub-type 1 Length of name string
SUB_TYPE 1 1

+------------------------+--------------------------
?CON_PKT. 1

RBUF_PTR. I
NAME 1

24-byte name field. The ASCII return string is
terminated by a null character

+------------------------+--------------------------+
?CON_PKT. 1 1

RBUF _PTR. 1 Port number 1

PORT 1 1
+------------------------+--------------------------1

Figure 2-11.14 Structure of?CON_PVC_NAME_PORT return packet

Table 2-8.17. Contents of ?CON_PVC_NAME_PORT Subpacket

Offset Contents

?CON_PKT.
RBUF_PTR.
NAME_LEN

========:====================+===
1

?CON_PKT.RBUF_PTR.SUB_TYPE 1 ?CON_PVC_NAME_PORT = 1 identifies the type
1 of PVC data (see Table 2-8.15 for a

2-58.20

1 list of types).
1

The length of the ASCII name string
in ?CON_PKT.RBUF_PTR.NAME in bytes.

The name bound to an XNS or TCP physical
address for the connection. The name is a
null terminated ASCII string with a
maximum length of 24 bytes.

The port number on the host supporting
the TCP physical connection.

Licensed Material - Property 01 Data General Corporation
086-000195 updates

093-000542

?CON_PVC_IP Subtype = 2 -- The packet contains the first six words as described in Figure
2-11.12 on page 2-58.16. The PVC-specific data in the ?CON_PVC_IP packet structure are shown
in Figure 2-11.15. Each offset is described in Table 2-8.18.

1

o 15 16 31 1

1------------------------+--------------------------1 1
?CON_PKT. 1 1 1 ?CON_PKT. 1

RBUF_PTR.I PVC sub-type 1 Reserved (set to 0) RBUF_PTR.I
SUB_TYPE 1 1 1 PVC_RSVD 1

+------------------------+--------------------------1 1
?CON_PKT. 1 1 1

RBUF_PTR.I Internet address 1 1

PVC_IP 1 1 1

+------------------------+--------------------------+ 1
1

__ 1

Figure 2-11.15. Structure of ?CON yvc _IP return packet

Table 2-8.18. Contents of ?CON_PVC _IP Subpacket

1

Offset 1 Contents 1

============================+===:1
1 1

?CON_PKT.RBUF_PTR.SUB_TYPE 1 ?CON_PVC_IP = 2 identifies the type 1

1 of PVC data (see Table 2-8.15 for a 1

1 list of types). 1
1 1

?CON_PKT.RBUF_PTR.PVC_RSVD 1 Reserved. Set to O. 1

086-000195 updates
093-000542

The Internet address of the PVC connection.
Returned to the packet in four contiguous
decimal bytes (See Table 2-8.8 for an
explanation) .

1

1

1

1

1

1

------------------------'

Licensed Material- Property of Data General Corporation 2-58.21

?CONINFO Continued

?CON_PVC_IP _PORT Subtype = 3 - The packet contains the first six words as described
in Figure 2-11.12 on page 2-58.16. The PVC_specific data in the ?CON_PVC_IP_PORT packet
structure are shown in Figure 2-11.16. Each offset is described in Table 2-8.19.

o 15 16 31
1------------------------+--------------------------1

?CON_PKT. 1 1 1 ?CON_PKT .
RBUF_PTR.I PVC sub-type 1 Reserved (set to 0) 1 RBUF_PTR.
SUB_TYPE 1 1 1 PVC_RSVD

+------------------------+--------------------------1
?CON_PKT. 1 1

RBUF_PTR.I Internet address 1

PVC_IP 1 1
+------------------------+--------------------------+

?CON_PKT. 1 1
RBUF _PTR. 1 Port number 1

. PVC_PORT 1 1

+------------------------+--------------------------1

Figure 2-11.16 Structure of ?CON _PVC _IP _PORT return packet

Table 2-8.19. Contents of ?CON_PVC_IP _PORT Subpacket

1

Offset 1 Contents 1

============================+===1

2-58.22

?CON_PVC_IP_PORT = 3 identifies the type
of PVC data (see Table 2-8.15 for a
list of types).

Reserved. Set to o.

The Internet address of the PVC connection.
Returned to the packet in four contiguous
hexadecimal bytes (See Table 2-8.8 for an
explanation) .

The Internet port number of the PVC
connection.

Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?CON_PVC _ETH Subtype = 4 -- The packet contains the first six words as described in
Figure 2-11.12 on page 2-58.16. The PVC-specific data in the ?CON_PVC_ETH packet structure
are shown in Figure 2-11.17. Each offset is described in Table 2-8.20.

o 15 16 31
1------------------------+--------------------------

?CON_PKT. 1 1
RBUF_PTR.I PVC sub-type 1 Reserved (set to 0)
SUB_TYPE 1 1

+------------------------+--------------------------
?CON_PKT. 1

RBUF_PTR.I Reserved (set to 0)
RSVDl 1

+------------------------+--------------------------
?CON_PKT. 1

RBUF _PTR. 1 Port number
ETH_PORT 1

+------------------------+--------------------------+

?CON_PKT.
RBUF_PTR.
PVC_RSVD

?CON_PKT. 1 I?CON_PKT.
RBUF_PTR.I Ethernet address 1 RBUF_PTR.
ETH 1 1 ETH.Wl

+
?CON_PKT. 1

RBUF_PTR.I
ETH.W2 1

+--------------------------+
1

1

1

+------------------------+

Figure 2-11.17 Structure of ?CON _PVC _ETH return packet

Table 2-8.20. Contents of ?CON_PVC_ETH Subpacket

1

1 Offset 1 Contents 1

1============================+===1
1 1 1

1 ?CON_PKT.RBUF_PTR.SUB_TYPE 1 ?CON_PVC_ETH = 4 identifies the type 1
1 1 of PVC data (see Table 2-8.15 for a 1
1 1 list of types).
1 1

1 ?CON_PKT.RBUF_PTR.PVC_RSVD 1 Reserved. Set to O.
1 1
1 ?CON_PKT.RBUF_PTR.PVC_RSVDll Reserved. Set to O.
1 I
1 ?CON_PKT.RBUF_PTR.ETH_PORT 1 The Ethernet port number of the PVC
1 I connect ion.
I 1
1 ?CON_PKT.RBUF_PTR.ETH I The Ethernet address of the PVC
1 I connection, returned to the packet in
1 I 12 contiguous hexadecimal digits.
1 I
I 1 _______________________________________ ___

086-<lOO195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-58.23

?CONINFO Continued

?CON_PVC_PORT Subtype = 5 - The packet contains the first six words as described in
Figure 2-11.12 on page 2-58.16. The PVC-specific data in the ?CON_PVC_PORT packet structure
are shown in Figure 2-11.18. Each offset is described in Table 2-8.21.

o 15 16 31
1------------------------+--------------------------1

?CON_PKT. 1 1 1 ?CON_PKT.
RBUF _.PTR. 1 PVC sub-type 1 Reserved (set to 0) 1 RBUF _PTR.
SUB_TYPE 1 1 1 PVC_RSVD

+------------------------+--------------------------1
?CON_PKT. 1 1

RBUF _.PTR. 1 Reserved (set to 0) 1

RSVDl 1 1
+------------------------+--------------------------1

?CON_PKT. 1 1
RBUF _.PTR. 1 Port number 1

NET_PORT 1 1

Offset

+------------------------+--------------------------+

Figure 2-11.18 Structure of ?CON _PVC _PORT return packet

Table 2-8.21. Contents of ?CON_PVC_PORT Subpacket

Contents
============================+===

?CON __ PKT.RBUF_PTR.SUB_TYPE ?CON_PVC_ETH = 4 identifies the type
of PVC data. (See Table 2-8.15 for a
list of types.)

?CON_PKT.RBUF_PTR.NET_PORT The Ethernet port number of the PVC
connection.

2-58.24 Licensed Material- Property of Data General Corporation
086-000 195 updates

093-000542

?CON_PVC _NET Subtype = 6 - The packet contains the first six words as described in
Figure 2-11.12 on page 2-58.16. The PVC-specific data in the ?CON_PVC_NET packet structure
are shown in Figure 2-11.19. Each offset is described in Table 2-8.22.

o 15 16 31
1------------------------+--------------------------

I
I
I

?CON_PKT. I I
RBUF_PTR.I PVC sub-type 1 Reserved (set to 0)
SUB_TYPE I I

+------------------------+--------------------------
?CON_PKT. I

RBUF _PTR. I Network address
NET 1

?CON_PKT. I
RBUF_PTR. I
PVC_RSVD I

1

1

1

1
+------------------------+--------------------------

?CON_PKT. 1

RBUF _PTR. I Port number
NET_PORT 1

+------------------------+--------------------------+
?CON_PKT. 1 I?CON_PKT.

RBUF_PTR. I Ethernet address 1 RBUF_PTR .
. ETH I 1 .ETH.Wl

+
?CON_PKT. I

RBUF_PTR.I
.ETH.W2 1

+--------------------------+
1

1

1

+------------------------+

Figure 2-11.19 Structure of ?CON _PVC _NET return packet

Table 2-8.22. Contents of ?CON_PVC_NET Subpacket

I
I Offset 1 Contents I
1============================+===1

086-000195 updates
093-000542

?CON_PVC_NET = 6 identifies the type
of PVC data (see Table 2-8.15 for a
list of types) .

Reserved. Set to o.

The Network address of the PVC connection.
Returned to the packet in 8 contiguous
hexadecimal digits.

The Ethernet port number of the PVC
connection.

The Ethernet address of the PVC
connection, returned to the packet in
12 contiguous hexadecimal digits.

Licensed Material- Property 0/ Data General Corporation 2-58.25

I

?CPMAX Sets maximum size for a control point directory (CPO).

?CPMAX [packet address]
error return
nonnal return

Input Output
ACO One of the following:

• Byte pointer to the CPD's
pathname

• 0 if a packet address is supplied

ACI One of the following:

• CPD's new maximum space (MS)
value if not supplying a packet

• Unused if supplying a packet

AC2 One of the following:

• Reserved (Set to 0 if not
supplying a packet.)

• Address of the ?CPMAX packet,
unless you specify the address as
an argument to ?CPMAX

Error Codes in ACO
ERCPD CPD maximum size exceeded

ACO Unchanged

ACI Unchanged

AC2 Unchanged

ERIFT Illegal file type (The target is not a CPD or is the root.)
ERVBP Invalid byte pointer passed as a system call argument
ERWAD Write access denied
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the file system is force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II file with ?ODTL value supplied in ?GOPEN packet

Why Use It?
?CPMAX lets you restrict the space that is assigned to a CPD and its subordinate directories to a
predefined limit. This is useful for managing and/or conserving your system's disk space.

Who Can Use It?
There are no special process privileges needed to issue this call. The calling process must have
Write access to the target CPD.

What It Does
?CPMAX changes the maximum space (MS) value of the target CPD. The target CPD can be
specified in one of two ways: either by a byte pointer to the CPD's pathname in ACO, or by using

2-58.26 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

offset ?CPMCN in the ?CPMAX packet. The use of a packet is only necessary if you choose to
specify the target CPD's channel number. ACO must be set to zero to indicate the use of a packet.

If a packet is not being used, then AC 1 contains the CPD's new maximum space value. If a packet
is being used, offsets ?CPMHS and ?CPMLS must be used to indicate the new MS value and AC 1 is
unused.

A CPD's MS value defines the maximum number of disk blocks available to the CPD and all of its
subordinate files, except for files that are part of a subordinate logical disk (LD).

You cannot set a CPD's MS value so that its current space value (the number of blocks currently
allocated) would exceed the MS value of a superior control point directory, because ?CPMAX will
fail on error ERCPD.

Figure 2-12 shows the structure of the ?CPMAX packet.

o 15 16 31
1----------------------+---------------------1

?CPMFW 1 Reserved (Set to 0.) 1 Channel number 1 ?CPMCN
1----------------------+---------------------1

?CPMHS 1 Maximum number of disk blocks 1 ?CPMLS
1--1
?CPMLT = packet length

Figure 2-12. Structure of ?CPMAX packet

093-000542 Licensed Material - Property of Data General Corporation 2-59

?CREATE Creates a file or directory.

?CREATE [packet address]
error return
normal return

Input

ACO Byte pointer to a path name
for the new file

ACl Reserved (Set to 0.)

AC2 Address of the ?CREATE
packet, unless you specify
the address as an argument
to ?CREATE

Error Codes in ACO

Illegal file type

Output

ACO Unchanged

ACl Undefined

AC2 Address of the ?CREATE
packet

ERIFT
ERIVP
ERLVL
ERMPR
ERNAE
ERVBP
ERWAD
ERWBP

Invalid port number specified
Maximum directory tree depth exceeded
System call parameter address error
Filename already exists
Invalid byte pointer passed as a system call argument
Write access denied
Invalid word pointer passed as a system call argument

Why Use It?

?CREATE: lets you create a file or directory for I/O. (As an alternative, you can create and open a
file simultaneously by selecting the creation option in the ?OPEN packet.) ?CREATE is also useful
for creating files to serve as ports for IPC messages.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Execute access and
either Write or Append access to the target file's directory.

What It Does

You can use ?CREATE to create files of nearly any type, except those that represent certain
peripheral devices. (See Table 2-9 for a complete list of the types of files that you can create with
?CREAT}t~.)

To create a file for the peripheral directory (:PER), the ?CREATE caller must have Write access to
the peripheral directory. Otherwise, ?CREATE takes the normal return, but has no effect.

2-60 Licensed Material - Property of Data General Corporation 093-000542

Table 2-9. Valid ?CREATE File Types

1

1 Type Meaning Comments
1======= ====================== ====================================
1 ?FUDF User Data File Usually applies to object files.
1

?FTXT Text File Should contain ASCII text.

?FPRG AOS Program File Program file for use under AOS
(16-bit code) .

?FUNX MV/UX File File for use under MV/UX.

?FPRV AOS/VS Program File Program file for use under AOS/VS
(32- or 16-bit code).

?FDIR Disk Directory None.

?FCPD Control Point None.
Directory

?FLNK Link File None.

?FSTF Symbol Table File Produced by the Link utility and
used primarily by the OS.

?FUPF User Profile File Used by PREDITOR (user profile
editor) and EXEC.

?FSDF System Data File You cannot specify record format
types (left byte of offset ?CFTYP)
for system data files.

?FIPC IPC Port Entry IPC file.

?FGLT Generic Labeled Tape None.

?FSPR Spoolable Peripheral None.
Directory

?FQUE Queue Entry None.

?FNCC
?FLCC FORTRAN Carriage None.
?FFCC Control
?FOCC

?FPIP Pipe File The element size must be a
mUltiple of 4.

Before you issue ?CREATE, you must set up the ?CREATE packet in your address space. You can
load the packet address into AC2 before you issue ?CREATE, or you can cite the packet address as
an argument to ?CREATE. You must define a pathname for the file, and load ACO with a byte
pointer to that pathname.

To create a link entry with ?CREATE, specify the link name as the last entry in the pathname.
Also, place a byte pointer to the link resolution pathname in offset ?CACP of the packet. When you
create a link, the operating system does not resolve the pathname associated with the link.
Therefore, if the pathname does not exist or if it contains illegal characters, you will not get an
error.

Q93....()()()542 Licensed Material - Property of Data General Corporation 2-61

?CREATE Continued

The ?CREATE packet varies, depending on whether you are creating an IPC file, a directory, or one
of the other valid file types. Figure 2-13, Figure 2-15, and Figure 2-16 show the structures of the
three ?CREATE packets.

I PC Entry Packet

You can create an IPC file only in the ?CREATE caller's initial working directory. When a process
terminates, the operating system deletes all of its IPC files. Figure 2-13 shows thE! ?CREATE
packet for creating an IPC file and Table 2-10 describes its contents.

o 7 8 15 16 31
1------------+------------+--------------------------1

?CFTYPI 111111111111 File type I Local port number I ?CPOR
1------------+------------+--------------------------1

?CTIM I Word pointer to the time-block address I
1--1

?CACP I Byte pointer to the file's access control list I
1--1

?CLTH = packet length

Figure 2-13. Structure of ?CREATE [PC Packet

NOTE: You can protect an IPC file by denying other users access to it. To do this, create the file
either in your working directory or in one of its subdirectories. This means that other
users do not have Execute access to the directory (unless you explicitly give it to them).
Without Execute access to the directory, other users cannot issue ?OPEN or ?ILKUP calls
against the IPC file.

2-62 Licensed Material - Property 01 Data General Corporation 093-000542

Table 2-10. Contents of ?CREATE IPC Packet*

1 1
1 Offset Contents 1

1=============== ===1
1 ?CFTYP
1

1

1

1 ?CPOR
1

1

1

1

1 ?CTIM

Set the right byte of offset ?CFTYP to the file 1

type for an IPC file. The valid file types are
?FGLT, ?FIPC, ?FQUE, and ?FSPR.

Local port number for IPC file in range from 1
through ?MXLPN. (The ring from which ?CREATE is
issued determines the ring number that is
associated with the public port.)

1 (doubleword)
1

Address of new file's time block, if present.
(See Figure 2-14 for the structure of the ?CREATE
time block.)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

You must express the time-block values as
double-precision integers where the high-order
portion states the duration (in days) from 31
December 1967 to the date the file was created,
accessed, or modified. The low-order portion
states the time the file was created, accessed,
or modified. You express the time value as the
number of biseconds (half the number of seconds)
since midnight. The time value must be less than
43,200 (decimal).

DEFAULT = -1 (Set all values to current date and
time) .

1 ?CACP New file's access control list (ACL) , which you
specify elsewhere in your program. If you set
?CACP to 0, the new file will have no ACL. Use
the ACL format shown in ?DACL.

1 (doubleword)
1

1

1

1 DEFAULT = -1 (give new file caller's default ACL) .
1 __ ___

* There is no default unless otherwise specified.

o 15 16 31
1---1

?TCTH 1 Time file was created 1

1--1
?TATH I Time file was last accessed 1

1---1
?TMTH 1 Time file was last modified 1

1--1
?TBLT = packet length

Figure 2-14. Structure of' ?CREATE Time Block

093-000542 Licensed Material- Property of Data General Corporation 2-63

?CREATE Continued

Access Control Specifications

Within all three packet types, offset ?CACP points to the new file's access control list (ACL), which
you must specify elsewhere in your program. If you set this parameter to -1 (the default value), the
new file will have the ?CREATE caller's default ACL. If you set ?CACP to 0, the new file will have
no ACL. If you specify an ACL, use the format shown in the description of ?DACL.

Directory Packet

Figure 2-15 shows the ?CREATE packet for creating a directory and Table 2-11 describes its
contents. As in the other ?CREATE packets, the right byte of offset ?CFTYP specifi(~s the new
directory's file type: either ?FDIR, for a standard directory, or ?FCPD, for a control point directory.

Offsets ?CTIM and ?CACP point to the addresses of the directory's time block and ACL,
respectively. The standard default for ?CTIM is -1, which sets an values in the tim(~ block to the
current tinle. (See Figure 2-14 for the structure of the time block. Also, see "Access Control
Specifications," for a description of ?CACP.)

o 7 8 15 16 31
------------+------------+-------------------------1

?CFTYP Record 1 File type 1 Directory hashframe 1 ?CHFS
format 1 1 size 1

------------+------------+-------------------------1
?CTIM Word pointer to the time-block address 1

---1
?CACP Byte pointer to the file's access control list 1

---1
?CMSH MS value (for control point directories only) 1

-------------------------+-------------------------1
?CMIL Maximum number of index 1 Reserved (Set to 0.) 1 ?CMRS

levels 1 1

-------------------------+-------------------------1
?CLTH = packet length

Figure 2-15. Structure of ?CREATE Directory Packet

If you are creating a control point directory (CPD), set offset ?CMSH to the maximum space value
(MS) for thf~ directory. The MS value is the maximum number of disk blocks available to the CPD
and all its subordinate files, excluding files in a subordinate logical disk. (To changH a CPD's MS
value, use the ?CPMAX system call.)

The operating system always creates a value of 3 for the maximum number of index levels in any
new directory file that it creates. The default value of -1 for ?CMIL, like all values, results in this
maximum number.

If you set offset ?CMIL to ° (no index levels), the operating system builds the directory
contiguously. If you set ?CMIL to -1 (the default value) or to a value outside the legal range, the
operating system creates as many index levels as necessary, to a maximum of three levels.

If you set offset ?CHFS to -1 or 0, AOSNS assigns the default length hashframe size to the
directory. For AOSNS II, the operating system determines the hashframe size and ignores offset
?CHFS.

2-64 licensed Material - Property of Data General Corporation 093-000542

093-000542

Table 2-11. Contents of ?CREATE Directory Packet*

Offset Contents
=============== ===

?CFTYP

?CHFS

?CTIM
(doubleword)

?CACP
(doubleword)

?CMSH
(doubleword)

?CMIL

?CMRS

(Right byte.) File type of new directory: ?FDIR
(for a standard directory) or ?FCPD (for a
control point directory).

Directory hashframe size.

DEFAULT -1 (Set hashframe size to 7.)

Address of new file's time block, if present.
(See Figure 2-14 for the structure of the ?CREATE
time block.)

DEFAULT = -1 (Set all values to current date and
time) .

New directory's access control list (ACL) , which
you specify elsewhere in your program. If you
set ?CACP to 0, the file will have no ACL.

DEFAULT = -1 (give new file caller's default ACL).

(Control point directories only. Set to 0 for
file type ?FDIR.) Maximum space value of new
directory.

Maximum number of index levels for new directory.
The operating system always creates directories
with a maximum of 3 index levels.

DEFAULT = -1 (set maximum number of index levels
to 3) .

Reserved (Set to 0.)

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 2-65

?CREATE Continued

Other File Types Packet

Figure 2-16 shows the structure of the packet for the remaining file types, and Table 2-12
describes its contents.

o 7 8 15 16 31
------------+------------+--------------------------

?CFTYP Record type I File type File control ?CCPS
I parameters

------------+------------+--------------------------
?CTIM Word pointer to the time-block address

?CACP Byte pointer (see Table 2-11).
-------------------------+--------------------------

?CDEH Reserved (Set to 0.) I File element size ?CDEL
-------------------------+--------------------------

?CMIL Maximum number of index I Reserved (Set to 0.) ?CMRS
levels I

-------------------------+--------------------------
?CLTH = packet length

Figure 2-16. Structure of ?CREATE Packet for Other File Types

In this packet, offset ?CFTYP contains two significant parameters: record format and file type. You
can specify any valid file type, except the following:

• ?FGLT, ?FIPC, ?FQUE, or ?FSPR (use the ?CREATE IPC packet).

• ?FDIR or ?FCPD (use the ?CREATE directory packet).

• Any file type that is restricted from user creation.

You can set the record format field to anyone of the following masks:

?ORDS
?ORDY
?ORFX
?ORVR

data-sensitive
dynamic
fixed-length
variable-length

To place a value in the left byte of offset ?CFTYP, multiply it by 400 octal = 256 decimal. For
example, suppose you want to create a user data file with dynamic records. Here's part of a
parameter packet that shows one way to do this.

PKT:

2-66

.LOC

. WORD

PKT+?CFTYP
(?ORDY*400)+?FUDF

Licensed Material - Property of Data General Corporation 093--000542

Table 2-12. Contents of ?CREATE Packet for Other File Types*

1

1 Offset 1 Contents 1
1===============1===1
1 ?CFTYP 1 (Left byte: record type.) This can be anyone of 1
lithe following masks: ?ORDY (dynamic); ?ORDS 1

1 1 (data-sensitive); ?ORFX (fixed-length); or ?ORVR 1
1 1 (variable-length). 1
1 1 1
1 1 (Right byte: file type.) This can be any file 1
1 1 type except ?FCPD, ?FDIR, ?FGLT, ?FIPC, ?FQUE, or 1
1 1 ?FSPR. I

1 1 1
1 ?CCPS 1 (Fixed-length records only; otherwise ignored.) 1
1 I Maximum record length of new file. See the 1

1 1 description of offset ?SCPS in the explanation of 1
1 1 system call ?FSTAT. 1
1 1 1
1 ?CTIM 1 Address of new file's time block, if present. 1
1 (doubleword) 1 (See Figure 2-14 for the structure of the ?CREATE 1
1 1 time block.) 1
1 I
I DEFAULT = -1 (set all values to current date and I
I time). I
I
1 ?CACP
1 (doubleword)
1

1

I
1

I
I
1

1

I
1 ?CDEH
1

I ?CDEL
1

1

I
1

1

1 ?CMIL
I
1

1

I
1 ______________ _

One of the following:

Byte pointer to new file's access control list
(ACL) . (If you set ?CACP to 0, the new file
will have no ACL.)

Byte pointer to link resolution pathname if
you are creating a link.

DEFAULT = -1 (give new file caller's default ACL) .

Reserved (Set to 0.)

Number of disk blocks per element for new file
in the range from -1 through 65534.

DEFAULT = -1 (set to element size selected during
the system-generation procedure) .

Maximum number of index levels for new directory
in the range from ° through 3.

DEFAULT = -1 (set maximum number of index levels
to 3) .

* There is no default unless otherwise specified.

If you do not specify the record format, you must specify it when you open, read, or write the file.

Offset ?CCPS, the file control parameter, applies only to entries with fixed-length records. Offset
?CCPS must equal the new file's maximum record length. The operating system ignores ?CCPS if
the record format is not fixed length.

Offset ?CTIM points to the address of the directory's time block. The standard default for ?CTIM is
-1, which sets all values in the time block to the current time. (See Figure 2-16 for the structure of
the time block.)

093-000542 Licensed Material - Property 01 Data General Corporation 2 .. 67

?CREATE Continued
Offset ?CACP either points to the directory's ACL or it points to the resolution pathname of a link.
(See "Access Control Specifications," in this description for more information on using offset ?CACP
as a byte pointer to the ACL.)

Set offset ?CDEL to the new file's file-element size; that is, the number of disk blocks per file
element. If you set this parameter to -1, the operating system assigns the default file-element size.
(The default file-element size was specified during the system-generation procedure.)

AOSNS rounds the file-element size you specify to the next multiple of the default file-element
size. If the rounded file-element size is larger than 65534, the operating system assigns the file a
file-element size of 65534. For example, if the system default file-element size is 4 and you specify
65533, the operating system assigns the size 65534. AOSNS II does not round the element size.

If you set ?CMIL to 0 (no index levels), the operating system builds the directory contiguously. If
you set ?CMIL to -1 (the default value) or to a value outside the legal range, the operating system
creates as many index levels as necessary, to a maximum of three levels.

You can use ?CREATE to create a pipe file whose default size is 4096 bytes (2 pages), in which case
offsets ?CF'ryp, ?CCPS, and ?CDEL are ignored. However, ?OPEN offers you control over a pipe
file's length (specify up to 20 pages in offset ?IMRS) and pending behavior. Only ?OPEN lets you
use the pipe extension packet. Details appear under ?OPEN.

Sample Packet
The fol1owing sample packet shows creating an IPC file:

PKT:

Notes

.BLK

.LOC

. WORD

.LOC

. WORD

.LOC

. D'V'lORD

.LOC

.D'V'JORD

.LOC

?CLTH

PKT+?CFTYP

?FIPC

PKT+?CPOR

5

PKT+?CTIM

-1

PKT+?CACP

-1

PKT+?CLTH

;Allocate enough space for packet

; (packet length = ?CLTH).

;File type for IPC file.

;Standard IPC file. (There is no

;default for ?CFTYP.)

;Local port number.

;Local port number is 5.

;Address of time block.

;No time block exists, so set all
;values in time block to current time

; (default = -1).

;Byte pointer to file's ACL.
;Give the new file the same ACL as

;the caller.

;End of ?CREATE IPC packet.

• See the description of ?OPEN in this chapter for information on the creation option.

• See the descriptions of?OPEN, ?READ, and ?WRITE in this chapter for information on the
structure of their packets.

• AOSNS II assigns the fol1owing ?XCREATE file structure parameters to a file (or directory)
that you create with ?CREATE:

Secondary Data Element Size = (Primary) Data Element Size.

2-68 Licensed Material - Property of Data General Corporation 093-000542

Number of Primary Elements = 1.

Index Element Size = 1.

• AOSNS II assigns the following additional file structure parameters to a directory that you
create with ?CREATE:

Primary Data Element Size = 1.

Maximum Index Level = Currently defined by the system at 3.

• For AOSNS II, see the description of the ?XCREATE and ?XFSTAT system calls for the
additional file structuring parameters that the ?XCREATE system call sets and the ?XFSTAT
call displays.

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2~9

I

?CRUDA Creates a user data area (UDA).

?CRUDA [packet address]
error return
normal return

Input Output
ACO One of the following:

• Byte pointer to the
pathname of the target

• 0 if a packet address
is supplied

ACI Reserved (Set to 0.)

AC2 One of the following:

• Reserved (Set to 0 if
not supplying a packet.)

• Address of the ?CRUDA
packet, unless you specify
the address as an argument
to ?CRUDA

Error Codes in ACO
ERFAD File access denied
ERIFT Illegal flie type
ERNRD Insufficient room in directory
ERUAE User data area already exists

ACO Unchanged

file

ACI Unchanged

AC2 Undefined or
address of ?CRUDA packet

ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid word pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_INVALID_PATHNAME_BYTE_PTR

Invalid byte pointer to pathname
ER_FS_ TLA_MODIFY_ VIOLATION

Attempt to modify an AOSNS II flie with ?ODTL value supplied in ?GOPEN packet

Why Use It?
You can use UDA data to tailor a file's output specifications, provided the inL:::!ded output device is
a data channel line printer that is controlled by the EXEC utility. If there is no UDA defined for a
file, the operating system uses the default EXEC format specifications.

Who Can Use It?
There are no special process privileges needed to issue this call. If you specified the file with a
channel number, you must have Write or Owner access to the target file. If, on the other hand, you
specified the file with a pathname, you must also have Execute access to the parent directory.

2-70 Licensed Material- Property of Data General Corporation
08&-000195 updates

093-000542

What It Does

A User Data Area (UDA) is often used to store a file's format descriptions, although you can use it
for any other purpose. The ?CRUDA system call creates a 128-word UDA for the target file that
you specify. The target file can be specified in one of two ways: either by a byte pointer to the file's
path name in ACO, or by using offset ?GCPCN in the ?CRUDA packet. The use of the packet is only
necessary if you choose to specify the target file's channel number. ACO must be set to zero to
indicate the use of a packet.

Once you create a UDA with ?CRUDA, you can write to it with ?WRUDA and read from it with
?RDUDA. The UDA exists until you delete the target file. The operating system clears a UDA when
it creates one.

Figure 2-17 shows the structure of the ?CRUDA packet.

o 15 16 31
1-------------------------+-------------------------1

?GCPFW 1 Reserved (Set to 0.) I Channel number 1 ?GCPCN
1-------------------------+-------------------------1

?GCPLT = packet length

Figure 2-17. Structure of ?CRUDA Packet

Notes

• See the descriptions of ?RDUDA and ?WRUDA in this chapter.

093-000542 Licensed Material- Property of Data General Corporation 2-71

?CTERM Terminates a customer process.

?CTERM
error return
normal return

Input

ACO PI]) of the customer to
terminate or a byte pointer
to that customer's process
name

AC 1 If ACO contains a byte
pointer, -1

AC2 Reserved (Set to 0.)

Error Codes in ACO

Connection broken
Connection doesn't exist

Output

Unchanged

Unchanged

Unchanged

ERCBK
ERCDE
ERPRH
ERPNM
ERPRV
ERVBP

Attempt to access process not in the hierarchy
Illegal process name
Caller not privileged for this action
Invalid byte pointer passed a system call argument

Why Use It?

?CTERM is one of six system calls that cause a disconnection. (The others are ?BRKFL, ?DRCON,
?RESIGN, ?RETURN, and ?TERM.) Although ?CTERM breaks the customer/server connection, it
does not clear the customer/server entry from the connection table. Both processes must disconnect
for this to occur. After the customer process is disconnected, the operating system terminates it.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access. However, the calling process must be a server of the customer process that
you specify.

2-72 Licensed Material - Property of Data General Corporation 093-000542

What It Does

?CTERM terminates the customer process that you specify in ACO, and breaks all its connections
with servers.

When a server issues ?CTERM, the operating system returns an obituary message from the global
IPC port ?SPTM. The obituary message notifies the server of the customer's demise.

To receive the obituary message, the server must issue a global ?IREC against port ?SPTM. The
operating system passes the obituary message (termination code ?TBCX) to OifSBt ?IUFL in the
server's ?IREC header. (If the server is the customer's father, it must issue two ?IREC system calls:
one for the obituary message, and one for the termination code.)

Notes

• See the description of ?IREC in this chapter.

• See the descriptions of?BRKFL, ?CON, ?DCON, ?RESIGN, ?RETURN, and ?TERM (the
disconnect system calls) in this chapter.

093-000542 licensed Material - Property of Data General Corporation 2-73

?CTOD Converts a scalar time value.

?CTOD
error return
normal retu rn

Input

ACO Scalar time you want to
convert expressed as the
number ofbiseconds
(secondsl2) since midnight
in Bits 16 through 31

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Seconds from 0 through 59

AC 1 Minutes from 0 through 59

AC2 Hour from 0 (midnight)
through 23 (11 p.m.). (The
result is expressed in
octal.)

The system clock maintains the current time in the standard hours, minutes, and sc~conds, where
the value for the current hour can range from 0 (midnight) through 23 (11 p.m.). Both the ?FSTAT
packet and the ?CREATE time block express the time in scalar notation. Thus, you can use ?CTOD
to convert the values returned by ?FSTAT or ?CREATE.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?CTOD converts a scalar time value, specified in ACO, to its equivalent in hours, minutes, and
seconds. The scalar value for a particular time is the number ofbiseconds (half the number of
seconds) that have elapsed since midnight.

2-74 Licensed Material - Property of Data General Corporation 093--000542

?CTYPE Changes a process type.

?CTYPE
error return
normal return

Input Output

ACO One of the following: ACO Unchanged

AC1

AC2

• Byte pointer to the name of
the target process

• PID of the target process

• -1 to change the process type
of the calling process

One of the following:

• -1 if ACO contains a byte
pointer

• o if ACO contains a PID

AC1 is ignored if ACO contains-1

New process type. The
process type parameters are:

• 0 for swappable processes

• ?PFRP for pre-emptible
processes

• ?PFRS for resident processes

AC1 Unchanged

AC2 Unchanged

Error Codes in ACO

System call parameter address error
Illegal process name format
Attempt to access a process not in hierarchy
Illegal process priority
Illegal process type
Invalid byte pointer passed as a system call argument

ERMPR
ERPNM
ERPRH
ERPRP
ERPTY
ERVBP
ERWSF Working set not swappable (The working set has too many wired pages and, therefore,

this process cannot become nonresident.)

Why Use It?

?CTYPE lets you change a process's type during program execution, thereby possibly changing the
process's priority for a system resource. You can use ?CTYPE to favor the target process or to favor
another process over the target process.

093-000542 Licensed Material - Property of Data General Corporation 2-75

?CTYPE Continued

Who Can Use It?

To issue ?CTYPE, the calling process must have privilege ?PVTY assigned in its ?PROC packet.
The calling process can use ?CTYPE to change the type of any subordinate process. However, if the
calling proeess is in Superprocess mode, it can change the type of any process. There are no
restrictions concerning file access.

What It Does

?CTYPE changes the process type of the process that you specify in ACO (the calling process itself,
one of its sons, or any other process).

NOTE: Wben a I6-bit process becomes resident, the operating system implicitly wires its Ring 7
pages, and then unwires them if the process changes to another process type.

Notes

• See the descriptions of ?PROC and ?WIRE in this chapter.

2-76 licensed Material - Property of Data General Corporation 093-000542

?DACL Sets, clears, or examines a default access control list.

?DACL
error return
normal return

Input Output

ACO One of the following: ACO The default ACL mode (onor om, if
ACO = 0 on input; otherwise, unchanged

• -1 to set a new default
ACL to the string that
the byte pointer in AC1
specifies

• o to return the current default
ACL string, and the status
(DEF ACL ON or OFF)
inACO

• 1 to turn off the default ACL
mode

AC1 Byte pointer to a 128-word AC1 Unchanged
buffer if ACO contains -1; if
ACO = 0, then AC1 contains a
byte pointer to a 128-word
receive buffer

AC2 Reserved (Set to 0.) AC2 Undefined

Error Codes in ACO

ERACL Illegal ACL
ERPRE Invalid system call parameter
ERVBP Invalid byte pointer passed as a system call argument
ER_FS_INV ALID _DEF ACL_ OPTION

Invalid ?DACL option specified

Why Use It?

You can use ?DACL to assign your process and one or more other processes (which you specify by
their usernames) access to all files that your process will create. A default ACL that you define this
way is valid until the ?DACL caller terminates or issues another ?DACL to redefine the default
ACL.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

093-000542 Licensed Material - Property of Data General Corporation 2-77

?DACL Continued

What It Does

Depending on the input value of ACO, ?DACL lets you define a default ACL for the duration of the
calling pro(~ess, clear the default ACL, or obtain the current default ACL. To supply an ACL string,
use the following format:

username<O>accesstype[".]<0>

where

accesstype is one of the following:

?FACA
?FACE
?FACR
?FACW
?FACO

Append access
Execute access
Read access
Write access
Owner access

Two examples of supplied ACL strings are

JEFF<O><?FACO+ ?FACW+ ?FACA+ ?FACR+ ?FACE><O>

and

JEFF<O><?FACO+ ?FACW+ ?FACA+ ?FACR+ ?FACE>LlSA<O><?FACR+ ?FACE><O>

If you do not supply an ACL string, the operating system sets the default ACL to full access for the
calling process and all processes that have the calling process's username:

calier's_username<O><?FACO+ ?FACW+ ?FACA+ ?FACR+ ?FACE><O>

To examine the current ACL, load ACO with 0. The operating system then returns the current
default ACL to the buffer you specify in AC 1.

Note that the default ACL keys on specific usernames, that is, any usernames that the calling
process cites in the ACL string, rather than keying on specific filenames.

2-78 Licensed Material - Property of Data General Corporation 093-000542

?DADID Gets the PID of a process's father.

?DADID
error return
normal return

Input

ACO One of the following:

• PID of the target process

• -1 to obtain the PID of the
caller's father process

AC1 Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

AC1 PID of the target process's father

AC2 Undefined

ERPRH
ERPOR

Attempt to access process not in hierarchy
PID is out of range for this process

Why Use It?

A number of system calls require a PID as an input parameter. ?DADID provides you with a simple
way to identify a PID, which you can then use as an input parameter for another system call.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DADID returns the PID of a target process's father. The target process, which you specify in ACO,
can be either the caller or some other process in the process tree.

093-{)()()542 Licensed Material - Property of Data General Corporation 2-79

?DCON Breaks a connection (disconnects) in Ring 7.

?DCON
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 PID of the target process
in the connection

AC2 Reserved (Set to 0.)

Error Codes in ACO

Connection has been broken

Output

ACO Undefined

AC 1 Unchanged

AC2 Undefined

ERCBK
ERCDE Connection doesn't exist (Two likely errors: the target process does not exist; or the

target process is not connected with the caller.)

Why Use It?

?DCON breaks the Ring 7 connection from either the caller's or the server's end. (To break a
connection to a specific ring other than Ring 7, use ?DRCON.)

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DCON breaks the Ring 7 connection between the calling process and the process (customer or
server) that you specify in ACI. Both servers and customers can issue ?DCON.

Note that a single ?DCON does not clear the customer/server connection from the connection table.
For this to occur, both processes must break the connection. Ifboth processes do not break the
connection, the operating system reserves the PID number and does not reuse it until the
connection is cleared.

Notes

• See the description of ?CON (the connection system call) and the descriptions of ?BRKFL,
?CTERM, ?DRCON, ?RESIGN, ?RETURN, and ?TERM (which disconnect processes) in this
chapter. System calls ?BRKFL, ?CTERM, ?RETURN, and ?TERM are also termination calls.

• ?DCON is provided primarily to provide compatibility with 16-bit programs converted from
AOS. ?DRCON is the preferred system call.

2-80 Licensed Material - Property of Data General Corporation 093--000542

?DDIS Disables access to all devices.

?DDIS
error return
normal return

Input

None

Error Codes in ACO

Output

None

ERPRV Caller not privileged for this action

Why Use It?

?DDIS is the opposite of ?DEBL, which enables access to all user-defined and system-defined
devices. You can issue ?DDIS to disable device access after completing a task 1/0 routine that
began with ?DEBL.

Who Can Use It?

The calling process must have privilege ?PVDV to issue this call. There are no restrictions
concerning file access.

What It Does

?DDIS disables a process's access to all system and user devices.

?DDIS does not re-enable LEF mode. Therefore, to re-enable LEF mode, you must issue ?LEFE
(enable LEF mode).

To re-enable device 1/0 after a ?DDIS, issue ?DEBL.

?DDIS affects only the segment that issued the call.

?DDIS turns off the "issue I/O instructions" privilege for a segment. See the ECLIPSE®
MY / Family (32-Bit) Systems Principles of Operation manual.

093-000542 Licensed Material - Property of Data General Corporation 2-81

?DEASSIGN Cancels a character device.

?DEASSIGN
error retu rn
normal return

Input

ACO Byte pointer to the name of
the device that you want to
deassign

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

AC 1 Undefined

AC2 Undefined

ERARC
ERARU
ERIDT
ERVBP

Attempt to release terminal device
Attempt to release an unassigned device
Illegal device name type
Invalid byte pointer passed as a system call argument

Why Use It?

If you used. ?ASSIGN to assign a character device to a process, you must use ?DEASSIGN to cancel
the assignlnent. The operating system also allows implicit device assignments and cancellations
with ?OPEN and ?CLOSE.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no rE!strictions
concerning file access.

What It Does

?DEASSIGN breaks the explicit assignment you established between your process and a device
with ?ASSIGN. Note that you cannot use ?DEASSIGN to break the explicit assignent if the
process's console file is your process's console file or if you have opened the console file.

Notes

• See the description of?ASSIGN in this chapter.

• See the descriptions of ?OPEN and ?CLOSE in this chapter for information on implicit device
assignments and cancellations.

2-82 Licensed Material - Property of Data General Corporation 093--000542

?DEBL Enables access to all devices.

?DEBL
error retu rn
normal return

Input

None

Error Codes in ACO

Output

None

ERPRV Caller not privileged for this action

Why Use It?

You would probably issue ?DEBL before entering a task-level I/O sequence. ?DEBL gives the
calling process global access to all devices, including system-defined devices.

Who Can Use It?

The calling process must have privilege ?PVDV to issue this call. There are no restrictions
concerning file access.

What It Does

?DEBL turns off I/O protection and disables LEF mode. This allows a program to issue instructions
to any I/O device without operating system intervention.

Because ?DEBL turns off I/O protection and disables LEF mode, tasks within the calling process
can successfully issue I/O instructions against devices.

After the operating system executes ?DEBL, it interprets all subsequent LEF instructions as I/O
instructions, until you issue ?LEFE to restore LEF mode.

?DEBL affects only the segment that issued the call.

093-000542 Licensed Material - Property of Data General Corporation 2-83

?DEBUG Calls the Debugger utility.

?DEBUG
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

None

If you pass control to the user debugger directly from a program, you can examine memory
locations and/or execution paths while the program runs. (Another way to call the Debugger utility
is to choose the ?PFDB option in offset ?PFLG of the ?PROC packet.)

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DEBUG passes control to the operating system's Debugger utility while your program is
executing. To return control to the program (that is, to the ?DEBUG normal return), issue the
Debugger (~ommand $P (ESC P).

Notes

• See the description of?PROC in this chapter.

2-84 Licensed Material - Property of Data General Corporation 093-000542

?DELAY Suspends a 16-bit task for a specified interval
(16-bit processes only).

?DELAY
error return
normal return

Input
ACOandAC1

Delay interval (in
milliseconds) in Bits 16
through 31 of each
accumulator

AC2 Reserved (Set to 0.)

Error Codes in ACO
No error codes are currently defined.

Why Use It?

Output
ACO andAC1

Modified (The OS uses these
accumulators to maintain
delays.)

AC2 Undefined

?DELAY allows a task to wait until a specified amount of time has passed.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?DELAY, which is the IS-bit counterpart of ?WDELAY, suspends the calling task for the number of
milliseconds that you specify in ACO and AC 1. You must express the delay interval as a
double-precision integer in Bits 16 through 31 of ACO and AC1.

If the number of milliseconds that you specify is not a multiple of the real-time clock frequency, the
operating system rounds it to the next highest frequency multiple. For example, if the clock
frequency is 10 hertz (one period = 100 milliseconds) and you specify a delay of 120 milliseconds,
the operating system rounds the delay interval to 200 milliseconds. 'Ib obtain the real-time clock
frequency, issue ?GHRZ.

Notes
• See the descriptions of ?WDELAY and ?GHRZ in this chapter.

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2-85

I

?DELETE Deletes a file entry.

?DELETE [packet address]
error return
normal return

Input
ACO One of the following:

• Byte pointer to the
pathname of the target file

• 0 if a packet address is
supplied

ACI Reserved (Set to 0.)

AC2 One of the following:

• Reserved (Set to 0
if not supplying a packet.)

• Address of the ?DELETE
packet, unless you specify
the address as an argument
to ?DELETE

Error Codes in ACO

Output
ACO Unchanged

ACI Undefined

AC2 Undefined or
address of?DELETE packet

ERDID Directory delete error (You tried to delete a directory that contains one or more
subordinate directories.)

ERDIU Directory in use - cannot delete (You tried to delete a working directory or a directory
cited in a search list.)
File does not exist ERFDE

ERPRM Cannot delete permanent file (You tried to delete a fue or directory with the Permanence
attribute.)

ERVBP Invalid byte pointer passed as a system call argument
ERWAD Write access denied
ERCDR Can't delete the root directory
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II fue with ?ODTL value supplied in ?GOPEN packet

Why Use It?
By deleting a file or directory, you can reclaim disk space or, in the case of an IPC file, renumber the
port.
When you issue ?DELETE against an open file, the operating system deletes the filename
immediately, and then waits until all users have closed the file before it actually deletes the file.
?DELETE also deletes any user data area (UDA) associated with the file. If the input pathname
does not begin with a prefix character (:,1\ or =), ?DELETE assumes a prefix of=. This means that
?DELETE will not scan the caller's search list to find the target file.

2-86 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

Who Can Use It?

If you specified the file with a channel number, the calling process must have Write access to the
target entry's directory or Owner access to the target entry. If, on the other hand, you specified the
file with a pathname, you must also have Execute access to the parent directory.

What It Does

?DELETE deletes a file or directory. The target entry can be specified in one of two ways: either by
a byte pointer to the entry's pathname in ACO, or by using offset ?GCPCN in the ?DELETE packet.
The use of a packet is only necessary if you choose to specify the target entry's channel number.
ACO must be set to zero to indicate the use of a packet.

If a byte pointer to the entry's pathname is specified in ACO and if the last file in the pathname is a
link entry, then the operating system will delete the link entry without resolving it. Therefore, the
directories or files to which the link refers remain intact.

As the error codes indicate, you cannot delete a process's working directory or any directory cited in
a search list.

Figure 2-18 shows the structure of the ?DELETE packet.

o 15 16 31
1-------------------------+-------------------------1

?GCPFW 1 Reserved (Set to 0.) 1 Channel number 1 ?GCPCN
1-------------------------+-------------------------1
?GCPLT = packet length

Figure 2-18. Structure of ?DELETE Packet

Notes

• See the description of ?CREATE in this chapter for information on creating files and directories.

093-000542 Licensed Material - Property of Data General Corporation 2-87

?DFRSCH

?DFRSCH
error return
normal retu rn

Input

None

Error Codes in ACO

Disables task rescheduling and indicates
prior state of rescheduling.

Output

ACO ?DSCH if task rescheduling is disabled
when you issue ?DFRSCH

ACI Undefined

AC2 Undefined

No error codes are currently defined.

Why Use It?

You can use ?DFRSCH to lock all other tasks out of a critical region and still retain a copy of the
previous state of multi task scheduling in memory. Internally called subroutines that need to
disable scheduling can use ?DFRSCH, rather than ?DRSCH, to restore previous multitask
scheduling environments when the operating system exits from the subroutine.

As with ?DRSCH, you should be very careful when you use ?DFRSCH, because ?DFRSCH disrupts
multitask activity for the entire process.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DFRSCH blocks all multitask scheduling for the current process until you explicitly re-enable
scheduling with ?ERSCH or until you terminate the calling task with ?KILL. The calling task
retains CPU control while scheduling is disabled, even if other tasks are ready to nin.

When ?DFRSCH succeeds, it returns a flag in ACO that indicates whether multitask scheduling
was enabled before ?DFRSCH took action. A value of ?DSCH in ACO indicates that multitask
scheduling was disabled before you issued ?DFRSCH.

Notes

• See the descriptions of ?ERSCH and ?DRSCH in this chapter.

• N ever issue a system call that, after you have disabled task scheduling, could pend on an event
from another task. Doing this could cause your process to hang.

2-88 Licensed Material - Property of Data General Corporation 093-000542

?DIR Changes the working directory.

?DIR
error return
normal return

Input Output

ACO One of the following:

• Byte pointer to the pathname
of the new working directory
(that is, the destination directory)

• 0 to specify the initial working

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO
ERDAD Directory access denied

ACO Unchanged

directory

ACI Undefined

AC2 Undefined

ERVBP Invalid byte pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_INVALID_PATHNAME_BYTE_PTR

Invalid byte pointer to pathname

Why Use It?
A process's working directory is its starting point for file access. You can change your working
directory to access files that are not contained in your current working directory. ?DIR also lets you
return to your initial directory after you work elsewhere.

Who Can Use It?
There are no special process privileges needed to issue this call. The calling process must have
Execute access to a directory to use it as a working directory. The calling process must also have
Execute access to the target directory's parent directory.

What It Does
?DIR changes the caller's working directory to the directory that you specify in ACO or to the
caller's initial working directory (if ACO contains 0).

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2-89

I

?DQTSK Removes from the queue one or
more previously queued tasks.

?DQTSK [task definition packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the task
definition packet to
remove from the initiation
queue, unless you specify
the address as an argument
to?DQTSK

Error Codes in ACO

Output

ACO Undefined

AC1 Undefined

AC2 Address of the task
dermition packet

ERVWP
ERQTS

Invalid word pointer passed as a system call argument
Error in qtask request (There is no match on the task definition packet.)

Why Use It?
?DQTSK can be useful for error handling, because it lets you remove one or more tasks previously
placed on the execution queue with ?IQTSK and ?TASK. ?DQTSK has no effect if the task has
already begun to execute.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?DQTSK removes a specific task or tasks (as defined in the task definition packet) from the
initiation queue you previously established with ?IQTSK

?DQTSK takes the same task definition packet that you passed to ?TASK when you initiated the
target task or tasks. (See Figure 2-19.) You can specify the packet address as an argument to
?DQTSK, or you can load the address into AC2 before you issue ?DQTSK. You should not alter the
task definition packet before you issue ?DQTSK.

2-90 Licensed Material- Property 0/ Data General Corporation
086-000195 updates

09~542

o 15 16 31
-------------------------+-------------------------

?DLNK Packet type (Set to 0 I Reserved (Set to 0.) ?DLNKL
for extended packet.) I

-------------------------+--------------------------
?DLNKB Reserved (Set to 0.)

-------------------------+-------------------------
?DPRI Task priority I TID ?DID

-------------------------+-------------------------
?DPC Task's starting address

?DAC2 Task message or address of message (AC2 contents)

?DSTB Stack base address
-------------------------+-------------------------

?DSFLT Stack fault address I Task flag word ?DFLGS
-------------------------+-------------------------

?DSSZ Stack size
-------------------------+-------------------------

?DRES Reserved (Set to 0.) I Number of tasks to be ?DNUM
I created

-------------------------+-------------------------
?DSH Starting hour for task I Starting second within ?DSMS

initiation I the hour
-------------------------+-------------------------

?DCC Creation count I Creation interval ?DCI
-------------------------+-------------------------

?DXLTH = Length of extended packet

Figure 2-19. Extended Task Definition Packet

If you issue ?DQTSK against an active task, it remains active. The operating system simp1y puns
the task definition packet from the queue, if it is on the queue. If you want to requeue the task, you
must issue ?TASK again.

Notes

• See the descriptions of?IQTSK and ?TASK in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-91

?DRCON Breaks a connection (disconnects).

?DRCON
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 PID of the target process
in the connection

AC2 Contains the following:

• Bits 0 through 28 are reserved
(Set to 0.)

• Bits 29 through 31 contain the
ring of the target in the

specified process

Error Codes in ACO

Connection has been broken

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERCBK
ERCDE Connection doesn't exist (Two likely errors: the target process does not exist; or the

target process is not connected with the caller.)
ERRNI Invalid ring number

Why Use It?

You can use ?DRCON to break a connection to a specific ring from either the customer's or the
server's end.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DRCON is similar to ?DCON in that it breaks the connection between the calling process and the
process (customer or server) that you specify in ACl. However, unlike ?DCON, ?DRCON lets you
specify the ring field in AC2. Both servers and customers can issue ?DRCON.

Note that a single ?DRCON does not clear the customer/server connection from the connection
table. For this to occur, both processes must break the connection. If both processes do not break
the connection, the operating system reserves the PID number and does not reuse it until the
connection is cleared.

Notes

• See the description of ?CON and ?DCON in this chapter.

2-92 Licensed Material - Property of Data General Corporation 093-000542

?DRSCH Disables scheduling.

?DRSCH
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

You can use ?DRSCH to lock all tasks, except the calling task, out of a critical region. In contrast,
?XMT, ?REC, ?IDSUS, ?PRSUS, ?IDRDY, and ?PRRDY give you finer control over resource
allocation. Use ?DRSCH with discretion, if at all; ?DRSCH disrupts multitasking activity for the
entire process.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?DRSCH suppresses all multitask scheduling for the current process until you explicitly re-enable
scheduling with ?ERSCH or terminate the calling task with ?KILL. The calling task retains CPU
con trol while scheduling is disabled, even if other tasks are ready to run. (Note that if the calling
task becomes suspended, so will the entire process.)

Notes

• See the descriptions of?DFRSCH, ?ERSCH, and ?KILL in this chapter.

• Never issue a system call that, after you have disabled task scheduling, could pend on an event
from another task. Doing this could cause your process to hang.

093-000542 Licensed Material - Property of Data General Corporation 2-93

?ENBRK

?ENBRK
error return
normal return

Input

Enables a break file.

AOSNS

Output

ACO One of the following: ACO Unchanged or error code

• Byte pointer to the name of
the target process

• PID of the target process

• -1 to enable a break file for
the calling process

AC lOne of the following:

• -1 if ACO is a byte pointer

• 0 if ACO is a PID

• Ignored if ACO contains -1

AC2 One of the following:

• Address of the ?ENBRK packet

• -1 to cause a default dump of
Ring 7 unshared and shared

Error Codes in ACO
No break file enabled for this ring

AC1 Unchanged

AC2 Unchanged

ERNBK
ERPRE
ERPRV
ERRNI
ERVBP
ERVWP

Invalid argument passed as system call parameter
Caller not privileged for this action
Invalid ring
Invalid byte pointer passed as system call parameter
Invalid address passed as system call parameter

Why Use It?

?ENBRK lets you get a memory image of any user ring of a process if the process traps, issues a
Ctrl-C Ctrl-B, or is the target of a ?TERM system call. This memory image is useful in debugging
programs.

NOTE: The operating system always makes a break file for a process that issues a Ctrl-C Ctrl-E
or that is the target of a ?TERMI?BRKFL system call, regardless of whether or not the
process issues ?ENBRK.

2-94 Licensed Material - Property of Data General Corporation 093-000542

Who Can Use It?

There are no special process privileges needed to issue this call against the calling process. The
target process must have Write access to the directory for which the break file is intended at the
time the process terminates. The target process must also have Read access to the ring .PR
programs that will be dumped. If the target process is denied directory access or if the control point
directory maximum size is exceeded, then the operating system does not create the break file.

You can issue ?ENBRK against the calling process for all rings greater than or equal to the ring of
the task that is making the call. No other privileges are necessary. Also, you can issue ?ENBRK
against any ring or process if the calling process has Superprocess set on or is a server with a valid I
connection to the target.

When a server issues ?ENBRK against a customer, the ring that you specify as the one you want to
dump must be greater than or equal to the ring of the connection. Note that the hierarchy structure
is not sufficient to issue ?ENBRK. This means that a process cannot issue ?ENBRK against its son
unless it has Superprocess set on, or unless it has a valid connection to its son.

What It Does

?ENBRK enables the operating system to take a break file for the specified ring if the target of the
?ENBRK traps, does a Ctrl-C Ctrl-B, or is the target of a ?TERM system call. ?ENBRK lets you
specify a ring to dump, a name of a file to dump to, or a directory in which to create a dump file
with a default filename.

An ?ENBRK overrides all previous ?ENBRK system calls to the specified ring of the process.

To stop creating a break file when a process terminates abnormally, reissue ?ENBRK with the
offset ?ENBFL containing only a ring number, for example one of the following: ?ENR4, ?ENR5,
?ENR6, or ?ENR7. You must issue a separate ?ENBRK call for each ring in which you want to
stop break files being created.

If AC2 does not contain -1 (-1 specifies the default dump of memory), you must supply a packet.
Figure 2-20 shows the structure of the packet and Table 2-13 describes its contents.

093-000542 Licensed Material - Property of Data General Corporation 2-95

I

•

I

?ENBRK Continued

o 15 16 31
-------------------------+-------------------------

?ENBFL Flag word (See 1 Beginning of ?ENSUS
Table 2-13) 1 unshared ...

-------------------------+-------------------------
. .. memory to be 1 End of unshared ... ?ENEUS
dumped 1

-------------------------+-------------------------
... memory to be 1 Beginning of shared... ?ENSSH
dumped 1

-------------------------+-------------------------
... memory to be 1 End of shared ... ?ENESH
dumped 1

-------------------------+-------------------------
... memory to be 1 Byte pointer to ?ENFNP
dumped 1 filename ...

-------------------------+-------------------------
... in which to 1

dump 1

-------------------------1

?ENBLN = packet length

Figure 2-20. Structure of ?ENBRK Packet

Table 2-13. Contents of ?ENBRK Packet·

1

Offset Contents 1

======== ===:====1
?ENBFL Flag word 1

?ENR4
?ENR5
?ENR6
?ENR7

?ENSUS
(double
word)

1

?ENUS---Dump unshared memory. 1

?ENSH---Dump shared memory. 1

?ENPRE--Dump preamble information. (You will get a 1

preamble if you specify either ?ENUS or 1

?ENSH.) 1

?ENCST--Return current status. 1

?ENDIR--Indicate that ?ENFNP is a byte pointer to

?ENR4
?ENR5
?ENR6
?ENR7 =

a directory. (If you do not set this flag,
?ENFNP must be a byte pointer to a pathname
or -1.)

4, and enables a break file for Ring 4.
5, and enables a break file for Ring 5.
6, and enables a break file for Ring 6.
7, and enables a break file for Ring 7.
Used alone, each offset stops break files
being created in the specified ring.

Beginning of unshared memory to be dumped.

DEFAULT= -1 (to start dumping at beginning of un shared
area) .

* There 1S no default unless otherwise specified. (continued)

2-96 Licensed Material - Property of Data General Corporation 093-000542

I
I Offset
1========
I ?ENEUS
1 (double-
1 word)
1

1 ?ENSSH
1 (double-

word)

?ENESH
(double
word)

?ENFNP
(double
word)

Table 2-13. Contents of ?ENBRK Packet'"

Contents
==

End of unshared memory to be dumped.

DEFAULT= -1 (to dump to end of unshared area) .

Beginning of unshared memory to be dumped.

DEFAULT= -1 (to start dumping at beginning of shared
area) .

End of shared memory to be dumped.

DEFAULT= -1 (to dump to end of shared area) .

Byte pointer to filename to dump to. If ?ENDIR is set,
?ENFNP contains a byte pointer to the directory in which
you want to create the default dump file.

DEFAULT=

NOTE:

-1 (to create default dump file in working
directory) .

A default filename takes the form

where

PID

TIME

?PID.TIME.RING.BRK

is the 5-digit PID of the process
being dumped.

is the current time in the form
hh_mm_ss.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

RING is the ring number of the ring being 1
dumped. 1

An example of such a filename is

?00071.07 31 52.7.BRK

1

1

1

1

_________ ---------------------------~----.----~~~----------~----~~_I
* There is no default unless otherwise specified. (concluded)

09~542 Licensed Material - Property of Data General Corporation 2-97

?ENQUE Sends a message to IPC and spooler files.

?ENQUE
error return
normal return

Input

ACO Byte pointer to pathname
of the spooler file
or the IPC file

AC1 Byte pointer to the
message

AC2 Reserved (Set to 0.)

Error Codes in ACO

Illegal device name type
Invalid system call parameter

Output

ACO Unchanged

AC1 Unchanged

AC2 Undefined

ERIDT
ERPRE
ERVBP Invalid byte pointer passed as a system call argument

Why Use It?

?ENQUE lets you send free-form messages to an IPC file or to a spooler file.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?ENQUE uses the IPC facility to send a message on the global port that the IPC file or the spooler
file specifies.

You must terminate the message string with a null. The string can consist of as many as 512
characters, including the terminating null.

Notes

• See the descriptions of the system calls ?ILKUP and ?ISEND for more information about global
ports.

2-98 Licensed Material - Property of Data General Corporation 093-000542

?ERMSG Reads the error message file.

?ERMSG
error return
normal return

Input

ACO Error code associated with
the error message text
string

AC 1 Contains the following:

• Bits 16 through 23 contain
the byte length of the
message buffer

• Bits 24 through 31 contain
the channel number assigned
to the error message file
(U se 377 for the system
default ERMES file.)

AC2 Byte pointer to the message
buffer

Error Codes in ACO

Output

ACO Byte length of the error
message

AC 1 If the system default
ERMES file is closed and
Bits 24-31 contain 377,
AC 1 contains the channel
number of the system
default ERMES file. If
the system default ERMES
file is closed and Bits
24-31 do not contain 377,
AC1 contains -1. If the
system default ERMES file
is open, AC 1 contains the
channel number of the system
default ERMES file.

AC2 Unchanged

ERTXT
ERVBP

Message text longer than specified (Your message buffer is too small.)
Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?ERMSG to get the text string associated with a particular error code.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Read access to the
error message file.

What It Does

?ERMSG returns the text string associated with an error code (a 32-bit unsigned value) in either
the system error message file, ERMES, or in your own error message file.

093-000542 Licensed Material - Property of Data General Corporation 2-99

?ERMSG Continued

Before you issue ?ERMSG, perform the following steps:

1. Load ACO with the error code associated with the message you want to read.

2. Load Bits 16 through 23 of AC 1 with the byte size of the buffer you have set aside in your logical
address space.

3. Load Bits 24 through 31 with the channel number of the error message file. (If you are reading
the default ERMES file, use 377 as the channel number; the operating system returns the
actual channel number. If you are reading another error message file, you must open the file
with ?OPEN first. Then, you can use the channel number returned in the ?OPEN packet for
?ERMSG.)

If you pass an unknown error code to ACO, ?ERMSG takes the normal return, but the operating
system passes the message "UNKNOWN ERROR CODE n" to the message buffer, where n is the
ASCII equivalent of the error code you specified in ACO.

Figure 2-21 shows the structure of the error codes in ERMES. Use this structure for your own
error message file if you want to use ?ERMSG to read it.

o 22 23 31
1-----------------------+-----------------------1
1 Group Number 1 Code Number 1
1-----------------------+-----------------------1

Figure 2-21. Error Code Structure in ERMES File

As Figure 2-21 shows, the error code entries in ERMES consist of two fields: group number, and
code number. All error codes are categorized into groups ranging from 0 through octal 17777.
Although groups 0 through octal 77 and octal 200 through octal 7777 are reserved for system
definition, you can define error codes for groups octal 100 through octal 177 and octal 10000
through octal 17777.

You can change the error codes and text strings that your program reports. One important step is
to edit file LINK_ERMES.CLI. See the documentation in file ERMES.SR, whose full pathname is
usually :UTIL:ERMES.SR.

Two MASM macros, GRP and CODE, let you add new code groups and/or single codes to the error
message file. The GRP macro defines the code group and the number of codes within that code
group. The syntax of this macro is

GRPmn

where

m is the code group number.

n is the maximum number of error codes within the code group.

2-100 Licensed Material - Property of Data General Corporation 093-000542

For example,

GRP 100 200

defines code group 100, which can have up to 200 individual error codes.

The CODE macro inserts error codes and their associated text strings into an error code group. The
syntax of the CODE macro is

CODE code-mnemonic .TXT *message-string*

For example,

CODE ERFTM .TXT *FILE/TAPE DENSITY MISMATCH*

associates the message string FILEITAPE DENSITY MISMATCH with the error code ERFTM.

O9:HXJ0542 Licensed Material - Property of Data General Corporation 2-101

?ERSCH Enables multitask scheduling for the calling process.

?ERSCH
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

None

If a task disables scheduling with ?DRSCH, it has only two options to re-enable scheduling: the
task can either ?KILL itself or it can issue ?ERSCH. Thus, you can use ?ERSCH to re-enable
scheduling and maintain the calling task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?ERSCH re-enables multitask scheduling for the calling process. After the operating system
executes ?ERSCH, it passes control to the normal return, and resumes its regular scheduling
activities. The calling task mayor may not resume execution, however, depending on its priority. If
scheduling has already been enabled, it remains enabled, and ?ERSCH takes the normal return.

Notes

• See the descriptions of?DRSCH, ?DFRSCH, and ?KILL in this chapter.

2-102 Licensed Material - Property of Data General Corporation 093-000542

?ESFF Flushes shared file memory pages to disk.

?ESFF
error return
normal return

Input
ACO Reserved (Set to 0.)

ACI Channel number of the file

to be flushed

AC2 Reserved (Set to 0.)

Error Codes in ACO
ERICN Illegal channel
ERSIM Simultaneous I/O
ERIFT Illegal file type
ER_FS_DIRECTORY_NOT_AVAILABLE

Output
ACO Unchanged

ACI Unchanged

AC2 Undefined

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II file with ?ODTL value supplied in ?GOPEN packet

Why Use It?
The ?ESFF call ensures that if the system fails, you do not lose any changes to shared files up to
the time you issued ?ESFF. When you issue ?ESFF, the operating system saves all your changes in
the disk file. This means that in an emergency situation, you will lose only those changes you made
to a shared file after you issued ?ESFF (provided the ?ESFF completes without error).

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?ESFF flushes modified shared pages to disk. Even when an I/O error occurs on one or more of the
modified pages, the operating system tries to flush the remaining pages.

When an ?ESFF completes successfully, all pages that were modified at the start of the ?ESFF are
on disk. However, if another process modifies a page after the ?ESFF begins, that page mayor may
not be flushed to disk when the ?ESFF completes.

Note, however, that ?ESFF does not ensure that you'll be able to access the flushed pages; use
?UPDATE to write out updated file descriptor information for the shared file.

Notes
• See the description of ?UPDATE in this chapter.

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-103

I

?EXEC Requests a service from EXEC.

?EXEC {packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

ACl Host ID for Resource
Management Agent (RMA)

deflection, otherwise O.

AC2 Address of the ?EXEC packet,
unless you specify the
address as an argument to
?EXEC

Error Codes in ACO
End of get next sequence
(Request) refused by operator

AOSNS

Output

ACO Undefined

ACl Undefined

AC2 Address of the ?EXEC packet

Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument
Volume not mounted
EXEC not available
Invalid EXEC string parameter

EREGN
ERRBO
ERVBP
ERVWP
ERWMT
ERXNA
ERXSP
ERXUF EXEC request function unknown (You passed an unknown value in offset ?XRFNC.)

Why Use It?
You can use ?EXEC to request a service, such as mounting a labeled tape, from the EXEC utility.

Who Can Use It?
One special privilege needed to issue this call is the batch usage privilege (value ?PBCHPRV) for
submitting batch jobs (see the section "Queuing a File Entry"). The only other special privileges
needed are Write access to a queue to submit it, and Read access to a queue to issue a QDISPLAY
command against it. There are no restrictions concerning file access.

2-104 Licensed Material- Property of Data General Corporation
08&-000195 updates

093-000542

What It Does

?EXEC directs the EXEC utility to perform one of the following functions on behalf of the calling
process:

• Assign or cancel a logical name to a tape unit or non-LD disk (an uninitialized disk that you
want to treat as a whole unit) and issue an operator mount or dismount message.

• Mount an unlabeled tape. (See Figures 2-22 and 2-23, on Pages 2-106 and 2-107respectively.)

• Mount a labeled tape. (See Figures 2-24 and 2-25, on Pages 2-107and 2-108respectively.)

• Dismount a labeled or unlabeled tape. (See Figure 2-26, Page 2-109.)

• Back up your files. (See Figure 2-27, Page 2-110.)

• Place a request into a queue. (See Figures 2-28,2-29, and 2-30, Pages 2-113, 2-123, and
2-124respectively.)

• Hold, unhold, or cancel a queue request. (See Figure 2-31, Page 2-127.)

• Provide an EXEC status report. (See Figures 2-32 and 2-33, Pages 2-129 and 2-130.)

• Submit ajob to a MOUNT queue. (See Figure 2-34, Page 2-131.)

• Dismount a unit (extended request). (See Figure 2-35, Page 2-132.)

• Modify the queuing parameters of a queued job. (See Figure 2-36, Page 2-133.)

• Obtain one or more queue names. (See Figure 2-37, Page 2-137.)

• Obtain QDISPLAY information, given a queue name. (See Figure 2-38, Page 2-139.)

Each of these functions takes a unique packet. However, the first offset, ?XRFNC, which defines
the action to be performed, is common to all the packets. The second offset, ?XPRV, is also common;
it contains the packet revision number.

093-000542 Licensed Material - Property of Data General Corporation 2-105

?EXEC Continued

Mounting Unlabeled and Labeled Tapes

If you use ?EXEC to mount a tape (labeled or unlabeled), you must specify an operator message
string somewhere in your program.

Offsets ?XMUT and ?XMLT are byte pointers to the operator message text string. The operator
message cannot exceed 80 characters, including the delimiter. The delimiter can be New Line,
carriage return, form feed, or null.

The operator message should contain at least some of the following information:

• The name of the tape reel (if it is not the volume name)

• Where the tape reel is stored

• The type of tape unit to use with the tape reel (for example, high-density, 7-track, or 9-track)

• Any special instructions to the operator

The logical name of the tape, to which offset ?XMUL or ?XMLL points, must be a simple unique
name. EXE:C takes this name and creates a link in the caller's initial working directory (as
specified in the user's profile) with the pathname 10gon-dir:<LOGICALNAME>. This link resolves
to @MTXn for unlabeled tape mounts and to @LMT:VOLID for labeled tape mounts. The X of
@MTXN can be A, B, C, or D depending on the tape drive.

To mount an unlabeled tape (called a unit mount), you must set the first word of the ?EXEC
packet, ?XRFNC, to ?XFMUN or ?XFXUN. (See Figure 2-22 and Figure 2-23.)

2-106

o 15 16 31
1-------------------------+-------------------------1

?XHFNC 1 Function code ?XFMUN 1 Place ?PKRO here I?XPRV
1-------------------------+-------------------------1

?XMUL 1 Byte pointer to tape's logical name, which is to 1

1 be created in the user's initial directory 1

1---1
?XMUT 1 Byte pointer to the operator request text 1

1---1

?XLMUN = packet length

Figure 2-22. Structure of ?EXEC Packet for Unlabeled Mount Function ?XFMUN

Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
-------------------------+-------------------------

?XRFNC Function code ?XFXUN 1 Place ?PKRO here ?XPRV

?XMUL

?XMUT

?XMUQ

?XMUR

?XMUF

?XMUS

?XMUE

-------------------------+-------------------------
Byte pointer to tape's logical name, which is to
be created in the user's initial directory

Byte pointer to the operator request text

Reserved

Reserved
-------------------------+-------------------------

Flag word (see Reserved (set to 0)
Table 2-14)

-------------------------+-------------------------
Reserved

Reserved

?XMUX = packet length

Figure 2-23. Structure of ?EXEC Extended Packet for Unlabeled Mount Function ?XFXUN

To mount a labeled tape, you must set ?XRFNC to ?XFML T or ?XFXML. (See Figure 2-24 and
Figure 2-25.)

093-000542

o 15 16 31
1-------------------------+-------------------------1

?XRFNC 1 Function code ?XFMLT 1 Place ?PKRO here I?XPRV
1-------------------------+-------------------------1

?XMLL 1 Byte pointer to tape's logical name, which is to 1

1 be created in the user's initial working directory 1

1---1
?XMLT 1 Byte pointer to the operator message 1

1---1
?XMLV 1 Byte pointer to list of volids, each separated by 1

1 a <0>. The list is terminated by <0><0> 1

1---1

?XLMLT = packet length

Figure 2-24. Structure of ?EXEC Packet for Labeled Mount Function ?XFMLT

Licensed Material - Property of Data General Corporation 2-107

?EXEC Continued

2-108

o 15 16 31
-------------------------+-------------------------

?XRFNC Function code ?XFXML I Place ?PKRO here ?XPRV

?XMLL

?XMLT

?XMLV

?XMLR

?XMLF

?XMI-lS

?XMLE

-------------------------+-------------------------
Byte pointer to tape's logical name, which is to
be created in the user's initial working directory

Byte pointer to the operator message

Byte pointer to list of volids, each separated by
a <0>; the list is terminated by <0><0>

Reserved (set to 0)
-------------------------+-------------------------

Flag word (see Reserved (set to 0)
Table 2-14)

-------------------------+-------------------------
Reserved (set to 0)

Reserved (set to 0)

?XMLX = packet length

Figure 2-25. Structure of ?EXEC Extended Packet for Labeled Mount Function ?XFXML

Table 2-14. Flags for EXEC Functions ?XFXUN and ?XFXML

Flag
====:======

?XMFC

?XMFI

?OPDO
?OPDl
?OPD2

?XMFR

?XMEL

Description
==
If set, checks volid that operator specified against
tape.

If set, the tape is in IBM format.

Density to use. This applies to tape drives capable of
software selection of the density only. (See the
description of the ?OPEN system call for information
on setting the bits.)

If set, EXEC assumes that the tape to be mounted is to
be read only and sets the ACL to USER,RE.

If set, allows you to extend the volid list. This
applies to labeled tape mount requests only.

Licensed Material - Property of Data General Corporation O~542

Dismounting Unlabeled and Labeled Tapes

To dismount either type of tape, you must set ?XRFNC to ?XFDUN. (See Figure 2-26.)

o 15 16 31
1-------------------------+-------------------------1

?XRFNC 1 Function code ?XFDUN 1 Place ?PKRO here I?XPRV
1-------------------------+-------------------------1

?XDUL 1 Byte pointer to tape's logical name or to the unitl
1 to be dismounted 1

1--1
?XDUT 1 Byte pointer to the operator message that tells 1

1 the operator what to do with the tape after it is 1

1 dismounted (set to 0 to indicate that there is 1

1 no operator message) 1

1---1

?XLDUN = packet length

Figure 2-26. Structure of ?EXEC Packet for Dismounting a Tape, ?XFDUN

If you use ?EXEC to dismount a tape, an operator message is optional. (See "Mounting Unlabeled
and Labeled Tapes" in this description for more information on operator messages.)

The number of characters in the operator message pointed to by offset ?XDUT cannot exceed 80
characters, including the terminator. (This is also true of the message pointed to by offset ?XMUT
for unlabeled tapes. See Figure 2-22 and Figure 2-23.)

093-000542 Licensed Material - Property of Data General Corporation 2-109

?EXEC Continued

Backing Up Your Files

If you decide to back up your files directly instead of using the DUMP _IIILOAD _II and
DUMPILOAD CLI commands, then read this section. This section applies only to 32--bit programs.

Figure 2-27 shows the structure of the ?EXEC packet for backing up files, and Table 2-15
describes th«~ contents of each offset.

2-110

o 15 16 31
-------------------------+-------------------------

?XRFNC Function code ?XFLC, I Place ?PKRO here ?XPRV
?XFLO, ?XFME, or ?XFNV I

-------------------------+-------------------------
?XMDF Flag word returned for I Reserved (Set to 0.) ?XRES3

function codes ?XFLC, I

?XDEV

?XVOL

?XMFN

?XMFG

?XFLO, and ?XFMEi error I
code returned for ?XFNV I

-------------------------+-------------------------
Byte pointer to device name (function codes ?XFLC,
?XFME, and ?XFNV) or to buffer area (code XFLO)

Byte pointer to volid list
-------------------------+-------------------------

Supply the AOS/VS file I Supply the AOS/VS se- ?XMSQ
number (function code I quence number (function
?XFLC), or else the I code ?XFLC), or else
system returns this I the system returns this
number (code ?XFLO) I number (code ?XFLO)

-------------------------+--------------------------
Reserved (Set to 0.) I Reserved (Set to 0.) ?XRES4

-------------------------+-------------------------

?XLLC
?XLLO
?XLME
?XLNV

packet length for function code ?XFLC
packet length for function code ?XFLO
packet length for function code ?XFME
packet length for function code ?XFNV

Figure 2-27. Structure of ?EXEC Packet for Tape Backup

Licensed Material - Property of Data General Corporation 093-000542

093-000542

Table 2-15. Contents of ?EXEC Packet for Tape Backup·

Offset 1 Contents 1

=============== ===1
?XRFNC Function code. Supply one of the following: 1

?XPRV

?XMDF

?XRES3

?XDEV
(doubleword)

?XVOL
(doubleword)

?XMFN

?XMSQ

?XMFG

?XRES4

I
?XFLC Labeled tape close. 1

?XFLO Labeled tape open. 1
?XFME Mount error.
?XFNV Labeled tape next volume.

Packet revision number. Supply ?PKRO.

If you supply ?XFLC, ?XFLO, or ?XFNV to offset
?XRFNC, then AOS/VS returns the following status
bit definitions in this flag word:

?XMFS
?XMSQB
?XSCV
?XSDl
?XSD2
?XSDEN
?XSEL
?XSIBM
?XSMT
?XSRO
?XSVU

First/specific volume.
This is a sequential operation.
Volid not verified yet.
Density bits.
Density bits.
Density bits.
Extended volid list.
IBM tape.
Explicitly mounted labeled tape.
Read only.
Labeled tape volid is unknown.

If you supply ?XFME to offset ?XFRNC, then AOS/VS
returns an error code.

Reserved for EXEC. (Set to 0.)

If you supply ?XFLC, ?XFME, or ?XFNV to offset
?XRFNC, then supply a byte pointer to the actual
device name. If you supply ?XFLO to offset ?XRFNC,
then supply a byte pointer to a buffer area;
AOS/VS returns the device name in the buffer.

Supply a byte pointer to the volid list.

This offset is the AOS/VS file number. It also
supports the sequential functionality to bypass
the tape rewind operations between sequential
file operations. Supply the file number when
offset ?XRFNC contains ?XFLC, wait for AOS/VS to
return the file number when offset ?XRFNC contains
?XFLO, or supply 0 when offset ?XRFNC contains
?XFME or ?XFNV.

This offset is the AOS/VS sequence number. It
also supports the sequential functionality to
bypass the tape rewind operations between
sequential file operations. Supply the file
number when offset ?XRFNC contains ?XFLC, wait
for AOS/VS to return the file number when offset
?XRFNC contains ?XFLO, or supply 0 when offset
?XRFNC contains ?XFME or ?XFNV.

Reserved for EXEC. (Set to 0.)

Reserved for EXEC. (Set to 0.)

* There is no default unless otherwise specified. (continued)

Licensed Material - Property of Data General Corporation 2-111

?EXEC Continued

Queuing a File Entry

The ?EXEC packet for placing a queue request allows you to queue a file for batch processing or for
spooled output to one of the following devices:

• Line printer CIfyou want to print a file in true binary mode or to specify 8-bit characters in the
input file or to have no header line, then pay special attention to offsets ?XPRV and ?XFG2 in
Figure 2-28 and Table 2-16.)

• Terminal and other communications devices

• Digital plotter

• File transfer agent (FTA)

• SNA

Figure 2-28 shows the structure of the ?EXEC packet for queue requests, and Table 2-16 describes
the contents of each offset. Note that some of the packet options correspond to CLI commands for
the EXEC utility.

The first offset in the packet, ?XRFNC, defines the kind of queue. Other offsets allow you to
postpone processing the queue request, assign the job an EXEC priority, delete the file after
processing, and select several print options (for example, print the file's pathname, print page
numbers, fold long lines, and so forth).

Offset ?XTYP points to the queue name of the desired queue. This name must correspond to the
queue tYPEl chosen in offset ?XRFNC, unless you selected ?XFSUB (for any type of queue except
?XFUSR).

Queue names resemble device names, but they do not begin with the @ prefix. For example, if you
have one or more spooled line printers, one of the line printer queue names should be LPT. The
system manager usually sets the queue names for an installation.

2-112 Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
�-------------------------+-------------------------�

?XRFNCI Queue type (see 1 Place ?PKRO here if I?XPRV
1 Table 2-16) 1 the packet extension
1 1 is not used; otherwise
1 1 place ?PKRI here
-------------------------+-------------------------

?XTYP Byte pointer to queue name or -1 if it is a
batch input queue

?XDAT

?XTIM

-------------------------+-------------------------
Date queued Set to 0 if you don't

need any of the options
under this offset in
Table 2-16; otherwise,
supply the options

-------------------------+-------------------------
Time queued 1 Reserved (Set to 0.),

1 unless you supply a
1 local port number for
1 IPC notification

-------------------------+-------------------------

?XRESI
and

?XFG2

?XRES2
and

?XLPN

?XLMT Resource limit (see Priority I?XPRI
Table 2-16)

-------------------------+-------------------------
?XFGS Flag word (see 1 Sequence number ?XSEQ

Table 2-16) 1

-------------------------+-------------------------
?XFBP Byte pointer to job name or form name

?XPBP Byte pointer to full pathname
-------------------------+-------------------------

?XAFD Delayed processing date 1 Delayed processing time ?XAFT
-------------------------+--------------------------

?XXWO Type-specific flag word (see Table 2-16) ?XXWOL
(high-order bits) 1 (low-order bits)

1-------------------------+-------------------------
?XXWI 1 Second type-specific flag word (see Table 2-16) ?XXWIL

1 (high-order bits) 1 (low-order bits)
1-------------------------+-------------------------

?XXW2 1 Third type-specific flag word (see Table 2-16) ?XXW2L
1 (high-order bits) 1 (low-order bits)
1-------------------------+-------------------------

?XXW3 1 Fourth type-specific flag word (see Table 2-16) ?XXW3L
1 (high-order bits) 1 (low-order bits)
1-------------------------+-------------------------
?XLTH = packet length if ?XPRV contains ?PKRO

The packet continues here if ?XPRV contains ?PKRI.

o 15 16 31
I--------------~----------+-------------------------I

?XUSR 1 Username or Reserved (Set to 0.) 1

1---1
?XPWD 1 Password or Reserved (Set to 0.) 1

1---1
?XHBP 1 Byte pointer to the header text string 1

1---1
?XMBP 1 Byte pointer to the mapper filename 1

086-000195 updates
093-000542

1---1
?XILTH = packet length if ?XPRV contains ?PKRI

Figure 2-28. Structure of ?EXEC Packet for Queue Requests

licensed Material- Property d Data General Corporation

I

2-113

?EXEC Continued

Table 2-16. Contents of ?EXEC Packet for Queue Requests"

Offset Contents
=============== ===:========

?XRFNC Queue type: Place entry into one of the following:

?XPRV

?X'1~YP

(doubleword)

?XDAT

?XFBAT--Batch queue.
?XFFTA--FTA queue.
?XFHAM--HAMLET queue.
?XFLPT--Print queue.
?XFPLT--Plot queue.
?XFSNA--SNA/RJE queue.
?XFSUB--Any type of queue (except ?XFUSR).
?XFOTH--Submit job for another user.

Setting Bit 0 of ?XRFNC indicates that RMA should
deflect this request to the remote host specified
in ACI.

A ?XFBAT request is, other than the value in
offset ?XRFNC, identical to a generic ?XFSUB
queue submission call. Function code ?XFBAT is
provided to allow for further specialization and
expansion of batch queue submission.

Packet revision number. (Set to ?PKRl if offset
?XRES1/?XFG2 does not contain 0 or if ?XRF'NC
contains ?XFOTHi otherwise, set to ?PKRO.)

Byte pointer to queue name (must correspond to
type in ?XRFNC).

Date queued (returned by the OS in standard date
notation) .

____________ 1 __ . ______ ___

* There is no default unless otherwise specified. (continued)

2-114 Licensed Material- Property c:A Data General Corporation
086-000195 updates

093-000542

Table 2-16. Contents of ?EXEC Packet for Queue Requests*

Offset Contents
=============== ===

?XRESI
and

?XFG2

?XTIM

?XRES2
and

?XLPN

?XLMT

If no options are needed, set to O. If ?XRFNC is
equal to ?XFLPT or ?XFOTH, the options are:

?BMCO

?BMNH

?BM8B

lB(?XFCO) Print output in 2 columns.

lB(?XFNH) Print without a header page.

lB(?XF8B) The file might contain 8-bit
characters, and the high order bit is
significant.

If ?BM8B is not set then EXEC prints
the file according to the operator's
CONTROL @EXEC START command.

?BMTB lB(?XFTB) -- Print the file in true
binary mode. This means that all <377>
characters are passed to the printer.
This mode is the same as PASSTHRU mode. In
contrast, binary mode (?BMBI value) will
pass on only the second of the two
character sequence <377><xxx> where
<xxx> is any value between <000> and
<377>, inclusive. In general, binary
mode (?BMBI value) ignores single <377>
characters.

?BMEP = lB(?XFEP) --If the offset ?XRFNC contains
?XFOTH, this bit is set to indicate that
the password is encrypted. If queue type
is submitted for ?XFOTH, then ?XUSR is a
byte pointer to username. If Superuser is
also on, ?XPWD can be 0 or a byte pointer
to password.

Time queued (returned by the OS in standard time
notation) .

Reserved for EXEC. (Set to 0.) Exception: If
you want EXEC to send (via ?ISEND) an IPC message
for notification, then supply the local port
number and specify ?BMCN in offset ?XFGS.
Figure 2-29 contains the format of the IPC
message.

Resource limit (enforced only if operator enabled
the EXEC limit feature):

For print queue: ?XLMT = maximum number of pages
to be printed.

If you default, EXEC estimates the number of
pages as follows:

pages = (bytes/lOOO) + 4

where bytes = total number of bytes in file.

* There is no default unless otherwise specified. (continued)

093--000542 Licensed Material - Property of Data General Corporation 2-115

I
• •

•

?EXEC Continued
Table 2-16 .Contents of ?EXEC Packet for Queue Requests·

Offset

?XLMT
(continued)

?XPRI

?XFGS

Contents
===

For batch queue: ?XLMT = maximum number of CPU
(including the CLI and all other processes
created by this batch job) .

If you default, EXEC estimates a value of 30
biseconds; that is, 1 minute.

DEFAULT = 0 (see above)

Entry's priority, within the range: n (highest)
through 255 (lowest).

where n

DEFAULT

Flag word

?BMSH

?BMDA

?BMNR

?BMPE

maximum priority specified in your user
profile.

-1 (EXEC assigns a priority in the
middle of the range and returns the
value here) .

1B(?XFSH)--Hold sequence number.

1B(?XFDA)--Delete file specified in
offset ?XPBP after processing. (Caller
must have Owner or Write access to the
file.)

1B(?XFNR)--Do not restart entry if EXEC
or the system crashes during processing.

1B(?XFPE)--Pend the calling process
until the operator acts on the request.

OB(?XFPE)--Don't pend the calling
process, but still receive confirmation
when the operator acts on the request.

* There is no default unless otherwise specified. (continued)

2-116 Licensed Material - Property of Data General Corporation 093-000542

Table 2-16. Contents of ?EXEC Packet for Queue Requests·

Offset Contents
=============== ===

?XFGS
(continued)

?BMBI

?BMOP

?BMNO

?BMRA

?BMTI

?BMFO

DEFAULT

lB(?XFBI)--Output is binary.

lB(?XFOP)--Start processing only if
operator is on duty. (We recommend
setting this flag for batch jobs that
require tape mounting or dismounting.)

lB(?XFNO)--Notify the user's terminal
when this entry is completed. (The
message is lost if you log off, and
then log on again; there is no message
if you are not a descendant of EXEC.)

lB(?XFRA)--Determines the value of
offsets ?XAFD and ?XAFT in this packet.
Offsets ?XAFD and ?XAFT are relative.

lB(?XFTI)--Print titles on output
listing.

lB(?XFFO)--Fold long lines.

o (no flags).

* There is no de ault unless otherwise specified. (continued)

093-000542 Licensed Material - Property of Data General Corporation 2-117

?EXEC Continued

2-118

Table2-16. Contents of ?EXEC Packet for Queue Requests·

Offset Contents
=============== ===

?XSEQ Sequence number EXEC assigned to this entry
(returned by EXEC) .

?XFBP
(doubleword)

?XPBP
(doubleword)

?XAFD and
?XAFT

For batch queue: byte pointer to job name.

For other queue type: byte pointer to form name.
If you set this to 0, EXEC will use the device's
default forms. (You must have previously defined
the form filename and must have access to it.)

Byte pointer to full pathname (starting with the
root) of the file to be processed.

For FTA queues: byte pointer to full pathname of
the source file.

Interpretation depends on flag bit ?BMRA in
offset ?XFGS. If ?BMRA was not set:

?XAFD - read as the date (in file system format)
after which the entry can be processed.

?XAFT - read as the time (in file system format)
after which the entry can be processed.

If ?BMRA was set

?XAFD - read as a number of whole days after
which the entry can be processed.

?XAFT - read as a number of bi-seconds (2-second
intervals) after which the entry can be
processed.

If ?BMRA was set, EXEC adds the time periods
specified in ?XAFD and ?XAFT, starting from the
time the queue request was made, and begins
processing the entry after the designated time
period has elapsed.

The default value for ?XAFD and ?XAFT is 0 (no
delayed processing) .

_________________ 1 __ ___

* There is no default unless otherwise specified. (continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-16. Contents of ?EXEC Packet for Queue Requests*

Offset Contents
=============== ===

?XXWO Type-specific flag word
(sometimes
doubleword) For print queue (single word) :

?XXWOL

If ?XXWO is nonzero, start printing on the
page number given here.

If ?XXWO is 0 (the default), start printing
on the first page.

For batch queue (doubleword):

?XXWO is the high-order portion of a byte
pointer to the pathname of the file you want
to use as the @OUTPUT file. This file will
be created if it does not already exist (EXEC
does not print or delete this file).

If XXWO is 0, EXEC creates, prints, and then
deletes the Default Generic Output File,
:QUEUE:USER.OUTPUT.SEQ. (If this file is
empty, printing is omitted.)

For FTA queue (single word): stream number if
desired, otherwise o.

For all other queue types (single word): ?XXWO
must be O.

DEFAULT = 0 (no flags).

For batch queue:
bits of ?XXWO.

?XXWOL contains the low-order
I
I
I
1

For all other queue types (single word) :
must be O.

?XXWOL I

DEFAULT = O.

1

1

1

I
___ 1

* There is no default unless otherwise specified. (continued)

093--000542 Lioensed Material - Property of Data General Corporation 2-119

?EXEC Continued

2-120

Table 2-16. Contents of ?EXEC Packet for Queue Requests·

Offset

?XXWl
(sometimes
doubleword)

?XXWIL

?XXW2

1

Contents
===

Second type-specific flag word.

For print queue (single word): If ?XXWl is
nonzero, stop printing at the page specified
here.

For batch queue (doubleword): ?XXWl is a byte
pointer to generic @LIST file; otherwise,
contains 0 (for default @LIST file).

For FTA queue (doubleword): byte pointer to full
pathname of the destination file.

For all other queue types (single word): ?XXWl
must be o.

For batch and FTA queues: ?XXWIL contains the
low-order bits of ?XXW1.

For all other queue types: ?XXWIL must be O.

Third type-specific flag word.

For batch queue: ?XXW2 must be o.

For SNA queue:

Indicate the type of read by choosing one of
the following mutually exclusive flags:

?X2LN - data-sensitive line read.
?X2SE - dynamic (sequential) read.
?X2EB - dynamic read of 80 characters.

1 Optionally, indicate data translation:
1 ?X2HO - Hollerith to EBCDIC translation.
1

1 Specify the class of device with one of the
1 following (these are mutually exclusive) :
1 ?X2CD - card.
1 ?X2CN - terminal.
1 ?X2EX - exchange.
1

________________ 1 ___ ___

* There is no default unless otherwise specified. (continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-16. Contents of ?EXEC Packet for Queue Requests·

1

1 Offset
1===============
1

1 ?XXW2
1 (continued)

?XXW2L

?XXW3
(sometimes
doubleword)

?XXW3L

1
Contents 1

===1
For FTA queue:

Set one or more of the following transfer
option flags:

?X2CM - compression requested.
?X2RC - process only if source more recent.
?X2AP - append source to destination if it

?X2SD -
?X2DD -
?X2RM -
?X2TO -

exists.
delete source after transfer.
delete destination before transfer.
use record mode transfer.
let connection time out after
failure.

?X2CP - restart at last checkpoint after
failure.

For all other queue types:
?XXW2 equals number of copies the EXEC spooler
creates. (If ?XXW2 equals 0, one copy is
assumed.)

Reserved (Set to 0.)

For print and batch queues (doubleword): ?XXW3
contains a byte pointer to a text string
(destination). This string appears in block
letters at the top of any header or trailer
pages. If ?XXW3 contains 0, the text string
is the default username.

However, if you supply ?PKRl in offset ?XPRV you
must supply 0 in this doubleword. The byte
pointer to the text string is in offset ?XHBP
of the packet extension.

For an SNA queue, set one of these mutually
exclusive flags:

?X3TR - transparent transmission.
?X3CO - concatenate.

For all other queue types (single word): ?XXW3
must be O.

For print and batch queues: ?XXW3L contains the
low-order bits of ?XXW3.

For all other queue types: ?XXW3L must be O.

1

1

1

1

1

________________ I __ ~--~
* There is no default unless otherwise specified. (continued)

086-000195 updates
093-000542 Licensed Material- Property d ~ata General Corporation 2-121

I

?EXEC Continued

Table 2-16. Contents of ?EXEC Packet for Queue Requests·

1
Offset 1 Contents 1

===============1===1
?XUSR
(doubleword)

?XPWD
(doubleword)

?XHBP
(doubleword)

?XMBP
(doubleword)

1 For ?XRFNC equal to ?XFOTH, this field is 1

1 username, otherwise it is reserved. (Set to 0.)
1

1 For ?XRFNC equal to ?FOTH, this field is password,
1 otherwise it is reserved. (Set to 0.)
1

1

1

1

1

1

1

1

1

1

1

1

1

For print and batch queues ?XHBP contains a byte
pointer to a text string (document name).
This string appears in block letters in the
middle of any header or trailer pages. If ?XHBP
contains 0, the text string is the default
document name.

For print and batch queues ?XMBP contains a byte
pointer to a mapper filename. A mapper file
alters characters, such as changing lowercase
characters to uppercase characters for
printing. Supply 0 if there is no mapper file.

_______________ 1 ___ _

* There is no default unless otherwise specified. (concluded)

NOTE: Supply values for the following four offsets only if offset ?XPRV contains ?PKRl.

For more information on the format of the ?XXW2 and ?XXW3 offsets, refer to the parameter files
PARU.32.SR and PARU.16.SR. The sections describing the ?EXEC parameters are particularly
useful when issuing queue submissions for FTA and SNA queues.

If you place ?PKRI in offset ?XPRV and supply a local port number in offset ?XRES2I?XLPN and
set Bit ?XFCN in offset ?XFGS, then ?EXEC sends an IPC message to the local port. The recipient
can then notify a user that a print request is being processed.

The IPC comes from the same global port as that of an ?ILKUP of the specified queue in :PER.

All queue files in :PER have the same global port number. To identify the queue associated with the
notification ?EXEC will return the queue name in the IPC message. The format of the IPC message
that ?EXEC returns is in Figure 2-29.

If the operator has set the EXEC limit feature, which limits the number of pages or the CPU time
allowed for your job, you must set offset ?XLMT accordingly, or default it to 0. When you default
?XLMT, EXEC sets the appropriate limit.

Offset ?XFBP is a byte pointer to the job name for batch queue requests and to the form name for
other queue requests. (If you set this to 0, EXEC uses the device's previously defined default forms.)
The job name, which must contain from 1 through 311egal filename characters, identifies a batch
job (one or more programs submitted as a unit to batch). The job name you select need not be
unique.

2-122 Licensed Material - Property a Data General Corporation
08~195 update

093-00054

Word 0

Word 1

Word 2
through
Word 3

Word 4
through
Word 23

Word 24
through
Word 223

o 15
--1
Revision number (zero) 1

Sequence number

Time/date stamp of submission

Queue name

Pathname

224 (octal) = 148. words in the message

Figure 2-29. Structure of the [PC Print Notification Message from ?EXEC

Form name is the name of a form in the :UTIL:FORMS directory that was created with the CLI
forms control utility (FCU). Typically, the system manager creates files in :UTIL:FORMS. Like the
job name, the form name must contain from 1 through 31 legal filename characters. To determine
the valid form names for your installation, type

ACUV :UTIL:FORMS:+

This returns the names of the form files in :UTIL:FORMS and their corresponding ACLs. You can
use any form file for which you have Read access.

Offsets ?XAFD and ?XAFT allow you to delay processing the queue request until a specific time has
elapsed. The interpretation of these offsets varies, depending on whether you set flag ?XFRA in
offset ?XFGS.

If you set the ?XFRA flag, you must set offsets ?XAFD and ?XAFT to the desired date and time
offsets from the current time. If you do not set the ?XFRA flag, set offsets ?XAFD and ?XAFT to the
desired processing date and time in the standard notations.

Offset ?XXW2 is a print flag with different meanings for different queue types. For a batch queue,
this flag must be O. For an FTA queue you can select any combination of transfer options flags. An
SNA queue has a number of options associated with it, several of which are mutually exclusive.
You can choose ONE read type (data-sensitive, dynamic, or dynamic SO-character) and ONE class
of device (card, terminal, or exchange). You also have the option of indicating Hollerith to EBCDIC
translation with the ?X2HO flag.

For any other queue, ?XXW2 is the number of copies the EXEC spooler creates (0 is interpreted as
one copy.)

093-000542 Licensed Material - Property of Data General Corporation 2-123

•

?EXEC Continued

Queuing a User-Cooperative Job

Use the ?XFUSR subpacket of the ?EXEC system call to place a job request in a user-cooperative
queue. Figure 2-30 shows the format for the ?XFUSR subpacket. Table 2-17 describes the contents
of the ?XFUSR subpacket.

o 15 16 31
-------------------------+--------------------------

7XRFNC Function code 7XFUSR I Place 7PKRO here 7XPRV
-------------------------+-------------------------

7XTYP Byte pointer to queue name buffer
-------------------------+-------------------------

7XDAT Date queued I Printer queue options. 7XRESI
-------------------------+-------------------------

7XTIM Time queued I Reserved (Set to 0.) 7XRES2
-------------------------+-------------------------

7XLMT Limit Value I Queue priority 7XPRI
-------------------------+-------------------------

7XFGS Flag word I Sequence number 7XSEQ
-------------------------+-------------------------

7XFBP Reserved (Set to 0.)

7XPBP Byte pointer to submitter job descriptor
-------------------------+-------------------------

7XAFD Delayed processing date I Delayed processing time 7XAFT
-------------------------+-------------------------

7XXWO Byte length of submitter I Reserved (Set to 0.) 7XXWOL
job descriptor «1024) I

-------------------------+-------------------------
7XXWI Reserved (Set to 0.) I Reserved (Set to 0.) 7XXWIL

-------------------------+-------------------------
7XXW2 Reserved (Set to 0.) I Reserved (Set to 0.) 7XXW2L

-------------------------+-------------------------
7XXW3 Reserved (Set to 0.) I Reserved (Set to 0.) ?XXW3L

-------------------------+-------------------------
7XLTH = packet length

Figure 2-30. Structure of ?XFUSR Subpacket of ?EXEC System Call

2-124 Licensed Material - Property of Data General Corporation 093-000542

Table 2-17. Contents of ?XFUSR Subpacket of ?EXEC System Call

I
1 Offset 1 Contents
1===============1===
I I
I ?XRFNC I ?XFUSR
I 1

I I
I I
1

I
I ?XPRV
1

?XTYP

?XDAT

?XTIM

?XLMT

?XPRI

?XFGS

Setting Bit 0 of ?XRFNC indicates that RMA should
deflect this request to the remote host specified
in AC1.

Packet revision number; set to ?PKRO.

Byte pointer to the queue name of the user queue.

Date queued (returned by the operating system
in standard date notation) .

Time queued (returned by the operating system
in standard date notation) .

Resource limit; see Table 2-16.

Priority of entry within the range of n through
255. The value of n equals the maximum priority
specified in your user profile.

DEFAULT = -1 (EXEC assigns a priority in the
middle of the range and returns the
value here) .

Flag word

?XFSH = Set sequence number held (/HOLD)
by user flag for this entry.

?XFDA

?XFNR

?XFBI

?XFOP

?XFNO

Ignored.

Do not restart entry (/NORESTART) if
EXEC or the system crashes during
processing.

Ignored.

Start processing only if operator is
on (/OPERATOR) duty.

Notify (/NOTIFY) the user's terminal
when this entry is completed. The
message is lost if /NRM terminal
characteristic is on or if you log
off, and then log on again. There is
no message if you are not a
descendant of EXEC.

1
1

1

________________ --~-----I
(continued)

093-000542 licensed Material - Property of Data General Corporation 2-125

?EXEC Continued
Table 2-17. Contents of ?XFUSR Subpacket of ?EXEC System Call

2-126

Offset
===============

?XFGS
(continued)

?XSEQ

?XPBP

?XAFD and
?XAFT

?XAFD and
?XAFT
(continued)

?XXWO

Contents
===

?XFPE = Pend (/PEND) the calling process
until the operator acts on the
request.

?XFRA

?XFTI

?XFFO

DEFAULT

Begin the job after (/AFTER=+) the
specified date and time. ?XFRA
determines how to interpret the
values in offsets ?XAFD and ?XAFT.

Ignored.

Ignored.

o (no flags).

The sequence number that EXEC assigns to this
entry and returns here.

Byte pointer to the submitter part of the job
descriptor.

A job descriptor completely identifies a job.
The cooperative defines the form and content of
the submitter part. Refer to the "Programming
EXEC Cooperative Processes" manual for more
information on the job descriptor.

Interpretation depends on flag bit ?XFRA in
offset ?XFGS. If ?XFRA is not set:

?XAFD - read as the date (in file system format)
after which the entry can be processed.

?XAFT - read as the time (in file system format)
after which the entry can be processed.

If ?XFRA is set:

?XAFD - read as a number of whole days after
which the entry can be processed.

?XAFT - read as a number of bi-seconds (2-second
intervals) after which the entry can be
processed.

If ?XFRA was set, EXEC adds the time periods
specified in ?XAFD and ?XAFT, starting from the
time the queue request was made, and begins
processing the entry after the designated time
period has elapsed.

The default value for ?XAFD and ?XAFT is 0 (no
delayed processing) .

Byte length of the submitter part of the job
descriptor. It must be less than 1024 bytes.

(concluded)

Licensed Material - Property of Data General Corporation 093-000542

Using Hold, Unhold, Cancel Queue Requests (AOSNS)

You can also use ?EXEC to suspend (hold), release (unhold), or clear (cancel) a queue entry you
have created. An unhold directive negates a previously issued hold directive. Figure 2-31 shows the
structure of the AOSNS packet for the hold, unhold, and cancel directives. Table 2-18 lists the
AOSNS ?EXEC packet's contents.

As in the other ?EXEC packets, the value of offset ?XRFNC determines the action you want to
perform: ?XFHOL holds the specified entry, ?XFUNH releases the entry, and ?XFCAN cancels the
entry. In addition to the ?XFHOL specification, each queue request has one hold bit that only the
operator process can access. If any hold bit is set, EXEC does not select the entry for processing.

o 15 16 31
1--------------------------+--------------------------1

?XRFNC 1 Function (see Table 2-18) 1 Place ?PKRO here 1 ?XPRV
1--------------------------+--------------------------1

?XFPl 1 Flag word 1 Byte pointer (high-order 1 ?XFP2
1 1 word) or sequence number 1
1--------------------------+--------------------------1

?XFP2L 1 Byte pointer (low order 1

1 word) or 0 1

1--------------------------1
Packet length = ?XLHOL (for hold queue requests);

?XLUNH (for unhold queue requests) i or
?XLCAN (for cancel queue requests)

Figure 2-31. Structure of ADS/VS ?EXEC Packet for Hold, Unhold, or Cancel Queue Requests

Offset ?XFP2 contains either the high-order word of a byte pointer to the entry's job name or else
the entry's sequence number.

If you use offsets ?XFP2I?XFP2L as a byte pointer, EXEC searches only the batch queue, and
changes only the status of the jobs which have this job name. If these offsets contain a sequence
number (?XFP2L contains zero), EXEC searches all queue entries and changes the hold bit of the
entry designated by the specified sequence number.

When you select the Cancel option (?XFCAN), EXEC clears all hold bits, including the operator
bits, and sets the entry's Canceled by User bit.

093-000542 Licensed Material - Property of Data General Corporation 2-127

?EXEC Continued
Table 2-18. Contents of AOSNS ?EXEC Packet for Hold, Unhold, or Cancel Queue Requests·

Offset Contents
=============== ==

?XRFNC Function: select one of the following values:

?XPRV

?XFP1

?XFP2
(doubleword)

?XFHOL--Suspend (hold) the specified entry.
?XFUNH--Release (unhold) the specified entry.
?XFCAN--Clear (cancel) the specified entry.

Packet revision number. Place ?PKRO here.

Flag word

If ?XFP2 and ?XFP2L contain a byte pointer to
job name, set to -1.

If ?XFP2 and ?XFP2L contain a sequence number,
set to any value.

Contains one of the following:

Byte pointer to job name.

Sequence number. (Set ?XFP2L to 0.)
________________ 1 __ __

* There is no default unless otherwise specified.

Job names and sequence numbers need not be unique; that is, it is possible to have several requests
with the same job name or sequence number. In this case, EXEC performs the hold, unhold, or
cancel action on all entries that bear the specified sequence number or job name.

Note that the hold and unhold directives do not affect an entry that is currently being processed.
The cancel directive will stop the processing of a currently active request.

2-128 Licensed Material - Property of Data General Corporation 093-000542

Obtaining EXEC Status Information

To get selected information about the EXEC process that is currently running, issue ?EXEC with
the packet shown in Figure 2-32. The operating system returns the status information to offset
?XFP1 of the packet and, optionally, to the buffer you specify in offset ?XFP2. Table 2-19 describes
each offset in the packet.

° 15 16 31
1--------------------------+-------------------------1

7XRFNCI Function code 7XFSTS 1 Place 7PKRO here 17XPRV
1--------------------------+-------------------------1

7XFPl 1 Status information 1 Byte pointer to buffer 17XFP2
1 1 for additional in for- 1
1 1 mation (high-order word) 1
1--------------------------+-------------------------1

7XFP2LI Byte pointer (low-order 1
1 word) 1
1--------------------------1

7XLSTS = packet length

Figure 2-32. Structure of ?EXEC Packet for Status Information

Table 2-19. Contents of ?EXEC Packet for Status Information*

1

1 Offset 1 Contents
1===============1===
1 7XRFNC 1 7XFSTS (specifies function: obtain EXEC status
1 1 information).
1 1
1 7XPRV 1 Packet revision number. (Set to 7PKRO.)

093-000542

7XFPl

7XFP2
(doubleword)

1

1 Status information (returned by EXEC) :
1

1 - If Bit 0 1, operator is on duty.
0, system is unattended. If Bit °

If Bit 1 = 1, your username is logged on in
batch mode.

If Bit 1 0, your username is logged on at a
terminal or is not logged on.

If Bits 8-15 0, you are not logged on.
If Bits 8-15 PID of the process immediately

subordinate to EXEC, you are
logged on.

Byte pointer to buffer area you set aside to
receive the terminal name or the batch stream
name (if you were logged on under EXEC) . (The OS
returns the terminal name without the @ prefix.)

DEFAULT = 0 (no buffer) .

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 2-129

?EXEC Continued

Obtaining Extended EXEC Status Information

In addition to the information that function code ?XFSTS returns, you can also obtain the PID of
the EXEC process. You do this by specifying function code ?XFXTS in offset ?XRFNC. Issue ?EXEC
with the packet shown in Figure 2-33. Table 2-20 describes each offset in the packet.

2-130

o 15 16 31
1--------------------------+-------------------------1

?XRFNCI Function code ?XFXTS 1 Place ?PKRO here I?XPRV
1--------------------------+-------------------------1

?XFPl 1 Status information 1 Byte pointer to buffer I?XFP2
1 1 for additional infor- 1
1 1 mation (high-order word) 1
1--------------------------+--------------------------1

?XFP2LI Byte pointer (low-order 1 Reserved (set to 0) I?XFP3
1 word) 1 1
1--------------------------+-------------------------1

?XFP4 1 IS-bit PID 1

1--------------------------1

?XLXTS = packet length

Figure 2-33. Structure of ?EXEC Packet for Extended Status Information

Table 2-20. Contents of ?EXEC Packet for Extended Status Information*

1

Offset 1 Contents 1

=============== ===1
?XRFNC ?XFXTS (specifies function: obtain EXEC extended

status information).

?XPRV

?XFPl

?XFP2
(doubleword)

?XFP3

?XFP4

Packet revision number. (Set to ?PKRO.)

Status information (returned by EXEC) :

If Bit 0 = 1, operator is on duty.
If Bit 0 0, system is unattended.
If Bit 1 1, your username is logged on in

batch mode.
If Bit 1 = 0, your username is logged on at a

terminal or is not logged on.

Bits 2-15 are reserved.

Byte pointer to buffer area you set aside to
receive the terminal name or the batch stream
name (if you were logged on under EXEC). (The OS
returns the terminal name without the @ prefix.)

DEFAULT o (no buffer) .

Reserved. (Set to 0.)

If you are logged on, the OS returns the IS-bit
PID of the process immediately subordinate to
EXEC. If you are not logged on, the OS returns O.

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 093-000542

Submitting a Job to a MOUNT Queue

You use the ?XFMNT function of ?EXEC to submit a job to a MOUNT queue. The CLI MOUNT
command uses the function, and it allows specification of queueing parameters such as !HOLD and
IAFTER. If you set the ?XFPE flag bit, it indicates that the process should be pended until the
operator responds to the queue request (e.g., mounts the tape or refuses the request). If you don't
set the ?XFPE flag bit, the process takes the normal ?EXEC call return as soon as the request
becomes part of the queue. An operator's response to an unpended mount request (i.e., the ?XFPE
flag bit is off) is relayed to the caller so that the caller is aware of the operator's actions.

The ?XFMNT packet in Figure 2-34 allows specification of all the ?XFMUN and ?XFMLT options
plus some of the ?XFSUB options. The details of these three options appear respectively in
Figure 2-22, Figure 2-24, and Table 2-16lFigure 2-28. You can use the ?XWWl offset in
Figure 2-34 to specify a tape or diskette mount. If you specify neither type of mount, ?EXEC
assumes you are issuing a tape mount request.

You can specify a directory location for the link name. In this case, the operating system places in
offset ?XWW3 a byte pointer. This byte pointer points to the directory name where the logical name
will be created.

Issue ?EXEC with the packet shown in Figure 2-34.

093-000542

o 15 16 31
1-------------------------+-------------------------1

?XRFNC 1 Function code ?XFMNT 1 Place ?PKRO here 1 ?XPRV
-------------------------+-------------------------1

?XTYP Byte pointer to queue name (-1 if the default) 1

-------------------------+-------------------------1
?XDAT Date queued (returned) 1 Additional flags 1 ?XFG2

1 (set to 0) 1

-------------------------+-------------------------1
?XTIM Time queued (returned) 1 Reserved (set to 0) ?XRES2

-------------------------+-------------------------
?XLMT Reserved (set to 0) 1 Reserved (set to 0) ?XPRI

-------------------------+-------------------------
?XFGS Flags word 1 Sequence number ?XSEQ

1 (returned)
-------------------------+-------------------------

?XFBP Byte pointer to VOLID list

?XPBP Byte pointer to full pathname
-------------------------+-------------------------

?XAFD /AFTER date, else 0 1 /AFTER time, else 0 ?XAFT
1-------------------------+-------------------------

?XWWO 1 Mount status bits 1 Reserved (set to 0) ?XWWOL
1-------------------------+-------------------------

?XWWl 1 Media type (tape or 1 Reserved (set to 0) ?XWWIL
1 diskette) 1

1-------------------------+-------------------------
?XWW2 1 Byte pointer to operator message ?XWW2L

1---
?XWW3 1 Byte pointer to directory pathname for ?XWW3L

1 link, else 0
1---

?XLMNT = packet length

Figure 2-34. Structure of ?EXEC Packet for a MOUNT Queue Request

Licensed Material - Property of Data General Corporation 2-131

?EXEC Continued

Dismounting a Unit (Extended Request)

You can specify a directory where the logical name of the dismounted unit will be located. You
must also specify this directory pathname at DISMOUNT time.

Issue ?EXEC with the packet shown in Figure 2-35.

o 15 16 31
1-------------------------+-------------------------1

?XRFNC 1 Function code ?XFXDU 1 Place ?PKRO here 1 ?XPRV
1-------------------------+-------------------------1

?XXDL 1 Byte pointer to logical name 1
1---1

?XXDT 1 Byte pointer to operator text 1
1---1

?XXDP 1 Byte pointer to directory pathname 1

1---1
?XXDQ 1 Reserved (set to -1) 1

1---1
?XLXDU = packet length

Figure 2-35. Structure of ?EXEC Packet for Dismounting a Unit (extended request)

2-132 Licensed Material - Property of Data General Corporation 093-000542

Modifying the Queuing Parameters of a Queued Job

You use the ?XFMOD function of ?EXEC to request a change in the queuing parameters of a job
that you previously queued (except for an ?XFUSRjob). The packet in Figure 2-36 shows the
structure of a packet for the ?XFMOD function. Offsets whose areas begin with an asterisk (such as
?XFBP) are offsets whose values you can change. You can also reset flags with this version of the
?EXEC call.

Note the similarity of the packet in Figure 2-36 with the submission-type packets such as the one
in Figure 2-34.

Table 2-21 gives more information about offsets ?XWMO through ?XWM3 in Figure 2-36.

093-000542

o 15 16 31
-------------------------+-------------------------

?XRFNC Function code ?XFMOD I Place ?PKRO here ?XPRV

?XTYP

?XDAT

?XTIM

?XLMT

?XFGS

?XFBP

?XPBP

?XAFD

?XWWO

?XWWl

?XWW2

?XWW3

?XUSR

?XPWD

?XHBP

?XMBP

?XWMO

?XWM2

-------------------------+-------------------------
Reserved (set to -1)

-------------------------+-------------------------
Reserved (set to 0) I * Additional flags ?XFG2

-------------------------+-------------------------
Reserved (set to 0) I Reserved (set to 0) ?XRES2

-------------------------+-------------------------
* New /CPU value or new I * New /QPRIORITY value ?XPRI

maximum pages value I
-------------------------+-------------------------

* Flags word I Target sequence number ?XSEQ
I for entry to be modified

-------------------------+-------------------------
* Byte pointer to new job name or form name

Reserved (set to 0)
-------------------------+-------------------------

* New /AFTER date I * New /AFTER time ?XAFT
-------------------------+-------------------------

* New XWO value ?XWWOL

* New XWI value ?XWWIL

* New XW2 value ?XWW2L

* New XW3 value ?XWW3L

Reserved (set to 0)

Reserved (set to 0)

* Byte pointer to new header value

* Byte pointer to new mapper filename
-------------------------+-------------------------

Modify flags I Modify flags ?XWMI
-------------------------+-------------------------

Reserved (set to 0) I Reserved (set to 0) ?XWM3
-------------------------+-------------------------
?XLMOD = packet length

Figure 2-36. Structure of ?EXEC Packet for Changing Queuing Parameters

Licensed Material - Property of Data General Corporation 2-133

?EXEC Continued
Required fields in the QMODIFY packet of Figure 2-36 are:

• Offset ?XRFNC must contain function code ?XFMOD.

• Offset ?XPRV must contain value ?PKRO.

• Offset ?XTYP must contain -1 under AOSNS.

• Offset ?XSEQ must contain the sequence number of the job you want to modify.

Set all unused offsets in the packet to zero. If you want to change any of the original queued
parameters, place the new value in the appropriate location in the packet. This location is the same
one you would specify if you were queuing the job for the first time.

2-134 Licensed Material - Property of Data General Corporation 093-000542

The bit flags in offsets ?XWMO, ?XWM1, ?XWM2, and ?XWM3 appear in Table 2-21.

Table 2-21. Contents of Selected Offsets in the ?EXEC Packet for the ?XFMOD Function

?XWM1

?XWM2

?XWM3

093-000542

Flags 1BO through 1B3 are Reserved (Set to 0.)
When the following flags are set, a corresponding offset
contains new information.

?WOBP = 5

?WOEND 6

?WOCOP 7

?WOPG = 8.

?WOQPR = 9.

?WOJN = 10.

?WOFBP 11.

?WOADT = 12.

?WOQOT 13.

?WOQLT 14.

?WODES 15.

Indicates offset ?XLMT contains a new CPU
limit, /CPU
Indicates offset ?XWWO contains a new
beginning page number, /BEGIN
Indicates offset ?XWW1 contains
a new ending page number, /END
Indicates offset ?XWW2 contains
a new number of copies, /COPIES
Indicates offset ?XLMT contains
a new pages limit, /PAGES
Indicates offset ?XPRI contains
a new queue priority, /QPRIORITY
Indicates offset ?XFBP contains a byte
pointer to a new jobname, /JOBNAME
Indicates offset ?XFBP contains a byte
pointer to a new form name, /FORMS
Indicates offsets ?XAFD and ?XAFT contain
a new /after date and time, /AFTER
Indicates offset ?XWWO contains a byte
pointer to new queue output file, /QOUTPUT
Indicates offset ?XWW1 contains a byte
pointer to a new queue list file, /QLIST
Indicates offset ?XWW3 contains a byte
pointer to a new destination string (for
batch, print and plot only), /DEST

Bit flags, word 1

?W1SH = 0 Examine bit ?XFSH in word ?XFGS, /HOLD
?W1DA = 1 Examine bit ?XFDA in word ?XFGS, /DELETE
?W1NR 2 Examine bit ?XFNR in word ?XFGS, /RESTART
?W1BI = 3 Examine bit ?XFBI in word ?XFGS, /BINARY
?W10P = 4 Examine bit ?XFOP in word ?XFGS, /OPERATOR
?W1NO 5 Examine bit ?XFNO in word ?XFGS, /NOTIFY
?W1TI 7 Examine bit ?XFTI in word ?XFGS, /TITLES
?W1FO = 8. Examine bit ?XFFO in word ?XFGS,

/FOLDLONGLINES

1B9 through 1B15 -- Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Licensed Material - Property of Data General Corporation 2-135

?EXEC Continued

Obtaining a List of Queue Names

You use the ?XFNQN function of ?EXEC to request a list of queue names. You can issue the call
repeatedly to obtain names of all queues of a given type or of all queues regardless of type. Since
this call can be iterative, we provide a "get next" key field in the parameter packet. This offset (the
64-bit field formed by ?XFHK and ?XFLK) has an initial value of O. Successive iterations use and
modify this offset. System calls ?GNFN, and ?EXEC with function code ?XFQDS, also use a "get
next" key field.

Offset ?XFWP of the main packet contains a word pointer to the first of a series of subpackets. The
number of these subpackets is in offset ?XNRQ.

You must create these subpackets. In each subpacket, define its byte pointer. Otherwise, ?EXEC
takes the error return with error code ERVBP.

Issue ?EXEC with the packet shown in Figure 2-37.

• The ?XQ IFG offset contains the queue status bits shown in Table 2-22.

The flag word in offset ?XFLG contains a bit that indicates whether or not a queue name was
provided on input. If so, the byte pointer in the first queue name block points to the queue name.
Offset ?XQIFG contains a bit that indicates the open/closed status of the queue. Offset ?XQQT
contains a numeric indicator of the queue type. (See Table 2-23.)

Table 2-22. Queue Status Bit Definitions in Offset ?XQ1 FG

1

Offset 1 Content
=========1==

?XQIFG 1 Flag word for the queue status bits.
1 The bits are:
1 ?XQSTAT 0 Open or Closed bit.
1 ?XQMSRT 1 Mayor may not start the queue.
1 ?XQDEL = 2 Delete bit.
1 ?XQSRT 3 Queue started, or did not start.
1 ?XQIRSV 4 Reserved (Set to 0.)
1 ?XQ2RSV 5 Reserved (Set to 0.)
1
1 Bit Masks for ?XQ1FG word in ?XFNQN block.
1
1 ?X1STAT 1B (?XQSTAT) Queue is open
1 ?XIMSRT 1B (?XQMSRT) May not start the queue
1 ?XIDEL = IB(?XQDEL) May not delete the queue
1 ?X1SRT 1B(?XQSRT) Queue is started
1

2-136 Licensed Material - Property of Data General Corporation 093-000542

093-000542

o 15 16 31
-------------------------+-------------------------

?XRFNC Function code ?XFNQN 1 Place ?PKRO here ?XPRV

?XFHK

?XFLK

?XNRQ

?XFQT

?XFWP

-------------------------+-------------------------
Set to 0 for the first calli thereafter used by
the operating system for the next key

Set to 0 for the first calli thereafter used by
the operating system for the next key

-------------------------+-------------------------
Maximum number of queue 1 Actual number of queue ?XNRT
names requested 1 names returned

-------------------------+-------------------------
Identifying number of 1 Flag word ?XFLG
the queue type whose 1

names you want, or -1 1

for all queue names 1

-------------------------+-------------------------
Word pointer to the first of the ?XNRQ subpackets
that receive queue name information

1 ---

1 ?XLNQN = packet length
1

1 1-------------------------+-------------------------1
-->1 Queue status bits (See 1 Queue type (See

?XQ1FG 1 Table 2-22.) 1 Table 2-23.) 1 ?XQQT •
1-------------------------+-------------------------1

?XQNJ 1 Number of jobs in queue 1 Reserved 1 ?XQRSV
1-------------------------+-------------------------1

?XQQN 1 Byte pointer to first queue name returned 1

1---1
?XLQNB = length of a queue name block

1-------------------------+-------------------------
?XQ1FG 1 Queue status bits 1 Queue type ?XQQT

1-------------------------+-------------------------
?XQNJ 1 Number of jobs in queue 1 Reserved ?XQRSV

1-------------------------+-------------------------
?XQQN 1 Byte pointer to second queue name returned

1---
?XLQNB = length of a queue name block

1-------------------------+-------------------------
?XQ1FG 1 Queue status bits 1 Queue type ?XQQT

1-------------------------+-------------------------
?XQNJ 1 Number of jobs in queue 1 Reserved ?XQRSV

1-------------------------+-------------------------
?XQQN 1 Byte pointer to last queue name returned

1 (number ?XNRT)
1---

?XLQNB = length of a queue name block

Figure 2-37. Structure of ?EXEC Packet for Obtaining Queue Names

Licensed Material - Property of Data General Corporation 2-137

?EXEC Continued
Table 2-23. ?EXEC Queue Types in Offset ?XQQT

Offset Value

?XQBAT
?XQLPT
?XQPLT
?XQHAM
?XQSNA
?XQFTA
?XQMUN
?XQUSR

Queue Type
============

BATCH
PRINT
PLOT
HAMLET
SNA
FTA
MOUNT
USER

Obtaining QDISPLAY Information

Process Type
======================================

Batch processing
Print processing
Plot processing
HAMLET data transfer
SNA data transfer
FTA data transfer
Mount processing
User-defined processing

You use the ?XFQDS function of?EXEC to obtain QDISPLAY information. Each ?EXEC call of type
?XFQDS can obtain from 1 to 32 units of QDISPLAY information. You specify, in offset ?XFQN, the
name of the queue for which you want QDISPLAY information.

Since this call can be iterative, we provide a "get next" key field in the parameter packet. This
offset (the 64-bit field formed by ?XFHK and ?XFLK) has an initial value of O. Successive iterations
use and update this offset. System calls ?GNFN and ?EXEC (with function code ?XFNQN) also use
a "get next" key field.

To obtain a complete list of all entries in a given queue, issue ?EXEC with key field ?XFHKI?XFLK
set to zero. Then repeatedly reissue ?EXEC, without changing fields ?XFHKI?XFLK and ?XFQN,
until error END OF GET NEXT SEQUENCE is returned. Repeat this process for each queue for
which you need to obtain QDISPLAY information.

For the flag words in the buffers that receive the information

• The status flag word, offset ?XD3FG, has one bit defined. OBO represents an inactive job and
lBO represents an active job.

• Bit definitions for the flag word, offset ?XD2FG, are the same as for those of?XFG2 in queue
submission packets.

• Bit definitions for the additional flag word, offset ?XDSFG, are the same as for those of ?XFGS
in queue submission packets.

Offset ?XFWP of the main packet contains a word pointer to the first of a series of subpackets. The
number of these subpackets is in offset ?XNRQ.

You must create these subpackets. In each subpacket, define its three byte pointers. Otherwise,
?EXEC takes the error return with error code ERVBP.

Issue ?EXEC with the packet shown in Figure 2-38.

2-138 Licensed Material - Property of Data General Corporation 093-000542

093-000542

o 15 16 31
1-------------------------+-------------------------

?XRFNC 1 Function code ?XFQDS 1 Place ?PKRO here ?XPRV
1-------------------------+-------------------------

?XFHK 1 Set to 0 for the first calli thereafter used by
1 the operating system for the next key.

?XFLK

?XNRQ

?XFQN

?XFWP

Set to 0 for the first calli thereafter used by
the operating system for the next key.

-------------------------+-------------------------
Maximum number of queue 1 Actual number of queue ?XNRT
entries requested 1 entries returned

-------------------------+-------------------------
Byte pointer to queue name

Word pointer to the first of the ?XNRQ subpackets
that receive QDISPLAY information

?XLQDS = packet length

1-------------------------+-------------------------1
-->1 Submission date 1 Submission time 1

?XDSD 1 1 1 ?XDST
1-------------------------+-------------------------1

?XDSQN 1 Sequence number 1 Status flag 1 ?XD3FG
1-------------------------+-------------------------1

?XDSFG 1 Additional flags (?XFGS) 1 Flag word (?XFG2) 1 ?XD2FG
-------------------------+-------------------------1

?XDQP QPRIORITY 1 /AFTER date ?XDAD
-------------------------+-------------------------

?XDTA /AFTER time 1 Limit value ?XDLMT
-------------------------+-------------------------

?XDBP Beginning page 1 Ending page ?XDEP
-------------------------+-------------------------

?XDCOP Number of copies 1 Reserved (set to 0) ?XDRSV

?XDUN

?XDJN

?XDPN

-------------------------+-------------------------
Byte pointer to username

Byte pointer to job name/form name

Byte pointer to pathname

?XLFWP length of QDISPLAY block of information
number 1

(continued)

Figure 2-38. Structure of ?EXEC Packet for Obtaining QDISPLAY Information

Licensed Material - Property of Data General Corporation 2-139

?EXEC Continued

o 15 16 31
-------------------------+-------------------------

?XDSD Submission date I Submission time ?XDST
-------------------------+--------------------------

?XDSQN Sequence number I Status flag ?XD3FG
-------------------------+-------------------------

?XDSFG Additional flags (?XFGS) I Flag word (?XFG2) ?XD2FG
-------------------------+--------------------------

?XDQP QPRIORITY I /AFTER date ?XDAD
-------------------------+--------------------------

?XDTA /AFTER time I Limit value ?XDLMT
-------------------------+--------------------------

?XDBP Beginning page I Ending page ?XDEP
-------------------------+-------------------------

?XDCOP Number of copies I Reserved (set to 0) ?XDRSV

?XDUN

?XDJN

?XDPN

-------------------------+-------------------------
Byte pointer to username

Byte pointer to job name/form name

Byte pointer to pathname

?XLFWP = length of QDISPLAY block of information
number ?XNRT

(concluded)

Figure 2-38. Structure of ?EXEC Packet for Obtaining QDISPLAY Information

Sample Packet

The following sample packet shows mounting an unlabeled tape:

PKT: .BLK ?XLMUN ; Packet length is ?XLMUN.

.LOC PKT+?XRFNC iWhat are you going to do?

. WORD ?XFMUN iMount an unlabeled tape.

.LOC PKT+?XRES iReserved

. WORD 0 i (Set to O.)

.LOC PKT+?XMUL iByte pointer to tape's
ilogical name?

. DWORD LNAM*2 iByte pointer to LNAM.

.LOC PKT+?XMUT ;Byte pointer to operator
;message?

. DWORD MSG*2 iByte pointer to MSG.

.LOC PKT+?XLMUN iEnd of packet.

LNAM: . TXT /TAPE/ iLogical tape name.

MSG: . TXT /TAPE IS ON FLOOR/ iOperator text message.

Notes

• Refer to the chapter about the EXEC utility in the manual Managing AOS / VS and AOS / VS II
for information on the EXEC commands, setting queue names, batch processing, and the format
directory.

2-140 Licensed Material - Property of Data General Corporation 093-000542

?EXPO Sets, clears, or examines execute-protection status.

?EXPO
error return
normal retu rn

Input

ACO

AC1

AC2

Starting address of the
target region

Ending address of the
target region

One of the following:

• -1 to clear execute
protection

• 0 to set execute
protection

• Bit pointer to the
start of a bit array
that defines the region's
execute-protection status

Error Codes in ACO

Output

ACO Unchanged

ACl Unchanged

AC2 Unchanged

ERICM
ERPRE
ERVWP

Illegal system command (invalid system call for l6-bit processes)
Invalid system call parameter
Invalid word pointer passed as a system call argument

Why Use It?

You can prevent your program from executing certain logical pages, such as pages that contain
data, by setting execute protection. This makes it easier to find errors in your code.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

Depending on your input to AC2, ?EXPO performs one of the following functions:

• Sets execute protection for the logical address region that you specify in ACO and AC 1.

• Clears execute protection from the logical address region that you specify in AC 1.

• Returns the current execute-protection status for the region that you specify.

093-000542 Licensed Material - Property of Data General Corporation 2-141

?EXPO Continued

Setting and Clearing Execute Protection

To set or clear execute protection for a region, load ACO with the starting address of the region and
load ACI with the ending address of the region before you issue ?EXPO. The starting and ending
addresses must be in the same ring.

When you use ?EXPO to set execute protection, the operating system checks to see if the starting
address is the first word on a page and if the ending address is the last word on a page. If either
address falls on a page boundary, the operating system includes that page in the execute-protected
region. If neither the starting nor the ending address falls on a page boundary, the operating
system excludes that page from the execute-protected region.

Examining Execute-Protection Status

To find out whether the specified region is execute protected, perform the following steps:

1. Define a bit array in your address space.

Bit 0 in this array represents the first page in the target region,

Bit 1 represents the second page, and so on to the end of the array.

2. Load the array's bit pointer relative to the calling segment into AC2.

3. Issue ?EXPO.

On output, the operating system sets the corresponding bit to 1 if the page is execute protected; it
sets the corresponding bit to 0 if the page is not execute protected. In other words, each bit that is
set means that the page that that bit represents is execute protected.

2-142 licensed Material - Property of Data General Corporation 093-000542

?FDAY Converts date to a scalar value.

?FDAY
error retum
normal retum

Input

ACO Days from 1 through 31

AC 1 Month from 1 through 12

AC2 (Year minus 1900) from year =
1968 through year = 2145

Error Codes in ACO

ERPRE Invalid system call parameter

Why Use It?

Output

ACO Scalar value for days (the number of
days that have elapsed since
31 December 1967)

AC1 Unchanged

AC2 Unchanged

?FDAY is a useful way to obtain input parameters for the ?CREATE system call's time block, an
additional parameter block you can use to record a file's creation date and time, and the day and
time it was last accessed or modified. The parameters for the ?CREATE time block must be scalar
values.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?FDAY is the inverse of?CDAY; that is, it converts the date, expressed in standard notation, to a
scalar value from a base date of31 December 1967. Before you issue ?FDAY, load ACO, AC1, and
AC2 with octal values for the day, month, and year, respectively. To obtain the input value for AC2,
subtract 1900 from the year.

You can use any legal dates from 1 January 1968 (1,1,68) through 31 December 2145 (31,12,245) as
input parameters for ?FDAY. To determine the day of the week from the output, divide the value in
ACO by 7 and note the remainder. Every date with a remainder of 1 (for example, 1 January 1968)
fell on Monday.

Notes

• See the description of?CREATE in this chapter for information on the ?CREATE time block.

093-000542 Licensed Material - Property of Data General Corporation 2-143

?FEDFUNC Interfaces to File Editor (FED) utility.

?FEDFUNC
error return
normal retu rn

Input

ACO Unused

AC1 Unused

AC2 Address of packet

Error Codes in ACO

ERUFR
ERVMP

Unknown function request
Invalid address

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

?FEDFUNC provides you with a simple-to--use interface to the File Editor (FED) utility.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?FEDFUNC provides you with an interface to some of the FED utility routines.

For example, suppose you want to disassemble an instruction in a program file. You would first
issue ?FEDFUNC with its ?FROST function to open the symbol table file of the target program.
Next, you would issue ?FEDFUNC with its ?FRDIS function. This issuance would include the
instruction to disassemble along with the location (i.e., program counter = PC value) of that
instruction in the target program. The result is the disassembled instruction.

Each function takes a unique packet. However, the first offset, which defines the function, is
common to all packets. The second offset is also common to all packets.

Here's the correspondence between figure numbers that show the structures of the packets and the
functionality of the packets.

Figure 2-39
Figure 2-40
Figure 2-41
Figure 2-42
Figure 2-43
Figure 2-44

2-144

?FRCR
?FROST
?FREFS
?FRDIS
?FRITS
?FRDTS

Change radix
Open symbol table file
Evaluate FED string
Disassemble an instruction
Insert a temporary symbol
Delete a temporary symbol

Licensed Material - Property of Data General Corporation 09:H>00542

The operating system returns information to the second offset for all function codes except ?FRCR
and ?FROST.

Table 2-24 describes the contents of the packet to evaluate a FED string.

093-000542

1

o 15 16 31 1

1--------------------------+-------------------------1 1
?FRFNCI Function code: ?FRCR 1 Reserved (set to 0) I?FFLAGI

1--------------------------+-------------------------1 1
?FNIR 1 New input radix 1 Reserved (set to 0) I?FRESSI

1--------------------------+-------------------------1 1
?FLCR = packet length 1

--1
Figure 2-39. Structure of ?FEDFUNC Packet to Change Radix

1

o 15 16 31 1

1--------------------------+-------------------------1 1
?FRFNCI Function code: ?FROST 1 Reserved (set to 0) I?FFLAGI

1--------------------------+-------------------------1 1
?FBSTFI Byte pointer to name of symbol table (.ST) file 1 1

1 or -1 if there is no symbol table file 1 1
1--1 1
?FLOST = packet length 1

--1
Figure 2-40. Structure of ?FEDFUNC Packet to Open Symbol Table File

o 15 16 31
--------------------------+-------------------------

?FRFNC Function code: ?FREFS Flag word (returned by ?FFLAG
the OS)

--------------------------+-------------------------
?FBEX Byte pointer to expression to be evaluated

--------------------------+-------------------------
?FLEX Byte length of 1 Number of words ?FDBL

evaluated expression 1 returned for evaluated
1 expression

--------------------------+-------------------------
?FDBA Destination buffer address

?FCPC Current PC

?FRESD Reserved (set to 0)

?FLEFS = packet length

Figure 2-41. Structure of ?FEDFUNC Packet to Evaluate a FED String

Licensed Material - Property of Data General Corporation 2-145

?FEDFUNC Continued

2-146

o 15 16 31
1--------------------------+-------------------------

?FRFNCI Function code: ?FRDIS 1 Flags word (set to 0) ?FFLAG
1--------------------------+-------------------------

?FDBFZI Byte pointer to the destination buffer
1--------------------------+-------------------------

?FRRR 1 Reserved (set to 0) 1 Number of words used ?FWFI
1 1 for the instruction
1 1 (returned)
1--------------------------+-------------------------

?FINA 1 Address of the instruction buffer
1--

?FCPC 1 Current Program Counter (used for evaluating
1 expressions such as .+3)
1--
?FLDIS = packet length

Figure 2-42. Structure of ?FEDFUNC Packet to Disassemble an Instruction

o 15 16 31
--------------------------+-------------------------1

?FRFNC Function code: ?FRITS 1 Flags word (set to 0) I?FFLAG
--------------------------+-------------------------1

?FSVAL Byte pointer to expression for symbol value 1

--------------------------+-------------------------1
?FSVLL Byte length of the 1 Byte length of the I?FSNL

expression 1 symbol name 1

--------------------------+-------------------------1
?FSNM Byte pointer to symbol name 1

--1
?FCPC Current Program Counter (used for evaluating 1

expressions such as .+3) 1

--1
?FLSYM = packet length

Figure 2-43. Structure of ?FEDFUNC Packet to Insert a Temporary Symbol

Licensed Material - Property of Data General Corporation 093-000542

093-000542

o 15 16 31
--------------------------+-------------------------

I
I
I

?FRFNC Function code: ?FRDTS I Flags word (set to 0) ?FFLAGI
--------------------------+-------------------------

?FSVAL Byte pointer to expression for symbol value
--------------------------+-------------------------

I
I
I

?FSVLL Byte length of the I Byte length of the ?FSNL I

?FSNM

?FCPC

expression I symbol name
--------------------------+-------------------------

Byte pointer to symbol name

Current Program Counter (used for evaluating
expressions such as .+3)

?FLSYM = packet length

I
1

I
I
I
I
I
I

__ 1

Figure 2-44. Structure of ?FEDFUNC Packet to Delete a Temporary Symbol

Table 2-24. Contents of ?FEDFUNC Packet to Evaluate a FED String*

Offset Contents
=============== ===

?FRFNC Contains a code that defines the function that
you wish to perform. In this case, the function
code is ?FREFS.

?FFLAG The as can return the following flag words to
this offset:

?FBEX
(doubleword)

?FLEX

?FDBL

?FDBA
(doubleword)

?FCPC
(doubleword)

?FRESD
(doubleword)

?FINST, which means that the string
contains an instruction.

?FFLPT, which means that the string
contains a floating-point number.

?FEXPR, which means that the string
contains an expression.

Byte pointer to the expression that you want to
evaluate.

The length of the expression that you want to
evaluate (in bytes) .

The number of flag words that the as has
returned in offset ?FFLAG for the expression that
you want to evaluate.

Address of the destination buffer. (The
destination buffer that you provide must be at
least ?FMEFS bytes long.)

The current PC. (?FEDFUNC uses the current PC to
evaluate expressions such as .+3.)

Reserved. (Set to 0.)

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 2-147

?FEOV Forces end-of-volume on labeled magnetic tape.

AOSNS

?FEOV
error return
normal return

Input Output

ACO Reserved (Set to 0.) ACO Undefined

ACl N umber of channel on ACl Unchanged
which the magnetic
tape was opened

AC2 Reserved (Set to 0.) AC2 Undefined

Error Codes in ACO

EREOF End of file
ERIFT Illegal file type; file is not a labeled tape

File System Error Codes

Why Use It?

?FEOV allows you to end processing on the current labeled tape volume and swap to the beginning
of the next volume.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

For output tapes, ?FEOV causes the operating system to flush the current buffer to tape and
process the end-of-volume normally. Then, a swap to the next reel occurs.

For input tapes, ?FEOV causes the operating system to space the tape to its logical end. If the
operating system detects end-of-volume labels, it swaps to the next volume. However, if the
operating system detects end-of-file labels, it returns the error code EREOF in ACO.

2-148 Licensed Material - Property of Data General Corporation 093-000542

?FIDEF Defines a fast user device.

AOSIRT32 only

?FIDEF
error return
normal return

Input Output

ACO Contains the following: ACO Unchanged

• Bit 1 is a flag bit:

Bit 1 = 0 if AC2 specifies
the number of data channel

map slots needed (no map
definition table)

Bit 1 = 1 if AC2 points to a
data channel map definition
table

• Bit 2 selects routines:

Bit 2 = 0 if this device will
only execute a user routine

Bit 2 = 1 if this device will
both execute a user routine and
drive the Virtual Timer Facility

• Bits 3 through 31 contain
the device code for the user-
defined device in the range
from 1 through 191.
(= 277 octal).

AC1 Bits 1 through 31 contain AC1 Unchanged
the address of the device's DCT;
set Bit 0 to 1 if the device is a
data channel (DC H) or burst
multiplexor channel (BMC) device

AC2 One of the following: AC2 Unchanged

• Address of the map definition
table

• N umber of map slots needed
(no map definition table) (each
map slot accesses 1K words)

093-000542 Licensed Material - Property of Data General Corporation 2-149

?FIDEF Continued

Error Codes in ACO

ERDCH
ERDNM
ERIBS
ERNI4
ERPRE
ERPRV
ERPTY

Data channel map full
Illegal device code (The device code is outside the legal range (1 through 191).)
Device already in use
Interrupt service routine contains no ?IXlT
Invalid system call parameter
Caller is not privileged for this action
Illegal process type

Why Use It?

?FIDEF lets you establish an interface between the operating system and a fast device it does not
support when you require low interrupt latency. ?FIDEF and the other user-device system calls are
particularly useful if you have applications-specific fast peripheral devices for which you have
written special device-driver routines.

Who Can Use It?

The caller must be a resident process and must have privilege ?PVDV to use ?FIDEF. All
AOSfRT32 processes have this privilege. There are no restrictions concerning file access.

What It Does

?FIDEF defines a fast user device and its device control table (DCT). The operating system builds
an internal DCT based on your DCT specifications, and enters this into its interrupt vector table.
The operating system also maps your interrupt service routine into Ring o.

The device always runs a user routine. In addition, your setting Bit 2 in ACO results in the device's
driving the Virtual Timer Facility (VTF). In this case the operating system calls the VTF driver
routine when the user routine issues its ?IXlT system call. Furthermore, the user routine runs first
and it normally performs some 1/0 instructions to reset the interrupting device. The VTF must not
be running any timers and it cannot be attached to another interrupt - otherwise, ?FIDEF returns
error code ERVUS. When the user routine issues system call ?IRMV or when the process that
issued ?FIDEF terminates, the operating system removes the VTF from the user interrupt and the
VTF begins running in its default mode (under the real time clock).

It's important to know that the VTF driver routine uses the inverse of the interrupt mask from the
DCT to unmask interrupts. Why? Because the driver is reentrant and the interrupt can be nested.
So, it's important that you construct the interrupt mask with only the one mask bit set for the
particular device. Setting any other bits might result in unintended enabling of interrupts.

Before you issue ?FIDEF, set up a device control table (DCT) in your logical address space and load
its address into Bits 1 through 31 of AC1. See Figure 2-45 for the DCT format for issuing ?FIDEF
from a 32-bit process - the only process size from which you can issue ?FIDEF. Be sure to set
offset ?UDVIS in the DCT to the address of the interrupt service routine for the new device, and
define the interrupt service mask in offset ?UDVMS. In addition, you must set offset ?UDVBX (the
mailbox) to o.

For devices that reside on the secondary IOCs (Le., device codes 64.-191.), you must use PIO
instructions to communicate with your device. NOVA 1/0 is limited to the first 10C.

2-150 Licensed Material - Property of Data General Corporation 093-000542

You must extend the DCT to include both a word pointer to a device termination routine and the
size of the interrupt service routine. If you have defined a device termination routine and if your
process traps or terminates, control passes to the routine. This transfer of control prevents a
runaway ?FIDEF-specified device from altering system databases. Also, the environment would be
the same at process termination time as if the device had just requested an interrupt.

To extend the DCT, place ?UDFX in offset ?UDRS. The length of the extended packet is
?UDFE (= ?UDLN + ?UDFX) words.

If you issue ?FIDEF against a device that AOSIRT32 is using, you receive error code ERIB8.
AOSIRT32 uses devices that were identified to it during the system generation process. An example
is an MTD magnetic tape controller. AOSIRT32 also uses the following devices.

Device
Mnemonic Code Description

BMC Burst Multiplexor Channel
CPU 77 Central Processor
DCR Data Channel
PIT 43 Programmable Interval Timer
RTC 14 Real-Time Clock
SCP 45 System Control Processor
TTl 10 Primary Asynchronous Line Input
TTO 11 Primary Asynchronous Line Output

UPSC 4 Universal Power Supply Controller

In addition, AOSIRT32 uses a DRT (Dual ReceivetTransmitter, device code 34) on
ECLIPSE MV/1400 DC and MV/2000 DC computers. Another name for this device is DUART.

You can issue ?FIDEF along with ?FIXMT, but you cannot issue ?FIDEF along with ?IXMT.

~542 Licensed Material - Property of Data General Corporation 2-151

?FIDEF Continued

2-152

o 15 16 31
-------------------------+------------------------

?UDVXM Pointer to system database for task that issues
?IMSG

?UDVIS Address of interrupt service routine

?UDVBX Mailbox for messages sent by ?IXMT and ?IMSG

?UDDRS Word pointer to powerfail/restart routine
-------------------------+------------------------

?UDVMS Interrupt service mask 1 Place ?UDFX here. ?UDRS_
-------------------------+------------------------ 1

1
?UDLN = length of standard DCT packet 1

1

1

--1

o 15 16 31
v 1-------------------------+------------------------1
?UDDTR 1 Word pointer to device termination routine (or 1

1 -1 if there is no such routine) . 1

1--1
?UDIRL 1 Size in words of the interrupt service routine 1

1--1

?UDFX
?UDFE

length of extension
length of extended DCT packet

Figure 2-45. Structure of Device Control Table (DCT)

Licensed Material - Property of Data General Corporation 093-000542

Options

Set Bit 0 of AC 1 if you want to use either the data channel (DCR) or the burst multiplexor channel
(BMC) for I/O transfers to and from the new device. If you choose the DCR or BMC option, you
must also define the number of map slots the device will need. You can load the map slot value into
AC2 before you issue ?IDEF or you can set up a map definition table in your address space. If you
set up a map definition table, load its address into AC2 before you issue ?IDEF. (If you use AC2,
the operating system will allocate map slots in DCR map A.)

The map definition table specifies the first acceptable map slot for BMC or DCR transfers, and
optionally, selects a particular DCR map (maps A through P). The map definition table can contain
as many as eight entries. Each entry is ?UDELTR words long. The entire table (with eight entries)
is ?UDLTR words long. (See Figure 2-46 for the structure of a map definition table entry and see
Table 2-25 for a description of its contents.)

093-000542

=========================
I

I Word 1 I I
Entry 0 1--------1 1=====>

I Word 2 I I
____ I II
==================-==

I Word 1
Entry 1 1-------

I Word 2

I Word 1
Entry 2 1-------

I Word 2

I Word 1
Entry 3 1-------

I Word 2

I Word 1
Entry 4 1-------

I Word 2

I Word 1
Entry 5 1--------1

I Word 2 I
------------------1

I Word 1 I
Entry 6 1--------1

I Word 2 I
------------------1

I Word 1 I
Entry 7 1--------1
(max.)* I Word 2 I

------------------1

=================================}
I I Word 1 - First Acce{
11------ ------------------------}
IIOffset Contents {
11====== ========================}
II?UDID The format is {
I I }

I [Map specifier] + {
[first acceptable slot] {

The following are
sample entries:

?UDDC+10
?UDDB+2
?UDBM+322

}
{
}
{
}
{
}
{
}

(This is part of Table 2-25.) {
}

* If there are fewer than eight 2-word entries, the first
word following the last valid entry must be -1.

Figure 2-46. Structure of Map Definition Table

Licensed Material - Property of Data General Corporation 2-153

?FIDEF Continued
Table 2-25. Contents of Map Definition Table Entry

Word 1 - First Acceptable Map Slot

Offset Contents 1 Comments
====== ===================1==
?UDID The format is

[Map specifier] +
[first acceptable
slot]

The following are
sample entries:

?UDDC+10
?UDDB+2
?UDBM+322

Map specifier must be one of the
following:

- ?UDBM, which selects the BMC map.
- ?UDDA, which selects the DCH A map.
- ?UDDB, which selects the DCH B map.
- ?UDDC, which selects the DCH C map.
- ?UDDD, which selects the DCH 0 map.
-

?UDDP, which selects the DCH P map.

First acceptable slot must be

From 0 through 1777 (octal), if
your map specifier is ?UDBM.
From 0 through 37 (octal), if your
map specifier is ?UDDA, ?UDDB,
?UDDC, or ?UDDD.

The as allocates the first contiguous
group of slots on the map, starting
with the first acceptable slot on the
map that you selected. Then, the OS
returns to you the first slot that it
allocated in ?UDID.

===
Word 2 - Number of Map Slots Requested

Offsetl Contents 1 Comments
======1===================1==
?UDNS 1 Number of map 1 The sum of the first acceptable slot

1 slots requested 1 plus the number of slots cannot be
1 in range from 0 1 larger than the size of the map that
1 through 37 1 you requested; that is, 37 (octal) for
1 (octal). lOCH or 2000 (octal) for BMC.

______ I 1 __ ___

NOTE: If the as cannot allocate all entries, then it does not
allocate any entries.

Offset ?UDID, the map identifier word, defines which channel (the BMC or the DCH) the operating
system should use for data transfers between the device and memory.

If you select data channel I/O, you can select one of the 16 maps. The symbols ?UDDA through
?UDDP correspond to maps A through P. Add the correct map to the value corresponding to the
first acceptable map slot you want the operating system to use. For example, the specification
?UDDA+5 tells the operating system to use map A (?UDDA) and to start with slot 5 in that map, if
possible. Offset ?UDNS tells the operating system how many contiguous map slots you will need.

The map slots must be contiguous. Thus, if the first acceptable slot you specify is already in use,
the operating system takes the next available map slot with the required number of contiguous
slots.

If your devices use data channel maps, you should avoid using the first 128 (A - D) data channel
map slots if possible. We advise this because some I/O controllers have restrictions on the number

2-154 Licensed Material - Property of Data General Corporation 093-000542

of data channel maps they can gain access to. Many older I/O controllers use a 17-, 16-, or 15-bit
data channel address while newer controllers use a 19-bit data channel address. These numbers
make the A through D maps more valuable than the E through P maps. We suggest that you
request a data channel map starting at the highest slot the device can gain access to. If the request
fails, try the next lower slot and so on. This approach leaves the lower slots available for I/O
controllers that are restricted to them.

?FIDEF/?IDEF Differences

You can create initial versions of your programs that issue ?IDEF system calls, debug them, and
then replace all occurrences of?IDEF with ?FIDEF. Next are the differences between ?IDEF and
?FIDEF.

?IDEF If you define your device via ?IDEF as a standard user device, the interrupt service
routine (ISR) remains in Ring 7. When an interrupt occurs control passes through
an XVCT instruction to the operating system's first-level interrupt handler, and
then to your ISR. In turn, your ISR can communicate with its base-level task
indirectly by system calls ?IXMT and ?IMSG or else directly by sharing common
address space.

?FIDEF If you define your device via ?FIDEF as a fast user device, the operating system
maps the ISR into Ring O. The ISR physical pages are thus mapped into two logical
address spaces - one in your ring and the other within Ring O. When an interrupt
occurs control passes through an XVCT instruction directly into the mapped ISR
within Ring O. This ISR runs at interrupt level and it is "invisible" to the operating
system. The operating system replaces ?FIXMT and ?IXIT intersegment calls by
intrasegment calls within Ring O. During interrupt servicing control remains within
Ring O. The mapped ISR and its base-level task share common address space.
Either system calls ?FIXMT and ?IMSG, or using the data area inside the ISR,
synchronize and communicate between the moved ISR and its base-level task.

Cautions I
The following cautions apply to system call ?FIDEF. Be sure to follow them strictly!

• Your ISR must be relocatable; i.e. all ISR code must be relative to the hardware's program
counter (PC).

• All ISR code can refer only to a memory area inside the ISR! Invalid memory references within
an ISR might cause only a process trap when identified to the ?IDEF -related ISR. These
references will cause a fatal system error 110005 from within Ring O. Similarly, a stack fault
you cause within Ring 0 will cause a fatal system error 110001.

093-000542 Licensed Material - Property of Data General Corporation 2-155

I

?FIDEF Continued

• Don't use privileged instructions inside the ISR! Privileged instructions within your ISR will
execute normally because the ISR is located within Ring 0; privileged instructions in an
?IDEF -related ISR will cause a process trap. It's your responsibility to ensure that improper use
of privileged instructions will not compromise the system's functioning. If your ISR detects error
conditions on which you want to terminate the program or take other remedial action, then you
should define a protocol by which the ISR can instruct a base-level task via ?FIXMT to issue
?TERM or otherwise handle the error.

• You must wire all ISR code and data. Not doing this results in a panic whose code is 112040
whenever a page fault occurs at interrupt level and you are trying to refer to instructions or
data.

• For short rescheduling times, you must wire the User Runtime Library in Ring 7 (from offsets
?URTB through ?UTSK, inclusive).

• Within ?FIDEF there is no verification for the previous five restrictions, so it is your
responsibility to write your ISR correctly.

Sample OCT

DCT: . BLK ?UDLN ;Allocate enough space for the standard DCT .
(DCT length = ?UDLN).

. LOC DCT+?UDVXM

.DWORD 0

. LOC DCT+?UDVIS

. DWORD PITISR

. LOC DCT+?UDVBX

. DWORD 0

;TCB address of ?IMSG task .
;Set to O. (The OS supplies this value.)

;Interrupt service routine address .
;Interrupt service routine address is PITISR .

;?IXMT mailbox .
;Set to O .

.LOC DCT+?UDDRS ;Address of power-failure routine .

. DWORD -1 ;There is no power-failure routine .

. LOC DCT+?UDVMS ;Interrupt service mask .

. WORD 1B12+1B13+1B14+1B15

. LOC DCT+?UDRS

. WORD ?UDFX

. LOC DCT+?UDLN

;Standard/extended packet indicator .
;Set to length of packet extension .

;End of standard packet .

DCTEXT: .BLK ?UDFX ;DCT extension.

. LOC DCTEXT+?UDDTR

. DWORD -1

. LOC DCTEXT+?UDIRL

.DWORD ISREND-ISR

. LOC DCT+?UDFE

Notes

;Device termination routine pointer .
;There is no device termination routine .

;Length of ISR .

;Length of extended packet .

• See the descriptions of?FIXMT, ?IMSG, ?IRMV and ?DUT in this chapter.

• See the description of ?FIDEF in this chapter for explanations of user device termination and
user device powerfaillrestart routines.

2-156 Licensed Material - Property of Data General Corporation 093--000542

?FIXMT

?FIXMT
error return
normal return

Input

ACO Device code

ACI Message

AC2 Reserved (Set to 0.)

Error Codes in ACO
Illegal device code

Transmits a message from an
interrupt service routine in Ring O.

AOSIRT32 only

Output

ACO Undefined

AC 1 Unchanged

AC2 Unchanged

ERDNM
ERNOF
ERPRV
ERXMT
ERXMZ

?FIDEF did not define the device. Issue ?IXMT instead.
Caller not privileged for this action (function not called from interrupt level)
Mailbox is already in use (that is, the previous message hasn't been processed yet)
Attempt to transmit illegal message (message = 0)

Why Use It?

?FIXMT and ?IMSG allow you to exchange data between an interrupt service routine (ISR) for a
fast device and its base-level task and to synchronize an ISR with its base-level task.

Who Can Use It?

There are no special process privileges needed to issue this call, beyond those that ?FIDEF
requires, and there are no restrictions concerning file access. Since you can use ?FIXMT only at
interrupt level, you must issue it from a resident process.

What It Does
?FIXMT sends a message up to 32 bits long from an interrupt service routine for a fast device to a
specific receiving task outside the sending routine. (The receiving task issues ?IMSG to receive the
message.) ?FIXMT, ?DQT, ?IXMT, and ?SIGNL are the only system calls you can issue from an
interrupt service routine.

Before you issue ?FIXMT, load ACO with the device code associated with the sending routine, and
load AC 1 with the message. The message must be nonzero, or ?FIXMT fails on error ERXMZ.

When the operating system executes ?FIXMT, it passes the message to the mailbox that it
associates with the device. (Be sure to initialize the mailbox before you issue ?FIXMT.) Then, when
the receiving task issues the complementary ?IMSG, the operating system passes the message from
the mailbox to AC 1. If the mailbox already contains a nonzero value, the ?FI~!1T fails on error
code ERXMT.

093-000542 Licensed Material - Property of Data General Corporation 2-157

?FIXMT Continued
If a sending routine issues ?FIXMT before the receiver issues ?IMSG, the operating system holds
the message in the mailbox for later delivery. If the ?IMSG occurs before the ?FIXMT, the
operating system suspends the receiving task until the transmission occurs.

You can issue ?FIXMT along with ?FIDEF, but you cannot issue ?FIXMT along with ?IDEF.

Notes

• See the descriptions of?FIDEF, ?DaT, and ?IMSG in this chapter.

2-158 Licensed Material - Property of Data General Corporation 093-000542

?FLOCK Locks an object.

?FLOCK [packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?FLOCK
packet, unless you specify
the address as an argument
to?FLOCK

Error Codes in ACO
ERLCK Object already locked

AOSNS

Output

ACO Unchanged

AC1 Unchanged

AC2 Address of the ?FLOCK packet

ERLNG Lock not granted - pended request canceled
ERLLE Lock limit exceeded - more than 1023 locks for one object
ERFNO Channel not open
ERICN Illegal channel number
ERVWP Invalid address passed as system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?
Use this system call to restrict access to objects. You can use it to prevent cooperating processes
from gaining access to the same object at the same time. An object is any entity whose nature
requires processes to cooperate so they can properly gain access to it. For example, an object may be
a component of a file. On the other hand, an object may be a critical shared code path. Cooperating
processes must agree on the meaning of the object numbers.

To achieve the desired cooperation, all processes wanting to gain access to an object must first
attempt to lock the object by issuing ?FLOCK. After the operating system grants a lock on an object
to a process the process may then gain access to the object. Note that the operating system does not
prevent access to a locked object - it's up to the cooperating processes to make sure they don't refer
to an object until the operating system has granted them a lock on the object. When a process has
completed its access to an object it should release its lock by issuing system call ?FUNLOCK.

?FLOCK offers three types of lock requests: shared, exclusive, and whole file. With shared locks
several processes may use an object simultaneously (e.g., reading records), but no process may gain
exclusive access (perhaps for writing). Whole file locking can be either shared or exclusive. With
whole-file shared locking, only whole-file shared locks are subsequently permitted. With
whole-file exclusive locking, no other locks are permitted on the same file or object.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

086--000195 updates
093--000542 Licensed Material - Property of Data General Corporation 2-159

I

?FLOCK Continued

What It Does

?FLOCK locks an object for use by cooperating processes. An object is locked for EXCLUSIVE or
SHARED use based on the type of lock you request. To lock an object, place the number that
represents the object in offset ?FLSEL of the parameter packet.

Cooperating processes use a file to represent a group of related objects that the processes want to
gain access to. Objects may represent components (such as records) of the file, but this is not
necessary. The file can be empty and the objects may represent entities that are separate from the
file. Your process must open the file before it can lock one of its objects. Place the channel number
that the open request (i.e., the ?OPEN system call) returned, along with the type of lock, in the
?FLOCK parameter packet.

Cooperating processes must have access to the same file so they can use the locking mechanism
that ?FLOCK provides. Note that the operating system does not prevent access to a locked
object - it is the responsibility of the cooperating processes not to attempt access to an object until
the operating system grants them a lock on the object. You can prevent non cooperating processes
from gaining access to the objects by setting the file's access control list accordingly.

For more complex situations, we suggest using a SHARED PROTECTED file (see ?SOPPF). A
global server process that first opens the file controls access to a shared protected file. To prevent
unauthorized access to the file when the global server process is not running, set the file's access
control list to null. The global server process must then tum on its Superuser privilege so it can
open the file.

To gain access to objects that the file represents, cooperating processes can issue ?RINGLD against
a local server routine that then becomes a customer (see ?CON) of the global server. Upon request
from a local server the global server can grant permission (see ?PMTPF) for the local server to
become a subsequent opener of the file. This permission supersedes the file's access control list. The
local server can then issue ?SOPPF against the file, and next use the file to represent objects by
issuing ?FLOCK on the channel number that ?SOPPF returns. If these objects represent
components of the file's contents, the local server can read the file by issuing ?SPAGE to gain access
to an object.

Figure 2-47 shows the structure of ?FLOCK's parameter packet, and Table 2-26 describes its
contents.

2-160

o 15 16 31
1-------------------------+-------------------------1

?FLREV 1 Revision number 1 Type of lock 1 ?FLTY
1-------------------------+-------------------------1

?FLCHN 1 Channel number 1 Reserved 1 ?FLRSW
1-------------------------+-------------------------1

?FLSEL 1 Object number 1
1---1

?FLPlD 1 PlD of locking process (returned for type ?FTCK) 1

1---1
?FLLEN = packet length

Figure 2-47. Structure of ?FLOCK Packet

Licensed Material- Property of Data General Corporation
086-000195 updates

093--000542

Table 2-26. Contents of ?FLOCK Packet·

I
Offset Contents I

======== ==1
?FLREV Packet revision number. Place ?PKRO here.

?FLTY Type of lock. It specifies the operation you want.

?FLCHN

?FLRSW

1 ?FLSEL
1 (double-
1 word)
1

1 ?FLPID
1 (double-
1 word)
1

Select from the following values.

?FTCK --

?FTEX
?FTSH
?FWFL

Check for a lock. If selected, AOS/VS does
no locking but it returns the status of
the object specified. If it is unlocked,
then ?FLTY contains 0; if it is locked, then
?FLTY contains the lock type (?FTSH, ?FTEX,
or ?FWFL).
Create an exclusive lock.
Create a shared lock.
Lock the whole file. If you lock the whole
file, you must also set either ?FTEX or ?FTSH.

If you supplied ?FTEX, ?FTSH, or ?FWFL, then you should
also specify one of the following pending actions.

?FTER

?FTPN

Take an error return if AOS/VS is unable to
lock the file element.
Pend if not able to lock, and wait for an
unlock to occur. AOS/VS doesn't return an
error.

Supply the channel number for the file.

Reserved. (Set to 0.)

Object number. Your process and cooperating processes
must agree on the meaning of this number.

PID of the locking process. If the value of ?FTCK is set
in offset ?FLTY, AOS/VS returns the PID. Otherwise,
supply o.

1 __ __

* There 1S no default unless otherwise specified.

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-161

I

?FLUSH Flushes the contents of a shared page to disk.

?FLUSH
error return
nonnal return

Input

ACO Any address in the page
you want to flush to disk
(The OS derives the
logical page number by
stripping off Bits 22
through 31.)

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output
ACO Unchanged

AC 1 Undefined

AC2 Undefined

ERNSA Shared I/O request not to shared area
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?
?FLUSH directs the operating system to write a shared page out to disk immediately. Therefore,
?FLUSH is useful if you have modified a shared page and you want to make sure that the operating
system updates it immediately.

Note that before you can use ?FLUSH, you must use ?SOPEN to open the target file for shared
access.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?FLUSH copies the contents of a shared page from memory to disk, without actually releasing the
shared page from memory. The calling process regains control after the operating system has
performed the flush.

Notes
• See the description of ?RPAGE and ?ESFF in this chapter.

• See the descriptions of ?SOPEN and ?UPDATE in this chapter for information on simulating

?FLUSH.

2-162 Lioensed Material - Property 01 Data General Corporation
086-000195 updates

093--000542

?FSTAT Gets file status information.

?FSTAT [file status packet address]
error return
normal return

Input
ACO may contain one of the

following:

• Byte pointer to the
pathname of the target

file

• Channel number of the
target file

ACl Flags:

Bit 0 = 0 if ACO contains
a byte pointer
Bit 0 = 1 if ACO contains
a channel number
Bit 1 = 0 to resolve links
in the pathname
Bit 1 = 1 to ignore links
in the pathname

AC2 Address of the file status
packet, unless you specify
the address as an argument
to?FSTAT

Error Codes in ACO
ERCIU Channel in use
ERFAD File access denied
ERFNO Channel not open
ERICN Illegal channel

Output
ACO Unchanged

ACl Unchanged

AC2 Address of file status packet

ERMPR System call parameter address error
ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid word pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

086-000195 updates
093-000542

Directory not available because the LDU was force released (AOSNS II only)

Licensed Material- Property 0/ Data General Corporation 2-163

I

?FSTAT Continued

Why Use It?

?FSTAT lets you determine the specifications set for a file or a directory when it was created.
?FSTAT also returns the date and time the file was last accessed or modified. (You may need this
information before you open or reopen a file.)

Who Can Use It?
There are no special process privileges needed to issue this call. See the following section ''What It
Does" for an explanation offile access requirements.

What It Does

?FSTAT returns the status parameters of the target file. You can specify the packet address as an
argument to ?FSTAT or you can load the address into AC2 before you issue ?FSTAT. Before the
calling process can issue ?FSTAT, it must meet these rules:

• If it has no access rights to a file, it needs Read and Execute access to the file's directory.

• If it has any access right to a file, it needs Execute access to the file's directory.

Before you issue ?FSTAT, load ACO with either the channel number of the target file or a byte
pointer to its name.

If you specify a pathname that ends in a link and Bit 1 of AC1 equals 1, the operating system
returns status information about the link without resolving it. If the pathname ends in a link and
you do not set Bit 1 of AC 1, the operating system resolves the link entry and returns status
information about the file to which the link refers.

The format of the information ?FSTAT returns varies, depending on the type offile. The operating
system returns different information packets for IPC files, directories, unit files, and other file
types. Unit files are devices that have been opened as a unit (for example, MCAs, MTBs, disks,
etc.). Figure 2-48, Figure 2-49, Figure 2-50, and Figure 2-51 show the structure of the various
?FSTAT packets.

2-164 Licensed Material - Property of Data General Corporation
08S-000195 updates

093-000542

Unit File Packet

In the packet for unit files, offset ?SDCU contains the device address and unit number of the
peripheral. (See Figure 2-48 and PARU.32.SR.) The device address contains an 1/0 Controller
(IOC) number (bits 16 and 17) and a 6-bit device code (bits 18 through 23). If your system has more
than four 1/0 Controllers or you request a status on a MRC-connected device, ?FSTAT returns a
zero in offset ?SDCU. For AOSNS II systems with more than four 1/0 Controllers or a MRC bus,
issue the ?XFSTAT system call.

For AOSNS, offset ?STCH and ?STCL specify the date and time the file was created. For
AOSNS II, offset ?STCH through ?STCL specify the date and time the file was created, last
accessed, and modified. These offsets contain the same information as the offsets in the time block
for the ?CREATE system call.

093-000542

o 7 8 15 16 23 24 31
1-------------+-----------+------------+------------

?STYP 1 1 File type 1 -1 ?STIM
1-------------+-----------+------------+------------

?SACP 1 -1 1 Device add. 1 Unit number ?SDCU
1-------------------------+------------+------------
1 1

1-------------------------+-------------------------
1 1
1-------------------------+-------------------------

?STCH 1 Date of file creation 1 Time of file creation ?STCL
1-------------------------+-------------------------

?STAH 1 Date of last access 1 Time of last access ?STAL
1-------------------------+--------------------------

?STMH Date of last modificationlTime of last modification ?STML
-------------------------+--------------------------

?SSTS File status (See Table 1

2-27 and Figure 2-52.) 1

-------------------------+--------------------------
1

-------------------------+--------------------------
1

-------------------------+--------------------------
1

-------------------------+-------------------------
?SOPN Open count (AOS/VS II) 1

-------------------------+-------------------------
1

-------------------------1

?SLTH = packet length

Figure 2-48. Structure of ?FSTAT Packet for Unit Files

Licensed Material - Property of Data General Corporation 2-165

?FSTAT Continued

I PC Fi Ie Packet

In the packet for IPC files, offsets ?SPNH and ?SPNL contain the global port number of the IPC
file.

For AOSNS, offset ?STCH and ?STCL specify the date and time the file was created. For
AOSNS II, offset ?STCH through ?STCL specify the date and time the file was created, last
accessed, and modified. These offsets contain the same information as the offsets in the time block
for the ?CREATE system call.

2-166

o 7 8 15 16 31
1-------------+-----------+-------------------------

?STYP I I File type I -1 ?STIM
1-------------------------+-------------------------

?SACP I -1 I Port number (high) ?SPNH
-------------------------+-------------------------

?SPNL Port number (low) 1

-------------------------+-------------------------
I

-------------------------+-------------------------
?STCH Date of file creation I Time of file creation ?STCL

-------------------------+--------------------------
?STAH Date of last access I Time of last access ?STAL

-------------------------+-------------------------
?STMH Date of last modificationlTime of last modification ?STML

-------------------------+-------------------------
?SSTS File status (See Table 1

2-27 and Figure 2-52.) I
-------------------------+-------------------------

1

-------------------------+-------------------------
I

-------------------------+-------------------------
I

-------------------------+-------------------------
?SOPN Open count (AOS/VS II) I

-------------------------+-------------------------
I

-------------------------1

?SLTH = packet length

Figure 2-49. Structure of ?FSTAT Packet for [PC Files

Licensed Material - Property of Data General Corporation 093-000542

Directory/Remaining Types Packets

If the target entry is an AOSNS directory (DIR or CPD), the operating system returns the
hashframe size of the directory in the right byte of offset ?SHFS. (See Figure 2-50.) For AOSNS II,
the operating system returns a zero in offset ?SHFS. (The AOSNS II file system calculates the
hashframe size - no longer a user input.)

The operating system returns in ?SMSH the maximum number of disk blocks available (MS value)
for a control point directory (CPD) or a logical disk unit (LDU).

For AOSNS, the operating system returns in ?SCSH the current number of disk blocks in use,
including the inferior file space, for a control point directory. For AOSNS II, the operating system
returns in ?SCSH the current number of disk blocks in use, including the inferior file space, for all
directory file types.

o 7 8 15 16 31
-------------+-----------+-------------------------

?STYP I File type I -1 ?STIM
-------------+-----------+-------------------------

?SACP -1 I hashframe size ?SHFS
-------------------------+-------------------------

?SLAU Reserved (set to 0) I CPD maximum size (high) ?SMSH
-------------------------+-------------------------

?SMSL CPD maximum size (low) I Max. number index levels ?SMIL
-------------------------+-------------------------

?STCH Date of file creation I Time of file creation ?STCL
-------------------------+-------------------------

?STAH Date of last file access I Time of last file access ?STAL
-------------------------+-------------------------

?STMH Date of last file I Time of last file ?STML
modification I modification

-------------------------+--------------------------
?SSTS File status (See Table I Reserved (set to 0) ?SEFW

2-27 and Figure 2-52.) I
-------------------------+-------------------------

?SEFH Reserved (set to 0) I File size [bytes] (high) ?SEFM
-------------------------+--------------------------

?SEFL File size [bytes] (low) I Starting LDU addr (high) ?SFAH
-------------------------+--------------------------

?SFAL Starting LDU addr (low) I CurrEmt No. index levels ?SIDX
-------------------------+--------------------------

?SOPN Open count ICur. directory size, high ?SCSH
-------------------------+--------------------------

?SCSL Cur. directory size, low I
-------------------------1

?SLTH = packet length

Figure 2-50. Structure of ?FSTAT Packet for Directory Files

Offset ?SMIL indicates the maximum number of index levels allowed for both standard and control
point directories.

In an AOSNS packet for the other file types, offset ?SDEH specifies the element size of the target
file. In an AOSNS II packet for the other file types, offset ?SDEH corresponds to the Primary
Element Size defined in ?XCREATE.

093-000542 Licensed Material - Property of Data General Corporation 2-167

?FSTAT Continued

Offset ?SMIL specifies the maximum index level, and ?SCPS specifies the file control parameters.
(See Figure 2-51.) Offset ?SCPS, which applies only to files with fixed-length records, equals the
file's maximum record length. The contents of?SCPS are undefined for files with other record
types. The contents of?SCPS are the same as the contents of offset ?CCPS in the ?CREATE packet
and the contents of offset ?OPFC in the ?GOPEN packet. Offset ?SCPS equals the Host ID for
network type files (which is when the right byte of offset ?STYP contains ?REM). Offsets ?SCSH
and ?SCSL return the number of blocks currently allocated to the AOSNS II file.

o 7 8 15 16 31
-------------+-----------+-------------------------

?STYP Record format 1 File type 1 -1 ?STIM
-------------+-----------+-------------------------

?SACP -1 1 File control parameters ?SCPS
1 (for fixed-length
1 records = record length)

-------------------------+-------------------------
?SLAU Reserved (set to 0) 1 File element size (high) ?SDEH

-------------------------+-------------------------
?SDEL File element size (low) 1 Max. number index levels ?SMIL

-------------------------+-------------------------
?STCH Date of file creation 1 Time of file creation ?STCL

-------------------------+-------------------------
?STAH Date of last file access 1 Time of last file access ?STAL

--------------------------+-------------------------
?STMH Date of last file 1 Time of last file ?STML

modification 1 modification
--------------------------+-------------------------

?SSTS File status (See Table 1 Reserved (set to 0) ?SEFW
2-27 and Figure 2-52.) 1

-------------------------+-------------------------
?SEFH Reserved (set to 0) 1 File size [bytes] (high) ?SEFM

-------------------------+-------------------------
?SEFL 1 File size [bytes] (low) 1 Starting LDU addr (high) ?SFAH

1-------------------------+-------------------------
?SFAL 1 Starting LDU addr (low) 1 Current No. index levels ?SIDX

1-------------------------+--------------------------
?SOPN 1 Open count 1 Number of blocks ?SCSH

1-------------------------+-------------------------
?SCSL 1 Allocated to file 1

1-------------------------1

?SLTH = packet length

Figure 2-51. Structure of ?FSTAT Packet for Other File Types

Offsets ?STCH through ?STML specify the time the file was created, the time it was last accessed,
and the time it was last modified. These offsets correspond to the parameters in the ?CREATE
system call's time block.

The operating system describes certain characteristics of the file by returning one or more flag bits
to ?SSTS, the file status word. See Table 2-27 for a complete list of these flags.

2-168 Licensed Material - Property of Data General Corporation 093--000542

Table 2-27. Flags Returned in Offset ?SSTS

1

1 Flag Meaning
1========== ==
1

1 ?FSHB The file is a shared file.

?FMDB The file was modified.

?FPRM The file or directory has the Permanence attribute.

?FDLE The OS deletes the file after the last ?CLOSE.

?FUDA The file has an associated UDA (user data area) .

?FARA All users have read access to the file or
directory.

?FAEA All users have execute access to the file or
directory.

Figure 2-52 shows the structure of offset ?SSTS.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1---1---1---------1---1---1---1-----------------------1---1---1
ISHBIMDBIUndefinedlPRMIDLEIUDAI Undefined IARAIAEAI
1---1---1---------1---1---1---1-----------------------1---1---1

Figure 2-52. ?SSTS Structure

Offsets ?SEFMI?SEFL specify the file's byte length.

Offset ?SF AH specifies the file's starting address in the logical disk. This is a double-precision
integer, and can range from 0 to the highest block on the logical disk minus 1.

The operating system returns offset ?SIDX as the current number of index levels (indexes) for the
file. This value should not exceed the value of ?SMIL, the maximum number of index levels allowed
to the file.

The open count, offset ?SOPN, records the number of users currently using the file for I/O (the
number of?OPEN, ?GOPEN, etc. calls without comparable ?CLOSE, ?GCLOSE, etc. calls). AOSNS
returns offset ?SOPN for the Directory and Other file types. AOSNS II returns offset ?SOPN for all
of the file types.

You can only retrieve the length of a file via ?FSTAT after you have opened, reopened, or just
created the file. In other words, you cannot retrieve the length correctly while you are currently
writing to the file.

09:HX>0542 Licensed Material - Property of Data General Corporation 2-169

?FSTAT Continued

Sample Packet

The following is a sample of an ?FSTAT IPC file packet:

PKT: .BLK ?SLTH

. LOC PKT+?STYP

. WORD 0

. LOC PKT+?SPNH

. DWORD 0

. LOC PKT+?STCH

. WORD 0

. LOC PKT+?STCL

. WORD 0

. LOC PKT+?SSTS

. WORD 0

. LOC PKT+?SLTH

Notes

iAllocate enough space for the packet
i (packet length = ?SLTH).

iFile type .
iFile type for IPC files returned .

iPort number .
iPort number returned .

iFile creation date .
iFile creation date returned .

iFile creation time .
iFile creation time returned .

iReserved .
iYou must set this value to O .

iEnd of packet .

• See the description of?RECREATE in this chapter.

• For AOSNS II, see the description of the ?XCREATE and ?XFSTAT system calls for the
additional file structuring parameters that the ?XCREATE system call sets and the ?XFSTAT
call displays.

2-170 Licensed Material - Property of Data General Corporation 093-000542

?FTOD Converts time of day to a scalar value.

?FTOD
error return
normal return

Input
ACO Seconds from 0 through 59

ACI Minutes from 0 through 59

AC2 Hour from 0 (midnight)
through 23 (11 p.m.)

Error Codes in ACO

ERPRE Invalid system call parameter

Why Use It?

Output
ACO Number ofbiseconds (seconds/2)

since midnight

ACI Unchanged

AC2 Unchanged

You can use ?FTOD to obtain input parameters for the ?CREATE system call's time block.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?FTOD takes time in seconds, minutes, and hours and converts it to a scalar value; that is, the
number ofbiseconds (half the number of seconds) since midnight.

Before you issue ?FTOD, load ACO, ACl, and AC2 with the appropriate octal values for seconds,
minutes, and hours, respectively. The legal input parameters for ?FTOD range from 0:00:00
(midnight) to 23:59:59 (11:59 p.m.).

The operating system returns the scalar time value to ACO. If the scalar conversion results in an
odd number of seconds, the operating system rounds the value to the next number before division;
for example, 7 seconds would result in (8/2) = 4 biseconds.

086-000195 updates
093-000542 Licensed Material- Property 0/ Data General Corporation 2-171

I

?FUNLOCK

?FUNLOCK [packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

Unlocks an object.

AOSNS

Output
ACO Unchanged

ACI Unchanged

AC2 Address of the ?FUNLOCK
packet, unless you specify
the address as an argument
to?FUNLOCK

AC2 Address of the ?FUNLOCK packet

Error Codes in ACO

ERNLK Object not locked
ERVWP Invalid address passed as system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?
Use this system call to unlock an object when you no longer need it.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?FUNLOCK releases a lock that your process has placed.

?FUNLOCK lets other processes gain a lock on the same object. It can also unlock all locks that
your process holds on the specified file. You must have issued ?OPEN for a file before you can
unlock one of its objects. Place the channel number ?OPEN returns in the ?FUNLOCK packet.

Cooperating processes must have access to the same file in order to use the unlocking mechanism
that ?FUNLOCK provides. The processes must also agree on the meaning of the object numbers so
they can guarantee successful unlocking.

2-172 Licensed Material - Property 01 Data General Corporation
086-000195 updates

093-000542

Figure 2-53 shows the structure of ?FUNLOCK's parameter packet, and Table 2-28 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?FLREV 1 Revision number 1 Type of unlock 1 ?FLTY
1-------------------------+-------------------------1

?FLCHN 1 Channel number 1 Reserved 1 ?FLRSW
1-------------------------+-------------------------1

?FLSEL 1 Object number 1
1---1

?FLPID 1 Reserved 1

1---1
?FLLEN = packet length

Figure 2-53. Structure of ?FUNLOCK Packet

Table 2-28. Contents of ?FUNLOCK Packet*

1

1 Offset 1 Contents
========1================================:============================

?FLREV

?FLTY

?FLCHN

?FLRSW

?FLSEL
(double
word)

Packet revision number. Place ?PKRO here.

Type of unlock. It specifies the operation you want.
Select from the following valuE~s.

?FULA -- Unlocks all locks that the process holds on
this channel. If you don't select ?FULA,
AOS/VS unlocks only the lock specified by
offset ?FLSEL.

?FWFL -- Unlocks the whole file.

Supply the channel number for the file.

Reserved. (Set to 0.)

Object number. Your process and cooperating processes
agree on the meaning of this number.

?FLPID Reserved. (Set to 0.) ?FLOCK uses this offset.
(double-I
word) 1

1

--------1--

086-000195 updates
093-000542

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 2-173

•

I

?GACL Gets a file entry's access control list (ACL).

?GACL [packet address]
error return
normal return

Operating System Differences
AOSIRT32 always returns "+,OWARE" as the ACL.

Input
ACO One of the following:

• Byte pointer to the
pathname of the
target file

• 0 if a packet address
is supplied

ACI Byte pointer to a receive
buffer for the ACL

AC2 One of the following:

• Reserved (Set to 0 if
not supplying a packet.)

• Address of the ?GACL
packet, unless you
specify the address as
an argument to ?GACL

Error Codes in ACO
ERRAD Read access denied

Output
ACO Unchanged

ACI Unchanged

AC2 Unchanged

ERVBP Invalid byte pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?
Because ?GACL returns a file or directory's current ACL, you can use it along with ?SACL, which
sets the current ACL, or with ?DACL, which sets the default ACL.

Who Can Use It?
There are no special process privileges needed to issue this call. If you specified the file with a
channel number, your process must have Read or Write access to the target entry's parent directory
or Owner access to the target entry. If you specified the file with a pathname, you must also have
Execute access to the target entry's parent directory.

What It Does
?GACL returns the access control list (ACL) associated with a file or directory. AOSIRT32 always
returns "+,OWARE" as the ACL.

2-174 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

Before you issue ?GACL, set up a receive buffer for the ACL. The symbol ?MXACL represents the
maximum byte length of the buffer. The target file or directory can be specified in one of two ways:
either by a byte pointer to the target entry, or by using offset ?GCPCN in the ?GACL packet. The
use of a packet is only necessary if you choose to specify the target entry's channel number. ACO
must contain zero to indicate the use of a packet. Load AC1 with a byte pointer to the receive buffer
before you issue ?GACL.

The operating system returns the ACL to the receive buffer in the format used for ?DACL and
?SACL. This format is

username<O>accesstype[...]<0>

For example, if the CLI command

ACL FOO BRIAN,OAR MIKE,RE

has executed, then issuing ?GACL to file FOO results in the receive buffer's containing the
following 14 bytes in its leftmost bytes.

BRIAN <O><?FACO+ ?FACA+ ?FACR>MIKE<O><?F ACR+?F ACE><O>

Each of symbols <?F ACO+ ?FACA+ ?FACR> and <?F ACR+ ?FACE> requires 1 byte.

Figure 2-54 shows the structure of the ?GACL packet.

o 15 16 31
1-------------------------+-------------------------1

?GCPFW 1 Reserved (Set to 0.) 1 Channel number 1 ?GCPCN
1-------------------------+-------------------------1
?GCPLT = packet length

Figure 2-54. Structure of ?GACL Packet

Notes
• See the descriptions of?DACL and ?SACL in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-175

?GBIAS Gets the current bias factor values.

?GBIAS
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Contains the following:

• Bits 16 through 23 contain the
maximum bias factor

• Bits 24 through 31 contain the
minimum bias factor

AC1 Undefined

AC2 Undefined

?GBIAS lets you determine your system's maximum and minimum bias factors at runtime. You can
use ?GBIAS in conjunction with ?SBIAS, which sets the bias factor values.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GBIAS returns the maximum and minimum bias factors for your system to the low-order bits of
ACO. If there is no maximum bias factor, the operating system returns 0 to ACO. The default
minimum bias factor is zero. ?SBIAS can change it.

Notes

• See the description of ?SBIAS in this chapter.

2-176 Licensed Material - Property of Data General Corporation 093-000542

?GCHR Reads device characteristics of a character device.

?GCHR
error return
normal return

Input

ACO One of the following:

• Byte pointer to the name
of the target device

• Channel (number) on
which the device is open

AC 1 Flag bits:

Bit 0 = 0 if ACO contains
a byte pointer
Bit 0 = 1 if ACO contains
a channel number
Bit 1 = 0 to get the current
characteristics of the device
Bit 1 = 1 to get the default
characteristics of the device

AC2 Address of a 3-word block
to receive the device
characteristics packet.
(See Table 2-29.)

Error Codes in ACO

Illegal channel number
Illegal file type

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERICN
ERIFT
ERVBP
ERVWP

Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?
?GCHR can be a useful preliminary call for ?SCHR, which sets a character device's characteristics.
You can also set what are known as "extended characteristics" with ?SECHR and use ?GECHR to
obtain them. The ?SECHR and ?GECHR system calls are functional supersets of ?GCHR and
?SCHR. ?GECHR can access all the settings included in the ?GCHR system call. For ease of use,
words zero through two, documented in Table 2-29 (page 2-178), have also been consolidated into
Table 2-32 (starting on page 2-194) in the ?GECHR system call. Table 2-32 contains a complete
listing of the characateristics words.

Who Can Use It?

I

This call may be issued with and without special process privileges, resulting in different access to I
files. Some features of the call differ between AOSNS and AOSNS II and require special process
privileges. These features are described below.

093--000542 Licensed Material - Property of Data General Corporation 2-177

I
I

I

I

?GCHR Continued

What It Does

The ?GCHR call returns the current or default characteristics assigned to a named character
device. Clear bit 1 of ACI to obtain the named device's current characteristics; set bit 1 of ACI to
obtain the named device's default characteristics assigned by the operating system. Since you also
indicate the length of the characteristics word packet in ACl, you can use this call to obtain any
number of characteristic words up to ?CLMAX. The system will return the number of characteristic
words specified by ACI to the buffer specified by AC2. Refer to PARU.32.SR for the characteristic's
assembled values.

You can use the ?GCHR call to obtain your own current or default device characteristics without
any special process privileges. But, to obtain another user's default device characteristics, you must
also be PID 2 or a user with the System Manager privilege turned on.

You can obtain any user's current or default device characteristics in AOSNS II, provided you are
PID 2 or a user with the System Manager privilege turned on. In AOSNS you cannot obtain
another user's current device characteristics. The operating system returns the characteristics of
the target device to the 3-word buffer you specify in AC2. (See Table 2-29.)

2-178

Table 2-29. Character Device Characteristics Words

Word ICharacteristic Meaning
====== ============== ===
o ?CST Simulates 8-column tabs.

?CSFF

?CEPI

?C8BT

?CSPO

?CRAF

?CRAT

?CRAC

?CNAS

?COTT

?CEOL

Simulates form feeds.

Requires even parity on input.

Allows 8 data bits per character. You must
set this characteristic when you need all
8 bits of each byte when you perform a
binary read.

Sets even parity on output.

Sends 17. rubout characters after each form
feed, unless the form feed is simulated.

Sends two rubout characters after each tab,
unless the tabs are simulated.

Sends two rubout characters after each
carriage return or New Line.

Non-ANSI-standard device.

The device converts input values of octal
175 and octal 176 to octal 33 (ESC) when it
receives them. The device converts
octal 175 and octal 176 to octal 33 (ESC)
when it sends them.

No automatic carriage return or line feed
at end of each line. (If ?CWRP is off and
?CEOL is on, then the output truncates at
the line length defined by the device
characteristics.)

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-29. Character Device Characteristics Words

I Word I Characteristic I
1======1==============
1 0 1 ?CUCO

1 (cont .)
?CMRI

?CFF
?CEBO, ?CEBl

1 ?CULC

?CPM

?CNRM

?CMOD

?CDTO+?CDT3

?CTO

?CTSP

?CPBN

?CESC

?CWRP

Meaning
===
Uppercase output only.

Monitors ring indicator on modem-controlled
line.

Form feed on open.
Echo modes (one of the following).

No entry = OB(?CEBO) !OB(?CEB1)
results in no echoing.

?CEOS

?CEOC

OB(?CEBO) !lB(?CEB1)
results in echoing exactly as
input. (CLI CHARACTERISTIC
switch IEB1)

lB(?CEBO) !OB(?CEB1)
results in echoing control char
acters with uparrows (e.g., AA)
and in echoing ESC as $.
(CLI CHARACTERISTIC switch lEBO)

lB(?CEBO) !lB(?CEB1)
is reserved; don't use it.

Both lowercase and uppercase terminal.

Page mode.

Disables message receipt (accept no ?SEND
system calls). The PID 2 process or a
process with the System Manager privilege
turned ON can override ?CNRM.

Modem control.

Device type. See Table 2-30.

Enables device time-outs.

Retains trailing blanks (card readers only) .

Right-justifies E~ach column to 16-bits
(card readers only).

Each ESC character generates a
Ctrl-C Ctrl-A interrupt.

(Hardware) Wraparound for lines longer than
the characters per line defined in the last
characteristic word.

(continued)

093-000542 Licensed Material - Property of Data General Corporation 2-179

I

?GCHR Continued
Table 2-29. Character Device Characteristics Words

Word ICharacteristic
======1==============

1 1 ?CFKT
(cont.)

?CNNL

2 Left byte

Right byte

1

Meaning 1

===1
Uses function keys as input delimiters 1

(device types ?CRT3 and ?CRT6 only).
The two characters that a function key
generates go at the end of the data that is
in the read buffer. For example, suppose
the read buffer is 30 bytes long and the
user has typed 14 characters. The user
also types Ctrl-H to move the cursor to the
left on his screen. Typing a function key
then places two characters in bytes 15 and
16 and terminates the read.

Does not append New Line characters (card
readers only) .

Bit 15 is used by TRA/TPA in PARU.16.SR

Number of lines per page (for Page mode
devices) .

Characters per line (CPL).

(concluded)

Additional Character Device Characteristics Words

For information about characteristics words 3 through ?CLMAX, look at file PARU.32.SR. This
information begins after the comment statement

?CH4 - offset 3

Several values in offsets 3 through ?CLMAX control the way the operating system supports
modems. For example, some modem controllers let you enable their Clear To Send option by your
supplying value ?HRDFLC in offset ?CH4 or by your setting the IHOFC switch in a CLI
CHARACTERISTICS command. For an explanation of modem support and corresponding values to
specify modem support, see the manual Managing ADS / VS and ADS / VS II.

2-180 Licensed Material - Property of Data General Corporation 093-000542

Common Character Device Characteristics Words

Table 2-30 explains several of the more common device characteristics found in Table 2-29.

Table 2-30. Commonly Used Device Characteristics

1 1
ICharacteristicl Meaning If Chosen 1

============== ==1

093-000542

?CNAS The device is a non-ANSI-standard terminal. (See 1

?CULC

?CPM

?CMOD

?CNNL

?CDTO
?CDT1
?CDT2
?CDT3

?C8BT

?CTSP

?CPBN

?CMRI

"ANSI-Standard Versus Non-ANSI-Standard Terminals" 1

for descriptions of the two types.) 1

Retains uppercase and lowercase characters, rather
than converting lowercase characters to their
uppercase equivalents.

Device is in Page mode. The OS stops the output
automatically when the output reaches the number
of lines per page you specified or a form-feed
character. Form feed frees the output until you
release it with Ctrl-Q. (Omit ?CPM if you want
form-feed characters to pass normally.)

Modern control. ?CMOD must be set during the
system-generation procedure.

Ignores New Line characters. ?CNNL applies to card
readers only.

Device type. The OS defines a device's type based
on the device's handling of the ESC character and
certain control characters. The following bit
masks define the device types:

?TTY
?CRT1
?CRT2
?CRT3

?CRT6

?CRT7

4010A hard-copy terminal.
40101 display terminal.
6012 display terminal.
DASHER display terminal;

605x display terminal.
D400/D450 display terminal;

6130 display terminal.
?CRT15 -- user-defined devices.

1

1

1

For 8-bit ASCII terminals only. ?C8BT passes each
byte between an Asynchronous Line Multiplexor (ALM) 1

and the user buffer without modification. This 1

characteristic is illegal for DASHER terminals and I
for other terminals that use the high-order bit I
(of the byte) for parity. 1

For card readers only.
blanks.

?CTSP retains trailing
I
1

1

1

For card readers only. ?CPBN right-justifies each I
card column into a 16-bit memory word. 1

Monitor Ring Indicator. ?CMRI must be set during
the system-generation procedure.

1

I
1

_______________ --1

Licensed Material - Property of Data General Corporation 2-181

?GCHR Continued

ANSI-5tandard Versus Non-ANSI-Standard Terminals

Bit ?CNAS in the first device characteristics word defines your terminal as ANSI standard or
non-ANSI standard. The difference between ANSI-standard and non-ANSI-standard terminals is
in how the operating system treats the carriage return (CR), line feed (LF), and New Line keys.

When you type a New Line character on an ANSI-standard terminal, the operating system echoes
the New Line character and the terminal performs a line feed and a carriage return.

On non-ANSI-standard terminals, the operating system translates each carriage return to a
New Line and each line feed to a carriage return. When the operating system outputs a line feed to
a non-ANSI-standard terminal, it precedes the line feed with a carriage return.

Notes

• See the descriptions of?SCHR, ?SECHR, and ?GECHR in this chapter.

• Refer to PARU.32.SR for the assembled values of the character device characteristics.

2-182 Licensed Material - Property of Data General Corporation 093-000542

?GCLOSE Closes a file previously opened for block 1/0.

?GCLOSE
error return
normal return

Input Output

ACO Reserved (Set to 0.) ACO

AC1 Contains the following: AC1

• Bit 0 is a flag bit:

Bit 0 = 1 to modify
status on output

Bit 0 = 0 otherwise

• Bits 1 through 31 contain
the channel number
associated with the target
file

AC2 Reserved (Set to 0.) AC2

Error Codes in ACO

ERACU
ERCIU
ERSIM

Attempt to close unopen channel/device
Channel in use
Simultaneous requests on same channel

Why Use It?

Undefined

Contains the following:

• Bit 0, if set to 1 on
input, contains one of
the following on output:

o if the file was not
modified
1 if the file was
modified

• Bits 1 through
31 are unchanged

Undefined

You must use ?GCLOSE, rather than the standard ?CLOSE, to close a file that was previously
opened for block I/O. Like ?CLOSE, ?GCLOSE breaks the target file's channel assignment, which
allows the operating system to reassign that channel number to another file.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have obtained a channel
number, via ?OPEN or ?GOPEN, before issuing ?GCLOSE. Furthermore, only the process that
opened a channel to a file can close the file.

What It Does
?GCLOSE closes a file previously opened with ?GOPEN for block I/O operations. If you set bit 0 of
AC1 on input, the operating system returns the file's status (modified or not modified) to AC1 on
output.

093-000542 Licensed Material - Property of Data General Corporation 2-183

?GCLOSE Continued

If you are performing block 1/0 on a magnetic tape, and you issue ?GCLOSE, the operating system
follows the last block written on the tape file with a logical end-of-tape mark (two consecutive tape
marks).

Don't use ?GLOSE to close a file you've opened with ?OPEN. Use ?CLOSE instead.

Notes

• See the description of ?GOPEN in this chapter.

2-184 Licensed Material - Property of Data General Corporation 093-000542

?GCPN Gets the terminal port number.

?GCPN
error return
normal return

Input

ACO One of the following:

• PID of the target process

• Byte pointer to the name
of the target process

• -1 to get the calling process's
terminal port number

AC lOne of the following:

• 0 if ACO contains a PID

• -1 if ACO contains
a byte pointer

Otherwise, the OS ignores AC 1

AC2 Reserved (Set to 0.)

Error Codes in ACO

File does not exist

AOSNS

Output

ACO Unchanged

AC1 Global port number of the
target process's terminal

AC2 Undefined

ERFDE
ERPOR
ERPRH
ERVBP

PID is out of range for this process
Attempt to access process not in hierarchy
Invalid byte pointer passed as a system call argument

Why Use It?
?GCPN gets the global port number of a terminal for you, even if you know only the name or PID of
its associated process.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GCPN returns the global port number of the target process's terminal.

Before you issue ?GCPN, load ACO with the PID of the target process, a byte pointer to the name of
the target process, or -1. If you specify -1, the operating system returns the port number of the
terminal that is associated with the calling process. If the operating system cannot find the PID or
the name that you specified, or if there is no terminal associated with the target process, then it
returns either error code ERFDE or error code ERPRH to ACO.

093-000542 Licensed Material - Property of Data General Corporation 2-185

?GCRB

?GCRB
normal return

Input

None

Error Codes in ACO

Gets the base of the current resource
(16-bit processes only).

Output

ACO Base address of the current resource

AC 1 Undefined

AC2 Undefined

No error codes are currently defined. If an error occurs, the operating system exits via ?BOMB. The
state of ACO is undefined.

Why Use It?

?GCRB is useful for finding out the logical address of an element in any overlay bound for a
multiple overlay area. (?GCRB assumes that you know the element's displacement relative to the
overlay area base.)

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GCRB returns a label to ACO that indicates the base address of the current resource. You can use
this information with the resource system calls to determine the current base-relative offset of a
movable resource. (A movable resource is an overlay that the operating system can relocate to any
basic area within a multiple overlay area.) To determine the absolute address of an offset in a
particular resource, add the relative value of that offset to the value of the resource base.

Note that ?GCRB has no error return. If the operating system encounters an invalid resource base,
it transfers control to the ?BOMB error-detection routine.

2-186 Licensed Material - Property of Data General Corporation 093-000542

?GDAY Gets the current date.

?GDAY
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Day from 1 through 31

AC 1 Month from 1 through 12

AC2 Year minus 1900

You can use ?GDAY to get the current date. Next, you can write it on output page headers.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GDAY gets the current date from the system clock, and returns it as day, month, and year to ACO,
AC1, and AC2, respectively. Notice that the value for the current year is an offset from a base of
1900.

093-000542 Licensed Material - Property of Data General Corporation 2-187

?GDLM

?GDLM
error return
normal return

Input

ACO One of the following:

• byte pointer to the device
name

• channel number of the file

AC I Flag bits:

• ?SDCN if ACO contains
a channel number

• ?SDDN if ACO contains
a byte pointer to a device
name

• ?SDTO to get the output
delimiter table

• ?SDTI to get the input
delimiter table

• ?SDTP to get the priority
input delimiter table

AC2 Word address of the 16-word
area to receive the delimiter table.

Error Codes in ACO

File does not exist
Illegal channel number
Illegal destination port
Illegal file type

Gets a delimiter table.

Output

ACO Unchanged

AC I Unchanged

AC2 Unchanged

ERFDE
ERICN
ERIDP
ERIFT
ERMPR System call parameter address error (the receive buffer is not in the un shared area of

your address space)
ERPRV
ERVBP
ERVWP

Caller not privileged for this action
Invalid byte pointer
Invalid word pointer

Why Use It?

?GDLM is useful whenever you want to save the current delimiter table. For example, you may
need to set up a temporary delimiter table for a special situation, but later revert to the original
delimiter table.

2-188 Licensed Material - Property of Data General Corporation 093-000542

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GDLM returns a delimiter table for a file with data-sensitive records or for a character device.
You can set a delimiter table either with ?SDLM or ?OPEN.

Before you issue ?GDLM, reserve a table of 16 consecutive words in your address space and load
the word address of the table into AC2. (For information on the structure of delimiter tables, see
the description of the ?OPEN system call.)

Notes

• See the descriptions of ?SDLM and ?OPEN in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-189

I

I

?GECHR Get extended characteristics.

?GECHR
error return
normal return

Input

ACO contains one of the following:

• Byte pointer to the name
of the target device

• Channel (number) on
which the device is open

Output

ACO Unchanged

AC1 contains the following flags: AC1 Number of characteristic words returned

Bit 0 = 0 If ACO contains
a byte pointer

Bit 0 = 1 If ACO contains
a channel number

Bit 1 = 0 To get the current
characteri stics

Bit 1 = 1 To get the default
characteristics

Bits 28 - 31 Length of the
packet in words,
between values
?CLMIN and
?CLMAX inclusive

AC2 contains the address ofa
?CLMIN to ?CLMAX word
range to receive the device
characteristics packet.

Error Codes in ACO
Illegal channel
Illegal file type
Invalid system call parameter

AC2 Unchanged

ERICN
ERIFT
ERPRE
ERARG Too few or too many arguments to PMGR. You attempted to define a packet with length

less than ?CLMIN.
ERVBP
ERVWP

Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?
You can use the ?GECHR call to examine the current characteristics before using ?SECHR to set a
character device's characteristics. Suppose an attempt is made to get characteristics on a device
where the characteristics have no meaning, (e.g., the fourth characteristic word is only valid on a
system with intelligent controllers that can deal with Baud rates in real time -
ECLIPSE MV/8000®-II, ECLIPSE MV/6000®, ECLIPSE MV/10000®, ECLIPSE MV/2000®).
Then, a bit (?CVAL) will be set to 0 in the fourth word to indicate the word is invalid in the current
configuration. The ?GECHR and ?SECHR system calls are functional supersets of ?GCHR and
?SCHR respectively. The ?GECHR call can obtain all the settings obtained by the ?GCHR call. You
can use the ?GECHR call as a replacement for the ?GCHR call, when the packet length specified in

AC1 is 3.

2-190 Licensed Material - Property of Data General Corporation 093-000542

For completeness and ease of use, words zero through two, documented for the ?GCHR call in I
Table 2-29 (starting on page 2-178), have been consolidated into Table 2-32.

Who Can Use It?

This call may be issued with and without special process privileges resulting in different access to I
files. Some features of the call differ between AOSNS and AOSNS II and require special process
privileges. These features are described below.

What It Does

The ?GECHR call returns the current or default characteristics assigned by the operating system to
the named character device. Clear bit 1 of AC 1 to obtain the named device's current characteristics; I
set bit 1 to obtain the named device's default characteristics. Since you also indicate the length of
the characteristics word packet in AC 1, you can use this call to obtain any number of characteristic
words up to ?CLMAX. The operating system will return the number of characteristic words
specified by AC1 to the buffer specified by AC2. Refer to PARU.32.SR for the characteristic's I
assembled values.

You can use the ?GECHR call to obtain your own current or default device characteristics without I
any special process privileges. But, to obtain another user's default device characteristics, you must
also be PID 2 or a user with the System Manager privilege turned on.

You can obtain any user's current or default device characteristics in AOSNS II, provided you are
PID 2 or a user with the System Manager privilege turned on. In AOSNS you cannot obtain
another user's current device characteristics.

The device characteristics packet parameter offset values for characteristics one (offset 0) through
thirteen (offset 12), and their characteristic packet size symbols, are listed in Table 2-31.
Character device characteristics words zero through two and their symbols in the characteristics
packet are defined in the ?GCHR description in Table 2-29 (page 2-178). Character device I
characteristics words zero through thirteen and their synlbols, are fully defined in Table 2-32.

The rubout, echo, cursor control, and control key characteristics for different device types are listed
in Table 2-33.

The ?BMDEV characteristic indicates that the targeted device is a bit-mapped device, which
implies that you can create windows on this device.

The ?CWIN characteristic indicates that the targeted device is actually a window on a physical
bit-mapped device. You can use ?CWIN to determine whether you can issue ?GRAPHICS,
?PTRDEVICE, and ?WINDOW system calls.

The ?TRPE characteristic indicates that pointer events (e.g., mouse movements) delimit/terminate
?READ system calls. If you are interested in retrieving pointer events, then set this characteristic
via ?SECHR.

Setting the ?CXLT characteristic enables VT100, VT220, and DG ANSI terminal modes. DG ANSI I
terminal mode is supported in all environments except MCP1, CPI-24, IAC-8 (for non 68K based
processors), lAC 16, LAC-12 and MV17500DC duarts.

093-000542 Licensed Material - Property of Data General Corporation 2-191

?GECHR Continued

The default setting for the ?CNLX characteristic is zero with Kanji language translation disabled.
Setting the ?CNLX characteristic activates host-based Kanji language translation for a particular
console. On PC terminals which run their own language translation software, setting the ?CNLX
bit while the user is entering translated text can result in unpredictable results.

In AOSNS II only, setting the ?CKVT and the ?CXLT characteristics enables support for Kanji
VT100 compatible terminals. You can/also turn on the ?CKVT characteristic with the CLI. The
?C16B characteristic enables double-byte character handling as a single unit for the Kanji
character sets.

In AOSNS II only, for all Kanji character sets except the Taiwanese, double byte characters are
formed using two 8-bit bytes, each within the range 241-376 octal. This range is known as the G1
character set. The range from 41-176 octal is known as the GO character set.

Some Taiwanese characters' second 8-bit bytes are drawn from both the GO and the G 1 character
sets. Provided ?C 16B has also been set, the ?CKGO characteristic enables recognition of double
byte characters in the the G 1-GO character set. The ?CKGO characteristic is normally offfor
Japanese Kanji applications, and on for Taiwanese ones.

Intelligent asynchronous controllers allocate a portion of their memory, sometimes called the ring
buffer, for input and output buffering. The amount of controller memory varies from revision to
revision, and is accounted for in the default value settings in VSGEN. But if you have used larger
than default values in VSGEN, or if you have selected Asian Language or DG ANSI mode support,
on some controllers your system may try to use more controller memory space than actually exists.
Your system will come up, but the controller will not function properly. Refer to the "Notes and
Warnings" section of your release notice for exact information about available memory aboard such
controllers.

Some controllers, modems, and printers use hardware flow control. Use the ?HRDFLC
characteristic to enable or disable hardware flow control, or you can use the CLI
CHARACTERISTICS command. Consult the VSGEN chapter in Installing, Starting, and Stopping
ADS / VS II or in Installing, Starting, and Stopping ADS / VS for more information about hardware
flow control.

Notes

• See the descriptions of ?GCHR, ?SCHR, and ?SECHR in this chapter.

2-192 Licensed Material - Property of Data General Corporation 093-000542

Table 2-31. Characteristics Packet Parameters

Word 1 Characteristic Meaning
========1============== ==

1
2
3
4
5
6
7
8
9
10
11
12
13
14

093-000542

?CH1
?CH2
?CH3
?CH4
?CH5
?CH6
?CH7
?CH8
?CH9
?CH10
?CH11
?CH12
?CH13
?CH14

?CLMIN
?CLMAX

o.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

3.
15.

Offset O.
Offset 1.
Offset 2.
Offset 3.
Offset 4.
Offset 5.
Offset 6.
Offset 7.
Offset 8.
Offset 9.
Offset 10.
Offset 11.
Offset 12.
Offset 13.

Packet length parameters:

Minimum length of the packet.
Maximum length of the packet.

Licensed Material - Property of Data General Corporation 2-193

?GECHR Continued

2-194

Table 2-32. Character Device Characteristics Words and Symbols

I I
Word I Characteristic I

° ?CST

?CSFF

?CEPI

?C8BT

?CSPO

?CRAF

?CRAT

?CRAC

?CNAS

?COTT

?CEOL

?CUCO

?CMRI

?CFF

?CEBO, ?CEB1

Meaning
===
Simulates 8-column tabs.

Simulates form feeds.

Requires even parity on input.

Allows 8 data bits per character. You must
set this characteristic when you need all
8 bits of each byte when you perform a
binary read.

Sets even parity on output.

Sends 17. rubout characters after each form
feed, unless the form feed is simulated.

Sends two rubout characters after each tab,
unless the tabs are simulated.

Sends two rubout characters after each
carriage return or New Line.

Non-ANSI-standard device.

The device converts input values of octal
175 and octal 176 to octal 33 (ESC) when it
receives them. The device converts
octal 175 and octal 176 to octal 33 (ESC)
when it sends them.

No automatic carriage return or line feed
at end of each line. (If ?CWRP is off and
?CEOL is on, then the output truncates at
the line length defined by the device
characteristics.)

Uppercase output only.

Monitors ring indicator on modem-controlled
line.

Form feed on open.

Echo modes (one of the following).

No entry = OB(?CEBO) !OB(?CEB1)
results in no echoing.

?CEOS OB(?CEBO) !lB(?CEB1)
results in echoing exactly as
input. (CLI CHARACTERISTIC
switch /EB1)

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-32. Character Device Characteristics Words and Symbols

1 Word 1 Characteristic 1 Meaning 1
1======= ============== ==1
1 0 Echo modes (continued).
1 (cont.)

1 ?CULC

?CPM

?CNRM

?CMOD

?CDTO+?CDT3

?CTO

?CTSP

?CPBN

?CESC

?CWRP

?CFKT

?CNNL

093-000542

?CEOC = IB(?CEBO) !OB(?CEBl)
results in echoing control char
acters with uparrows (e.g., AA)
and in echoing ESC as $.
(CLI CHARACTERISTIC switch lEBO)

IB(?CEBO) !lB(?CEBl)
is reserved; don't use it.

Both lowercase and uppercase terminal.

Page mode.

Disables message receipt (accept no ?SEND
system calls). The PID 2 process or a
process with the System Manager privilege
turned ON can override ?CNRM.

Modern control.

Device type (see Table 2-30, page 2-181.).

Enables device time-outs.

Retains trailing blanks (card readers only).

Right-justifies each column to 16-bits
(card readers only).

Each ESC character generates a
Ctrl-C Ctrl-A interrupt.

1 (Hardware) Wraparound for lines longer than
,I the characters per line defined in the last
1 characteristic v,7ord.
1

Uses function keys as input delimiters
(device types ?CRT3 and ?CRT6 only) .

The two characters that a function key
generates go at the end of the data that is
in the read buffer. For example, suppose
the read buffer is 30 bytes long and the
user has typed 14 characters. The user
also types Ctrl--H to move the cursor to the
left on his screen. Typing a function key
then places two characters in bytes 15 and
16 and terminates the read.

Does not append New Line characters (card
readers on ly) .

Bit 15 is used by TRA/TPA in PARU.16.SR

(continued)

Licensed Material - Property of Data General Corporation 2-195

?GECHR Continued

Table 2-32. Character Device Characteristics Words and Symbols

I
Word ICharacteristicl Meaning

======== ============== ==

2-196

2 Left byte Number of lines per page (for Page mode
devices) .

3

Right byte

?CVAL = O.

?BROBIT

?CTCK

?CRCK

?BR1BIT
?BR2BIT
?BR3BIT
?BR4BIT

Characters per line (CPL).

Indicates that the contents of this
offset are valid (used on return
from ?GECHR.) In general, ?CVAL= 1
for an lAC system, and ?CVAL = 0 otherwise.

First baud rate field (Bit 0, of the field)

Internal transmitter clock; used by VSGEN
for controlling split baud.

Internal receiver clock; used by VSGEN
for controlling split baud.

Second baud rate field (Bit 1).
Third baud rate field (Bit 2).
Fourth baud rate field (Bit 3).
Fifth baud rate field (Bit 4).

Define baud rate in the 5-bit field
with bit mask ?BRMSK.

The mask offset symbols and their
corresponding baud rates are:

Symbol

?CR50
?CR75
?CR110
?CR134
?CR150
?CR300
?CR600
?CR12H
?CR18H
?CR20H
?CR24H
?CR36H
?CR48H
?CR72H
?CR96H
?CR19K

?CR45
?CR38K

OB(?BROBIT)+0.B(?BR4BIT)
OB(?BROBIT)+1.B(?BR4BIT)
OB(?BROBIT)+2.B(?BR4BIT)
OB(?BROBIT)+3.B(?BR4BIT)
OB(?BROBIT)+4.B(?BR4BIT)
OB(?BROBIT)+5.B(?BR4BIT)
OB(?BROBIT)+6.B(?BR4BIT)
OB(?BROBIT)+7.B(?BR4BIT)
OB(?BROBIT)+8.B(?BR4BIT)
OB(?BROBIT)+9.B(?BR4BIT)
OB(?BROBIT)+10.B(?BR4BIT)
OB(?BROBIT)+11.B(?BR4BIT)
OB(?BROBIT)+12.B(?BR4BIT)
OB(?BROBIT)+13.B(?BR4BIT)
OB(?BROBIT)+14.B(?BR4BIT)
OB(?BROBIT)+15.B(?BR4BIT)

1B(?BROBIT)+0.B(?BR4BIT)
1B(?BROBIT)+1.B(?BR4BIT)
Values 2 to 15, are

reserved. (Set to 0.)

Baud

50
75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19200

45.5
38400

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-32. Character Device Characteristics Words and Symbols

I I
Word ICharacteristicl Meaning

======== ============== ================:=============================
3 ?CSTO+?CST1 Define these stop bits with the stop bit

(cont.) mask ?CSMSK. Other symbols are:

093-000542

?CPTY
?CPEN

?CLTO+?CLT1

?BRFCT

?HRDFLC

?CS10
?CS15
?CS20

OB?CSTO+1B?CST1 1 stop bit.
1B?CSTO+OB?CST1 1.5 stop bits.
1B?CSTO+1B?CST1 2 stop bits.

Odd/Even parity.
Parity Disabled/Enabled.

Set the parity bit field values with
the parity field mask ?CPMSK. The mask
symbol's corresponding parity settings are:

?CPRO
?CPR1
?CPR2

OB?CPEN disables parity checking
1B?CPEN+OB?CPTY enables odd parity
1B?CPEN+1B?CPTY enables
even parity.

Data field length bits.

Use the mask ?CLMSK to set the data field
length in bits. For example,
?CLMSK = 1B?CLTO+1B?CLT1 is an 8-bit data
field length. Data field lengths are:

?CLN5
?CLN6
?CLN7
?CLN8

OB?CLTO+OB?CLT1 5 data bits.
OB?CLTO+1B?CLT1 6 data bits.
1B?CLTO+OB?CLT1 7 data bits.
1B?CLTO+1B?CLT1 8 data bits.

Baud rate factor, 16x; used by VSGEN
for split baud.

Hardware Flow Control (CTS).

?CHOFC = ?HRDFLC is hardware output flow
control.

(continued)

Licensed Material - Property of Data General Corporation 2-197

?GECHR Continued

Table 2-32. Character Device Characteristics Words and Symbols

1

1 Word
1=========
1 4

5

2-198

1 1
Characteristic 1

==============
?SHCO
?XOFC
?XIFC
?C16B

?BMDEV
?TRPE
?CWIN
?CACC
?CCTD

?CSRDS
?CXLT
?CABD
?CALLOUT

?CBKO
?CBK1
?CBK2

?CMDOP = ?CH6

Meaning
===

Shared console ownership characteristic.
XON XOFF output flow control.
XON XOFF input flow control.
Enable double byte handling

(16 bit characters).
Bitmap device.
Terminate read on a pointer event.
Window characteristic.
Enforce access control.
Port is in a contended environment

(PBX, Termserver).
Suppress Receiver Disable.
Translate VT100, VT220, and ANSI terminals.
Autobaud matching if set to 1.
Callout, for PBX support.

Break function bit o.
Break function bit 1.
Break function bit 2.

Use the mask ?CBKM to set the break field
bits. For example,
?CBKM = 1B?CBKO+1B?CBK1+1B?CBK2
selects all the break bits. The break field
definitions are:

?CBBM = OB (?CBK2) Break binary mode.
?CBDS 1B (?CBK2) Force disconnect.
?CBCA 2B (?CBK2) Send "C"A sequence.
?CBCB 3b (?CBK2) Send "C"B sequence.
?CBCF 4B (?CBK2) Send "C"F sequence.

5B (?CBK2) Reserved. (Set to O.)
6B(?CBK2) Reserved. (Set to o .)
7B (?CBK2) Reserved. (Set to O.)

Modern options.

?CDMC = 0 Reserved (Set to 0.)
?CMDUA 1 Direct user access to modern

(don't pend the first write) .
?CHDPX 2 Half duplex.
?CSMCD 3 Suppress monitoring CD

(Carrier Detect) for a modern
connection.

?CRTSCD = 4 On half duplex, don't
raise RTS until CD drops.

?CHIFC = 5 Hardware input flow
control.

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Word
========

6

7

8

9

10

11

12

093-000542

Table 2-32. Character Device Characteristics Words and Symbols

I
I Characteristic Meaning
=================

?CTCC ?CH7

?CTCD ?CH8

?CTDW ?CH9

?CTHC ?CH10

?CTLT ?CH11

?CCTYPE = ?CH12

?CLFP ?CH13

===
Msec to wait for CD on a modem connection.

Msec to wait for CD, if it drops.

Msec to wait after connection
before allowing I/O.

Msec to wait after a disconnect so the
modem will settle.

Msec to wait before turning the line
around (from transmit to receive)
for half duplex.

Console type. The high byte is reserved.
(Set to 0.)

The low byte is console type. Use the
mask ?CCTYPMSK. for accessing
only console type. For example,
?CCTYPMSK = 377 is a mask for console type.

The current values for console types are:

?CDCC
?CLNC
?CTNC
?CPDC
?CVRC
?CPXC
?CPCC
?CBMC
?CTPC

o direct connection.
?CDCC+1 TermServer connection.
?CLNC+1 TELNET consoles.
?CTNC+1 PAD consoles.
?CPDC+1 virtual (SVTA-like) consoles.
?CVRC+1 PBX consoles (PIM).
?CPXC+1 PC/TS consoles.
?CPCC+1 bitmapped (Windowing) console
?CBMC+1 T1 Primary Rate console (IWC)

Language Front-end Processor (LFP).

The LFP
?CKGO
?CKHW
?CNLX
?CKVT

options are:
o G1-GO double-byte handling.
1 Kanji half-wide characters.
2 native language translation.
3 Kanji VT100 support,

AOS/VS II only.

(concluded)

Licensed Material - Property of Data General Corporation 2-199

?GECHR Continued

Table 2-33. Device Types for Rubout Echo and Cursor Controls

Device Model
Type Number

======== ========
0 4010A
0 6040
1 40101
2 6012
3 6052
4
5
6 6130

7-15

1

Characters' Effect 1
___ 1

Move Move 1 Erase
Left: Right: 1 Line:

========= =========1==========
(None) (None) 1 (None)
(None) (None) 1 (None)

AZ Ay 1 AK
Ay AX 1 I"K
Ay AX 1 AK
ESC,D ESC,C 1 ESC,K

1
Ay AX 1 I"K

1

(For future expansion)

Rubout 1

Echo: 1

======================1
SHIFT 0 1

SHIFT 0 1

AZ,SPACE,AZ 1

AY,SPACE,AY 1

AY,SPACE,Ay 1

ESC,D,SPACE,ESC,D 1

1

AZ,SPACE,AZ 1

----------------------_1
1

1

1

________ ---1

2-200 Licensed Material - Property of Data General Corporation 093-000542

?GHRZ Gets the frequency of the system clock.

?GHRZ
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO

AC1

AC2

One of the following code values, which
indicates the system clock's frequency:

Code Frequency (Hz)

0 60
1 10
2 100
3 1000
4 50

Undefined

Undefined

Your application may require you to know your system clock's real-time frequency. To get this
information, you can use ?GHRZ.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GHRZ returns the system clock's real-time frequency, which was set during the
system-generation procedure. The operating system returns the frequency as one of the code
values listed above. (Real-time clock frequencies are measured in hertz (Hz).)

Notes

• Refer to the chapter about VSGEN in the manual Installing, Starting, and Stopping ADS / VS II
for information on setting the system clock's real-time frequency.

093-000542 Licensed Material _. Property of Data General Corporation 2-201

?GLINK Gets the contents of a link entry.

?GLlNK
error return
normal return

Input

ACO Byte pointer to the link
entry's pathname

ACl Byte pointer to a receive
buffer for the resolved pathname

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

ACl Unchanged

AC2 Undefined

ERIFT
ERRAD
ERVBP

Illegal file type (The target entry is not a link entry.)
Read access denied
Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?GLINK to decide whether to delete an existing link entry and/or create a new one.

Who Can Use It?

There are no special process privileges needed to issue this call. However, you must have Read and
Execute access to the link entry's parent directory.

What It Does

?GLINK returns the contents of the target link entry to the receive buffer that you specify in ACl.

Before you issue ?GLINK, set up a receive buffer in your logical address space. (The symbol ?MXPL
represents the maximum byte length of the buffer. File PARU.32.SR defines the value of this
symbol.) Next, load the accumulators with the appropriate values. Then, issue ?GLINK. If the
pathname that you specify in ACO is not the pathname of a link entry, ?GLINK fails and the
operating system returns error code ERIFT to ACO.

2-202 Licensed Material - Property of Data General Corporation 093-000542

?GLIST Gets the contents of a search list.

?GLlST
error return
normal return

Input
ACO Reserved (Set to 0.)

ACI Byte pointer to a receive
buffer for the search list

AC2 Byte length of the receive
buffer

Error Codes in ACO

Output
ACO Undefined

ACI Unchanged

AC2 Unchanged

ERVBP Invalid byte pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS n only)

Why Use It?
?GLIST lets you examine the current contents of your search list. Thus, you can use ?GLIST as a
preliminary system call to ?SLIST, which changes the contents of the search list.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GLIST returns a copy of the calling process's search list to the buffer that you specify in AC 1.

Before you issue ?GLIST, load ACI with a byte pointer to the receive buffer and load AC2 with the
length of the buffer. (The symbol ?MXPL represents the maximum length of the search list buffer.)
Then, after you issue ?GLIST, the operating system returns the search list to the buffer in the
following format:

pathname<O> ... pathname<O><O>

where

pathname is a complete pathname string.

is the null terminator.

Be sure to allocate enough buffer space to accommodate the two trailing nulls that the operating
system appends to the search list.

Notes
• See the description of ?SLIST in this chapter.

086-000195 updates
093-000542 Licensed Material- Property ci Data General Corporation 2-203

I

?GMEM

?GMEM
error return
normal return

Input
None

Returns the number of undedicated memory pages.

Output
ACO Undefined

ACI Current number of undedicated memory
pages

AC2 Undefined

Error Codes in ACO

No error codes are currently defined.

Why Use It?
?GMEM gives you information about overall memory contention. In general, the smaller the value
returned by ?GMEM, the more likely memory contention becomes. Issuing ?GMEM before you wire
pages to a resident process's working set helps you to correctly adjust the size of the resident
process to your memory configuration. Do not wire more pages than the current number of
undedicated memory pages, because it can cause a system deadlock.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GMEM returns the current number of undedicated pages available to the calling process.
Undedicated pages are unused pages that the operating system can allocate to the calling process.

Notes
• See the description of ?WIRE in this chapter.

2-204 Licensed Material- Property of Data General Corporation
086-000195 updates

~542

?GNAME Gets a complete pathname.

?GNAME
error return
normal return

Input

ACO Byte pointer to a fuename
or path name fragment

ACI Byte pointer to a receive
buffer for the pathname

Output

ACO Unchanged

ACI Unchanged

AC2 Byte length of the complete AC2 Byte length of the receive
buffer pathname, excluding the null terminator

Error Codes in ACO
ERFAD
ERFDE
ERIRB
ERMPR
ERVBP

File access denied
File does not exist
Insufficient room in buffer
System call parameter address error
Invalid byte pointer passed as a system call argument

Why Use It?

?GNAME can be useful as a preliminary system call for system calls that require a complete
pathname as input.

Who Can Use It?

Required file access privileges depend on whether your program runs under the old file system
(before AOSNS II Release 1.00 and with any revision of AOSIRT32 or of AOSNS) or under the new
fue system (effective with AOSNS II Release 1.00).

Old File System

There are no special process privileges needed to issue this call. The calling process must have access
(of any type) to each fue in the pathname fragment or have Read access to their parent directories.
The calling process must also have Execute access to the files' parent directories. However, the
operating system does not check for access privileges if the pathname fragment consists of only a
prefix (for example, =).

New File System

There are no special process privileges needed to issue this call. The calling process must have access
(of any type) to each fue in the pathname fragment or have Read access to their parent directories.
The calling process must also have Execute access to the files' parent directories. However, the
operating system does check for access privileges in all cases, including when the pathname fragment
consists of only a prefix (for example, =). In this case, the calling process still must have access (of
any type) to each file in the pathname fragment or have Read access to their parent directories.

086-000195 updates
093-000542 Licensed Material - Property 01 Data General Corporation 2-205

?GNAME Continued

An Important Difference

One important difference between issuing ?GNAME under the old and new file systems occurs in the
following sequence of events:

• The CLI issues ?PROC to create a new child CLI process.

• The newly created child CLI process issues ?SUSER and ?SUPROC to explicitly disable Superuser
and Superprocess mode in case the parent process has either privilege.

• The child CLI process issues ?GNAME against" =" to determine the full pathname of the initial
directory. Furthermore, suppose the child process does not have access to its working directory,
"="

Under the old file system ?GNAME succeeds because AOSNS performs no access
checking; however, the child CLI process has no access to its initial directory.
If this process changes its working directory and tries to reenter the initial
directory (via, say, a DIRn command), ?GNAME returns the error ERFAD.

Under the new file system ?G NAME fails right away with error ERFAD. The child CLI
process terminates.

What It Does
?GNAME returns the complete path name, starting with the root, when you specify a pathname
fragment in ACO. ?GNAME functions with either an open or a closed file. If you load ACO with the
byte pointer to the prefIX =, the operating system returns the pathname of the current working
directory.

You cannot use ?GNAME to obtain the "true" pathname associated with a generic file. For example,
?GNAME would return a complete pathname of :PER:DATA for the input pathname @DATA, even
though the "true" complete pathname is really :UDD:USER:DATA. Therefore, to obtain the "true"
pathname, use ?GRNAME.

Notes
• See the description of ?GRNAME in this chapter.

2-206 Licensed Material - Property 0/ Data General Corporation
08fH)()Q195 updates

093-000542

?GNFN Lists a particular directory's entries.

?G NFN [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Channel number of the
target directory

AC2 Address of the ?G NFN packet,
unless you specify the
address as an argument to ?GNFN

Error Codes in ACO

ERCIU Channel in use

Output

ACO Undefined

ACI Unchanged

AC2 Address of the ?GNFN packet

EREOF End of file (There are no more files in the target directory.)
ERFNO Channel not open
ERFTL Filename too long (The template exceeds 63 characters.)
ERIFC Illegal filename character
ERNDR Not a directory (The channel that you specified is not opened on a directory.)
ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid word pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?

?GNFN allows you to obtain a specific directory's filenames. The CLI, for example, uses ?GNFN to
implement its FILE STATUS command.

Who Can Use It?

There are no special process privileges needed to issue this call. However, your process must be able
to open (via ?OPEN or ?GOPEN) the directory. It must also have Read and Execute access to the
directory at the time it issues ?OPEN or ?GOPEN.

What It Does

?GNFN returns a filename in the target directory (or all filenames that match the template that
you specify) to the buffer that you specify in the ?GNFN packet. The first time you issue ?GNFN,
the operating system returns the name of the first file in the directory; the second time, it returns
the second filename, and so on.

To get all the filenames, use the + template. You can also obtain every filename by issuing repeated
?GNFN system calls until ?GNFN fails on error code EREOF. (EREOF is an end-of-file condition
that means you have reached the last file entry in the directory.)

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation 2-207

I

?GNFN Continued
Before you issue ?GNFN, you must open the target directory. After you open the directory with
?OPEN (or ?GOPEN), load ACl with the correct channel number, which returns in the ?OPEN (or
?GOPEN) packet. You can specify the packet address as an argument to ?GNFN, or you can load it
into AC2 before you issue ?GNFN. Figure 2-55 shows the structure of the ?GNFN packet, and
Table 2-34 describes its contents.

2-208

o 15 16 31
1-------------------------+-------------------------1

?NFKY 1 Set to 0 for the first 1 Reserved (Set to 0.) 1 ?NFRS
1 call; thereafter used 1 1
1 by the OS 1 1
1-------------------------+--------------------------1

?NFNM 1 Byte pointer to area that is to receive the 1

1 filename 1

1--1
?NFTP 1 Byte pointer to template 1

1--1
?NFLN = packet length

Figure 2-55. Structure of ?GNFN Packet

Table 2-34. Contents of ?GNFN Packet·

1

Offset 1 Contents 1

================1===1
?NFKY 1 OS internal value. Set to 0 the first time you 1

?NFRS

?NFNM
(doubleword)

?NFTP
(doubleword)

1 issue ?GNFN; ignore thereafter. This value is a 1

1 key to where the list should continue. So do not 1

1 set ?NFKY to zero between calls. 1

1 1
1 Reserved. (Set to 0.) 1
1 1
1 Byte pointer to area that is to receive the 1
1 filename. 1
1 1
1 Byte pointer to filename template, if present. 1

1 1
1 DEFAULT = -1 (no template). 1

1 If you omit the template, the operating system 1

1 searches only the open directory. Table 2-35 1

1 shows the template characters. 1

--------------_1 1
* There is no default unless otherwise specified.

Table 2-35. Filename Template Characters

1

1 Character 1 Description 1

1================1===1
1 * (asterisk) 1 Matches any single filename character except a 1

1 1 period. 1

1 1 1
1 - (hyphen) 1 Matches any series of characters not containing 1
1 1 a period. 1
1 1 1
1 + (plus sign) 1 Matches any series of characters. 1
1 1 1

Licensed Material - Property a Data General Corporation
08fH)(J()195 updates

093-000542

The first time you issue ?GNFN, set the contents of offset ?NFKY to O. Do not modify the contents
of ?NFKY on subsequent system calls, because the operating system uses this offset as an internal
pointer. There is no default value for offset ?NFNM. Therefore, you must use offset ?NFNM as a
byte pointer to a receiving area for the filename. If you do not want to use a template, choose the
default value (-1) of offset ?NFTP.

Sample Packet
PKT: .BLK

.Loe

. WORD

.Loe

. DWORD

.Loe

. DWORD

.Loe

Notes

?NFLN

PKT+?NFKY
0

PKT+?NFNM

BUFF*2

PKT+?NFTP
-1

PKT+?NFLN

;Allocate enough space for the packet
; (packet length is ?NFLN).

;Set to 0 for first call. The OS
;uses this value for second and
;subsequent calls.

;Byte pointer to an area to receive
;the filename.
;Byte pointer to BUFF.

;Byte pointer to template.
;No template (default is -1).

;End of packet.

• See the description of ?OPEN in this chapter.

086-000195 updates
093-000542 Licensed Material - Property 01 Data General Corporation 2-209

I

?GOPEN

?GOPEN [packet address]
error return
normal return

Operating System Differences

Opens a file for block 1/0.

Only AOSNS II supports ?ODTL in offset ?ODFI of the packet extension.

Input Output
ACO Byte pointer to the target

tIle's path name

ACI Target file's channel
number, or -1, to direct the
OS to assign a channel number

AC2 Address of the ?GOPEN
packet, unless you specify the
address as an argument to
?GOPEN

Error Codes in ACO

ACO Contains the following:

• Bits 0 through 25 are reserved
(Set to 0.)

• Bits 26 through 31 contain one or
more of the following tIle access
privilege masks:

?FACO
?FACW
?FACA
?FACR
?FACE

ACI Unchanged

Owner access
Write access
Append access
Read access
Execute access

AC2 Address of the ?GOPEN packet

ERDMO Disk marked as owned by another system
ERDRS Device reserved by another port
ERFTM File/tape mismatch
ERITD Indecipherable tape density
ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid word pointer passed as a system call argument
ER_FS_NO_TLA_PRIVILEGE

Attempt to issue ?GOPEN with ?ODTL value supplied, but without proper privilege
ER_FS_OBSOLETE_IPC_FILE_DETECTED

Obsolete IPC file type has been detected; file has been deleted (AOSNS II only)

Why Use It?
You must use ?GOPEN to open a file for block 1/0 or physical block 1/0. Also, you must issue
?GOPEN to open an MCA as a unit or to open a specific link. Then, if you use the CLI MOUNT
command to mount a tape, you must ?GOPEN the file using its link name.

2-210 Licensed Material- Property cA Data General Corporation
086-000195 updates

0l3-000542

Who Can Use It?
To issue this call, you need a special privilege for only one situation. Your process must be running
under the new file system (AOSNS II) and in Superuser mode in order to issue ?GOPEN with value
?ODTL supplied in offset ?ODFI of the packet extension.

You must have Read and Execute access to the file's parent directory. In addition, you must have
Read access to the file to read from it and Write access to the file to write to it.

What It Does
?GOPEN opens a file for block 1/0 and assigns the file a channel number. You can specify the
channel number in AC 1 or force the operating system to assign the channel number by loading AC 1
with -1. You can open any of the following devices for b10ck 1/0: disk files and units, tape file, MTB
tape units, MTD tape units, and MCA units.

The ?GOPEN packets are different for IPC files (see Figure 2-56 and Table 2-36) and for all other
file types (see Figure 2-57 and Table 2-38). Although you must reserve sufficient space in your
logical address space for the packets, you need to provide input specifications for offset ?OPFL (for
the standard packet) or offset ?OPCH (for the IPC packet) only.

o 15 16 23 24 31
1-------------------------+------------+------------1

?OPCH 1 Channel number 1 0 1 File type 1 ?OPTY
1-------------------------+------------+------------1

?OPPH 1 Global port number 1

1---1
?OPLT = packet length

Figure 2-56. Structure of ?GOPEN Packet for [PC Files

Table 2-36. Contents of ?GOPEN Packet for IPC Files·

1

Offset 1 Input Value 1 Output Value
===============1=========================1=========================

?OPCH 1 None. 1 Channel number.
1 1

?OPTY 1 None. 1 Left byte: 0
1 1 Right byte: File entry
1 1 type (?FIPC)
1 1

?OPPH 1 None. 1 Global port number.
(doubleword) 1 1

--------------1 1 ______________________ __

086-000195 updates
093-000542

* There is no default unless otherwise specified.

Licensed Material- Property d Data General Corporation 2-211

•

I

?GOPEN Continued

Table 2-37. Contents of Standard ?GOPEN Packet*

1

Offset 1 Input Value
===============1==========================

?OPFL 1 Flag bits

?OPTY

?OPFC

?OPEW

?OPEH
(doubleword)

1

1

1

1

1
1

1

1

I
I
I
I
I
I
I
I
I
1

I
I
1

1

1

1

1

I
1

1

1

1

1

1

1

1

?OPME--Exclusive open.
?OPMD--Inhibit initial

form feed.
?OPXP--Packet has

extension.

If tape density mode,
specify one of the
following:

?OPDL--800 bpi.
?OPDM--1600 bpi.
?OPDH--6250 bpi.
?OPAM--automatic

density mode
matching
selected

?OPD5--Low density
?OPD6--Medium density
?OPD7--High density

Transfer mode (for Model
6352 magnetic tape units
only) :

?OPMBF--Use buffered
mode when per
forming tape I/O

?OPMST--Use streaming
mode when per
forming tape I/O

DEFAULT--O for non-
buffered and
non-streaming
data transfer

1 None.
I
1

1

1 None.
I
1

1

1

1 None. (Set to 0.)
1

1 None
1

_______________ 1 __________________________ _

Output Value
=========================
Bits 0-15: Channel

number.

Left byte: Record format
Right byte: File entry

type

File control parameters.
See the description of
offset ?SCPS in the
explanation of ?FSTAT.

Unchanged.

File size in bytes.

There is no default unless otherwise specified.

The operating system returns all the other parameters, based on the specifications you set when
you created the file. Although the operating system returns file type and format information, the
block I/O and physical block I/O system calls ignore record formatting information, because they
operate in terms of blocks only.

Notice that offset ?OPFLI?OPCH in both packets contains different input and output values. On
input, you can use ?OPFLI?OPCH to indicate a tape-density mode if you are opening a magnetic
tape file on a type MTB or MTD controller. On output, ?OPFU?OPCH contains the target file's
channel number.

2-212 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

o 15 16 23 24 31
1-------------------------+------------+------------1

?OPFL 1 Flag bits 1 Record 1 File type 1 ?OPTY
1 (see Table 2-37) 1 format 1 1
1-------------------------+------------+------------1

?OPFC 1 File control parameters 1 Reserved (Set to 0.) 1 ?OPEW
1-------------------------+-------------------------1

?OPEH 1 File size in bytes 1 File size in bytes 1 ?OPEL
1 (High order) 1 (Low order) 1
1-------------------------+-------------------------1
?OPLT = packet length

Figure 2-57. Structure of Standard ?GOPEN Packet

Opening System Areas

You can issue ?GOPEN against a system area. To do this, simply place a byte pointer to the desired
unit name and system area number in ACO. An example of a system area name is @DPJO:1082. You
must have previously created, via system utility Disk Jockey, the system area. You can open a
system area only under the New File System.

Issuing ?GOPEN against a system area is much the same as issuing ?GOPEN against a physical
disk alone, but in the first case you can gain access to only part of the disk. Bad block remapping
does not occur for system areas that you issue ?GOPEN against.

?GOPEN Options

To open the file to the calling process exclusively, supply value ?OPME in offsets ?OPFLI?OPCH at
input. Note that this option is available only within the standard packet (for non-IPC files),
because it makes no sense to exclusively open an IPC file.

If you are reading or writing a magnetic tape file on an MTB or MTD tape controller, you can select
a density mode for the tape controller by supplying one of the density-mode values in offsets
?OPFLI?OPCH.

Supply ?OPDL to specify a density of 800 bpi (bytes per inch); supply ?OPDM to set the density to
1600 bpi; supply ?OPDH to specify 6250 bpi; or supply ?OPAM if you want the operating system to
select the density mode automatically.

Supply ?OPD5, ?OPD6, and ?OPD7 for low, medium, or high densities respectively. When you
specify low or high density, the OS selects the lowest or highest density supported by the drive.
When you select medium density: if the drive supports three levels, the OS selects the middle
density value; when the drive supports two densities, the OS selects the lower density.

If you have issued ?GOPEN with value ?ODTL supplied, you cannot issue the following system calls
to the file:

• ?ALLOCATE • ?GTRUNCATE

• ?BLKIO (write block only) • ?PWRB

• ?CPMAX • ?SACL

• ?CRUDA • ?UPDATE

• ?DELETE • ?WRB

• ?ESFF • ?WRUDA

An attempt to issue one of these system calls with value ?ODTL supplied in the ?GOPEN packet
results in error code ER_FS_TLA_MODIFY_ VIOLATION.

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2-213

?GOPEN Continued

When you default the density-mode parameter (that is, omit the values), the operating system uses
the density mode you chose for the MTB or MTD controller during the system-generation
procedure. Make sure the default density mode matches that of your tape; otherwise, the operating
system fails on error code ERFTM (file tape density mismatch). However, density matching always
occurs for reads on MTD drives unless you specify a density.

If you select ?OPAM (automatic density selection) and the tape unit is damaged or the operating
system cannot set the density, ?GOPEN fails on error code ERITD (tape density indecipherable).

In buffered mode (Model 6352 magnetic tape units only) the tape controller indicates that a tape
transfer is complete after data has been read from memory, but before it has been written to tape.
In this mode the system might not report error conditions for a request that fails. Therefore your
program must check for errors whenever it issues a ?GCLOSE call. (The system reports all errors
when it writes a file mark. Since ?GCLOSE writes a file mark, any program using buffered mode
must explicitly close each tape file.)

The streaming mode (Model 6352 magnetic tape units only) allows your program to open a tape
unit for high-speed backup purposes. In this mode the tape controller expects data transfer with
the tape to occur quite rapidly. If data is not transferred fast enough, the performance of the tape
unit degrades. So, a program that cannot maintain a high data transfer rate should not select this
mode.

?GOPEN Extension

The ?GOPEN extension is used to allow access to options that exist for some Data General disk
subsystems. These options (described below) may not be supported by all disk subsystems. An error
will be returned (typically ERIOD or ERMNS) if the option selected is not available for the specified
device.

The extension allows access to the following hardware features:

• Format selection for 4514 (DPM) disks.

• Modified sector I/O for DPJ disks (only large capacity models).

• Trespass option for dual ported disks.

• Model option for some MTJ tapes (Model 6352 only).

• Tape drives supporting data compression and the SCSI-2 protocol.

Supply value ?ODTL in offset ?ODF1 of the packet extension when you do not want the operating
system to change the file's date/time last accessed values. These values are offsets ?STAH and
?STAL of the parameter packet for system call ?FSTAT and are also the values that the ITLA switch
of the CLI FILESTATUS command returns. This change of date/time values occurs by default (i.e.,
?ODTL not supplied) when your process later reads or closes the file; it will not occur if you have
supplied ?ODTL.

Data compression is on (the default condition) for tape drives supporting compression. You must
switch it off if you do not want to use it. Set ?ODCOF to 1 in offset ?ODF1 of the packet extension
when you want to turn compression off and operate the drive in native mode.

1b use the extension, you must set the extension bit (?OPXP) in the flag word (?OPFL) of the
?GOPEN packet. Figure 2-58 shows the structure of the ?GOPEN packet extension and Table 2-38
contains the option flags for offset ?ODF1 of the ?GOPEN packet extension. The number of words in
the combined ?GOPEN main packet and its extension is ?OPLT + ?OPXL.

2-214 licensed Material- Property of Data General Corporation
0BfH)()()195 updates

093-000542

~195 updates
093-000542

?OPXS

?ODFI

?ODBY

?ODSEC

?ODTRK

?ODHD

o 15
1----------------------------------1
1 Must = ?OPXL
1
1 Option Flags (see Table 2-38)
1

1 Bytes per Sector (DPM only)
1

1 Sectors per Track (DPM only)
1

1 Tracks per Surface (DPM only)
1
1 Number of Heads (DPM only)
1----------------------------------

?OPXL = packet length

Figure 2-58. Structure of ?GOPEN Packet Extension

Table 2-38. Option Flags for Offset ?ODF1

1

1 Flag 1 Description 1
1============1===1

?ODND

?ODMB

?ODHS

?ODBS

?ODPO

?ODST

?ODTEO

?ODCOF

?ODTP

?ODTL

1 Write without Modified bits (DPJ only)
1

1 Allow Modified Sector I/O (DPJ only)
1

1 Swap Head Option (DPM only)
1

1 Swap Byte Option (DPM only)

First Physical Sector is 0 (DPM only)
(Used for Enterprise/MPT format only)

Choose streaming mode for tape (MTJ only)

9-track tape emulation override

Data compression off
If ?ODCOF = 0 the tape operates in data
compression mode.

If ?ODCOF = 1, then data compression is
turned off, and the drive operates in
native mode.

Old file system -- trespass if reserved by
another port (DPJ only); new file system -
trespass if reserved by another port or if
marked as owned by another system

Do not change the time last accessed value
when the file is read from or closed.

Licensed Material- Property d Data General Corporation

I

2-215

?GOPEN Continued

Table 2-39 contains the specific format selectors that Figure 2-58 introduces.

Offset

?OPXS

?ODF1

?ODBY

?ODSEC

?ODTRK

'?ODHD

Table 2-39. Valid Format Options (DPM disks)

8
Sector
Format

==========
?OPXL

0

512.

8.

40.

1 or 2

9 Sector
Format

(Standard AOS)
================

?OPXL

0

512.

9.

40.

1 or 2

10 Sector Format
(Enterprise/MPT)

=====================
?OPXL

?ODHS+?ODBS+?ODPO

512.

10.

35.

2

In order to perform modified sector 110 (DPJ disks) using the ?BLKIO call, bit ?ODMB must be set.
If this bit is not set, an error (ERCPO) will be returned. Use the ?ODND option to clear modified
bits in conjunction with the ?BLKIO call.

Sample Packet
The following sample packet shows the standard ?GOPEN packet:

PKT: .BLK ?OPLT ;A1locate enough space for the
;packet. Packet length = ?OPLT

.LOC PKT+?OPFL ; Channel number.

. WORD 0 ;The OS returns this value.

.LOC PKT+?OPTY ;Record format and file type.

. WORD 0 ;The OS returns this value.

.LOC PKT+?OPFC ; Record length (if fixed format) .

. WORD 0 ; The OS returns this value.

.LOC PKT+?OPEW ;Reserved.

. DWORD 0 ;You must set this value to O.

.LOC PKT+?OPEH ;File size (in bytes) .

. DWORD 0 ;The OS returns this value.

.LOC PKT+?OPLT ;End of packet.

Notes
• See the description of ?GCLOSE in this chapter.

• Refer to the chapter about VSGEN in the manual Installing, Starting, and Stopping ADS / VS II
for information on the system-generation procedure.

2-216 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?GPIO Returns all active PIOs based on a host 10.

?G PI D [packet address]
error return
normal return

Input Output

ACO One of the following:

• HostID

• -1 for the current host

• Byte pointer to the hostname

AC 1 Defines contents of ACO
as follows:

• 0 if ACO contains a host ID

• -1 if ACO contains a byte pointer

• ignored if ACO contains-1

AC2 Address of the ?GPID
packet, unless you specify
the address as an argument
to ?GPID

Error Codes in ACO

ERHNE
ERPRE

Host does not exist
CAC 1 = 0 and ACO <> host ID) or
CAC1 = 0 and ACO <> -1) or

ACO Unchanged

AC1 Unchanged

AC2 Address of the ?GPID packet

ERVBP
ERVWP

(AC1 = -1 and ACO doesn't contain a byte pointer)
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?
Use this system call to learn the PID numbers of all processes in use on a particular host. This
knowledge is useful when you need to address all active processes on a host, such as when you
implement functions similar to those of the ?CLI macro and the Process Environment Display
(PED) utility program.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GPID returns all (or at least as many as will fit in the buffer provided) PIDs that are active on the
specified host.

Figure 2-59 shows the structure of ?GPID's parameter packet, and Table 2-40 describes its
contents.

093-000542 Licensed Material - Property of Data General Corporation 2-217

?GPID Continued

2-218

o 15 16 31
-------------------------+-------------------------1

?NPPR Revision number I Flags ?NPFW
-------------------------+-------------------------

?NPAP Word address of list of PIOs or virtual PIOS
-------------------------+-------------------------

?NPAL Number of words in list I Reserved (set to 0.) ?NPRS1
-------------------------+-------------------------

?NPKEY Key or seed for ?GPIO to continue
-------------------------+-------------------------

?NPNUM Number of active PIOs I Number of PIOS placed ?NPNEN
on target host I in list I

-------------------------+-------------------------1
?NPLTH = packet length

Figure 2-59. Structure of ?GPID Packet

Table 2-40. Contents of ?GPID Packet

Offset Contents
======== ===

?NPPR

?NPFW

?NPAP
(double
word)

?NPAL

?NPRS1

?NPKEY
(double
word)

?NPNUM

?NPNEN

Packet revision number. Place zero here.

Flags. Set all unused bits to zero. Since no bit
offsets are currently defined, place zero here.

Word address of an array in which the OS will return
the list of PIOs for active processes on the specified
host. The list elements are either PIOs or virtual PIOs.
Each entry in the array is one word wide.

Length in words of the array that receives the list
of PIOs. ?GPIO will not return more PIOs than the array
will hold. The OS treats ?NPAL as an unsigned number.

Reserved. (Set to 0.)

Set to 0 the first time you issue this call. If you
cannot allocate a large enough array to contain all the
PIOs on the specified host, you must reissue the call to
obtain the remaining PIOs. In this case, the prior issue
of ?GPIO has placed a number different from 0 in 1chis
offset; leave it here for all reissues. You know when
you've obtained all the PIOs (and don't have to reissue
?GPIO) when the rest of the buffer contains zeros or
when ?NPNEN is less than the array length.

The OS returns the number of PIOS that were active on
the target host when ?GPIO executed. You can use this
number to adjust the size of the array. The OS always
returns ?NPNUM, even if ?NPAL contains zero.

The OS returns the number of PIOs that it stored in
the array. A program that uses this number doesn't have
to count the number of unchanged entries to determine
how many PIOs were returned. It's your responsibility to
initialize the array.

It's your responsibility to initialize the array. You
can use the ?PIOS system call to find how many PIOs
were generated and how many were active; then, using
these values, determine the array size you want.

Licensed Material - Property of Data General Corporation 093-000542

?GPORT Returns the PID associated with a global port number.

?GPORT
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 32-bit global port number

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Undefined

ACI PID or virtual PID associated with the
global port number

AC2 Local port number that corresponds to
the global port number in AC 1

?GPORT allows you to decode a global port number to its local equivalent and to obtain the PID (or
virtual PID) of the port's owner. This information can be useful if you are sending or receiving IPC
messages on multiple ports.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GPORT returns the PID (or virtual PID) and local port number associated with the global port
number you specify in ACl. (Note that ?GPORT does not check the validity of the global port
number you specify.)

093-000542 Licensed Material - Property of Data General Corporation 2-219

?GPOS Gets the current file-pointer position.

?GPOS [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?OPEN, ?READ,
?WRITE packet, unless you
specify the address as an
argument to ?GPOS

Error Codes in ACO

Illegal channel number
Illegal file type
Channel not open

Output

ACO Undefined

ACl Undefined

AC2 Address of the target file's
I/O packet

ERICN
ERIFT
ERFNO
ERVWP Invalid word pointer passed as a system call argument

Why Use It?

You can us€! ?GPOS as a complement to ?SPOS, which repositions the file pointer, or as a
complement to the pointer specification you set in the ?READ or ?WRITE packets. You can use a
?GPOS and ?SPOS sequence to perform conditional I/O on a file; for example, to check the position
of the file pointer, and then reposition the pointer to skip over certain records in the file.

Using ?GPOS with the pointer specifications in the ?READ or ?WRITE packet gives you similar
control over file I/O; that is, you might find the position of the file pointer with ?GPOS, and then
adjust the ?'READ or ?WRITE packets to read from the beginning of the file or writE! to the end of
the file.

Who Can Use It?

There are no special process privileges needed to issue this call. You needed Execute and Read
access to the file's directory, and Read access to the file itself, when you issued ?OPEN against the
file.

What It Does

?GPOS returns the current position of the target file's file pointer to offset ?IRNH in the target
file's current ?OPEN, ?READ, or ?WRITE packet. (See Figure 2-60.) The operating system
expresses the file pointer position (absolute byte number starting with 0 - not a rel~ord number) as
a double-precision integer in this offset. Do not issue ?GPOS against a labeled magnetic tape file.

You can cite the address of the I/O packet as an argument to ?GPOS, or you can load the packet
address into AC2 before you issue ?GPOS.

2-220 Licensed Material - Property of Data General Corporation 093-000542

If the operating system returns 0 to offset ?IRNH and the target file is not a fixed-length file, the
pointer is set to the first byte (character) in the file. Similarly, 1 in ?IRNH means the file pointer is
set to the second byte in the file.

o 15 16 31
-------------------------+-------------------------

?ICH Channel number ?ISTI
-------------------------+-------------------------

?ISTO I ?IMRS
-------------------------+-------------------------

?IBAD
-------------------------+-------------------------

?IRES I ?IRCL
-------------------------+-------------------------

?IRLR I ?IRNW
-------------------------+-------------------------

?IRNH File pointer position (in bytes)

?IFNP

?IDEL

?IOSZ = packet length

Figure 2-60. Structure of ?GPOS Packet

Notes

• See the descriptions of ?SPOS and ?READ in this chapter for information on setting the
file-pointer position.

093-000542 Licensed Material - Property of Data General Corporation 2-221

?GPRNM Gets a program's pathname.

?GPRNM
error return
normal return

Input

ACO One of the following:

• PID of the target process

• -1 to get the pathname of
the calling process's program

AC1 Reserved (Set to 0.)

AC2 Byte pointer to a
256-byte buffer

Error Codes in ACO

Output

ACO Unchanged

AC 1 Undefined

AC2 Unchanged

ERPRH
ERVBP

Attempt to access process not in hierarchy
Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?GPRNM to get the pathname of the calling process's program or the pathname of
another process.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GPRNM returns the complete pathname (starting at the root) of the disk file that was originally
loaded into the target process's logical address space.

Before you issue ?GPRNM, perform the following steps:

1. Load ACO with the PID of the target process, or with -1 to get the program name of the calling
process ..

2. Load AC2 with a byte pointer to a receive buffer you have set aside for the pathname.

2-222 Licensed Material - Property of Data General Corporation Dm-000542

?GRAPHICS Manipulates pixel maps.

?GRAPHICS [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?GRAPHICS
packet, unless you specify
the address as an argument
to ?GRAPHICS.

Error Codes Returned in ACO

ERIFD Illegal function for device
ERIGP Invalid graphics parameter
ERIWR Invalid window reference
ERPKT Invalid packet ID

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?GRAPHICS packet

ERRVN A reserved value was not set to 0
ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid address passed as a system call argument
ERWNE The window you specified does not exist
Error codes from the file system

Why Use It?

?GRAPHICS lets you manipulate pixel maps. You can use ?GRAPHICS to create, open, and close a
pixel map. You can also use ?GRAPHICS to manipulate the palette associated with a pixel map, to
copy a pixel map in and out of your program's address space, and to set a clip rectangle in a pixel
map.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GRAPHICS is a multifunctional system call. To perform a particular function, you set the offset
?GRAPH_PKT.FUNC (in the main ?GRAPHICS packet) to the function code you want. Table 2-41
lists the valid function codes and the functions they perform.

?GRAPHICS is useful only if your program will run on a graphics terminal in an AOSNS
windowing environment. The call applies to one graphics window or pixel map at a time. For
example, to find out the status of every pixel map belonging to your program, you must issue the
?GRAPHICS call repeatedly, specifying a different pixel map each time.

093-000542 Licensed Material - Property of Data General Corporation 2-223

?GRAPHICS Continued

Table 2-41. ?GRAPHICS Function Codes

1
1 Function Code 1 What It Lets You Do
1================================1==

?GRAPH __ CREATE_MEMORY _P IXELMAP

?GRAPH_READ_PALETTE

The Main ?GRAPHICS Packet

Open a graphics window's pixel map for
graphics output. (See the section
"Opening a Graphics Window's Pixel
Map. ")

Create a pixel map in memory, and open
it for graphics output. (See the section
"Creating a Pixel Map in Memory.")

Close a pixel map you previously opened
using ?GRAPH_CREATE_MEMORY_PIXELMAP or
?GRAPH_OPEN_WINDOW_PIXELMAP. (See the
section "Closing a Pixel Map.")

Get status of a pixel map. (See the
section "Getting the Status of a Pixel
Map. ")

Define a clip rectangle on a pixel map;
enable or disable the clip rectangle.
(See the section "Setting a Clip
Rectangle.")

Copy a pixel map into your program's
address space so that you can then use
standard MV instructions on it. (See
the section "Transferring Data from
Pixel Maps to Disk Files.")

Remove a pixel map from your program's
address space, so that you can then use
graphics instructions on it.
(See the section "Transferring Data from
Pixel Maps to Disk Files.")

Define colors in the palette associated
with a pixel map. (See the section
"Writing to a Palette.")

Find out what colors are storl:;!d in the
palette associated with a pixel map.
(See the section "Reading a Palette.")

Set the position of the origin used for
drawing operations. (See the section
"Setting the Draw Origin".)

Get the position of the origin used for
drawing operations. (See the section
"Getting the Draw Origin".)

When you issue a ?GRAPmcs call, you set up a main packet (common to all functions of the call)
and a subpacket (unique for each function). Most functions require subpackets. The structure of the

2-224 Licensed Material - Property of Data General Corporation 093--000542

main packet appears in Figure 2-61; we cover the subpackets later, when we discuss each function.
Table 2-42 details the contents of each offset in the main packet.

The ?GRAPIDCS call applies to one pixel map at a time. For most functions, you specify the target
pixel map by supplying a pixel map ID in the main packet. (Functions
?GRAPH_OPEN_ WINDOW _PIXELMAP and ?GRAPH_CREATE_MEMORY_PlXELMAP are
exceptions which we explain later.)

o 15 16 31
\----------------------------------\

?GRAPH_PKT.PKT_IO \ Packet identifier \
\-----------------+----------------\

\

\

\

\

I
?GRAPH_PKT.FUNC \ Function code \ Reserved \ ?GRAPH_PKT.RSV I

1-----------------+----------------\
?GRAPH_PKT.PIXMAP_IO 1 Pixel map IO of target pixel map \

1----------------------------------\
?GRAPH_PKT.SUBPKT 1 Word pointer to subpacket 1

\----------------------------------\
?GRAPH_PKT_LEN = packet length

\

I
\

I
1

!
__ 1

Figure 2-61. Structure of the ?GRAPHICS Main Packet

Table 2-42. Contents of the ?GRAPHICS Main Packet

Offset
======================

?GRAPH_PKT.PKT_IO
(doubleword)

?GRAPH_PKT.PIXMAP_IO
(doubleword)

?GRAPH_PKT.SUBPKT
(doubleword)

Contents
===

Packet identifier; set to ?GRAPH_PKT_PKTID.

Code for the function you want. You must always
supply a function code. (Function codes are
listed in Table 2-41.)

Reserved. (Set to 0.)

Pixel map IO of the target pixel map. You must
supply a pixel map IO for all functions except
?GRAPH_CREATE_MEMORY_PIXELMAP and
?GRAPH_OPEN_WINOOW_PIXELMAP. On these functions,
the operating system returns a pixel map IO; set
this offset to O.

Word pointer to the subpacket for the function.
If the function does not require a subpacket, set
this offset to O.

Opening a Graphics Window's Pixel Map

The virtual terminal associated with a graphics window is a pixel map, which can accept only
output in the form of graphics instructions. When you issue graphics instructions, you specify the
destination pixel map by a pixel map ID (which you can think of as a "graphics output channel"). A
single graphics window can have more than one pixel map ID at a time, since you can open its pixel
map as many times as you want.

NOTE: Before you open a graphics window, you must first create it using the
?WIN_CREATE_ WINDOW function of ?WINDOW.

093-000542 Licensed Material - Property of Data General Corporation 2-225

?GRAPHICS Continued

To get a pixel map ID for a graphics window, issue the ?GRAPIllCS call with function code
?GRAPH_OPEN_ WINDOW _PIXELMAP. In the main packet, set offset ?GRAPH_PKT.PIXMAP _ID
to 0; the operating system returns the pixel map ID in this field.

In the subpacket, specify the graphics window you want to open. You can specify the window in one
of three ways:

• Channel number When you open a graphics window for input (using ?OPEN), the
operating system returns a channel number. (Note that you can use
the channel number for input only; you need a pixel map ID to send
output to a graphics window.)

• Window pathname When you create a window, you give it a window name. A window's
pathname takes the form @PMAPn:windowname, where @PMAPn is
the name of the pixel-mapped terminal that contains the window.
The window pathname must end in a null character, <0>; it can be a
maximum of ?MXPL characters long (including the null terminator).

• Window ID number When you create a window, the operating system returns t.he window
ID number in the main ?WINDOW packet.

Fill in the appropriate offset in the subpacket (channel number, pathname or ID nunlber), and set
the other two window specification offsets to zero. To indicate which method you are using to
specify the window, you must set the appropriate flag in flag word ?GRAPH_OPEN.FLAGS. You
can use only one method at a time.

Figure 2-62 shows the subpacket structure; Table 2-43 details the contents of the subpacket.

?GRAPH_OPEN.
PATH_BUF_LEN

o 15 16 31

Packet identifier
-------------------+-------------------

Reserved I Channel number of ?GRAPH_OPEN.
I target window CHAN_NUM

-------------------+-------------------
Flag word

Byte pointer to pathname of target
window

-------------------+-------------------
Length of buffer I Unused ?GRAPH_OPEN.
containing window I PATH_LEN
pathname I

-------------------+-------------------
?GRAPH_OPEN.WIND_ID Window ID number of target window

?GRAPH_OPEN_LEN= packet length

Figure 2-62. Structure of the ?GRAPH_OPEN_WINDOW_PIXELMAP Subpacket

2-226 Licensed Material - Property of Data General Corporation 093-000542

Table 2-43. Contents of the ?GRAPH_OPEN_WINDOW_PIXELMAP Subpacket

Offset Contents
========================== ===

?GRAPH_OPEN.PKT_ID Packet identifier; set to ?GRAPH_OPEN_PKTID.
(doubleword)

?GRAPH_OPEN.RSV Reserved. (Set to 0.)

?GRAPH_OPEN.FLAGS
(doubleword)

?GRAPH_OPEN.PATH
(doubleword)

?GRAPH_OPEN.WIND_ID
(doubleword)

Channel number of target graphics window.
When specifying the window by its channel
number, you must also set flag
?GRAPH_OPEN.FLAGS.IN_CHAN in flag word
?GRAPH_OPEN.FLAGS.

Set this offset to 0 when specifying the
target window by its pathname or window ID.

Flag word

?GRAPH_OPEN.FLAGS.IN_PATH -- Set this flag
when specifying the target window by its
pathname.

?GRAPH OPEN.FLAGS.IN_WIND_ID -- Set this flag
when specifying the target window by its
window ID.

?GRAPH_OPEN.FLAGS.IN_CHAN -- Set this flag
when specifying the target window by its
channel number.

Byte pointer to pathname of target window.
When specifying the window by its pathname,
you must also set flag
?GRAPH_OPEN.FLAGS.IN_PATH in flag
word ?GRAPH_OPEN.FLAGS.

Set this offset to 0 when specifying the
target window by its channel number or window
ID.

Length of the buffer containing the window
pathname. The buffer length must include the
null terminator; the maximum buffer length is
?MXPL.

Unused. (Set to 0.)

Window ID number of target window. When
specifying the window by its window ID, you
must also set flag
?GRAPH_OPEN.FLAGS.IN_WIND_ID in
flag word ?GRAPH_OPEN.FLAGS.

Set this offset to 0 when specifying the
target window by its pathname or channel
number.

Creating a Pixel Map in Memory

You use the ?GRAPH_CREATE_MEMORY_PlXELMAPfunction to create a pixel map in memory,

093-000542 Licensed Material - Property of Data General Corporation 2-227

?GRAPHICS Continued

and to open it for graphics output. Although such a pixel map is not visible on the physical screen,
you can still perform graphics instructions on it, copy its contents to a graphics window's pixel map,
and perform ?GRAPHICS functions on it.

In the main packet, set offset ?GRAPH_PKT.PIXMAP _ID to 0; the operating systenl returns a pixel
map ID when it opens the newly created pixel map.

Your entries in the subpacket determine the attributes (width, height and pixel depth) of the new
pixel map. Figure 2-63 shows the subpacket structure; Table 2-44 details its contents.

o 15 16 31
1------------------------------1

?GRAPH __ CRE.PKT_ID 1 Packet identifier 1
1------------------------------1

?GRAPH __ CRE. PIXMAP _SZ . X 1 Width of new pixe 1 map 1
1------------------------------1

?GRAPH __ CRE. PIXMAP _SZ. Y 1 Height of new pixel map 1
1------------------------------1

?GRAPH __ CRE. PIXEL_DEPTH 1 Pixel depth of new pixel map 1

1------------------------------1

Figure 2-63. Structure afthe ?GRAPHICS_CREATE_MEMORY_PfXELMAP Subpacket

Table 2-44. Contents of the ?GRAPH_CREATE_MEMORY _PIXEL MAP Subpacket

1

Offset 1 Contents 1

=======:=================1===1
1 1

?GRAPK_CRE.PTK_ID 1 Packet identifier. Set to ?GRAPH_CRE_PKTID_REV1. 1

(doubleword) 1 1

1 1
?GRAPK_CRE. PIXMAP _SZ. X 1 Width of pixel map (in pixels) . 1

(doubleword) 1 1

1 1

?GRAPH __ CRE. PIXMAP_SZ. Y 1 Height of pixel map (in pixels) . 1

(doubleword) 1 1
1 1

?GRAPH __ CRE. PIXEL_DEPTH 1 Pixel depth of pixel map (in bits) . 1

(doublf=word) 1 1

----------------------_1 1

Closing a Pixel Map

You use thE~ ?GRAPHICS function ?GRAPH_CLOSE_PIXELMAP to close an open pixel map. The
open pixel map can be a memory pixel map, or the pixel map associated with a graphics window.

All memory pixel maps are open: when you create a memory pixel map, the operating system
automatically opens it. When you close a memory pixel map, the operating system automatically
deletes it.

2-228 Licensed Material - Property of Data General Corporation ~542

A graphics window's pixel map is open only if you have issued the
?GRAPH_OPEN_WINDOW_PIXELMAP function for that window. You can open a graphics
window's pixel map more than once; each time, the operating system returns a separate pixel map
ID. When you close a graphics window's pixel map, the operating system closes the pixel map ID
you specified. If you open a graphics window's pixel map more than once, you must issue a separate
?GRAPH_CLOSE_PIXELMAP call for each pixel map ID. (To delete a graphics window's pixel map,
you must delete the window itself; use the ?WINDOW call, function code
?WIN_DELETE_ WINDOW.)

In the main packet, specify the pixel map ID of the pixel map you want to close. Since there is no
subpacket for this function, set ?GRAPH_PKT.SUBPKT to O.

Getting the Status of a Pixel Map

You use ?GRAPH_PIXELMAP _STATUS to get current information about a pixel map. You can get
information about either a memory pixel map or a graphics window's pixel map.

In the main packet, specify the pixel map ID of the pixel nlap you want. In the subpacket, supply a
packet identifier; set all other offsets to O. The operating system returns the following information
in the subpacket:

• Width and height of the pixel map.

• Pixel depth.

• The coordinates of the clip rectangle's origin.

• Dimensions of the clip rectangle.

• Status of the clip rectangle: enabled or disabled.

Figure 2-64 shows the subpacket structure; Table 2-45 details its contents.

o 15 16 31
\--------------------------------\

?GRAPH_PIXSTAT. PKT __ ID \ Packet identifier \
\--------------------------------\

?GRAPH PIXSTAT.PIXMAP_SZ.X \ Width of pixel map \
\--------------------------------1

?GRAPH_PIXSTAT.PIXMAP_SZ.Y \ Height of pixel map 1
\--------------------------------\

?GRAPH_PIXSTAT.PIXEL_DEPTH \ Pixel depth of pixel map \
1--------------------------------1

?GRAPH_PIXSTAT.CLIP_ORG.X \ X coordinate of clip \
\ rectangle's origin \
1--------------------------------1

?GRAPH_PIXSTAT.CLIP_ORG.Y 1 Y coordinate of clip 1
1 rectangle's origin 1

1--------------------------------1
?GRAPH_PIXSTAT.CLIP_SZ.X 1 Width of clip rectangle 1

1--------------------------------1
?GRAPH_PIXSTAT.CLIP_SZ.Y 1 Height of clip rectangle 1

1----------------+---------------1
?GRAPH_PIXSTAT.CLIP_STATE 1 Clip rectangle \ Reserved 1 ?GRAPH_

\ state \ 1 PIXSTAT.RSV
1----------------+---------------1

?GRAPH_PIXSTAT_LEN = packet length

Figure 2-64. Structure of the ?GRAPH_PlXELMAP _STATUS Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-229

?GRAPHICS Continued

Table 2-45. Contents of the ?GRAPH_PIXELMAP _STATUS Subpacket

Offset Contents
============================ ===

?GRAPH __ PIXSTAT. PKT_ID Packet identifier. Set to
(doubleword) ?GRAPH_PIXSTAT_PKTID.

?GRAPH._PIXSTAT. PIXMAP_SZ.X Width (in pixels) of pixel map. Returned by
(doubleword) the operating system.

?GRAPH._PIXSTAT. PIXMAP _SZ. Y Height (in pixels) of pixel map. Returned
(doubleword) by the operating system.

?GRAPH._PIXSTAT. PIXEL_DEPTH Pixel depth of pixel map (number of bits
(doubleword) per pixel) .

?GRAPH_PIXSTAT.CLIP_ORG.X X coordinate of clip rectangle's orlgln (in
(doubleword) pixels relative to origin of pixE!l map) .

?GRAPH_PIXSTAT.CLIP_ORG.Y Y coordinate of clip rectangle's origin (in
(doubleword) pixels relative to origin of pixel map) .

?GRAPH_PIXSTAT.CLIP_SZ.X Width (in pixels) of clip rectangle.
(doubleword)

?GRAPH_PIXSTAT.CLIP_SZ.Y Height (in pixels) of clip rectangle.
(doubleword)

?GRAPH_PIXSTAT.CLIP_STATE The current state of the clip rectangle.

?GRAPH_RECT_STATE_ENABLE -- Indicates that
the clip rectangle is currently enabled.

?GRAPH PIXSTAT.RSV

Setting the Clip Rectangle

?GRAPH_RECT_STATE_DISABLE -- Indicates that
the clip rectangle is currently disabled.

Reserved. (Set to 0.)

You use the ?GRAPH_SET_CLIP _RECTANGLE function to specify a rectangular portion ofa pixel
map as a clip rectangle. When a clip rectangle is in effect, you can still specify any location on the
pixel map as an argument to a graphics instruction. However, any changes affect only the portion
of the pixel map within the rectangle.

Every pixel map has a clip rectangle. Initially, the clip rectangle has the same size and origin as
the pixel nlap, and clipping is disabled. The ?GRAPH_SET_CLIP _RECTANGLE function lets you
set the clip rectangle's origin, width and height, and lets you disable or re-enable clipping.

In the main packet, specify the pixel map ID of the pixel map for which you want to set the clip
rectangle.

Your entries in the subpacket determine which attributes of the clip rectangle (its size, origin, or
state) will change. To reset a particular attribute, place the new value in the appropriate offset; in
the flag word ?GRAPH_SET_CLIP.FLAGS, set the flag that corresponds to that offset. If you don't
want to change a particular attribute, set both the offset and the corresponding flag to O.
Figure 2-H5 shows the subpacket structure; Table 2-46 details its contents.

2-230 Licensed Material - Property of Data General Corporation 093-000542

--
1

o 15 16 31 1

1---------------+--------------- 1
?GRAPH_SET_CLIP.PKT_ID 1 Packet identifier 1

1------------------------------- 1
?GRAPH_SET_CLIP.FLAGS 1 Flag word 1

1-------------------------------
?GRAPH_SET_CLIP.ORG.X 1 X coordinate of clip

1 rectangle's origin
1-------------------------------

?GRAPH_SET_CLIP.ORG.Y 1 Y coordinate of clip
1 rectangle's origin
1-------------------------------

?GRAPH_SET_CLIP.SZ.X 1 width of clip rectangle
1-------------------------------

?GRAPH_SET_CLIP.SZ.Y 1 Height of clip rectangle
1---------------+---------------

?GRAPH_SET_CLIP.STATE 1 State of clip 1 Reserved ?GRAPH_SET_
1 rectangle 1 CLIP.RSV
1---------------+---------------

Figure 2-65. Structure of the ?GRAPH_SET _CLIP _RECTANGLE Subpacket

Table 2-46. Contents of the ?GRAPH_SET_CLlP.RECTANGLE Subpacket

Offset
========================

?GRAPH_SET_CLIP.PKT_ID
(doubleword)

?GRAPH_SET_CLIP.FLAGS
(doubleword)

093--000542

Contents
===

Packet identifier. Set this offset to
?GRAPH_SET_CLIP_PKTID.

Flag word. For each clip rectangle attribute
you want to change, you must set the
corrresponding flag.

?GRAPH_SET_CLIP.FLAGS.ORG_X -- You must set
this flag if you are changing the X coordinate
of the clip rectangle's origin.

?GRAPH_SET_CLIP.FLAGS.ORG_Y -- You must set
this flag if you are changing the Y coordinate
of the clip rectangle's origin.

?GRAPH_SET_CLIP.FLAGS.SZ_X -- You must set
this flag if you are changing the width of the
clip rectangle.

?GRAPH_SET_CLIP.FLAGS.SZ_Y -- You must set this
flag if you are changing the height of the clip
rectangle.

?GRAPH SET_CLIP.FLAGS.STATE -- You must set
this flag if you are changing the state of the
clip rectangle.

(continued)

Licensed Material - Property of Data General Corporation 2-231

?GRAPHICS Continued

Table 2-46. Contents of the ?GRAPH_SET_CLlP.RECTANGLE Subpacket

Offset
=======================

?GRAPH __ SET_CLIP. ORG. X
(doub 1 E!word)

?GRAPH __ SET_CLIP. ORG. Y
(doublE!word)

?GRAPH __ SET_CLIP. SZ. X
(doublE~word)

?GRAPH __ SET_CLIP. SZ. Y
(doub 1 E=WO rd)

Contents
==

X coordinate of clip rectangle's origin (in
pixels, relative to origin of pixel map). If you
supply a value here, you must also set the flag
?GRAPH_SET_CLIP.FLAGS.ORG_X. If you are not
changing the X coordinate, set this offset to 0,
and do not set the corresponding flag.

Y coordinate of clip rectangle's origin (in
pixels, relative to origin of pixel map). If you
supply a value here, you must also set the flag
?GRAPH_SET_CLIP.FLAGS.ORG_Y. If you are not
changing the Y coordinate, set this offset to 0,
and do not set the corresponding flag.

Width of clip rectangle (in pixels) .
If you supply a value here, you must also set
the flag ?GRAPH_SET_CLIP.FLAGS.SZ.X. If you are
not changing the width, set this offset to 0,
and do not set the corresponding flag.

Height of clip rectangle (in pixels) .
If you supply a value here, you must also set
the flag ?GRAPH_SET_CLIP.FLAGS.SZ.Y. If you are
not changing the width, set this offset to 0,
and do not set the corresponding flag.

state of clip rectangle. To change the state,
place one of the following values here, and set
the flag ?GRAPH_SET_CLIP.FLAGS.STATE. If you
are not changing the state, set this offset to
0, and do not set the corresponding flag.

?GRAPH_RECT_STATE_ENABLE
rectangle.

Enables the clip

?GRAPH_RECT_STATE DISABLE -- Disables the clip
rectangle.

Reserved. (Set to 0.)

(concluded)

Transferring Data Between Pixel Maps and Disk Files

To transfer information between a disk file and a pixel map,

1. Issue the ?GRAPHICS call with function code ?GRAPH_MAP _PIXELMAP to map an existing
memory pixel map into your program's address space. (We explain this step in nlore detail in the
section "To Map a Pixel Map Into Your Program's Address Space" below.)

2. Use I/O system calls, such as ?READ and ?WRITE, to transfer data between the disk file and
the address space.

3. Issue ?GRAPHICS with function code ?GRAPH_UNMAP _PIXELMAP to unmap the pixel map
from the address space. This returns the contents of the address space to pixel map format; you
can then use graphics instructions on that pixel map. (We explain this step in ITlOre detail in the
section "To Unmap a Pixel Map from Your Program's Address Space" below.)

2-232 Licensed Material - Property of Data General Corporation 093-000542

To Map a Pixel Map into Your Program's Address Space

You use the ?GRAPH_MAP _PIXELMAP function to load a pixel map into your program's address
space. In the main packet, specify the pixel map ID of the pixel map you want.

The operating system calculates where to place the pixel map in your address space, and returns
the address of the pixel map in the subpacket (offset ?GRAPH_MAP _PMAP.ADDR). It also returns
information that lets you convert pixel map coordinates into word and bit addresses so that you can
perform data transfer instructions accurately.

Figure 2-66 shows the subpacket structure; Table 2-47 details its contents.

o 31
1-----------------------------------1
1 Packet identifier 1
1-----------------------------------1
1 Logical address of pixel map 1
1-----------------------------------1
1 X pitch 1

1-----------------------------------1
1 Y pitch 1

1-----------------------------------1
1 Format type of pixel map 1

1-----------------------------------1

Figure 2-66. Structure of the ?GRAPH_MAP _PlXELMAP Subpacket

Table 2-47. Contents of the ?GRAPH_MAP _PIXELMAP Subpacket

1

1 Offset 1 Contents 1

==========================1===1
?GRAPH_MAP_PMAP.PKT_ID
(doubleword)

?GRAPH_MAP_PMAP.ADDR
(doubleword)

?GRAPH_MAP_PMAP.FORMAT
(doubleword)

093-000542

Packet identifier. Set to
?GRAPH_MAP_PMAP_PKTID.

Logical address of pixel map in your
program's address space (returned by the
operating system).

The number of bits occupied by a pixel; not
necessarily the same as pixel depth.
(Returned by the operating system.)

The number of pixels on a line; not neces
sarily the same as the width of the pixel
map. (Returned by the operating system.)

Pixel map format type (returned by the
operating system) .

?GRAPH MAP PMAP.FORMAT.PACKED_PIXEL -
Standa~d f~rmat for Data General pixel maps.

Licensed Material - Property of Data General Corporation 2-233

?GRAPHICS Continued

To get the bit offset (from the beginning of the mapped pixel map) of a particular pixel, use the
following formula:

To Unmap a Pixel Map from Your Program's Address Space

Once you have mapped a pixel map into your program's address space, you cannot use graphics
instructions on that pixel map until you have unmapped it.

To unmap a pixel map, issue ?GRAPHICS with function code ?GRAPH_UNMAP _PIXELMAP. The
operating system then unmaps that pixel map from your program's address space to the pixel
map's original location. Any data you wrote to the pixel map while it was in your address space will
appear in the unmapped pixel map, and you can then use graphics instructions on t.hat pixel map.

In the main packet, specify the pixel map ID of the target pixel map. There is no subpacket for the
?GRAPH_UNMAP _PIXELMAP function; set offset ?GRAPH_PKT.SUBPKT to o.

Writing to a Palette

You use function ?GRAPH_ WRITE_PALETTE to change the colors in the palette aBsociated with a
pixel map. You can change the color settings for one or more contiguous pixel values. For the set of
pixel values you specify, you can change either the phase 0 setting, the phase 1 setting, or both.
Follow these steps to change the colors in a palette:

1. Set up an array in memory to contain the color settings. If you are changing both the phase 0
and phase 1 settings, you must set up two separate arrays, one for each phase. The arrays must
be the same size.

There rnust be an entry in each array for each pixel value you want to change. An entry consists
offour a2-bit unsigned fractions, one for each color level:

<Red level> <Green level> <Blue level> <Grey level>

2. Issue the ?GRAPHICS call with function code ?GRAPH_WRITE_PALETTE. In the main packet,
specify the pixel map ID of the pixel map whose palette you are changing. In the subpacket, you
specify

• The number of palette entries you want to write.

• The palette index at which you want to start writing.

• The addresses of the arrays you have stored in memory.

Figure 2-67 shows the subpacket structure.

The operating system then copies the array(s) you specify into the palette, starting at the specified
palette index.

2-234 Licensed Material - Property of Data General Corporation 09:H>00542

o 31
- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - 1

?GRAPH_WRPAL.PKT_ID Packet identifier; 1

set to ?GRAPH_WRPAL_PKTID 1

------------------------------------1
?GRAPH_WRPAL.ARRAY_PKT_ID Array packet identifier; 1

set to ?GRAPH_WRPAL_ARRAY_PKTID 1

------------------------------------1
?GRAPH_WRPAL.FIRST_PAL_INDEX Index of first palette entry to 1

write (palette indices are 1

zero-relative) 1

------------------------------------1
?GRAPH_WRPAL.ENTRY_CNT Number of palette entries to write 1

(entries must be consecutive) 1

------------------------------------1
?GRAPH_WRPAL.PHO_ARRAY Word pointer to Phase 0 array (set 1

to 0 if you are not changing the 1

Phase 0 settings) 1

------------------------------------1
?GRAPH_WRPAL.PH1_ARRAY Word pointer to Phase 1 array (set 1

to 0 if you are not changing the 1

Phase 1 settings) 1

------------------------------------1

?GRAPH_WRPAL_LEN = packet length

Figure 2-67. Structure of the ?GRAPH_WRITE_PALETTE Subpacket

Reading from a Palette

You can use function ?GRAPH_READ_PALETTE to get the current color settings from the palette
associated with a pixel map. This call copies a series of color settings for contiguous pixel values
from the palette into memory. Follow these steps to determine the colors in a palette:

1. Allocate space in memory for each array you are copying. If you are copying both the Phase 0
and Phase 1 settings, you must allocate space for two separate arrays (one for each phase). Each
array needs as much space as the number of entries you will copy, multiplied by the size of each
entry (four doublewords).

2. Issue the ?GRAPHICS call with function code ?GRAPH_READ_PALETTE. In the main packet,
specify the pixel map ID of the pixel map whose palette you are reading. In the subpacket, you
specify

• The number of palette entries you are reading.

• The palette index at which you want to start reading.

• The destination memory address for each array.

The operating system then copies the palette entries you specified into the space you allocated in
memory. The copied entries are set up as arrays, one for each phase. Each array contains an entry
for each pixel value you requested. Each entry consists of four doublewords, each of which denotes
a color level:

<Red level> <Green level> <Blue level> <Grey level>

Figure 2-68 shows the subpacket structure.

093-000542 Licensed Material - Property of Data General Corporation 2-235

?GRAPHICS Continued

o 31
1------------------------------------

?GRAPH_RDPAL.PKT_ID 1 Packet identifier;
1 set to ?GRAPH_RDPAL_PKTID
1------------------------------------

?GRAPH_RDPAL.ARRAY_PKT_ID 1 Array packet identifier; set to
1 ?GRAPH RDPAL_ARRAY_PKTID
I----------------~-------------------

?GRAPH_RDPAL.FIRST_PAL_INDEX 1 Index of first palette entry to
1 read. Palette indices are
1 zero-relative.
1------------------------------------

?GRAPH_RDPAL.ENTRY_CNT 1 Number of palette entries to read
1 (entries must be consecutive)
1------------------------------------

?GRAPH_RDPAL.PHO_ARRAY 1 Word pointer to Phase 0 array
1 (set to 0 if you are not reading
1 the Phase 0 settings) 1

1------------------------------------1
?GRAPH_RDPAL.PH1_ARRAY 1 Word pointer to Phase 1 array 1

1 (set to 0 if you are not reading 1

1 the Phase 1 settings) 1

1------------------------------------1

?GRAPH_RDPAL_LEN = packet length

Figure 2-68. Structure of the ?GRAPH_READ_PALETTE Subpacket

Setting the Draw Origin

The origin of a pixel map - the pixel at position (0,0) - is usually at the pixel map's upper-left
corner. However, for drawing operations, you can move the origin to facilitate panning. (Moving the
draw origin changes only the coordinates you use for drawing; for other operations, 8uch as
performing windowing functions, setting the clip rectangle, or working with pointer events, the
coordinates remain unchanged.)

To change the location of the draw origin, issue the ?GRAPHICS call with function (~ode
?GRAPHICS_SET_DRAW_ORIGIN. In the main packet, specify the pixel map ID you want.

NOTE: This call affects only the pixel map ID you specify; if a pixel map has additional pixel map
IDs, the drawing coordinates for those pixel map IDs will remain unchanged.)

In the subpacket, specify the new position of the draw origin. You can move the origin anywhere
you want, either on or off the pixel map. The coordinates are in pixels and are relative to the
upper-left (:orner of the pixel map. For example, to set the draw origin to 100 pixels down and 200
pixels to the right of the upper-left corner of the pixel map, you would specify coordinates of (100,
200). To move the draw origin to the upper-left corner, you would specify (0,0). To move the draw
origin 50 pixels above and 30 pixels to the left of the upper-left corner, you would specify (-50,-30).

2-236 Licensed Material - Property of Data General Corporation 093-000542

Figure 2-69 shows the subpacket structure; Table 2-48 details its contents.

o 31
1-----------------------------1

?GRAPHICS_SET_ORG.PKT_ID 1 Packet identifier 1
1-----------------------------1

?GRAPHICS_SET_ORG.ORG.X 1 X coordinate of draw origin 1
1-----------------------------1

?GRAPHICS_SET_ORG.ORG.Y 1 Y coordinate of draw origin 1

1-----------------------------1

Figure 2-69. Structure of the ?GRAPHICS_SET _DRAW_ORIGIN Subpacket

Table 2-48. Contents of the ?GRAPHICS_SET_DRAW_ORIGIN Subpacket

Offset
==========================

?GRAPHICS_SET_ORG.PKT_ID
(doubleword)

?GRAPHICS_SET_ORG.ORG.X
(doubleword)

?GRAPHICS_SET_ORG.ORG.Y
(doubleword)

Contents
======================================

Packet identifier; set to
?GRAPHICS_SET_ORG_PKTID.

New X coordinate of draw orlgln.
Specify the coordinate in pixels,
relative to the upper-left corner of
the pixel map. (A positive value
will place the draw origin to the
right of the upper-left corner; a
negative value places the origin to
the left of the upper-left corner.
A value of 0 places the origin on
the left boundary of the pixel map.)

New Y coordinate of draw orlgln.
Specify the coordinate in pixels,
relative to the upper-left corner of
the pixel map. (A positive value
will place the draw origin below the
upper-left corner; a negative value
places the origin above the upper
left corner. A value of 0 places
the origin on the upper boundary of
the pixel map.)

Getting the Coordinates of the Draw Origin

To find out the location of the draw origin for a particular pixel map ID, issue the ?GRAPHICS call
with function code ?GRAPHICS_GET_DRAW_ORIGIN. In the main packet, specify the pixel map
ID you want.

NOTE: This call returns only the draw origin of the particular pixel map ID you specify. A pixel
map can have several pixel map IDs, each with its own independent draw origins; to get
the draw origins for all the pixel map IDs, you must reissue this call for each pixel map
ID.

093-«10542 Licensed Material - Property of Data General Corporation 2-237

?GRAPHICS Continued

The operating system returns the coordinates of the draw origin in the subpacket. The coordinates
are in pixels and are relative to the upper-left corner of the pixel map.

Figure 2-70 shows the subpacket structure; Table 2-49 details its contents.

Notes

o 31
1-----------------------------1

:'GRAPHICS_GET_ORG. PKT_ID 1 Packet ident i f ier 1
1-----------------------------1

?GRAPHICS_GET_ORG.ORG.X 1 X coordinate of draw origin 1
1-----------------------------1

;)GRAPHICS_GET_ORG.ORG. Y 1 Y coordinate of draw origin 1

1-----------------------------1
?GRAPHICS_GET_ORG_LEN = packet length

Figure 2-70. Structure of the ?GRAPHICS_GET _DRAW_ORIGIN Subpacket

Table 2-49. Contents of the ?GRAPHICS_GET_DRAW_ORIGIN Subpacket

Offset 1 Contents 1

==:========================1====================================1

?GRAPHICS_GET_ORG.PKT_ID
(doubleword)

?GRAPHICS_GET_ORG.ORG.X
(doubleword)

?GRAPHICS_GET_ORG.ORG.Y
(doubleword)

Packet identifier; set to
?GRAPHICS_GET_ORG_PKTID.

X coordinate of draw origin; in
pixels, relative to the upper-left
corner of the pixel map. (A
positive value indicates the
origin is to the right of the
upper-left corner; a negative
value indicates the origin is to
the left of the upper-left corner.
A value of 0 indicates that the
origin is even with the left
boundary of the pixel map.)

Y coordinate of draw origin; in
pixels, relative to the upper-left
corner of the pixel map. (A
positive value indicates the
origin is below the upper-left
corner; a negative value indicates
the origin is above the upper-left
corner. A value of 0 indicates
that the origin is even with the
upper boundary of the pixel map.

• See the description of ?GECHR in this chapter.

2-238 Licensed Material - Property of Data General Corporation 093--000542

?GRNAME Returns complete path name of generic file.

?GRNAME
error return
normal retu rn

Input

ACO Byte pointer to the
input generic filename

AC 1 Byte pointer to the buffer

AC2 Length of the buffer in bytes

Error Codes in ACO

Output

ACO Unchanged

ACl Unchanged

AC2 Length of the name in bytes, excluding
the null terminator

ERFDE File does not exist (The file may be a generic file, but no generic-to-real connection
exists.)

ERVBP Invalid byte pointer passed as a system call argument

Why Use It?

?GRNAME allows you to determine what file is associated with a particular generic file. Also, you
can use ?GRNAME to return the complete pathname of a nongeneric pathname fragment in the
same way that you would use ?GNAME.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GRNAME returns the complete pathname associated with a generic file.

If the input file is a generic file and there is no connected "real" file, then the operating system
returns error code ERFDE in ACO and sets Bit 0 of AC2 to O. If the file is a generic file that is
connected to a "real" file, then the operating system returns the full pathname of the connected file
as if a ?GNAME were performed on that pathname. In this case, the operating system sets Bit 0 of
AC2 to 1.

Notes

• You cannot always use ?GNAME to obtain the "true" pathname of a generic file. For example,
?GNAME would return a complete pathname of :PER:DATA for the input pathname @DATA.
However, the complete pathname of the file might actually be :UDD:USER:DATA. In this case,
?GRNAME would return :UDD:USER:DATA.

• If you place in ACO a byte pointer to the text string @NULL, then ?GRNAME places
:PER:NULL in the buffer whose byte pointer is in AC 1.

• See the description of?GNAME in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-239

?GROUP Changes a group access control list of a process.

?G ROU P [packet address]
error return
normal return

Input

ACO

ACl

AC2

Reserved (Set to 0)

Unused (Set to 0)

?GROUP Packet Address
(unless specified as
a system call parameter)

Error Codes in ACO

ERPKT Invalid packet ID

AOSNS II only

Output

ACO

ACl

AC2

ERPRE Invalid system call parameter
ERRVN Reserved value not zero

Error code

Undefined

Unchanged

ERVBP Invalid byte pointer passed as system call argument
ER_FS_GROUPNAME_TOO_LONG
ER_FS_GROUP _ALREADY_EXISTS
ER_FS_GROUP _BUFFER_TOO_SMALL
ER_FS_GROUP _DIR_DOES_NOT_EXIST
ER_FS_GROUP _DOES_NOT_EXIST
ER_FS_ GRO UP _LIST _INPUT_MISMATCH
ER_FS_ILLEGAL_GROUPNAME_CHARACTER
ER_FS_ILLEGAL_GROUP _LIST_FORMAT
ER_FS_INV ALID_GROUP _FUNCTION
ER_FS_INV ALID_GROUP _LIST_BYTE_PTR
ER_FS_INV ALID _PKT _PTR
ER_FS_TOO_MANY_GROUPS_SPECIFIED
FS_GROUP _COMMENT_END_NO_BEGIN
FS_GROUP _FILE_CONTAINS_UNTERMED_COMMENT
FS_ILLEGAL_CHAR_IN_GROUP _FILE
FS_USERNAME_TOO_LONG_IN_GROUP _FILE

Why Use It?

?PROC initially defines the group access control list of the process. ?GROUP allows you to modify
it.

Who Can Use It?
No special privileges are required for a process to obtain or change it's current group access control
list. The process must have execute access to the :GROUPS directory to set a group access control
list. The process must have execute access to the :GROUPS directory and read access to the group
file to view the names in the group file.

2-240 Licensed Material - Property of Data General Corporation 093-000542

What It Does

Use the ?GROUP _GET_LIST function to read the group access control list into the group buffer.
Modify the group buffer by adding or removing group names. The group buffer contains a double
null-terminated list of group names. A group name is a null-terminated, ASCII string with a
maximum length of 16 bytes, including the null character. A group name corresponds to a filename
in the :GROUPS directory.

The ?GROUP _REPLACE function sets the group access control1ist of the process. Before setting
the list of group names, the system call reads each group file and verifies that the process-related
username is a member of the group.

A group file contains a list of usernames that belong to the group. A group access control list can
contain up to ?GROUP_NUM_MAX number of names.

Figure 2-71 shows the format of the packet and Table 2-50 defines the contents.

?GROUP
PKTID

?GROUP
_FUNCTION

?GROUP
_NUM_IN

?GROUP
_BUFFER

?GROUP
_LENGTH_IN

?GROUP
_RES2

Logging

o 15 16 31
1----------------+-------------------
1 Packet ID
1----------------+-------------------
1 Function code IReserved (Set to 0) ?GROUP
1----------------+------------------- _RESI
1 # groups in 1 # groups out ?GROUP
1----------------+------------------- _NUM_OUT
I Byte pointer to group buffer
1----------------+-------------------
I Length - in I Length - out ?GROUP
I - ----- - - --------+ - - - - -- -0- - - - - - ---- - - _LENGTH_OUT
1 Reserved (Set to 0.)
1------------------------------------

Figure 2-71. Structure of ?GROUP Packet

The operating system logs the replace function of the ?GROUP system call. The log entry consists
of the standard header with the ?LGPRPL event code. Figure 2-72 shows the log entry format.
Although the log entry subcode corresponds to the ?GROUP function code, it is not the same value
because of the different numbering scheme used for the log entry subcode.

093-000542

8,9

10 -

1 Error code (if any)

Idouble null-terminated group or 1

Ilist of groups I

Figure 2-72. Structure of ?GROUP log entry

Licensed Material - Property of Data General Corporation 2-241

?GROUP Continued

Table 2-50. Contents of ?GROUP Packet

Offset Contents
=================-==

?GROUP_FUNCTION The values for the offset are

?GROUP_NUM_IN

?GROUP_BUFFER

?GROUP_LENGTH
IN

?GROUP_LENGTH
_OUT

?GROUP GET_LIST function returns in the group
buffer the current group access control list
of the calling process.

?GROUP_REPLACE function replaces the current
group access control list with the list
specified in the group buffer.

Set to the number of groups in the group access
control list to use as a replacement when using
the ?GROUP_REPLACE function. A group list can
contain up to ?GROUP_NUM_MAX number of names.

Returns the number of groups when using the
?GROUP_GET_LIST function.

Byte pointer to the group buffer address.

?GROUP_MIN_BUFFER_BYTE_LENGTH and
?GROUP_MAX_BUFFER_BYTE_LENGTH specify the size
of the group buffer.

Set to the number of bytes in the group buffer
when using the ?GROUP_REPLACE function.

Returns the number of bytes in the group buffer
when using the ?GROUP_GET_LIST function.

16-Bit System Call Support

The 16-bit version of ?GROUP supports RMA access. The 16-bit version uses the same packet
offset as the 32-bit call. The 16-bit version also expects a ring field with the 16-bit addresses.

Notes

• See the description of ?PROC in this chapter, which initializes the group access control list for a
process.

• See the description of?XPSTAT in this chapter, which returns the group access (!ontrollist of a
process.

• PARU_LONG.SR defines the 32-bit offsets and parameters that appear in the packet.
(PARU_LONG.H for users of C.)

2-242 Licensed Material - Property of Data General Corporation 093--000542

?GSHPT Lists the current shared partition size.

?GSHPT
error return
normal return

Input Output

None ACO Page number of the first shared page in
the calling process's current ring

Error Codes in ACO

No error codes are currently defined.

Why Use It?

AC 1 Total number of shared pages in the
calling process's current ring

AC2 Undefined

?GSHPT lets you determine the amount of logical shared memory the operating system has
allocated to your process. Also, you can use ?GSHPT with ?SSHPT, which establishes a new shared
partition in the caller's logical address space.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GSHPT returns the total number of shared pages in the caller's current ring, and the logical page
number of the first shared page. ?GSHPT has no input requirements.

The operating system calculates the logical page numbers and returns them in ACO and AC 1.
These page numbers range from 1 through 262,143 shared pages for Ring 7 and from 1 through 512
shared pages for Rings 4 through 6. (Page zero is always unshared.) If the caller's logical address
space contains no shared pages, the operating system returns 0 to both ACO and ACl.

Notes

• See the description of ?SSHPT in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-243

?GSID Gets the system identifier.

?GSID
error return
normal retu rn

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Byte pointer to a 32-byte
receive buffer for the system
identifier

Error Codes in ACO

Output

ACO Undefined

ACI Undefined

AC2 Unchanged

ERMPR System call parameter address error
ERVBP Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?GSID to get the system identifier for a particular system. This can be useful if you
don't know what system you are on.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GSID returns the current system identifier to a receive buffer in your logical address space. The
system identifier is an ASCII character string 32 bytes long. The string returned by ?GSID is
exactly the same as the one set by ?SSID. By convention, anything appearing after the first null (if
any) in the system identifier is ignored by most processes. (If the identifier is less than 32
characters long, the system puts a null terminator on the end; if the identifier is 32 characters long,
no null is added.) The operator process (PID 2) can define the system identifier with the ?SSID
system calL

Before you issue ?GSID, set up a 32-byte receive buffer for the identifier in your address space, and
load AC2 with a byte pointer to the buffer.

Notes

• See the description of?SSID in this chapter.

2-244 Licensed Material - Property of Data General Corporation 093-000542

?GTACP Gets access control privileges.

?GTACP
error return
normal return

Operating System Differences

AOSIRT32 always returns "+,OWARE" as the ACL.

Input Output

ACO Byte pointer to the target
file's pathname

ACO One or more of the following
access privilege masks:

AC 1 One of the following:

• Byte pointer to the
target username

• -1 to get the caller's
access privileges

AC2 Reserved (Set to 0.)

Error Codes in ACO

?FAOB
?FAWB
?FAAB
?FARB
?FAEB

AC 1 Unchanged

AC2 Undefined

ERPRV
ERVBP

Caller not privileged for this action
Invalid byte pointer passed as a system call argument

Why Use It?

Owner access
Write access
Append access
Read acess
Execute access

Because ?GTACP returns the ACL for a specific file and username, you can issue ?GTACP before
you issue ?SACL, which sets the current ACL for a file, or before you issue ?DACL, which sets the
default ACL.

Who Can Use It?

You need Execute access to a file's directory to determine your own access rights to a file. You need
Superuser privilege to determine another user's access rights to a file.

What It Does
Under AOSNS, ?GTACP returns bit masks in ACO that indicate the target username's access
privileges to the target file. Under AOSIRT32, ?GTACP returns "+,OWARE" as the ACL.

093-000542 Licensed Material - Property of Data General Corporation 2-245

?GTAP Continued

Before you issue ?GTACP, specify the target file's pathname and the target username in your
logical address space. Load ACO with a byte pointer to the pathname, and load ACI with a byte
pointer to the username. The user parameter files, PARU.32.SR and PARU.16.SR, define the
privilege bits as follows:

Mask Bit Value

?FACO IB(?FAOB)
?FACWIB(?FAWB)
?FACA IB(?FAAB)
?FACR IB(?F ARB)
?FACE IB(?FAEB)

Notes

Meaning

Owner access
Write access
Append access
Read access
Execute access

• See PARU.32.SR or PARU.16.SR.

2-246 Licensed Material - Property of Data General Corporation 093-000542

?GTIME Gets the time, date, and time zone.

?GTIME [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?GTIME
packet, unless you specify
the address as an argument
to ?GTIME

Error Codes in ACO

Illegal function code

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?GTIME packet

ERICD
ERPVS
ERRVN
ERVWP

Packet version not supported (bad value in ?TIME_PKT.PKT_ID)
Reserved value not zero
Invalid word pointer passed as system call argument

Why Use It?

Use this system call to obtain information to postmark a message or to put a header on a listing
page showing when your program created it.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

This system call returns the current time, date, and time zone. Time and date are based on prior
operator input, and typically are the date and time at the site with the ECLIPSE MVlFamily
hardware on which the operating system is running.

Time zones are based on Universal Time (UTC). This is the international standard time derived
from solar time at the meridian passing through Greenwich, England (the prime meridian,
longitude 0 degrees). An older name for Universal Time is Greenwich Mean Time (GMT).

Time zones decrement as a person moves west of Greenwich, England; they increment as the
person moves east of this city. For example, Mountain Standard Time is 7 hours west of
Greenwich. Its time code is -7:00, so ?GTIME returns -7 and 0 respectively in offsets
?TIME_PKT.ZONE_HOUR and ?TIME_PKT.ZONE_MINUTE of the parameter packet. This
information might be useful to someone in Phoenix, Arizona (United States of America). For
another example, Calcutta, India is in a time zone +5-1/2 hours east of Greenwich. ?GTIME would
return 5 and 30. respectively in offsets ?TIME_PKT.ZONE_HOUR and
?TIME_PKT.ZONE_MINUTE of the parameter packet.

093-000542 Licensed Material - Property 01 Data General Corporation 2-247

?GTIME Continued

The description of system call ?NTIME contains the maximum and minimum values returned in
eight consecutive offsets of the parameter packet for ?GTIME (and for ?NTIME). ThHse offsets are
between ?TIME_PKT.YEAR and ?TIME_PKT.ZONE_MINUTE inclusive.

You should realize that all the information that ?GTIME returns can change from one issuance of
?GTIME to another. For example, the time zone can change because of going on daylight savings
time in the spring, and the operating system time can change because someone made a mistake
during initialization.

A single issuance of ?GTIME returns all the information needed for a message time stamp for both
ARPANET and X.400 protocols. However, the protocols use text strings while ?GTIME returns
binary numbers.

16-bit programs should not issue ?GTIME because the packet for ?GTIME does not appear in
PARU.16.SR.

Figure 2-73 shows the structure of the ?GTIME parameter packet, and Table 2-51 describes its
contents.

o 15 16 31
---------------------+--------------------

?TIME_PKT. Packet identifier
PKT __ ID

---------------------+--------------------
?TIME_PKT. Function code: I Reserved ?TIME_PKT.

FUNC supply ?TIME_PKT_UTCI (Set to 0.) RSV
or ?TIME_PKT_LOCAL I

---------------------+--------------------
?TIME_PKT. Year, including the I Month number of ?TIME_PKT.

YEAH. century I the year MONTH
---------------------+--------------------

?TIME_PKT. Day number of the I Hour of the day ?TIME_PKT.
DAY month I HOUR

---------------------+--------------------
?TIME_PKT. Minute of the hour I Second of the ?TIME_PKT.

MINUTE I minute SECOND
---------------------+--------------------

?TIME_PKT. Time zone offset I Time zone offset ?TIME_PKT.
ZONE_HOUR hours I minutes ZONE __ MINUTE

---------------------+--------------------
?TIME_PKT_LEN = packet length

Figure 2-73. Structure of ?GTIME Packet

2-248 Licensed Material - Property of Data General Corporation 09:H>00542

Table 2-51. Contents of ?GTIME Packet

Offset Contents
==================== ===

?TIME_PKT.PKT_ID
(doubleword)

?TIME_PKT.
ZONE_HOUR

?TIME_PKT.
ZONE_MINUTE

Notes

Packet identifier. Place ?TIME_PKT_PKTID here.

Function code. To obtain Universal Time, place
?TIME_PKT_UTC here; to obtain local time, place
?TIME_PKT_LOCAL here.

Reserved. (Set to 0.)

The operating system returns the current year
as a number greater than 1967.

The operating system returns the current month
as a number between 1 and 12 (1 for January,
2 for February, 12 for December) .

The operating system returns the current day
number of the month (1 for the 1st, 2 for the
2nd, ... , 31 for the 31st).

The operating system returns the current hour
number of the day as a number between 0 and
23, inclusive (i.e., a 24-hour clock).

The operating system returns the current minute
number of the hour as a number between 0 and
59, inclusive.

The operating system returns the current second
number of the minute as a number between 0 and
59, inclusive.

The operating system returns the current offset
in hours relative to Universal Time. Western
Hemisphere zones have negative values, Eastern
Hemisphere zones have positive values, and the
zone whose center is the prime meridian has a
zero value. For example, West Germany is one
time zone east of the prime meridian; the
operating system will return 1 in this word for
the 1 hour offset (i.e., difference).

The operating system returns the current offset
in minutes relative to ?TIME_PKT.ZONE_HOUR.
For most countries this value is zero, but for
a few -- such as India -- this value is nonzero.
India is five time zones east of the prime
meridian. When it is 0300 (3:00 am) in
Greenwich it is 0830 (8:30 am) in India; con
seq1.1.ently ?TIME_PKT. ZONE_MINUTE contains
30 (decimal) and ?TIME_PKT.ZONE_HOUR contains 5.

• See the descriptions of ?NTIME and ?RTODC in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-249

?GTMES Gets an initial IPC message.

?GTMES [packet address]
error return
normal retu rn

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?GTMES packet,
unless you specify the
address as an argument to
?G,]~MES

Error Codes in ACO

Output

ACO Dependent on packet's input
values (See Table 2-52.)

ACl Dependent on packet's input
values (See Table 2-52.)

AC2 Address of the ?GTMES packet

ERVBP
ERVWP

Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

?GTMES allows you to access the initial IPC message that the CLI sends when it creates a new
process. This message is an edited version of the CLI command used to create the process.
Depending on your input specifications, you use ?GTMES to get a specific argument in the CLI
command line and to determine which switches, if any, modify it. ?GTMES also returns the
message that another father process sends when it creates a son with the ?PROC system call.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
When you create a process by executing a CLI command, the CLI sends the new process an initial
message that contains an edited version of the CLI command. ?GTMES gives a CLI son process
access to that message or, depending on your input specifications, access to

• The length of the message, in words.

• The number of arguments in the CLI command (argument count) and any simple or keyword
switches used to modify a particular argument. A keyword switch is a two-part switch of the
form

!keyword = value.

For example, lL=filename is a keyword switch.

• One of the CLI command line arguments, minus the switches.

2-250 Licensed Material - Property of Data General Corporation 000-000542

Figure 2-74 shows the structure of the ?GTMES packet, and Table 2-52 describes each offset and
parameter in the packet.

o 15 16 31
1-------------------------+-------------------------1

?GREQ 1 Request type (See 1 Argument number 1 ?GNUM
1 Table 2-53.) 1 1
1-------------------------+-------------------------1

?GSW 1 Byte pointer to switch 1

1---1
?GRES 1 Byte pointer to result buffer 1

1---1
?GTLN = packet length

Figure 2-74. Structure of ?GTMES Packet

Most of the ?GTMES parameters apply to CLI messages. However, offset ?PIPC in the ?PROC
packet passes an IPC header from the ?PROC caller to the son, which allows you to use ?GTMES to
obtain an IPC message sent by father process (other than the CLI) when it creates a son.

Offset ?GREQ describes the ?GTMES request; that is, the kind of information you want the
operating system to return. Choose only one request type for offset ?GREQ. Table 2-53 lists the
possible request types and their meanings.

Table 2-52. Contents of ?GTMES Packet*

1

1 Offset 1 Contents 1

093-000542

===============1===1
?GREQ 1 Request type: specifies the information you want

1 the OS to return. (See Table 2-53 for request
1 types.)
1

?GNUM 1 Argument in the CLI command line; specify the
1 argument you want by its relative position in the
1 command line. For example, ?GNUM = 0 specifies
1 the first argument; that is, program name.
1

?GSW 1 Byte pointer to a simple or keyword switch you
(doubleword) 1 want to test for. (Use ?GSW only if request type

is ?GTSW; see Table 2-53.)

?GRES
(doubleword)

A keyword switch can be no longer than 32 bytes,
including the terminating null.

DEFAULT = 0 (do not test for a switch) .

Byte pointer to buffer you want to receive the
results. (The OS terminates the results string
with a null.)

DEFAULT = -1 (pass results to ACO and AC1 only)
1 (See Table 2-54.)

--------------_1---
* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 2-251

?GTMES Continued

2·252

Table 2-53. Input Parameters for Offset ?GREQ (Request Types)

Request Meaning
========= ===

?GMES Copy the entire message to the message buffer specified
in offset ?GRES (unless this offset contains -1).
Return the message flag, if present, to ACO, and the
length of the message (number of words) to AC1. The
message flag is

?GCMD

?GCNT

?GARG

?G'IISW

?GFCF Message is in CLI format (the first argument is
program name) .

Read the edited CLI command line into the buffer
specified in offset ?GRES (unless these offsets contain
-1). Return the byte length of the edited command line
to AC1. Some CLI commands, such as EXECUTE, are
special cases. They appear near the end of this
explanation of ?GTMES.

Get the argument count (number of arguments in the CLI
command line, excluding the program name) and return
this value to ACO.

Copy the command line argument specified in ?GNUM,
minus switches, to the ?GRES buffer area (if that area
exists) .

If the argument consists entirely of decimal digits,
the as converts it to binary, returns the results to
AC1, and returns the argument's byte length in ACO.
(The largest possible value is 2,147,483,646. A value
of 2,147,483,647 has the as return error code ERISV to
ACO and the number of characters to AC1. Values
greater than 2,147,483,647 begin from 0 -- for example,
2,147,483,648 has the same effect as 0 and
2,147,483,649 has the same effect as 1.)

Test the simple or keyword switch referred to by ?GSW
to see whether it modifies the argument cited in ?GNUM.
Return the following test results to ACO:

-1 switch not found.
o switch found.
> 0 byte length of the keyword switch.

If the as finds a keyword switch, it returns that
switch's value, terminated by a null, to the ?GRES
buffer.

(continued)

Licensed Material - Property of Data General Corporation 093--000542

Table 2-53. Input Parameters for Offset ?GREQ (Request Types)

Request
=========

?GTSW
(cont.)

?GSWS

?GDLC

Meaning
===
If the switch value consists entirely of decimal digits,
the as converts it to binary and returns the result to
AC1. (The largest possible value is 65,535. If the
keyword switch is larger than 65,535, the as not only
returns an error, but it also returns the number of
characters in the keyword switch to AC1.)

If the switch appears in the argument more than once,
the as returns information for the first occurrence
only.

Examine the ?GNUM argument for simple switches or
alphabetic keyword switches. Set corresponding low
order bits in ACO and AC1 for each switch. For
example:

In ACO lS16 means /A or /a
lS17 means /B or /b

lS31 means /P or /p

In AC1 lS16 means /Q or /q
lS17 means /R or /r

lS25 means /Z or /z

Note that both lowercase and uppercase simple switches
will set the bits. (Bits 26 through 31 in AC1 are
always 0.)

Disable lower- to uppercase conversion for requests
?GCMD, ?GCNT, ?GARG, ?GTSW, and ?GSWS. Specify ?GDLC
along with these requests to provide the disabling.

You MUST select ?GDLC on the first call and on all sub
sequent calls for which you need lowercase distinction.
As soon as you issue one ?GTMES call without selecting
?GDLC, the operating system converts the CLI message to
uppercase letters for this call and for all subsequent
calls, regardless of whether you have selected ?GDLC.

(concluded)

As Table 2-53 shows, several of the ?GTMES requests use the buffer area specified by offset
?GRES. If you choose the default buffer specification (by setting ?GRES to -1), the OS returns
information only to ACO and AC 1. Table 2-54 summarizes the information returned to the buffer
area and to ACO and AC1.

093-000542 Licensed Material - Property of Data General Corporation 2-253

?GTMES Continued

Request
Type

=======
?GMES

?GCMD

?GCNT

?GA.RG

?G'l'SW

?GDLC

Table 2-54. Output from ?GTMES Requests

ACO

Message Flag (if
message is in CLI
format) .

Unchanged.

Number of arguments
(excluding argument
o and program name) .

Byte length of
argument specified
in ?GNUM (excluding
terminating null) .

Switch test results
-1 No switch.
o Simple switch.
> 0 Byte length of

keyword switch.

Switch value
lS16 /A
lS17 /B

lS31 /P

ACI
=========================
Total word length of
message.

Byte length of CLI
command line.

Unchanged.

Binary equivalent of
argument, if argument
is decimal value not
greater than 65,535. If
argument value is
greater than 65,535,
return number of
characters in argument.
If argument is non
numeric, -1.

Binary equivalent of
keyword switch, if
keyword switch is deci
mal value not greater
than 65,535. If keyword
switch is greater than
65,535, return number of
characters in keyword
switch. If keyword
switch is nonnumeric,
-1.

Switch value
lS16 /Q
lS17 /R

lS25 /Z
(Bits 26-31 = 0)

?GRES
Buffer

Entire
message.

CLI com
mand line

N/A.

Actual
argument
string.

Actual
k l2yword
switch.

N/A.

output depends on what function you previously pecified
along with ?GDLC. For example, if you specified ?GCMD
with ?GDLC, the output would follow the output for that
command (ACO is unchanged, ACI contains the byte length
of the CLI command line, and buffer ?GRES contains the
CLI command line in upper- and lowercase).

1
________________________ 1 __________________________ __

Request type ?GMES copies the entire message to the ?GRES area (if it exists) and copies the
message length to AC 1. If the message is in CLI format, this request type also passes the ?GFCF
flag to ACO. Thus, request type ?GMES lets you determine the format (CLI or not) and length of
the message.

2-254 Licensed Material - Property of Data General Corporation 093-000542

If you specify a buffer area and select a request type other than ?GMES, the CLI returns an edited
version of the message with the following format:

• One comma separating each argument.

• The message word aligned and terminated by a null (or two nulls, if necessary to ensure an even
number of bytes).

• The high-order bit of every byte set to 0 (not used for parity).

• Lowercase characters converted to uppercase characters (unless you select request type ?GDLC).

• Without the following characters: space, <, >, [,], (,), ;, New Line, carriage return, form feed,
embedded nulls.

If you select request type ?GCMD and the CLI command was EXECUTE, XEQ DEBUG,
PROCESS, or CHAIN, the operating system removes the command name from the edited message.

Request type ?GTSW tests to see if a simple or keyword switch modifies the argument in offset
?GNUM. Be sure to set ?GNUM to an argument number (that is, to the relative position of the
argument) within the range 0 through n, where 0 is the first argument (program name, for CLI
command), and n is the last argument. Use offset ?GSW as a byte pointer to the switch you wish to
test. When you specify the switch, remove the initial backslash and terminate the switch with a
null. For example, write IL as L<O>.

Request type ?GSWS also tests for the presence of a switch in the argument and, in addition, sets a
corresponding bit in the low-order portion of either ACO or AC 1.

To find out whether or not the message is written in CLI format, select ?GMES as the request type
and set ?GRES to -1 (no buffer area). Then examine the output value of ACO. If ACO contains the
message flag ?GCFC, the message is in CLI format.

See sample programs BOOMER, DLIST, and TIMEOUT in Appendix A. They all issue system call
?GTMES.

Sample Packet

The following sample packet gets a filename argument.

PKT: .BLK ?GTLN

.LOC PKT+?GREQ

. WORD ?GARG

. LOC PKT+?GNUM

. WORD -1

.LOC PKT+?GSW

.DWORD 0

.LOC ?GRES

. DWORD -1

. LOC PKT+?GTLN

Notes

iAllocate enough space for the packet
i (packet length = ?GTLN).

iRequest type. (See Table 2-53.)
iGet the command line argument
ispecified in ?GNUM.

iArgument number .
iSpecify argument number at ?GTMES
itime.
iByte pointer to switch you want to
itest for.
iNot used. (You only use ?GSW when
;the request type is ?GTSW.)

;Byte pointer to buffer that receives
;the results. Specify at ?GTMES time .
;End of packet .

• See the description of ?PROC in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-255

?GTNAM Returns symbol closest in value to
specified input value.

?GTNAM
error return
normal return

Input

ACO Input value

AC 1 Contains the following:

• Bits 16 through 23
contain the byte length
of the receive buffer
(specified in AC2)

• Bits 24 through 31
contain the channel
number of the .ST file

AC2 Byte pointer to a receive
buffer for the symbol name

Error Codes in ACO

Invalid channel number

AOSNS

Output

ACO Offset between the input
value that you specify and
the symbol in the receive
buffer

AC 1 Unchanged

AC2 Unchanged

ERICN
ERIRB
ERVBP

Insufficient room in buffer (The receive buffer is too small.)
Invalid byte pointer passed as a system call argument

Why Use It?

?GTNAM allows you to search the symbol table CST file) for a symbol that approximates a specific
value, without writing a routine for this purpose. For example, you can use ?GTNAM in a utility
program that references symbols in the .ST file. ?GTNAM lets you reference the .ST file without
knowing its format.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GTNAM searches the symbol table CST file) and returns the symbol closest in value to the value
you placed in ACO.

2-256 Licensed Material - Property of Data General Corporation 093-000542

The OS returns the symbol name to the receive buffer that you specify in AC2, and also returns the
offset between the input value and the symbol value to ACO.

Before you issue ?GTNAM, perform the following steps:

1. ?SOPEN your program's .ST file.

2. Set up a receive buffer for the symbol name and load its address into AC2.

3. Specify the input value in ACO.

4. Specify the length of the receive buffer and the channel number of the .ST file in AC 1. (The
?SOPEN system call returns the channel number.)

The symbol that ?GTNAM returns can consist of up to 32 bytes. Thus, you should define a receive
buffer of at least 32 bytes. If the operating system cannot find a symbol that is less than the input
value, it returns a 32-byte null string to the receive buffer.

Notes

• See the descriptions of?SOPEN and ?GTSVL in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-257

?GTOD Gets the time of day_

?GTOD
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Seconds from 0 through 59

ACI Minutes from 0 through 59

AC2 Hour from 0 through 23

You can use ?GTOD to get the current time. Next, you can use it for output on file listings.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GTOD gets the current time from the system clock and returns it to the accumulators in standard
notation. The value for the hour can range from 0 (midnight) through 23 (11 p.m.), and the values
for seconds and minutes can range from 0 through 59.

2-258 Licensed Material - Property of Data General Corporation 093-000542

?GTRUNCATE Truncates a disk file.

?GTRUNCATE [packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

AC 1 Channel number of the disk
fIle

AC2 Address of the ?GTRUNCATE
packet, unless you specify
the address as an argument
to ?GTRUNCATE.

Error Codes in ACO

Output
ACO Undefined

ACI Unchanged

AC2 Address of the ?GTRUNCATE
packet

EREOF End of fIle (You tried to set the EOF (end-of-fue) past the current EOF.)
ERFNO Channel not open
ERMUS Multiple users of file; cannot truncate
ERSHR Shared fue; cannot truncate
ERSIM Simultaneous requests on same channel
ERVWP Invalid word pointer passed as a system call argument
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II fue with ?ODTL value supplied in ?GOPEN packet

Why Use It?
You can use ?GTRUNCATE to reduce the size of a disk file that is currently open for block 1/0.
Thus, ?GTRUNCATE allows you to reclaim disk space that you no longer need.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have access to the file's
channel number (via ?OPEN or ?GOPEN) and you must have Write access to the file.

What It Does
?GTRUNCATE truncates (shortens) disk files. The caller passes a channel number and a pointer to
a new ?GTRUNCATE packet. The packet contains the new size of the file in bytes. This new size
must be less than or equal to the current size of the file or the operating system returns error code
EREOF (end of file).

If you need to truncate a magnetic tape file, use ?TRUNCATE.

The following restrictions apply to files that you want to truncate:

• The file must have a use count of + 1.

086-000195 updates
093-000542 Lioensed Material - Property 01 Data General Corporation 2-259

I

?GTRUNCATE Continued
• The file must not be open for shared 1/0.

• The file should have been opened with ?GOPEN instead of?OPEN.

Figure 2-75 shows the structure of the ?GTRUNCATE packet, and Table 2-55 describes its
contents.

o 15 16 32
1-------------------------+-------------------------1

?TEFW 1 Reserved (Set to 0.) 1 Reserved (Set to 0.) 1 ?TEFH
1-------------------------+-------------------------1

?TEFM 1 File size in bytes 1

1---1

?TLTH = packet size

Figure 2-75. Structure of ?GTRUNCATE Packet

Table 2-55. Contents of ?GTRUNCATE Packet*

1

1 Offset 1 Contents 1

1===============1===1
1 ?TEFW 1 Reserved. (Set to 0.) 1

1 1 1
1 ?TEFH 1 Reserved. (Set to 0.) 1

1 1 1
1 ?TEFM 1 New file size in bytes. The new file size must 1

1 (doubleword) 1 be less than or equal to the current (old) file 1

1 1 size. 1
1 1 1

* There is no default unless otherwise specified.

When you use ?GTRUNCATE, be sure to reset the values of offset ?PRNH and ?PRCL in the block
1/0 packet.

Notes
• See the descriptions of ?OPEN and ?GOPEN in this chapter.

• See the descriptions of ?PRDBI?PWRB and ?BLKIO in this chapter for information on the block
1/0 packet.

2-260 Licensed Material- Property 01 Data General Corporation
086-{)()()195 updates

093-000542

?GTSVL Gets the value of a user symbol.

?GTSVL
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Contains the following:

• Bits 16 through 23
contain the byte length
of the symbol name
(specified in AC2)

• Bits 24 through 31
contain the channel
number of the .ST file

AC2 Byte pointer to the name
of the target symbol

Error Codes in ACO
Invalid channel number

AOSNS

Output

ACO Value of the target symbol

AC 1 Unchanged

AC2 Unchanged

ERICN
ERSNF
ERVBP

Symbol not found in ?GTSVL system call (The symbol is not in the .ST file.)
Invalid byte pointer passed as a system call argument

Why Use It?

?GTSVL lets you retrieve the value of a particular user symbol, as recorded in your program's .ST
file. Like ?GTNAM, ?GTSVL allows you to reference the .ST file without knowing its exact format.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GTSVL returns the symbol table value of a particular user-defined symbol. Before you issue
?GTSVL, perform the following steps:

1. ?SOPEN your program's .ST file (symbol table).

2. Specify the target symbol name in your logical address space and load AC2 with a byte pointer
to the symbol name.

093-000542 Licensed Material - Property of Data General Corporation 2-261

?GTSVL Continued

3. Specify the length of the symbol name and the channel number for the .ST file in AC 1.
(?SOPEN returns the channel number.)

The operating system returns the value of the specified symbol in ACO.

You must issue ?SCLOSE against the file with bit 0 of ACl set. ?GTSVL issues ?SPAGE on the
symbol table file, so you need to release the pages.

Notes

• See the descriptions of?SOPEN, ?SCLOSE, and ?GTNAM in this chapter.

2-262 Licensed Material - Property of Data General Corporation 093-000542

?GUHPI Gets unique hardware processor identification.

?GUHPI [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?GUHPI
packet, unless you specify
the address as an argument
to ?GUHPI

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?GUHPI packet

ERICM
ERIRB
ERMPR
ERPKT

Illegal system command (LAN ID does not exist or OS cannot read it)
Insufficient room in buffer (less than 6 bytes)
Invalid parameter address (bad packet pointer, etc.)
Illegal packet ID

Why Use It?

Proprietary software can use this call to identify a particular computer installation. For example,
suppose that you program for a software vendor and want to ensure that your software runs only
on computers that are licensed for it. Your program can issue this call and compare the results to
an internal list of unique ID numbers of licensed computers.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

The ?GUHPI system call allows your process to identify uniquely the hardware processor that it is
running on. The ID number the call returns is based on a Local Area Network (LAN) ID.

This call succeeds only on systems that have a LAN ID and a LAN controller. In other words, the
system must be part of a LAN or else the call returns error code ERICM. Also, the call succeeds
only on ECLIPSE MV /2000 DC and DS/7000-series computers.

Figure 2-76 shows the structure of the ?GUHPI parameter packet, and Table 2-56 describes its
contents.

093-000542 Licensed Material - Property of Data General Corporation 2-263

?GUHPI Continued

o 15 16 31
1-------------------------+-------------------------1

?GUHID 1 Packet identifier 1

1-------------------------+-------------------------1
?GUHFN 1 Function code 1 Reserved (Set to 0.) 1 ?GUHFL

1-------------------------+-------------------------1
?GUHBP 1 Byte pointer to buffer that receives the ID data 1

1-------------------------+-------------------------1
?GUHLN 1 Length of buffer that 1 Number of bytes of ID 1 ?GUHLR

1 receives the ID data 1 data that are returned 1

lito the buffer 1

1-------------------------+-------------------------1
?GUHPO = packet length

Figure 2-76. Structure of ?GUHPI Packet

Table 2-56. Contents of ?GUHPI Packet

Offset Contents
======== ==

?GUHID Packet identifier. Place ?GUID here.
(double-

2-264

word)

?GUHFN Function code. Not used (Set to 0.)

?GUHFL Flags word. Reserved (Set to 0.)

?GUHBP Supply a byte pointer to the buffer that receives the
(double- ID data.
word)

?GUHLN

?GUHLR

Supply the number of bytes in the buffer that receives
the ID data. This number must be at least 6. If it is
more than 6, the operating system places the ID data
left justified into the buffer.

The operating system returns the number of bytes of ID
data it has placed into the buffer that offset ?GUHBP
points to.

Licensed Material - Property of Data General Corporation 093-000542

?GUNM Gets the username of a process.

?GUNM
error return
normal return

Input

ACO One of the following:

• -1 to obtain the
username of the
calling process

• PID of the target
process

• Byte pointer to the name
of the target process

AC 1 One of the following:

• -1 if ACO contains a byte
pointer

• 0 if ACO contains a PID

• Any other value if ACO
contains -1

Output

ACO One of the following:

• 0 if the target
process is not in
Superuser mode

• 1 if the target process
is in Superuser mode

AC 1 Privilege word of the
target process

AC2 Byte pointer to the area AC2 Unchanged
that will receive the username (This
area must be ?MXUN bytes long.)

Error Codes in ACO

ERMPR
ERPNM
ERPRH
ERVBP

System call parameter address error
Illegal process name format
Attempt to access a process not in hierarchy
Invalid byte pointer to name of target process passed in ACO

Why Use It?
?GUNM is useful if you know the simple process name or PID of a process, and you want to know
the username associated with that process. (A full process name consists of the process's username
and its simple process name.)

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?GUNM returns the target process's username terminated by a null to the location that you specify
in AC2. Before you issue ?GUNM, load ACO either with the PID of the target process or with -1 to
obtain the caller's username. If you specify -1 in ACO, the operating system ignores AC1 because
there is no need for a PID or byte pointer to the target's process name.

093-000542 Licensed Material - Property of Data General Corporation 2-265

?GVPID Gets the virtual PID of a process.

?GVPID
error retu rn

normal retu rn

Input

ACO PID

AC 1 Host ID in Bits 17
through 31

AC2 Reserved (Set to 0.)

Error Codes in ACO

AOSNS

Output

ACO Virtual PID

AC 1 Unchanged

AC2 Unchanged

ERHNE Host does not exist (You supplied an invalid host ID in ACl.)
ERPRE Illegal system call parameter (You supplied an invalid PID in ACO.)

Why Use It?

?GVPID encodes a host-IDIPID pair into a virtual PID for use in subsequent system calls.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?GVPID returns a virtual PID. A virtual PID is a 16-bit value that references the PID (supplied in
ACO) on the remote system (identified by the host ID in AC1). If the operating system has already
assigned a virtual PID to the process, then ?GVPID returns the old virtual PID.

2-266 Licensed Material - Property of Data General Corporation 093--000542

?HNAME Gets a hostname or host identifier.

?HNAME
error return
normal retu rn

Case 1 - Given a host ID, return the hostname
Case 2 - Given a hostname, return the host ID
Case 3 - Return the local host ID and, optionally, the local hostname

Input

ACO

AC1

AC2

093-000542

One of the following:

• Byte pointer to the
buffer that you specify
is to receive the hostname
(The buffer must be at
least ?MXHN bytes long.)
(Cases 1 and 3.)

• Byte pointer to the buffer that
contains the hostname
(Case 2)

• o to return no local hostname
(Case 3)

One of the following:

• Host ID in Bits 17
through 31 (Case 1)

• o (Case 2)

• -1 (Case 3)

Reserved (Set to 0.)

Output

ACO

AC1

AC2

Unchanged. (Case 1-?HNAME
returns the hostname to the
buffer that ACO points to)

One of the following:

• Unchanged (Case 1)

• Host ID in Bits 17 through 31
(Case 2)

• Local host ID in Bits
17 through 31 (Case 3)

One of the following:

• Length (excluding the null
terminator) of the hostname that
?HNAME returned (Case 1)

• Undefined (Case 2)

• Unchanged (if input ACO contains a
0) (Case 3)

• Length (excluding null terminator of
local hostname) (Case 3)

Licensed Material - Property of Data General Corporation 2-267

?HNAME Continued

Error Codes in ACO

ERHID
ERHNE
ERIHN

Illegal host specification
Host does not exist
Illegal hostname

Why Use It?

?HNAME allows you to determine host information by specifying the host ID or the hostname.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?HNAME lets you get a hostname if you have the host ID or vice versa.

When you specify a host ID in Bits 17 through 31 of AC1, ?HNAME returns the hostname to the
buffer pointed to by ACO. When you specify a byte pointer to the hostname in ACO, ?HNAME
returns the host ID in Bits 17 through 31 of AC 1.

However, ?HNAME also lets you get the local host ID and, optionally, the local hostname. To do
this, specify a byte pointer to the buffer that is to receive the local hostname in ACO (if you want
the operating system to return the local hostname) or 0 in ACO (if you do not want the operating
system to return the local hostname) and -1 in AC1. Then, the operating system returns the local
host ID in Bits 17 through 31 of AC1 and AC2 contains either a 0 (if ACO contained 0 on input) or
the length of the local hostname, excluding the null terminator.

2-268 Licensed Material - Property of Data General Corporation 093-000542

?IDEF

?IDEF
error return
normal return

Input
ACO Contains the following:

• Bit 1 is a flag bit:

Bit 1 = 0 if AC2 specifies
the number of data channel
map slots needed (no map
definition tab Ie)

Bit 1 = 1 if AC2 points to a
data channel map definition
table

Output
ACO Unchanged

• Bit 2 is a flag bit for 16 bit processes:

Bit 2 = 1 if you want to use
the extended packet

• Bits 3 through 31 contain
the device code for the user
defined device in the range
from 1 through 191
(= 277 octal)

ACI Bits 1 through 31 contain
the address of the device's DCT;
set Bit 0 to 1 if the device is a
data channel (DCH) or burst
multiplexor channel (BMC) device

AC2 One of the following:

• Address of the map definition
table

• N umber of map slots needed
(no map definition table) (each
map slot accesses 1K words)

AC1 Unchanged

AC2 Unchanged

Defines a user device.

If your program executes as a 16-bit process, then the bit numbers in ACO and AC 1 change from
above as follows:

Bit 0
Bit 1
Bits 1 through 31
Bits 2 through 31

086-000195 updates
093-000542

would read Bit 16
would read Bit 17
would read Bits 17 through 31
would read Bits 18 through 31

Licensed Material- Property 01 Data General Corporation 2-269

I

?IDEF Continued

Error Codes in ACO

Data channel map full ERDCH
ERDNM
ERIBS
ERPRE
ERPRV
ERPTY

Illegal device code (The device code is outside the legal range (1 through 191).)
Device already in use
Invalid system call parameter
Caller is not privileged for this action
Illegal process type

Why Use It?

?IDEF lets you establish an interface between the operating system and a device it does not
support. ?IDEF and the other user-device system calls are particularly useful if you have
application s-specific peripheral devices for which you have written special device-driver routines.

Who Can Use It?

The caller must be a resident process and must have privilege ?PVDV to use ?IDEF. There are no
restrictions concerning file access.

What It Does

?IDEF defines a user device and its device control table (DCT). The operating system builds an
internal DCT based on your DCT specifications, and enters this into its interrupt vector table.

Before you issue ?IDEF, set up a device control table in your logical address space and load its
address into Bits 1 through 31 of AC1. (See Figure 2-77 for the DCT format if you want to issue
?IDEF from a 32-bit process. See Figure 2-78 if you want to issue ?IDEF from a 16-bit process.) Be
sure to set offset ?UDVIS in the DCT to the address of the interrupt service routine for the new
device, and define the interrupt service mask in offset ?UDVMS. In addition, you must set offset
?UDVBX (the mailbox) to O.

For devices that reside on the secondary IOCs (i.e., device codes 64.-191.), you must use PIO
instructions to communicate with your device. NOVA I/O is limited to the first IOC.

You may extend the DCT to include a word pointer to a device termination routine. In this case
control passes to the routine if your process traps or terminates. This transfer of control prevents a
runaway ?IDEF -specified device from altering system databases. Also, the environment would be
the same at process termination time as if the device had just requested an interrupt. You might
specify the extended DCT if you are writing an interrupt service routine (ISR) for a device such as
an intelligent asynchronous controller (lAC) or an intelligent synchronous controller (ISC).

To extend the DCT, place ?UDLX in offset ?UDRS and place a word pointer to your device
termination routine in offset ?UDDTR. The length of the extended packet is ?UDLE
(= ?UDLN+?UDLX) words.

To specify the standard DCT, place 0 in offset ?UDRS and allow ?UDLN words for the unextended
packet. In other words, programs written before you could extend the DCT (effective with AOSNS
Revision 7.00) will not have to change.

2-270 Licensed Material - Property c:A Data General Corporation
086-000195 updates

093--000542

If you issue ?IDEF against a device that AOSNS is using, you receive error code ERIBS. AOSNS
uses devices that were identified to it during the system generation process. An example is an MTD
magnetic tape controller. AOSNS also uses the following devices.

Device
Mnemonic

BMC
CPU
DCR
PIT43
RTC
SCP
TTII0
TTO
UPSC

Code

77

Description

Burst Multiplexor Channel
Central Processor
Data Channel

Programmable Interval Timer
14 Real-Time Clock
45 System Control Processor
Primary Asynchronous Line Input
11 Primary Asynchronous Line Output
4 Universal Power Supply Controller

In addition, AOSNS uses a DRT (Dual Receive/Transmitter, device code 34) on MV/1400 DC and
MV 12000 DC computers. Another name for this device is DU ART.

?UDVXM

?UDVIS

?UDVBX

?UDDRS

?UDVMS

o 15 16 31
-------------------------+------------------------1
Pointer to system database for task that issues 1
?IMSG 1

--1
Address of interrupt service routine 1

--1
Mailbox for messages sent by ?IXMT and ?IMSG 1

--1
Word pointer to powerfail/restart routine 1

-------------------------+------------------------1
Interrupt service mask 1 Set to 0 (standard 1

1 packet) or to ?UDLX 1

1 (length of extended 1

1 packet). 1

-------------------------+------------------------1

?UDLN standard DCT packet length
?UDLE = extended DCT packet length

?UDRS
1

1

1

1

1

1

1

1

1

---1

o 15 16 31
v 1--1
?UDDTR 1 Word pointer to device termination routine (or 0 1

1 if you include this offset and place 0 in ?UDRS) 1

086-000195 updates
093-000542

1--1

Figure 2-77. Structure of Device Control Table (DCT) for 32-Bit Processes

Licensed Material- Property of Data General Corporation 2-271

I

?IDEF Continued

o 7 8 15
1--1

?UDVXM 1 Pointer to a system database for the task that 1
1 issues ?IMSG 1
1--1

?UDVMS 1 Interrupt service mask 1
1--1

?UDVIS 1 Address of the interrupt service routine 1
1---1

?UDVBX 1 Mailbox for messages sent by ?IXMT and ?IMSG 1

1 (Set this word to 0 before you issue ?IDEF.) 1

1--1

?UDLN = DCT length

Figure 2-78. Structure of Device Control Table (DCT) for 16-Bit Processes

o 15
1--1

?UDDRS 1 Pointer to a power fail/restart routine 1

1--1
?UDDTR 1 Word pointer to device termination routine 1

1--1
?UDRS 1 Reserved (Set to 0) 1

1 1

?UDLN DCT length

Figure 2-78.1. Structure of Extended Packet for 16-Bit Processes

Options

Set Bit ° of AC1 if you want to use either the data channel (DCR) or the burst multiplexor channel
(BMC) for I/O transfers to and from the new device. If you choose the DCR or BMC option, you
must also define the number of map slots the device will need. You can load the map slot value into
AC2 before you issue ?IDEF or you can set up a map definition table in your address space. If you
set up a map definition table, load its address into AC2 before you issue ?IDEF. (If you use AC2, the
operating system will allocate map slots in DCR map A.)

Set Bit 2 of ACO, if you want to use the extended packet to clear LBUS interrupts. Figure 2-78.1
shows the structure of the extended packet.

The map definition table specifies the first acceptable map slot for BMC or DCR transfers, and
optionally, selects a particular DCR map (maps A through P). The map definition table can contain
as many as eight entries. Each entry is ?UDELTR words long. The entire table (with eight entries)
is ?UDLTR words long. (See Figure 2-79 for the structure ofa map definition table entry and see
Table 2-57 for a description of its contents.)

2-272 Licensed Material - Property d Data General Corporation
086-000195 updates

093-000542

093-000542

=========================
I

I Word 1 I I
Entry 0 1--------1 1=====>

I Word 2 I I
____ I II

===-=====================
I Word 1

Entry 1 1-------
I Word 2

I Word 1
Entry 2 1-------

I Word 2

I Word 1
Entry 3 1-------

I Word 2

I Word 1
Entry 4 1-------

I Word 2

I Word 1
Entry 5 1-------

I Word 2

I Word 1
Entry 6 1-------

I Word 2

I Word 1
Entry 7 1-------
(max.)* I Word 2

=================================}

I
I
I
I

Word 1 - First Acce{
------ ------------------------}
Offset Contents {
====== ========================}
?UDID The format is {

}
[Map specifier] + {
[first acceptable slot]{

The following are
sample entries:

?UDDC+10
?UDDB+2
?UDBM+322

}
{
}
{
}
{
}
{
}

I (This is part of Table 2-57.) {
I }

* If there are fewer than eight 2-word entries, the first
word following the last valid entry must be -1.

Figure 2-79. Structure of Map Definition Table

Licensed Material - Property of Data General Corporation 2-273

?IDEF Continued

Offset

?UDID

Table 2-57. Contents of Map Definition Table Entry

Word 1 - First Acceptable Map Slot

Contents 1 Comments
===================1==

The format is

[Map specifier] +
[first acceptable
slot]

The following are
sample entries:

?UDDC+10
?UDDB+2
?UDBM+322

Map specifier must be one of the
following:

- ?UDBM, which selects the BMC map.
- ?UDDA, which selects the DCH A map.
- ?UDDB, which selects the DCH B map.
- ?UDDC, which selects the DCH C map.

?UDDD, which selects the DCH 0 map.

?UDDP, which selects the DCH P map.

First acceptable slot must be

From 0 through 1777 (octal), if
your map specifier is ?UDBM.
From 0 through 37 (octal), if your
map specifier is ?UDDA, ?UDDB,
?UDDC, or ?UDDD.

The OS allocates the first contiguous
group of slots on the map, starting
with the first acceptable slot on the
map that you selected. Then, the OS
returns to you the first slot that it
allocated in ?UDID.

Word 2 - Number of Map Slots Requested

Offsetl Contents 1 Comments
1======1===================1==
I?UDNS 1 Number of map 1 The sum of the first acceptable slot
1 1 slots requested 1 plus the number of slots cannot be
1 1 in range from 1 1 larger than the size of the map that
1 1 through 40 1 you requested; that is, 40 (octal) for
1 1 (octal). lOCH or 2000 (octal) for BMC.
1 1 1 __________________________________ __
1

1 NOTE:
1

If the OS cannot allocate all entries, then it does not
allocate any entries.

1---

Offset ?UDID, the map identifier word, defines which channel (the BMC or the DCH) the operating
system should use for data transfers between the device and memory.

If you select data channel 110, you can select one of the sixteen maps. The symbols ?UDDA through
?UDDP correspond to maps A through P. Add the correct map to the value corresponding to the
first acceptable map slot you want the operating system to use. For example, the specification
?UDDA+5 tells the operating system to use map A (?UDDA) and to start with slot 5 in that map, if
possible. Offset ?UDNS tells the operating system how many contiguous map slots you will need.

2-274 Licensed Material - Property of Data General Corporation 093-000542

If your devices use data channel maps, you should avoid using the first 128 (A - D) data channel
map slots if possible. We advise this because some I/O controllers have restrictions on the number
of data channel maps they can gain access to. Many older I/O controllers use a 17-, 16-, or 15-bit
data channel address while newer controllers use a 19-bit data channel address. These numbers
make the A through D maps more valuable than the E through P maps. We suggest that you
request a data channel map starting at the highest slot the device can gain access to. If the request
fails, try the next lower slot and so on. This approach leaves the lower slots available for 1/0
controllers that are restricted to them.

The map slots must be contiguous. Thus, if the first acceptable slot you specify is already in use,
the operating system takes the next available map slot with the required number of contiguous
slots.

Warning

If you issue ?IDEF system calls, you must make sure that all code and data touched by a user
device interrupt handler service routine (including the handler itself) must be wired. Failure to do
this will result in panics with code 14340 if a page fault occurs at interrupt level while trying to
reference instructions or data.

Sample OCT

DCT: .BLK ?UDLN iAllocate enough space for the standard DCT.
(DCT length = ?UDLN).

. LOC DCT+?UDVXM

.DWORD 0

. LOC DCT+?UDVIS

.DWORD INTSRV

. LOC DCT+?UDVBX

. DWORD 0

. LOC DCT+?UDDRS

. DWORD -1

iTCB address of ?IMSG task .
iSet to O. (The OS supplies this value.)

ilnterrupt service routine address .
i1nterrupt service routine address is

INTSRV.

i?IXMT mailbox .
iSet to o .
iAddress of power-failure routine .
iThere is no power-failure routine .

. LOC

. WORD
DCT+?UDVMS ilnterrupt service mask .

.LOC

. WORD

.LOC

IB12+1B13+1B14+1B15

DCT+?UDRS
o
DCT+?UDLN

iStandard/extended packet indicator.
iSet to 0 for standard packet.

iEnd of DCT.

User Device Termination Routine

You specify a User Device Termination Routine (UDTR) by placing a word pointer to the routine in
offset ?UDDTR of the Device Control Table. (Place 0 in this offset if you don't want a UDTR.) The
routine must be in Ring 4, 5, 6, or 7.

You choose a UDTR according to your application and device. After you create and load it properly
the UDTR executes under the following circumstances:

• Your process issues system call ?IRMV against the device that you defined previously via
system call ?IDEF or ?FIDEF.

• Your process terminates itself or a superior process terminates it, and your process previously
defined one or more devices via system call ?IDEF or ?FIDEF.

093-000542 Licensed Material - Property of Data General Corporation 2-275

?IDEF Continued
Here are the rules for creating UDTRs.

• Terminate the routine with system call ?DUT.

• Issue no other system calls in the routine.

• The routine can issue 1/0 instructions, such as those in the Dlx and DOx families, to get the user
device into the desired state.

• The initial contents of the accumulators are random; you needn't preserve them. Furthermore,
it's not necessary to begin the routine with a WPSH, WSA VR, or WSSVR instruction.

Note that when you issue ?IXIT at base level and it is not in a UDTR or a user powerfail/restart
routine, ?IXIT returns error ERICM.

N ext is a substantial portion of a typical UDTR.

DA_TERM:
WSUB
WSUB
DOBC
DOAS
WINC
DOBC
DOAS
?IXIT
WBR

0,0
1,1

4180 Series Digital-to-Analog Conversion Subsystem
Termination Routine.

When a process that uses Series 4180 D/A converters
terminates we want to have zero output voltage from
both of the analog channels. (Other applications
may need different outputs.)

The 4180 D/A subsystem device code is 23 = DACV -- a
standard MASM symbol.

Beginning of the routine.
Output voltage = o.
Analog output number o.

1,DACV Select an analog channel.
O,DACV Output data goes to analog output number O.
1,1 Analog output number 1.
1,DACV Select an analog channel.
O,DACV Output data goes to analog output number 1.

System Call.
ERROR Error return.

User Device Powerfail/Restart Routine

This section applies only to AOSIRT32.

You specify a User Device PowerfaillRestart Routine (UDPR) by placing a word pointer to the
routine in offset ?UDDRS of the Device Control Table. (Place 0 in this offset if you don't want a
UDPR.) The routine must be in Ring 4,5,6, or 7.

You choose a UDPR according to your application and device. After you create and load it properly
the UDPR executes under the following circumstances:

• A power failure is occurring. AC1 contains 0, and the operating system transfers to the routine
that offset ?UDDRS points to. This routine should execute its power failure section.

• Power is returning after a power failure. AC1 contains -1, and the operating system transfers to
the routine that offset ?UDDRS points to. This routine should execute its power restart section.

Here are the rules for creating UDPRs.

• Terminate the routine with system call ?IXIT.

• Issue no other system calls in the routine.

• The routine can issue 1/0 instructions, such as those in the Dlx and DOx families, to get the user
device into the desired state.

2-276 Licensed Material - Property of Data General Corporation 093-000542

• The initial contents of the accumulators (except ACl) are random; you needn't preserve them.
Furthermore, it's not necessary to begin the routine with a WPSH, WSA VR, or WSSVR
instruction.

• When you don't need one of the power failure and restart routines you still must specify an
empty routine (with only system call ?DaT) for the unneeded routine.

Note that when you issue ?IXIT at base level and it is not in a UDPR or a user device termination
routine, ?IXIT returns error ERICM.

Next is a substantial portion of a typical UDPR.

DA_ POWER:
WSEQ
WBR

1,1

4180 Series Digital-to-Analog Conversion Subsystem
Powerfail/Restart Routine.

When a process that uses Series 4180 D/A converters
encounters a power failure we want to have zero output
voltage from both of the analog channels. When
this process encounters the return of power we want
to set output voltages to the default values defined
for each channel.

The 4180 D/A subsystem device code is 23 = DACV -- a
standard MASM symbol.

UDPR entry point from the system.
i Is it power down?

POWER_UP i No.

i Power is going down. All we want to do is to set the output
converters to zero. of both D/A

POWER_DOWN: Beginning of the power failure routine.
Output voltage = O.

POWER_UP:

DONE:

DEF1:
DEF2:

Notes

WSUB 0,0
WSUB 1,1
DOBC 1,DACV
DOAS O,DACV

WINC 1,1
DOBC 1,DACV
DOAS O,DACV
WBR DONE

Analog output number O.
Select an analog channel.
Output data goes to analog output number O.

Analog output number 1.
Select an analog channel.
Output data goes to analog output number 1.
Exit from the power failure routine.

Power is back.

XNLDA
WSUB
DOBC
DOAS

XNLDA
WINC
DOBC
DO AS

?IXIT
WBR

0,DEF1
1,1
1,DACV
O,DACV

0,DEF2
1,1
1,DACV
O,DACV

ERROR

Beginning of the power restart routine.
Set the default outputs for both channels.

Start with the default value of channell.
Analog output number O.
Select an analog channel.
Output data goes to analog output number O.

Start with the default value of channel 2.
Analog output number 1.
Select an analog channel.
Output data goes to analog output number 1.

End of the device routine.
Error return.

The output voltage range is 0 - 10 volts. The converters
have 12 bits of precision. Let the default value for
for channel 1 be 1 volt and the default value for
channel 2 be 2 volts.

. WORD 4096./10.

. WORD 4096./5.
i The default for channell is 1 volt .
i The default for channel 2 is 2 volts .

• See the descriptions of?FIDEF, ?IXMT, and ?STMAP in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-277

?IDGOTO Redirects a task's execution path.

?IDGOTO
error return
normal retu rn

Input

ACO Address of the new code
sequence

AC 1 TID of the target task

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Undefined

ERTID
ERVWP

Task ID error (The OS could not find a matching TID.)
Invalid word pointer passed as a system call argument

Why Use It?

?IDGOTO allows you to redirect a task that is currently executing, without having to kill the task
and re-initiate it.

Because it will lift certain task suspensions, you can use ?IDGOTO to provide interrupt processing
after a Ctrl-C Ctrl-A terminal interrupt. For example, you might create an interrupt task (via
?INTWT) to monitor your terminal for Ctrl-C Ctrl-A sequences. In this case, if the interrupt task
were to detect an interrupt, it would issue ?IDGOTO to redirect the main task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDGOTO redirects the task that you specify in AC 1 to a new code sequence, where it resumes
executing the next time it gains CPU control. If the target task has any outstanding system calls,
?IDGOTO aborts those calls and readies the task. ?IDGOTO also readies the target task if it
explicitly suspended itself with ?SUS, if it became suspended after issuing ?REC or ?XMTW, or if
another task suspended it with ?IDSUS or ?PRSUS. The target task's priority remains the same
after an ?IDGOTO.

Before you issue ?IDGOTO, load ACO with the address of the new code sequence, and load ACI
with the TID of the target task. Note that a task may not use ?IDGOTO to redirect itself; thus, the
TID that you specify in AC 1 cannot be that of the calling task.

Notes

• See the descriptions of ?SUS, ?REC, ?XMTW, ?IDSUS, or ?PRSUS in this chapter.

2-278 Licensed Material - Property of Data General Corporation 093-000542

?IDKIL Kills a task specified by its TI D.

?IDKIL
error retu rn
normal retu rn

Input

ACO Reserved (Set to 0.)

ACl TID of the task you
want to kill

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Undefined

AC 1 Unchanged

AC2 Undefined

ERTID Task ID error (The as could not find a matching TID,)

Why Use It?

Like the other system calls that require a task ID, ?IDKIL allows you to perform an action - in
this case a "kill" - on a specific target task, rather than on all tasks of a given priority. Thus, you
can use ?IDKIL to kill a task without affecting other tasks of the same priority.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDKIL terminates the task that you specify in AC 1. If the target task is suspended because of an
outstanding system call, the operating system readies the target task by aborting the outstanding
system call.

If you supplied a kill-processing routine for the target task with ?KILAD, the operating system
passes control to that routine as it executes ?IDKIL. The kill-processing routine should end with a
?KILL system call. ?KILL, in tum, invokes a ?UKIL task-termination routine - either the system
default ?UKIL or a ?UKIL you have defined. ?UKIL then terminates the task.

If you did not provide a kill-processing routine, control passes to the appropriate ?UKIL
immediately.

Notes

• See the descriptions of?KILAD, ?IDKIL, and ?KILL in this chapter.

093--000542 Licensed Material - Property of Data General Corporation 2-279

?IDPRI Changes the priority of a task specified by its TID.

?IDPRI
error return
normal return

Input

ACO New priority for the
target task

ACl TID of the target task

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

ACl Unchanged

AC2 Undefined

ERTID Task ID error (The OS could not find a matching TID.)

Why Use It?

?IDPRI is analogous to ?PRIPR, which changes the priority of a process. Both system calls allow
you to influence the operating system scheduling activities by adjusting the priority numbers of a
process or a task.

You can use ?IDPRI to reschedule tasks immediately. For example, you can issue ?IDPRI to give a
task a higher relative priority than others for CPU control, or to give a task a lower priority (which
upgrades the relative priorities of other tasks).

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDPRI changes the priority of the task that you specify in AC 1. Before you issue ?IDPRI, load AC 1
with the TID of the target task and load ACO with the priority number you wish to assign. You can
use ?IDPRI to change the priority of the calling task.

When you use ?IDPRI to assign a task a higher priority than the current ready task, the operating
system reschedules the other task before it returns control to the ?IDPRI caller.

Notes

• See the descriptions of ?PRIPR and ?PRI in this chapter.

2-280 Licensed Material - Property of Data General Corporation 093-000542

?IDRDY Readies a task specified by its TID.

?IDRDY
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 TID of the target task

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Undefined

AC 1 Unchanged

AC2 Undefined

ERTID Task ID error (The OS could not find a matching TID.)

Why Use It?

You can use ?IDRDY to revoke a task's suspension and, thus, ready the task for scheduling and
eventual execution. Like the other tasking system calls that require a TID, ?IDRDY allows you to
ready a single task, rather than all task~ of a given priority.

You can only issue system calls that require a TID against tasks that have nonzero TIDs. Thus, to
ready a task without a TID, you must use ?PRRDY, not ?IDRDY.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDRDY readies the task that you specify in AC1, but only ifit was explicitly suspended by ?SUS,
?IDSUS, or ?PRSUS.

When you use ?IDRDY to ready a task that has a lower priority than the calling task, the operating
system reschedules the tasks.

Notes

• See the descriptions of?SUS, ?IDSUS, ?PRSUS, and ?PRRDY in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-281

?IDSTAT Returns task status word (16-bit processes only).

?IDSTAT
error retu rn
normal return

Input

ACO Reserved (Set to 0.)

AC 1 TID of the target task

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Status word

AC 1 Unchanged

AC2 Contains-1

ERTID
ERICM

Task ID error (The as cannot find the task whose TID you specified.)
32-bit program incorrectly attempted to call ?IDSTAT

Why Use It?

?IDSTAT allows you to determine the status of a particular task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDSTAT returns a word that describes the target task's status; that is, the ?TSTAT word of the
task's task control block (TCB).

2-282 Licensed Material - Property of Data General Corporation 093-000542

?IDSUS Suspends a task specified by its TID.

?IDSUS
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 TID of the target task

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Undefined

AC 1 Unchanged

AC2 Undefined

ERTID Task ID error (The OS could not find a matching TID.)

Why Use It?

Because ?IDSUS takes a TID as an input parameter, you can use it to explicitly suspend a single
task, rather than all tasks of a given priority level. Also, a task can issue ?IDSUS to suspend itself.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IDSUS, which is the inverse of?IDRDY, suspends the task that you specify in ACl. Note that you
can only use ?IDSUS and the other system calls that require a TID against tasks that have a TID.

Notes

• See the description of?IDRDY in this chapter.

093--000542 Licensed Material - Property of Data General Corporation 2-283

?IESS Initializes an extended state save (ESS) area
(16-bit processes only).

?IESS
normal retu rn

Input

ACO Size of the ESS area

AC 1 Page 0 starting address

AC2 Starting address of the
ESS area

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

?lESS allows you to store any information that you consider relevant to a task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?lESS initializes an extended state save CESS) area in the unshared portion of your logical address
space. The ESS area is generally used to hold task-specific information for a 16-bit process, such
as the value of the program counter and its carry bit, and the current contents of the accumulators.
However, you can use it for other purposes.

Each task that uses the ESS area must issue ?lESS immediately upon entering the task code;
otherwise, the ESS information may be invalid.

Input to ?IESS includes the starting address of the ESS area (in the unshared area of your logical
address space), and a pointer to a block of Page 0 locations in your logical address space. When the
operating system schedules a 16-bit task it copies the ESS information to the designated Page 0
area. When rescheduling occurs, the operating system transfers the ESS information back to the
starting address you specified in AC2 when you first issued ?lESS.

2-284 Licensed Material - Property of Data General Corporation 093-{)OO542

?IFPU Initializes the floating-point unit.

?IFPU
error return
normal return

Input

ACO Starting address of a
2-word block that initial
izes the state of the
floating-point status
register

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

ACl Undefined

AC2 Undefined

Each task must issue ?IFPU before it issues floating-point instructions. This guarantees that every
time the operating system gives control of the CPU to a task, the floating-point state is restored to
the state the task was last in. If each task (even if your program only contains one task) does not
issue ?IFPU first, your floating-point arithmetic results may not be correct.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IFPU uses the 2-word area pointed to by ACO to initialize the state of the floating-point status
register and to set the floating-point accumulators to zero. We recommend that you place zeros in
this 2-word area.

093-000542 Licensed Material - Property of Data General Corporation 2-285

?IHIST Starts a histogram for a 16-bit process
(16-bit processes only).

?IHIST
error return
normal return

Input

ACO One of the following:

• Byte pointer to the name of
the target process

• PID of the target process

• -1 to start a histogram
for the calling process

AC 1 One of the following:

• -1 if ACO contains a byte
pointer

• Any other value if ACO contains
-1 or a PID

AC2 Address of the histogram packet

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERHIS
ERMPR
ERPRH
ERPRV
ERVBP

Error on histogram initiation/deletion
System call parameter address error
Attempt to access process not in hierarchy
Caller not privileged for this action
Invalid byte pointer passed as a system call argument

Why Use It?
?IHIST allows a 16-bit resident process to monitor a range of addresses in its own or another
process's logical address space. The operating system returns an array that compares the CPU time
of the target process with the CPU time used by other processes, including the operating system.
?IHIST is a useful way of obtaining a global view of CPU activity.

Who Can Use It?
There are no special process privileges needed to issue this call, but the calling process must be
resident. There are no restrictions concerning file access.

What It Does
?IHIST, which is the 16-bit counterpart of?WHIST, starts a histogram for a range of logical
addresses in the target process. The calling process cannot activate more than one histogram at a
time.

Before you issue ?IHIST, load ACO with the PID of the target process or a byte pointer to its name,
or with -1 to start a histogram for the calling process. Your input to AC1 depends on your input to
ACO.

2-286 licensed Material - Property of Data General Corporation 093-()OO542

You must also set up a histogram packet of?HWLTH words in your logical address space, and
reserve a buffer to receive the histogram statistics. Load the packet address into AC2. (An offset
within the packet points to the buffer address.) Figure 2-80 shows the structure of the histogram
packet for 16-bit processes.

o 15
1---1

?HIST 1 Starting address of range to be monitored 1
1---1

?HIEND 1 Ending address of range to be monitored 1
1------------------------------,------------------1

?HIWDS 1 Size of the intervals to be monitored 1

1 in the process * 1

1---1
?HIBUF 1 Address of the array to receive the histogram 1

1 statistics 1

1---1

?HWLTH = packet length

*?HIWDS range: 0 or 1 to n, where n is the number
of words in the range to be monitored.

Figure 2-80. Structure of ?IHIST Packet

To start a simple histogram, which merely records how often the target process gained CPU control,
set offset ?IITWDS to O. This directs the operating system to ignore the contents of offsets ?HIST
and ?HIEND and prevents the operating system from gathering range statistics. Set offset ?HIBUF
to the address of the array you have reserved in your logical address space for the histogram
statistics.

Each histogram array has two parts: a fixed-length header followed by double-precision array
elements, which correspond to each interval that you want to monitor. Table 2-58 shows the
structure of the histogram array for 16-bit processes.

1 Array Offset
1==================
1 ?HTTH ?HTTL
1

1

1 ?HPRH ?HPRL
1

1

1

1 ? HAPH ? HAPL
1

1 ?HSBH ?HSBL
1

1

1 ?HSIH ?HSIL
1

1 ?HARAY ?HARAY+1
1

1 ?HARAY+n*2-2
1 ?HARAY+n*2-1
1 ______ -

086-000195 updates

093-000542

Table 2-58. Structure of ?IHIST Array

1 Contents 1

==1
Total number of real-time clock pulses (ticks) 1

counted in this histogram.

Total number of ticks when the program counter
(PC) was within the target process, but
outside the specified range.

Total number of ticks in other processes.

Total number of ticks in the OS, except those
recorded when it was in an idle loop.

Total number of ticks in a system idle loop.

Total number of ticks in the first interval.

Total number of ticks in the nth interval.

licensed Material- Property of Data General Corporation 2-287

I

?ILKUP Returns a global port number.

?ILKUP
error return
normal return

Input
ACO Byte pointer to the path name

of the target IPC entry

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO
ERFDE File does not exist

Output
ACO Unchanged

ACI Global port number
associated with the IPC
entry

AC2 File/device type of the IPC
file entry

ERIFT Illegal file type (The file that you specified in ACI is not an IPC file.)
ERVBP Invalid byte pointer passed as a system call argument
ER_FS_OBSOLETE_IPC_FILE_DETECTED

Obsolete IPC file type has been detected; file has been deleted (AOSNS II only)
ER_FS_DIRECTORY_NOT_AVAILABLE

Directory not available because the LDU was force released (AOSNS II only)

Why Use It?
?ILKUP returns the global port number of the IPC file that the target process previously created.
Because a process must have the correct global port number to send an IPC message to another
process, ?ILKUP can be a useful preliminary step to an ?ISEND or an ?IREC.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?ILKUP returns the global port number (which includes the PID, the ring number, and the local
port number of the creator) associated with an IPC file entry that you specify. If the file does not
exist or is not an IPC file, ?ILKUP fails and the operating system returns error code ERFDE or
ERIFT in ACO.

Note that if you specify an IPC file whose local port number is 0, the number returned in ACI is the
port number of your terminal, not the port number of the file that you specified.

Notes
• See the descriptions of ?IREC and ?ISEND in this chapter.

• See PARU.32.SR or PARU.16.SR, for the IPC file and device types.

2-288 Licensed Material- Property 01 Data General Corporation
086-000195 updates

093-000542

?IMERGE Modifies a ring field within a global port number.

?IMERGE
error return
normal retu rn

Input

ACO One of the following:

• Global port number
(32-bit users only)

Output

ACO One of the following:

• Global port number, including
the ring field (32-bit users only)

• OPR, which indicates
high-order bits of global
port number (16-bit users
only)

• OPR, which indicates high-order bits
of global port number including

AC1 One of the following:

• Reserved (Set to 0.)
(32-bit users only)

• OPL, which indicates low
order bits of global port
number (16-bit users only)

AC2 Ring field in Bits 29
through 31

Error Codes in ACO

No error codes are currently defined.

Why Use It?

the ring field (16-bit users only)

AC 1 One of the following:

• Undefined (32-bit users
only)

• OPL, which indicates low-order
bits of global port number,
including ring field (16-bit
users only)

AC2 Unchanged

?IMERGE allows both 16- and 32-bit users to modify the ring field within a global port so that it
can receive an IPC message in an alternate ring.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IMERGE incorporates the new ring field that you specified in AC2 into the process's global port
number.

Notes

• See the description of ?ISPLIT in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-289

?IMSG Receives an interrupt service message.

?IMSG
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 User DCT address of
the sending device

Error Codes in ACO

Output

ACO Undefined

AC 1 Interrupt service message

AC2 Unchanged

ERMIM Multiple ?IMSG calls to same DCT (Only one task can wait for an interrupt service
message at a time)

ERVWP Invalid word pointer passed as a system call argument

Why Use It?

?IMSG is the "receive" counterpart of ?IXMT. ?IXMT and ?IMSG allow you to pass data from an
interrupt service routine to an outside task, or to synchronize the two tasks.

Once a process has entered an interrupt service routine, ?FIXMT, ?DCIT, (exit from the routine),
?IXMT, and ?SIGNL are the only system calls that process can issue.

Who Can Use It?

There are no special process privileges needed to issue this call beyond those that ?IDEF requires,
and there are no restrictions concerning file access.

What It Does

?IMSG lets the calling task receive a message sent by an interrupt service routine with ?IXMT.
?IXMT and ?IMSG can be in any order. If the receiving task issues the ?IMSG before the sender
issues the ?IXMT, the operating system suspends the receiving task pending the transmission. As
soon as the sending interrupt service routine issues ?IXMT, the receiver becomes active again,
provided no other tasks suspended it in the meantime.

Before you can use ?IXMT and ?IMSG, you must use ?IDEF to define the sending interrupt service
routine. Also, before you issue ?IMSG, you must load AC2 with the DCT address of the device that
is associated with the sending interrupt service routine. When the operating system executes the
sender's ?IXMT, it passes the message to the mailbox field that it has already set aside for the
device. When the operating system executes ?IMSG, it moves the message from the mailbox to
ACl.

You must define the user DCT address of the sending device, using ?IDEF, before you issue ?IMSG.

Notes

• See the descriptions of ?IXMT, ?IXIT, and ?IDEF in this chapter.

2-290 Licensed Material - Property of Data General Corporation 093-000542

?INIT Initializes a logical disk.

?INIT [packet address]
error return
normal return

Input

ACO One of the following:

• Byte pointer to a 32-byte
receive buffer for the
LD name

• 0 if there is no buffer

AC 1 One of the following:

• -1 to graft the new LD
to the system root directory (:)

• 0 to graft the LD to the
caller's working directory

• Byte pointer to the pathname
of the target directory

AC2 Address of the ?INIT packet,
unless you specify the address
as an argument to ?INIT

Error Codes in ACO

Execute access denied

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?INIT packet

Can't initialize LD, run FIXUP on it
EREAD
ERFIX
ERIDD Inconsistent DIB (disk indentification block) data (Disk is not a valid operating system

disk type.)
ERIDU
ERILD
ERMIS
ERVBP
ERVWP

Incomplete LD (logical disk)
Inconsistent LD
Disk and file system revision numbers don't match
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

Before you can use a logical disk, you must initialize it. You can do this with the CLI command
INITIALIZE, or with the ?INIT system call. (You tell the operating system that the controller for
the logical disk exists during the system-generation procedure.) Initializing a logical disk allows
you to incorporate its files into the existing file structure.

093-000542 Licensed Material - Property of Data General Corporation 2-291

?INIT Continued

Who Can Use It?

There are no special process privileges needed to issue this call. To use ?INIT, the calling process
must have Owner access to the target LD root and either Write or Append access to the target
directory. In addition, the caller must have Execute access to each disk unit in the LD and Execute
access to the target directory.

What It Does

?INIT initializes a logical disk and grafts the LD's local directory structure to the directory that you
specify in ACI (that is, the system root, the current working directory, or another directory).

?INIT requires a packet of 2n + 1 words, where n is the number of disk units that make up the
logical disk you are initializing. Table 2-59 lists the contents of the ?INIT packet.

Table 2-59. Contents of ?INIT Packet*

Offset Contents
=============== ===

o

1 and 2
(doubleword)

3 and 4
(doubleword)

5 and 6
(doubleword)

2*n-l and 2*n
(doubleword)

Number of physical units in the LD.

Byte pointer to the name of the first disk in the
LD.

Byte pointer to the name of the second disk in
the LD.

Byte pointer to the name of the third disk in the
LD.

Byte pointer to the name of the nth disk in the
LD.

* There is no default unless otherwise specified.

You must terminate each disk name with a null byte.

Notes

• Refer to the manual Installing, Starting, and Stopping ADS / VS II for a list of the valid disk
names and for information on the system-generation procedure.

2-292 Licensed Material - Property of Data General Corporation 093--000542

?INTWT Defines a terminal interrupt task.

?INTWT
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

None

The operating system enables terminal interrupts when a program begins to execute. Before the
operating system will recognize a terminal interrupt, however, you must define a
terminal-interrupt task with ?INTWT. Because the operating system disables terminal interrupts
after it executes the interrupt task; you must issue another ?INTWT each time you want to
re-enable terminal interrupts.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?INTWT defines a task to handle a terminal interrupt (that is, a Ctrl-C Ctrl-A control sequence,
which suspends the process terminal's output). In addition, ?INTWT re-enables terminal
interrupts if they were previously disabled by a terminal interrupt.

When the operating system detects a terminal interrupt, it passes control to the task defined by
?INTWT, and then disables further terminal interrupts until you issue either another ?INTWT or a
?OEBL. You should initiate the terminal-interrupt task at the highest priority so that it will
receive control as soon as possible to service the interrupt.

Notes

• See the description of ?OEBL in this chapter.

• See the description of?KW AIT in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-293

?IQTSK Creates a queued task manager.

?IQTSK
error return
normal return

Input

ACO Priority level for the
queued task manager (0 to
assign it the caner's
priority level)

AC 1 TID for the queued task
manager

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Undefined

ERQTS Error in queued task request (An active queued task manager already exists.)

Why Use It?

You must issue ?IQTSK before you can issue ?TASK to create queued tasks. Queued tasks allow
your program to delay task initiation and/or direct the operating system to reinitiate tasks at
specific time intervals.

Who Can Use It?

There are no special process privileges needed to issue this can, and there are no restrictions
concerning file access.

What It Does

?IQTSK creates a queued task manager task to manage tasks you initiate with the ?TASK queued
task creation facility. You can create only one queued task manager. Therefore, you can issue only
one ?IQTSK per program. However, when you issue ?IQTSK, it creates a task. Therefore, you must
allow for one extra task control block (TCB). For example, if you create three tasks with one ?TASK
system call, which you want queued, the operating system is using five TCBs.

Before you issue ?IQTSK, load ACO with a priority level for the queued task manager, and load
ACl with its task identifier (TID). You must specify a unique task ID, because the operating
system needs this information to control the task manager. If you specify 0 in ACO, the operating
system assigns the queued task manager the same priority as the calling task.

When you terminate the last active task in a process, the operating system terminates the queued
task manager, provided it is still active and has an empty task initiation queue.

Notes

• See the descriptions of ?TASK and ?DQTASK in this chapter.

• Don't change the system time after issuing ?IQTSK. Unpredictable results will occur.

2-294 Licensed Material - Property of Data General Corporation 093-000542

?IREC Receives an IPC message.

?IREC [header address]
error return
normal return

Input
ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the IPC header,
unless you specify the address as
an argument to ?IREC

Error Codes in ACO

Output
ACO Undefined

AC 1 Undefined

AC2 Address of the IPC header

ERMPR System call parameter address error (The receive buffer is not in the un shared area of
your address space.)

ERVBP
ERVWP

Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?
You would issue ?IREC either to receive an IPC message that another process sent via ?ISEND or
to receive a process termination or connection management message.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?IREC opens a receiving port for the calling process, which allows the caller to receive an IPC
message from a sending process. ?IREC requires a header, which lists, among other information,
the origin and destination ports for the message.

Before you issue ?IREC, set up the header and reserve a receive buffer in your logical address
space. You can cite the header address as an argument to ?IREC or load it into AC2 before you issue
?IREC. The ?IREC header consists of?IPLTH words. Figure 2-81 shows the header's structure, and
Table 2-60 describes its contents. Table 2-60 also describes the optional contents of ?ISFL in the
?IREC header.

Offset ?IOPH contains the global port number of the calling process (issue ?ILKUP to obtain this).
If you set offset ?IOPH to 0, the calling process can accept messages from any sender. Similarly, if
you set offset ?IDPN (the destination port number) to 0, the calling process can accept the message
on any of its ports. During message transmission, the operating system writes the actual origin port
number into offset ?IOPH, and the actual destination port number into offset ?IDPN.

Offset ?IPTR points to the receive buffer, which must be in the unshared area of your logical
address space. (See Table 2-60 which describes the system flag words and user flag words.)

By default, the operating system suspends the receiver if there is no outstanding message for its
?IREC. You can avoid this by setting flag ?IFNBK in offset ?ISFL of the receive header. This flag
signals the operating system to return an error to the receiver if there is no message.

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-295

?IREC Continued
An ?IREC from a particular ring can only receive an IPC message whose destination is that
particular ring.

2-296

o 15 16 31
1-------------------------+-------------------------1

?ISFL 1 System flags (see 1 User flags (see 1 ?IUFL
1 Table 2-60) 1 Table 2-60) 1
1-------------------------+-------------------------1

?IOPH 1 Origin global port number 1

1-------------------------+-------------------------1
?IDPN 1 Destination local port 1 Length of receive 1 ?ILTH

1 number 1 buffer, in words 1

1-------------------------+-------------------------1
?IPTR 1 Message buffer address 1

1---1
?IPLTH = header length

1

Figure 2-81. Structure of ?IREC Header

Table 2-60. Contents of ?IREC Header*

Offset 1 contents 1

=============== ===1
?ISFL System flag word 1

?IUFL

?IOPH
(doubleword)

?IDPN

?ILTH

?IPTR
(doubleword)

1

?IFRFM--Receive a looped message (sent by this 1

process to itself). Use this to test 1

a process to see if both IPCs are 1

working properly. Also, this is a 1

good way for one program to 1

communicate with another program in a 1

single process (?CHAIN).

?IFSOV--Spool the message if the receive
buffer is too small.

?IFNBK--Signal an error if there is no spooled
message for this receiver.

?IFRING--Contains the sender's ring field
(returned by the OS) . (The ring field
is a 3-bit field, Bits 13 through 15.)

?IFPR---Indicates .PR file type of sender; 0
if the sender is a 32-bit process, or
1 if the sender is a 16-bit process
(returned by the OS) .

User flag word. (See Figure 2-82.)

Origin global port number.

Destination local port number.

Size of the receive buffer, in words.

Address of the receive buffer.

* There is no default unless otherwise specified.

Licensed Material- Property ci Data General Corporation
086--000195 updates

093--000542

After ?IREC has finished you can identify the process that issued the associated ?ISEND or ?IS.R
call. To do this, load the origin global port number from offset ?IOPH of the ?IREC packet into ACO
and then issue ?ISPLIT. After ?ISPLIT finishes AC1 will contain the PID of the sending process.

Sample Packet
HDR: .BLK

. LOC

. WORD

.LOC

. WORD

. LOC

. DWORD

. LOC

. WORD

. LOC

. WORD

.LOC

. DWORD

.LOC

?IPLTH

HDR+?ISFL
?IFSOV

HDR+?IUFL
0

HDR+?IOPH
0

HDR+?IDPN
0

HDR+?ILTH
80./2

HDR+?IPTR
RECBUF

HDR+?IPLTH

iAllocate enough space for the
ipacket. Packet length = ?IPLTH .

iSystem flags .
iIf buffer is too short, spool.

iUser flags.
iSet to O .

iGlobal port number of calling
iprocess. (Set to 0 to accept
imessages from any sender.)

iDestination port number .
iSet to 0 to accept messages on any
iof the calling process's ports.

iReceive buffer length (words) .
iBuffer length is 80./2. Reset
ibuffer length after each ?IREC.

iReceive buffer address (must be in
iunshared area of your logical
;address space).

iEnd of ?IREC header.

Process Termination Messages

When a process terminates, the system sends a process termination IPC message to the father
process (who created the terminating process). The system also sends connection management
messages to the server (or customer) if the status of the connection in a customer/server
relationship is affected. For a process to receive a process termination or connection management
message, it must issue an ?IREC system cal1 with offset ?IOPH set to a special system port, ?SPTM.

The location of the PID number, that ?IREC receives as part of a process termination or connection
management message, depends on two things: the type of process that the receiver (i.e., the process
that issues ?IREC) is, and the type of message that is received, as follows:

• A-type (smal1PID) process, process termination message - the PID is in the right byte of offset
?IUFL. If ?ILTH contains 0, then the contents of ?IPTR are undefined. If ?ILTH doesn't contain
0, then ?IPTR contains a word pointer to a process termination message as described in the
sections "Termination Messages for A-Type 32-bit Processes," and "Termination Messages for
A-Type 16-bit Processes." For more information about process types see Managing ADS /VS
and ADS/VS II (093-000541), andADS/VS System Concepts (093-000335).

• B- or C-type (hybrid or anyPID programs) process, process termination message - the
operating system returns 0 in the right byte of offset ?IUFL. If ?ILTH contains 0, then the
contents of ?IPTR are undefined. If ?ILTH doesn't contain 0, then ?IPTR contains a word pointer
to a process termination message as described in the section "Termination Messages for B-Type
and C-Type Processes." For more information about process types see Managing ADS/VS and
ADS /VS II (093-000541), and ADS /VS System Concepts (093-000335).

• A-type process, connection management (obituary) message - the PID is in the right byte of
offset ?IUFL. Regardless of the contents of ?ILTH, the 24 high order bits of ?IPTR are undefined
and the low order 8 bits contain a bit map according to the description of connection
management in the ADS / VS System Concepts manual.

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2-297

?IREC Continued

• B- or C-type process, connection management (obituary) message - the PID is in the 16 low
order bits of offset ?IPTR (and the 16 high order bits are undefined). The contents of offset
?ILTH are unimportant, but the right byte of offset ?IUFL contains a bit map according to the
description of connection management in the AOS/VS System Concepts manual.

An A-type process receives a termination message as defined in one of the following two places:

• Table 2-60 (page 2-296) and Table 2-63.1 (page 2-303)

• Table 2-60 (page 2-296) and Table 2-63 (page 2-301)

A B-type or C-type process receives a termination message whose receive buffers are defined in
one of the following two places:

• Table 2-63.2 (page 2-304.2) in the section "Termination Messages for B-Type and C-Type
Processes," is for 32-bit processes.

• Table 2-64 (page 2-304.6) in the section "Termination Messages for B-Type and C-Type
Processes," is for 16-bit processes.

The operating system uses offset ?IUFL of the receive header to describe the reason for the Process
Termination Message and to identify the process on whose behalf it is sending the message.
Figure 2-82 shows the structure of offset ?IUFL.

o 4 5 7 8 15
1----------------+----------------+-----------------------I
1 ?RETURN 1 Termination 1 Process ID I
1 flags 1 field I I

1----------------+---------------+-----------------------I

Figure 2-82. Structure of Offset ?IUFL

The termination field (bits 5 through 7) in offset ?IUFL is for the codes that the operating system
uses to indicate why the termination message is being sent. The low order byte of offset ?IUFL
always contains the PID of the process from which the message originated.

The termination field may contain any of the codes listed in Table 2-62, depending on the reason
for the message. Note that when the termination field holds the value ?TEXT, you can find the real
cause for the message in the first word of the message itself.

If a ?RETURN system call causes the termination message, the operating system uses the
?RETURN flags (bits 0 through 4) of the ?IUFL offset to provide additional information about the
message format. See Table 2-61 for the ?RETURN flags.

If the message is in standard CLI format, the return flag is set to ?RFCF, and the remaining flags
(?RFEC, ?RFWA, ?RFER, and ?RFAB) have their conventional meanings. If the father is not the
CLI, or if ?RFCF is not set, the father and son must agree about the contents of the message.

2-298 Licensed Material - Property eX Data General Corporation
086-000195 updates

093-000542

Table 2-61. Process Termination Codes in the ?RETURN Portion of ?IUFL

1

1 Code
1========
1 ?RFCF
1

1

1 ?RFEC
1

1 ?RFWA
1

1 ?RFER
1

1 ?RFAB

Meaning
==

The termination message is in CLI format (the CLI is the
father) .

ACO contains the error code.

A warning condition caused the termination.

An error condition caused the termination.

An abort condition caused the termination.
1 __ ___

If a Ctrl-C Ctrl-B (or Ctrl-C Ctrl-E) interrupt sequence caused the process to terminate, ?TCIN
appears in the termination field of ?IUFL. If the operating system terminated the process because
of an error condition, the system returns ?TAOS as the cause of termination. You can find a further
explanation for the termination by looking at the error code returned in the ?IPTR offset of the
message header.

If a customer/server relationship caused the message, the system returns codes ?TBCX, ?TCCX, or
?TABR in the termination field.

086-000195 updates
093-000542 licensed Material- Property of Data General Corporation 2-299

Table 2-62. Process Termination Codes in Offset ?IUFL for ?IREC and ?ISEND Headers

2-300

1

Code Meaning 1

======== ==1
?TSELF Either a 16-bit process terminated itself with a ?TERM 1

or a ?RETURN system call or a 32-bit process terminated 1

itself with a ?TERM system call. 1

1
?TRAP A user trap terminated a 16-bit process; Word 5 of the 1

IPC message to the father describes the trap. 1

1

?TCIN An abort terminal interrupt (Ctrl-C Ctrl-B sequence) 1
terminated a process.

?TSUP Terminated by a superior process.

?TAOS The OS terminated a process because of an error; offset
?IPTR in the IPC header contains the error code.

?TBCX A process broke a connection that was established via
the connection-management system calls.

?TCCX The connection still exists, but the process chained.

?TEXT Indicates an extended termination code; the extended
code appears in offset 0 (first word) of the IPC
message.

A termination code of ?TEXT means that the actual
termination code is a 16-bit code in the first word of
the termination message in the receive buffer. The
The following list describes these extended termination
codes.

Extended Code Meaning
=============== ==

?T32T A 32-bit process terminated itself with
a ?TERM or a ?RETURN system call.

?TR32 A 32-bit process terminated because of a
user trap; word 10 of the termination
message describes the trap.

?TABR Task abort notification to a server
process. This involves customer/server
relationship, ?IDGOTO, ?IS.R, and ?IREC,
either 16-bit or 32-bit process.

Licensed Material- Property 0/ Data General Corporation
086-000195 updates

093-000542

Termination Messages for A-Type 32-Bit Processes

When a 32-bit process terminates because of a ?TERM (without the optional message) or
?RETURN system call, the operating system sets the termination field of ?IUFL to ?TEXT and sets
the first word of the termination message to ?T32T. If the message is due to a ?RETURN, the
operating system uses the ?RETURN flags field of?IUFL, and the message has the following
format:

Word 0
Word 1
Words 2 and 3
Word 4

?T32T (the extended termination code)
Byte length of the ?RETURN message text
Error code from ?RETURN ACO
Start of message text

If the process terminated with a ?TERM with the optional message, the operating system forwards
the message without modification.

If the 32-bit process terminated because of a user trap, the operating system sends a message in
the format shown in Table 2-63. The length of this message is ?TPLN words.

Table 2-63. ?TEXT Code Termination Messages Sent on an A-Type 32-Bit Process User Trap

Word
=========

0

1 and

3 and

5 and

7 and

9

10

086-000195 updates
093-000542

2

4

6

8

Contents
===

?TR32 (the extended termination code) .

ACO contents.

AC1 contents.

AC2 contents.

AC3 contents.

Bit 0, carry; Bits 1 through 15, high-order bits of
program counter.

Low-order bits of program counter.

(continued)

Licensed Material - Property d Data General Corporation 2-301

?IREC Continued

Table 2-63. ?TEXT Code Termination Messages Sent on an A-Type 32-Bit Process User Trap

2-302

Word Contents
========= ===

11 The following flag bits, which describe the trap

Bit 0=0

Bit 0=1

Bit 3=1

Bit 4=1

Bit 5=1

Bit 6=1

Bit 7=1

Bit 8=1

Bit 9=1

Bit 10=1

Bit 12=1

Bit 13=1

Bit 14=1

Bit 15=1

Trap occurred while control was in the
user context.

Trap occurred while control was in the
operating system.

A node time-out occurred.
hardware error.)

(This is a

Process tried to execute a privileged
instruction.

Process tried to return to an inner ring
from a subroutine call. (This is a
violation of the ring structure.)

Process tried to issue a subroutine call
to an outer ring. (This is a violation
of the ring structure.)

Gate protection error. (This is a
violation of the ring structure.)
Process tried to reference an address in
an inner ring. (This is a violation
of the ring structure.)

Process tried to read a read-protected
page.

Process tried to execute data in an
execute-protected area.

Process tried to write into a
write-protected area.

Memory map validity error. (The process
tried to refer to an address outside the
user context.)

Defer error. (The process tried to use
more than 16 levels of indirection in an
address reference.)

Process tried to issue a machine-level
1/0 instruction without issuing the ?DEBL
system call.

(concluded)

Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

Termination Messages for A-Type 16-Bit Processes

When a 16-bit process terminates by issuing a ?RETURN or ?TERM system call, the system
returns flag ?TSELF to the termination field in offset ?IUFL.

If the process terminated via the ?RETURN system call, the system sends one or more of the codes
in Table 2-61 to the ?RETURN Flags field of ?IUFL. Furthermore, if ?RETURN was used, a 2-word
header precedes the text of the message furnished by the ?RETURN:

Word 0 Length of the ?RETURN message in bytes.
Word 1 The error code (if any) found in ?RETURN's ACO.

The text of the message follows this header. If the process supplied no message, only the first two
words appear.

If the process terminated itself via the ?TERM system call, the operating system returns either the
termination message specified by the system call or returns nothing to the ?TREC receive buffer, if
no message was sent.

If the 16-bit process terminated because of a user trap, the operating system sets the termination
field to ?TRAP and sends the father a six-word message, as shown in Table 2-63.1.

If the process terminated because of an abort terminal interrupt (Ctrl-C Ctrl-B) or a ?TERM
issued by a superior process, the operating system returns ?TCIN or ?TSUP, respectively, to the
termination field, but sends no message.

Table 2-63.1. ?TRAP Termination Messages for A-Type 16-Bit Processes

1 1
1 Word 1 Contents
1====1==
1 0 1 ACO contents at the time of the trap.
1 1
1 1 1 AC1 contents at the time of the trap.
1 1
1 2 1 AC2 contents at the time of the trap.
1

1 3
1

1 4
1

1 5
1

1

I
1

1

1

1

1

1

1

1

I
1

I
1

1

1 1

AC3 contents at the time of the trap.

Bit 0, carry; Bits 1 through 15, program counter value.

The following flag bits, which describe the trap:

Bit 0=0

Bit 0=1

Bit 12=1

Bit 13=1

Bit 14=1

Bit 15=1

Trap occurred while control was in the user
context.
Trap occurred while control was in the
operating system.

Process tried to write into a write-protected
area.
Memory map validity error. (The process tried
to refer to an address outside the user
context.)
Defer error. (The process tried to use more
than 16 levels of indirection in an address
reference.)
Process tried to issue a machine-level I/O
instruction without issuing the ?DEBL system
call.

1 ____ 1 __ __

086-000195 updates
093-000542 Licensed Material - Property or Data General Corporation 2-303

?IREC Continued

Termination Messages for 8-Type and C-Type Processes

B-type or C-type processes receive the new style termination message described on the next
several pages. These formats apply only to issuing processes that are type B or type C.

The calling process is either a 32-bit one or a 16-bit one. Figure 2-82.1 describes the 32-bit
termination message format, and Table 2-63.2 describes its contents. Figure 2-82.2 describes the
16-bit termination message format and Table 2-64 describes its contents.

Word ?IUFL of the termination IPC header contains the value of ?TEXT in the termination field,
and the value indicates an extended termination message. Also, the PID field of?IUFL contains O.

If the ?TERM or ?RETURN call in the terminated process has a user-supplied message, then the
values in words ?ISFL and ?IUFL of the user-supplied IPC header go to offsets ?TMR8 and ?TMR9
respectively.

A ?RETURN call has the return flags set in the IPC header for a user-supplied message. The
default messages from a ?RETURN call are unchanged and will appear in their entirety in the
?TMMSG area of the termination message. Any user-supplied IPC to a ?TERM call will similarly
be appended in this area. If the terminated process passes only an IPC header, then offset
?TMMLG contains zero and the first two words of offset ?TMMSG contain ?IPTR. Note that
user-supplied messages are only appended to the default message; they never replace it.

2-304 Licensed Material- Property 01 Data General Corporation
086-000195 updates

093-000542

?TMXTC

?TMRS

?TMUPD

?TMR2

?TMACO

?TMAC1

?TMAC2

?TMAC3

?TMCPC

?TMSEC

?TMCPU

?TMBLK

?TMPGS

?TMPGD

?TMPGF

?TMR4

?TMR6

?TMR8

?TMTCD

?TMMSG

?TMMSG + 2

?TMMSG +
(n-2)

o 15 16 31
---------------------+--------------------
Extended I Packet revision ?TMPRV
termination code I number

---------------------+--------------------
Reserved (Set to O.) I PID of terminated ?TMPID

I process
---------------------+--------------------

Reserved (Set to O.)

Reserved (Set to O.)

Reserved (Set to O.)

Reserved (Set to O.)
---------------------+--------------------1

Reserved (Set to O.) I Reserved (Set to O.) I ?TMR3
---------------------+--------------------1

ACO of the terminated process I

AC1 of the terminated process

AC2 of the terminated process

AC3 of the terminated process
---+-----------------+--------------------

C I Program Counter
---+-----------------+--------------------
Elapsed seconds since process creation

Milliseconds of CPU time used

Number of blocks read or written

Page-milliseconds used

Number of page faults since creation

Number of page faults -- no disk I/O
---------------------+--------------------

Reserved (Set to O.) I Reserved (Set to O.) ?TMR5
---------------------+--------------------

Reserved (Set to 0.) I Reserved (Set to 0.) ?TMR7
---------------------+--------------------

Reserved (Set to O.) I Reserved (Set to 0.) ?TMR9
---------------------+--------------------

Trap code I Message length ?TMMLG
---------------------+--------------------
First word of I Second word of ?TMMSG + 1
default message I default message

---------------------+--------------------
First word of user I Second word of user ?TMMSG + 3
supplied message I supplied message

---------------------+--------------------

---------------------+--------------------
Next to last word ofl Last word of user
user supplied msg. I supplied message

---------------------+--------------------

?TMMSG +
(n-1)

?TDFL = packet length for no user supplied message

Figure 2-82.1. Structure of Termination Message from a 32-bit B- or C-TYpe Process

086-Q00195 updates

093-000542 Licensed Material- property of Data General Corporation 2-304.1

?IREC Continued
Table 2-63.2. Contents of Termination Message from a 32-bit B- or C-Type Process

Offset Contents
======== ==

?TMXTC The operating system returns the extended termination
code to indicate the type of process termination. The
values and meanings of these codes are as follows.

?TMPRV

?TMRS

?TMPID

?TMUPD
(8.
words)

?TMR2

?TMR3

?TMACO
(double
word)

?TMACl
(double

word)

?TMAC2
(double
word)

?TMAC3
(double
word)

?XT16T
?XTR16
?XTCIN
?XTSUP
?XTAOS
?XTBCX
?XTCCX
?XTABR
?XT32T
?XTR32

A l6-bit termination of self occurred.
A l6-bit user trap occurred.
Termination by a terminal interrupt.
Termination by a superior process.
Termination by AOS.
Customer connection broken.
Customer chained.
Customer did ?TABT.
A 32-bit termination of self occurred.
A 32-bit user trap occurred.

Packet revision number. Place ?TM6 here.

Reserved. Set to o.

The operating system returns the PID of the terminated
process.

Reserved. Set to o.

Reserved. Set to o.

Reserved. Set to o.

The operating system returns the contents of ACO at the
time of the termination. This offset is valid only on a
trap (?TMXTC contains ?XTR16 or ?XTR32). The high-order
word is undefined if a l6-bit process terminated.

The operating system returns the contents of ACI at the
time of the termination. This offset is valid only on a
trap (?TMXTC contains ?XTR16 or ?XTR32). The high-order
word is undefined if a l6-bit process terminated.

The operating system returns the contents of AC2 at the
time of the termination. This offset is valid only on a
trap (?TMXTC contains ?XTR16 or ?XTR32). The high-order
word is undefined if a l6-bit process terminated.

The operating system returns the contents of AC3 at the
time of the termination. This offset is valid only on a
trap (?TMXTC contains ?XTR16 or ?XTR32). The high-order
word is undefined if a l6-bit process terminated.

1

1

1

1

I
1

1

1

1
___ 1

2-304.2 Licensed Material- Property of Data General Corporation

(continued)

086-000t95 updates
093-000542

Table 2-63.2. Contents of Termination Message from a 32-bit B- or C-Type Process

1

I Offset
1========
1 ?TMCPC
1 (double

word)

?TMSEC
(double
word)

?TMCPU
(double
word)

?TMBLK
(double
word)

1 ?TMPGS
1 (double-
1 word)

?TMPGD
(double
word)

?TMPGF
(double
word) 1

1

?TMR4 1

1

?TMR5 1

1

?TMR6 1

1

?TMR7 1

1

?TMR8 1

1

?TMR9 1

1

?TMTCD 1

1

?Tlv1MLG 1

1

1

?Tlv1MSG 1

1

1

1

Contents
==

The operating system returns the carry bit and program
counter contents at the time of the termination. This
offset is valid only on a trap (?TMXTC contains ?XTR16
or ?XTR32). The high-order word is undefined if a
16-bit process terminated.

The operating system returns the number of elapsed
seconds since the process was created.

The operating system returns the number of milliseconds
of CPU time the process used.

The operating system returns the number of blocks read
or written.

The operating system returns the page usage over CPU
time in pages/second.

The operating system returns the number of page faults
since the process was created.

The operating system returns the number of page faults,
with no disk I/O, since the process was created.

Reserved. (Set to o.)

Reserved. (Set to o .)

Reserved. (Set to o.)

Reserved. (Set to o.)

Reserved. (Set to o .)

Reserved. (Set to o.)

The operating system returns the trap code.

The operating system returns the number of words in any
user-supplied message. This number might be zero.

Beginning of the message area, starting with two words;
ending with the zero or more words in any user-supplied
message.

_________ I __ ~
(concluded)

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-304.3

?IREC Continued

?TMXTC

?TMPRV

?TMRS

?TMPID

?TMUPD

?TMUPD + 1

?TMUPD + 7

?TMR2

?TMR3

?TMOH

?TMOL

?TM1H

?TM1L

?TM2H

?TM2L

?TM3H

?TM3L

?TMLH

?TMLL

?TMSH

?TMSL

?TMCH

?TMCL

o 15

Extended termination code

Packet revision number

Reserved (Set to 0.)

PID of terminated process

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

ACO of terminated process (high order)

ACO of terminated process (low order)

ACl of terminated process (high order)

ACl of terminated process (low order)

AC2 of terminated process (high order)

AC2 of terminated process (low order)

AC3 of terminated process (high order)

AC3 of terminated process (low order)
---+--------------------------------------

C I Program Counter (high order)
---+--------------------------------------

C I Program Counter (low order)
---+---------------------~----------------

Elapsed seconds since process creation
(high order)

Elapsed seconds since process creation
(low order)

Milliseconds of CPU time used(high order)

Milliseconds of CPU time used (low order)

(continued)

Figure 2~2.2. Structure of Thrmination Message from a 16-bit B- or C-Type Process

2-304.4 Licensed Material- Property of ~ata General Corporation
086-000195 updates

~542

?TMBH

?TMBL

?TMGH

?TMGL

?TMDH

?TMDL

?TMFH

?TMFL

?TMR4

?TMR5

?TMR6

?TMR7

?TMR8

?TMR9

?TMTCD

?TMMLG

?TMMSG

?TMMSG +

?TMMSG +

?TMMSG +

?TMMSG +
(n-2)

?TMMSG +
(n-l)

1

2

3

o 15
--1

Number of blocks read or written
(high order)

Number of blocks read or written
(low order)

Page-milliseconds used (high order)

Page-milliseconds used (low order)

Page faults since creation (high order)

Page faults since creation (low order) 1

--1
Page faults -- no disk I/O (high order) 1

--1
Page faults -- no disk I/O (low order) 1

--1
Reserved (Set to 0.) 1

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Reserved (Set to 0.)

Trap code

Message length

First word of default message

Second word of default message

First word of user-supplied message

Second word of user-supplied message

Next to last word of user-supplied
message 1

--1
Last word of user-supplied message 1

1

--1
?TDFL = packet length for no user supplied message

(concluded)

Figure 2-82.2. Structure of Thrmination Message from a 16-bit B- or C-Type Process

086-000195 updat811

093-000542 Licensed Material- Property d Data General Corporation 2-304.5

?IREC Continued
Table 2-64. Contents of Termination Message from a 16-bit 8- or C-Type Process

1
Offset 1 Contents 1

========1==1
?TMXTC 1 The operating system returns the extended termination

?TMPRV

?TMRS

?TMPID

1 code to indicate the type of process termination. The
I values and meanings of these codes are as follows.
1

1

1

1

1

1

1

1

1

1

1

1

?XT16T
?XTR16
?XTCIN
?XTSUP
?XTAOS
?XTBCX
?XTCCX
?XTABR
?XT32T
?XTR32

a 16-bit termination of self occurred.
a 16-bit user trap occurred.
termination by a terminal interrupt.
termination by a superior process.
termination by AOS.
customer connection broken.
customer chained.
customer did ?TABT.
a 32-bit termination of self occurred.
a 32-bit user trap occurred.

Packet revision number. Place ?TM6 here.

Reserved. (Set to 0.)

The operating system returns the PID of the terminated
process.

?TMUPD Reserved.
(8 words

(Set to 0.)

?TMR2 Reserved. (Set to 0.)

?TMR3 Reserved. (Set to 0.)

?TMOH

?TMOL

?TMIH

?TMIL

?TM2H

?TM2L

2-304.6

The operating system returns the high-order contents of
ACO at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32). This
offset is undefined if a 16-bit process terminated.

The operating system returns the low-order contents of
ACO at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32).

The operating system returns the high-order contents of
ACl at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32). This
offset is undefined if a 16-bit process terminated.

The operating system returns the low-order contents of
ACl at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32).

The operating system returns the high-order contents of
AC2 at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32). This
offset is undefined if a 16-bit process terminated.

The operating system returns the low-order contents of
AC2 at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32).

Licensed Material- Property d Data General Corporation

(continued)

086-000195 updates
093-000542

Table 2-64. Contents of Termination Message from a 16-bit B- or C-Type Process

1

Offset Contents I
======== ==1

?TM3H The operating system returns the high-order contents of
AC3 at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32). This
offset is undefined if a l6-bit process terminated.

?TM3L The operating system returns the low-order contents of
AC3 at the time of the termination. This offset is valid
only on a trap (?TMXTC contains ?XTR16 or ?XTR32).

?TMLH The operating system returns the carry bit and high-order
program counter contents if and when a 32-bit process
terminated. This offset is valid only on a trap (?TMXTC
contains ?XTR16 or ?XTR32). The offset is undefined if a
16-bit process terminated.

?TMLL The operating system returns the low-order program
counter contents if and when a 32-bit process terminated,
or else the carry bit and program counter contents if
and when a 16-bit process terminated. The offset is
valid only on a trap (?TMXTC contains ?XTR16 or ?XTR32).

?TMSH The operating system returns the number of elapsed
seconds since the process was created (high order) .

?TMSL The operating system returns the number of elapsed
seconds since the process was created (low order) .

?TMCH The operating system returns the number of milliseconds
of CPU time the process used (high order) .

?TMCL The operating system returns the number of milliseconds
of CPU time the process used (low order) .

?TMBH The operating system returns the number of blocks read
or written (high order) .

?TMBL The operating system returns the number of blocks read
or written (low order) .

?TMGH The operating system returns the page usage over CPU
time in pages/second (high order) .

?TMGL The operating system returns the page usage over CPU

1

time in pages/second (low order) . 1
1

?TMDH The operating system returns the number of page faults 1

since the process was created (high order) . 1

1

?TMDL The operating system returns the number of page faults 1

086-000195 updates
093-000542

since the process was created (low order) . 1

1

__ ~--~--~.I
(continued)

Licensed Material- Property d Data General Corporation 2-304.7

?IREC Continued
Table 2-64. Contents of Termination Message from a 1 tHllt B- or C-Type Process

1

1 Offset
1========
I ?TMFH
1

1

I
I ?TMFL
1

1

1
1 ?TMR4
1
1 ?TMRS
I
1 ?TMR6
1

1 ?TMR7
1

1 ?TMR8
I
1 ?TMR9
1
I ?TMTCD
I
1 ?TMMLG
I
1

1 ?TMMSG
1

1

1

1 ___ _

Notes

Contents
==

The operating system returns the number of page faults,
with no disk I/O, since the process was created (high
order) .

The operating system returns the number of page faults,
with no disk I/O, since the process was created (low
order) .

Reserved. (Set to o.)

Reserved. (Set to o.)

Reserved. (Set to o.)

Reserved. (Set to o.)

Reserved. (Set to o.)

Reserved. (Set to o.)

The operating system returns the trap code.

The operating system returns the number of words in any
user-supplied message. This number might be zero.

Beginning of the message area, starting with two words;
ending with the zero or more words in any user-supplied
message. 1

1

---1 (concluded)

• See the descriptions of ?ILK UP, ?TERM, ?RETURN, and ?ISEND in this chapter.

2-304.8 Licensed Material- Property d ~ata General Corporation
086-000195 updates

093-000542

?IRMV Removes a user device.

?IRMV
error return
normal return

Input Output
ACO Device code of the user

device that you want to
remove

ACI Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

ERDNM
ERPRE
ERPRV
ERPTY

Illegal device code
Invalid system call parameter
Caller not privileged for this action
Illegal process type

Why Use It?

ACO Unchanged

ACI Undefined

AC2 Undefined

?IRMV revokes a previous ?IDEF; that is, it allows you to remove a device that you defined earlier
in your program. ?IRMV removes only a specific user-defined device.

Who Can Use It?
1b issue ?IRMV, a process must have privilege ?PVDV. There are no restrictions concerning file
access.

What It Does
?IRMV removes a device's neT entry from the interrupt vector table. After the operating system
executes ?IRMV, it ignores the target device and all subsequent interrupts from it.

Before you issue ?IRMV, load ACO with the device code you specified when you defined the device
with ?IDEF.

Notes
• See the description of ?IDEF in this chapter.

086-000195 updates
093-000542 Licensed Material- Property d Data General Corporation 2-304.9

?ISEND Sends an IPC message.

?ISEND [header address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?ISEND
header, unless you specify
the address as an argument
to ?ISEND

Error Codes in ACO

Illegal destination port

Output

ACO Undefined

ACI Undefined

AC2 Address of the ?ISEND header

ERIDP
ERPRV
ERVWP
ERSPC

Caller not privileged for this action
Invalid word pointer passed as a system call argument
File space exhausted (The IPC spool file is full.)

Why Use It?

?ISEND allows you to pass freeform messages from your current process to a specific receiving
process. The ?ISEND and ?IREC system calls are useful for passing variables and other data from
one process to another and for synchronizing two processes.

Who Can Use It?

To issue ?ISEND, a process must have privilege ?PVIP or be sending a message to a customer.
There are no restrictions concerning file access.

What It Does

?ISEND opens an IPC port for the calling process and sends the message that you specify in the
?ISEND header to a designated receiver.

Before you issue ?ISEND, define the message and the ?ISEND header in your logical address
space. You can either cite the header address as an argument to ?ISEND or you can load the
address into AC2 before you issue ?ISEND. The ?ISEND header consists of?IPLTH words.
Figure 2-83 shows the ?ISEND header's structure and Table 2-65 describes its contents.

093-000542 Licensed Material - Property of Data General Corporation 2-305

?ISEND Continued

o 15 16 31
1-------------------------+-------------------------1

?ISFL 1 System flags (see 1 User flags (see 1 ?IUFL
1 Table 2-65) 1 Table 2-65) 1
1-------------------------+-------------------------1

?IDPH 1 Destination port number 1

1-------------------------+-------------------------1
?IOPN 1 Origin port number IMessage length (in words) 1 ?ILTH

1-------------------------+-------------------------1
?IPTR 1 Word pointer to message buffer address 1

1---1

?IPLTH = packet length

Figure 2--83. Structure of ?ISEND Header

Table 2-65. Contents of ?ISEND Header*

Offset Contents
=============== ===

?ISFL System flag word

?IUFL

?IFSTM--Loop the message. (Send the message
back to the sender.)

?IFNSP--Do not spool the message; signal an
error if there is no ready receiver.

User flag word. (See Figure 2-82.)

?IDPH Destination port number.
(doubleword)

?IOPN Origin port number.

?ILTH 1 Message buffer length, in words.
1

?IPTR 1 Address of the message buffer.
(doubleword) 1

--------------_1---
* There is no default unless otherwise specified.

Offset ?IDPH specifies the destination's global port number. (The ?ILKUP and ?TPORT system
calls return this information.) Set offset ?IOPN (the origin port) to the local port number you want
to use for this ?ISEND.

Set offset ?IPTR to the address of the message in your logical address space. Specify the length of
the message buffer (that is, the length of the message) in offset ?ILTH. If?ILTH is zero, the
operating system sends the message and does not verify ?IPTR. If ?ILTH is nonzero, the operating
system sends the message and also verifies ?IPTR.

2-306 Licensed Material - Property of Data General Corporation 093-000542

Sample Header
HDR: .BLK

.Loe

. WORD

. Loe

. WORD

.Loe

. DWORD

.Loe

. WORD

.Loe

. WORD

.Loe

. DWORD

.Loe

Notes

?IPLTH

HDR+?ISFL
0

HDR+?IUFL
0

HDR+?IDPH
5

HDR+?IOPN
7

HDR+?ILTH
7

HDR+?IPTR
SBUFF

HDR+?IPLTH

iHeader length.

iSystem flags.
iSet to O •

iUser flags .
iSet to O •

iGlobal port number of receiving
iprocess. (?ILKUP and ?TPORT return
ithis information.)

iOrigin port no.
iLocal port no. to use for this
i?ISEND.

iMessage buffer length (words).
iSet buffer length before each
i?ISEND.

iMessage buffer address (must be in
iunshared area of your logical
iaddress space).

iEnd of ?ISEND header.

• See the descriptions of ?IREC, ?IS.R, ?ILKUP, and ?TPORT in this chapter.

• In the explanation of?PROC, see the section "Offset ?PIPC." It explains how ?PROC can send a
CLI-format command line as the IPC message.

• A global port number contains the PIn of the target process. In order to ensure the global port
number remains unique, a connection must exist between the calling and the target processes.
This connnection will cause the operating system to reserve the PIn portion of the global port
until the connection is explicitly broken. If an ?ISENn is attempted when the process described
by the global port number has terminated, connection management will guarantee the ERIDP
error will be returned until the calling process does the ?DCON. See the description of ?CON,
?DCON, ?DRCON, ?RESIGN?, and ?SERVE in this chapter.

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation 2-307

?ISPLIT Finds the owner of a port (including its ring number).

?ISPLIT
error return
normal return

Input
ACO One of the following:

• Global port number
(32-bit users only)

• OPH, which indicates
high-order bits of
global port number
(16-bit users only)

Output
ACO One of the following:

• Ring field in Bits 29
through 31 (32-bit
users only)

• Ring field in Bits 13
through 15 (l6-bit users
only)

AC lOne of the following: AC1 PID of the process that owns the port

• Reserved (Set to 0.)
(32-bit users only)

• OPL, which indicates
low-order bits of
global port number
(16-bit users only)

AC2 Reserved (Set to 0.)

Error Codes in ACO
No error codes are currently defined.

Why Use It?

AC2 Local port number

?ISPLIT, like ?IMERGE, allows both 16- and 32-bit users to manipulate ring fields within global
port numbers.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?ISPLIT returns the ring field, the PID, and the local port number associated with the global port
number you specify in ACO.

Notes
• See the description of ?IMERGE in this chapter.

2..;.a08 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

?IS.R Sends and then receives an IPC message.

?IS.R [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the IS.R header,
unless you specify the address
as an argument to ?IS.R

Error Codes in ACO

ERIDP Illegal destination port

Output

ACO Undefined

ACl Undefined

AC2 Address of the ?IS.R header

ERMPR System call parameter address error (The receive buffer is not in the unshared area of
your address space.)

ERPRV Caller not privileged for this action
ERVWP Invalid word pointer passed as a system call argument

Why Use It?

?IS.R allows you to send a message to a receiver and wait for a reply on the same port. ?IS.R
performs a special case of ?ISEND followed by an ?IREC with a slightly lower overhead.

Who Can Use It?

To issue ?IS.R, a process must have privilege ?PVIP or have a connection to the target process.
There are no restrictions concerning file access.

What It Does

?IS.R performs an ?ISEND and, if successful, follows it immediately with an ?IREC.

Before you issue ?IS.R, you must define the message and set up a receive buffer (for the receiver's
reply) in your logical address space. In addition, you must set up the ?IS.R packet, a combination of
the ?IS END and ?IREC packets that consists of?IPRLTH words. You can cite the packet address
as an argument to ?IS.R or load its address into AC2 before you issue ?IS.R. Figure 2-84 shows the
structure of the ?IS.R packet, and Table 2-66 describes its contents.

093-000542 Licensed Material - Property of Data General Corporation 2-309

?IS.R Continued

o 15 16 31
-------------------------+-------------------------

?ISFL System flags (see User flags (see ?IUFL
Table 2-66) Table 2-66)

-------------------------+-------------------------
?IDPH Destination port number

--------------------------+-------------------------
?IOPN Origin port number IMessage length (in words) ?ILTH

-------------------------+-------------------------
?IPTR Word pointer to the send message buffer address

-------------------------+~------------------------

?IRSV Reserved (Set to 0.) I Length of receive buffer ?IRLT
I (in words)

-------------------------+-------------------------
?IRPT Word pointer to the receive message buffer address

?IPRLTH = packet length

Figure 2-84. Structure of ?IS.R Header

The message is sent and the reply is received, but not necessarily with the same port numbers.
(The ?TPORT system call translates a local port number to its global equivalent.)

During message transmission, the operating system suspends the ?IS.R calling task until it
receives the reply or until it takes an error return.

2-310 Licensed Material - Property of Data General Corporation 093-000542

Table 2--66. Contents of ?IS.R Header*

Offset Contents
=============== ===

?ISFL System flag word

?IUFL

?IDPH
(doubleword)

?IOPN

?ILTH

?IPTR
(doubleword)

?IRSV

?IRLT

?IRPT
(doubleword)

?IFSTM--Loop the message. (Send the message
back to the sender.)

?IFNSP--Do not spool the message; signal an
error if there is no ready receiver.

?IFRFM--Receive a looped message (sent by this
process to itself).

?IFSOV--Spool the message if the receive
buffer is too small.

?IFNBK--Signal an error if there is no spooled
message for this receiver.

?IFRING--Contains the sender's ring field
(returned by the OS). (This is a
3-bit quantity.)

?IFPR---Indicates .PR file type of sender; 0
if sender is a 32-bit process; 1 if
sender is a 16-bit process (returned
by the OS) .

User flag word. (See Figure 2-82.)

Destination port number.

Origin port number.

Length of the message buffer, in words.

Word pointer to the address of the message
buffer.

Reserved. (Set to 0.)

Length of the receive buffer, in words.

Word pointer to the address of the receive
buffer.

________________ I ____________________ ~------~~~~--------------------
* There is no default unless otherwise specified.

093-000542 Licensed Material - Property of Data General Corporation 2-311

?IS.R Continued

Sample Header

HDR: .BLK

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

Notes

?IPRLTH

HDR+?ISFL
0

HDR+?IUFL
0

HDR+?IDPH
5

HDR+?IOPN
7

HDR+?ILTH
0

HDR+?IPTR
BUFF*2

HDR+?IRSV
0

HDR+?IRLT
0

HDR+?IRPT
-1

HDR+?IPLTH

;Allocate enough space for the packet
;Packet length ?IPRLTH.

;System flags.
;None.

;User flags.
;Set to O .
;Global port no. of receiving process.
; (?TPORT returns this information.)

;Origin port no.
;Local port no. to use for this ?IS.R.

;Message buffer length (in words) .
;Set buffer length before each ?IS.R.

;Message buffer address (must be in
;unshared area of your logical address
;space). Byte pointer to BUFF is
;message buffer address.

; Reserved
;You must set this value to O.

;Receive buffer length (in words) .

;Receive buffer address.

;End of ?ISEND header.

• See the descriptions of ?ISEND, ?IREC, and ?TPORT in this chapter.

2-312 Licensed Material - Property of Data General Corporation 093-000542

?ITIME Returns the OS-format internal time.

?ITIME
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

?ITIME provides you with a time stamp.

Who Can Use It?

Output

ACO Undefined

AC1 Time since midnight in 32,768ths
ofa second

AC2 Days since 1 January 1968; on
1 January 1968 AC2 contained 1,
not 0

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?ITIME returns the current date and time in AC 1 and AC2. However, although ?ITIME returns the
time to 32,768ths of a second, it is only as accurate as the real-time clock. To obtain the frequency
- and therefore the accuracy - of the real-time clock, issue the ?GHRZ system call.

093-000542 Licensed Material - Property of Data General Corporation 2-313

?IXIT Exits from an interrupt service routine.

?IXIT

Input

ACO

ACl

; no error return
; no normal return

Reserved (Set to 0.)

One of the following:

• 0 to suppress task
scheduling upon return

• Any nonzero value, to
re-enable task scheduling

AC2 Reserved (Set to 0.)

Error Codes in ACO

None (There is no error return.)

Why Use It?

Output

ACO Undefined

ACl Unchanged

AC2 Undefined

You must issue ?DOT if you want to return the calling process from an interrupt service routine.
Once a process has entered such a routine, FIXMT, ?DOT, ?IXMT (which transmits an interrupt
message) and ?SIGNL are the only system calls that process can issue. You cannot issue these
system calls from any other kinds of routines.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?IXIT returns the calling process from an interrupt service routine. (Control passes to the operating
system after this system call.) By loading AC 1 with 0, you can direct the operating system to
suppress task scheduling upon return from the interrupt service routine.

Before issuing ?IXIT you must restore the contents of all the stack registers (WFP, WSB, WSL,
WSP). These registers must contain the same values they had when you entered your interrupt
service routine. Not restoring these contents will likely cause a panic after a few interrupts.

Notes

• See the description of ?IXMT in this chapter.

2-314 Licensed Material - Property of Data General Corporation 093-000542

?IXMT Transmits a message from an interrupt service routine.

?IXMT
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Message

AC2 DCT address of the sending
device

Error Codes in ACO

Output

ACO Undefined

ACI Unchanged

AC2 Unchanged

ERXMT
ERXMZ

Signal to address already in use (that is, the mailbox)
Attempt to XMT illegal message

Why Use It?

?IXMT and ?IMSG allow you to send data from an interrupt service routine to an outside task, or to
synchronize the routine with an outside task.

Who Can Use It?

There are no special process privileges needed to issue this call beyond those that ?IDEF requires,
and there are no restrictions concerning file access.

What It Does

?IXMT sends a message up to 32 bits long from an interrupt service routine to a specific receiving
task outside the sending routine. (The receiving task issues ?IMSG to receive the message.)
?FIXMT, ?IXIT, ?IXMT, and ?SIGNL are the only system calls you can issue from an interrupt
service routine. In addition, you cannot issue system calls ?IXIT and ?IXMT from any other kind of
routine.

Before you issue ?IXMT, load AC2 with the user DCT address of the device associated with the
sending routine, and load AC 1 with the message. The message must be nonzero, or ?IXMT fails on
error ERXMZ.

When the operating system executes ?IXMT, it passes the message to the mailbox that it associates
with the device. (Be sure to initialize the mailbox before you issue ?IXMT.) Then, when the
receiving task issues the complementary ?IMSG, the operating system passes the message from the
mailbox to ACI. If the mailbox already contains a nonzero value, the ?IXMT fails on error code
ERXMT.

093-000542 Licensed Material - Property of Data General Corporation 2-315

?IXMT Continued

If a sending routine issues ?IXMT before the receiver issues ?IMSG, the operating system holds the
message in the mailbox for later delivery. If the ?IMSG occurs before the ?IXMT, the operating
system suspends the receiving task until the transmission occurs.

After returning from ?IXMT, AC3 contains the return address from ?IXMT. This is different from
almost all other system calls, which place the contents of the frame pointer in AC3.

Notes

• See the descriptions of ?IDEF, ?FIXMT, ?IXIT, and ?IMSG in this chapter.

2-316 Licensed Material - Property of Data General Corporation 09:H)()()542

?JPINIT Initializes a job processor.

?JPINIT [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the? JPINIT
packet, unless you specify
the address as an argument
to ?JPINIT

Error Codes in ACO

Invalid JPID
LPID does not exist
JP already initialized
Microcode format error
No microcode loaded

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the? JPINIT packet

ERIJP
ERILP
ERJAI
ERMFF
ERNML
ERNMP
ERPRV
ERVBP

Not a multiprocessor system
Caller not privileged for this action
Invalid byte pointer passed as system call argument

Why Use It?

Use this system call to initialize a job processor (JP) that is not currently active.

Who Can Use It?

You must be PID 2 or have System Manager privilege to issue this call. There are no restrictions
concerning file access.

What It Does
This system call initializes an inactive job processor. AOSNS attaches the JP to the specified
logical processor (LPID in the parameter packet) and begins to schedule processes to run on the JP.

AOSNS selects microcode for the JP in one of three ways according to the values of two bits in
word JPI_PKT.FLAGS of the parameter packet in Figure 2-85.

First, if you set bit ?JPI_PKT.FLAGS_IN_UC (and provide a byte pointer in doubleword
?JPI_PKT.UC_NAME), AOSNS loads the specified microcode file into the JP. AOSNS also
requires bit ?JPI_PKT.FLAGS_EX_UC to be zero.

Second, if you do not set bit ?JPI_PKT.FLAGS_IN_UC, AOSNS looks at bit
?JPI_PKT.FLAGS_EX_UC. A value of 1 tells AOSNS NOT to load microcode into the JP; instead,
AOSNS uses the microcode that is currently in the JP.

093-000542 Licensed Material - Property of Data General Corporation 2-317

?JPINIT Continued
Third, if you don't set bits ?JPI_PKT.FLAGS_IN_UC and ?JPI_PKT.FLAGS_EX_UC (i.e., if you
don't provide a microcode pathname and don't want to use existing microcode), AOSNS loads a
standard microcode file based on the CPUID of the JP.

Suppose an error occurs while ?JPINIT loads a microcode file. The system console does NOT receive
any messages. However, AOSNS returns an error code to your program.

Figure 2-85 shows the structure of the ?JPINIT parameter packet, and Table 2-67 describes its
contents.

2-318

?JP1_PKT.
PKT_1D

?JP1_PKT.
UC_OPTS

?JPI PKT.
UC_NAME
(low order)

o 15 16 31
---------------------+--------------------

Packet identifier

---------------------+--------------------
Function code (not I Flag word
used; set to 0) I

---------------------+--------------------
Job Processor 1D I Logical Processor
(JP1D) I 1D (LP1D)

---------------------+--------------------
Microcode options I Byte pointer to

I microcode pathname
I or zero

---------------------+--------------------
Byte pointer to I Available string
microcode pathname I size
or zero I

---------------------+--------------------
?JP1_PKT_LEN = packet length

Figure 2-85. Structure of ?JPINIT Packet

Licensed Material - Property of Data General Corporation

?JP1_PKT.
UC_NAME

(high order)

093-000542

Table 2-67. Contents of ?JPINIT Packet

Offset Contents
==================== ==

?JPI_PKT.PKT_ID
(doubleword)

?JPI PKT.FLAGS

?JPI PKT.JPID

?JPI PKT.LPID

?JPI PKT.UC_OPTS

?JPI_PKT.UC_NAME
(doubleword)

?JPI PKT.UC_SZ

093-000542

Packet identifier. Place ?JPI PKT_PKTID here.

Function code. Not used. (Set to 0.)

Flag word to control microcode file loading.
Legal values of bit pairs ?JPI_PKT.FLAGS_IN_UC
and ?JPI_PKT.FLAGS __ EX_UC are 10, 01, and 00.

Job processor 10. It must be between values
?JPIO_MIN and ?JPID_MAX, inclusive.

Logical processor ID. It must be between values
?LPIO_MIN and ?LPID_MAX, inclusive.

Microcode options word. This offset corresponds
directly with bits 0-15 of ACO for the JPLCS
instruction. The options in this offset are
specific to the processor and cannot be listed
here. However, if this offset contains zero,
you have specified all the default options.

Byte pointer to the microcode file's pathname,
or 0 if you are not specifying a pathname.

Number of bytes in the buffer containing the
microcode file's pathname, or 0 if you are not
specifying a pathname.

Licensed Material - Property of Data General Corporation 2-319

?JPMOV Moves a job processor to a new logical processor.

?JPMOV [packet address]
error return
normal retu rn

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?JPMOV
packet, unless you specify
the address as an argument
to ?JPMOV

Error Codes in ACO

Invalid JPID
Invalid LPID
JP is not initialized
LP does not exist

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?JPMOV packet

ERIJP
ERILP
ERJNI
ERLNE
ERLJP
ERJAA
ERPRV

Attempt to release last JP attached to an LP
JP already attached to LP
Caller not privileged for this action

Why Use It?

Use this system call to move a job processor (JP) to another logical processor (LP).

Who Can Use It?

You must be PID 2 or have System Manager privilege to issue this call. There are no restrictions
concerning file access.

What It Does

This system call moves a job processor, if it is attached to an existing logical processor, to the
specified logical processor. After this call executes successfully, AOSNS schedules jobs on the JP
according to the new LP's class designations.

When you move a JP, it's possible that you could leave an LP behind that has no JP attached to it.
To prevent this from happening, set a bit in the flag word of the parameter packet. Then, you will
get an error if you leave an "unattached" LP. If you do not set this bit, AOSNS will move the JP
regardless of whether or not it would result in an LP without a JP.

Figure 2-86 shows the structure of the ?JPMOV parameter packet, and Table 2-68 describes its
contents.

2-320 Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
\---------------------+--------------------\

?JPM_PKT. \ Packet identifier \
PKT_ID \ 1

\---------------------+--------------------1
1 Function code (not 1 Flag word 1 ?JPM_PKT.
1 used; set to 0) 1 1 FLAGS
1---------------------+--------------------1
1 Job Processor ID 1 New Logical 1 ?JPM_PKT.
1 (JPID) 1 Processor ID (LPID) 1 LPID
1---------------------+--------------------1
?JPM_PKT_LEN = packet length

Figure 2-86. Structure of ?JPMOV Packet

Table 2-68. Contents of ?JPMOV Packet

1

Offset 1 Contents
====================1====================:=============================

?JPM_PKT.PKT_ID 1 Packet identifier. Place ?JPM_PKT_PKTID here.
(doubleword) 1

1

?JPM_PKT.FUNC 1 Function code. Not used. (Set to 0.)
1

?JPM_PKT.FLAGS 1 Flag word. If bit ?JPM_PKT.FLAGS_LJPID is set,
1 AOS/VS returns error code ERLJP when you try to
I move a JP that would leave an unattached LP;
1 the JP remains attached to the LP. If the bit
1 is not set, AOS/VS returns no error code under
I the same circumstances; the JP is removed from
1 the old LP and attached to the new LP.
I

?JPM_PKT.JPID I .Job processor ID. It must be between values
1 ?JPID_MIN and ?JPID_MAX., respectively.
1

?JPM_PKT.LPID I New logical processor ID. It must be between
1 values ?LPID_MIN and ?LPID_MAX., respectively.
1

----------------------1--

093-000542 Licensed Material - Property of Data General Corporation 2-321

?JPREL Releases a job processor.

?JPREL [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?JPREL
packet, unless you specify
the address as an argument
to ?JPREL

Error Codes in ACO

Invalid JPID
JP is not initialized

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?JPREL packet

ERIJP
ERJNI
ERJST
ERLJP
ERNMP
ERPRV

JP running one or more system tasks
Attempt to release last JP attached to an LP
Not a multiprocessor system
Caller not privileged for this action

Why Use It?

Use this system call to release a job processor (JP) from your AOSNS system.

Who Can Use It?

You must be PID 2 or have System Manager privilege to issue this call. There are no restrictions
concerning file access.

What It Does

This system call releases a job processor.

AOSNS returns an error if the JP is not initialized. AOSNS also returns an error if the JP is
performing a vital system task such as file I/O.

If the JP is initialized and not performing a vital system task, AOSNS removes the JP from its
associated logical processor (LP) and stops the JP from processing. When you release a JP, it's
possible that you could leave an LP behind that has no JP attached to it. To prevent this from
happening, set a bit in the flag word of the parameter packet. Then, you will get an error if you
leave an "unattached" LP. If you do not set this bit, AOSNS will remove the JP regardless of
whether or not it would result in an LP without a JP.

2-322 Licensed Material - Property of Data General Corporation 093-000542

Figure 2-87 shows the structure of the ?JPREL parameter packet, and Table 2-69 describes its
contents.

o 15 16 31
1---------------------+--------------------1

?JPR_PKT. 1 Packet identifier 1

PKT_ID 1 1
1---------------------+--------------------1
1 Function code (not 1 Flag word 1 ?JPR_PKT.
1 used; set to 0) 1 1 FLAGS
1---------------------+--------------------1
1 Job Processor ID 1

1 (JPID) 1

1---------------------1
?JPR_PKT_LEN = packet length

Figure 2-87. Structure of ?~JPREL Packet

Table 2-69. Contents of ?JPREL Packet

Offset Contents
==================== ===

?JPR_PKT.PKT_ID
(doubleword)

093--000542

Packet identifier. Place ?JPR_PKT_PKTID here.

Function code. Not used. (Set to 0.)

Flag word. If bit ?JPR_PKT.FLAGS_LJPID is set,
AOS/VS returns error code ERLJP when you try to
release a JP that would leave an unattached LP;
the JP remains attached to the LP. If the bit
is not set, AOS/VS returns no error code under
the same circumstances; the JP is removed from
the LP.

Job processor ID. It must be between values
?JPID_MIN and ?JPID_MAX, respectively.

Licensed Material - Property of Data General Corporation 2-323

?JPSTAT Gets the status of a job processor.

?JPSTAT [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the? JPSTAT
packet, unless you specify
the address as an argument
to ?JPSTAT

Error Codes in ACO

ERIJP
ERJNI
ERICD
ERNMP

Invalid JPID
JP is not initialized
Invalid function code
Not a multiprocessor system

Why Use It?

AOSNS

Output

ACO Unchanged

ACI Unchanged

AC2 Address of the ?JPSTAT packet

Use this system call to obtain information about all initialized job processors (JP) or about a
specific initialized job processor.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
This system call has two versions - general and specific. The general version returns the total
number and JPIDs of all initialized job processors. The specific version returns status information
of a specific initialized job processor. You tell AOSNS which version you want by placing a code in
offset ?JPS_PKT.FUNC of the main parameter packet.

If you select the general version, then AOSNS returns, in a doubleword of the general status
subpacket, a bit map of initialized job processors that operates as follows:

• If a bit is set, then the JP with the corresponding JPID is initialized.

• If a bit is not set, then the JP with the corresponding JPID is not initialized.

For example, suppose bits 2, 3, and 5 are set. This means JPs with JPIDs of 2, 3, and 5 are
initialized. Furthermore, JPs with JPIDs of 0, 1,4,6, 7, 8, ... , 15 are not initialized.

• Information that the assembly language instruction JPSTATUS returns. This information is in
the five words beginning with ?JPS_SPEC.STATE.

• An indication, in the software flags word, whether the JP is the "mother" processor and whether
the JP is running a system task. In either case, you cannot release the JP.

• Which LP the JP is attached to.

2-324 Licensed Material - Property of Data General Corporation 093-000542

If you select the specific version, then AOSNS returns, in the specific status subpacket, the
following information for the target JP:

Figure 2-88 shows the structure of the ?JPSTAT main parameter packet, and Table 2-70 describes
its contents. Figure 2-89 and Figure 2-90 show the structure of the general status subpacket and
specific status subpacket, respectively. Table 2-71 and Table 2-72 describe the contents of these
respective subpackets.

?JPS_PKT.
PKT_ID

?JPS_PKT.
SUBPKT
(low order)

Offset

o 15 16 31
---------------------+--------------------1

Packet identifier 1

1

---------------------+--------------------1
Function code 1 Word pointer to 1

1 subpacket 1

1 1
---------------------+--------------------1

Word pointer to 1

subpacket 1
1

---------------------1
?JPS_PKT_LEN = packet length

Figure 2-88. Structure of ?JPSTAT Main Packet

Table 2-70. Contents of ?JPSTAT Main Packet

?JPS_PKT.
SUBPKT

(high order)

1

Contents 1

===1
?JPS_PKT.PKT_ID
(doubleword)

Packet identifier. Place ?JPS_PKT_PKTID here. 1

1

?JPS_PKT.SUBPKT
(doubleword)

093-000542

General/Specific code. Place ?JPS_GEN here to
obtain general information or ?JPS_SPEC to
obtain specific information.

1

1

1

1

1

If you have selected general information, place 1

the word address of the general status
subpacket here. If you have selected specific
information, place the word address of the
specific status subpacket here.

Licensed Material - Property of Data General Corporation

1

1

1

1

1

1

2-325

?JPSTAT Continued

o 15 16 31
---------------------+--------------------1

?JPS_GEN. Subpacket identifier 1

PKT_ID 1

---------------------+--------------------1
?JPS_GEN. Number of 1 Bit map of 1 ?JPS_GEN.

JPCNT initialized JPs 1 initialized JPs: 1 JPMAP
1 bits 0 through 15 1 (high order)

---------------------+--------------------1
?JPS_GEN. Bit map of 1

JPMAP initialized JPs: 1

(low order) bits 16 through 31 1

---------------------1
?JPS_GEN_LEN = packet length

Figure 2~9. Structure of ?JPSTAT General Information Subpacket

Table 2-71. Contents of ?JPSTAT General Information Subpacket

1

Offset 1 Contents
====================1===

2-326

?JPS_GEN.PKT_ID Subpacket identifier. Place ?JPS_GEN_PKTID here.
(doubleword)

?JPS_GEN.JPCNT Number of job processors that are currently
initialized.

?JPS_GEN.JPMAP
(doubleword)

Bit map to indicate the JPIDs of the job
processors that are currently initialized. For
example, if AOS/VS has set the leftmost bit of
the first (high order) word in this double
word, then job processor number 0 is currently
initialized.

?JPS_SPEC.
PKT_ID

?JPS_SPEC.
JPID

?JPS_SPEC.
STATUS

?JPS_SPEC.
MODEL

?JPS_SPEC.
FLAGS

o 15 16 31
1---------------------+--------------------
1 Subpacket identifier
1

---------------------+--------------------
Job processor ID 1 Current JP state ?JPS_SPEC.
(JPID)i you supply 1 STATE

---------------------+--------------------
Job processor status bits

---------------------+--------------------
Model number 1 Reserved and

1 microcode revision
---------------------+--------------------
Software flag bits 1 Associated LPID

1

---------------------+--------------------
?JPS_SPEC_LEN = packet length

?JPS_SPEC.
UC_REV

?JPS_SPEC.
LPID

Figure 2-90. Structure of ?JPSTAT Specific Information Subpacket

Licensed Material - Property of Data General Corporation 093-000542

Table 2-72. Contents of ?JPST AT Specific Information Subpacket

Offset Contents
==================== ===

?JPS_SPEC.PKT_ID
(doubleword)

?JPS_SPEC.JPID

?JPS_SPEC.STATE

?JPS_SPEC.STATUS
(doubleword)

?JPS_SPEC.MODEL

?JPS_SPEC.FLAGS

?JPS_SPEC.LPID

093-000542

Subpacket identifier. Place ?JPS_SPEC_PKTID
here.

ID number of the job processor that you want
to receive information about.

Current state of the JP.

JP status bits.

JP model number.

Left byte is reserved; right byte contains the
microcode revision number.

Software flag bits. If bit ?JPS_SPEC.FLAGS_MOM
is set, then the JP is the mother processor.
If bit ?JPS_SPEC.FLAGS_SYSTSK is set, then the
JP is running a system task.

ID number of the logical processor that is
associated with the job processor you
specified in offset ?JPS_SPEC.JPID.

Licensed Material - Property of Data General Corporation 2-327

?KCALL Keeps the calling resource and acquires a new
resource (16-bit processes only).

?KCALL [procedure entry]
normal return
alternate return

Input

The OS passes the input
accumulators and the carry bit
to the new procedure

Error Codes in ACO

Output

The accumulators and the carry
bit are unchanged, unless
they are modified by the new
procedure

The following error codes can be passed to the ?BOMB routine:

ERICM
ERLRF
ERSEN

Illegal system command
Overlay load error
Invalid shared library reference (The OS does not support shared libraries.)

Why Use It?

In general, you issue ?KCALL instead of ?RCALL only when you want to avoid releasing the calling
resource; for example, to guarantee the correct return address within a movable resource.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KCALL keeps the calling resource, loads a new resource, and transfers control to the specified
procedure entry in the new resource. You can pass the procedure entry as an argument to ?KCALL
or pass it on the stack (via the .PTARG pseudo-op). If you pass the procedure entry on the stack,
the operating system pops it off as it executes ?KCALL.

Mer the operating system executes the target procedure, it returns control to the normal return,
unless the target procedure specified an alternate return by issuing an ISZ ?ORTN,3 instruction
followed by an RTN instruction.

If the calling task terminates, the operating system releases the newly acquired resource, but does
not release the calling task. Therefore, do not terminate a task until all its outstanding ?KCALLs
are completed.

Because ?KCALL does not release the calling resource, it requires more memory than ?RCALL.
?KCALL can also cause resource deadlocks. We recommend that you use ?RCALL instead of
?KCALL in most cases.

Notes

• See the description of ?RCALL in this chapter.

2-328 Licensed Material - Property of Data General Corporation 093-000542

?KHIST Kills a histogram.

?KHIST
error return
normal return

Input

None

Error Codes in ACO

Output

None

ERHIS Error on histogram initJdelete (caller has no active histogram)

Why Use It?

?KHIST explicitly stops histogram monitoring of a process. If you do not issue ?KHIST, the
histogram continues until the process that initiated it terminates.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KHIST stops the histogram started by a previous ?WHIST or ?IHIST system call. ?KHIST
requires no input parameter, because a process can run only one histogram at a time.

Notes

• See the description of?IHIST and ?WHIST in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-329

?KILAD Defines a kill-processing routine.

?KILAD
error retu rn
normal return

Input

ACO Address of the kill-processing
routine

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

ACl Undefined

AC2 Undefined

ERVWP Invalid word pointer passed as a system call argument

Why Use It?

In general, you define a kill-processing routine to release a task's resources in an orderly fashion
when it terminates. For example, a kill-processing routine might consist of stack release
instructions and explicit instructions to release any channels or user devices that are currently
open. You should end a kill-processing routine with ?KILL to terminate the calling task.

?KILAD defines a kill-processing routine for the calling task only. You can also set up a
generalized kill-processing routine, ?UKIL, for all tasks in a process. You can execute both ?KILAD
and ?UKIL processing for any task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KILAD defines a kill-processing routine for the calling task. The kill-processing routine gains
control the first time another task issues ?IDKIL or ?PRKIL to terminate the ?KILAD caller. (The
operating system ignores the kill-processing routine when a task terminates with ?KILL or with a
WRTN instruction.)

Before you issue ?KILAD, load ACO with the address of the kill-processing routine (defined
elsewhere in your program). When a task enters a kill-processing routine, the operating system
assigns it the highest priority level (0) so that it will gain control as soon as possible. (It may gain
control immediately, if there are no other tasks at priority level 0.)

Notes

• See the descriptions of ?IDKIL, ?PRKIL, and ?KILL in this chapter.

2-330 Licensed Material - Property of Data General Corporation 093-000542

?KILL Kills the calling task.

?KILL
error retum

Input

None

Error Codes in ACO

ERLTK Last task was killed

Why Use It?

Output

None

?KILL terminates the task that is currently executing. ?KILL also moves the terminated task's
system databases to the inactive queue for eventual use in initiating another task.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KILL invokes the ?UKIL task-termination routine (either the user-defined ?UKIL or the default),
and terminates the calling task unconditionally.

When you use ?KILL to kill the last active, ready task in the process, the operating system returns
error code ERLTK to ACO. You must end the last executing task in a process by issuing ?RETURN.

You can use ?KILL to terminate only the calling task. (The ?IDKIL and ?PRKIL system calls allow
you to terminate the calling task or any other task that you specify by TID and priority,
respectively.)

Notes

• See the descriptions of?KILAD, ?IDKIL, ?PRKIL, and. ?RETURN in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-331

?KINTR Simulates keyboard interrupt sequences.

?KINTR
error return
normal return

Input

ACO Second character of a
tw~control-character ,
terminal-interrupt sequence
in low order byte

AC 1 PID to interrupt (must be
a customer)

AC2 Unused

Error Codes

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERPRH Process is not in hierarchy (The PID that you tried to interrupt is not a customer.)

Why Use It?

?KINTR performs remote terminal interrupts. This allows virtual terminals to behave as if they
were real terminals.

Who Can Use It?

There are no special process privileges needed to issue this call (although you can interrupt only a
customer), and there are no restrictions concerning file access.

What It Does

?KINTR simulates keyboard interrupt sequences between processes that share a customer/server
connection when the customer is waiting because of a ?KW AIT system call.

Notes

• See the description of?KWAIT in this chapter.

• See the description of?OBEL, ?INTWT, and ?ODIS in this chapter. These system calls handle
CRTL-C CTRL-A console interrupts only.

2-332 Licensed Material - Property of Data General Corporation 093-000542

?KIOFF Disables control-character terminal interrupts.

?KIOFF
error return
normal return

Input

ACO Unused

ACl Unused

AC2 Unused

Error Codes

None

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

?KIOFF prevents a process from being interrupted by a terminal control sequence.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KIOFF allows you to disable all two-control-character, terminal-interrupt sequences.

Notes

• See the description of ?KION in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-333

?KION Re-enables control-character terminal interrupts.

?KION
error return
normal return

Input

ACO Unused

ACl Unused

AC2 Unused

Error Codes

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

?KION re-enables terminal interrupts that were previously disabled by the ?KIOFF system call.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KION allows you to re-enable all two-control-character, terminal-interrupt sequences.

Notes

• See the description of ?KIOFF in this chapter.

2-334 Licensed Material - Property of Data General Corporation 093-000542

?KWAIT Waits for a terminal interrupt.

?KWAIT
error return
normal return

Input

ACO Unused

ACI Unused

AC2 Unused

Error Codes

ERKAD Interrupt task already defined

Why Use It?

Output

ACO Second character of a
two-control-character,
terminal-interrupt sequence
in low-order byte

AC 1 Unchanged

AC2 Unchanged

?KW AIT allows a process to handle terminal interrupts according to your programming
requirements.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?KW AIT allows a process or task to wait for a terminal interrupt. When the interrupt occurs, the
operating system passes the second character of the terminal control sequence to the waiting
process. The waiting process can then take whatever action the control character directed.

When the terminal is a shared console (characteristic ?SHCO of?GCHR system call), the control
sequences are deflected back to the owner of the console.

Notes

• See the description of?KINTR in this chapter.

• See the description of?OBEL, ?ODIS, and ?INTWT in this chapter. These system calls handle
CTRL-C CTRL-A console interrupts only.

093-000542 Licensed Material - Property of Data General Corporation 2-335

?LABEL Creates a label for a magnetic tape or diskette.

?LABEL [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?LABEL
packet, unless you specify
the address as an argument
to ?LABEL

Error Codes in ACO

Bad diskette

AOSNS

Output

ACO Undefined

AC1 Undefined

AC2 Address of the ?LABEL packet

ERBDK
ERCDN
ERE01
ERE02
ERFAD
ERIDT
ERILF
ERILL
ERMPR
EROTL
ERPRE
ERPUF
ERUTL
ERVOL
ERVTL
ERVWP

Controller does not support this density mode
File is open, can't exclusively open
File is exclusively opened, can't open
File access denied
Illegal device name type
Illegal label format
Illegal labeled tape level
System call parameter address error
Owner ID too long
Invalid system call parameter
Physical unit failure
User labels too long or too many
Incorrect volume mounted
Volid too long or null
Invalid word pointer passed as a system call argument

Why Use It?

?LABEL allows you to label a magnetic tape volume. (Another way to do this is to use the CLI
LABEL utility.) ?LABEL also allows you to label a diskette.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have Write access to the
magnetic tape or diskette unit.

What It Does
?LABEL allows you to label a magnetic tape or diskette under program control. To use ?LABEL,
you must supply a packet ?LBLN words long. You can specify the packet address in AC2 before you
issue ?LABEL or you can use the packet address as an argument. Figure 2-91 shows the structure
and Table 2-73 describes the contents of the ?LABEL packet.

2-336 Licensed Material - Property of Data General Corporation 093-000542

Offset ?LBFG contains status bits that allow you to specify the tape unit's density mode and
whether you want the label in IBM format. There are three density mode settings (comparable to
those in the ?OPEN packet): ?LB8 sets the tape unit to a density of 800 bytes/inch; ?LB16 sets the
unit to 1600 bytes/inch; ?LB62 sets the tape unit to a density of 6,250 bytes/inch; ?LBAM directs
the operating system to set the correct density automatically.

o 7 8 15 16 23 24 31
-----------+-------------+-------------+------------1

?LBFG Status bits 1 Label level 1 No. of userl ?LBST
(see Table 2-73) 1 1 vol. labels 1

-------------------------+-------------+------------1
?LBDV Byte pointer to magnetic tape or diskette unit 1

--1
?LBVD Byte pointer to volume identifier (volid) 1

--1
?LBUV Byte pointer to user volume labels 1

--1
?LBOI Byte pointer to owner identifier, or -1 1

(if no identifier) 1

1-----------+-------------+--------------------------1
?LBAC 1 Reserved 1 Access to 1

1 (Set to 0.) 1 tape 1
1-----------+-------------1

?LBLN = packet length

Figure 2-91. Structure of ?LABEL Packet

If you default the density mode, the operating system sets the unit to the density specified in the
system-generation procedure. Before you default this parameter, make sure the tape's density
matches the density specification set during the system-generation procedure.

Parameter ?LBSC in offset ?LBFG ("scratch this tape") causes the operating system to "scratch"
(overwrite) all data on the tape or diskette as it supplies the label.

Use the right byte of offset ?LBAC to specify access to the media. Typically, you supply a space
character (ASCII 040) in this byte, which gives all users full access to the media.

086--000195 updates
093--000542 Licensed Material- Property cI Data General Corporation 2-337

I

?LABEL Continued

2-338

Table 2-73. Contents of ?LABEL Packet*

1

Offset Contents 1

=============== ===1
?LBFG Status bits 1

?LBST

?LBDV
(doubleword)

?LBVD
(doubleword)

?LBUV
(doubleword)

?LBOI
(doubleword)

?LBAC

1

?LBIM--Label is in IBM format (tape only) . 1
?LBSC--Scratch this tape/diskette.
?LBMF--Use buffered mode (MTJ Model 6352

tape only) .
?LBMS--Use streaming mode (MTJ Model 6352

tape only).

Density mode (tape only):

?LB8--800 bytes/inch.
?LB16--1600 bytes/inch.
?LB62--6250 bytes/inch.
?LBAM--automatic density matching.
?LB5--Low tape density.
?LB6--Medium tape density.
?LB7--High tape density.

Error handling (diskette only):

?LBMR--Check for bad blocks and remap if
necessary.

?LBMP--Check for bad blocks and return ERBDK
if any are present.

Left byte: label level. Supply 1, 2, 3, or 4;
the default is 3.

Right byte: number of user volume labels (tape
only) . Supply 1, 2, 3, ... , or 9.

Byte pointer to magnetic tape or diskette unit.

Byte pointer to volume identifier (volid).

Byte pointer to user volume labels (tape only) .
You can have a maximum of 76 bytes in these
labels and you must separate the labels with the
null character.

Byte pointer to owner identifier or -1 (if no
identifier) .

Left byte: reserved. (Set to 0.)
Right byte: accessibility (access to tape) .

*There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

Sample Packet

The following sample packet labels a tape so that everyone can use it.

PKT: . BLK ?LBLN

. LOC PKT+?LBFG

. WORD ?LBAM

.LOC PKT+?LBST

. WORD 3*400+1

. LOC PKT+?LBDV

. DWORD MAG * 2

. LOC PKT+?LBVD

. DWORD VOL*2

. LOC PKT+?LBUV

. DWORD UVL*2

. LOC PKT+?LBOI

. DWORD -1

.LOC PKT+?LBAC

. WORD <40>

. LOC PKT+?LBLN

Notes

iAllocate enough space for packet .
iPacket length = ?LBLN.

;Status bits and/or density mode .
iSet correct density automatically .

iLeft byte: label level; right byte:
;number of user volume label.
iLevel = 3, 1 user volume label .

iByte pointer to magnetic tape unit .
;Byte pointer to MAG .

iByte pointer to volid .
;Byte pointer to VOL .

;Byte pointer to user volume labels .
iByte pointer to UVL .

;Byte pointer to owner identifier .
iNo owner identifier .

iAccess to tape.
;Everyone can use it (ASCII 40
; space) .

;End of packet .

• See the description of?OPEN in this chapter.

• For information on magnetic tape density, refer to the chapter about VSGEN in the manual
Installing, Starting, and Stopping ADS / VS II.

• Refer to the section about using the LABEL utility in the manual Managing ADS / VS and
ADS/VS II.

093-000542 Licensed Material - Property of Data General Corporation 2-339

?LDUINFO Obtain logical disk information.

?LDUINFO [packet address]
error retu rn
normal return

Input

ACO

ACI

AC2

Reserved (set to 0)

Reserved (set to 0)

The system call packet
address, unless you
specify the address as
an argument to ?LDUINFO

Error Codes in ACO

End of file
Illegal packet identifier
Reserved value not zero

AOSNS II only

Output

ACO

ACI

AC2

Unchanged or error code

Unchanged

Unchanged

EREOF
ERPKT
ERRVN
ERVBP
ERPRE
ERIFT
ERFAD
ERLDX
ERFDE
ERRAD

Invalid byte pointer passed as as system call argument
Invalid system call parameter
Illegal file type
File access denied
LDU does not exist
File does not exist
Read access denied

Why Use It

You use ?LDUINFO to obtain information about the logical disk units in your system. It returns
the information necessary to help manage your LDU's both mirrored and non-mirrored.

Who Can Use It
?LDUINFO requires read access to the target LDU's root if issued against an initialized logical disk
unit. If issued against a physical disk, it requires read and execute access to the physical disk.

What It Does
?LDUINFO returns information pertaining to a physical disk or an initialized logical disk unit. You
frequently use ?LDUINFO along with ?XINIT, ?MIRROR, and ?RELEASE since they also operate
on logical disks.

The call returns information regarding an entire logical disk or only a given set of images. It can
also examine a physical disk and return

• All of the logical disk information available on the physical disk.

• Only that information pertaining to a specific logical disk.

• Information pertaining to a specified logical disk and one or more of it's images.

2-340 licensed Material - Property of Data General Corporation ~542

The ?LDUINFO system call uses a main packet and one of two subpackets. Use the main packet
and the ?LDU_PKT subpacket to obtain information about an initialized logical disk. Use the main
packet and the ?PIECE_PKT subpacket to obtain information about a physical disk.

The ?LDUINFO main packet contains all of the information used by the different ?LDUINFO
functions. Specialization occurs within the subpackets. Figure 2-92 and Table 2-74 describe the
contents of the main packet.

09:HlOO542

?LDUINFO_PKT
.PKT_ID

?LDUINFO_PKT
. FUNC

?LDUINFO_PKT
. OPTIONS

?LDUINFO_PKT
.LDNAME

?LDUINFO_PKT
.LDID1

?LDUINFO_PKT
.LDID2

?LDUINFO_PKT
.LDID3

?LDUINFO_PKT
.SUBPKT

Offset

o 15 16 31

Packet ID
----------------+-------------------
Function code 1 Reserved. Set to 0 ?LDUINFO_PKT

----------------+------------------- .RES
Options

Byte pointer to logical disk name

Byte pointer to image name or buf

Byte pointer to image name or buf

Byte pointer to receive buffer

Word pointer to subpacket

Figure 2-92. Structure of ?LDUINFO Main Packet

Table 2-74. Contents of ?LDUINFO Main Packet

1

Contents I
================ ==1
?LDUINFO_PKT

.PKT_ID

?LDUINFO_PKT
. FUNC

Packet Identifier (Set to ?LDUINFO_PKT_PKTID.)

Function Code. Contains one of the following
values:

?LDUINFO_GET_LDU_INFO obtains information for
an initialized LDU. Requires a byte
pointer in offset ?LDUINFO_PKT.LDNAME.

?LDUINFO_GET_PIECE_INFO obtains information
for a physical disk. Requires additional
information in offset ?LDUINFO_PKT.LDNAME.

1

1

1

I
1

I
1

1

I
I
I
1

I
I

--~----~--~I (continued)

Licensed Material - Property of Data General Corporation 2-341

?LDUINFO Continued

Table 2-74. Contents of ?LDUINFO Main Packet

1

1 Offset 1 Contents
1================ ===
1

I?LDUINFO_PKT Reserved. (Set to 0.)
1 .RES
1

?LDUINFO_PKT Options Word. Contains the following flags .
. OPTIONS

?LDUINFO_PKT
.LDNAME

?LDUINFO_PKT
.LDIDl

?LDUINFO_PKT
.LDID2

?LDUINFO_PKT
.LDID3

?LDUINFO_PKT
.SUBPKT

?LDUINFO_LDNAME_SPECIFIED indicates that an
LDU must be set when using function code
?LDUINFO_GET_LDU_INFO.

?LDUINFO_LDID_SPECIFIED indicates that one or
more logical disk image ID is specified.
Requires a byte pointer in offset
?LDUINFO_PKT.LDNAME.

For function code ?LDUINFO_GET_LDU_INFO and
option ?LDUINFO_LDID_SPECIFIED, this offset
contains a byte pointer to a null-terminated
logical disk pathname.

For function code ?LDUINFO_GET_PIECE_INFO,
initialize this offset to 0 or with a byte
pointer to a buffer of size ?MXFN.

Contains a byte pointer to a null-terminated
logical disk image name if option
?LDUINFO_LDID_SPECIFIED is set. Otherwise the
offset contains a byte pointer to a buffer of
size ?MXFN.

Contains a byte pointer to a null-terminated
logical disk image or 0 if option
?LDUINFO LDID SPECIFIED is set. Otherwise the
offset contains a byte pointer to a buffer of
size ?MXFN.

Contains 0 if option ?LDUINFO_LDID_SPECIFIED is
set. Otherwise it contains a byte pointer to a
buffer of size ?MXFN.

Contains a word pointer to a packet of type
?LDU_PKT if ?LDUINFO_PKT.FUNC contains
?LDUINFO_GET_LDU_INFO.

Contains a word pointer to a packet of type
?PIECE_INFO if ?LDUINFO PKT.FUNC contains
?LDUINFO_GET_PIECE_INFO.

1

1

1

1

I
I
I
I
I

__ ~----~~~I
(concluded)

2-342 Licensed Material - Property of Data General Corporation 093-000542

?LDU_PKT Subpacket

The ?LDU _PKT subpacket contains fields for all of the information returned when ?LDUINFO is
issued against an initialized logical disk. Figure 2-93 and Table 2-75 describe the contents of the
?LDU _PKT subpacket.

093-000542

?LDU_PKT
.PKT_ID

?LDU_PKT
. STATUS

o 15 16 31
1------------------------------------
1 Packet ID

LDU Status Bits

?LDU_PKT Block size of the LDU
.LDU_SIZE ----------------+-------------------

?LDU_PKT LDU init date 1 LDU init time
.INIT_DATE ----------------+-------------------

?LDU_PKT No. of images 1 Reserved. Set to 0
.IMAGE_NUM ------------------------------------

?LDU_PK~ Number of Cache reads
. CACHE_READS ------------------------------------

?LDU_PKT Number of Cache read hits
.CACHE_R_HITS ------------------------------------

?LDU_PKT
. CACHE_WRITES

?LDU_PKT
.CACHE_W_HITS

?LDU_PKT
.PRI_ELEMENTS

?LDU_PKT
. SEC_ELEMENTS

?LDU_PKT
.DEF_PRI_ELE

?LDU_PKT.RESl

Number of cache writes

Number of Cache write hits

Default primary element size

Default secondary element size

Default number of primary elements

Reserved. (Set to 0.)

?LDU_PKT LDU image status bits
.LDID_STATUS1 ------------------------------------
?LDU_PKT LDU image status bits

.LDID_STATUS2 ------------------------------------
?LDU_PKT LDU image status bits

.LDID_STATUS3 ------------------------------------
?LDU_PKT Image array identifier

.ARRAY_IDl ----------------+-------------------
?LDU_PKT Max number recsl No. recs returned

. ARRAY_MAX 1 ----------------+-------------------
?LDU_PKT Word pointer to LDU image array 1

.ARRAY_BUFl ------------------------------------
?LDU_PKT Image array identifier

.ARRAY_ID2 ----------------+-------------------
?LDU_PKT Max number recsl No. recs returned

. ARRAY_MAX 2 ----------------+-------------------
?LDU_PKT Word pointer to LDU image array 2

.ARRAY_BUF2 ------------------------------------
?LDU_PKT Image array identifier

.ARRAY_ID3 ----------------+-------------------
?LDU_PKT Max number recsl Num recs returned

. ARRAY_MAX 3 ----------------+-------------------
?LDU_PKT Word pointer to LDU image array 2

.ARRAY_BUF3 ------------------------------------

Figure 2-93. Structure of ?LDU __ PKT Subpacket

Licensed Material - Property of Data General Corporation

?LDU_PKT
.INIT_TIME

?LDU_PKT.RES

?LDU_PKT
.ARRAY_NUMl

?LDU_PKT
.ARRAY_NUM2

?LDU_PKT
.ARRAY_NUM3

2-343

?LDUINFO Continued

2-344

Table 2-75. Contents of ?LDU_PKT Subpacket

Offset
================

?LDU_PKT
.PKT_ID

?LDU_PKT
. STATUS

?LDU_PKT
.LDU_SIZE

?LDU_PKT
.INIT_DATE

?LDU_PKT
.INIT_TIME

?LDU_PKT
.IMAGE_NUM

?LDU_PKT
. CACHE_READS

?LDU_PKT
. CACHE_R_HITS

?LDU_PKT
. CACHE_WRITES

?LDU_PKT
. CACHE_W_HITS

?LDU_PKT
.PRI_ELEMENTS

?LDU_PKT
. SEC_ELEMENTS

?LDU_PKT
.DEF_PRI_ELE

?LDU_PKT
.RESl

1

1 Contents 1

==1
Packet Identifier (Set to ?LDU_PKT_PKTID.)

Status Word Contains the following bits as
returned values:

*?LDU_MIRRORED indicates that the LDU is
mirrored

*?LDU_MIRROR_BEING SYNCHRONIZED
indicates that the LDU is in
the process of being
synchronized

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*?LDU IMAGE_REMOVED -- indicates that one or more 1

images was removed from the LDU 1

Returns the block size of the LDU.

Date the LOU was last initialized.

Time the LDU was last initialized.

Returns the number of images in the LDU.

The number of cache reads on this LDU.

The number of times that a read hit occurred on
this LDU .

The number of cache writes on this LDU.

The number of times that a write hit occurred on
this LDU .

Default primary element size.

Default secondary element size.

Default number of primary elements.

Reserved. (Set to 0.)

1

1

1

1

1

1

1

1

1

(continued)

Licensed Material - Property of Data General Corporation 093-000542

093-000542

Table 2-75. Contents of ?LDU_PKT Subpacket

Offset
================

?LDU_PKT
.LDID_STATUSI

?LDU_PKT
. LD I D_STATUS 2

?LDU_PKT
.LDID_STATUS2

?LDU_PKT
.ARRAY_IDI

?LDU_PKT
. ARRAY_MAXI

?LDU_PKT
. ARRAY_NUMI

?LDU_PKT
.ARRAY_BUFI

?LDU_PKT
.ARRAY_ID2

?LDU_PKT
.ARRAY_MAX2

Contents
==

Returns logical disk image status information
for the first image. The defined status bits are:

*?LDU IMAGE HARDWARE_MIRRORED - indicates image
is hardware mirrored

*?LDU_PRlMARY_lMAGE - indicates that this is the
primary image

Returns logical disk image status information
for the second image. The defined status bits
are the same as above.

Returns logical disk image status information
for the second image. The defined status bits
are the same as above.

Place the size of the array given here. An
array of size ?LDU_PKT_ARRAY_MAX is recommended .
This array will contain records each of which
will contain a byte pointer to a buffer of size
?MXFN to hold the disk name along with three
doubleword fields for the size of the piece,
the starting LDA of the piece, and the size of
the bad block table for that piece. Note that
?LDU_PKT_ARRAY_MAX refers to record sizes and
not word sizes. Each record will be
?LDU_PKT_ARRAY_REC_LEN words long.

Returns the number of actual array elements
initialized with information .

Contains a 32 bit pointer to the buffer which
will hold the array. The buffer must be
?LDU_PKT.ARRAY_MAXI * ?LDU_PKT_ARRAY_WORD_SIZE
words long.

Place ?LDU PKT_ARRAYID here.

Place the size of the array given here. This
array is for the secondary image. If
?LDUINFO LDID SPECIFIED is set and the second
LDID is ;;-ot specified" this and the following
three fields may be SE=t to o.

(continued)

Licensed Material - Property of Data General Corporation 2-345

?LDUINFO Continued

Table 2-75. Contents of ?lDU_PKT Subpacket

Offset
================

?LDU_PKT
. ARRAY_NUM2

?LDU_PKT
. AR RAY_BUF 2

?LDU_PKT
.ARRAY_ID3

?LDU_PKT
. ARRAY_MAiO

?LDU_PKT
. AR RAY_NUM 3

?LDU_PKT
. ARRAY_BUF3

Contents
===

Returns the number of actual array elements
initialized with information .

Contains a 32 bit pointer to the buffer ~lich
will hold the array, or o .

Place the size of the array given here. This
array is for the tertiary image. If
?LDUINFO_LDID_SPECIFIED is set and the third
LDID is not specified, this and the following
three fields may be set to O.

Returns the number of actual array elements
initialized with information .

Contains a 32 pointer to the buffer which will
hold the array, or O .

(concluded)

?LDU_PKT Array Record Definition

Figure 2-94 shows the array record for arrays of type ?LDU_PKT_ARRAYID.

1 1
1 0 15 16 31 1
1 -------------------------------------1 1
1 ?LDU_PKT Packet ID 1 1
1 .PKT_ID -------------------------------------1 1
I?LDU_PKT_ARRAY Byte pointer to buffer of size ?MXFN 1 1

1 REC BUF -------------------------------------1 1
I?LDU_PKT_ARRAY Starting logical disk add. of piece 1 1

1 _REC_LDA -------------------------------------1 1
I?LDU_PKT_ARRAY No. of blocks of piece on this disk 1 1

1 REC SIZE -------------------------------------1 1
I?LDU PKT ARRARY Size in blocks of the bad block table 1 I

1 _BBT -------------------------------------1 I
1 ?LDU_PKT_ARRAY System Area Identifer of this piece. 1 I

I _SAD_ID -------------------------------------1 1
1 1 1
1 Packet Length = ?LDU_PKT_ARRAY_REC_LEN 1 1

1---1
Figure 2-94. Structure of ?LDU _PKT Array Record

2-346 Licensed Material - Property of Data General Corporation 093-000542

?PIECE_PKT Subpacket

The ?PIECE_PKT Subpacket contains fields for all of the information returned when ?LDUINFO is
issued against a physical disk. Figure 2-95 and Table 2-76 describe the contents of the
?PIECE_PKT subpacket.

?LDU_PKT
.PKT_ID

?PIECE_PKT
. DISK_NAME

?PIECE_PKT
.KEY

?PIECE_PKT
.NUM_PIECES

?PIECE_PKT
.LDU_ADDR

?PIECE_PKT
.SIZE

?PIECE_PKT
.BBT

?PIECE_PKT
.SAD_ID

?PIECE_PKT
. PHASE_DATE

?PIECE_PKT
. MOD_DATE

o 15 16

Packet ID

Byte pointer to device pathname

Indicates which piece number to get
----------------+-------------------
Total pieces 1 Piece num of piece

----------------+-------------------
Starting LDU address of this piece

Number of blocks in this piece

Blocks in bad block table of piece

System Area ID of this piece
----------------+-------------------

LDU phase date 1 LDU phase time
----------------+-------------------

LDU mod date 1 LDU mod time
----------------+-------------------

31

?PIECE_PKT
.PIECE_NUM

?PIECE_PKT
. PHASE_TIME

?PIECE_PKT
. MOD_TIME

1

1

1

1

1

1

1

1

1

1

Packet Length = ?PIECE_PKT_PKT_LEN 1

--1
Figure 2-95. Structure of ?PIECE_PKT Subpacket

Examples

This section contains some examples of how to use the ?LDUINFO call.

Find the Mirror Status of an LOU

Issuing ?LDUINFO with the ?LDUINFO_GET_LD1!_INFO function code returns mirroring status.
?LDUINFO_LDNAME_SPECIFIED must be set and ?LDUINFO_PKT.LDNAME must be
initialized. ?LDU_PKT.LDID<1,2,3> should all contain byte pointers to buffers of size ?MXFN and
?LDUINFO_PKT.SUBPKT should contain a word pointer to a packet of type ?LDU_PKT.

Inside of the ?LDU_PKT Subpacket, ?LDU_PKT.ARRAY_ID<1,2,3> should be set.
?LDU_PKT.ARRAY_BUF<1,2,3> should all contain word pointers to buffers big enough to hold
?LDU_PKT_ARRAY_REC_SIZE * the value placed in ?LDU_PKT.ARRAY_MAX<1,2,3>.
Additionally, each array record should have it's first field initialized with a byte pointer to a buffer
of size ?MXFN.

093-000542 Licensed Material - Property of Data General Corporation 2-347

?LDUINFO Continued

Table 2-76. ?PIECE_PKT Subpacket Contents

Offset Contents
====:============ ==
?PIECE_PKT

.PKT_ID

?PIECE_PKT
. DISK_NAME

?PIECE_PKT
.KEY

?PIECE_PKT
. NUM_PIECES

?PIECE_PKT
. PIECE_NUM

?PIECE_PKT
. LDU_ADDR

?PIECE_PKT
.SIZE

\?PIECE_PKT
. BBT

?PIECE_PKT
. SAD_ID

?PIECE_PKT
. PHASE_DATE

?PIECE_PKT
. PHASE_TIME

?PIECE_PKT
. MOD_DATE

\?PIECE PKT
\ .MOD_TIME
\

Packet Identifier (Set to ?PIECE_PKT.PKTID.)

Byte pointer to the disk device pathname.

Key value. Used by the operating system and
should be set to 0 the first time the call is
issued against a given physical disk.

Returns the number of pieces associated with
the LDU image .

Returns the number of this piece within the LDU
image .

Returns Starting address of this logical
disk unit .

Returns total number of blocks in this piece.

Returns size of the bad block table (in blocks)
for this piece .

System area identifier for this piece. Useful
when you use the GOPEN system calIon the piece .

Returns phase date used to keep track of most
up-to-date mirror image .

Returns phase time used to keep track of most
up-to-date mirror image .

Returns date of first modification after init
or mirror break .

Returns time of first modificaton after init
or mirror break

When the system call returns, the system fills the buffers specified in the ?LDUINFO_LDID<1,2,3>
with the first, second, and third image names in the LDU. The second or third images may not
exist, in which case the buffers are unchanged. If the LDU is mirrored (second image exists - third
image may exist) the call returns ?LDU_MIRRORED set in ?LDU_PKT.STATUS. If synchronizing
one or moy'e of the images, then the call also sets ?LDU_MIRROR_BEING_SYNCHRONIZED.

For each piece of each image, the call initializes an array record. For the first image, the
information is in the buffer specified in ?LDU_PKT.ARRAY_BUFl and so on. TheY'e is one array
record for each piece. ?LDU_PKT.ARRAY_NUM<1,2,3> contains the number of initialized records
(number of pieces). Each record contains a byte pointer to a buffer that has been initialized with
the disk name (@DPXX, etc). The record also contains the size of the piece and the first logical disk
address that can be found on that piece.

2-348 Licensed Material - Property of Data General Corporation 093-000542

Additionally, the ?LDU_PKT.LDID STATUS<1,2,3> fields indicate for each defined image whether
or not it is hardware mirrored and whether or not it is the primary image. The
hardware-mirror-returned bit is set for both hardware mirror images.

Determining If a Given Image Is Hardware Mirrored

Issue ?LDUINFO as above except set the ?LDUINFO_LDID_SPECIFIED bit. The
?LDUINFO_PKT.LDIDI field should contain a byte pointer to a null-terminated image name.

In this situation, the ?LDUINFO_PKT.LDID<2,3> fields are not changed and neither are the array
records for the arrays identified in ?LDU_PKT.ARRAY_BUF<2,3> nor the status bits in
?LDU_PKT.LDID_STATUS<2,3>. In fact, all of the above fields are validated to zero.

If you are truly interested in only the hardware mirror status, you need only check the
?LDU_PKT_LDID_STATUSI field. The array records for the specified image are filled, but of
course, you may ignore this data.

If you are interested in two images, use the ?LDUINFO_LDID2 field to specify the additional LDU
image. Initialize the other corresponding output fields.

Identifying All of the LOU Pieces on a Physical Disk

Issuing ?LDUINFO with the ?LDU_GET_PIECE_INFO system call identifies all of the LDU pieces
on a physical disk. For the first call, set the ?PIECE_PKT.KEY field to zero. For the first and all
subsequent calls, set the ?PIECE_PKT.DISK_NAME field to point to a null-terminated device
name. As this call only returns the information for one piece at a time, issue the call continuously
until the call returns an EREOF (end offile) error. This interface matches that of?GNFN for
directories.

Set ?LDUINFO_PKT.LDNAME and ?LDUINFO_PKT.LDIDI to point to buffers of size ?MXFN.

When the call returns, the buffers pointed to by ?LDUINFO_PKT.LDIDI and
?LDUINFO_PKT.LDNAME contain the logical disk image name and logical disk name
respectively. The remainder of the ?PIECE_PKT subpacket is filled in as well.

Determining If LOU 'X' Has a Piece on a Given Disk

Issue ?LDUINFO as above, except set the ?LDUINFO_PKT.LDNAME field to point to a
null-terminated LDU name. Also set the ?LDUINFO_LDNAME_SPECIFIED bit.

The call returns EREOF, or the appropriate information into the ?PIECE_PKT.

To determine if a given LDU image has a piece on a certain disk, perform the above actions and
initialize ?LDUINFO_PKT.LDID and set ?LDUINFO_LDID_SPECIFIED.

093-000542 Licensed Material - Property of Data General Corporation 2-349

?LEFD Disables LEF mode.

?LEFD
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Contents lost

ACl Undefined

AC2 Undefined

By default, each process begins executing with the CPU in LEF mode. For a process to perform 1/0,
LEF mode must be disabled (and 1/0 mode enabled). Thus, you must issue ?LEFD before you issue
primitive I/O instructions; that is, 1/0 instructions distinct from the 1/0 system calls.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no rE!strictions
concerning file access.

What It Does

?LEFD disables LEF mode Ooad-effective address mode) for the calling process. When LEF mode is
disabled, the load-effective address instructions execute as 1/0 instructions. If LEE' mode is already
disabled when you issue ?LEFD, ?LEFD takes the normal return, but has no effect.

Note that although ?LEFD disables LEF mode, it does not automatically re-enabl€! 1/0 mode. To
disable LEF mode and re-enable 1/0 mode, issue ?DEBL.

Notes

• See the descriptions of?LEFE, ?LEFS, and ?DEBL in this chapter.

2-350 Licensed Material - Property of Data General Corporation 093-000542

?LEFE Enables LEF mode.

?LEFE
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Who Can Use It?

Output

ACO Contents lost

ACI Undefined

AC2 Undefined

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?LEFE enables LEF mode (load-effective address mode) for the calling process. LEF mode allows
the caller to successfully issue LEF instructions. If LEF mode is already enabled when you issue
?LEFE, ?LEFE takes the normal return, but has no effect.

Why Use It?

?LEFE is the inverse of ?LEFD. You must issue ?LEFE if you want to re-enable LEF mode after
you disable it with ?LEFD.

Notes

• See the descriptions of ?LEFD, ?LEFS, and ?DDIS in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-351

?LEFS Returns the current LEF mode status.

?LEFS
error retu rn
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Who Can Use It?

Output

ACO One of the following:

• -1 if LEF mode is enabled

• 0 if LEF mode is disabled

AC 1 Undefined

AC2 Undefined

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?LEFS returns the current LEF -mode (load-effective address mode) status to ACO. If the CPU is in
LEF mode, ACO contains -1 on output. If the CPU is not in LEF mode, ACO contains 0 on output.

No device 1/0 can occur while the CPU is in LEF mode, because LEF -mode instructions and 1/0
instructions use the same bit patterns. Similarly, when LEF mode is disabled, the operating system
executes L~~F instructions as if they are 1/0 instructions. Therefore, the state of the! CPU
determines whether the operating system executes LEF -mode or I/O-mode instructions.

Why Use It?

You can use ?LEFS to check the status of LEF mode.

Notes

• See the descriptions of ?LEFD and ?LEFE in this chapter.

2-352 Licensed Material - Property of Data General Corporation 093-000542

?LMAP Maps a lower ring.

?LMAP
error return
normal return

Input

ACO Source address

AC 1 Destination address

AC2 Reserved (Set to 0.)

Error Codes in ACO

ERSNR
ERDNR
ERPRV
ERMPR
ERPTY

Source not resident
Destination not resident
Caller not privileged
Not an unshared page
Illegal process type

Why Use It?

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

?LMAP allows privileged programs to monitor system counters and other system status
information.

Who Can Use It?

To use ?LMAP, Superprocess mode must be turned on. The issuer of ?LMAP must be resident at
the time the call is issued and must remain resident while the ?LMAP is in effect. There are no
restrictions concerning file access.

What It Does

?LMAP allows a privileged user to map the page containing the process's source address into the
page containing the destination address.

The source page can be in any ring of your address space, but it must be in memory (resident) at
the time the ?LMAP call is issued, and, if the source address is not in Ring 0, the page must be
wired. The source page cannot change its status (residency, wiredlnonwired, current usage, etc.) in
any way while it remains the source for the ?LMAP. It is up to the ?LMAP caller to ensure that its
status does not change, as no record is made that the ?LMAP was performed.

The destination page for the ?LMAP must be an unshared, wired page when ?LMAP is issued. The
system call removes the destination page from the working set of the process and replaces it with a
read-only mapping of the source page. The ?LMAP destination page must not be referred to by any
subsequent system call. It is up to the ?LMAP caller to ensure this, as there is no information in
the system that the destination address is an ?LMAP page.

CAUTION: Failure to heed these restrictions may cause the operating system to PANIC or HANG.
These potential problems restrict ?LMAP to Superprocess privilege holders.

093-000542 Licensed Material - Property of Data General Corporation 2-353

I

I

?LOCALITY Changes user locality.

?LOCALITY {packet address]
error return
normal return

Input

ACO Res4~rved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?LOCALITY
packet, unless you specify
the address as an argument
to ?]~OCALI~

Error Codes in ACO
Illegal locality value
Process not in hierarchy

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?LOCALITY packet

ERILV
ERPRH
ERPRV Caller not privileged for this action

Why Use It?

Use this system call to change the user locality and class of a process.

Who Can Use It?

You must have the following privileges in order to issue ?LOCALITY:

• If you have the system manager privilege ON, you may change the locality of any process on the
system to any legal user locality value.

• If you do not have the system manager privilege ON, then

- You lnay only issue ?LOCALI~ against yourself or processes in your subtreE! (i.e., sons,
grandsons, etc.).

- Also, you may only change processes to those user localities designated at ?PHOC time
as legal for your process.

There are no restrictions concerning file access.

What It Does
This system call allows a process to change the user locality (and thus class) of itself or of another
process. When you change a process's user locality, AOSNS indexes into the class I1natrix and
calculates the new class ID for the process. AOSNS then schedules the process on the basis of its
new class.

2-354 Licensed Material - Property of Data General Corporation 093-000542

You modify user locality for the calling process as follows. Place the value of ?LOC_PID in offset
?LOC_PKT.PCODE of the packet) and place -1 in offset ?LOC_PKT.PID.

You modify user locality for a different process in one of the two following ways:

• Assume that you know the name of the process. Place the value of?LOC_PNAME in offset
?LOC_PKT.PCODE. Place in offset ?LOC_PKT.PNAME a byte pointer to the process name. Set
offset LOC_PKT.PID to zero.

• Assume that you know the PID of the process. Place the value of ?LOC _PID in offset
?LOC_PKT.PCODE. Pla'ce zero in offset ?LOC_PKT.PNAME. Place in offset ?LOC_PKT.PID the
PID.

Figure 2-96 shows the structure of the ?LOCALITY parameter packet) and Table 2-77 describes its
contents.

?LOC_PKT.
PKT_ID

?LOC_PKT.
PNAME

(low order)

093-000542

o 15 16 31
---------------------+--------------------

Packet identifier

---------------------+--------------------
Function code (not 1 Code for PID or
used; set to 0) 1 process name

---------------------+--------------------
PID or -lor 0 1 Byte pointer to

1 process name
1

---------------------+--------------------
Byte pointer to 1 Number of bytes in
process name 1 process name,

1 including null or
1 other terminator

---------------------+--------------------
New user locality 1

1

---------------------1
?LOC_PKT_LEN = packet lengt.h

Figure 2-96. Structure of ?LOCALITY Packet

Licensed Material - Property of Data General Corporation

?LOC_PKT.
PNAME

(high order)

?LOC_PKT.
STRLEN

2-355

?LOCALITY Continued

Table 2-77. Contents of ?lOCALITY Packet

Offset
====================

?LOC __ PKT. PKT_ID
(doubleword)

?LOC PKT.PCODE

2-356

?LOC __ PKT. PNAME
(doulbleword)

1

Contents 1

==:=========1
Packet identifier. Place ?LOC_PKT_PKTID here. 1

Function code. Not used. (Set to 0.)

Code word into which you place ?LOC PID when
you supply a PID or else ?LOC_PNAME whEm you
supply a process name.

Supply -1 for the calling process. For another
process, place its PID here or else 0 here and
the process's name information in the next two
offsets.

If you've placed 0 in the previous offset,
then place a byte pointer here to the process's
name and place its length in the next offset.

If you've placed 0 in offset ?LOC_PKT.PID and
a byte pointer in the previous offset, then
place the number of bytes in the byte pointer
here.

Supply the new user locality.

1

1

Licensed Material - Property of Data General Corporation 093-000542

?LOGCALLS Logs system calls.

?LOGCALLS
error return
normal return

Input

ACO Contains-1

AC 1 Flag word:

• ?LSTART- start system
call logging

• ?LFOP - start forced output

AC2 Byte pointer to pathname of
file to create (ignored if
?LSTART in AC1 = 0)

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERVBP Invalid byte pointer passed as a system call argument
File system error codes

Why Use It?

?LOGCALLS allows you to keep track of every system call that your process issues, including
invalid system calls and system calls that inner rings issue.

You can use system call logging both as a debugging tool and to help you analyze a program's
performance.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?LOGCALLS logs system calls (including invalid system calls) into a file whose name you specify in
AC2. To start logging, issue ?LOGCALLS with the ?LST ART flag set in AC 1.

When you issue ?LOGCALLS to start logging after logging has already begun, the operating system
closes the old log file and creates a new one. However, if you specify a file that already exists as a
log file, ?LOGCALLS tries to delete the old file and create a new one with the same name. This
allows you to periodically restart system call logging so that your log file contains only those system

calls that you issued recently.

093-000542 Licensed Material - Property of Data General Corporation 2-357

?LOGCALLS Continued
You can stop system call logging voluntarily by issuing ?LOGCALLS with the ?LSTART bit set to
off in ACI. When a program terminates (via ?TERM to your process, ?RETURN, ?BRKFL,
Ctrl-C Ctrl-B, or if a superior process terminates your process), system call logging stops
involuntarily. No matter how system call logging stops, you can still read the log fil«:l.

If you try to stop system call logging, but it has already stopped or was never started, the operating
system ignores all but the first ?LOGCALLS stop and returns normally.

You can minimize system write activity by setting the ?LFOP bit to 0 in AC 1. This causes the
operating system to buffer all output before it writes it to the log file. However, if the process is
terminated without the ?LFOP bit set in AC 1, the operating system may not write the last buffer of
system calls to the log file. Therefore, if you want to make sure that the log file contains each
system call when it is made, you can force output to the file without buffering by setting the ?LFOP
bit in AC1.

To read the log file, you can use the LOGCALLS utility program, which prints the output in report
form, or you can write your own program.

The system call log file consists of the following elements:

• Header record.

The operating system creates the header record when system call logging starts.

• Detailed records for each system call.

The record format is dynamic (?RTDY). Therefore, you must specify the length of the record that
you want to read. To specify binary read, set the ?IBIN flag in the ?ISTI offset of
the ?OPENI?READ packet.

Header record entries in the system call log file contain ?LOGHREC words in the following format
(offsets are in octal):

Words 0 through 5
Words 10 through 1
Words:2 through 3
Words ·4 through 5

Words 6 through 13
Words 6 through 7
Words 10 through 11
Words 12 through 13

Words 14 through 23

Word 24

2-358

Time of day that logging began
Seconds
Minutes
Hours

Day that logging began
Day of month
Month of year
Year

Process name in the following format:

username:simple_processname

The process name contains up to 15 characters and a null
(ASCII 0) terminating character.

Flag word

Bit ?LOGFI6U set means 16-bit process. Other bib; are
undefined.

Licensed Material - Property of Data General Corporation 093--000542

Words 25 through 224 Path name of .PR file that was loaded when you started system
call logging. This pathname has up to 255 characters and a null
(ASCII 0) terminating character.

The detailed record entries contain ?LOGDREC words in the following format (offsets are in octal):

Words 0 through 1
Words 2 through 3
Words 4 through 5
Words 6 through 7
Words 10 through 11
Word 12
Word 13
Word 14

Notes

Contents of caller's ACO
Contents of caller's AC 1
Contents of caller's AC2
Location of the system call word (PC)
Contents of caller's frame pointer
Task identifier (TID)
Unique TID
System call number

• See the descriptions of?RETURN, ?BRKFL, ?OPEN, and ?READ in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-359

?LOGEV Enters an event in the system log file.

AOSNS

?LOGEV
error return
normal retu rn

Input Output

ACO Event code you want to ACO Unchanged
enter in the log file

ACl Byte length of the message ACl Unchanged
you want to enter in the
log file

AC2 Byte pointer to the message AC2 Unchanged
you want to enter in the
log file (ignored, if AC 1
contains 0)

Error Codes in ACO

Illegal priority ERPRP
ERVBP Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?LOGEV with ?SYLOG, which creates, renames, or checks the status of the system log
file.

Who Can Use It?

Access to both ?LOGEV and ?SYLOG is restricted. Only a process with the SuperuBer privilege can
issue ?LOGEV; only the operator process (PID 2) can issue ?SYLOG. There are no Y'estrictions
concerning file access.

What It Does

?LOGEV allows a process with the Superuser privilege to enter an event code and/or a message
into the system's log file, :SYSLOG. The system log file contains current information about all user
terminal or batch processes, such as usernames, the times each user logged on and off, the devices
each user accessed, and information about CPU and memory usage.

The operating system enters the log file data in the format shown in Figure 2-97.

The operating system records the event code, the length of the entire log entry, and the date and
time it was entered in a packet of eight 16-bit words. However, the message text, if you choose to
use it, can be any length up to 496 characters. If necessary, the operating system pads the message
text with zeros to a multiple of eight 16-bit words.

2-360 Licensed Material - Property of Data General Corporation 093-000542

You can use the event-code field to assign each event a unique code, from ?LUMI through ?LMAX.
Event codes ?LSMI and ?LDMA are reserved for system use.

I
I
I
I
I

header I
I
I
I
I
I
\

o 15 16 31
-------------------------+-------------------------

Record length
(word length of this entry, including header)

-------------------------+-------------------------
Date (number of days I Time (number of seconds
since 31 December 1967) I since ...

-------------------------+-------------------------
... midnight) I Event code (caller

I specified)
-------------------------+-------------------------

Reserved (Set to 0.) I PID of caller
-------------------------+-------------------------

II Message text (padded with nulls to a multiple of II
II 8 words; absent if ACl=O) II

Figure 2-97. ?LOGEV Event Logging Format

The following restrictions apply to ?LOGEV:

• If AC 1 (message length) = 0, the operating system ignores whatever message you specify and
writes only the packet to the log file.

• The operating system writes only the first 760 (octal) bytes of the message to the log file. (If the
message exceeds 760 (octal) bytes, the operating system ignores the remainder.)

• If the log function is turned off, the operating system ignores the message, but takes the
?LOGEV normal return.

Notes

• See the description of ?SYLOG in this chapter.

• See PARU.32.SR for a complete list of the event codes.

• Refer to the manual Managing AOS / VS and AOS / VS II for information on enabling system
logging.

• Refer to the manual AOS / VS System Concepts for information on the correspondence between
each event code and the format of its message text section in the record that ?LOGEV enters in
:SYSLOG.

093-000542 Licensed Material - Property of Data General Corporation 2-361

?LPCLASS Gets/sets logical processor class assignments.

?LPCLASS [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?LPCLASS
packet, unless you specify
the address as an argument
to ?LPCLASS

Error Codes in ACO

Invalid class percentage value

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?LPCLASS packet

ERCPC
ERHLP
ERHLT
ERICD
ERICI
ERITI
ERLNE
ERPRV

Illegal hierarchy level/percentage pair
Nonsequential hierarchy levels designated
Illegal function code
Invalid class ID
Invalid time interval
Logical processor (LP) does not exist
Caller not privileged for this action

Why Use It?

Use this system call to receive the current class scheduling data for a particular LP or to declare
class scheduling information for a particular LP.

Who Can Use It?

You must have System Manager privilege to issue this call to set class values, but there are no
restrictions concerning file access.

What It Does

To indicate whether you want to get current information about classes for an LP or want to set this
information, specify a get/set code in the parameter packet.

The time interval word in the parameter packet specifies the amount of time over which the
percentages (in the next words) will be spread. That is, AOSNS attempts to schedule the various
percentages over the specified time interval. The value is between ?LPCL_PKT.TIME_MIN and
?LPCL_PKT.TIME_MAX tenths of a second. At the time of this writing, the respective values were
1 and 100 (0.1 and 10.0 seconds). If you place ?LPCL_PKT.TIME_DEF in this word, you specify the
default value of 40*0.1 seconds = 4.0 seconds.

2-362 Licensed Material - Property of Data General Corporation 09:H>O0542

The last portion of the packet is a set of 16 words that forms a table for scheduling each of the 16
possible classes. Each word contains a hierarchy level in its left byte and a percentage value in its
right byte. Supplying a percentage value makes the corresponding class primary; AOSNS attempts
to give that class the specified percentage (between 1 and 100) of CPU time. Supplying a hierarchy
level makes the corresponding class secondary; the supplied number indicates the hierarchy level of
the class. AOSNS only schedules secondary classes when there are no eligible primary classes
ready to run. When this occurs, AOSNS schedules the secondary classes in order of their hierarchy
level (classes at hierarchy level 1 first, classes at hierarchy level 16 last). You cannot supply both a
percentage value and a hierarchy level for the same class .. That is, a class cannot be both primary
and secondary within a single LP.

Be sure that your hierarchy levels are sequential starting with levelland increasing in a step of 1.
For example, you may designate classes at hierarchy levels 1, 2, 3, and 4 - but not at hierarchy
levels 1,2,3, and 5.

Figure 2-98 shows the structure of the ?LPCLASS parameter packet, and Table 2-78 describes its
contents.

o 7 8 15 16 23 24 31
1-----------+---------+-----------+--------

?LPCL_PKT. I Packet identifier
PKT_ID I

1---------------------+--------------------
I Function code (not I Get/set code ?LPCL_PKT.
I used i set to 0) I GETSET
---------------------+--------------------
Logical processor I Time interval ?LPCL_PKT.
ID I TIME

-----------+---------+-----------+--------
Hierarchy I Percent-I Hierarchy IPercent- ?LPCL_PKT.
level I age I level lage BASE+1

-----------+---------+-----------+--------
?LPCL_PKT. Hierarchy I Percent-I Hierarchy IPercent- ?LPCL_PKT.

BASE+2 level I age I levE!l I age BASE+3
-----------+---------+-----------+--------

-----------+---------+-----------+--------
?LPCL_PKT. Hierarchy I Percent-I Hierarchy IPercent- ?LPCL_PKT.

BASE+14. level I age I level lage BASE+15.
-----------+---------+-----------+--------
?LPCL_PKT_LEN = packet length

Figure 2-98. Structure of ?LPCLASS Packet

093--000542 Licensed Material - Property of Data General Corporation 2-363

?LPCLASS Continued
Table 2-78. Contents of ?LPCLASS Packet

1

1 Offset 1

1====================
1 ?LPCL_PKT.PKT_ID
1 (doubleword)
1

1 ?LPCL_PKT.FUNC
1

1 ?LPCL_PKT.GETSET
1

2-364

Contents

Packet identifier. Place ?LPCL_PKT_PKTID here.

Function code. Not used. (Set to 0.)

Get/set code. You supply ?LPCL_GET to get
class values or ?LPCL_SET to set class values.

Logical processor ID for the LP about which
you will get class data or set class data.

Time interval, with the number of tenths of a
second, during which you will get or set the
schedule of classes.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number O.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number 1.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number 2.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number 3.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number 14.

Hierarchy level and percentage of CPU time
(left byte/right byte) for class number 15.

Licensed Material - Property of Data General Corporation 093-000542

?LPCREA Creates a logical processor.

?LPCREA [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?LPCREA
packet, unless you specify
the address as an argument
to ?LPCREA

Error Codes in ACO

LP already exists

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?LPCREA packet

ERLAI
ERMLP
ERPRV

Attempt to exceed maximum logical processor (LP) count
Caller not privileged for this action

Why Use It?

Use this system call to create a new logical processor (LP).

Who Can Use It?

You must have exclusive System Manager privilege to issue this call, but there are no restrictions
concerning file access.

What It Does

This system call creates a new LP. AOSNS creates an LP and returns its ID number (LPID). Then,
you can set up LP class designations, assign job processors, etc.

AOSNS assigns a value to LPID between ?LPID_MIN and ?LPID_MAX, respectively.

Figure 2-99 shows the structure of the ?LPCREA parameter packet, and Table 2-79 describes its
contents.

093-000542 Licensed Material - Property of Data General Corporation 2-365

?LPCREA Continued

o 15 16 31
1---------------------+--------------------1

?LPC __ PKT. 1 Packet identifier 1

PKT __ ID 1 1
1---------------------+--------------------1

?LPC __ PKT. 1 Function code (not 1 Logical Processor 1 ?LPC_PKT.
FUNC 1 used; set to 0) 1 ID 1 LPID

1---------------------+--------------------1
?LPC_PKT_LEN = packet length

Figure 2-99. Structure of ?LPCREA Packet

Table 2-79. Contents of ?LPCREA Packet

1 Offset 1 Contents 1
1====================1==:=========1

2-366

?LPC._PKT. PKT_ID
(doubleword)

Packet identifier. Place ?LPC_PKT_PKTID here.

Function code. Not used. (Set to 0.)

Logical processor ID. AOS/VS returns this value. 1

--__ ---------1

Licensed Material - Property of Data General Corporation 093-000542

?LPDELE Deletes a logical processor.

?LPDELE [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?LPDELE
packet, unless you specify
the address as an argument
to ?LPDELE

Error Codes in ACO

Invalid LPID

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?LPDELE packet

ERILP
ERJAA
ERLNE
ERLPO
ERPRV

Job processors (JP) already attached to logical processor (LP)
LP does not exist
Cannot delete LP 0
Caller not privileged for this action

Why Use It?

Use this system call to remove a logical processor (LP).

Who Can Use It?

You must have exclusive System Manager privilege to issue this call, but there are no restrictions
concerning file access.

What It Does

This system call deletes an LP. However, you cannot delete an LP if there are any job processors
(JPs) attached to it. You also cannot delete LP 0 - the LP that exists when your AOSNS system
first comes up.

Figure 2-100 shows the structure of the ?LPDELE parameter packet, and Table 2-80 describes its
contents.

093-000542 Licensed Material - Property of Data General Corporation 2-367

?LPDELE Continued

o 15 16 31
1---------------------+--------------------1

?LPD __ PKT. 1 Packet identifier 1

PKT __ ID 1 1

1---------------------+--------------------1
?LPD __ PKT. 1 Function code (not 1 Logical Processor 1 ?LPD_PKT.

FUNC 1 used; set to 0) 1 ID 1 LPID
1---------------------+--------------------1

?LPD_PKT_LEN = packet length

Figure 2-100. Structure of?LPDELE Packet

Table 2-80. Contents of ?LPDELE Packet

1

1 Offset 1 Contents 1

1=====================1===1
1 ?LPD __ PKT. PKT_ID 1 Packet identifier. Place ?LPD_PKT_PKTID here. 1
1 (doubleword) 1 1

1 1 1

1 ?LPD __ PKT. FUNC 1 Funct ion code. Not used. (Set to 0.) 1

1 1 1

1 ?LPD __ PKT. LPID 1 Logical processor ID. You supply this value. 1

1 1 1

1 1 1

2-368 Licensed Material - Property of Data General Corporation 093-000542

?LPSTAT Gets the status of a logical processor.

?LPSTA T [packet address]
error retu rn
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?LPSTAT
packet, unless you specify
the address as an argument
to ?LPSTAT

Error Codes in ACO

Invalid function code
Invalid LPID

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?LPSTAT packet

ERICD
ERILP
ERLNE Logical processor (LP) does not exist

Why Use It?

Use this system call to obtain information about all current logical processors (LP) or about a
specific current logical processor.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

This system call has two versions - general and specific. The general version returns the total
number and LPIDs of all current logical processors. The specific version returns status information
of a specific logical processor. You tell AOSNS which version you want by placing a code in offset
?LPS_PKT.FUNC of the main parameter packet.

If you select the general version, then AOSNS returns, in a doubleword of the general status
subpacket, a bit map that indicates what logical processors exist:

• If a bit is set, then the corresponding LP exists.

• If a bit is not set, then the corresponding LP does not exist.

For example, suppose bits 2, 3, and 5 are set. This means LPs with IDs 2, 3, and 5 exist.
Furthermore, LPs with IDs 0,1,4,6,7,8, ... ,15 do not exist.

093-000542 Licensed Material - Property of Data General Corporation 2-369

?LPSTAT Continued

If you select the specific version then AOSNS returns, in a doubleword of the specific status
subpacket, a bit map that indicates what job processors are associated with the given logical
processor:

• If a bit iB set, then the corresponding JP is associated with the LP.

• If a bit is not set, then no JP is associated with the LP.

For example, suppose bits 2, 3, and 5 are set. This means job processors (JPs) with IDs 2, 3, and 5
are associated with the specified LP. Furthermore, JPs with IDs 0, 1,4, 6, 7, 8, ... , 15 are not
associated with the specified LP.

Figure 2-101 shows the structure of the ?LPSTAT main parameter packet, and Table 2-81
describes its contents. Figure 2-102 and Figure 2-103 show the structure of the general status
subpacket and specific status subpacket, respectively. Table 2-82 and Table 2-83 describe the
contents of these respective subpackets.

?LPS __ PKT.
PKT __ ID

?LPS __ PKT.
FUNC

?LPS PKT.
SUBPKT
(low order)

o 15 16 31
---------------------+--------------------1

Packet identifier 1

1

---------------------+--------------------1
Function code 1 Word pointer to 1

1 subpacket 1

1 1

---------------------+--------------------1
Word pointer to 1

subpacket 1

1

---------------------1
?LPS PKT_LEN = packet length

Figure 2-101. Structure of?LPSTAT Main Packet

Table 2-81. Contents of ?LPSTAT Main Packet

?LPS_PKT.
SUBPKT

(high order)

1

Offset 1 Contents 1

====================

2-370

?LPS_PKT.PKT_ID
(doubleword)

?LPS_PKT.SUBPKT
(doubleword)

==1
Packet identifier. Place ?LPS_PKT_PKTID here. 1

General/Specific code. Place ?LPS_GEN here to
obtain general information or ?LPS_SPEC to
obtain specific information. Both values must
be between ?LPS_FUNC_MIN and ?LPS_FUNC __ MAX,
inclusive.

If you have selected general information, place
the word address of the general status
subpacket here. If you have selected specific
information, place the word address of the
specific status subpacket here.

1

1

Licensed Material - Property of Data General Corporation 093-000542

?LPS_GEN.
PKT_ID

?LPS_GEN.
LPCNT

o 15 16 31
---------------------+--------------------1

Subpacket identifier 1

1

---------------------+--------------------1
Number of logical 1 Bit map of LPs: 1

processors (LPs) 1 bits 0 through 15 1
?LPS_GEN.

LPMAP
1 1 (high order)

---------------------+--------------------1
?LPS_GEN. Bit map of LPs: 1

bits 16 through 31 1

1

LPMAP
(low order)

---------------------1
?LPS_GEN_LEN = packet length

Figure 2-102. Structure of ?LPSTAT General Information Subpacket

Table 2-82. Contents of ?LPSTAT General Information Subpacket

Offset Contents
==================== ===

?LPS_GEN.PKT_ID Subpacket identifier. Place ?LPS_GEN_PKTID here.
(doubleword)

?LPS_GEN.LPCNT Number of logical processors that currently
exist.

?LPS_GEN.LPMAP
(doubleword)

Bit map to indicate the LPIDs of the logical
processors that currently exist. For example,
if AOS/VS has set the leftmost bit of the first
(high-order) word in this doubleword, then
logical processor number 0 currently exists.

o 15 16 31
1---------------------+--------------------1

?LPS_SPEC. 1 Subpacket identifier 1

PKT_ID 1 1

1---------------------+--------------------1
?LPS_SPEC. 1 Logical processor IDI Number of job 1 ?LPS_SPEC.

LPID 1 (LPID); you supply. 1 processors attached 1 JPCNT
1---------------------+--------------------1

?LPS_SPEC. 1 Bit map of attached job processors 1

JPMAP 1 1
1--1
?LPS_SPEC_LEN = packet length

Figure 2-103. Structure of?LPSTAT Specific Information Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-371

?LPSTAT Continued

Table 2-83. Contents of ?LPSTAT Specific Information Subpacket

Offset Contents
==================== ===

?LPS __ SPEC. PKT_ID
(doulbleword)

2-372

?LPS __ SPEC . LPID

?LPS __ SPEC . JPCNT

?LPS __ SPEC . JPMAP
(doubleword)

Subpacket identifier. Place ?LPS_SPEC_PKTID
here.

ID number of the logical processor that you
want to receive information about.

Number of job processors attached to the
logical processor you specified in the previous
word.

Bit map that indicates the JPIDs of the job
processors attached to the logical processor
you specified two words ago.

Licensed Material - Property of Data General Corporation 093-000542

?MAPDV Maps a device into logical address space.

?MAPDV [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC 1 Reserved (Set to 0.)

AC2 Address of the ?MAPDV
packet, unless you specify
the address as an argument
to?MAPDV

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?MAPDV packet

ERPRE Invalid system call parameter, for any of these reasons
Invalid ?MDPV packet revision (other than zero)
Invalid ?MDRT region type

ERMPR
ERMSI
ERNMT
ERRAU

Invalid ?MDRP starting page (negative)
Invalid ?MDPC number of pages to map

Invalid parameter address (bad packet pointer, etc.)
Map specification illegal for target (not a memory mapped device)
Map target does not exist
Region already in use

Why Use It?
Use this system call to map a region of a process's address space to a special memory mapped
device.

Who Can Use It?
The only special privilege needed to issue this call is access devices privilege (value ?PACDEV).
There are no restrictions concerning file access.

What It Does
A memory mapped device (?MMAP) is any I/O device that your process can gain access to by
reading or writing to a physical page that resolves to the device. A DS/7000-series I/O controller
connected to the CPU chassis has a device code associated with it and a node number (determined
by the slot the board resides in). DS/7000-series computers include DS/7500-series computers and
the ECLIPSE MV/2000 DC computer.

You supply to ?MAPDV a device code, number of pages to map, and logical address to map.
?MAPDV returns the physical address of the first page that it has assigned to that device code.
This physical address includes the node associated with the device. You need the node number to
gain access to special space to control the device.

?MAPDV performs the functionality of ?STMAP. ?STMAP deals with data channel mapped devices;
?MAPDV deals with memory mapped devices.

09~0542 Licensed Material - Property of Data General Corporation 2-373

?MAPDV Continued

Controlling a Memory Mapped 1/0 Device

The following procedure controls a memory mapped I/O device.

1. Issue ?IDEF and specify a programmable I/O (PIO) device, with no map definition table.

2. Issue ?MAPDV with the following packet offsets:

• ?MDPKI?MDPL = ?MAPDV_PKT_PKTID.

• ?MDRT = ?MMAP.

• ?MDOP = ?MRDO.

• ?MDIL = 6-bit device code.

• ?MDRPI?MDRL = 32-bit starting page number (0 = first physical page in the I/O
controller).

• ?MDPCI?MDCL = 32-bit number of pages you need to map.

• ?MDLAI?MDDL = 32-bit logical address.

Returned offset ?MDNOI?MDNl contains the node number needed to gain access to the special
space to control the device.

Returned offset ?MDDTI?MDDL contains the device type (model number) as returned from the
SCP command SIZE MEMORY.

3. Do I/O processing as desired.

4. Issue ?MAPDV again with ?UNMR in offset ?MDOP. This is the only offset you have to change.

5. Issue ?IRMV to remove the device specified in offset ?MDDTI?MDDL.

Suppose a process terminates before ?MAPDV, which has ?UNMR in offset ?MDOP, is finished.
?IRMV will ensure that this mapped region is undone. If a process terminates before ?IRMV is
finished, then the system will clean up after the termination.

2-374 Licensed Material - Property of Data General Corporation 093-000542

Figure 2-104 shows the structure of?MAPDV's parameter packet, and Table 2-84 describes its
contents.

o 15 16 31
1-------------------------+-------------------------

?MDPK 1 Packet ID 1 Packet ID ?MDPL
-------------------------+-------------------------

?MDRE Reserved (Set to 0.) 1 Region type ?MDRT
-------------------------+-------------------------

?MDOP Operation code 1 Machine type ?MDOX
-------------------------+-------------------------

?MDNP Reserved (Set to 0.) 1 Reserved (Set to 0.) ?MDNL
-------------------------+-------------------------

?MDID Reserved (Set to 0.) 1 Device code ?MDIL
-------------------------+-------------------------

?MDAC Reserved (Set to 0.) 1 Reserved (Set to 0.) ?MDAL
-------------------------+-------------------------

?MDRP Starting page number 1 Starting page number ?MDRL
-------------------------+-------------------------

?MDPC Number of pages to map 1 Number of pages to map ?MDCL
-------------------------+-------------------------

?MDNO Mapping target physical I Mapping target physical ?MDN1
word address I word address

-------------------------+-------------------------
?MDLA Initial logical address I Initial logical address ?MDLL

for the mapping 1 for the mapping
-------------------------+-------------------------

?MDDT Device type or model I Device type or model ?MDDL
number I number

-------------------------+-------------------------
?MDPO = packet length

Figure 2-104. Structure of ?MAPDV Packet

093-000542 Licensed Material - Property of Data General Corporation 2-375

?MAPDV Continued

Offset
==========

2-376

?MDPK/
?MDPL

?MDRE

?MDRT

?MDOP

?MDOX

?MDNP/
?MDNL

?MDID

?MDIL

?MDAC/
?MDAL

?MDRP/
?MDRL

?MDPC/
?MDCL

?MDNO/
?MDNl

?MDLA/
?MDLL

?MDDT/
?MDDL

Table 2-84. Contents of ?MAPDV Packet

1

Contents 1

==1
1

Packet revision number. Place ?MAPDV_PKT_PKTID here. 1
1

1

Reserved. Set to O. 1

1

Region type. The values and their meanings follow.

?BITM
?VBITM
?MMAP

Physical video bit map memory.
Virtual bit map memory.
Memory mapped device memory.

Operation code. The values and their meanings follow.

?MRDO
?UNMR

Add region to address space.
Remove region from address space.

Reserved (AOS/VS and AOS/RT32) .

AOS/VS II, returns

?MLBS
?MMPS

LBUS-type machine without data channel maps.
LBUS-type machine with data channel maps.

Reserved. Set to o.

Reserved. Set to O.

Supply the target device's 6-bit code.

Reserved. Set to o.

Supply the starting page number in the target. (0 is
the first physical page in the I/O controller.)

Supply the number of pages ?MAPDV will map.

?MAPDV returns the physical address of the first page
that is assigned to the device code of the I/O
controller. This address includes the node associated
with the target device.

Supply the initial logical address for the mapping.

?MAPDV returns the device type (model number) .

Licensed Material - Property of Data General Corporation 093-000542

?MBFC Moves bytes from a customer's buffer.

?MBFC [packet address]
error retu rn
normal retu rn

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?MBFC
packet, unless you specify
the address as an argument
to ?MBFC

Error Codes in ACO

Connection broken
Connection doesn't exist

Output

ACO Undefined

AC1 Actual number of bytes
moved if ?MBFC takes an
error return

AC2 Address of the ?MBFC packet

System call parameter address error

ERCBK
ERCDE
ERMPR
ERPRV
ERVBP
ERVWP

Caller not privileged for this action (The caller is not a server of the specified customer.)
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

?MBFC and its companion system call, ?MBTC, give a server process access to a customer's logical
address space. These system calls are useful for any application in which the server must move
bytes to fulfill a customer's request.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access. However, the calling process must be a server of the customer process that
you specify.

What It Does

?MBFC moves a specific number of bytes from a buffer in a customer's logical address space to a
buffer in the server's logical address space.

You can use ?MBFC to move bytes from inner-ring customer buffers, but the address that you
specify within the caller's process must be within a ring whose number is greater than or equal to
the caller's ring. Also, all source data must reside entirely within the single specified source ring.
There must be enough room at the destination for the data to reside entirely within the destination
ring specified.

Figure 2-105 shows the structure of the move bytes packet, which both ?MBFC and ?MBTC use.
The symbol ?MBLTH represents the length of the packet. Either load the packet address into AC2
before you issue ?MBFC, or cite its address as an argument to ?MBFC.

093-000542 Licensed Material - Property of Data General Corporation 2-377

?MBFC Continued

o 15 16 31

1-------------------------+-------------------------1
?MBAH 1 Byte pointer to customer's buffer 1

1---1
?MBCH 1 Byte pointer to server's buffer 1

1-------------------------+-------------------------1
?MBID 1 PID of customer 1 Byte count (number of 1 ?MBBC

1 1 bytes you want to move) 1
1-------------------------+-------------------------1

?MBLTH = packet length

Figure 2-105. Structure of? MBFC Packet

You can move a maximum of 2048 bytes with ?MBFC. If you specify a byte length longer than
2048, the operating system takes the error return on error code ERMPR, and returns 0 to AC 1
(that is, moves 0 bytes). If the server's buffer is too small to accommodate all of the bytes, the
operating system moves as many as it can and returns the number of bytes moved to AC 1 and error
code ERMPR to ACO.

Do not use '?MBFC against a customer that has chained to a new program, unless you can verify
the validity of the customer's buffer. Similarly, customer processes should not issue ?CHAIN while
they have outstanding requests to servers.

Sample Packet

The following sample packet is set up to move bytes from a customer's buffer:

PKT: .BLK ?MBLTH ;Allocate enough space for the
;packet. Packet length = ?MBLTH.

.LOC PKT+?MBAH ;Byte pointer to customer's buff·er.

.. DWORD CUSBUF*2 ;Customer's buffer is CUSBUF.

"LOC PKT+?MBCH ;Byte pointer to server's buffer.
"DWORD SRVBUF*2 ;Server's buffer is SRVBUF.

"LOC PKT+?MBID ;PID of customer.
"WORD 14. ;PID of customer is 14.

.. LOC PKT+?MBBC ; Number of bytes you want to move.

. WORD 2048. ; Move 2048 bytes. (This is the
;maximum you can transfer.)

.LOC PKT+?MBLTH ;End of packet.

Notes

• See the descriptions of?MBTC and ?CHAIN in this chapter.

2-378 Licensed Material - Property of Data General Corporation 093-000542

?MBTC Moves bytes to a customer's buffer.

?MBTC [packet address]
error retu rn
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?MBTC
packet, unless you specify
the address as an argument
to ?MBTC

Error Codes in ACO

Connection broken
Connection does not exist

Output

ACO Undefined

AC1 Actual number of bytes
moved if?MBTC takes an
error return

AC2 Address of the ?MBTC packet

System call parameter address error

ERCBK
ERCDE
ERMPR
ERPRV
ERVBP
ERVWP

Caller not privileged for this action (The caller is not a server of the specified customer.)
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

You can use ?MBTC to move bytes from inner-ring customer buffers.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access. However, the calling process must be a server of the customer process that
you specify.

What It Does

?MBTC moves bytes from a buffer in the server's logical address space to a buffer in the designated
customer's logical address space.

You can use ?MBFC to move bytes from inner-ring customer buffers, but the address that you
specify within the caller's process must be within a ring whose number is greater than or equal to
the caller's ring. Also, all source data must reside entirely within the single specified source ring.
There must be enough room at the destination for the data to reside entirely within the destination
ring specified.

?MBTC takes the same packet as ?MBFC. (See Figure 2-106.) You can cite the packet address as
an argument to ?MBTC, or you can load its address into AC2 before you issue the system call.

093-000542 Licensed Material - Property of Data General Corporation 2-379

?MBTC Continued

o 15 16 31
1-------------------------+-------------------------1

?MBAH 1 Byte pointer to customer's buffer 1

1---1
?MBCH 1 Byte pointer to server's buffer 1

1-------------------------+-------------------------1
?MBID 1 PID of customer 1 Byte count (number of 1 ?MBBC

1 1 bytes you want to move) 1
1-------------------------+-------------------------1

?MBLTH = packet length

Figure 2-106. Structure of ?MBTC Packet

You can move a maximum of 2048 bytes with ?MBTC. If you specify a larger byte count, ?MBTC
fails on error code ERMPR, and the operating system returns 0 to ACl (0 bytes moved). If the
customer's buffer is too small to accommodate the bytes, the operating system mOVE!S as many as it
can; it returns the number of bytes moved to ACl and error code ERMPR to ACO.

Do not use ?MBTC against a customer that has chained to a new program, unless you can
guarantee the validity of the customer's buffer. (The same restriction applies to ?MBFC.)

Notes

• See the descriptions of?MBFC and ?CHAIN in this chapter.

2-380 Licensed Material - Property of Data General Corporation 093-000542

?MDUMP Dumps the memory image from a
user-specified ring to a file.

?MDUMP
error return
normal return

Input

ACO Address that contains ring
field of ring to be dumped

AC 1 Reserved (Set to 0.)

AC2 One of the following:

• Byte pointer to the
dump file pathname

• -1 to use the default
pathname

Error Codes in ACO

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid word pointer passed as a system call argument
File system error codes

Why Use It?

?MDUMP allows you to examine your program memory image when you are not logged on.
?MDUMP complements ?BRKFL, because the dump file contains all of the information in a break
file, plus a memory image.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Read access to the
.PR file in the ring that you want to dump. Otherwise, the operating system returns an error.

What It Does

?MDUMP allows you to obtain a snapshot dump of one ring of your address space while your
program is executing. The operating system strips the ring field from ACO and dumps that ring to
the dump file that you specify.

The dump file is formatted much like a .PR file in that it has a preamble at the beginning and your
actual memory image starts at location 20000. The preamble contains a dump of your task control
blocks, which reside within Ring 3 as part of the Agent. You can use the File Editor utility (FED) to
examine the dump file. Also, you can run BRAN or the Dump Tool utility on the dump file.

093-000542 Licensed Material - Property of Data General Corporation 2-381

?MDUMP Continued
The default name of the dump file has the form

?PIO.TIME.RING.MOM

where

PIO is the 5-digit PID of the user.

TIME is the current time in the form hours_minutes_seconds.

RING is the ring number of the ring dumped.

An example of such a filename is ?00038.14_27_36.7.MDM.

Notes

• See the description of ?BRKFL in this chapter.

2-382 Licensed Material - Property of Data General Corporation O~542

?MEM Lists the current unshared memory parameters.

?MEM
error return
normal return

Input

None

Output

ACO Maximum number of unshared
memory pages currently available

AC1 Number of un shared memory pages
currently in use

AC2 Highest unshared address in the caller's
logical address space (This value is
always "page-adjusted", that is, the OS
rounds this value by setting the 10
low-order bits to 1.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

?MEM is a useful preliminary system call for ?MEMI. Depending on your input parameters,
?MEMI either increases or decreases the number of un shared pages in the logical address space.

Because ?MEM also returns the number of un shared memory pages currently available, you can
also use ?MEM to determine your program's unshared size.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?MEM returns the following unshared memory parameters:

• The maximum number of un shared pages available in the caller's logical address space.

• The number of unshared pages currently in use.

• The highest unshared address in the caller's logical address space.

Notes

• See the description of?MEMI in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-383

?MEMI Changes the number of unshared pages in
the logical address space.

?MEMI
error return
normal return

Input

ACO One of the following:

• Number of un shared
pages you wish to

allocate

• ITwo's complement of
the number of
unshared pages you
wish to remove

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

Insufficient memory available

Output

ACO Unchanged

AC 1 Highest logical address in thE:! caller's
unshared logical address spaee

AC2 Undefined

ERMEM
ERMRL Memory release error (You tried to remove more pages than the unsharHd area

contains, or you tried to remove Page 0.)

Why Use It?

?MEMI letB you expand the unshared area of the logical address space by using any unused space
between the unshared and shared areas. You can also use ?MEMI to reduce the nU1nber of pages in
the unshan~d area.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

2-384 Licensed Material - Property of Data General Corporation 093-000542

What It Does

?MEMI increases or decreases the unshared area in the calling process's logical address space by
the number of pages that you specify in ACO. The operating system returns the new maximum
unshared address to ACl. Note that pages acquired with ?MEMI initially contain all zeros.

To increase the number of un shared pages, load ACO with a positive value that indicates the
number of additional pages you want. To decrease the number of unshared pages, load ACO with
the appropriate two's complement (negative) value.

You can't remove Page 0 of your logical address space.

?MEMI always takes or adds pages at the end of the unshared area. You can't have ''holes'' in your
unshared address space.

Notes

• See the description of?IREC in this chapter.

093-000542 Licensed Material - Property 01 Data General Corporation 2-385

?MIRROR Mirrors and synchronizes LOU images.

?MIRROR [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?MIRROR
packet, unless you specify
the address as an argument
to ?'MIRROR.

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?MIRROR pa(~ket

ERCNM Controller does not support logical disk unit (LDU) mirroring
ERDMO Disk marked as owned by another system
ERDRS Device reserved by another port
ERIFT Illegal file type
ER_FS_INV ALID _MIRROR_FUNCTION

Invalid mirror function
ER_FS_INV ALID_MIRROR_OPTIONS

Invalid mirror options
ERLDR LDU released during synchronization
ERLDX LDU does not exist
ERLFM LDU format mismatch - not a valid LDU mirror
ERLMM LDU name mismatch - not a valid LDU mirror
ERLSZ LDU size mismatch - not a valid LDU mirror
ER_FS_LDM_MAX_NUM_IMAGES_CURRENTLY_ESTABLISHED

Maximum number of LDU images exceeded
ERMOP Mirrored LDU is out of phase
ER_FS_OWNER_ACCESS_REQ

ERRID
ERSFL
ERTMM

Owner access required
LDU IDs are not unique - not a valid LDU mirror
Mirrored LDU synchronization failed
Controller cannot support an additional LDU mirror

Why Use It?

You use ?MIRROR to manage your mirrored LDU (logical disk unit) configuration. The can controls
all changes in the state of mirroring.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Owner access to the
target LD's root and Execute access to the physical disks specified.

2-386 Licensed Material - Property of Data General Corporation 093-000542

What It Does

?MIRROR allows you to add an image in a mirrored LDU configuration. LDU mirroring allows you
to maintain two images of the same LDU. If one LDU image becomes unavailable, you still have
access to the LDU data on the remaining available image.

Adding an image to a mirrored LDU requires that ?MIRROR synchronize the images so that they
contain the same data. When ?MIRROR performs this synchronization, you direct it to either wait
for the synchronization to complete or just invoke the synchronization.

Issuing ?MIRROR might use significant system resources when you synchronize a mirror. The
related system task will use appreciable I/O resources and memory/CPU resources.

?MIRROR operates on LDU images. You frequently issue ?MIRROR along with ?XINIT and
?RELEASE since these two system calls also operate on LDU images. ?RELEASE terminates
?MIRROR if you issue either the 32-bit version of ?MIRROR with bit ?MIRROR_SYNC_ WAIT set
in offset ?MIRROR_PKT.OPTIONS or else the 16-bit version with bit ?MBWAIT set in offset
?MIOP.

Figure 2-107 shows the structure of the ?MIRROR main packet, and Table 2-85 describes its
contents. Figure 2-108 shows the structure and contents of the ?MIRROR subpacket. This
subpacket is identical to the one that ?XINIT uses except for the value of the packet identifier.

o 15 16 31
1---------------------+--------------------

?MIRROR_PKT.I Packet identifier
PKT __ ID 1

1---------------------+--------------------
?MIRROR_PKT.I Function code 1 Reserved (set to ?MIRROR_PKT.

FUNe 1 1 0) RES
1---------------------+--------------------

?MIRROR_PKT.I Option bits
OPTIONS 1

1--
?MIRROR_PKT.I Byte pointer to LDU pathnarne

LDNAME I
1--

?MIRROR_PKT. I Byte pointer to LDU ID
LDID 1

1--
?MIRROR_PKT. I Word pointer to the physical unit list

PUL I subpacket; see Figure 2-108
1--
?MIRROR_PKT_LEN = packet length

Figure 2-107. Structure of?MIRROR Packet

093-000542 Licensed Material - Property of Data General Corporation 2-387

?MIRROR Continued

Table 2-85. Contents of ?MIRROR Packet

1 Offset 1 Contents
=====================1===

2-388

?MIRROR_PKT.PKT_ID 1

(doubleword) I
1

?MIRROR_PKT.FUNC I
I
/

/

/

/

/

/

/

/

?MIRROR_PKT.RES /
/

?MIRROR_PKT.OPTIONS/
(doubleword)

Packet identifier. Place ?MIRROR_PKT_PKTID
here.

Function code. Place one of the following
values here:

?MIRROR_SYNCHRONIZE

Reserved. (Set to 0.)

to synchronize the mir
ror (i.e., add an image
to the mirrored set.)

to remove an image from
the mirrored set.

Options word. Choose from the following values
here, but choose ?MIRROR_NO_HARDWARE and
?MIRROR_OVERRIDE and ?MIRROR_SYNC_WAIT only
when offset ?MIRROR_PKT.FUNC contains
?MIRROR_SYNCHRONIZE:

?MIRROR_LDID
_SPECIFIED

?MIRROR_TRESPASS

?MI RROR_OVERR I DE

If the physical disk
contains more than one
logical disk piece, then
you must set this bit to
indicate that you have
specified at least one
LDUID. Also, you must
specify the LDUID in
offset ?MIRROR_PKT.LDID.
This value applies only
to the new file system.

to prevent the system
from mirroring the LDU
in hardware; hardware
mirroring is the default
case whenever possible.
This value applies only
to the new file system.

to trespass on a device
marked as owned by
another system or to
trespass on a device
that another port has
reserved. This value
applies only to the new
file system.

to override the error
condition ERMOP.
("Mirrored LDU is out
of phase.")

to wait for the
synchronization process
to complete. ('I'he
system might return
error code ERSFL.)

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-85. Contents of ?MIRROR Packet

1

Offset 1 Contents
====================1===

?MIRROR_PKT.LDNAME 1 Supply a byte pointer to the pathname of the
(doubleword) 1 LDU name that the ?MIRROR call addresses.

1 If any physical disk contains more than one
1 logical disk piece, then set bit
1 ?MIRROR_LDID_SPECIFIED in offset
1 ?MIRROR_PKT.OPTIONS and supply a byte pointer
1 to the LD image name in offset ?MIRROR_PKT.LDID.
1 If the specified LDU image is not associated

?MIRROR_PKT.LDID
(doubleword)

?MIRROR_PKT.PUL
(doubleword)

1 with the specified LDU name, the system returns
an error.

If you have set bit ?MIRROR_LDID_SPECIFIED in
offset ?MIRROR_PKT.OPTIONS, then supply a null
terminated byte pointer to a valid LDU ID. If
you have not set this bit, then supply o.
Always supply 0 for the old file system.

Supply a word pointer to the physical unit
list subpacket. Figure 2-10B describes this
subpacket.

(concluded)

?PUL __ PKT.
PKT __ ID

(doubleword)

?PUL __ PKT.
COUNT

(doubleword)

?PUL_PKT.
ULNI

(doubleword)

?PUL __ PKT.
ULN2

(doubleword)

?PUL._PKT.
ULNB

(doubleword)

093-000542

o 15 16 31
1--
1 Packet identifier. Place the value of
1 ?MIRROR_PUL_PKTID here.
1

1--
1 Supply the number of the last physical
1 unit that is used; byte pointers to their
1 names appear in the next eight offsets.
1 The number is between 1 and
1 ?PUL_MAX_NAMES, inclusive.

Supply a byte pointer to physical unit
name number 1. You must terminate the
name with the null byte.

Supply a byte pointer to physical unit
name number 2. You must terminate the
name with the null byte. If you don't
supply a byte pointer, supply o. 1

--1

--1
Supply a byte pointer to physical unit 1

name number B. You must terminate the 1

name with the null byte. If you don't 1

supply a byte pointer, supply o. 1

--1
?PUL_PKT_LEN = packet length

Figure 2-10B. Structure of ?MIRROR Subpacket

Licensed Material - Property of Data General Corporation 2-389

?MIRROR Continued

16-bit Version of ?MIRROR System Call

A 16-bit version of this system call also exists. Its functionality is identical to that of the 32-bit
version previously described.

Figure 2-109 contains the structure of the 16-bit ?MIRROR call main packet and Figure 2-110
contains the structure of the 16-bit ?MIRROR call subpacket. The definitions of the offsets in these
packets are identical to those in Figure 2-107 and Figure 2-108, respectively. The only differences
in the corresponding packets are the names of the offsets.

Table 2-86 describes the contents of Figure 2-109.

?MIPHI

?MIPLO

?MIFUN

?MIRES

?MIR1

?MIOP

?MIR2

?MILD

?MIR3

?MIID

?MIR4

?MIPUL

Notes

o 15

Packet identifier (high value)

Packet identifier (low value)

Function code

Reserved (Set to 0.)

Reserved (Set to 0.)

Option bits

Reserved (Set to 0.)

Byte pointer to LOU pathnarne

Reserved (Set to 0.)

Byte pointer to LDU IO

1 Reserved (Set to 0.)
1--
1 Word pointer to the physical unit list
I subpacketi see Figure 2-110
1--

?MILN = packet length

Figure 2-109. Structure of 16-Bit ?MIRROR Packet

• See the descriptions of?RELEASE and ?XINIT in this chapter.

2-390 Licensed Material - Property of Data General Corporation 093-000542

Table 2--86. Contents of 16-Bit ?MIRROR Packet

Offset Contents
==================== ===

?MIPHI Packet identifier (high word). Place ?MIIl here.

?MIPLO Packet identifier (low word). Place ?MII2 here.

?MIFUN

?MIRES

?MIRl

?MIOP

Function code. Place one of the following
values here:

?MFSYM

?MFBRK

to synchronize the mirror (i.e.,
add an image to the mirrored set.)

to remove an image from the
mirrored set.

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Options word. Choose from the following values
here, but choose ?MBNHR and ?MBOOP and ?MBWAIT
only when offset ?MIFUN contains ?MFSYM.

?MBNHR to prevent the system from
mirroring the LDU in hardware;
hardware mirroring is the default
case whenever possible. This value I
applies only to the new file system. I

?MBNLD

?MBTRP

?MBOOP

?MBWAIT

If the physical disk contains more
than one logical disk piece, then
you must set this bit to indicate
that you have specified at least
one LDUID. Also, you must specify
the LDUID in offset ?MIID. This
value applies only to the new file
system.

to trespass on a device marked as
owned by another system or to
trespass on a device that another
port has reserved. This value
applies only to the new file
system.

to override the error condition
ERMOP. ("Mirrored LDU is out of
phase.")

to wait for the synchronization
process to complete. (The system
might return error code ERSFL.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

______ . ________________ --_----~----I
(continued)

093-000542 Licensed Material - Property of Data General Corporation 2-391

?MIRROR Continued

Table 2-86. Contents of 16-Bit ?MIRROR Packet

Offset Contents
===================== ===

?MIR2 Reserved. (Set to 0.)

?MILD Supply a byte pointer to the pathname of the
LDU name that the ?MIRROR call addresses.

?MIR3

?MIID

?MIPUL

If any physical disk contains more than one
logical disk piece, then set bit ?MBNLD in
offset ?MIOP and supply a byte pointer to the
LD image name in offset ?MIID. If the
specified LDU image is not associated with the
specified LDU name, the system returns an error.

Reserved. (Set to 0.)

If you have set bit ?MBNLD in offset ?M:IOP,
then supply a null-terminated byte pointer to a
valid LDU ID. If you have not set this bit,
then supply o. Always supply 0 for the old
file system.

Reserved. (Set to 0.)

Supply a word pointer to the physical unit list
subpacket. Figure 2-110 describes this
subpacket.

1

_______________________ --.1
(concluded)

2-392 Licensed Material - Property of Data General Corporation 093-000542

?ULPHI

?ULPLO

?ULRO

?ULNC

?ULRI

?ULNI

?ULR2

?ULN2

?ULR8

?ULN8

093-000542

o

Packet identifier (high word). Place
the value of ?ULI2 here.

Packet identifier (low word). Place
the value of ?ULI3 here.

Reserved. (Set to 0.)

15

Supply the number of the last physical
unit that is used; byte pointers to their
names appear in the next 16 offsets.
The number is between 1 and ?MAXNAMES,
inclusive.

Reserved. (Set to 0.)

Supply a byte pointer to physical unit
name number 1. You must terminate the
name with the null byte.

Reserved. (Set to 0.)

Supply a byte pointer to physical unit
name number 2. You must terminate the
name with the null byte. If you don't
supply a byte pointer, supply O.

Reserved. (Set to 0.)

Supply a byte pointer to physical unit
name number 8. You must terminate the
name with the null byte. If you don't
supply a byte pointer, supply o.

?ULLN = packet length

Figure 2-110. Structure of 16-Bit ?MIRROR Subpacket

Licensed Material - Property of Data General Corporation 2-393

?MPHIST Starts a histogram on a uni- or mUlti
processor system (32-bit processes only).

?MPHIST [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?MPHIST
packet, unless you specify
the address as an argument
to ?:MPHIST

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?MPHIST packet

ERHIS
ERMPR
ERPNM
ERPRH
ERPRV
ERVBP
ERVWP

Error on histogram initialization or deletion
System call parameter address error
Illegal process name
Attempt to access process not in hierarchy
Caller not privileged for this action (The caller is not a resident process.)
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

Use this system call to start a histogram on either a uniprocessor system or on a multiprocessor
system.

Who Can Use It?

The caller lnust be a resident process. Furthermore, you must have Superprocess pJrivilege if you
start a histogram on a process that is not in your hierarchy. There are no restrictions concerning
file access.

What It Does

This systern call starts a histogram for a range of local addresses in a process. The ealler cannot
activate more than one histogram at a time.

If you want information about the calling process, place the value of ?MPH_PID in offset
?MPH_PKT.CODE of the packet and place -1 in offset ?MPH_PKT.PID.

If you want information about another process, place the value of?MPH_PNAME in offset
?MPH_PKT.PCODE. Either supply the process ID in offset ?MPH_PKT.PID (and Os in offsets
?MPH_PKT.PNAME and ?MPH_PKT.PSUPPLIED), or supply 0 in offset ?MPH_PKT.PID and the
appropriate byte pointer information in offsets ?MPH_PKT.PNAME and ?MPH_PKT.PSUPPLIED.

2-394 Licensed Material - Property of Data General Corporation 093-000542

If you want information about all processes, place the value of?MPH_PID in offset
?MPH_PKT.PCODE of the packet and place 0 in offset ?MPH_PKT.PID.

Supply the rest of the histogram packet, which includes the starting and ending addresses of the
range that ?MPHIST monitors, the size of each interval in the specified range, and the address of
the receive buffer for each job processor. If you don't want to specify a receive buffer for a job
processor, set this address offset (?MPH_PKT.JPO, ... , ?MPH_PKT.JP15) to O.

Note that the format of the receive buffer is the same for ?WHIST and ?MPHIST. However,
?MPHIST can have a receive buffer for each job processor.

Setting the interval size to 0 results in a simple histogram that records how often the target process
gained CPU control. AOSNS ignores the starting and ending addresses.

AOSNS returns histogram statistics in array format to each of your specified receive buffers. The
array consists of a fixed-length header followed by double-word entries that correspond to each
specified interval.

Side Effects

You can specify receive buffers for job processors that have not been initialized. Why should you?
When a job processor is initialized, it can start writing numbers to its receive buffer dynamically.
AOSNS places zeros in the receive buffers at the start of the call regardless of whether the
processor has been initialized.

Also, you don't have to specify a receive buffer for every job processor. This is useful if you want a
histogram that looks at activity on one job processor only. It will cut down on the amount of space
your program uses since you don't have to set aside multiple copies of your receive buffer.

The flexibility of ?MPHIST is such that you decide on the interpretation of the returned data. If
you've allocated receive buffers for all job processors and they are homogeneous, then you should be
able to average the numbers from all the receive buffers. Such an average yields histogram data for
the process on the system. However, if you haven't allocated receive buffers for all the job
processors or if not all the job processors are homogeneous, then averaging the numbers gives
skewed results. In such a case it would be useful to look at the data on a job processor basis.

Figure 2-111 shows the structure of the ?MPHIST parameter packet, and Table 2-87 describes its
contents. Table 2-88 shows the structure and contents of a buffer that receives histogram statistics.
See the explanation of?GHRZ for details about the system clock's frequency.

093-000542 Licensed Material - Property of Data General Corporation 2-395

?MPHIST Continued

?MPH_PKT.
PKT ID

?MPH_PKT.
PNAME

?MPH_PKT.
PSUPPLIED

?MPH_PKT.
HWEND

?MPH_PKT.
JP15

2-396

o 15 16 31
---------------------+--------------------

Packet identifier

---------------------+--------------------
Function code (not I Code for PID or ?MPH_PKT.
used; set to 0) I process name PCODE

---------------------+--------------------
PID or -1 or 0 I Reserved (Set to ?MPH_PKT.

I 0) FILLER
---------------------+--------------------

Byte pointer to process name buffer

---------------------+--------------------
Number of bytes in I Number of bytes in ?MPH_PKT.
process name buffer I process name PRETURNED

---------------------+--------------------
Starting address of monitored range

Ending address of monitored range

Size of intervals to be monitored

Address of the array to receive the
histogram statistics for JPO, or zero

Address of the array to receive the
histogram statistics for JPl, or zero

Address of the array to receive the
histogram statistics for JP15 (decimal),
or zero

Figure 2-111. Structure of?MPHIST Packet

Licensed Material - Property of Data General Corporation 000-000542

Table 2-87. Contents of ?MPHIST Packet

Offset

?MPH_PKT.PKT_ID
(doubleword)

?MPH_PKT.PCODE

?MPH_PKT.FILLER

?MPH_PKT.PNAME
(doubleword)

?MPH_PKT.PSUPPLIED

?MPH_PKT.PRETURNED

?MPH_PKT.HWST

?MPH_PKT.HWEND

?MPH_PKT.HWWDS

093-000542

Contents
===

Packet identifier. Place ?MPHIST_PKT_PKTID
here.

Function code. Not used. (Set to 0.)

Code word into which you place ?MPH PID when
you supply a PID or else ?MPH_PNAME when you
supply a process name.

Supply -1 for the calling process. For another
process, either place its PID here or else place
place 0 here and the process's name information
in the two offsets after the next one. For all
processes, place 0 here and in the two offsets
after the next one.

Reserved. (Set to 0.)

If you've placed 0 in offset ?MPH_PKT.PID,
then place a byte pointer here pointing to the
process's name and place its length in the next
offset. Or, place a 0 here for information about
all processes.

If you've placed 0 in offset ?MPH_PKT.PID and
a byte pointer in the previous offset, then
place the number of bytes in the byte pointer
buffer here. Or, place a 0 here for
information about all processes.

If you've specified a byte pointer in offset
?MPH_PKT.PNAME, then AOS/VS returns the actual
number of bytes in the string in the byte
pointer buffer. If you haven't specified a byte
pointer in offset ?MPH_PKT.PNAME, place 0 here.

Supply the starting address of the memory area
that you want monitored.

Supply the ending address of the memory area
that you want monitored.

Supply the number of intervals in the memory
area that you want monitored.

(continued)

Licensed Material - Property of Data General Corporation 2-397

?MPHIST Continued

Table 2-87. Contents of ?MPHIST Packet

1

Offset Contents 1

==================== ==1

2-398

?MPH PKT.JPO Place zero here if you don't want to receive 1

histogram statistics for job processor 0, or 1

else place the word address here of thE~ array 1

that will receive the histogram statistics. 1

1

?MPH_PKT.JP1 Place zero here if you don't want to receive 1

histogram statistics for job processor 1, or 1

else place the word address here of the array 1

that will receive the histogram statistics. 1

1

1

?MPH_PKT.JP15 Place zero here if you don't want to receive 1

histogram statistics for job processor 15, or 1

else place the word address here of the array 1

that will receive the histogram statistics. 1

1
___ 1

(concluded)

Table 2-88. Structure and Contents of ?MPHIST Histogram Arra:~

?MPHIST_
HTTH

?MPHIST_
HPRH

?MPHIST_
HAPH

?MPHIST_
HSBH

?MPHIST_
HSIH

?MPHIST_
HARAY

?MPHIST_
HARAY + 2

?MPHIST_
HARAY +
2*(n-1)

° 15 16

Total number of real-time clock pulses
(ticks) counted in this histogram

31

Total number of ticks when program
counter (PC) was within the target
process, but outside the specified range

Total number of ticks in other processes

Total number of ticks in AOS/VS, except
those recorded when it was in an idle
loop

Total number of ticks in a system idle
loop

Total number of ticks in the first
interval

Total number of ticks in the second
interval

\--
1 Total number of ticks in the nth
1 interval
1

\--

Licensed Material - Property of Data General Corporation 093-000542

?MYTID Gets the priority and TID of the calling task.

?MYTID
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO TID of the calling task

AC 1 Priority level of the calling task

AC2 Undefined

?MYTID allows you to identify the calling task by its priority and TID. ?MYTID can be a useful
preliminary to other tasking system calls that require TIDs and/or priority levels as input
parameters.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?MYTID returns the TID of the calling task to ACO and its priority level to AC 1.

093-000542 Licensed Material- Property of Data General Corporation 2-399

?NTIME Sets the time, date, and time zone.

?NTIME [packet address]
error retu rn
normal return

Input

ACO Res4~rved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?NTIME
packet, unless you specify
the address as an argument
to ?NTIME

Error Codes in ACO

Illegal function code

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?NTIME pack4~t

ERICD
ERPRV Caller not privileged for this action

ERPVS
ERRVN
ERTIM
ERVWP

(It is not PID 2 and it does not have System Manager privilege turned on.)
Packet version not supported (bad value in ?TIME_PKT.PKT_ID)
Reserved value not zero
Input time (or date) argument is out of range
Invalid word pointer passed as system call argument

Why Use It?

The system manager can use this call to change the time, date, and time zone. This change would
occur because of going on or off Daylight Savings Time near the beginning and end of summer.
Mer the change, system call ?GTIME returns information based on the values given to ?NTIME.

Who Can Use It?

Only the system operator (PID 2) or a process with System Manager privilege can issue ?NTIME.

What It Does

This system call sets the current time, date, and time zone. Time and date are typieally the date
and time at the site with the ECLIPSE MVlFamily hardware on which the operating system is
running.

Time zones are based on Universal Time (UTC). This is the international standard time derived
from solar time at the meridian passing through Greenwich, England (the prime m.eridian,
longitude 0 degrees). An older name for Universal Time is Greenwich Mean Time (GMT).

Time zones decrement as a person moves west of Greenwich, England; they incremlent as the
person moves east of this city. For example, Mountain Standard Time is 7 hours w,est of

2-400 Licensed Material - Property of Data General Corporation 093--000542

Greenwich. Its time code is -7:00, so you could use ?NTIME to place -7 and 0 respectively in offsets
?TIME_PKT.ZONE_HOUR and ?TIME_PKT.ZONE_MINUTE of the parameter packet. An
operator in Phoenix, Arizona (United States of America) might provide this information. For
another example, Calcutta, India is in a time zone +5-1/2 hours east of Greenwich. You could use
?NTIME to place 5 and 30. respectively in offsets ?TIME_PKT.ZONE_HOUR and
?TIME_PKT.ZONE_MINUTE of the parameter packet.

You can supply the time and date in local time or in Universal Time. To supply the data in local
time, place ?TIME_PKT_LOCAL in offset ?TIME_PKT.FUNC. To supply the data in Universal
Time, place ?TIME_PKT_UTC in the offset. Issuing ?NTIME updates auxiliary clocks such as the
SCP boot clock.

?NTIME is the inverse of ?GTIME. You can issue ?GTIME, update its parameter packet as desired,
and then issue ?NTIME with the same parameter packet.

The time data you enter with ?NTIME must be such that both the local time and Universal Time
are between two values. The lower value is midnight, January 1, 1968 (1968-01-01:00:00:00). The
upper value is 1 second before the 22nd century begins (2099-12-31:23:59:.59). Also, the two time
zone offsets must between -12:00 and +13:00 inclusive.

16-bit programs should not issue ?NTIME because the packet for ?NTIME does not appear in
PARU.16.SR.

Figure 2-112 shows the structure of the ?NTIME parameter packet, and Table 2-89 describes its
contents.

o 15 16 31
1---------------------+--------------------

?TIME_PKT. 1 Packet identifier
PKT __ ID 1

---------------------+--------------------
?TIME_PKT. Function code: 1 Reserved ?TIME_PKT.

FUNC supply?TIME_PKT_UTCI (Set to 0.) RSV
or ?TIME_PKT_LOCAL 1

---------------------+--------------------
?TIME_PKT. Year, including the 1 Month number of ?TIME_PKT.

YEAR century 1 the year MONTH
---------------------+--------------------

?TIME_PKT. Day number of the 1 Hour of the day ?TIME_PKT.
DAY month 1 1 HOUR

---------------------+--------------------1
?TIME_PKT. Minute of the hour 1 Second of the 1 ?TIME_PKT.

MINUTE 1 minute 1 SECOND
---------------------+--------------------1

?TIME_PKT. Time zone offset 1 Time zone offset 1 ?TIME_PKT.
ZONE_HOUR hours 1 minutes I ZONE_MINUTE

---------------------+--------------------1
?TIME_PKT_LEN = packet length

Figure 2-112. Structure of ?NTIME Packet

093-000542 Licensed Material - Property of Data General Corporation 2-401

?NTIME Continued

Table 2-89. Contents of ?NTIME Packet

Offset Contents
==================== ==:=========

?TIME_PKT.PKT_ID
(doubleword)

?TIME_PKT.
ZONE_HOUR

?TIME_PKT.
ZONE_MINUTE

Notes

Packet identifier. Place ?TIME_PKT_PK'rID here.

Function code. To supply Universal Time, place
?TIME_PKT_UTC here; to supply local time, place
?TIME_PKT_LOCAL here.

Reserved. (Set to 0.)

Specify the current year as a number greater
than 1967.

Specify the current month as a number from
1 to 12 (1 for January, 2 for February,
12 for December) .

Specify the current day number of the month
(1 for the 1st, 2 for the 2nd, ... , 31 for the
31st) .

Specify the current hour number of the day as a
number from 0 to 23, inclusive (i.e., Cl. 24-hour
clock) .

Specify the current minute number of the hour
as a number from 0 to 59, inclusive.

Specify the current second number of the minute
as a number from 0 to 59, inclusive.

Specify the current offset in hours relative to
Universal Time. Western Hemisphere zones have
negative values, Eastern Hemisphere zones have
positive values, and the zone whose center is
the prime meridian has a zero value. For
example, West Germany is one time zone east of
the prime meridian; specify 1 in this word for
the 1 hour offset (i.e., difference).

Specify the current offset in minutes relative
to ?TIME_PKT.ZONE_HOUR. For most countries
this value is zero, but for a few -- such as
India -- this value is nonzero. India is five
time zones east of the prime meridian. When it
is 0300 (3:00 am) in Greenwich it is 0830
(8:30 am) in India; consequently supply
30 (decimal) to ?TIME_PKT.ZONE_MINUTE and
supply 5 to ?TIME_PKT.ZONE_HOUR.

• See the descriptions of?GTIME and ?RTODC in this chapter.

2-402 Licensed Material - Property of Data General Corporation 093-000542

?0018 Disables terminal interrupts.

?ODIS
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

None

By default, the operating system enables terminal interrupts when each program begins to execute.
?ODIS lets you override this default or lets you revoke an interrupt enable that was caused by an
?OEBL, ?INTWT, or ?CHAIN.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?ODIS disables all terminal interrupts (Ctrl-C Ctrl-A sequences) until one of the following occurs:

• You explicitly re-enable Ctrl-C Ctrl-A sequences by issuing ?OEBL.

• You issue ?INTWT to define a terminal interrupt task (a task to monitor the process terminal
for Ctrl-C Ctrl-A sequences).

• You issue ?CHAIN to chain to a new program.

Notes

• See the descriptions of ?OEBL, ?INTWT, and ?CHAIN in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-403

?OEBL Enables terminal interrupts.

?OEBL
error return
normal return

Input

None

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

None

You can us«~ ?OEBL to revoke a previous ?ODIS or to re-enable terminal interrupts after an
?INTWT sequence.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no reiStrictions
concerning file access.

What It Does

?OEBL is the inverse of ?ODIS; that is, it re-enables terminal interrupts (Ctrl-C Ctrl-A
sequences). Note that ?OEBL does not define a task for processing terminal interrupts. (To do this,
issue ?INTWT.)

Notes

• See the descriptions of ?ODIS, ?INTWT, and ?CHAIN in this chapter.

2-404 Licensed Material - Property of Data General Corporation 093-000542

?OPEN

?OPEN [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

Opens a file.

Output

ACO Undefined

ACI Undefined

AC2 Address of the ?OPEN packet,
unless you specify the

AC2 Address of the ?OPEN packet

address as an argument to
?OPEN

Error Codes in ACO

EREOI
ERE02
ERFAD
ERIFL
ERINP
ERIPS
ERMPR
ERPOO
ERVWP

File is open, can't exclusively open
File exclusively opened, can't open
File access denied
lAC (Intelligent Asynchronous Controller) failure
IPC file not opened by another proc
Illegal pipe size
System call parameter address error
Illegal pipe open option
Invalid word pointer passed as a system call argument

Who Can Use It?

There are no special process privileges needed to issue this call. You need Execute access to the
file's directory. You also need Write access to the file's directory if issuing ?OPEN will create the file.
And, you need Read access to the file and its directory if you are issuing ?OPEN against a file that
presently exists.

What It Does
?OPEN opens a file or device for 1/0 and directs the operating system to assign it a unique channel
number. A single process can open as many as 224 channels at the same time. Note that you cannot
use ?OPEN to open a file for block 1/0, physical block I/O, shared access, or to open a binary
synchronous communications line.

You can use ?OPEN to create and then open a file. If you choose this creation option and you choose
the default file-type specification, the operating system creates the file as a user data file. (User
data files are not executable program files.)

The packets for ?OPEN, ?READ, ?WRITE, and ?CLOSE have the same structure, although not all
offsets apply to every system call. You can specify the packet address as an argument to ?OPEN or
load AC2 with the packet address before you issue ?OPEN. In both cases, the operating system
returns the packet address in AC2.

086-000195 updates
093-000542 Lioensed Material - Property 01 Data General Corporation 2-405

I

?OPEN Continued

Figure 2-113 shows the structure of the ?OPEN packet, and Table 2-90 describes each offset and
bit position in the packet. The accompanying text explains the options you can exercise in setting
the packet specifications.

Figure 2-113 includes byte pointers to extensions for the basic I/O packet. These extensions direct
the operating system to perform extended processing on the target file. See the following section
"Packet Versions."

The following guidelines apply to the ?OPEN packet:

• You can default some specifications, such as record format, and use the values you set for them
when you created the file. You can also alter some of the ?OPEN specifications, such as record
format and buffer address, when you read to or write from the file.

• When you close and reopen a file, the operating system overwrites the default values in the
packet. Thus, you must reset these values before you use the packet again.

• The parameters in the file specifications word (?ISTI) represent bit masks, not individual bits.
To select more than one option for ?ISTI, OR the appropriate masks. For example, the ?ISTI
specification ?IEXO!?OFIN opens the file for the exclusive use of the calling task for read
purposes only.

• You must set all unused bits in offset ?ISTI to 0.

• The operating system returns the file's channel number to offset ?ICH in the I/O packet. (The
operating system always sets the channel number, even if you place a value in ?ICH.)

• You need not set the offsets used by?READ and ?WRITE to 0, because the operating system
ignores them when it executes ?OPEN.

Packet Versions
There are three versions of the ?OPEN parameter packet as follows. Refer to Figure 2-113 as you
read the following summaries of these three versions.

Standard

Short extended

Long extended

2-406

which includes offsets ?ICH through ?IDEL, and is ?IOSZ words long.

which includes offsets ?ICH through ?ENET, and is ?IBLT words long. Set hit
?IPKL in offset ?ISTI to indicate the short extended packet.

which includes offsets ?ICH through ?ENET and 24 reserved words for a length of
?ETMX words. Set hit ?IPKL in offset ?ISTI and hit ?IMP2 in offset ?ISTO to
indicate the long extended packet. You should set the 24 reserved words to zero
with one exception. The first douhleword, offset ?ETER, contains zero. The
second douhleword, offset ?ETSN, contains o. The third doubleword (offset ?EPIP,
the exception) contains ISO and a word pointer to the optional pip(~ extension
packet. (?OPEN uses the third doubleword when working with a pipe file.)

licensed Material- Property of Data General Corporation
086-000195 updates

09:HX>0542

o 15 16 31
-------------------------+-------------------------

?ICH Channel number 1 ?OPEN options ?ISTI
(returned by the OS) 1 (see Table 2-90)

-------------+-----------+-------------------------
?ISTO ?OPEN options 1 File type 1 Block size ?IMRS

-------------+-----------+-------------------------
?IBAD Byte pointer to I/O buffer ?IBAL

-------------------------+-------------------------
?IRES Density mode 1 Record length ?IRCL

-------------------------+-------------------------
?IRLR \\\\\\\ or record length 1 Reserved (Set to 0.)

-------------------------+-------------------------
?IRNH \\\\\\\\\\\\\\\ Used by ?READ only.\\\\\\\\\\\\\\\\

?IFNP

?IDEL

Byte pointer to pathname

Address of data-sensitive delimiter table

Here the standard packet ends and the short
extended packet begins.

1---1
?ETSP 1\\\\\\\\\\\\\\\ Used by ?READ only.\\\\\\\\\\\\\\\\1

1---1
?ETFT 1\\\\\\\\\\\\\\\ Used by ?READ only.\\\\\\\\\\\\\\\\1

1---------+---1

?IFNL

?ETLT Ivalidity*1 Address of labeled tape packet extension 1 ?ETLL
1---------+---1

?ENET 1 Reserved (Set to 0.) 1
1---1

Here the short extended packet ends and the long
extended packet begins.

1---
?ETER 1\\\\\\\\\\\\\\\ Used by ?READ only.\\\\\\\\\\\\\\\\

1---
?ETSN 1\\\\\\\\\\\\\\\ Used by ?READ only.\\\\\\\\\\\\\\\\

1---------+---
?EPIP validitY*1 Set to the address of the pipe

?EPIP+2

?EPIP+
18.

1 extension packet if there is one or
1 zero otherwise.

---------+---------------+-------------------------
Reserved word 1 1 Reserved word 2
(Set to 0.) 1 (Set to 0.)

-------------------------+-------------------------

-------------------------+-------------------------
Reserved word 17. 1 Reserved word 18.
(Set to 0.) 1 (Set to 0.)

-------------------------+-------------------------

?IOSZ
?IBLT
?ETMX

= standard packet length
short extended packet length

= long extended packet length

?EPIP+31
1

1

1

1

1

1

?EPIP+ 1
19. 1

1

1

1

1

1

* Bit 0 is a validity bit: if Bit 0=1, the OS takes the offset
as an extended packet address; if Bit 0=0, the OS ignores the
offset.

1

1

1

1

--1

08&-000195 updates
093-000542

Figure 2-113. Structure of?OPEN Packet

Licensed Material- Property 01 Data General Corporation 2-407

?OPEN Continued

2-408

Table 2-90. Contents of ?OPEN Packet*

I
Offset Contents I

============== ==1
?ICH Channel number (assigned by the OS) . 1

1
?ISTI File specifications word: 1

1

Packet type 1

?IPKL--Extended packet.

DEFAULT = 0 (no extended packet)

Format select

?ICRF--Change format to that specified in
record format field.

DEFAULT = 0 (use record format specified in the
?CREATE packet) .

Absolute file pointer position (?READ/?WRITE only) .

Append

?APND--Open the file for appending.

DEFAULT = 0 (set file pointer to first word in
file) .

Binary I/O.

Normally, only ?READ/?WRITE supplies a value
here. However, if you issue ?OPEN against a
queue type file (e.g., @LPT) and specify ?IBIN
here, AOS/VS responds to this bit. Specifi
cally, AOS/VS would do a binary queue
submission to EXEC.

Force output option (?READ/?WRITE only) .

Exclusive open

?IEXO--Permit no other task in this or any
other process to open file until it has
been closed.

DEFAULT = 0 (nonexclusive open). Pipe files
require a nonexclusive open.

1

There is no default unless otherwise specified. (continued)

Licensed Material- Property 01 Data General Corporation
086-000195 updates

093-000542

Table 2-90. Contents of ?OPEN Packet*

1 1
1 Offset 1 Contents 1
1==============1==1
1 ?ISTI 1 Priority read 1
1 (continued) 1 ?PDEL--Open file for priority read.
1 1
1 1 DEFAULT = 0 (file has normal priority).
1 1
1 1 Creation option

1

1

1

1

1

?OFCE--If the file exists, open the file.
If the file does not exist, create one
and open it.

?OFCR--If the file exists, return an error.
If the file does not exist, create one
and open it.

?OFCR!?OFCE--If the file exists, then delete
it, recreate it, and open it. If the
file does not exist, then create it and
open it.

DEFAULT = 0 (if file does not exist, do not
create it; return ?OPEN error) .

Input/output

?OFIN--Open for input.
?OFOT--Open for output.
?OFIO--Open for input/output. (Not available

for pipe files.)
Record format

?RTDY--Dynamic-length.
?RTDS--Data-sensitive.
?RTFX--Fixed-length.
?RTVR--Variable-length.
?RTUN--Undefined-length.
?RTVB--Variable block, variable record.

IPC no wait option

?IIPC--Setting "IPC No Wait" on IPC file

When you select ?IIPC, the process that
initially opens the IPC file will not wait for
the synchronization message from the partner

1 process. Normally the process waits for the
1 partner process to open the IPC file.
I

?ISTO 1 Left byte
I
1 ?SHOP--Shared ?OPEN request. (Not available
I for pipe files.)
1 ?IMFF--Inhibit initial form feed.
I ?IMP2--Long extended packet.
1 ?IMHN--Hold nonpriority reads.
1 DEFAULT = 0 (normal open; write initial form
1 feed when opening line printers) .
1
I If you specify none of the options ?SHOP
1 through ?IMHN, you must specify 0 here.
1

_______________ 1 __ __

* There is no default unless otherwise specified. (continued)

086-000195 updates
093-000542 Licensed Material - Property 01 Data General Corporation

I

2-409

I

I

I

?OPEN Continued

Table 2-90. Contents of ?OPEN Packet*

1

Offset 1 Contents
==============1==

?ISTO

?IMRS

?IBAD
(doubleword)

?IRES

1

1 Right byte
1 File Type. (See Table 2-92)
1

1

1

1

1

1

DEFAULT = o (if file exists, the OS ignores
this parameter and uses the file type
specified in the ?CREATE packet). If
you are creating the file (you set
?OFCR and/or ?OFCE in ?ISTI), the
file type is ?FUDF (user data file).

Physical block size (in Kbytes) .
Specify the length of the pipe in 2Kbyte (page)
multiples, up to a 20 page maximum. 1 page is
added to the pipe length at creation.

DEFAULT = -1 (block size = 2 Kbytes)

Byte pointer to record I/O buffer.

DEFAULT = -1 (deferred until you issue ?READ or
?WRITE) .

Density mode (for magnetic tapes only).
Set this field to 0 for all other file and device
types.

?IDAM--Automatic density matching.
?ID8--Density 800 bytes/inch.
?ID16--Density 1600 bytes/inch.
?ID62--Density 6250 bytes/inch.
?ID5--Low tape density.
?ID6--Medium tape density.
?ID7--High tape density.

DEFAULT = 0 (use density mode specified during
the system-generation procedure) .

Transfer mode (for Model 6352 magnetic tape units
only)

?OMBFM--Use buffered mode when performing tape
I/O.

?OMSTR--Use streaming mode when performing tape
I/O.

?IMNTE--Use the emulation override.
?IMCOF--Data compression off.
?OIBM--Open as an IBM-labelled tape.
?OANS--Open as an ANSI-labelled tape.

1 DEFAULT = 0 (open as an AOS/VS or AOS/RT32 tape).
_______________ I ____________________ ~------~~--~--------~----~--~

* There is no default unless otherwise specified. (continued)

2-410 Licensed Materi~ - Property 01 Data General Corporation
~195 updates

093-000542

Table 2-90. Contents of ?OPEN Packet*

Offset Contents
============== ==

?IRCL

?IRLR

?IRNW

?IRNH
(doubleword)

?IFNP
(doubleword)

?IDEL
(doubleword)

?ETLT
(doubleword)

?ENET
(doubleword)

?ETER
(doubleword)

?ETSN
(doubleword)

?EPIP
(doubleword)

?EPIP + 2

?EPIP + 3

?EPIP + 19

9-Track tape
?INTEO -- 9-track emulation override

Record length. States the number of bytes to read
or write for dynamic- and fixed- length records or
the maximum number of bytes to read or write for
data-sensitive and variable-length records.

DEFAULT = -1 (defer specifying the record length
until you issue a ?READ or ?WRITE. If
you specify ?IRCL = -1 in the ?OPEN
call, you must specify an actual
record length in the ?READ or ?WRITE.

Number of bytes transferred (?READ/?WRITE only)
or record length. See "Other ?OPEN Offsets."

Reserved. (Set to 0.)

Record number (?READ/?WRITE only) .

Byte pointer to pathname.

Address of the delimiter table.

DEFAULT = -1 (use default delimiters: null, New
Line, form feed, and carriage return) .

Address of the labeled magnetic tape packet
extension.

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Address of the pipe file extension packet. See
the section "Extension Packet for Pipes."

First of 18 reserved words. (Set to 0.)

Second of 18 reserved words. (Set to 0.)

Last of 18 reserved words. (Set to 0.)

* There is no default unless otherwise specified. (concluded)

093-000542 Licensed Material - Property of Data General Corporation 2-411

•

I

?OPEN Continued

Model 6352 Magnetic Tape Unit

With the exception of a Model 6351 magnetic tape unit, the following two paragraphs apply to any
buffered MTJ-style tape unit including both 120 and 150 MB cartridge tape drive units and
reel-to-reel tape units including Models 6586, 6587, 6588, and 6589.

In buffered mode the tape controller indicates that a tape transfer is complete after data has been
read from memory, but before it has been written to tape. In this mode the system might not report
error conditions for a request that fails. Therefore your program must check for errors whenever it
issues a ?GCLOSE call. (The system reports all errors when it writes a file mark. Since ?GCLOSE
writes a file mark, any program using buffered mode must explicitly close each tape file.)

The streaming mode allows your program to open a tape unit for high-speed backup purposes. In
this mode the tape controller expects data transfer with the tape to occur quite rapidly. If data is
not transferred fast enough, the performance of the tape unit degrades. So, a program that cannot
maintain a high data transfer rate should not select this mode.

The File Specifications Word

As Table 2-90 indicates, you can select a number of optional file specifications in offset ?ISTI.

To select a record format different from the one specified in the ?CREATE packet, select the ?ICRF
mask in offset ?ISTI and one of the record format masks. The record format masks correspond to
the operating system record types: dynamic length, fixed length, data sensitive, variable length,
and undefined length. For example, to define the record type as data sensitive, specify the
following:

?ICRF!?RTDS

The Append Field option (? APND) moves the file pointer to the end of the file. If you select this
option and then write to the file, the operating system appends the new material to the end of the
file.

The exclusive open option (?IEXO) opens the file for the exclusive use of the calling task. No other
task, either in the calling process or in any other process, can open the file until the current caller
closes it. If you do not specify this option, you can open a file for more than one task or process to
use at the same time, as long as you supply an I/O packet for each channel. (The operating system
assigns a different channel number to the file on the second and subsequent ?OPEN s.)

You can open a file that the operating system peripheral manager (PMGR) controls, and give its
channel priority read status by selecting mask ?PDEL in offset ?IST!. When a channel has priority
read status, the operating system places that channel's ?READ requests ahead of the ?READ
requests from all other channels and executes the priority reads first.

2-412 Licensed Material - Property of Data General Corporation 093-000542

The ?OPEN packet allows you to simultaneously create and open files. Table 2-91 describes each of
the file creation options for offset ?1ST!.

Table 2-91. File Creation Options for Offset ?ISTI

Mask System Directive
============= ===

?OFCE

?OFCR

?OFCE!?OFCR

093-000542

Create the file, unless it already exists. (Ignore
?OFCE if the file already exists.)

Create the file; if it already exists, return an
error to ACO, and pass control to the error
return.

If the file already exists, delete it, and then
recreate it. (You cannot use this option for IPC
files.)

Licensed Material - Property of Data General Corporation 2-413

?OPEN Continued

Table 2-92 lists the more common file types you can create with ?OPEN. Table 2-9, in the
description of system call ?CREATE, lists all the file types you can create with ?OPEN.

Offset ?lSTI also contains an input/output field with three options:

• ?OFIN, which opens the file for input (?READ).

• ?OFOT, which opens the file for output (?WRITE).

• ?OFIO, which opens the file for input and/or output (?READ and/or ?WRITE).

You must select one of these options to perform I/O on the file. Otherwise, ?OPEN succeeds, but the
subsequent ?READ or ?WRITE fails.

File
Type

?FUDF

?FTXT

?FPRV

?FDIR

?FIPC

?FCPD

Table 2-92. Common File Types You Can Create with ?OPEN

Meaning
================
User Data File

Text File

32-bit Program
File

Disk Directory

IPC File

Control Point
Directory

1

1

Comments 1

===1
The OS creates this type when you 1
default the file type option (set right 1

byte of ?ISTO to 0). 1

Should contain ASCII code.
1

1

1

An executable 32-bit program file; 1

should contain linked, executable code. 1

If you use ?OPEN to create a file of
this type, you can default only the
following: hashframe size, maximum
number of index levels, and ACL.

1

1

1

1

1

1

Directs the OS to create an IPC file 1

or open an existing IPC file to allow 1

full-duplex communications between two 1

processes. 1

1

Although you can use ?OPEN to create a 1

CPD, we recommend that you use ?CREATE 1

instead. 1

1

________________ ---1

Offset ?ISTO

The right byte of offset ?lSTO specifies the type of file you are opening. Use this field only if you are
creating the file with ?OPEN. If the file you are opening already exists, the operating system
ignores your input to this field and fills it with the file type you specified when you created the file.

You can set the ?SHOP parameter in offset ?lSTO to open the file for shared access. The ?SHOP
parameter directs the operating system to read the file that you specify into one or more shared
pages for access by more than one process. When you set the ?SHOP parameter, the operating
system automatically performs an ?SOPEN on the file, and then initiates the standard ?SPAGE
and ?RPAGE operations.

Note that you cannot set the ?SHOP parameter if you are creating or recreating the file with this
?OPEN. Also, note that if you open the file with a standard ?OPEN, the shared file facility does not
protect your file from modifications.

2-414 Licensed Material - Property of Data General Corporation 093-000542

The ?SHOP parameter causes ?OPEN to behave much like ?SOPEN. However, unlike ?SOPEN,
?OPEN with ?SHOP set involves the Agent. Therefore, to minimize system overhead, you should
use ?SOPEN. Using ?SHOP shared 1/0 consumes more of the system 1/0 resources (than unshared
1/0) and you may not be able to open as many channels.

Normally, the operating system generates a form feed when it opens a line printer. If you do not
want this initial form feed, set bit ?IBFF in offset ?ISTO.

Other ?OPEN Offsets

Offset ?IBAD points to the 1/0 buffer. The 1/0 buffer is an area that you set up to receive the
records you will later read or write. The I/O buffer must be large enough to accommodate the
largest record you will read or write; if it is not, the operating system returns error code ERMPR
when it tries to perform the 1/0 system call. If you do not specify an 1/0 buffer when you open the
file, you must do so every time you issue ?READ or ?WRITE.

The meaning of offset ?IRCL varies, depending on the file's record format. If the file consists of
fixed-length records, set ?IRCL to the record length in bytes. If the file consists of dynamic-length,
variable-length or data-sensitive records, set ?IRCL to the number of bytes to be transferred (read
or written) upon each 1/0 request. If the file consists of fixed-length records and ?IRCL contains -1,
?OPEN places the length of each record in the file in offset ?IRLR.

If the record type is data-sensitive and the operating system encounters a delimiter before it
reaches the specified number of bytes, it terminates the 1/0 transfer. However, if the record type is
data-sensitive and the operating system does not find a delimiter within ?IRCL bytes, it returns
error code ERLTL ("line too long").

Setting a Delimiter Table

To define alternative delimiters for data-sensitive records, set up a delimiter table in your logical
address space, and specify its address in the ?OPEN offset ?IDEL.

The delimiter table must consist of 16 consecutive 16-bit words, to form a table of 256 bits. Each bit
in the table represents an ASCII character. Reading from left to right, the first bit (Word 0, Bit 0)
represents the null character (0), the second bit (Word 0, Bit 1) represents the Ctrl-A character
(octal 001), and so forth. For each bit you set, the operating system recognizes the corresponding
character as a delimiter for the file's records.

Figure 2-114 depicts a sample delimiter table with bits set to make the null, carriage return
(015 octal), and rubout (177 octal) characters data-sensitive delimiters.

086-000195 updates
093-000542 Licensed Material - Property d Data General Corporation 2-415

?OPEN Continued

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1

Word 01 *1 1 1 1 1 1 1 1 1 1 1 1 1**1 1 1
-------1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--I
Word 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-------1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--I
Word 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-------1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--I

-------1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--I
Word 7 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1++ 1
-------1--/--/--1--/--/--1--1--/--/--1--/--/--/--/--/--/

Key: *
**
++

null (000)
carriage return (015 octal)
rubout (177 octal)

Figure 2-114. Sample Delimiter Table

You can also use the ?SDLM system call to set a delimiter table for an open record or open device. If
you issue ?SDLM after you issue ?OPEN, the ?SDLM delimiter specifications override those in the
?OPEN packet.

Extension Packet for Pipes

You use one extension packet for pipes, and only ?OPEN provides the pipe extension packet. You
supply the packet as an extension to the packet for a ?OPEN, ?READ, or ?WRITE system call. You
must specify the pipe size in 2 Kbyte multiples in offset ?IMRS (see Table 2-90). The maximum
pipe size is 20 pages (2 Kbytes equal one page), or you can use the default value of-1.

When the pipe file is created, the operating system adds a I-page overhead to the size specified in
?IMRS. For a full description of using pipes, see AOS/VS System Concepts (093-000335).

Figure 2-115 contains the extension packet. Table 2-93 describes its contents.

2-416

o 15 16 31
/-------------------------+-------------------------/

?PIRV 1 Packet revision 1 Reserved (Set to 0.) 1 ?PIRS
1--------------------------+-------------------------/

?PIFG 1 Flags 1

1-------------------------+-------------------------/
?PIPD 1 Pending behavior code 1 Reserved (Set to 0.) / ?PITI

1-------------------------+-------------------------1
?PIPI 1 Reserved (Set to 0.) /

/---1
?PILN = extension packet length

Figure 2-115. Structure of ?OPEN Extension Packet for Pipes

Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

Table 2-93. Contents of ?OPEN Extension Packet for Pipes

I
Offset Contents 1

======== ==1
?PIRV Packet revision number. Place the value of symbol 1

?PKRO here.

?PIRS

?PIFG

?PIPD

1

1

1

1

1

1

1

1

1

1

?PITI 1

1

I ?PIPI I
I (double-I
1 word) I

I 1

Reserved word. (Set to 0.)

Flag word. (Set to 0.)

Use the following symbols to specify the operating
system's action.

?PALW Always pend on a read from an empty pipe
or on a write to a full pipe, regardless
of whether the pipe is one-ended or
two-ended.

?PTWO -- Pend on a read from an empty pipe or on a
write to a full pipe, but only if the pipe
is two-ended. If the pipe is one-ended,
then return error code EREOF on a read or
else ERPFL on a write. ?PTWO is the default
value of this offset.

?PNVR -- Never pend on a read from an empty pipe or
on a write to a full pipe, regardless of
whether the pipe is one-ended or two-ended.
Return error code EREOF on a read or else
ERPFL on a write.

Reserved word. (Set to 0.)

Reserved word. (Set to 0.)

1 _______ 1 __ _

Magnetic Tapes
Offset ?IMRS specifies the physical block size of a magnetic tape or disk file. The physical block size
is the number of bytes, minus 1, in the largest physical block. The operating system uses this
parameter to allocate a buffer ?IMPSTL bytes long for 110. (The default buffer size is 2 Kbytes (4
blocks) for disk files.)

If you are opening a magnetic tape on a controller that supports multiple tape densities (such as a
type MTB controller), you can set offset ?IRES to a specific density mode for the tape. There are
seven density mode settings: •

• ?IDAM directs the operating system to set the tape unit to the correct density mode automatically.

• ?ID8 sets the tape unit to a density mode of 800 bytes/inch.

• ?IDI6 sets the tape unit to a density mode of 1600 bytes/inch.

• ?ID62 sets the tape unit to a density mode of 6250 bytes/inch.

• ?ID5 sets the tape unit to the lowest density it supports.

• ?ID6 sets the tape unit to the middle density on drives supporting three densities, and to the
lower density on drives supporting two densities.

• ?ID7 sets the tape unit to the highest density it supports.

086-000195 updates
~542 Licensed Material- Property of Data General Corporation 2-417

?OPEN Continued

If you set offset ?IRES to 0 (the default), the operating system uses the density mode that was set
during the system-generation procedure. However, if you set offset ?IRES to 0, you must make sure
that the tape's density mode matches the default mode. Otherwise, ?OPEN fails after I/O is
attempted.

There are two other possible density mode errors: ERCND (controller does not support this density
mode), and ERITD (indecipherable tape density). The operating system returns ERITD when either
the tape or the tape unit is damaged.

Labeled Magnetic Tapes

If you want to read or write additional user labels on a labeled tape file, you must open the file with
the ?OPEN packet extension for labeled tapes. To do this, perform the following steps:

1. Set Bit ?lPKL in offset ?lSTI of the standard ?OPEN packet.

2. Set Bit 0 of offset ?ETLT to 1 (to indicate that there is a packet extension).

The first time you use the labeled tape extension, you must set Bit 0 of ?ETLT (the flag bit) to 1
so that the system will recognize Bits 1 through 31 of offset ?ETLT as the address of the packet
extension. The operating system sets the flag bit to 0 after it executes the ?OPEN.

If you want to change one or more of the specifications, and then reuse the extension, be sure to
reset the flag bit to 1. If the flag bit is 0, the operating system assumes that the packet extension
has not changed and, therefore, does not re-examine it.

You can set aside space for the labeled tape extension even if you do not supply values for it. In
this case, the operating system simply fills the packet extension with the existing label
information.

3. Set Bits 1 through 31 of offset ?ETLT to the address of the packet extension.

4. Precede the labeled tape extension with the following pseudo-op to reserve the correct number
of words for the packet extension:

.LOC extended-pkt-address+ ?ELLN

Figure 2-116 shows the structure of the labeled tape extension.

If you create and open a labeled tape file with the ?OPEN creation option, the operating system
treats the extension as follows:

• If you supplied values in the extension, the operating system uses those values.

• If you did not supply values in the extension, the operating system fills the packet extension
with the default values listed in Table 2-94.

2-418 Licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

093-000542

o 7 8 15 16 23 24 31
------------+------------+------------+------------

?ELVL Volid (taken from Vol.l I Volid (taken from Vol.l ?ELVL
label) I label)

-------------------------+-------------------------
?ELVL Volid (taken from Vol.l I Generation file number ?ELGN

label) I
-------------------------+-------------------------

?ELVR Generation version number 1 Creation date ?ELCR
-------------------------+------------+------------

?ELRE Retention period 1 No. of userl No. of user ?ELCT
(in days) 1 trailer 1 header

1 labels 1 labels
-------------------------+------------+------------

?ELUH Byte pointer to user header labels

?ELUT Byte pointer to user trailer labels

?ELFS Byte pointer to file set ID
------------+------------+-------------------------

?ELAC Level of 1 Access 1

labeling I byte (see 1

(see 1 Table 2-94) 1

Table 2-94) 1 1

------------+------------1

?ELLN = packet length

Figure 2-116. Structure of Labeled Magnetic Tape Packet Extension

Licensed Material - Property of Data General Corporation 2-419

?OPEN Continued

2-420

Table 2-94. Contents of Labeled Magnetic Tape Packet Extension*

Offset Contents
=============== ===

?ELVL Volid (returned by the OS) taken from Volume 1
Label 3 words.

?ELGN ~eneration number of file (from 0 through 9999) .

?ELVR

?ELCR

?ELRE

?ELCT

DEFAULT = -1 (if you specify -1, the OS uses
0001 when it writes to the file, and
does not check or return the generation
number when it reads the file).

Generation version number (from 0 through 99) .

DEFAULT = -1 (if you specify -1, the OS uses 00
when it writes to the file, and does not
check or return the version number when
it reads the file).

Creation date in standard form: dd.rnm.yy.

DEFAULT = current system date.

Retention period in days.

DEFAULT = 90 days.

Right byte: number of user header labels, within
the range 1 through 9 (0 means none) .

Left byte: number of user trailer labels, within
the range 1 through 9 (0 means none) .

At ?OPEN time, the OS either reads or writes the
header labels, depending on whether you opened the
file for input (reading) or for output (writing).

When you close the labeled tape file, the OS
writes the user trailer labels from the area
specified in offset ?ELUT.

If the file was not modified, the OS reads the
trailer labels into the area specified in ?ELUT.

________________ I ____________________________ ~~~----------------~--~
* There is no default unless otherwise specified. (continued)

Licensed Material - Property of Data General Corporation ~542

Table 2-94. Contents of Labeled Magnetic Tape Packet Extension·

Offset
===============

?ELUH
(doubleword)

?ELUT
(doubleword)

?ELFS
(doubleword)

?ELAC

Contents
===
Byte pointer to an area containing the header
labels; all labels are contiguous and sequential.

Byte pointer to an area containing the trailer
labels; all labels are contiguous and sequential.

Byte pointer to file set ID; if you set ?ELFS to
-1, the OS ignores the file set ID when it
reads, and uses the default when it writes.

DEFAULT = 0 (Use volid for first volume in file
set.)

Level of labeling (left byte)

?ELLI--Level 1 (ANSI or IBM).
?ELL2--Level 2 (ANSI or IBM).
?ELL3--Level 3 (ANSI).

DEFAULT = 0 (if ANSI format, ANSI Level 3; if
IBM format, IBM Level 2).

Access byte (right byte): For ANSI format, set
this byte to one or more characters that specify
access to the tape. (For IBM format, set this
byte to 0.)

DEFAULT = 0 (if ANSI format, blank space; if
IBM format, 0).

* There is no default unless otherwise specified. (concluded)

Note that there is no default value for the tape volume identifier (volid). If you want to create and
open a labeled tape file and default the labeled tape extension, you must first establish a volid for
the tape volume. You can do this with the ?LABEL system call or with the CLI LABEL utility.

You can create files on any labeled tape volume as long as you specify the correct volid. If the file
does not exist, the operating system creates it after the last file.

If the file exists, but its retention period has expired and you selected the delete and create options
in the ?OPEN packet, the operating system overwrites the existing file with the new file. Note that
the delete and create option also deletes all subsequent files on the tape, because magnetic tape
files are sequential.

When you open a labeled magnetic tape, do not use the ?OPEN option ?OFIO in offset ?ISTI, which
opens the file for both reading and writing. If you use this option, the ?OPEN fails and the
operating system returns error code ERIOO (illegal option for open type) in ACO.

You can use as many as nine user header labels and nine user trailer labels. Each user header and
trailer label is 80 bytes (characters) long, where the last 76 bytes are user data. If the operating
system finds a null character when writing the label, it takes the null as a terminator, and if
necessary, pads the label with spaces to fill out the 80 character positions. The next label starts 80
bytes past the first label. When the operating system reads the label, it returns the data from the
first label to the first 76 bytes of the ?ELUT area, the second label to the second 76 bytes, and so
forth.

093-000542 Licensed Material - Property 01 Data General Corporation 2-421

?OPEN Continued
If you intend to write to the labeled tape file, be sure to set the following fields in the file's ?OPEN
packet:

• Record format in offset ?ISTI (with the flag ?ICRF; for example, ?RTFX!?ICRF for fixed-length
records).

• Record length in offset ?IRCL.

• Block length in offset ?IMRS.

These fields must contain valid information; otherwise, another operating system may not be able
to read the tape.

When the operating system writes to a labeled tape file, it will overwrite the existing file data and
all subsequent data on the tape, if the retention period (?ELRE) has expired. The default retention
period is 90 days.

If you want to read a file on the labeled tape, do not set ?ICRF when you set the record format,
because the operating system will be unable to return the record format to ?ISTI after it reads the
file.

The operating system returns the file's record length to ?IRCL after it reads a labeled magnetic
tape file, and returns the block length to ?IMRS. If you want the operating system to return the
block length after a ?READ, be sure to set ?IMRS to -1 in the ?OPEN packet.

Sample Packet

The following sample packet opens a file with data-sensitive records for file I/O. The file already
exists.

PKT:

2-422

.BLK

.LOC

. WORD

?IBLT

PKT+?ICH
o

. LOC PKT+?ISTI
?ICRF!?RTDS!?OFIO

.LOC PKT+?ISTO

. WORD 0

.LOC PKT+?IMRS

. WORD -1

.LOC PKT+?IBAD

. DWORD BUF*2

.LOC PKT+?IRES

. WORD 0

.LOC PKT+?IRCL

. WORD 120 .

.LOC PKT+?IFNP

. DWORD PTH*2

.LOC PKT+?IDEL

. DWORD -1

.LOC PKT+?IBLT

;Allocate enough space for packet.
;Packet length = ?IBLT.
;Channel number.
;The OS returns the channel number.

;?OPEN options .
;Change record format to that
;specified in record format field
; (?ICRF), which is data-sensitive
; (?RTDS), and open for I/O (?OFIO).
;File type. The OS assumes the file
;type that you specified when you
;created the file.

;Physical block size is
;2 Kbytes (-1 is the default) .

iSpecify byte pointer to record I/O
ibuffer.
iByte pointer to BUF.

iReserved.
iYou must set this value to o.
iSpecify record length.
iMaximum record length is 120.
icharacters.
iSpecify byte pointer to pathname.
iByte pointer to PTH.
iSpecify delimiter table address.
iUse default delimiters: New Line,
iform feed, and carriage return (-1
iis the default).
iEnd of packet.

Licensed Material - Property of Data General Corporation 093-000542

The following sample packet deletes a file with fixed-length records, recreates it, and then opens it
for output.

PKT:

Notes

.BLK

.LOC

. WORD

?IBLT

PKT+?ICH
o
PKT+?ISTI

;Allocate enough space for packet.
;Packet length = ?IBLT.
;Channel number.
;The OS returns the channel number.

.LOC

. WORD ?ICRF!?RTFX!?OFCR!?OFCE!?OFOT ;Change record format
ito that specified in record format
;field (?ICRF), which is fixed-length
; (?RTFX), delete, and then recreate
;the file (?OFCR!?OFCE), and open the
;file for output (?OFOT).

.LOC

. WORD
PKT+?ISTO ;Specify file type. The OS assumes
o ;that it is a user data file (?FUDF)

;by default.

.LOC PKT+?IMRS

. WORD -1

.LOC PKT+?IBAD

. DWORD BUF*2

. LOC PKT+?IRES

. WORD 0

.LOC PKT+?IRCL

. WORD 33.

.LOC PKT+?IRLR

. WORD 0

. LOC PKT+?IFNP

. DWORD PTH*2

. LOC PKT+?IDEL

.DWORD -1

. LOC PKT+?IBLT

;Physical block size is
;2 Kbytes (-1 is the default) .

;Specify byte pointer to record I/O
;buffer.
;Byte pointer to BUF .

;Reserved .
;You must set this value to O .
;Specify record length. (?READ and
;?WRITE use this value.)
;Maximum record length is 33-byte
;fixed records.

;Record length. (?READ and ?WRITE
;use this value.)
;The OS returns this value .

;Specify byte pointer to pathname .
;Byte pointer to PTH .

;Specify delimiter table address .
;Use default delimiters: New Line,
;form feed, and carriage return
; (-1 is the default) .

;End of packet .

• See the descriptions of?CLOSE, ?CREATE, ?READ, ?WRITE, ?SPAGE, ?RPAGE, ?SDLM, and
?LABEL in this chapter.

• See the description of?CGNAM in this chapter to get a complete pathname from a channel
number.

~542 Licensed Material - Property of Data General Corporation 2-423

?OPER Creates and maintains an operator interface.

?OPER {packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?OPER
packet, unless you specify
the address as an argument
to ?OPER

Error Codes in ACO

Buff'er too long
Operator already exists

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?OPER packet

ERBTL
ERDAE
ERDEB
ERDNE
ERDRF
ERIRB
ERNOA
ERNRQ
ERPKT
ERPNO
ERPRE
ERVWP

Daemon resource error in error buffer
Task is not an operator
Daemon resource failure
Insufficient room in buffer
No operator available
No matching operator request
Invalid packet identifier
Process is not an operator
Invalid system call parameter
Invalid word pointer passed as system call argument

Why Use It?
Use this system call to communicate with an operator and receive its responses.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
This system call performs six basic functions. They are

• Operator on.

• Operator off'.

• Send operator request.

• Operator receive request.

• Operator respond to request.

• Operator information.

2-424 Licensed Material - Property of Data General Corporation 093--000542

You supply a main packet in all operator interface requests. You also supply a subpacket that the
main packet points to. This subpacket contains the details about one of the six functions mentioned
above.

Figure 2-117 shows the structure of the ?OPER main packet, and Table 2-95 describes its
contents. After Table 2-95 the subpackets are described in the following order.

Function Function Structure of Contents of
Code Description Subpacket Subpacket

?OPON Operator on Figure 2-118 Table 2-96
?OPOFF Operator off Figure 2-119 Table 2-97
?OPSEND Send operator request Figure 2-120 Table 2-98
?OPRCV Operator receive Figure 2-121 Table 2-99

request
?OPRESP Operator respond to Figure 2-122 Table 2-100

request
?OPINFO Operator information Figure 2-123 Table 2-101

o 15 16 31
1-------------------------+-------------------------1

?OPKT 1 Packet identifier 1 ?OPK2
1-------------------------+-------------------------1

?OSPI 1 Subpacket indicator 1 Reserved (Set to 0.) 1 ?OREV
1-------------------------+-------------------------1

?ORES 1 Resource flags 1 ?ORE2
1-------------------------+-------------------------1

?OPSP 1 Word pointer to subpacket 1

1---1
?OPNL = packet length

Figure 2-117. Structure of ?OPER Main Packet

093-000542 Licensed Material - Property of Data General Corporation 2-425

•

I

?OPER Continued

2-426

Table 2-95. Contents of ?OPER Main Packet

Offset Contents
======== ==

?OPKT/
?OPK2

?OSPI

?OREV

?ORES/
?ORE2

?OPSP

Packet identifier. Place ?OPID here.

Function code. It specifies the operation you want, and
indicates the existence of a unique subpacket to the
operating system. You must supply this main packet and
exactly one subpacket for each issuance of ?OPER. Select
from the following values:

?OPON
?OPOFF
'?OPINFO

Become an operator daemon.
Resign as an operator daemon.
Request information about the current
operator environment.

'?OPSEND
'?OPRCV
'?OPRESP

Issue an operator request.
Receive an operator request.
Respond to an operator request.

Reserved; set to O.

Resource indicator bit flags. This doubleword contains
device bit indicators that represent the various system
resources. Each indicator corresponds to the resource(s)
the function is intended for. The bit masks and their
resources are as follows:

?OPLD
?OPUD
?OPLT
?OPUT
?OPCO
?OPPR
?OPBQ
?OPHD
?OPQU
?OPCD
?OPGM
?OPMI

Labeled diskettes (LD).
Unlabeled diskettes (UD).
Labeled tapes (LT).
Unlabeled tapes (UT).
Terminals (T).
Printers (P).
Batch queues (B).
Hard disks (HD).
Queues (Q).
Other cooperative devices (OCD).
Generic media (GM).
Miscellaneous (M).

For example, to specify terminals and printers, supply
the symbol ?OPCO!?OPPR.

Word pointer to subpacket. Supply a word pointer to the
subpacket for the function you selected in offset
?OPKT/?OPK2.

Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
1-------------------------+-------------------------1

?OONT 1 Packet identifier 1 ?OON2
1-------------------------+-------------------------1

?OONN 1 Daemon name identifier 1 ?OON3
1-------------------------+-------------------------1

?OOG1' 1 Type of global daemon flags 1 ?OOG2
1-------------------------+-------------------------1

?ONER 1 Resource errors (returned) 1 ?ONE2
1-------------------------+-------------------------1

?OONE 1 Word pointer to error buffer 1

1-------------------------+-------------------------1
?ONEI 1 Input error buffer I Returned data buffer I ?ONEO

1 length 1 length 1
1-------------------------+-------------------------1

?OONL = subpacket length

Figure 2-118. Structure of?OPON Subpacket

Table 2-96. Contents of ?OPON Subpacket

Offset Contents
======== ===

093-000542

?OONT/
?OON2

?OONN/
?OON3

?OOGT/
?OOG2

?ONER/
?ONE2

Packet identifier. Place ?ONID here.

Daemon name. This offset contains the name that
uniquely identifies the global daemon(s) being
established for the resources that offset ?ORES in the
main packet indicates. ?OONN/?OON3 is 32 bits long;
you must supply a value here when you declare any type
of a global daemon. Set this field to zero when you are
making a request for declaring a local daemon.

Flags word. This doubleword identifies the type
of global daemon that you want to become for each
resource that offset ?ORES of the main packet specifies.
When you want to become an exclusive operator daemon
for a resource, set the bit indicator flag corresponding
to the resource bit flag in offset ?ORES. Doing so
declares exclusive operator global-type daemons for
specified resources simultaneously with requests to
declare global operator-type daemons for other
resources. If you want to become a local daemon, then
set this field to zero.

Resource error. The operating system returns the success
or failure of your becoming a daemon for the specified
resources in offset ?ORES/?ORE2 of the main packet. If
you are unsuccessful, then the operating system sets
the device bit indicator corresponding to the failed
resource in ?ORES/?ORE2. If you are successful for all
resources requested, then the operating system sets
offset ?ONER/?ONE2 to zero.

(continued)

Licensed Material - Property of Data General Corporation 2-427

?OPER Continued

Offset

?OONE
(double
word)

?ONEI

?ONEO

?OOFT

?OOFN

?OFER

?OOFE

?OFEI

2-428

Table 2-96. Contents of ?OPON Subpacket

Contents
==

Error buffer pointer. Supply the word address of the
error data buffer. The operating system returns error
codes to this buffer that indicate why it did not
declare the daemon for the indicated resources in offset
?ONER/?ONE2 above. Each system resource has a dedicated
word entry in the buffer to hold the encountered error
codes. If the operating system detects an error while
declaring a daemon for a particular resource, it loads
the appropriate error code into the correct entry. If
you don't want particular errors, then set this field
to zero before issuing ?OPER.

Here is the resource error buffer word entry format:

1. error code for labeled diskettes
2. error code for unlabeled diskettes
3. error code for labeled tapes
4. error code for unlabeled tapes
5. error code for terminals
6. error code for printers
7. error code for batch queues
8. error code for hard disks
9. error code for queues

10. error code for other cooperative devices
11. error code for generic media
12. error code for miscellaneous

Error buffer length. Supply the word length of the
error buffer. The buffer must be large enough to
accommodate all of the defined system resources, so
place at least 12 here. If offset ?OONE contains zero,
the system ignores this word.

Returned error buffer length. The system contains the
word length of the data buffer returned. The system
ignores this offset if offset ?OONE contains zero.

(concluded)

o 15 16 31
-------------------------+-------------------------

Packet identifier ?OOF2
-------------------------+-------------------------

Daemon name identifier ?OOF3
-------------------------+-------------------------

Resource errors (returned) ?OFE2
-------------------------+-------------------------

Word pointer to error buffer
-------------------------+-------------------------

Input error buffer I Returned data buffer ?OFEO
length I length

-------------------------+-------------------------
?OOFL = subpacket length

Figure 2-119. Structure of ?OPOFF Subpacket

Licensed Material - Property of Data General Corporation 093-000542

093-000542

Table 2-97. Contents of ?OPOFF Subpacket

Offset Contents
======== ==

?OOFT/
?OOF2

?OOFN/
?OOF3

?OFER/
?OFE2

?OOFE
(double
word)

Packet identifier. Place ?OFID here.

Daemon name. This offset contains the same name
identifier for each global daemon that is
requesting to resign. The identifier is limited to 32
bits; it is the same identifier that was set in the
?OPON function. Set this field to zero when the daemon
that wants to resign is a local daemon.

Resource error. The operating system returns the success
or failure of resigning a daemon for the specified
resources in offset ?ORES/?ORE2 of the main packet. If
you are unsuccessful, then the operating system sets
the device bit indicator corresponding to the failed
resource in ?ORES/?ORE2. If you are successful for all
resources requested, then the operating system sets
offset ?OFER/?OFE2 to zero.

Error buffer pointer. Supply the word address of the
error data buffer. The operating system returns error
codes to this buffer that indicate why it did not resign
the daemon for the indicated resources in offset
?OFER/?OFE2 above. Each system resource has a dedicated
word entry in the buffer to hold the encountered error
codes. If the operating system detects an error while
resigning a daemon for a particular resource, it loads
the appropriate error code into the correct entry. If
you don't want particular errors codes, th~n set this
field to zero before issuing ?OPER.

(continued)

Licensed Material - Property of Data General Corporation 2-429

?OPER Continued

2-430

Table 2-97. Contents of ?OPOFF Subpacket

Offset Contents
======== ==

Here is the resource error buffer word entry format:

1. error code for labeled diskettes
2. error code for unlabeled diskettes
3. error code for labeled tapes
4. error code for unlabeled tapes
5. error code for terminals
6. error code for printers
7. error code for batch queues
8. error code for hard disks
9. error code for queues

10. error code for other cooperative devices
11. error code for generic media
12. error code for miscellaneous

?OFEI Error buffer length. Supply the word length of the
error buffer. The buffer must be large enough to
accommodate all of the defined system resources, so
place at least 12 here. If offset ?OOFE contains zero,
the system ignores this word.

?OFEO Returned error buffer length. The system contains the
word length of the data buffer returned. The system
ignores this offset of offset ?OOFE contains zero.

(concluded)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-98. Contents of ?OPSEND Subpacket

Offset Contents
======== ==

093-000542

?OSNT/
?OSN2

?OSNP
(double
word)

?OSIL

?OSOL

?OSID

?OSNQ

?OSNN/
?OSN3

?OSNF

?OSNR

Packet identifier. Place ?SEID here.

Data buffer pointer. This offset contains the word
address of the data buffer. The buffer transfers data
that is associated with particular operator requests.
The operator daemon specifies the format of the data.

Supply the word length of the data buffer.

The operating system returns the word length of data
returned to you in the buffer.

Supply the number of words of input data in the buffer.

Supply the request code for the function you are sending
to the local daemon. Here is a list of the codes with
their resources and functional descriptions:

?ORLC (LD)
?ORLO (LD)
?ORMNV (LD)
?ORMU (LD)

labeled diskette close.
labeled diskette open.
mount next volume.
mount error.

Daemon identifier. For sending requests to local
daemons, set this offset to zero and place ?OSNL in
offset ?OSNF. For sending requests to a specific global
daemon, supply the name identifier of the global daemon
and place ?OSNG in offset ?OSNF. For sending requests
to any available global daemon, set this offset to zero
and place ?OSNO in offset ?OSNF. The operating system
returns the name identifier of a global daemon. You
could then use this name identifier in subsequent
?OPSEND requests.

Flags word. This offset contains flag bits with routing
information for the ?OPSEND function. Set the flag bit
that corresponds to the routing schemes as follows:

?OSNL send to the local daemon for the resource
in offset ?OSNQ.

?OSNG send to a specific global daemon, whose name
is in offset ?OSNN/?OSN3, for the resource
in offset ?OSRE of the main packet.

?OSNO -- send to any available global daemon for the
resource; the operating system returns, in
offset ?OSNN/?OSN3, the name identifier of
the global daemon where it routed the
resource.

Reserved; set to o.

Licensed Material - Property of Data General Corporation 2-431

?OPER Continued

o 15 16 31
-------------------------+-------------------------

?OSNT Packet identifier ?OSN2
-------------------------+-------------------------

?OSNP Word pointer to data buffer
-------------------------+-------------------------

?OSIL Buffer length I Returned data length ?OSOL
-------------------------+-------------------------

?OSID Data input length I Request code ?OSNQ
-------------------------+-------------------------

?OSNN Daemon name identifier ?OSN3
-------------------------+-------------------------

?OSNF Routing flags word I Reserved (Set to 0.) ?OSNR
-------------------------+-------------------------
?OSLN = subpacket length

Figure 2-120. Structure of ?OPSEND Subpacket

o 15 16 31
-------------------------+-------------------------

?ORCT Packet identifier ?ORC2
-------------------------+-------------------------

?ORCP Word pointer to data buffer
-------------------------+-------------------------

?OCIL Available input buffer I Returned data length ?OCOL
length I

-------------------------+-------------------------
?ORCS Sequence number (returned) ?ORC3

?ORCN Daemon name identifier ?ORC4
-------------------------+-------------------------

?OCRD PID (returned) I Reserved (Set to 0.) ?OCRI
-------------------------+-------------------------

?OCR2 Reserved (Set to 0.) ?OCR3

?OCR4 Reserved (Set to 0.) ?OCR5

?OCR6 Reserved (Set to 0.) ?OCR7
-------------------------+-------------------------

?ORCQ Request code (returned) I System call (returned) ?ORSC
-------------------------+-------------------------

?OCR8 Reserved (Set to 0.) I Waiter count (returned) ?OCR9
--------------------------+-------------------------
?ORCL = subpacket length

Figure 2-121. Structure of?OPRCV Subpacket

2-432 Licensed Material - Property of Data General Corporation 093-000542

1

1 Offset 1

1========

093-000542

?ORCT/
?ORC2

?ORCP
(double
word)

?OCIL

?OCOL

?ORCS/
?ORC3

?ORCN/
?ORC4

?OCRD

?OCRl

?OCR2/
?OCR3

?OCR4/
?OCR5

?OCR6/
?OCR7

?ORCQ

?ORSC

?OCR8

?OCR9

Table 2-99. Contents of ?OPRCV Subpacket

Contents
==

Packet identifier. Place ?RCID here.

Data buffer pointer. This offset contains the word
address of the data buffer. The buffer transfers data
that is associated with particular operator requests.
The operator daemon specifies the format of the data.

Input buffer length. This offset contains the word
length of the input data buffer.

Output buffer length. This offset contains the word
length of data returned to you in the buffer.

Sequence number. The operating system returns a unique
sequence identifying number. The number is used to
match responses with requests from callers.

Daemon name. Supply the name identifier of the calling
daemon. If it is a global daemon, then supply the
associated name identifier. If it is a local daemon,
then supply zero.

PID. The operating system returns the PID of the sender
process.

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Reserved. (Set to 0.)

The operating system returns the request code for the
function that was sent to the daemon. The codes and
their meanings are the same as those in offset ?OSNQ of
the ?OPSEND subpacket.

System call. AOS/VS returns the system call number that
was issued by the requestor (?EXEC, ?OPEX, or ?OPER).

Reserved. (Set to 0.)

Waiter count. AOS/VS returns the number of outstanding
requests that are queued for this daemon. If the count
is zero, the daemon had to wait for a request. Otherwise,
the count contains the number of outstanding send
requests that were not received at the time of the call.
Use this offset to return performance information.

Licensed Material - Property of Data General Corporation 2-433

?OPER Continued

o 15 16 31
1-------------------------+-------------------------1

?ORPT 1 Packet identifier 1 ?ORP2
1-------------------------+-------------------------1

?ORPP 1 Word pointer to data buffer 1

1-------------------------+-------------------------1
?OPIL 1 Input buffer length 1 Error code 1 ?ORPE

1-------------------------+-------------------------1
?ORPS 1 Sequence number 1 ?ORP3

1---1
?ORPN 1 Daemon name identifier 1 ?ORP4

1---1
?ORPL = subpacket length

Figure 2-122. Structure of ?OPRESP Subpacket

Table 2-100. Contents of ?OPRESP Subpacket

1

1 Offset Contents
1======== ===
1 ?ORPT/
1 ?ORP2
1

1 ?ORPP
1 (double-
1 word)
1

1

2-434

?OPIL

?ORPE

?ORPS/
?ORP3

?ORPN/
?ORP4

Packet identifier. Place ?RSID here.

Data buffer pointer. This offset contains the word
address of the data buffer. The buffer transfers data
that is associated with particular operator requests.
The daemon specifies the format of the data. Moreover,
the buffer holds data that the daemon is returning to
a process; it's the process that issued ?OPER/?OPSEND
for this particular request.

Input buffer length. Supply the number of words in
the input data buffer.

Error code. The calling daemon uses this field to notify
the operating system of any errors detected during the
request's processing. If no errors were encountered,
then set this field to zero. Otherwise, set it to
the code for the detected error.

Sequence number. This offset contains the unique sequence
ID number that the daemon is responding to. This must be
the same sequence number that the ?OPRCV function
returned.

This offset is required on input from the daemon, and
the operating system uses this offset to map responses
to the correct requestor.

Daemon name. Supply the name identifier of the calling
daemon. If this daemon is a global type, supply the
associated name identifier. If this daemon is a local
one, place zero here.

Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
1-------------------------+-------------------------1

?OINT 1 Packet identifier 1 ?OIN2
1-------------------------+-------------------------1

?OINP 1 Word pointer to information buffer 1

1-------------------------+-------------------------1
?OIIL 1 Available input buffer 1 Returned data length 1 ?OIOL

1 length 1 1
1-------------------------+-------------------------1

?OIND 1 Function bits 1 Reserved (Set to 0.) 1 ?OINR
1-------------------------+-------------------------1

?OINL = subpacket length

Figure 2-123. Structure of ?OPINFO Subpacket

093--000542 Licensed Material - Property of Data General Corporation 2-435

?OPER Continued

2-436

Table 2-101. Contents of ?OPINFO Subpacket

Offset Contents
======== ==

?OINT/
?OIN2

?OINP
(double
word)

?OIIL

?OIOL

?OIND

?OINR

Packet identifier. Place ?INID here.

Information buffer pointer. Supply the word address of
a buffer that receives information from the ?OPINFO
operator function. Information returned to you includes:

A bit map indicating which resources have global
daemons.
A bit map indicating which of the resources have
exclusively declared global daemons.
The name identifiers of daemons for a specific
resource.

Input buffer length. This offset contains the number
of words in the buffer addressed by offset ?OINP.
Supply a large enough number so the buffer can hold the
identifiers for all system resources.

Output buffer length. The operating system returns the
number of words of data that it returned in the buffer.

Function bit indicators. Supply bits to indicate the
type of information you want returned to the buffer.
The values of the bits and their meanings are

?OIGB--return the bit maps of system resources having a
global declared daemon, and indicate which of
these daemons are exclusively declared global.
The operating system returns the bit maps in the
first two doublewords of the buffer. The first
doubleword indicates which resources have
global daemons declared. The second doubleword
indicates which of the existing global daemons
are exclusively declared. The system sets
corresponding bit flags. These bits are the same
as in the ?OPON packet(s). The first doubleword
will contain resource bits; the second will
contain exclusive resource bits.

?OIGN--return the identifiers of global daemons that
exist for the resource whose bit mask is set in
offset ?ORES/ORE2 of the main packet. The
identifiers are returned in the buffer that
offset ?OINP points to.

Reserved. (Set to 0.)

Licensed Material - Property of Data General Corporation 093-000542

?OPEX Communicates between the current process
and an operator process.

?OPEX [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACl Reserved (Set to 0.)

AC2 Address of the ?OPEX
packet, unless you specify the
address as an argument to ?OPEX

Error Codes in ACO

Buffer too long
Operator already exists

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?OPEX packet

ERBTL
ERDAE
ERDEB
ERDNE
ERDRF
ERIRB
ERNOA
ERNRQ
ERPKT
ERPNO
ERPRE
ERPRV
ERRVN
ERVBP
ERVWP
ERXSP
ERXUF

Daemon resource error in error buffer
Task is not an operator
Daemon resource failure
Insufficient room in buffer
No operator available
No matching operator request
Invalid packet identifier
Process is not an operator
Invalid system call parameter
Caller not privileged for this action
Reserved value not zero
Invalid byte pointer passed as system call argument
Invalid word pointer passed as system call argument
Invalid EXEC string parameter
Unknown request code

Why Use It?
Use this system call to make requests of operator daemons for actions on various system resources.
The actions can be service requests or status information requests.

Who Can Use It?

To issue ?OPEX you must have one of the following:

• The same username as EXEC (which is usually OP).

• System Manager privilege.

• The appropriate ACL to the related device/queue/cooperative.

There are no restrictions concerning file access.

093-000542 Licensed Material - Property of Data General Corporation 2-437

?OPEX Continued

What It Does

This system call performs the functions of the CONTROL @EXEC family of commands. The call's
requests end up as part of an ?OPER system call parameter packet. In turn, the packet is sent to
the appropriate ?EXEC daemon for the corresponding resource request type.

You supply a main packet to any ?OPEX request. This main packet includes, in offset ?ZXFU, a
function code to specify the exact request. The structure of the main packet is in Figure 2-124.
Table 2-102 shows the function codes that you can place in offset ?ZXFU of the main packet. This
table also explains the contents of the other offsets of the main packet.

o 15 16 31
-------------------------+-------------------------

?ZXID Packet identifier
-------------------------+-------------------------

?ZXFU Function code I Time prompt ?ZXTP
-------------------------+-------------------------

?ZXFG Active field flags I Reserved (Set to 0.) ?ZXRS
-------------------------+-------------------------

?ZXNA Byte pointer to queue or device name buffer
-------------------------+-------------------------

?ZXNB Size of queue or device I Length of returned ?ZXNL
name buffer I string in name buffer

-------------------------+-------------------------
?ZXSP Word pointer to subpacket

?ZXLN = packet length

Figure 2-124. Structure of?OPEX Main Packet

2-438 Licensed Material - Property of Data General Corporation 093-000542

Table 2-102. Contents of ?OPEX Main Packet

Offset Contents
======== ==

?ZXID Packet identifier. Place ?ZXIZ here.
(double-
word)

?ZXFU Function code. It specifies the ?OPEX function you
want. Place one of the following values in this offset.

Value

?ZAC
?ZAG
?ZAL
?ZBL
?ZBO

?ZBI
?ZBR
?ZCA
?ZCL
?ZCS

?ZCO
?ZCP
?ZCR
?ZDF
?ZDE

?ZDI
?ZDM
?ZDS
?ZEL
?ZEN

?ZEV
?ZFL
?ZFN
?ZFO
?ZHA

?ZHE
?ZHO
?ZLI
?ZLO
?ZLP

?ZMP
?ZME
?ZMD
?ZMO
?ZMS

?ZON
?ZOP
?ZPA

Functional
Description

access command
align command
allocate command
batch_list command
batch_output command

binary command
brief command
cancel command
close command
consolestatus

command

continue command
cpl command
create command
defaultforms command
delete command

disable command
mdump command
dismounted command
elongate command
enable command

even command
flush command
font command
forms command
halt command

headers command
hold command
limit command
logging command
lpp command

mapper command
message command
modify command
mounted command
mountstatus command

open command
operator command
pause command

See See
Figure Table

2-125
2-126

2-127
2-128

2-129
2-130
2-131

2-132

2-133
2-134
2-135
2-136

2-137

2-138
2-139
2-140

2-141
2-142

2-143
2-144

2-145
2-146
2-147
2-148
2-149

2-150

2-151
2-152

2-153
2-154

2-103
2-104

2-105
2-106

2-107
2-108
2-109

2-110

2-111
2-112
2-113
2-115

2-116

2-117
2-118
2-119

2-120
2-121

2-122
2-123

2-124
2-125
2-126
2-127
2-128

2-129

2-130
2-131

2-132
2-133

See
Page

2-442
2-443
2-443
2-444
2-445

2-446
2-447
2-448
2-448
2-449

2-451
2-452
2-453
2-454
2-454

2-455
2-471
2-456
2-457
2-458

2-460
2-461
2-461
2-462
2-463

2-464
2-465
2-466
2-467
2-469

2-470
2-471
2-471
2-472
2-473

2-476
2-476
2-477

(continued)

093-000542 Licensed Material - Property 01 Data General Corporation 2-439

?OPEX Continued

Table 2-102. Contents of ?OPEX Main Packet

Offset Contents
======== ==

?ZXFU Functional See See See
(cont.) Value Description Figure Table Page

----------- ------

?ZPE premount 2-155 2-134 2-478
?ZPI priority 2-156 2-135 2-479
?ZPR prompts command 2-157 2-136 2-480
?ZPU purge command 2-480
?ZQP queuepriority 2-158 2-137 2-481

command

?ZRF refused command 2-159 2-138 2-483
'?ZRE release command 2-160 2-139 2-484
?ZRT restart command 2-161 2-140 2-485
?ZSI silence command 2-162 2-141 2-486
?ZSP spoolstatus command 2-163 2-142 2-487

?ZSK stack command 2-164 2-143 2-491
?ZSR start command 2-165 2-144 2-492
?ZSS status command 2-166 2-145 2-495
?ZST stop command 2-167 2-146 2-499
?ZTE terminate command 2-499

?ZTR trailers command 2-168 2-147 2-500
?ZUH unhold command 2-169 2-148 2-501
?ZUS unitstatus command 2-170 2-149 2-502
?ZUL unl imi t command 2-171 2-150 2-504
?ZUN unsilence command 2-172 2-151 2-505

?XUC user command 2-173 2-152 2-506
?ZVE verbose command 2-174 2-153 2-508
?ZXB xbias command 2-508

(continued)

2-440 Licensed Material - Property of Data General Corporation 093-000542

1

I Offset I
1========
1 ?ZXTP
I
1

1

1 ?ZXFG
1

1

093-000542

?ZXRS

?ZXNA
(double
word)

?ZXNB

?ZXNL

?ZXSP
(double
word)

Table 2-102. Contents of ?OPEX Main Packet

1

Contents I
==1

Time prompt. This offset receives the time prompt from
the operating system. If prompts are off, the operating
system instead returns -1 to this offset.

Active field flags. This offset tells the operating
system that offset ?ZXNA contains a byte pointer to a
buffer that you are using. For example, if the function
you specify (such as ?ZAC -- the access command)
requires placing a buffer byte pointer in offset ?ZXNA,
then place the value ?ZYAO (= 1B(?ZZAO)) in offset
?ZXFG. If you don't place ?ZYAO in offset ?ZXFG, then
place zero in offsets ?ZXNA and ?ZXNB.

The function codes ?ZHA (halt command request),
?ZMD (modify command request), ?ZPR (prompts), and
?ZRF (refused) don't require a buffer byte pointer;
place zero in offsets ?ZXNA and ?ZXNB for them.

Reserved. (Set to 0.)

This offset contains a byte pointer to the buffer with
the device name, queue name, pathname, or username of
the function you are requesting.

Supply the number of bytes in the buffer that offset
?ZXNA points to.

The operating system returns the number of bytes in the
name that you placed in offset ?ZXNA.

Supply the word address of the subpacket for the
function you specified in offset ?ZXFU. If the function
doesn't require a subpacket, place zero here.

(concluded)

Licensed Material - Property of Data General Corporation 2-441

?OPEX Continued

Access Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name/cooperative buffer.

Figure 2-125 shows the structure of the access command subpacket, and Table 2-103 describes its
contents.

2-442

o 15 16 31
1-------------------------+-------------------------1

?ZACI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZACF 1 Flags 1 Reserved (Set to 0.) 1 ?ZACR

1-------------------------+-------------------------1
?ZACA 1 Byte pointer to access list buffer 1

1-------------------------+-------------------------1
?ZAC3 1 Number of bytes in 1 Number of bytes of data 1 ?ZAC4

1 access list buffer 1 returned in access list 1
1 1 buffer 1
1-------------------------+-------------------------1

?ZACL = packet length

Figure 2-125. Structure of Access Command Subpacket

Table 2-103. Contents of Access Command Subpacket

1

Offset Contents 1

?ZACI
(double
word)

?ZACF

?ZACR

?ZACA
(double
word)

?ZAC3

?ZAC4

==1
Subpacket identifier. Place ?ZACZ here. 1

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZAC.

IB(?ZZ9G) default.

?ZY9H IB(?ZZ9H) specify the kill option.

?ZY9I IB(?ZZ9I) operator-specified ACL.

Reserved. (Set to 0.)

Supply a byte pointer to your access list buffer.

Specify the number of bytes in your access list buffer.

The operating system returns the number of bytes in the
access list that is in your access list buffer.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

--_1

Licensed Material - Property of Data General Corporation 093-000542

Align Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the align command.

Figure 2-126 shows the structure of the align command subpacket, and Table 2-104 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZAGI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZAGF 1 Flags 1 Number of page or 0 1 ?ZAGN

1-------------------------+-------------------------1
?ZAGL = packet length

Figure 2-126. Structure of Align Command Subpacket

Table 2-104. Contents of Align Command Sub packet

Offset Contents
=====:=== ==

?ZAGI Subpacket identifier. Place ?ZAGZ here.
(double-
word)

?ZAGF

?ZAGN

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZAG.

?ZYEO = IB(?ZZEO) -- continue.

Supply the page number. Or, if you supply the default
page number of zero, then continuation occurs where
utility program XLPT left off.

Allocate Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer.

The allocate function does not require a subpacket.

093-000542 Licensed Material - Property of Data General Corporation 2-443

?OPEX Continued

Batch_List Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
batch queue name buffer for the batch_list function.

Figure 2-127 shows the structure of the batch_list command subpacket, and Table 2-105 describes
its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZBLI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZBLF 1 Flags 1 Number of bytes in the 1 ?ZBLA

1 1 list queue name buffer 1
1-------------------------+-------------------------1

?ZBLB 1 Byte pointer to the list queue name buffer 1

1---1
?ZBLL = packet length

Figure 2-127. Structure of Batch_List Command Subpacket

Table 2-105. Contents of Batch_List Command Subpacket

Offset Contents
======== ==

?ZBLI Subpacket identifier. Place ?ZBLZ here.
(double-
word)

?ZBLF Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZBL.

?ZYLO = IB(?ZZLO) -- The default switch is on.

?ZBLA Specify the number of bytes in the list queue name
buffer.

?ZBLB Supply a byte pointer to the list queue name buffer.
(double-
word)

2-444 Licensed Material - Property of Data General Corporation 093-000542

Batch_Output Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
batch queue name buffer for the batch_output function.

Figure 2-128 shows the structure of the batch_output command subpacket, and Table 2-106
describes its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZBOI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZBOF 1 Flags 1 Number of bytes in the 1 ?ZBOA

1 I output queue name buffer I
1-------------------------+-------------------------1

?ZBOB 1 Byte pointer to the output queue name buffer 1

1---1
?ZBOL = packet length

Figure 2-128. Structure of Batch_Output Command Subpacket

Table 2-106. Contents of Batch_Output Command Subpacket

Offset Contents
======== ==

?ZBOI Subpacket identifier. Place ?ZBOZ here.
(double-
word)

?ZBOF Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZBO.

?ZYMO = IB(?ZZMO) -- The default switch is on.

?ZBOA Specify the number of bytes in the output queue name
buffer.

?ZBOB Supply a byte pointer to the output queue name buffer.
(double-
word)

093-000542 Licensed Material - Property of Data General Corporation 2-445

?OPEX Continued

Binary Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the binary function.

Figure 2-129 shows the structure of the binary command subpacket, and Table 2-107 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZBII 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZBIF 1 Flags 1 Number of bytes in the 1 ?ZBIA

1 1 filename buffer 1
1-------------------------+-------------------------1

?ZBIB 1 Byte pointer to the filename buffer 1

1---1
?ZBIL = packet length

Figure 2-129. Structure of Binary Command Subpacket

Table 2-107. Contents of Binary Command Subpacket

Offset Contents
======== ==

2-446

?ZBII Subpacket identifier. Place ?ZBIZ here.
(double-
word)

?ZBIF

?ZBIA

?ZBIB
(double
word)

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZBI.

?ZYFO = 1B(?ZZFO) The byte pointer to the filename
buffer is passed in offset ?ZBIB.

?ZYF1 = 1B (?ZZF1) Sets binary mode to OFF.

?ZJF1 = OB (?ZZF1) Sets binary mode to ON.

?ZYF2 1B (?ZZF2) Return value that specifies
the binary mode is enabled.

?ZYJ2 = OB(?ZZF2) -- Return value that specifies
the binary mode is disabled.

Specify the number of bytes in the filename buffer.

Supply a byte pointer to the filename buffer.
a filename in this buffer.

Licensed Material - Property of Data General Corporation

Place

093-000542

Brief Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the brief function. If you set flag bit ?ZZNO in offset ?ZBRF of the
subpacket, then the request is for all batch streams.

Figure 2-130 shows the structure of the brief command subpacket, and Table 2-108 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZBRI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZBRF 1 Flags 1 Stream number 1 ?ZBRS

1-------------------------+-------------------------1
?ZBRL = packet length

Figure 2-130. Structure of Brief Command Subpacket

Table 2-108. Contents of Brief Command Subpacket

Offset Contents
======== ==

?ZBRI Subpacket identifier. Place ?ZBRZ here.
(double-
word)

?ZBRF

?ZBRS

093-000542

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZBR.

?ZYNO = IB(?ZZNO) -- All default batch input streams
are specified.

Supply the batch stream number if bit ?ZZNO in offset
?ZBRF is not set. Otherwise, supply zero (for all batch
streams) .

Licensed Material - Property of Data General Corporation 2-447

?OPEX Continued

Cancel Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
username buffer, if necessary, for the cancel function.

Figure 2-131 shows the structure of the cancel command subpacket, and Table 2-109 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZCAI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZCAS 1 Sequence number 1 Reserved (Set to 0.) 1 ?ZCAR

1-------------------------+-------------------------1
?ZCAL = packet length

Figure 2-131. Structure of Cancel Command Subpacket

Table 2-109. Contents of Cancel Command Subpacket

Offset Contents
======== ==

?ZCAI Subpacket identifier. Place ?ZCAZ here.
(double-
word)

?ZCAS

?ZCAR

Supply the sequence number in this offset. Or, to cancel
all jobs with a given username, supply 0 here and supply
a byte pointer to the username in offset ?ZXNA of the
main packet of ?OPEX.

Reserved (Set to 0.)

Close Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain a byte pointer to the queue
name buffer that contains the queue name for the close function.

The close function does not require a subpacket.

2-448 Licensed Material - Property 01 Data General Corporation 093-000542

Consolestatus Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the consolestatus function. If you take the default (by setting bit ?ZZBO of
offset ?ZCSF), then the operating system returns the name of the terminal in the device name
buffer.

Figure 2-132 shows the structure of the consolestatus command subpacket, and Table 2-110
describes its contents.

?ZCsr

?ZCSF

?ZCSK

?ZCS3

?ZCSU

?ZCSA

?ZCSN

093-000542

o 15 16 31
-------------------------+-------------------------

Subpacket identifier
-------------------------+-------------------------
Flags I Reserved (Set to 0.) ?ZCSR

-------------------------+-------------------------
Get next key -- 1

Get next key -- 2

Byte pointer to user name buffer
-------------------------+-------------------------

Number of bytes in I Number of bytes in the ?ZCSB
the username buffer I string returned in the

I username buffer
-------------------------+-------------------------

Number of tries I prD ?ZCSP
-------------------------+-------------------------
?ZCSL = packet length

Figure 2-132. Structure of Consoles tat us Command Subpacket

Licensed Material - Property of Data General Corporation 2-449

?OPEX Continued

2-450

Offset
========

?ZCSI
(double
word)

?ZCSF

?ZCSR

?ZCSK
(double
word)

?ZCS3
(double
word)

?ZCSU
(double
word)

?ZCSA

?ZCSB

?ZCSN

?ZCSP

Table 2-110. Contents of Consolestatus Command Subpacket

1

1 Contents 1

==1
Subpacket identifier. Place ?ZCSZ here. 1

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZCS.

?ZYBO = lB(?ZZBO)

?ZYBl lB(?ZZB1)

?ZYB2 lB(?ZZB2)

?ZYB3 lB(?ZZB3)

?ZYB4 lB (?ZZB4)

?ZYB5 lB(?ZZB5)

?ZYB6 lB(?ZZB6)

?ZYB7 lB(?ZZB7)

?ZYB8 lB(?ZZB8)

?ZYB9 lB (?ZZB9)

Reserved. (Set to o.)

The default. You want the status
of all terminals.

Terminal is enabled.

Continue.

Stop.

Terminal is logged on.

Terminal will be disabled.

Log on/log off is in progress.

Terminal is in server died state.

Terminal is in error state.

Terminal is not logged on.

Get next entry key. The operating system uses this
offset to hold the key indicator for EXEC.

Second get next entry key. The operating system uses
this offset to hold the second key indicator for EXEC.

Supply a byte pointer to the buffer that receives the
username.

Specify a number of bytes to accommodate the largest
possible username.

The operating system returns the number of bytes in the
username that it placed in the username buffer.

1

1

1

I
I
1

1

1

The operating system returns the number of tries it made.

The operating system returns the PID associated with the
terminal.

Licensed Material - Property of Data General Corporation 093-000542

Continue Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the continue function.

Figure 2-133 shows the structure of the continue command subpacket, and Table 2-111 describes
its contents.

If you want to continue all default batch input streams, follow these steps:

1. Set Bit ?ZZOO in offset ?ZCOF on.

2. Set the remaining bits in offset ?ZCOF off.

3. Place zero in offset ?ZCOS.

4. In the main packet, set the following to zero:

• Offset ?ZXNA

• Offset ?ZXNB

• Bit ?ZZAO in offset ?ZXFG

Suppose you want to continue all default streams associated with a batch queue you created via the
?ZCR function of?OPEX. You have also specified the name of the queue and type=batch. Then,
place zero in offsets ?ZCOF and ?ZCOS. In the main packet the offsets ?ZXNA, ?ZXNB, and ?ZXFG
do not contain zero.

o 15 16 31
1-------------------------+-------------------------1

?ZCOI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZCOF 1 Flags 1 Stream number 1 ?ZCOS

1-------------------------+-------------------------1
?ZCOL = packet length

Figure 2-133. Structure of Continue Command Subpacket

Table 2-111. Contents of Continue Command Subpacket

1

Offset 1 Contents 1

======== ==1
?ZCOI Subpacket identifier. Place ?ZCOZ here. 1

(double- 1

word)

?ZCOF

?ZCOS

093-000542

Flags word. It contains bit flags that indicate default
choices to the operating system.

?ZYOO = IB(?ZZOO) -- Continue all default batch input
streams.

Supply the stream number. The default (the value 0) is
to continue all batch streams.

licensed Material - Property of Data General Corporation 2-451

?OPEX Continued

CPL (Characters Per Line) Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the cpl function.

Figure 2-134 shows the structure of the cpl command subpacket, and Table 2-112 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZCPI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZCPN 1 Number of characters 1 Reserved (Set to 0.) 1 ?ZCPR

1-------------------------+-------------------------1
?ZCPL = packet length

Figure 2-134. Structure of CPL Command Subpacket

Table 2-112. Contents of CPL Command Subpacket

Offset Contents
======== ==

?ZCPI Subpacket identifier. Place ?ZCPZ here.
(double-
word)

?ZCPN Supply the number of characters per line.

?ZCPR Reserved. (Set to 0.)

2-452 Licensed Material - Property of Data General Corporation 093-000542

Create Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
queue name buffer for the create function.

Figure 2-135 shows the structure of the create command subpacket, and Table 2-113 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZCR.I 1 Subpacket identifier 1
1-------------------------+-------------------------1

?ZCRF 1 Flags 1 Number of streams 1 ?ZCR.N
1-------------------------+-------------------------1

?ZCRQ 1 Queue type(Table 2-114.) 1 Reserved (Set to 0.) 1 ?ZCRR
1-------------------------+-------------------------1

?ZCRL = packet length

Figure 2-135. Structure of Create Command Subpacket

Table 2-113. Contents of Create Command Subpacket

Offset Contents
======== ==

?ZCRI Subpacket identifier. Place ?ZCRZ here.
(double-
word)

?ZCRF

?ZCRN

?ZCRQ

?ZCRR

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZCR.

?ZYPO = IB(?ZZPO) Streams switch.

Supply the number of streams.

Supply the numeric queue type.

Reserved. (Set to 0.)

Table 2-114 lists the queue types that EXEC supports.

093-000542

Table 2-114. ?OPEX Queue Types in Offset ?ZCRQ

1

Offset Value 1 Queue Type
==============1============

?XQBAT 1 BATCH
?XQLPT 1 PRINT
?XQPLT 1 PLOT
?XQHAM 1 HAMLET
?XQSNA I SNA
?XQFTA 1 FTA
?XQMUN 1 MOUNT
?XQUSR I USER

--------------1------------

Process Type
======================================

Batch processing
Print processing
Plot processing
HAMLET data transfer
SNA data transfer
FTA data transfer
Mount processing
User-defined processing

Licensed Material - Property of Data General Corporation 2-453

?OPEX Continued

Defaultforms Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the defaultforms function.

Figure 2-136 shows the structure of the defaultforms command subpacket, and Table 2-115
describes its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZDFI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZDFF 1 Flags 1 Number of bytes in the 1 ?ZDFA

1 1 filename buffer 1
1-------------------------+-------------------------1

?ZDFB 1 Byte pointer to the filename buffer 1

1---1
?ZDFL = packet length

Figure 2-136. Structure of Defaultforms Command Subpacket

Table 2-115. Contents of Defaultforms Command Subpacket

1

Offset Contents 1

======== ==1
?ZDFI Subpacket identifier. Place ?ZDFZ here.

(double-
word)

?ZDFF

?ZDFA

Flags word. It contains the bit flags that indicate
default choices to the operating system.

?ZYGO = 1B(?ZZGO) -- If the bit is set, then the byte
pointer to the filename buffer is
in offset ?ZDFB. Otherwise, the
default forms are used.

Specify the number of bytes in the filename buffer.

?ZDFB Supply a byte pointer to the filename buffer. Place
(double- a filename in this buffer.
word)

Delete Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain a byte pointer to the queue
name buffer that contains the queue name for the delete function.

The delete function does not require a subpacket.

2-454 Licensed Material - Property of Data General Corporation 093-000542

Disable Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the disable function.

Figure 2-137 shows the structure of the disable command subpacket, and Table 2-116 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZDII 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZDIF 1 Flags 1 Number of terminals 1 ?ZDIN

1-------------------------+-------------------------1
?ZDIL = packet length

Figure 2-137. Structure of Disable Command Subpacket

Table 2-116. Contents of Disable Command Subpacket

Offset Contents
======== ==

?ZDII Subpacket identifier. Place ?ZDIZ here.
(double-
word)

?ZDIF

?ZDIN

093-000542

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZDI.

?ZYCO = 1B(?ZZCO)

?ZYC1 1B (?ZZC1)

?ZYC2 1B(?ZZC2)

Default; you want to disable all
the terminals.

The terminal will be disabled.

All terminals will be disabled.

Number of terminals. Supply O. If you set bit ?ZZCO
of offset ?ZDIF, AOS/VS returns the number of terminals
disabled in offset ?ZDIN.

Licensed Material - Property of Data General Corporation 2-455

?OPEX Continued

Dismounted Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the dismounted function.

Figure 2-138 shows the structure of the dismounted command subpacket, and Table 2-117
describes its contents.

o 15 16 31
1-------------------------+-------------------------1

7ZDSI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZDSF 1 Flags 1 Mount ID 1 ?ZDSM

1-------------------------+-------------------------1
7ZDSL = packet length

Figure 2-138. Structure of Dismounted Command Subpacket

Table 2-117. Contents of Dismounted Command Subpacket

1

Offset Contents 1

========
7ZDSI

(double
word)

?ZDSF

?ZDSM

==1
Subpacket identifier. Place ?ZDSZ here. 1

Flags word. It contains the bit flags that indicate
default choices to the operating system.

?ZYOO = 1B(?ZZOO) -- Default mount request.

Supply the mount ID.

1

1

1

1

1

1

1

1

1

1

-------- ---,

2-456 Licensed Material - Property of Data General Corporation 093--000542

Elongate Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the elongate function.

Figure 2-139 shows the structure of the binary command subpacket, and Table 2-118 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZELI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZELF 1 Flags 1 Reserved (Set to 0.) 1 ?ZELR

1-------------------------+-------------------------1
?ZELN = packet length

Figure 2-139. Structure of Elongate Command Subpacket

Table 2-118. Contents of Elongate Command Subpacket

Offset Contents
======== ==

?ZELI Subpacket identifier. Place ?ZELZ here.
(double-
word)

?ZELF

?ZELR

093-000542

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZEL.

IB(?ZZHO) Elongate is turned on.

?ZJHO OB (?ZZHO) Elongate is turned off.

Reserved. (Set to 0.)

Licensed Material - Property of Data General Corporation 2-457

?OPEX Continued

Enable Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain a byte pointer to the device
name buffer for the enable function. The operating system will return the terminal name if you
specify so.

Figure 2-140 shows the structure of the enable command subpacket, and Table 2-119 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZENI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZENF 1 Flags 1 Number of tries 1 ?ZENT

1-------------------------+-------------------------1
?ZENK 1 Get next key -- 1 1

1---1
?ZEN3 1 Get next key -- 2 1

1-------------------------+-------------------------1
?ZENC 1 Number of terminals I Error code I ?ZENR

1-------------------------+-------------------------1
?ZENL = packet length

Figure 2-140. Structure of Enable Command Subpacket

2-458 Licensed Material - Property of Data General Corporation 093-000542

Table 2-119. Contents of Enable Command Subpacket

Offset Contents
======== ==

093-000542

?ZENI Subpacket identifier. Place ?ZENZ here.
(double-
word)

?ZENF

?ZENT

?ZENK
(double
word)

?ZEN3
(double
word)

?ZENC

?ZENR

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZEN.

?ZYDO = IB(?ZZDO)

?ZYDl IB (?ZZD1)

?ZYD2 IB(?ZZD2)

?ZYD3 IB(?ZZD3)

?ZYD4 IB (?ZZD4)

?ZYD5 IB (?ZZD5)

The default. You want to enable
all terminals.

Tries switch.

Stop switch.

Continue switch.

Force switch.

Terminal is already enabled.

?ZYD6 IB(?ZZD6) Cancelling disable, previous values I
are in effect.

?ZYD7

?ZYD8

?ZYD9

?ZYDA

?ZYDB

IB(?ZZD7) -- Cancelling disable, new log-on
values are in effect.

IB (?ZZD8)

IB (?ZZD9)

IB (?ZZDA)

IB(?ZZDB)

New log-on values are in effect.

Terminal enabled.

Could not enable terminal.

Device already in use.

Supply (to EXEC) the maximum number of log-on tries.

Get next entry key. The operating system uses this
offset to hold the key indicator for EXEC.

Second get next entry key. The operating system uses
this offset to hold the second key indicator for EXEC.

The operating system returns the number of terminals
enabled when you set the all terminals value (?ZYDO) in
offset ?ZENF.

The operating system returns, from EXEC, an error code.

Licensed Material - Property of Data General Corporation 2-459

?OPEX Continued

Even Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the even function.

Figure 2-141 shows the structure of the even command subpacket, and Table 2-120 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZEVI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZEVF 1 Flags 1 Reserved (Set to 0.) 1 ?ZEVR

1-------------------------+-------------------------1
?ZEVL = packet length

Figure 2-141. Structure of Even Command Subpacket

Table 2-120. Contents of Even Command Subpacket

Offset Contents
======== ==

2-460

?ZEVI Subpacket identifier. Place ?ZEVZ here.
(double-
word)

?ZEVF

?ZEVR

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for the
function ?ZEV.

?ZYIO

?ZJIO

IB(?ZZIO)

OB(?ZZIO)

Reserved. (Set to 0.)

Even is turned on.

Even is turned off.

Licensed Material - Property of Data General Corporation 093-000542

Flush Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the flush function.

Figure 2-142 shows the structure of the flush command subpacket, and Table 2-121 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZFLI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZFLF 1 Flags 1 Stream number 1 ?ZFLS

1
1 Offset
1========
1 ?ZFLI
1 (double-
1 word)
1

1 ?ZFLF
1
1 ?ZFLS
1

1-------------------------+-------------------------1
?ZFLL = packet length

Figure 2-142. Structure of Flush Command Subpacket

Table 2-121. Contents of Flush Command Subpacket

Contents
==
Subpacket identifier. Place ?ZFLZ here.

Flags word. Set to O.

Supply the stream number. If the target is a device
with no streams, supply O.

1-------- __ ___

Font Command

This function is currently undefined.

~542 Licensed Material- Property of Data General Corporation 2-461

?OPEX Continued

Forms Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the forms function.

Figure 2-143 shows the structure of the forms command subpacket, and Table 2-122 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZFOI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZFOF 1 Flags 1 Number of bytes in the 1 ?ZFOA

1 1 filename buffer 1
1-------------------------+-------------------------1

?ZFOB 1 Byte pointer to the filename buffer 1

1---1
?ZFOL = packet length

Figure 2-143. Structure of Forms Command Subpacket

Table 2-122. Contents of Forms Command Subpacket

Offset Contents
======== ==

2-462

?ZFOI Subpacket identifier. Place ?ZFOZ here.
(double-
word)

?ZFOF

?ZFOA

?ZFOB
(double
word)

Flags word. It contains the bit flags that indicate
default choices to the operating system.

?ZYJO = IB(?ZZJO) -- If the bit is set, then the byte
pointer to the filename buffer is
in offset ?ZFOB. Otherwise, the
implicit default forms are used.

Specify the number of bytes in the filename buffer.

Supply a byte pointer to the filename buffer.
a filename in this buffer.

Licensed Material - Property 01 Data General Corporation

Place

093-000542

Halt Command

Bit ?ZZAO of offset ?ZXFG of the main ?OPEX packet in Figure 2-124 must not be set, since the
halt function does not require a buffer to pass information. Consequently, the operating system
ignores offset ?ZXNA of the main ?OPEX packet.

Figure 2-144 shows the structure of the halt command subpacket, and Table 2-123 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZHAI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZHAF 1 Flags 1 Reserved (Set to 0.) 1 ?ZHAR

Offset
========

?ZHAI
(double
word)

?ZHAF

?ZHAR

1-------------------------+-------------------------1
?ZHAL = packet length

Figure 2-144. Structure orHalt Command Subpacket

Table 2-123. Contents of Halt Command Subpacket

1

Contents 1

==1
Subpacket identifier. Place ?ZHAZ here. I

1

1

1

Flags word. There are no bits defined in this word. 1

Set it to O. 1

1

Reserved. (Set to 0.) 1

1

________ --1

093-000542 Licensed Material - Property of Data General Corporation 2-463

?OPEX Continued

Headers Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the headers function.

Figure 2-145 shows the structure of the headers command subpacket, and Table 2-124 describes
its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZHEI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZHEH 1 Number of header sheets 1 Reserved (Set to 0.) 1 ?ZHER

1-------------------------+-------------------------1
?ZHEL = packet length

Figure 2-145. Structure of Headers Command Subpacket

Table 2-124. Contents of Headers Command Subpacket

1

Offset 1 Contents
========1==

?ZHEI 1 Subpacket identifier. Place ?ZHEZ here.
(double-I
word) 1

1

?ZHEH 1 Supply the number of header sheets before each printed
1 job.
1

?ZHER 1 Reserved. (Set to 0.)
1

--------1---

2-464 Licensed Material - Property of Data General Corporation 093-000542

Hold Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
usemame buffer, if necessary, for the hold function.

Figure 2-146 shows the structure of the hold command subpacket, and Table 2-125 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZHOI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZHOS 1 Sequence number 1 Reserved (Set to 0.) 1 ?ZHOR

1-------------------------+-------------------------1
?ZHOL = packet length

Figure 2-146. Structure of Hold Command Subpacket

Table 2-125. Contents of Hold Command Subpacket

1

Offset 1 Contents
========1==

?ZHOI 1 Subpacket identifier. Place ?ZHOZ here.
(double-I
word) 1

1

?ZHOS 1 Supply the sequence number in this offset. Or, to hold
1 all jobs with a given username, supply 0 here and supply
1 a byte pointer to the username in offset ?ZXNA of the
1 main packet of ?OPEX.
1

1

?ZHOR 1 Reserved. (Set to 0.)
1

--------1--

093-000542 Licensed Material - Property of Data General Corporation 2-465

?OPEX Continued

Limit Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the limit function.

There are two correspondences between the eLI syntax for the limit command and the ?OPEX
equivalent. They are next.

CONTROL @EXEC LIMIT
?OPEX FUNC

CONTROL @EXEC LIMIT
?OPEX FUNC

<QUEUE NAME>
(OPEX_PACKET.NAME)

@<DEVICENAME>
(OPEX_PACKET.NAME)

[STREAM #]

ARGUMENT_l
[HH:MM:SS]
ARGUMENT_2

Figure 2-147 shows the structure of the limit command subpacket, and Table 2-126 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZLII 1 Subpacket identifier 1

1--------------------------+-------------------------1
?ZLIA 1 ARGUMENT_l 1 ARGUMENT_2 1 ?ZLIB

1-------------------------+-------------------------1
?ZLIL = packet length

Figure 2-147. Structure of Limit Command Subpacket

Table 2-126. Contents of Limit Command Subpacket

Offset Contents
======== ==

2-466

?ZLII Subpacket identifier. Place ?ZLIZ here.
(double-
word)

?ZLIA

?ZLIB

ARGUMENT_I. If you specify a queue name, supply a
stream number here. The default value is all batch
streams; to specify this, supply -1.

If you specify a device name, then supply -1.

ARGUMENT 2. If you specify a queue name, supply the
time. The default time is 36:24:30; to specify this,
supply -1.

If you specify a device name, then supply the maximum
number of pages. The default value of -1 specifies 65535
as the maximum number of pages.

Licensed Material - Property of Data General Corporation 093-000542

Logging Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
pathname or device name buffer for the logging function. For logging status requests, this buffer
will receive the current log file name from the operating system.

Figure 2-148 shows the structure of the logging command subpacket, and Table 2-127 describes its
contents.

o 15 16 31
-------------------------+-------------------------

?ZLOI Subpacket identifier
-------------------------+-------------------------

?ZLOF Flags I Maximum number of pages ?ZLOP
-------------------------+-------------------------

?ZLOC Byte pointer to terminal name buffer
-------------------------+-------------------------

?ZL03 Number of bytes in I Number of bytes in the ?ZL04
the terminal name I string returned in the
buffer I terminal name buffer

-------------------------+-------------------------
?ZL05 Terminal error code I Log file error code ?ZL06

-------------------------+-------------------------
?ZLOL = packet length

Figure 2-148. Structure of Logging Command Subpacket

093-000542 Licensed Material - Property 01 Data General Corporation 2-467

?OPEX Continued

1

1 Offset 1

1========
1 ?ZLOI
(double
word)

2-468

?ZLOF

?ZLOP

?ZLOC
(double
word)

?ZL03

?ZL04

?ZL05

?ZL06

Table 2-127. Contents of Logging Command Subpacket

Contents
==
Subpacket identifier. Place ?ZLOZ here.

Flags word. It contains the bit flags to indicate
default choices to the operating system.

?ZY80 = IB(?ZZ80) Return status. This is the default.

?ZY81 IB(?ZZ81) Start switch.

?ZY82 = IB(?ZZ82) Maximum switch.

?ZY83 IB(?ZZ83) Stop switch.

?ZY84 IB(?ZZ84) Terminal switch.

?ZY85 IB(?ZZ85) No terminal switch.

?ZY86 IB(?ZZ86) Start logging.

?ZY87 = IB(?ZZ87) Stop logging.

Supply the maximum number of pages.

Supply a byte pointer to the buffer that receives the
terminal name.

Specify a number of bytes to accommodate the largest
possible terminal name.

The operating system returns the number of bytes in the
terminal name that it placed in the terminal name buffer.

EXEC returns a terminal error code to this offset.

EXEC returns a log file error code to this offset.

Licensed Material - Property of Data General Corporation 093-000542

LPP (Lines Per Page) Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the lpp function.

Figure 2-149 shows the structure of the lpp command subpacket, and Table 2-128 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZLPI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZLPN 1 Number of lines 1 Reserved (Set to 0.) 1 ?ZLPR

1-------------------------+-------------------------1
?ZLPL = packet length

Figure 2-149. Structure of LPP Command Subpacket

Table 2-128. Contents of LPP Command Subpacket

1

Offset Contents 1

========
?ZLPI

(double
word)

?ZLPN

?ZLPR

==1
Subpacket identifier. Place ?ZLPZ here. 1

1

1

1
Supply the number of lines per page. 1

1

Reserved. (Set to 0.) 1

1

________ ---1

093-000542 Licensed Material - Property of Data General Corporation 2-469

?OPEX Continued

Mapper Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the mapper function.

Figure 2-150 shows the structure of the mapper command subpacket, and Table 2-129 describes
its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZMPI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZMPF 1 Flags 1 Number of bytes in the 1 ?ZMPA

1 1 filename buffer 1
1-------------------------+-------------------------1

?ZMPB 1 Byte pointer to the filename buffer 1

1---1
?ZMPL = packet length

Figure 2-150. Structure of Mapper Command Subpacket

Table 2-129. Contents of Mapper Command Subpacket

1

1 Offset 1 Contents
1========1==
1 ?ZMPI 1 Subpacket identifier. Place ?ZMPZ here.
1 (double-I
1 word) 1

1 1

1 ?ZMPF 1 Flags word. It contains the bit flags that indicate
1 1 default choices to the operating system.
1

1 ?ZYMF = IB(?ZZMF) -- If the bit is set, then the byte

2-470

?ZMPA

?ZMPB
(double
word)

pointer to the mapper filename
buffer is in offset ?ZMPB.
Otherwise, no mapper filename is
used.

Specify the number of bytes in the mapper filename
buffer.

Supply a byte pointer to the mapper filename buffer.
Place the name of a mapper file in this buffer.

Licensed Material - Property of Data General Corporation 093-000542

Mdump Command
This function is a request to EXEC to create a memory dump file of itself. EXEC responds by
issuing system call ?MDUMP. The result is a file named ?EXEC.dd_mmm-Y)'.hh_mm_ss.7.MDM.
As you can see, the filename is based on the dat.e and time that ?MDUMP created the memory
dump file from ring 7. ?MDUMP places the file in the same directory as the executing EXEC.PR
file - typically, :UTIL. The file's ACL is the same as EXEC's default ACL - typically,
OP,OWARE.

Another response to your request is a pair of messages that system call ?SEND sends to your
process. These messages state that a memory dump is occurring and give the complete pathname of
the memory dump file. Or, if?MDUMP fails, your process receives a pair of messages about the
failure via system call ?SEND.

This function does not require a subpacket or a buffer. Supply the following values to the main
?OPEX packet in Figure 2-124.

?ZXID ?ZXIZ
?ZXFU ?ZDM
?ZXTP See Table 2-102.
?ZXFG 0
?ZXRS 0
?ZXNA 0
?ZXNB 0
?ZXNL 0
?ZXSP 0

Message Command
This function does not require a subpacket. Instead, supply a byte pointer to the message text
buffer in offset ?ZXNA of the ?OPEX main packet in Figure 2-124.

Modify Command
Supply 0 in offset ?ZXNA of the ?OPEX main packet in Figure 2-124, since all information is
passed in the subpacket. The subpacket has the same format as the one for the ?XFMOD function
of system call ?EXEC. See Figure 2-159.

093-000542 Licensed Material - Property of Data General Corporation 2-471

?OPEX Continued

Mounted Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer, if necessary, for the mounted function.

Figure 2-151 shows the structure of the mounted command subpacket, and Table 2-130 describes
its contents.

2-472

o 15 16 31
1-------------------------+-------------------------1

?ZMOI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZMOF 1 Flags 1 Mount ID 1 ?ZMOM

1-------------------------+-------------------------1
?ZMOB 1 Byte pointer to the volid name buffer 1

1-------------------------+-------------------------1
?ZMOA 1 Number of bytes in the 1 Reserved (Set to 0.) 1 ?ZMOR

1 volid name buffer 1 1
1-------------------------+-------------------------1

?ZMOL = packet length

Figure 2-151. Structure of Mounted Command Subpacket

Table 2-130. Contents of Mounted Command Subpacket

I
Offset Contents 1

?ZMOI
(double
word)

?ZMOF

?ZMOM

?ZMOB
(double
word)

?ZMOA

?ZMOR

==1
Subpacket identifier. Place ?ZMOZ here. 1

Flags word. It contains the bit flags that indicate
default choices to the operating system.

?ZY10 = 1B(?ZZ10) -- Default mount ID.

Specify the mount ID.

Supply a byte pointer to the volid name buffer.

Specify the number of bytes in the volid name buffer.

Reserved. (Set to 0.)

Licensed Material - Property of Data General Corporation

1

1

1

1

1

1

1

093-000542

Mountstatus Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
queue name buffer for the mountstatus function. To obtain all the mount queue names, use the
?XFNQN (get queue names) function of system call ?EXEC.

Figure 2-152 shows the structure of the mountstatus command subpacket, and Table 2-131
describes its contents.

o 15 16 31
-------------------------+-------------------------1

?ZMSI SUbpacket identifier 1

-------------------------+-------------------------1
?ZMSF Flags -- 1 1 Flags -- 2 1 ?ZMSG

-------------------------+-------------------------1
?ZMSP Requestor PIO 1 EXEC son PIO 1 ?ZMSE

-------------------------+-------------------------1
?ZMSK Get next key -- 1 1

---1
?ZMSX Get next key -- 2 I

?ZMSU Byte pointer to user name buffer
-------------------------+-------------------------

?ZMS3 1 Number of bytes in 1 Number of bytes in the ?ZMS4

?ZMST

?ZMS5

?ZMSV

?ZMS7

?ZMSO

?ZMS9

?ZMSS

the username buffer 1 string returned in the
1 username buffer

-------------------------+-------------------------
Byte pointer to text name buffer

-------------------------+-------------------------
Number of bytes in 1 Number of bytes in the ?ZMS6
the text name buffer 1 string returned in the

1 text name buffer
-------------------------+-------------------------
Byte pointer to volid name buffer

-------------------------+-------------------------
Number of bytes in I Number of bytes in the ?ZMS8
the volid name buffer 1 string returned in the

1 volid name buffer
-------------------------+-------------------------
Byte pointer to device name list buffer

-------------------------+-------------------------
Number of bytes in 1 Number of bytes in the ?ZMSO
the device name list 1 string returned in the
buffer I device name list buffer

-------------------------+-------------------------
Byte pointer to volid list name buffer

-------------------------+-------------------------
?ZMSA Number of bytes in 1 Number of bytes in the ?ZMSZ

1 the volid list name 1 string returned in the
1 buffer I volid list name buffer
1-------------------------+-------------------------

?ZMSM 1 Mount 10 1 Mount error ?ZMSR

086-000195 updates
093-000542

1-------------------------+-------------------------
?ZMSL = packet length

Figure 2-152. Structure of Mounts tat us Command Subpacket

Licensed Material - Property 01 Data General Corporation 2-473

I

?OPEX Continued

Table 2-131. Contents of Mountstatus Command Subpacket

1
Offset 1 Contents 1

========1==1
?ZMSI 1 Subpacket identifier. Place ?ZMSQ here.

1

1

1

I

(double-I
word)

?ZMSF

I ?ZMSG
I
I
1

I
I
I
1

1

1

1

1
I ?ZMSP

Flags word. It contains bit flags that indicate default
choices to the operating system. You must set either
bit ?ZY20 or bit ?ZY21.

?ZY20 = 1B(?ZZ20)

?ZY21 = 1B(?ZZ21)

?ZJ22 OB(?ZZ22)

?ZY22 1B(?ZZ22)

?ZY23 1B(?ZZ23)

?ZY24 1B(?ZZ24)

?ZY25 1B(?ZZ25)

?ZY26 1B(?ZZ26)

?ZY27 1B(?ZZ27)

?ZY28 1B(?ZZ28)

?ZY29 = 1B(?ZZ29)

You want the status of all
requests, both inactive and active.

You want the status by mount 10.

An output bit; explicit labeled
mount request.
An output bit; implicit labeled
mount request.

An output bit; unit mount request.

An output bit; waiting to be
dismounted.

An output bit; next volume.

An output bit; mount error.

An output bit; specific volume.

An output bit; extend volid list.

An output bit; read only.

Flags word. It contains bit flags that the operating
system sets.

?ZY2G

?ZY2H

?ZY2I

?ZY2J

1B(?ZZ2G)

1B (?ZZ2H)

1B(?ZZ2I)

1B(?ZZ2J)

An output bit; density is 800 bpi.

An output bit; density is 1600 bpi.

An output bit; density is 6250 bpi.

An output bit; automatic density
matching.

The operating system returns the PIO of the requestor.
1
1 ?ZMSE The operating system returns the PIO of the immediate I

1 son of EXEC. I
I ,
I ?ZMSK Get next entry key. The operating system uses this 1

1 (double- offset to hold the key indicator for EXEC. I
I word) 1
I ?ZMSX Second get next entry key. The operating system uses I
I (double- this offset to hold the second key indicator for EXEC. I
I word) I I
I I I
I I __ ~--~--~I

(continued)

2-474 Lioensed Material- Property d Data General Corporation
086-000195 updates

093-000542

Offset

?ZMSU
(double
word)

?ZMS3

?ZMS4

?ZMST
(double
word)

?ZMS5

?ZMS6

?ZMSV
(double
word)

?ZMS7

?ZMS8

?ZMSD
(double
word)

?ZMS9

?ZMSO

?ZMSS
(double
word)

?ZMSA

?ZMSZ

Table 2-131. Contents of Mountstatus Command Subpacket

Contents
==

Supply a byte pointer to the buffer that receives the
username.

Specify a number of bytes to accommodate the largest
possible username.

The operating system returns the number of bytes in the
username that it placed in the username buffer.

Supply a byte pointer to the buffer that receives the
request text.

Specify a number of bytes to accommodate the largest
possible request text.

I
I
I

The operating system returns the number of bytes
text that it placed in the request text buffer.

in the I

Supply a byte pointer to the buffer that receives the
volid.

Specify a number of bytes to accommodate the largest
possible volid.

The operating system returns the number of bytes in the
volid that it placed in the volid buffer.

Supply a byte pointer to the buffer that receives the
device name. The content is a list of device names
that are separated by nulls; a pair of nulls terminates
the list.

Specify a number of bytes to accommodate the largest
possible device name. The current maximum size of a
device name list is 1024. bytes.

The operating system returons the number of bytes in the
data that it placed in the device list buffer.

Supply a byte pointer to the buffer that receives the
volid list.

Specify a number of bytes to accommodate the largest
possible volid list.

The operating system returns the number of bytes in the
volid list that it placed in the volid list buffer.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
?ZMSM I Supply the mount ID. I

I I
I ?ZMSR I The operating system returns the mount error code. I
I ________ I __ ~----~~~I

(concluded)

093-000542 Licensed Material - Property of Data General Corporation 2-475

?OPEX Continued

Open Command

This function does not require a subpacket. Instead, supply a byte pointer to the queue name buffer
that contains the queue name for the open function. This byte pointer belongs in offset ?ZXNA of
the ?OPEX main packet in Figure 2-124.

Operator Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the operator function.

Figure 2-153 shows the structure of the operator command subpacket, and Table 2-132 describes
its contents.

o 15 16 31
1-------------------------+-------------------------1

?ZOPI 1 Subpacket identifier 1

1--------------------------+-------------------------1
?ZOPF 1 Flags 1 Reserved (Set to 0.) 1 ?ZOPR

1--------------------------+-------------------------1
?ZOPL = packet length

Figure 2-153. Structure of Operator Command Subpacket

Table 2-132. Contents of Operator Command Subpacket

1

1 Offset 1 Contents 1
1=========1==1
1 ?ZOPI 1 Subpacket identifier.
1 (double-

Place ?ZOPZ here.

1 word)
1

1 ?ZOPF
1

1

1

1

1

1

1 ?ZOPR
1

Flags word. It contains bit flags with additional
information to the operating system and EXEC for
function ?ZOP.

?ZJ30 = OB(?ZZ30)
?ZY30 = 1B(?ZZ30)

Reserved. (Set to 0.)

There is no operator.
There is an operator on duty.

1-------- ___ __

2-476 licensed Material - Property of Data General Corporation 093--{)00542

Pause Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer.

If you want to pause all default batch input streams, follow these steps:

1. Set Bit ?ZZQO in offset ?ZP AF on.

2. Set the remaining bits in offset ?ZP AF off.

3. Place zero in offset ?ZP AS.

4. In the main packet, set the following to zero:

• Offset ?ZXNA

• Offset ?ZXNB

• Bit ?ZZAO in offset ?ZXFG

Suppose you want to pause all default streams associated with a batch queue you created via the
?ZCR function of?OPEX. You have also specified the name of the queue and type=batch. Then,
place zero in offsets ?ZPAF and ?ZPAS. In the main packet the offsets ?ZXNA, ?ZXNB, and ?ZXFG
do not contain zero.

Figure 2-154 shows the structure of the pause command subpacket, and Table 2-133 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZPAI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZPAF 1 Flags 1 Stream number 1 ?ZPAS

1------0-------------------+-------------------------1
?ZPAL = packet length

Figure 2-154. Structure of Pause Command Subpacket

Table 2-133. Contents of Pause Command Subpacket

1

1 Offset 1 Contents 1
1========1==1
1 ?ZPAI 1 Subpacket identifier. Place ?ZPAZ here.
1 (double-I
1 word) 1

1 1
1 ?ZPAF 1 Flags word. It contains bit flags that indicate default
1 1 choices to the operating system.
1 1
1 1 ?ZYQO = IB(?ZZQO) -- Pause all default batch input
1 1 streams.
1 1
1 ?ZPAS 1 Supply the stream number. The default (the value 0) is
lito pause all batch streams.
1 1

1-------1---

09:H>O0542 Licensed Material - Property of Data General Corporation 2-477

?OPEX Continued

Premount Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the premount function.

Figure 2-155 shows the structure of the pre mount command subpacket, and Table 2-134 describes
its contents.

o 15 16 31
-------------------------+-------------------------

?ZPEI Subpacket identifier
-------------------------+-------------------------

?ZPEF Flags 1 Reserved (Set to 0.) ?ZPER
-------------------------+-------------------------

?ZPEU Byte pointer to the user name buffer
-------------------------+-------------------------

?ZPE3 Number of bytes in the 1 Number of bytes in the ?ZPE4
user name buffer 1 valid buffer

--------------------------+-------------------------
?ZPEV Byte pointer to the valid buffer

?ZPEL = packet length

Figure 2-155. Structure of Premount Command Subpacket

Table 2-134. Contents of Premount Command Subpacket

1

Offset 1 Contents 1

========1==

1

?ZPEI 1 Subpacket identifier. Place ?ZPEZ here.
(double-I
word) 1

?ZPEF Flags word. It contains bit flags with additional
information to the operating system and EXEC for
function ?ZPE.

?ZY40 = IB(?ZZ40) IBM switch.

1 ?ZPER Reserved (Set to 0.)
1

1 ?ZPEU Supply a byte pointer to the buffer that receives the
1 (double- username.
1 word)
1

1 ?ZPE3
1

1 ?ZPE4
1

1 ?ZPEV 1

1 (double-I
1 word) 1

Specify

Specify

Supply
valid.

the number of

the number of

a byte pointer

bytes in the username buffer.

bytes in the valid buffer.

to the buffer that receives the

1 1 __ __

2-478 Licensed Material - Property of Data General Corporation 093-000542

Priority Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue or cooperative simple process name buffer for the priority function.

There are two correspondences between the eLI syntax for the priority command and the ?OPEX
equivalent. They are next.

CONTROL @EXEC PRIORITY [/SWITCH] <QUEUE NAME> [STREAM #] [PRIORITY]
?OPEX FUNC (OPEX_PACKET.NAME) ARGUMENT_l ARGUMENT_2

CONTROL @EXEC PRIORITY [/SWITCH] @<DEVICENAME> [PRIORITY]
?OPEX FUNC (OPEX_PACKET.NAME) ARGUMENT_2

Figure 2-156 shows the structure of the priority command subpacket, and Table 2-135 describes
its contents.

o 15 16 31
\-------------------------+-------------------------\

?ZPII \ Subpacket identifier \
\-------------------------+-------------------------\

?ZPIF \ Flags \ ARGUMENT_l \ ?ZPIA
\--------------------------+-------------------------\

?ZPIB \ ARGUMENT_2 \ Reserved (Set to 0.) \ ?ZPIR
\-------------------------+-------------------------\
?ZPIL = packet length

Figure 2-156. Structure of Priority Command Subpacket

Table 2-135. Contents of Priority Command Subpacket

\ \

\ Offset \ Contents \
\======== ==\
\ ?ZPII Subpacket identifier. Place ?ZPIZ here. \
\ (double- \
\ word) \
\ \

\ ?ZPIF Flags word. It contains the bit flags with additional \
\ information to the operating system and EXEC for \
\ function ?ZPI. \
\ \

\ ?ZYRO IB(?ZZRO) Process type is swappable. \
\ \

\ ?ZYRI IB(?ZZRl) Process type is pre-emptible. \
\ \

\ ?ZYR2 IB(?ZZR2) Process type is resident. \
\ \

\ ?ZPIA ARGUMENT_I. If you specify a queue name, supply a \
\ stream number here. \
\ \

\ If you specify a device name, then the operating system \
\ ignores this offset. (Set it to 0.) I
I I
I ?ZPIB ARGUMENT_2. Supply the priority value. I
I I
\ ? ZPIR Reserved. (Set to 0.) \
I I
I I

093-000542 Licensed Material - Property of Data General Corporation 2-479

?OPEX Continued

Prompts Command

Bit ?ZZAO of offset ?ZXFG of the main ?OPEX packet in Figure 2-124 must not be set, since the
prompts function does not require a buffer to pass information. Consequently, the operating system
ignores offset ?ZXNA of the main ?OPEX packet.

Figure 2-157 shows the structure of the prompts command subpacket, and Table 2-136 describes
its contents.

o 15 16 31
1--------------------------+-------------------------1

?ZPRI 1 Subpacket identifier 1
1-------------------------+-------------------------1

?ZPRF 1 Flags 1 Reserved (Set to 0.) I ?ZPRR
1--------------------------+-------------------------1
?ZPRL = packet length

Figure 2-157. Structure of Prompts Command Subpacket

Table 2-136. Contents of Prompts Command Subpacket

I
I Offset I Contents
1====:====1==
I ?ZPRI I Subpacket identifier. Place ?ZPRZ here.
I (double-I
I word) I
I 1
I ?ZPRF I Flags word. It contains the bit flags with additional
I I information to the operating system and EXEC for
I I function ?ZPR.
I I
1 I ?ZJ90 = OB(?ZZ90) -- Prompts off.
I I ?ZY90 = IB(?ZZ90) -- Prompts on.
I 1
I ?ZPRR 1 Reserved. (Set to 0.)
1 I

1--__ --_1--

Purge Command
This function does not require a subpacket. Instead, supply a byte pointer to the queue name
buffer. This buffer contains the queue name for the purge function. Supply the byte pointer in
offset ?ZXNA of the ?OPEX main packet in Figure 2-124.

2-480 licensed Material - Property of Data General Corporation 093-000542

Qpriority Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the qpriority function.

There are two correspondences between the eLI syntax for the qpriority command and the ?OPEX
equivalent. They are next.

CONTROL @EXEC QPRIORITY [QUEUE NAME] [STREAM #] [HI PRIO] [LO PRIO]
?OPEX FUNC

CONTROL @EXEC QPRIORITY @DEVICENAME [HIGH PRIORITY] [LOW PRIORITY]
?OPEX FUNC (OPEX_PACKET.NAME) ARG_2 ARG_3

Figure 2-158 shows the structure of the qpriority command subpacket, and Table 2-137 describes
its contents.

o 15 16 31
-------------------------+--------------------------1

?ZQPI Subpacket identifier 1
-------------------------+-------------------------1

?ZQPF Flags 1 ARG_l 1 ?ZQPA
-------------------------+-------------------------1

?ZQPB ARG_2 1 ARG_3 1 ?ZQPC
-------------------------+-------------------------1

?ZQPN Available INFO blocks 1 Returned INFO blocks 1 ?ZQPU
-------------------------+--------------------------1

?ZQPP Word address of INFO blocks 1

1

1 ---1
1 ?ZQPL = packet length
1

1

1 1-------------------------+-------------------------1
----> 1

?ZQPS 1 Stream number 1 High priority 1 ?ZQPH
1-------------------------+--------------------------1

?ZQPO 1 Low priority 1

1-------------------------1
?ZQPX = INFO block length

Figure 2-158. Structure of Qpriority Command Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-481

?OPEX Continued

1

1 Offset
1========
1 ?ZQPI
1 (double-
1 word)
1

1 ?ZQPF

1

1

?ZQPA

?ZQPB

1 ?ZQPC
1

1

1

1 ?ZQPN
1

1

1

I ?ZQPU
1

1

1

1 ?ZQPP
1

2-482

1

1

1 ?ZQPS
1

1

1 ?ZQPH
1

1

1 ?ZQPO
1

1

1 __ -

Table 2-137. Contents of Qpriority Command Subpacket

Contents
=====:===
Subpacket identifier. Place ?ZQPZ here.

Flags word. It contains bit flags that indicate default
choices to the operating system.

?ZYSO

?ZJSI
?ZYSl

IB (?ZZSO)

OB (?ZZSl)
IB (?ZZSl)

All default batch input streams.

Display information.
Set information.

ARG_l. If you specify a queue name, supply a stream
number. If you want to display information for all
streams associated with a queue, supply O.

If you specify a device name, then the operating system
ignores this offset. (Set it to 0.)

ARG_2. Supply the high-priority value.

If you specify ?ZJSl in offset ?ZQPF, supply zero.

ARG __ 3. Supply the low-priority value.

If you specify ?ZJSl in offset ?ZQPF, supply zero.

Specify the number of available INFO blocks, but only if
offset ?ZQPF contains ?ZJSl (to display information).
Otherwise, supply O.

The operating system returns the actual number of INFO
blocks, but only if offset ?ZQPF contains ?ZJSl (to
display information. Otherwise, supply O.

Supply the word address of the first of the INFO
blocks, but only if offset ?ZQPF contains ?ZJSl (to
display information). Otherwise, supply O.

The operating system returns the INFO block stream
number.

The operating system returns the INFO block high
priority value.

The operating system returns the INFO block low
priority value.

Licensed Material - Property of Data General Corporation 093-000542

Refused Command

Bit ?ZZAO of offset ?ZXFG of the main ?OPEX packet in Figure 2-124 must not be set, since the
refused function does not require a buffer to pass information. Consequently, the operating system
ignores offset ?ZXNA of the main ?OPEX packet.

Figure 2-159 shows the structure of the refused command subpacket, and Table 2-138 describes its
contents.

093-000542

o 15 16 31
1-------------------------+-------------------------1

?ZRFI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZRFF 1 Flags I Mount ID I ?ZRFM

1-------------------------+-------------------------1

Offset
========

?ZRFI
(double
word)

?ZRFF

?ZRFM

?ZRFL = packet length

Figure 2-159. Structure of Refused Command Subpacket

Table 2-138. Contents of Refused Command Subpacket

I
contents 1

==1
Subpacket identifier. Place ?ZRFZ here. I

I
I ,

Flags word. It contains bit flags that indicate default ,
choices to the operating system. ,

?ZY50 = lB(?ZZ50) -- Default mount request.

Supply the mount ID. If you specify the default in
offset ?ZRFF, then it applies to the default mount
request.

,
I ,
,
1 ,
1

------- ---,

Licensed Material - Property of Data General Corporation 2-483

?OPEX Continued

Release Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the release function.

Figure 2-160 shows the structure of the release command subpacket, and Table 2-139 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZREI 1 Subpacket identifier 1

1-----·--------------------+-------------------------1
?ZREF 1 Flags 1 Reserved (Set to 0.) 1 ?ZRER

1-------------------------+-------------------------1
?ZREL = packet length

Figure 2-160. Structure of Release Command Subpacket

Table 2-139. Contents of Release Command Subpacket

1

1 Offset Contents
1======== ==
1 ?ZREI
1 (double-
1 word)
1

1 ?ZREF
1

1

2-484

1

1

1

1 ?ZRER
1

1 ___ -

Subpacket identifier. Place ?ZREZ here.

Flags word. It contains bit flags with additional
information to the operating system and EXEC for
function ?ZRE.

?ZY60 = IB(?ZZ60) -- All switch.

Reserved. (Set to 0.)

Licensed Material- Property of Data General Corporation 093-000542

Restart Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the restart function.

There are two correspondences between the eLI syntax for the restart command and the ?OPEX
equivalent. They are next.

CONTROL @EXEC RESTART [QUEUE NAME] [STREAM #]

?OPEX FUNC

CONTROL @EXEC RESTART @DEVICENAME [BEG. PAGE #] [END PAGE #]

?OPEX FUNC [ARGUMENT_2]

Figure 2-161 shows the structure of the restart command subpacket, and Table 2-140 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZRTI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZRTA 1 ARGUMENT_l 1 ARGUMENT_2 1 ?ZRTB

1-------------------------+-------------------------1
?ZRTL = packet length

Figure 2-161. Structure of Restart Command Subpacket

Table 2-140. Contents of Restart Command Subpacket

1

Offset Contents 1

?ZRTI
(double
word)

?ZWrA

==1
Subpacket identifier. Place ?ZRTZ here. 1

ARGUMENT_I. If you specify a queue name, supply a
stream number here.

If you specify a device name, then supply the beginning
page number. The default is the first page; to specify
this, supply O.

1

1

?ZRTB ARGUMENT_2. If you specify a queue name, the operating
system ignores this offset. (Set it to 0.)

1 If you specify a device name, then supply the ending
1 page number. The default is the last page; to specify
1 this, supply O.

1 1

1------_1--

09~542 Licensed Material - Property of Data General Corporation 2-485

?OPEX Continued

Silence Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the silence function.

Figure 2-162 shows the structure of the silence command subpacket, and Table 2-141 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZSII 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZSIF 1 Flags 1 Stream number 1 ?ZSIS

1-------------------------+-------------------------1
?ZSIL = packet length

Figure 2-162. Structure of Silence Command Subpacket

Table 2-141. Contents of Silence Command Subpacket

1

Offset 1 Contents 1

========1==1
?ZSII 1 Subpacket identifier. Place ?ZSIZ here. 1

(double-I 1

word) 1 1
1 1

?ZSIF 1 Flags word. It contains bit flags that indicate 1

1 default choices to the operating system. 1

1 1

1 ?ZYTO = IB(?ZZTO) -- Silence all batch input streams. 1

1 1

?ZSIS 1 Supply the number of the stream if bit ?ZZTO in offset 1

1 ?ZSIF is off. Otherwise, supply O. 1

1 1

___ I 1

2-486 Licensed Material - Property of Data General Corporation 093-000542

Spoolstatus Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the spoolstatus function. To obtain the status of all spooled devices,
set bit ?ZZKO of offset ?ZSPF of the subpacket. If a queue name is specified in the main ?OPEX
packet, a device name list will be returned in the subpacket.

Figure 2-163 shows the structure of the spoolstatus command subpacket, and Table 2-142
describes its contents.

093-000542

o 15 16 31
-------------------------+-------------------------

?ZSPI SUbpacket identifier
-------------------------+-------------------------

?ZSPF Flags 1 Limit value ?ZSPV
-------------------------+-------------------------

?ZSPC Characters per line 1 Lines per page ?ZSPN
-------------------------+-------------------------

?ZSPH Number of headers 1 Number of trailers ?ZSPT
-------------------------+-------------------------

?ZSPB Bias factor 1 Priority ?ZSPP
-------------------------+-------------------------

?ZSPK Get next key -- 1

?ZSP9 Get next key -- 2

?ZSPQ Byte pointer to queue/device name list buffer
-------------------------+-------------------------

?ZSP3 Number of bytes in 1 Number of bytes in the ?ZSP4
the queue name list 1 string returned in the
buffer 1 queue name list buffer

-------------------------+-------------------------
?ZSPD Byte pointer to default forms name buffer

-------------------------+-------------------------
?ZSP5 Number of bytes in 1 Number of bytes in the ?ZSP6

the default forms name 1 string returned in the
buffer 1 default forms name

1 1 buffer
1-------------------------+-------------------------

?ZSPS 1 Byte pointer to special forms name buffer
1-------------------------+-------------------------

?ZSP7 1 Number of bytes in 1 Number of bytes in the ?ZSP8
1 the special forms name 1 string returned in the
1 buffer 1 special forms name
1 1 buffer
1-------------------------+-------------------------1

?ZSPE 1 Error code 1 Reserved (Set to 0.) ?ZSPR
1-------------------------+-------------------------

?ZSlC 1 Byte pointer to cleanup filename buffer
1-------------------------+-------------------------

?ZSlB 1 Number of bytes in 1 Number of bytes in the ?ZSlS
1 the cleanup filename 1 string returned in the
1 buffer 1 cleanup filename buffer
1-------------------------+-------------------------

?ZSlM 1 Byte pointer to mapper filename buffer
1-------------------------+-------------------------

?ZSlF 1 Number of bytes in 1 Number of bytes in the ?ZSlP
1 the mapper filename 1 string returned in the
1 buffer 1 mapper filename buffer
1-------------------------+-------------------------
?ZSlL = packet length

Figure 2-163. Structure of Spoolstatus Command Subpacket

Licensed Material - Property of Data General Corporation 2-487

?OPEX Continued

2-488

Table 2-142. Contents of Spoolstatus Command Subpacket

1 Offset 1 Contents
1========1==
1 ?ZSPI 1 Subpacket identifier. Place ?ZSPZ here.
1 (double-I
1 word) 1

I I
I ?ZSPF 1 Flags word. It contains bit flags that indicate default
1 choices to the operating system.
I
1

1

1

1

1

I
1

?ZYKO = lB(?ZZKO) -- You want the spool status of all
devices.

?ZYKl lB (?ZZK1)

?ZYK2 lB(?ZZK2)

?ZYK3 lB (?ZZK3) --

?ZYK4 lB (?ZZK4) --

?ZYK5 lB (?ZZK5) --

?ZYK6 lB (?ZZK6) --

?ZYK7 lB (?ZZK7) --

?ZYK8 lB (?ZZK8) --

?ZYK9 lB(?ZZK9) --

?ZYKA lB (?ZZKA) --

An output bit; even mode is enabled.

An output bit; binary mode is
enabled.

An output bit; uppercase is
enabled.

An output bit; new line conversion
is enabled.

An output bit; process type is
swappable.

An output bit; process type is
pre-·emptible.

An output bit; process type is
resident.

An output bit; default forms are
specified.

An output bit; special forms are
specified.

An output bit; limiting is enabled
(the default value) .

?ZYKB lB (?ZZKB) An output bit; print or plot device.

?ZYKC lB(?ZZKC) An output bit; 8-bit mode is
enabled.

?ZSPV The operating system returns the limit value.

?ZSPC The operating system returns the number of characters
per line.

?ZSPN The operating system returns the number of lines
per page.

?ZSPH The operating system returns the number of headers.

?ZSPT The operating system returns the number of trailers.

?ZSPB The operating system returns the bias factor.

?ZSPP The operating system returns the priority.

(continued)

Licensed Material - Property of Data General Corporation 093-000542

093-000542

Offset

?ZSPK
(double
word)

?ZSP9
(double
word)

?ZSPQ
(double
word)

?ZSP3

?ZSP4

?ZSPD
(double
word)

?ZSP5

?ZSP6

?ZSPS
(double
word)

?ZSP7

?ZSP8

Table 2-142. Contents of Spoolstatus Command Subpacket

1

1 Contents 1

==1
First get next key entry. Set to 0 for the first call, 1
used by the operating system thereafter for the next key 1
entry for EXEC. 1

Second get next key entry. Set to 0 for the first call,
used by the operating system thereafter for the next key
entry for EXEC.

The operating system returns a byte pointer to the
queue name buffer. In this buffer, nulls separate the
queue names and a pair of nulls terminates the queue
names.

Specify the number of bytes in the queue name buffer.
The largest possible queue name list is 1024. bytes.

The operating system returns the number of bytes in the
queue name list that it placed in the queue name buffer.

Supply a byte pointer to the buffer that receives the
default forms name.

Specify a number of bytes to accommodate the largest
possible default forms name.

The operating system returns the number of bytes in the
default forms filename that it placed in the default
forms name buffer.

Supply a byte pointer to the buffer that receives the
special forms name.

Specify a number of bytes to accommodate the largest
possible special forms name.

The operating system returns the number of bytes in the
special forms filename that it placed in the special
forms name buffer.

1

1

1

1

1

1

1

1

1

1

1

1

(continued)

Licensed Material - Property of Data General Corporation 2-489

?OPEX Continued

2-490

Table 2-142. Contents of Spoolstatus Command Subpacket

Offset Contents
======== ==

?ZSPE The operating system returns an error code that EXEC
gave to it.

?ZSPR Reserved. (Set to 0.)

?ZSlC
(double
word)

?ZSlB

?ZSlS

?ZSlM
(double
word)

?ZSlF

?ZSlP

Supply a byte pointer to the buffer that receives the
cleanup filename.

Specify a number of bytes to accommodate the largest
possible cleanup filename.

The operating system returns the number of bytes in the
cleanup filename that it placed in the cleanup filename
buffer.

Supply a byte pointer to the buffer that receives the
mapper filename.

Specify a number of bytes to accommodate the largest
possible mapper filename.

The operating system returns the number of bytes in the
mapper filename that it placed in the mapper filename
buffer.

(concluded)

Licensed Material - Property of Data General Corporation 093--000542

Stack Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of a
pathname buffer. This buffer contains the pathname for the stack function.

Figure 2-164 shows the structure of the stack command subpacket, and Table 2-143 describes its
contents.

09:HJOO542

o 15 16 31
1-------------------------+-------------------------1

?ZSKI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZSKF 1 Flags 1 Reserved (Set to 0.) 1 ?ZSK3

1-------------------------+-------------------------1
?ZSKR 1 Reserved (Set to 0.) 1

1---1
?ZSKL = packet length

Figure 2-164. Structure of Stack Command Subpacket

Table 2-143. Contents of Stack Command Subpacket

1

Offset Contents 1

?ZSKI
(double
word)

?ZSKF

?ZSK3

?ZSKR
(double
word)

==1
Subpacket identifier. Place ?ZSKZ here. 1

Flags word. It contains the bit flags with additional
information to the operating system and EXEC for
function ?ZSK.

Reserved. (Set to 0.)

Reserved. (Set to 0.)

Reserved. (Set to 0.)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

________ --_1

Licensed Material - Property of Data General Corporation 2-491

?OPEX Continued

Start Command

The EXEC START (?OPEX ?ZSR) command associates a queue with a device and a cooperative.
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte pointer of the
device name.

Figure 2-165 shows the structure of the start command subpacket, and Table 2-144 describes its
contents.

o 15 16 31
1-------------------------+-------------------------

?ZSRI 1 Subpacket identifier
1-------------------------+-------------------------

?ZSRF 1 Flags 1 Number of streams ?ZSRS
1-------------------------+--------------------------

?ZSRQ 1 Byte pointer to the queue name buffer
1-------------------------+-------------------------

?ZSR3 1 Size of queue name 1 Size of cooperative ?ZSR4
buffer 1 simple process name buf.

-------------------------+-------------------------
?ZSRC Byte pointer to coop simple processname buffer

?ZSRB Byte pointer to IPC pathname buffer
-------------------------+-------------------------

?ZSR5 Size of IPC pathname 1 Size of setup string ?ZSR6
buffer 1 buffer

-------------------------+--------------------------
?ZSRM Byte pointer to the setup string buffer

---1
?ZSRX Byte pointer to debugger terminal name buffer 1

-------------------------+-------------------------1
?ZSR7 Size of debugger 1 Reserved (Set to 0.) 1 ?ZSRR

terminal name buffer 1 1

-------------------------+-------------------------1
?ZSRL = packet length

Figure 2-165. Structure of Start Command Subpacket

When EXEC is to communicate via an IPC file, set bit ?ZZU7 of the ?ZSRF flag word. When EXEC
is to create (?PROC) a cooperative process or communicate with an existing cooperative that is
unknown to EXEC, set bit ?ZZU2 of the ?ZSRF flag word.

Load offset ?ZSRC (or ?ZSRB) with the byte pointer to the simple processname (or IPC pathname)
buffer. Finally, load offset ?ZSR4 (or ?ZSR5) with the number of bytes in the buffer.

The meaning of ?ZSRM and ?ZSR6 have been generalized. ?ZSRM now contains the byte address of a
setup string which is passed to the cooperative in the START IPC. ?ZSR6 contains the byte length
(max. 32) of this setup string. This string maintains its current use of containing the mapper file
name when a printer is started.

2-492 Licensed Material - Property of Data General Corporation 093-000542

093-000542

Table 2-144. Contents of Start Command Subpacket

Offset I Contents
==

?ZSRI Subpacket identifier. Place ?ZSRZ here.
(double-
word)

?ZSRF

?ZSRS

?ZSRQ
(double
word)

?ZSR3

'?ZSR4

?ZSRC
(double
word)

?ZSRB
(double
word)

?ZSR5

?ZSR6

?ZSRM
(double
word)

?ZSRX
(double
word)

?ZSR7

?ZSRR

Flags word. It contains bit flags with additional
information to the OS and EXEC for function ?ZSR.

?ZYUO IB(?ZZUO) New line switch.

?ZYUI IB (?ZZUI) 8-bit. switch.

?ZYU2 IB (?ZZU2) Process switch.

?ZYU3 IB (?ZZU3) Streams switch.

?ZYU4 IB (?ZZU4) Name switch.

?ZYU5 IB (?ZZU5) Upper argument specified.

?ZYU6 IB(?ZZU6) Reserved (Set to O.)

?ZYU7 IB(?ZZU7) IPC switch.

?ZYU8 IB(?ZZU8) 7-bit switch.

Specify the number of streams.

Supply a byte pointer to the queue name buffer.

Supply the number of bytes in the queue name buffer.

Supply the number of bytes in the cooperative simple
process name buffer.

Supply a byte pointer to the cooperative simple process
name buffer (/NAME=).

Supply a byte pointer to the IPC filename buffer (/IPC=).

Supply the number of bytes in the IPC filename buffer.

Supply the number of bytes in the mapper filename
buffer.

Supply a byte pointer to the mapper filename buffer.

Supply a byte pointer to the debugger terminal name
buffer.

Supply the number of bytes in the debugger terminal name
buffer.

Reserved. (Set to 0.)

Licensed Material - Property of Data General Corporation 2-493

?OPEX Continued

Status Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the status function. To obtain the status of all default batch streams
and have the queue name returned in the main packet, set bit ?ZZVO of offset ?ZSSF of the
subpacket.

Figure 2-166 shows the structure of the status command subpacket, and Table 2-145 describes its
contents.

2-494 Licensed Material - Property of Data General Corporation 093-000542

o 15 16 31
-------------------------+-------------------------

?ZSSI Subpacket identifier
-------------------------+-------------------------

?ZSSF Flags I Reserved (Set to 0.) ?ZSSR
-------------------------+-------------------------

?ZSSS Stream number I Bias factor ?ZSSB
-------------------------+-------------------------

?ZSSO Queue priority I Sequence number ?ZSSN
-------------------------+-------------------------

?ZSSK Get next key -- 1

?ZSXO Get next key -- 2
-------------------------+-------------------------

?ZSSV CPU limit value I User CPU limit ?ZSSE
-------------------------+-------------------------

?ZSSG Current page I Number of copies left ?ZSSY
-------------------------+-------------------------

?ZSSX Priority I PID ?ZSSD
-------------------------+-------------------------

?ZSSU Byte pointer to username buffer
-------------------------+-------------------------

?ZSS5 Number of bytes in Number of bytes in the ?ZSS6
the username buffer I string returned in the
buffer I username buffer

-------------------------+-------------------------
?ZSSP

(double- Byte pointer to pathname buffer
word)

?ZSS7

?ZSSC

-------------------------+-------------------------
Number of bytes in I Number of bytes in the ?ZSS8
the pathname buffer I string returned in the

I pathname buffer
-------------------------+-------------------------

(double- Reserved (Set to 0.)
word)

-------------------------+-------------------------
?ZSS9 Reserved (Set to 0.) I Reserved (Set to 0.) ?ZSSO

-------------------------+-------------------------
?ZSST

(double- Reserved (Set to 0.)
word)

-------------------------+-------------------------
?ZSSA Reserved (Set to 0.) I Reserved (Set to 0.) ?ZSSH

-------------------------+-------------------------
?ZSSM

(double- Reserved (Set to 0.)
word)

-------------------------+-------------------------
Reserved (Set to 0.) I Reserved (Set to 0.) ?ZSSZ

-------------------------+-------------------------
?ZSSL = packet length

Figure 2-166. Structure of Status Command Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-495

?OPEX Continued

2-496

Table 2-145. Contents of Status Command Subpacket

Offset Contents
======== ==

?ZSSI Subpacket identifier. Place ?ZQSS here.
(double-
word)

?ZSSF Flags word. It contains bit flags that indicate default
choices to the operating system.

?ZYVO = IB(?ZZVO) -- You want the status of all default
batch input streams.

?ZJVl OB (?ZZV1)

?ZYVl IB (?ZZV1)

An output bit; stream/device is
idle.
An output bit; stream/device is
active.

I
?ZYV2 IB(?ZZV2) -- An output bit; process type is I

swappable. I
I

?ZYV3 IB(?ZZV3) -- An output bit; process type is I
pre-emptible. I

I
?ZYV4 IB(?ZZV4) -- An output bit; process type is I

resident. I
I

?ZJV5 OB(?ZZV5) An output bit; 7-bit print mode. I
I

?ZJV6 OB(?ZZV6) An output bit; stream/device is I
not ready. I

?ZYV6 IB(?ZZV6) An output bit; stream/device is I
ready. I

I
?ZYV7 IB(?ZZV7) -- An output bit; stream/device is I

paused. (If the active bit is also I
set, the stream/device will be I
paused.) I

I
?ZYV8 = IB(?ZZVS) An output bit; limiting is enabled. I

I
?ZYV9 IB(?ZZV9) An output bit; device is being I

aligned. I
I

?ZYVA IB(?ZZVA) An output bit; batch job. I
I

?ZYVB IB(?ZZVB) An output bit; print or plot I
device. I

I
?ZYVC IB(?ZZVC) An output bit; net cooperative. I

I
?ZJVD OB(?ZZVD) An output bit; net cooperative is I

not ready. I
?ZYVD IB(?ZZVD) An output bit; net cooperative is I

ready. I
I

?ZJVE OB(?ZZVE) An output bit; net cooperative is I
idle. I

?ZYVE IB(?ZZVE) An output bit; net cooperative is I
active. I

________________________ . ______________________ ~--~--~I
(continued)

Licensed Material - Property of Data General Corporation 093--000542

093-000542

Offset

?ZSSR

?ZSSS

?ZSSB

?ZSSO

?ZSSN

?ZSSK
(double
word)

?ZSXO
(double
word)

?ZSSV

?ZSSE

?ZSSG

?ZSSY

?ZSSX

?ZSSD

?ZSSU
(double
word)

?Z!3S5

?ZSS6

?ZSSP
(double
word)

?ZSS7

?ZSS8

Table 2-145. Contents of Status Command Subpacket

1

1 Contents 1

==1
Reserved. (Set to 0.)

Supply the stream number.

The operating system returns the bias factor.

The operating system returns the queue priority.

The operating system returns the sequence number.

First get next key entry. Set to 0 for the first call,
used by the operating system thereafter for the next key
identifier for EXEC.

Second get next key entry. Set to 0 for the first call,
used by the operating system thereafter for the next key
identifier for EXEC.

The operating system returns the system's CPU limit
value.

The operating system returns the user-specified CPU
limit value.

The operating system returns the current page.

The operating system returns the number of copies left.

The operating system returns the priority.

The operating system returns the PID.

Supply a byte pointer to the buffer to receive the
username.

Specify the number of bytes in the username buffer.

The operating system returns the number of bytes in the
string that it placed in the username buffer.

Supply a byte pointer to the buffer that receives the
pathname.

Specify the number of bytes in the pathname buffer.

The operating system returns the number of bytes in the
string that it placed in the pathname buffer.

1

1

I
I
I
1

I
I
1

I
I
I
I
I
1

I
1

?ZSSC Reserved. (Set to 0.)
(double-
word)

?ZSS9 Reserved. (Set to 0.)

(continued)

Licensed Material - Property of Data General Corporation 2-497

?OPEX Continued

Table 2-145. Contents of Status Command Subpacket

1

Offset Contents 1

======== ==1
?ZSSO Reserved. (Set to 0.) 1

?ZSST Reserved. (Set to 0.)
(double-
word)

?ZSSA Reserved. (Set to 0.)

?ZSSH Reserved. (Set to 0.)

?ZSSM Reserved. (Set to 0.)
(double-
word)

?ZSSJ Reserved. (Set to 0.)

?ZSSZ Reserved. (Set to 0.)

(concluded)

2-498 Licensed Material - Property of Data General Corporation 093-000542

Stop Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the stop function.

Figure 2-167 shows the structure of the stop command subpacket, and Table 2-146 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZSTI I Subpacket identifier 1

1-------------------------+-------------------------1
?ZSTF 1 Flags 1 Number of bytes in the 1 ?ZSTA

1 1 queue name buffer 1
1-------------------------+-------------------------1

?ZSTB 1 Byte pointer to the queue name buffer 1

1---1
?ZSTL = packet length

Figure 2-167. Structure of Stop Command Subpacket

Table 2-146. Contents of Stop Command Subpacket

Offset Contents
======== ==

?ZSTI Subpacket identifier. Place ?ZSTZ here.
(double-
word)

?ZSTF

?ZSTA

?ZSTB
(double
word)

Flags word. It contains bit flags that indicate default
choices to the operating system.

?ZYWO = 1B(?ZZWO) -- Queue name specified.

Specify the number of bytes in the queue name buffer if
you need the buffer.

Supply a byte pointer to the queue name buffer if you
need the buffer.

Terminate Command

This function does not require a subpacket. Instead, supply a byte pointer to the device name buffer
in offset ?ZXNA of the ?OPEX main packet in Figure 2-124.

093-000542 Licensed Material - Property of Data General Corporation 2-499

?OPEX Continued

Trailers Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the trailers function.

Figure 2-168 shows the structure of the trailers command subpacket, and Table 2-147 describes its
contents.

2-500

o 15 16 31
1-------------------------+-------------------------1

?ZTRI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZTRT 1 Number of trailer sheets 1 Reserved (Set to 0.) 1 ?ZTRR

1-------------------------+-------------------------1
?ZTRL = packet length

Figure 2-168. Structure of Trailers Command Subpacket

Table 2-147. Contents of Trailers Command Subpacket

1

Offset 1 Contents
========1==

?ZTRI 1 Subpacket identifier. Place ?ZTRZ here.
(double-I
word) 1

1

?ZTRT 1 Supply the number of trailer sheets after each printed
1 file.
1

?ZTRR 1 Reserved. (Set to 0.)
1

--------1--

Licensed Material - Property of Data General Corporation 093-000542

Unhold Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
username buffer, if necessary, for the unhold function.

Figure 2-169 shows the structure of the unhold command subpacket, and Table 2-148 describes its
contents.

093--000542

o 15 16 31
1-------------------------+-------------------------1

?ZUHI 1 Subpacket identifier I
1-------------------------+--------------------------1

?ZUHS 1 Sequence number 1 Reserved (Set to 0.) 1 ?ZUHR
1-------------------------+-------------------------1

?ZUHL = packet length

Figure 2-169. Structure of Unhold Command Subpacket

Table 2-148. Contents of Unhold Command Subpacket

Offset Contents
======== ==

?ZUHI Subpacket identifier. Place ?ZUHZ here.
(double-
word)

?ZUHS

?ZUHR

Supply the sequence number in this offset. Or, to
perform the unhold function on all jobs with a given
username, supply 0 here and supply a byte pointer to the
username in offset ?ZXNA of the main packet of ?OPEX.

Reserved. (Set to 0.)

-------- --

Licensed Material - Property of Data General Corporation 2-501

?OPEX Continued

Unitstatus Command
Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device name buffer for the unitstatus function.

Figure 2-170 shows the structure of the unitstatus command subpacket, and Table 2-149 describes
its contents.

?ZUSI

?ZUSF

?ZUSK

?ZUS7

?ZUSM

?ZUSU

?ZUS3

?ZUSV

?ZUS5

2-502

o 15 16 31
-------------------------+-------------------------

Subpacket identifier
-------------------------+-------------------------
Flags I Reserved (Set to 0.) ?ZUSR

-------------------------+-------------------------
Get next key -- 1

Get next key -- 2
-------------------------+--------------------------

Mount ID I PID ?ZUSP
-------------------------+-------------------------

Byte pointer to username buffer
-------------------------+-------------------------

Number of bytes in I Number of bytes in the ?ZUS4
the username buffer I string returned in the

I username buffer
-------------------------+-------------------------

Byte pointer to valid name buffer
-------------------------+-------------------------

Number of bytes in I Number of bytes in the ?ZUS6
the valid name buffer I string returned in the

I valid name buffer
-------------------------+-------------------------
?ZUSL = packet length

Figure 2-170. Structure of Unitstatus Command Subpacket

Licensed Material - Property 01 Data General Corporation 093-000542

Table 2-149. Contents of Unitstatus Command Subpacket

Offset Contents
======== ==

093-000542

?ZUSI Subpacket identifier. Place ?ZUSZ here.
(double-
word)

?ZUSF

?ZUSR

?ZUSK
(double
word)

?ZUS7
(double
word)

?ZUSM

?ZUSP

?ZUSU
(double
word)

?ZUS3

?ZUS4

?ZUSV
(double
word)

?ZUS5

?ZUS6

Flags word. It contains bit flags that indicate default
choices to the operating system.

?ZY70 IB(?ZZ70) All units.

?ZY71 IB(?ZZ71) An output bit; unit not mounted.

?ZY72 IB(?ZZ72) An output bit; unit is premounted.

?ZY73 IB(?ZZ73) An output bit; unit is waiting to
be dismounted.

?ZY74 = IB(?ZZ74) An output bit; IBM format.

Reserved. (Set to 0.)

Get next entry key. The operating system uses this
offset to hold the key identifier for EXEC.

Second get next entry key. The operating system uses
this offset to hold the second key indicator for EXEC.

The operating system returns the mount ID.

The operating system returns the PID.

Supply a byte pointer to the buffer that receives the
username.

Specify a number of bytes to accommodate the largest
possible username.

The operating system returns the number of bytes in the
username that it placed in the username buffer.

Supply a byte pointer to the buffer that receives the
valid.

Specify a number of bytes to accommodate the largest
possible volid.

The operating system returns the number of bytes in the
volid that it placed in the volid buffer.

Licensed Material - Property of Data General Corporation 2-503

?OPEX Continued

Unlimit Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the unlimit function. If you take the default option and set flag bit
?ZZXO in offset ?ZULF of the subpacket, then the unlimit function applies to all batch streams.

Figure 2-171 shows the structure of the unlimit command subpacket, and Table 2-150 describes its
contents.

2-504

o 15 16 31
1-------------------------+-------------------------1

?ZULI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZULF 1 Flags 1 Stream number 1 ?ZULS

1-------------------------+--------------------------1
?ZULL = packet length

Figure 2-171. Structure of Unlimit Command Subpacket

Table 2-150. Contents of Unlimit Command Subpacket

1

Offset Contents 1

========
?ZULI

(double
word)

?ZULF

?ZULS

==1
Subpacket identifier. Place ?ZULZ here. 1

Flags word. It contains bit flags that indicate
default choices to the operating system.

?ZYXO = IB(?ZZXO) Unlimit all default batch input
streams.

Supply the number of the stream if bit ?ZZXO in offset
?ZULF is off. Otherwise, supply O.

1

1

1

1

1

1

1

1

1

1

1

1

________ ---1

Licensed Material - Property of Data General Corporation 093-000542

Unsilence Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the unsilence function. If you take the default option and set flag bit
?ZZYO in offset ?ZUNF of the subpacket, then the unsilence function applies to all batch streams.

Figure 2-172 shows the structure of the unsilence command subpacket, and Table 2-151 describes
its contents.

093-000542

o 15 16 31
1-------------------------+-------------------------1

?ZUNI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZUNF 1 Flags 1 Stream number I ?ZUNS

1-------------------------+--------------------------1
?ZUNL = packet length

Figure 2-172. Structure of Unsilence Command Subpacket

Table 2-151. Contents of Unsilence Command Subpacket

Offset Contents
======== ==

?ZUNI Subpacket identifier. Place ?ZUNZ here.
(double-
word)

?ZUNF

?ZUNS

Flags word. It contains bit flags that indicate
default choices to the operating system.

?ZYYO = IB(?ZZYO) Unsilence all default batch input
streams.

Supply the number of the stream if bit ?ZZYO in offset
?ZUNF is off. Otherwise, supply o.

Licensed Material - Property of Data General Corporation 2-505

?OPEX Continued

User Command

The user command passes a device message between EXEC and the cooperative controlling the
device referred to by ?ZXNA in the main ?OPEX packet. This allows the programmer of a
cooperative to define device-oriented commands that EXEC routes to the cooperative. The action
that the cooperative takes in response to the message is up to the cooperative.

Figure 2-173 shows the structure of the user-command subpacket. Table 2-152 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZUCI 1 Subpacket identifier (?ZUCZ) 1

1-------------------------+-------------------------1
?ZUCS 1 stream number 1 Size of command buffer 1 ?ZUCN

1--------------------------+-------------------------1
?ZUCB 1 Byte pointer to the command buffer 1

1-------------------------+-------------------------1
?ZUCR 1 Byte pointer to the response buffer 1

1-------------------------+-------------------------1
?ZUCM 1 Size of response buffer 1 Size returned 1 ?ZUCD

1---1
?ZUCL = packet length

Figure 2-173. Structure of User-Command Subpacket

2-506 Licensed Material - Property of Data General Corporation 093-000542

Note

Table 2-152. Contents of Subpacket User-Command

Offset Contents
=============== ===

?ZUCS Set to zero or a stream number assigned to the
the device.

?ZUCN Set to the number of bytes in the command
buffer. It must be less than 1024 bytes.

?ZUCB

?ZUCR and
?ZUCM

?ZUCD

If ?ZUCN is equal to or greater than 1024 bytes,
EXEC takes the error return and sends no message
to the cooperative.

Specify a byte pointer to the command buffer.

Bit 0 of the first word of the command buffer is
reserved for use by Data General. Set the bit to
zero. If you fail to do it, EXEC takes the error
return and sends no message to the cooperative.
Otherwise, the cooperative interface defines the
form and content of the message in the command
buffer.

Refer to the Release Notice for more information.

If you do not wish to receive a response, set
?ZUCR and ?ZUCM to o.

If you wish to receive a response, set ?ZUCR to
the byte address of a response buffer and ?ZUCM
to the length of the buffer.

If the cooperative sends a response that is
longer than the buffer, EXEC truncates the
response.

EXEC loads ?ZUCD with the number of bytes in the
response. It will never exceed 1024 bytes.

• User command does not support I6-bit programs nor is it available through the CLI (i.e., no
CONTROL @EXEC USERCOMMAND).

093--000542 Licensed Material - Property of Data General Corporation 2-507

?OPEX Continued

Verbose Command

Offset ?ZXNA of the main ?OPEX packet in Figure 2-124 must contain the byte address of the
device/queue name buffer for the verbose function. If you take the default option and set flag bit
?ZZZO in offset ?ZVEF of the subpacket, then the verbose function applies to all batch streams.

Figure 2-174 shows the structure of the verbose command subpacket, and Table 2-153 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?ZVEI 1 Subpacket identifier 1

1-------------------------+-------------------------1
?ZVEF 1 Flags 1 Stream number 1 ?ZVES

Offset

?ZVEI
(double
word)

?ZVEF

?ZVES

1-------------------------+-------------------------1
?ZVEL = packet length

Figure 2-174. Structure of Verbose Command Subpacket

Table 2-153. Contents of Verbose Command Subpacket

1

Contents 1

==1
Subpacket identifier. Place ?ZVEZ here. 1

Flags word. It contains bit flags that indicate
default choices to the operating system.

1

1

1

1

1

1

?ZYZO = 1B(?ZZZO) Verbose on all default batch input 1

streams.

Supply the number of the stream if bit ?ZZZO in offset
?ZVEF is off. Otherwise, supply O.

1

1

1

1

1

---1

Xbias Command
This function is currently undefined.

2-508 Licensed Material - Property of Data General Corporation 093-000542

?OVEX Releases an overlay and returns
(16-bit processes only).

?OVEX
error return

Input
ACO Contains the following:

• Bit 0 is ignored

• Overlay area number
(defined in the .ENTO
argument) in Bits 1
through 6

• Overlay number (defined
in the .ENTO argument)
in Bits 7 through 15

ACl Reserved (Set to 0.)

AC2 Normal return address

Error Codes in ACO

ERICM
ERROO
EROVN

Illegal system command
Invalid overlay number
Illegal overlay number

Why Use It?

Output
None

?OVEX is one of the three primitive overlay system calls that release an overlay. (The others are
?OVREL and ?OVKIL.) If you load an overlay with the primitive overlay system call ?OVLOD, you
must use ?OVEX, ?OVREL, or ?OVKIL to release it.

?OVEX offers two advantages over the other release system calls: you can issue ?OVEX from within
an overlay (unlike ?OVREL), and you can use ?OVEX to release an overlay without killing the
calling task (unlike ?OVKIL).

Who Can Use It?
There are no special process privileges needed to issue this call. You must have Read access to the
program's overlay COL) file.

What It Does
?OVEX exits from an overlay loaded by a previous ?OVLOD system call, decrements the overlay's
overlay use <:ount (OUC), and frees the overlay area if the OUC becomes O. ?OVEX also transfers
control to an address outside the overlay. This can be the caller's return address, if the caller is
returning from a subroutine within the overlay.

Note that you must specify the ?OVEX return address in AC2.

Notes
• See the descriptions of?OVLOD, ?OVREL, ?OVKIL in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-509

?OVKIL Exits from an overlay and kills the calling task
(16-bit processes only).

?OVKIL
error return

Input

ACO Contains the following:

• Bit 0 is ignored

• Overlay area number
(defined in the .ENTO
argument) in Bits 1
through 6

• Overlay number (defined
in the .ENTO argument)
in Bits 7 through 15

AC1 Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

ERICM
ERROO
EROVN

Illegal system command
Invalid overlay number
Illegal overlay number

Why Use It?

Output

None

?OVKIL is one of the three primitive system calls for releasing an overlay. (The others are ?OVEX
and ?OVR:EL). Use ?OVKIL if you not only want to release an overlay, but you also want to kill the
task using the overlay and transfer control to the task with the next highest priority.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Read access to the
program's overlay COL) file.

What It Does

?OVKIL decrements the target overlay's overlay use count (OUC) value, releases the overlay if the
OUC becomes 0, and kills the calling task. Because ?OVKIL kills the calling task, there is no
normal return for ?OVKIL.

Notes

• See the descriptions of ?OVEX and ?OVREL in this chapter.

2-510 Licensed Material- Property of Data General Corporation 093-000542

?OVLOD

?OVLOD
error return
normal return

Input

ACO Contains the following:

ACI

AC2

• Bit 0 is a flag bit:

Bit 0 = 0 on a
conditional load

Bit 0 = Ion an
unconditional load

• Overlay area number
(defined in the .ENTO
argument) in Bits 1
through 6

• Overlay number (defined
in the .ENTO argument)
in Bits 7 through 15

Contains the following:

• Bit 0 is a flag bit:

Bit 0 = 0 to pass control to
an offset within the overlay

Bit 0 = 1 to pass control to
an address within the overlay

• Target address or offset
within the overlay (If
Bits 1 through 15 = -1,
control returns to the
?OVLOD normal return.)

Contents passed to the overlay
(unless ACI contains -1)

Error Codes in ACO

ERADR Illegal starting address
ERICM Illegal system command
EROVN Illegal overlay number

Output

Loads and goes to an overlay
(16-bit processes only).

ACO Unchanged

ACI Base address of the target
overlay

AC2 Unchanged

093-000542 Licensed Material - Property of Data General Corporation 2-511

?OVLOD Continued

Why Use It?

?OVLOD is an alternate way of calling an overlay from the .OL file to an overlay arE!a in memory.
?OVLOD and the other primitive overlay system calls give you direct control of overlay
management, but they also require that you explicitly load and release each overlay. The resource
system calls (?RCALL, ?KCALL, and ?RCHAIN) manage overlays automatically. Therefore, we
recommend that you use resource system calls instead of primitive overlay system calls.

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Read access to the
program's overlay COL) file.

What It Does

?OVLOD loads an overlay into its overlay area and, optionally, transfers control to some point in
the overlay (which you specify as an address or as an offset).

To use ?OVLOD and the other primitive overlay system calls (?OVREL, ?OVEX, and ?OVKIL), you
must define each overlay with the .ENTO (overlay entry) pseud<r-op.

The input status of Bit 0 in ACO governs whether the operating system loads the overlay
conditionally or unconditionally. If you specify conditional loading (Bit 0 of ACO = 0), the operating
system loads the overlay only if it is not already loaded. If the overlay is resident, a conditional
?OVLOD silnply directs the operating system to increment the overlay's OUC value .. If you specify
unconditional loading, the operating system loads the overlay, whether or not it is rlesident in the
overlay area.

If you set Bits 1 through 15 of ACI to -1, ?OVLOD takes the normal return after the operating
system loads the overlay. Otherwise, the operating system interprets ACI as follows:

• If Bit 0 of ACI = 1, then the operating system treats Bits 1 through 15 as an offset into the
overlay and passes control to that offset.

• If Bit 0 of AC 1 = 0, then the operating system treats Bits 1 through 15 as an absolute address in
the overlay, and passes control to that address.

Note that you must set Bits 1 through 15 in AC 1 to an offset if the total overlay area is a multiple
of the basic overlay area. You cannot specify an absolute address in this case, because the operating
system may relocate the overlay to any basic area within the total area. Thus, any absolute address
you give could be invalid.

If you transfer control to the overlay (rather than the ?OVLOD normal return), the operating
system passes the overlay the base address in AC 1 after it executes ?OVLOD. If th€! overlay then
issues ?OVK1L, the operating system never takes the ?OVLOD normal return, because ?OVKIL
kills the calling task.

The caller receives the overlay base address (and the other output values) only if ACI contains-l
on input or if the loaded overlay returns control to the caller with an RTN instruction. Otherwise,
the output values at the ?OVLOD normal return are those passed as input values to ?OVEX.

Notes

• See the description of ?OVKIL in this chapter.

2-512 Licensed Material - Property of Data General Corporation 093-000542

?OVREL Releases an overlay area (16-bit processes only).

?OVREL
error return
normal return

Input

ACO Contains the following:

• Bit 0 is ignored

• Overlay area number
(defined in the .ENTO
argument) in Bits 1
through 6

• Overlay number (defined
in the .ENTO argument)
in Bits 7 through 15

AC1 Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

ERICM
ERROO
EROVN

Illegal system command
Invalid overlay number
Illegal overlay number

Why Use It?

Output

ACO Unchanged

AC 1 Undefined

AC2 Undefined

?OVREL is one of the three primitive system calls for releasing an overlay. (The others are ?OVEX
and ?OVLOD). Use ?OVREL if you want to release an overlay and maintain the calling task in the
active state. ('?OVKIL kills the calling task.)

Who Can Use It?

There are no special process privileges needed to issue this call. You must have Read access to the
program's overlay COL) file.

What It Does

?OVREL decrements the overlay use count (OUC) of an overlay previously loaded with ?OVLOD
and frees the overlay area if the OUC becomes o. You cannot issue ?OVREL from the overlay you
want to release, because the normal return, in this case, would be in the target overlay.

Notes

• See the descriptions of?OVLOD, ?OVEX, ?OVKIL in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-513

?PCLASS Gets a process's class and locality.

?PCLASS [packet address]
error return
normal retu rn

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?PCLASS
packet, unless you specify
the address as an argument
to ?PCLASS

Error Codes in ACO

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?PCLASS packet

ERPRH Attempt to access process not in hierarchy

Why Use It?

Use this system call to obtain locality and class information for a specific process.

Who Can Use It?

You must have Superprocess privilege or the target process must be in your hierarchy. There are
no restrictions concerning file access.

What It Does

This systern call accepts a process identifier from you. It returns the process's user locality, its
program locality, and its class information.

If you want information about the calling process, place the value of ?PCL_PID in offset
?PCL_PK':P.PCODE of the packet and place -1 in offset ?PCL_PKT.PID.

You obtain information about a different process in one of the two following ways:

• Assume that you know the name of the process. Place the value of ?PCL_PNAME in offset
?PCL_PKT.PCODE. Place in offset ?PCL_PKT.PNAME a byte pointer to the process name. Set
offset ?PCL_PKT.PID to zero.

• Assume that you know the PID of the process. Place the value of ?PCL_PID in offset
?PCL_PKT.PCODE. Place zero in offset ?PCL_PKT.PNAME. Place the PID in offset
?PCL_PKT.PID.

Figure 2-175 shows the structure of the ?PCLASS parameter packet, and Table 2-154 describes its

contents.

2-514 Licensed Material- Property 01 Data General Corporation 093-000542

?PCL_PKT.
PKT_ID

?PCL_PKT.
PNAME

(low order)

?PCL_PKT.
USER_LOC

?PCL_PKT.
CLASS_ID

o 15 16 31
---------------------+--------------------

Packet identifier

---------------------+--------------------
Function code (not 1 Code for PID or
used; set to 0.) 1 process name

---------------------+--------------------
PID or -lor 0 Byte pointer to

1 process name
1

---------------------+--------------------
Byte pointer to 1 Number of bytes in
process name 1 process name,

1 including null or
1 other terminator

---------------------+--------------------
User locality 1 Program locality

1

---------------------+--------------------
Class ID 1

1

---------------------1
?PCL_PKT_LEN = packet length

1

1

1

1

1

1

1

1

1

?PCL_PKT. 1

PNAME 1

(high order) 1

1

?PCL_PKT. 1

PSUPPLIED 1

?PCL_PKT.
PROG_LOC

1

1

1

1

1

1

1

1

1

1

1
__ . _________ 1

Figure 2-175. Structure of?PCLASS Packet

Table 2-154. Contents of ?PCLASS Packet

1

1 Offset 1 Contents 1
====================1===1

? PCL_.PKT . PKT_ID
(doubleword)

? PCL_.PKT . FUNC

? PCL __ PKT . PCODE

093-000542

?PCL_PKT.PNAME
(doubleword)

Packet identifier. Place ?PCL_PKT_PKTID here.

Function code. Not used. (Set to 0.)

Code word into which you place ?PCL_PID when
you supply a PID, or else ?PCL_PNAME when you
supply a process name.

Supply -1 for the calling process. For another
process, either place its PID here, or else
place 0 here and the process's name information
in the next two offsets.

If you've placed 0 in the previous offset,
then place a byte pointer here to the process's
name, and place its length in the next offset.

If you've placed 0 in offset ?PCL_PKT.PID and
a byte pointer in the previous offset, then
place the number of bytes in the byte pointer
here.

User locality.

Program locality.

Class ID.

Licensed Material - Property of Data General Corporation 2-515

?PCNX Passes a connection from one server to
another in Ring 7.

?PCNX
error return
normal return

Input

ACO Customer's PID

ACl PID of the new server

AC2 Reserved (Set to 0.)

Error Codes in ACO

Connection broken
Connection does not exist
Cannot connect to self
Process is not a server

Output

ACO Unchanged

AC 1 Unchanged

AC2 Undefined

ERCBK
ERCDE
ERCCS
ERNAS
ERPRH Attempt to access process not in hierarchy

Why Use It?

?PCNX allows you to break a connection between a server and one of its customers and to
re-establish the connection with a new server process. ?PCNX is useful for passing a
customer/server connection from an intermediate server to a specialized server.

Who Can Use It?

You need no special process privileges to issue this call. There are no restrictions concerning file
access. However, the new server's PID must belong to a valid server process and also be a member
of your process hierarchy. Since connections are between cooperating processes, the new server
must cooperate with the customer process.

What It Does

?PCNX passes the connection established between the caller and one of its customers to another
server process. Before you issue ?PCNX, load ACO with the PID of the customer process, and load
ACl with the PID of the new server. Note that ACl cannot contain the same PID number that is in
ACO. This would connect the server to itself.

The calling process must be a server of the customer that you specify in ACO, and there must be an
unbroken connection between the two. The new server process must have already issued ?SERVE
to declare itself a server.

When a server issues ?PCNX, the operating system updates the connection-table entry so that it
contains the PID of the new server.

2-516 Licensed Material - Property of Data General Corporation 093-000542

?PIDS Gets information about PIDs.

?PIDS [packet address]
error return
normal return

Input

ACO One of the following:

• HostID

• -1 for the current host

• Byte pointer to the hostname

AC 1 Defines contents of ACO
as follows:

• 0 if ACO contains a host ID

Output

ACO Unchanged

AC 1 Unchanged

• -1 if ACO contains a byte pointer

• ignored if ACO contains -1

AC2 Address of the ?PIDS
packet, unless you specify
the address as an argument
to ?PIDS

Error Codes in ACO

AC2 Address of the ?PIDS packet

ERVWP Invalid address passed as system call argument

Why Use It?

Use this system call to obtain information about the number of processes on your system.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access. However, gaining access to a remote host requires that you have RMA access
on the remote system. You obtain RMA access by first having a profile on the remote system with
the same username and password as on your local system. Second, you must have privilege
?PRRAPRV in your profile on the remote system.

What It Does

You can issue ?PIDS to obtain the maximum number ofPIDs allowed. ?PIDS also returns the
number of processes currently running on the system and the number of processes below 256.

The process count limit might change in future revisions of the operating system. Furthermore, the
number of processes allowed on the system is limited by a system generation question. Programs
that allocate resources based on the maximum number ofPIDs on a system need a way to obtain
this limit; ?PIDS provides the way.

093-000542 Licensed Material - Property 01 Data General Corporation 2-517

?PIDS Continued

Figure 2-176 shows the structure of?PIDS's parameter packet, and Table 2-155 describes its
contents.

o 15 16 31
1-------------------------+-------------------------1

?PIPR 1 Revision number 1 Low range PIDs 1 ?PILRP
1--------------------------+-------------------------1

?PI'rOT 1 Number of PIDs used 1 Maximum PIDs allowed 1 ?PIMXP
1-------------------------+--------------------------1
?PILTH = packet length

Figure 2-176. Structure of ?PIDS Packet

Table 2-155. Contents of ?PIDS Packet

1

Offset 1 Contents 1

2-518

=========1==1
?PIPR 1 Packet revision number. Place 0 here.

1

?PILRP 1 The operating system returns the number of PIDs used
1 that are fewer than 256 (i.e., those in the low range).
1

?PITOT 1 The operating system returns the total number of PIDS
1 that are in use. This includes the number of low-·range
1 PIDs that are in offset ?PILRP.
1

?PIMXP 1 The operating system returns the maximum number of PIDs
1 allowed on the system. This value may differ fron\
1 that of ?VSPIDS as defined in the parameter files.
1

--__ --_1---

Licensed Material - Property of Data General Corporation 09:H)00542

?PMTPF Permits access to a protected file.

?PMTPF
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Packet address

Error Codes in ACO

Output

ACO Unchanged

ACI Unchanged

AC2 Unchanged

ERAPU
ERCBK
ERCDE
ERIFI
ERPRH
ERRNI

Attempt to pass unheld access privileges
Connection has been broken
Connection does not exist
Invalid protected file ID
Process not in hierarchy
Ring number invalid

Why Use It?

The first opener of a file (?SOPPF) uses ?PMTPF to allow other segment images to open a protected
shared file or to revoke this access. ?PMTPF provides you with a way to control access to protected
shared files.

Who Can Use It?

The PID of the target segment must identify a process that is in your hierarchy. Also, read the
explanation of granting access privileges in the following section "What It Does" and read the
description of offset ?PFFLG in Table 2-155. The description of system call ?SOPPF contains the
restrictions concerning file access.

What It Does

The first opener of a protected shared file uses ?PMTPF to grant access privileges to other segment
images that wish to open the protected shared file. Only the first opener of a protected shared file
can issue ?PMTPF against that file.

The ?PMTPF caller cannot grant any access privileges that it does not have itself. Also, ?PMTPF
privileges are not cumulative. That is, the ?PMTPF caller grants a segment image only the access
privileges that were specified in the last ?PMTPF call that was directed towards that segment
image.

The first opener can revoke access privileges by issuing ?PMTPF with a null privileges mask.

A ?PMTPF access grant remains active until one of the following events occurs:

• The connection between the first opener and the target image is broken.
• The first opener closes the file.
• The first opener revokes the access grant.

NOTE: Revoking a ?PMTPF access grant affects only future opens.

093-000542 Licensed Material - Property of Dala General Corporation 2-519

?PMTPF Continued

To use ?PMTPF, you must supply a packet that contains various information about the target
program. F'igure 2-177 shows the structure of the packet and Table 2-156 describes its contents.

2-520

o 15 16 31
1-------------------------+-------------------------1

?PFFLGI Flag Word (see 1 Ring number of target I?PFRNG
1 Table 2-156) 1 segment image 1
1-------------------------+-------------------------1

?PFPIOI PIO of target segment 1 Reserved (Set to 0.) I?PFAOW
1-------------------------+--------------------------1

?PFIH 1 Protected file IO number 1

1--1

Packet length = ?PFLNG

Figure 2-177. Structure of?PMTPF Packet

Table 2-156. Contents of ?PMTPF Packet*

Offset Contents
================ ===

?PFFLG Flag word

?PFRNG

?PFPIO

?PFAOW

?PFIH
(doubleword)

?FAC<O,W,A,R,E>--Access privileges.
?PFFO--First open.
?PFRW--Open for read and write.

Ring number of target segment.

PIO of target segment.

Reserved. (Set to 0.)

Protected file IO number.

* There is no default unless otherwise specified.

Licensed Material - Property of Data General Corporation 093-000542

?PNAME Gets a full process name.

?PNAME
error retu rn
normal return

Input

ACO Byte pointer to one of the
following:

• Buffer to receive the
process name

• Name of the target
process, to obtain
its PID

ACl One of the following:

• PID of the target
process, to obtain
its process name

• 0 to obtain the PID
of the target process

• -1 to obtain the PID
of the calling process

AC2 Reserved (Set to 0.)

Error Codes in ACO

Output

ACO Unchanged

AC 1 Requested PID

AC2 Undefined

ERPRE
ERPNM
ERPRH
ERVBP

Invalid or illegal system call parameter
Illegal process name
Attempt to access process not in hierarchy
Invalid byte pointer passed as a system call argument

Why Use It?

You can use ?PNAME to obtain both the process name and PID of a process. Therefore, ?PNAME is
a useful complement to system calls that require these identifiers as input.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

093-000542 Licensed Material - Property of Data General Corporation 2-521

?PNAME Continued

What It Does

?PNAME returns either the PID or the process name of a target process, dependinf:lr on your input
to ACO and AC 1.

To obtain the name of a process other than the calling process, load AC 1 with the PID of that
process, and load ACO with a byte pointer to a buffer that will receive the process name. To obtain
the PID of a process (except the calling process), load AC1 with 0, and load ACO with a byte pointer
to the process's name. The operating system returns the PID you requested to ACL

To obtain the PID of the calling process, load AC1 with -1 and ACO with o. The operating system
returns the caller's PID to the same accumulator. To obtain the name of the calling process, load
ACO with a byte pointer to a receive buffer.

2-522 Licensed Material - Property of Data General Corporation 093-000542

?PRCNX Passes a connection from one server to another.

?PRCNX
error return
normal return

Input

ACO Customer's PID

AC 1 PID of the new server

AC2 A field that describes
the following:

• Bits 0 through 20 are reserved
(Set to 0.)

• Bits 21 through 23 contain
the ring of the customer

• Bits 24 through 28 are
reserved (Set to 0.)

• Bits 29 through 31 contain
the ring of the specified server

Error Codes in ACO

Connection broken
Connection does not exist
Cannot connect to self
Process is not a server

Output

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERCBK
ERCDE
ERCCS
ERNAS
ERPRH
ERRNI

Attempt to access process not in hierarchy
Invalid ring number

Why Use It?

?PRCNX allows you to break a connection between a ring of a server and one of its customers and
to re-establish the connection with a ring of a new server process. ?PRCNX is useful for passing a
customer/server connection from an intermediate server to a specialized server.

Who Can Use It?

The calling process must be a server of the customer that you specify in ACO and AC2, and there
must be an unbroken connection between the two. The new server process must have already
issued ?SERVE to declare itself a server. There are no restrictions concerning file access.

What It Does
?PRCNX passes the connection established between the calling segment image (PID/ring tandem)
and one of its customers to a segment image of another server process. Before you issue ?PRCNX,
load ACO with the PID of the customer process, and load AC 1 with the PID of the new server . Note
that AC 1 cannot contain the same PID number that is in ACO. This would connect the server to

itself.

093-000542 Licensed Material - Property of Data General Corporation 2-523

?PRCNX Continued

When a server issues ?PRCNX, the operating system updates the connection-table entry so that it
contains the PID/ring of the new server and deletes any previous connection between the customer
and the new server. In effect, this breaks the old connection. Therefore, the operating system
revokes any protected shared file access grants that the old server allowed the customer.

Notes

• See the description of ?PCNX in this chapter.

2-524 Licensed Material - Property of Data General Corporation 093-000542

?PRDB/?PWRB Performs physical block I/O.

?PRDB [packet address]
error return
normal return

?PWRB {packet address]
error return
normal return

Input
ACO Reserved (Set to 0.)

AC1 Target file's channel number

AC2 Address of the packet,
unless you specify the
address as an argument
to the system call

Error Codes in ACO

Output
ACO Undefined

AC1 Byte count of the bytes read
or written

AC2 Address of the packet

ERVWP Invalid word pointer passed as a system call argument
ER_FS_DIRE CTORY_NO TfiVAILABLE

Directory not available because the LDU was force released (AOSNS II only)
ER_FS_TLA_MODIFY_VIOLATION

Attempt to modify an AOSNS II file with ?ODTL value supplied in ?GOPEN packet
(?PWRB only)

Why Use It?
You can use ?PRDB or ?PWRB to check for bad blocks on a disk, or to check for problems with an
1/0 device.

When the operating system encounters a transfer error (bad block) while it is executing a ?PRDB or
a ?PWRB, it takes the normal return and reports the reason for the error in the packet, but
transfers all or part of that bad block. (See Table 2-159.) However, when a device error occurs
during a ?PRDB or a ?PWRB, the operating system immediately aborts the transfer and returns
the device error code to the packet.

Who Can Use It?
There are no special process privileges needed to issue this call. You must have obtained a channel
number via ?GOPEN or ?OPEN before issuing this call. Also, you have Read access to the file before
issuing ?PRDB or Write access to the file before issuing ?PWRB.

What It Does
?PRDB and ?PRWB read and write physical blocks on disk, respectively. Before you issue one of
these system calls, load AC1 with the channel number assigned to the target file at ?GOPEN time.

?PRDB and ?PWRB each require an extended packet. You can specify the packet address as an
argument to the system call or as input to AC2 before you issue the system call. The parametric
value for the length of the packet, including the extension, is ?PPBLT. Figure 2-178 shows the
structure and Table 2-157 describes the contents of the ?PRDBI?PRWB packet. Table 2-1581ists
the disk and tape types applicable to the offsets in the packet extension.

086-000195 updates
093-000542 Licensed Material - Property 01 Data General Corporation 2-525

I

I

I

?PRDB/?PWRB Continued

?PSTI

?PCAD

?PRNH

?PRCL

o 15 16 31
-------------------------+-------------------------1

Status Word I Reserved I ?PSTO
I (Set to 0.) I

-------------------------+-------------------------1
Word address of data buffer in your logical I
address space I

---1
Block number of first block to be transferred

-------------------------+-------------------------
Number of bytes in last I Relative block number of ?PRBB
disk or tape block I last block transferred
transferred I (disk) or running byte

I count (tape)
-------------------------+-------------------------

?PCS1 Controller status word 11 Controller status word 2 ?PCS2
-------------------------+-------------------------

?PCS3 Controller status word 31 Controller status word 4 ?PCS4
-------------------------+-------------------------

?PCS5 Controller status word 51 Controller status word 6 ?PCS6
-------------------------+-------------------------

?PCS7 Controller status word 71 Controller status word 8 ?PCS8
-------------------------+-------------------------
?PPBLT = packet length

Figure 2-178. Structure of ?PRDB / ?PWRB Packet

?PRDB/?PRWB Packet Offsets
Specify the tape or printing control options you want in the left byte of ?PSTI. Specify the number
of blocks you want to read or write in the right byte of offset ?PSTI (block count). Use offset ?PCAD
as a word pointer to the address of the data buffer you have reserved in your logical address space
for the transfer. Offset ?PRNH must indicate the relative block number of the first block you want
to transfer.

Use offset ?PRCL for ?PWRB (write block) only. Offset ?PRCL must contain the number of bytes in
the last block you are writing. In effect, this value specifies the last valid byte in the block. If you
are performing a write (?PWRB) to extend the file, the operating system places the end-of-file
mark immediately after this byte. If you set offset ?PRCL to 0, the operating system sets the bytes
in the last block to the default, which is 512 (a full block).

As Table 2-157 and Table 2-158 indicate, the operating system uses the ?PRDBnPRWB packet
extension to return status information about the block transfer. (You supply input values only for
offsets ?PSTI through ?PRCL in the main packet.)

2-526 Licensed Material - Property d Data General Corporation
086-()00195 updates

093-000542

Table 2-157. Contents of ?PRDB/?PWRB Packet

Offset Input Value Output Value
============= =============================== =========================
?PSTI Left Byte: Input options. Unchanged.

?PSTO

?PCAD
(doubleword)

?PRNH
(doubleword)

?IMIO = 1B(?IDIO) Use direct
I/O with the MCA
Protocol. The system
ignores the block
count, and transmits
the number of bytes
in ?PRCL.

?ENOV 1B(?ENOR)

For printers, enable
a Vertical Form Unit
load (part of Forms
Control Utility).

For tape, override
the LEOT (logical
end-of-tape) mark.

?SAFM = 1B(?SAFE) Enable a
safe write to tape.

Right Byte: Block count.

Reserved.

Address of data buffer in
your logical address
space.

Block number of first
block to be transferred.

?PRCL Number of bytes in last
disk or tape block
transferred.

Unchanged.

Unchanged.

Unchanged.

Unchanged.

Unchanged.
1

1

1

1

1

?PRBB Not applicable. Number of blocks 1

1 successfully trans- 1
1 ferred (disk) or 1

1 running byte count 1

I (tape) . 1

I 1
I?PCS1 - ?PCS8 Not applicable. Controller status words. 1

1 (See Table 2-158.) 1
1 ___ 1

You can use offset ?PRBB to determine if an error was encountered, and if one was, the block
number of the first bad block encountered during the transfer. Offset ?PRBB records the number of
blocks that were successfully transferred. If ?PRBB does not contain the n~mber you specified in
offset ?PSTI, an error has occurred and offsets ?PCSI through ?PCS8 in the packet extension record
the reason for the transfer error.

Offsets ?PCSI and ?PCS5 are always set on output, as appropriate for the device in use. Note that
offsets ?PRBB through ?PCS5 are the only packet extension parameters currently in use.

086-000195 updates
093-000542 Uoensed Material - Property d Data General Corporation 2-527

?PRDB/?PWRB Continued

2-528

Table 2-158. ?PRDB/?PWRB Packet: Controller Status Words

1 1
DPD/DPG Disk 1 Status Word Use 1

============================1============= =======================1
6030 (Floppy) 1 ?PCSI DIA (Transfer) Status 1

6045/ 6050 / 6051 (10 Mbyt e s) 1 1

6070 (20 Mbytes) 1 1

============================1============= =======================1
DPI Disk 1 Status Word Use 1

============================1============= =======================1
6097 (Floppy) 1 ?PCSI DIA (Transfer) Status 1

6098/6099 (12.5 Mbytes) 1 1

610 0 / 61 03 (2 5 Mbyt e s) 1 1
6225 (5 Mbytes) 1 1
6227 (15 Mbytes) 1 1
62:3 4 (50 Mby t e s) 1 1

============================1============= =======================1
DKB Disk 1 Status Word Use 1

============================1============= =======================1
6063/6064/6065/6066 1 ?PCSI DIA (Transfer) Status 1

(Fixed Head) 1 ?PCS2 Unused I

1 ?PCS3 ERCC Word One I

1 ?PCS4 ERCC Word Two I

============================1============= ================:=======
DPF Disk Status Word Use

============================ =============1================:=======
6060 (96 Mbytes) ?PCSI 1 DIA (Transfer) Status
6061 (147 Mbytes) ?PCS2 1 DIB (Drive) Status
6067 (50 Mbytes) ?PCS3 ERCC Word One
6122 (277 Mbytes) ?PCS4 ERCC Word Two
6160 (73 Mbytes)
6161 (147 Mbytes)
6214 (602 M bytes)

============================
DPM Disk

============================
4514 (5 1/4 in. Floppy)

============================
DP,J Disk

============================
6236/6237 (354 Mbytes)
6239/6240/

6290/6350 (592 Mbytes)
6309 (5 1/4 in. Floppy)
6310 (38 Mbytes)
6328 (70 Mbytes)
6329 (120 Mbytes)

=============
Status Word
=============

?PCSI

Status Word
=============

?PCSI
?PCS2

?PCS3
?PCS4
?PCS5

=======================
Use

=======================
DIA (Transfer) Status

Use I
=======================1

CB Status I
Unit Status 1

CB Error Statu!:;
Disk Error COdE:!
Controller TyPE:!

1

1

I
I
1

, ______________________________________ ----------------.--------1

Licensed Material- Property d Data General Corporation

(continued)

086-000195 updates
093--000542

Table 2-158. ?PRDB/?PWRB Packet: Controller Status Words

MTB/MTD Tape

6026 (800/1600 bpi)
43 07 (1600 / 62 50 bp i)
6200 (1600/6250 bpi)
6300 (1600/6250 bpi)

============================
MTC Tape

============================
6125 (1600 bpi)
6231/6311 (Cartridge)

============================
MRC Disk

============================
6236/6237 (354 Mbytes)
6239/6240/6290 (592 Mbytes)
6357/6398/

6399/6400 (862 Mbytes)
6581/6582/6584 (500 Mbytes)

============================
MRC Tape

============================
6299/6300 {6250/1600 bpi}
4307-TL (6250/1600/800 bpi)

Status Word

?PCS1
?PCS2

=============
Status Word

=============
?PCS1

Status Word
=============

?PCS1
?PCS2
?PCS3
?PCS4
?PCS5
?PCS6

=============
Status Word

=============
?PCS1
?PCS2
?PCS3
?PCS4
?PCS5
?PCS6

1

Use 1

==========================1
DIA {Transfer} Status 1

DIC (Drive) Status 1

1

1

==========================1
Use 1

==========================1
DIA (Transfer) Status 1

1

==========================1
Use 1

==========================1
Controller Type 1

Unit Type 1

Controller Error Code 1

Error Status {ctrl/unit} I
Unit Status 1

Drive Error Code 1

==========================1
Use 1

==========================1
Controller Type 1

Unit Type 1

Controller Error Code 1

Error Status (ctrl/unit) 1

Unit Status 1

Drive Error Code 1

(concluded)

Table 2-159. Error Reports Returned in ?PRDB/?PWRB Offsets

1

1 Offsets 1 Contents 1 Meaning 1

1=========1==========1==1
1 ?PSTI 1 20 1 1
I ?PRBB 1 20 1 The operating system transferred all blocks 1

1 1 1 without error. 1

1---------1----------1--1
1 ? PSTI 1 20 1 1
1 ?PRBB 1 19 1 Last block was not transferred successfully. 1

1 1 1 You might want to try again. 1

I 1 1 1

Notes

• Refer to the ECLIPSE® MV / Family (32-Bit) Systems Principles of Operation manual for details
on the DIA, DIB, and DIe I/O instructions. Or, refer to the programmer's reference manual for
your particular model.

086-000195 updates
093-000542 Licensed Material - Property d Data General Corporation 2-529

?PRI

?PRI
error return
normal return

Input
ACO Priority number you wish to

assign to the calling task

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO
No error codes are currently defined.

Why Use It?

Changes the priority of the calling task.

Output
ACO Unchanged

ACl Undefined

AC2 Undefined

?PRI is analogous to ?IDPRI, except that it changes the priority of the calling task, rather than
another target task. Like ?IDPRI, ?PRI gives you some control over the operating system's
task-scheduling activities. For example, you might use ?PRI to favor the calling task by assigning
it a higher relative priority or, conversely, to favor other tasks by giving the calling task a lower
relative priority.

Who Can Use It?
There are no special process privileges needed to issue this call, and there are no rE~strictions
concerning file access.

What It Does
?PRI changes the priority number of the calling task to the priority that you specify in ACO. If there
are already other tasks at the new priority level, the calling task ranks last in the priority queue
and, therefore, gains CPU access after all others at that priority level. Like ?IDPRI, ?PRI can cause
immediate task rescheduling.

Before you issue ?PRI, load ACO with the priority number that you want to assign to the calling
task. Priority numbers for tasks range from 0 (the highest priority level) through 255 (the lowest
priority level). If you specify a priority number greater than 255, the operating system truncates
the priority number to its least significant 8 bits.

2-530 Licensed Material - Property or ~ata General Corporation
086-000195 updates

093-000542

?PRIPR Changes the priority of a process.

?PRIPR
error return
normal return

Input Output

ACO One of the following: ACO Unchanged

AC1

AC2

• -1 to change the
priority of the
calling process

• Byte pointer to the
name of the target
process

• PID of the target
process

One of the following:

• -1 if ACO contains a
byte pointer

• o if ACO contains a PID

Otherwise, ignores contents
of ACl.

New priority of the target
process in the following
ranges:

• 1 through 255 for resident and
pre-emptible processes

• 1 through 3 for swappable
processes

AC1

AC2

Error Codes in ACO

System call parameter address error
Illegal process name
Attempt to access process not in hierarchy

Unchanged

Unchanged

ERMPR
ERPNM
ERPRH
ERPRP Illegal priority (Either a caller with privilege ?PVPR tried to raise its own priority or

the newly assigned priority is out of range.)
ERVBP Invalid byte pointer passed as a system call argument

Why Use It?

?PRIPR changes a process's priority. Process priority is one of several criteria the operating system
uses to determine the scheduling order for individual processes.

093--000542 Licensed Material - Property of Data General Corporation 2-531

?PRIPR Continued

You can use ?PRIPR to favor a process for CPU access (by raising its priority) or to favor other
processes over the target process (by lowering the target's priority).

Who Can Use It?

The ?PRIPR call requires no special process privileges. A process can issue ?PRIPR to change the
priority of any subordinate process. However, if the calling process is in Superprocess mode, it can
change the priority of any process. There are no restrictions concerning file access.

What It Does

?PRIPR changes the priority of the process that you specify in ACO (the calling prolcess or another
target proc:ess).

The priority range for all processes is 1 (the highest priority) through 511 (the 10WE!st priority).

Notes

• See the description of ?CTYPE in this chapter.

2-532 Licensed Material - Property of Data General Corporation 093-000542

?PRKIL Kills all tasks of a specified priority.

?PRKIL
error return
normal return

Input

ACO Priority level of the
tasks to kill

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

ACl Undefined

AC2 Undefined

?PRKIL allows you to kill all tasks of a given priority level. (You can group tasks of similar
functions under the same priority.)

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?PRKIL kills (terminates) all tasks of the priority level that you specify in ACO. If the target tasks
were explicitly suspended by ?SUS, ?IDSUS, or ?PRSUS, or because they issued an ?XMTW or
?REC, the operating system lifts the suspension and readies the target tasks at the highest priority
level (0) before it executes the task-kill logic. If the target tasks became suspended by issuing other
system calls, the operating system aborts those outstanding system calls and readies the tasks
before it performs the task-kill logic.

If you supplied a kill-processing routine for the target tasks, the operating system passes control to
those routines when you issue ?PRKIL. You should end each kill-processing routine with a ?KILL.
?KILL invokes a ?UKIL task termination routine - either the system default ?UKIL or a ?UKIL
you have defined. ?UKIL, and then terminates the tasks.

If you did not supply kill-processing routines, control passes to the appropriate ?UKIL routine
immediately.

Notes

• See the descriptions of ?IDS US, ?PRSUS, ?XMTW, ?REC, and ?KILL in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-533

?PROC Creates a process.

?PROC [packet address]
error return
normal return

1
1 Operating System Differences 1

1==============================1
1 Accumulator 1

1 Input and Output None 1

1 Error Codes Some 1

1 Parameter Packet Some 1

1 1

Input Output

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?PROC
packet, unless you specify
the address as an argument
to ?PROC

Error Codes in ACO

ACO Undefined

AC 1 PID of the new process

AC2 Address of the ?PROC packet

Illegal maximum process size on process create
Terminal device specification error
Directory access denied (AOSNS only)
Different process type

ERBMX
ERCON
ERDAD
ERDPT
EREAD Execute access denied (You must have Execute access to the program file you want to

run.) (AOSNS only)
EREXC
ERIFL
ERIFT
ERPDF
ERPRN
ERPRP

ERPRV
ERPTY

ERSMX
ERSNM
ERUNM
ERVBP
ERVWP
ERWSM
ERWSS

Resident process tried to ?PROC and block
lAC (Intelligent Asynchronous Controller) failure
Illegal file type
Error in process UST definition
Number of processes exceeds maximum
Illegal priority (The caller tried to assign the new process a higher priority than its
own, without the privilege to do so.) (AOSNS only)
Caller not privileged for this action (AOSNS only)
Illegal process type (The caller tried to assign the new process a process type different
from its own, without the privilege to do so.) (AOSNS only)
Error in setting maximum CPU time
Attempt to exceed maximum number of sons (AOSNS only)
Illegal username
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument
Attempt to set working set minimum, not privileged
Invalid working set maximum/minimum (AOSNS only)

Why Use It?
?PROC allows you to create a process and define its privileges and characteristics.

2-534 Licensed Material - Property of Data General Corporation 093-000542

Who Can Use It?
Although there are no special process privileges needed to issue this call, many options affect the
privileges the newly created process has. For example, setting bit ?PFDA in offset ?PFLG prevents
the operating system from passing the father's default ACL to the son. These options appear
throughout the rest of this explanation of ?PROC.

You must have Execute access to the directory in which the program file resides along with both
Execute and Read access to the program file itself.

What It Does
?PROC creates a process and assigns it whatever characteristics you specify in the ?PROC packet.
Before you issue ?PROC, set up a packet in your logical address space that is ?PLTH words long.
You can either cite the packet address as an argument to ?PROC, or you can load the packet
address into AC2 before you issue ?PROC. Figure 2-179 shows the structure of the ?PROC packet
and Table 2-160 defines each offset and mask.

Among other characteristics, ?PROC defines the process's type and priority, its maximum and
minimum working set size, and its creation privileges (that is, the right to create sons with
additional ?PROC system calls). Note that you cannot create a son process with privileges the
calling process does not have.

Note also that when the operating system terminates a father process, it simultaneously terminates
all his sons.

The ?PROC extension packets let you specify the following items when you issue ?PROC:

• CPU selection.

• User locality.

• ?PROC-related usemame.

• ?GROUP access control list (AOSNS II only).

Figures 2-180 and 2-181 show the structure of the ?PROC extension packets, and Tables 2-162
and 2-163 define each offset.

Offset ?PFLG

Offset ?PFLG in the packet contains specification bits for the following characteristics and
privileges:

• Process type.

Bit ?PFRS assigns the new process resident status; bit ?PFRP assigns it pre-emptible status.
(Swappable is the default process type.) Bits ?PFRS and ?PFRP are mutually exclusive; if you
set them both, the operating system takes the ?PROC error return and passes error code ERPTY
to ACO.

086-000195 updates
093-000542 Licensed Material - Property d Data General Corporation 2-535

I

?PROC Continued

• Default access control (AOSNS only).

Bit ?PFDA, the access privileges bit, prevents the operating system from passing the father's file
access privileges to the son. But, bit ?PFDA is only checked by the operating system if a
username is specified, and if?PUNM does not contain -1. If you set ?PFDA, the operating
system assigns the son the default access control list USERNAME, aWARE (Owner, Write,
Append, Read, Execute access). The son can also receive USERNAME aWARE access under the
following conditions:

- When you assign the son a different username from its father.

- When the father process has no default access privileges.

For more information on default file access, see the description of ?DACL in this chapter.

• Control directive.

Bit ?PFDB directs the operating system to pass control to the Debugger utility immediately after
it creates the new process. By default, control passes to the start of the progranl associated with
the new process.

• Concurrency.

Bit ?PFEX blocks the calling process while the new process executes. If you don't set this bit, the
son runs concurrently with its father. The calling process must have privilege ?PVEX to allow
this. Under AOSIRT32, all processes have this privilege.

• Privileges mask.

Bit ?PFPM, the privileges mask, directs the operating system to give the son all the father's
privileges except those specified in offset ?PPRV. Alternatively, if you set ?PFPM and set ?PPRV
to -1, the son gets no privileges. If you just want the son to inherit the father's privileges, do
NOT set ?PFPM, but set ?PPRV to-1.

• Break files and memory dumps.

On an AOSIVS system, setting ?PBRK and not ?PDMP creates a break file if the process traps.
Not setting ?PBRK and setting ?PDMP creates a dump file of Ring 7 if the process traps. Setting
both bits has exactly the same effect as not setting ?PBRK and setting ?PDMP.

On an AOSIRT32 system, all of the three combinations in the previous paragraph have the same
effect. The effect is to create one break file with a memory dump of Ring 7. The filename has the
format ?PID.TIME.7.BRK where PID and TIME are as described in Table 2-13 under offset
?ENFNP. The operating system creates another break file for each additional user ring (4,5,6)
that is defined. A possible filename in this additional case is ?00035.11_41_23.H.BRK.

Table 2-161 describes each of the privilege bits in offset ?PPRV.

2-536 Licensed Material- Property 0/ Data General Corporation
086-000195 updates

093-000542

o 15 16 31
-------------------------+-------------------------1

?PFLG Process creation specs. 1 Son process's priority 1 ?PPRI
(see Table 2-160) 1 1

-------------------------+-------------------------1
?PSNM Byte pointer to program pathname 1

---1
?PIPC Address of IPC message header 1

---1
?PNM Byte pointer to son's simple process name 1

---1
?PMEM Maximum number of logical pages 1

---1
?PDIR Byte pointer to working directory name 1

---1
?PCON Byte pointer to name of @CONSOLE device 1

-------------------------+-------------------------1
?PCAL* Max. no. of system callsl Maximum working set sizel ?PWSS

-------------------------+-------------------------1
?PUNM Byte pointer to son's username 1

-------------------------+-------------------------1
?PPRV Son's privileges 1 Maximum number of sons 1 ?PPCR

1 this son can create 1

-------------------------+-------------------------1
?PWMI Minimum working set sizel Reserved (Set to 0.) 1

-------------------------+-------------------------1
?PIFP Byte pointer to pathname of @INPUT file 1

---1
?POFP Byte pointer to pathname of @OUTPUT file 1

---1
?PLFP Byte pointer to pathname of @LIST file 1

---1
?PDFP Byte pointer to pathname of @DATA file 1

---1
?SMCH Maximum CPU time 1

---1

?PLTH = packet length

* This offset differs between AOS/VS and AOS/RT32. See Table 2-160.

086-000195 updates
093-000542

Figure 2-179. Structure of ?PROC Packet

Licensed Material- Property 01 Data General Corporation 2-537

I

?PROC Continued

2-538

Table 2-160. Contents of ?PROC Packet*

Offset Contents
=============== ===

?PFLG Process creation specifications.

?PFPP--Reserved - set to o.

Control directive.

?PFDB--Control goes to the Debugger.

DEFAULT = 0 (control goes to the starting
address of the program file).

Concurrency.

?PFEX--Caller is blocked while son executes.

DEFAULT = 0 (son runs concurrently with the
?PROC caller).

Privileges mask.

?PFPM--Mask son's privileges.

DEFAULT = 0 (son process receives all
priv1leges selected in ?PPRV).

Access privileges.

?PFDA--Do not pass default ACL. ?PFDA is only
checked if a username is specified,
and ?PUNM does not contain -1.

DEFAULT = 0 (son has same default ACL a.s
father (the caller)).

Break file.

?PBRK--Create a break file if process traps
or terminates fatally.

DEFAULT = 0 (do not create a break filE! if
the process traps or terminates
fatally) .

Block the son process.

?PFBS--Block son.

DEFAULT = 0 (do not block the son).

Extension packet.

?PFXP--An extension packet exists.

DEFAULT = 0 (no extension packet exists).

* There is no default unless otherwise specified. (continued)

Licensed Material - Property d Data General Corporation
08$-000195 updates

093-000542

Table 2-160. Contents of ?PROC Packet·

1

Offset 1 Contents
===============1===

?PFLG 1 Process type
(continued) 1

?PPRI

?PSNM
(doubleword)

?PIPC
(doubleword)

?PNM
(doubleword)

?PMEM
(doubleword)

?PDIR
(doubleword)

1

1

1

1

1

?PFRP--pre-emptible.
?PFRS--resident.

DEFAULT = ° (son is a swappable process) .

1 Process traps.
1

1

1

1

1

1

?PDMP--Dumps Ring 7. (If ?PBRK is also set,
overrides ?PBRK.)

Priority of the son process.

DEFAULT = -1 (same as caller's priority) .

Byte pointer to pathname of program file for the
new process to execute.

Address of an IPC message header; this message is
sent to the new process.

DEFAULT = -1 (no message header).

Byte pointer to new process's simple process name.

DEFAULT = -1 (Son's simple process name is the
ASCII representation of its PID (five
digits, including leading zeros).)

Maximum number of logical pages in new process.

DEFAULT -1 (same logical page maximum as the
caller's) .

Byte pointer to name of son's working directory;
if 0, then use the caller's current working
directory.

1 DEFAULT = -1 (same initial working directory as
1 the caller's).
1 1

________________ 1 ___ 1

* There is no

086-000195 updates
Q93...000542

default unless otherwise specified. (continued)

Lioensed Material - Property d Data General Corporation 2-539

I

?PROC Continued

2-540

Table 2-160. Contents of ?PROC Packet*

1

Offset 1 Contents
===============1===:========

?PCON Byte pointer to name of new process's @CONSOLE
(doubleword) file; if 0, there is no @CONSOLE file.

?PCAL

?PWSS

?PUNM
(doubleword)

?PPRV

?PPCR

DEFAULT = -1 (same @CONSOLE device as call4~r).

Maximum number of system calls the son can issue
concurrently.

DEFAULT = -1. (Son is limited to two concurrent
system calls.)

AOS/RT32 ignores this offset; set to -1.

Maximum working set size for son.

DEFAULT -1 (no limit on working set size;
otherwise, caller's limit).

NOTE: The calling process must have the
?PVWS privilege to set this parameter.

Byte pointer to son's username.

DEFAULT = -1 (same username as the caller's) .

NOTE: If ?PUNM contains -1 and a usern,9.me
is specified, ?PFDA is also checked.

Son's privileges; each bit in this offset (Table
2-161) assigns a privilege if ?PFPM is not set,
or denies a privilege if ?PFPM is set. ?PFPM is
a flag in offset ?PFLG (described earlier in this
table) .

DEFAULT -1. (If ?PFPM is also set, son has no
privileges; if ?PFPM is not set, son
has all the caller's privileges.)

Maximum number of sons this son can create; if 0,
no sons.

DEFAULT = -1 (same number of sons as the caller's
(minus the number already created)).

* There is no default unless otherwise specified. (continued)

Licensed Material- Property or Data General Corporation
086-000195 updates

093-000542

Table 2-160. Contents of ?PROC Packet·

1
1 Offset 1 Contents I

1===============1===1
?PWMI

?PIFP
(doubleword)

?POFP
(doubleword)

?PLFP
(doubleword)

?PDFP
(doubleword)

?SMCH
(doubleword)

Minimum working set size.

DEFAULT -1 (no working set minimum; otherwise,
caller's minimum) .

NOTE: The calling process must have ?PVWS
privilege to set this parameter.

Byte pointer to pathname of son's @INPUT file; if
0, there is no @INPUT file.

DEFAULT = -1 (same @INPUT file as the caller) .

Byte pointer to pathname of son's @OUTPUT file;
if 0, there is no @OUTPUT file.

DEFAULT = -1 (same @OUTPUT file as the caller) .

Byte pointer to pathname of son's @LIST file; if
0, there is no @LIST file.

DEFAULT = -1 (same @LIST file as the caller) .

Byte pointer to pathname of son's @DATA file; if
0, there is no @DATA file.

DEFAULT = -1 (same @DATA file as the caller) .

Maximum CPU time allotted to the son.

DEFAULT -1 (Son receives remainder of father's
time limit); if -1 and if father has no
time limit, son has no time limit.

* There is no default unless otherwise specified. (concluded)

086-000195 updates
093-000542 Licensed Material - Property or Data General Corporation 2-541

?PROC Continued

Table 2-161 describes each of the privilege bits in offset ?PPRV.

2-542

Table 2-161. Privilege Bits in Offset ?PPRV

1

Privilege Meaning I
========= ===1

?PVPC The new process can create an unlimited number of sons. I
I

?PVWS The new process can ?PROC sons of a different program I
file type (that is, 16-bit or 32-bit program file).

?PVEX The new process can remain unblocked while its sons
execute.

?PVWM The new process can define its sons' working set limit.

?PVPR The new process can either assign itself a higher
priority by issuing ?PRIPR or it can ?PROC a son with
a higher priority than itself.

?PVTY The new process can change its own process type
(?CTYPE) or ?PROC a son with a different process type.
(By default, sons have the same process types as their
fathers.)

?PVUI The new process can assign its sons different usernames.

?PVDV The new process can define and access user devic4;?s.

?PVIP The new process can issue the primitive IPC system
calls ?ISEND and ?IS.R. (Note that connected processes,
i.e., customer/servers, do not need this privilege to
issue ?IS.R.)

?PVSM The process can become System Manager.

?PVSU The new process can issue ?SUSER to enter Superu:3er
mode.

?PVSP The new process can issue ?SUPROC to enter Superprocess
mode.

?PVPP The new process can be a peripheral process.

licensed Material- Property d Data General Corporation
086-000195 updates

093--000542

Offset ?PIPC

Offset ?PIPC points to an IPC message header. Frequently, you may want to send a CLI -format
command line as the IPC message. This way, the son process can access arguments and switch values
via a ?GTMES call. The ~xp!anation of system call ?GTMES explains a CLI -format line. In Appendix
A sample programs BOOMER, DLIST, and TIMEOUT illustrate the ?GTMES call. Here's how to
create such an IPC message:

• Set the system flag word (offset ?ISFL) to zero in the IPC message (as opposed to setting a bit if
you were chaining to another process).

• Set bit ?RFCF in the user flag offset (?IUFL) to indicate CLI format.

• Set destination and origin port numbers to O.

• Set offset ?ILTH to the word length of the message.

• Set offset ?IPTR to the word address of the message.

See Figure 2-83 for the structure of the ?ISEND header.

Suppose you issue ?PROC with offset ?PIPC containing the address of an IPC message header, and
the target process will read the IPC message via ?GTMES. Then, offset ?IUFL of the IPC message
header must contain ?RFCF to specify CLI format. Figure 2-83 and Table 2-60 describe the IPC
message header; Figure 2 - 82 describes offset ?IUFL.

Other Offsets

Offset ?PPRI specifies a priority number for the new process, within the range 1 throu~h 511. When
you default this parameter (set offset ?PPRI to -1), the new process assumes its father s priority
number. A father process must have privilege ?PVPR to assign to its son a higher priority than its
own.

Offset ?PMEM specifies the maximum number of logical pages the new process can contain. By
default, fathers and sons have the same logical page limit.

Offset ?PCAL specifies the maximum number of concurrent system calls the new process can issue.
In general, critical_processes should have higher ?PCAL parameters than less critical processes. Note
that ?PCAL, and all specifications in ?PROC, should match the new process's needs as closely as
possible.

Creating Offspring

The system determines the number of offspring that a process can create by checking its ?PROC
packet for the following:

• The ?PVPC privilege in offset ?PPRV. This privilege allows the new process to create an unlimited
number of sons. ?PVPC overrides the value in offset ?PPCR, described next.

• The ?PPCR offset which specifies the maximum number of offspring the new process can create.
This offset is cumulative, which means that if a process with a ?PPCR value of 10 creates 2 sons,
each with a ?PPCR value of 4, the original process cannot create any more sons, because 2 sons
plus 8 (2*4) potential grandsons equals 10. This example is true as long as the 2 sons actually
create 8 processes. If they actually create only 5 processes between them, the original process can
create at most 3 processes (2 + 5 + 3 = 10).

086-000195 updates
093-000542 Licensed Material - Property d Data General Corporation 2-543

?PROC Continued

• The ?PVEX bit in offset ?PPRV and the ?PFEX mask in offset ?PFLG. ?PVEX ensures that the
new process remains unblocked while its sons execute (which allows it to create other sons).
?PFEX results in the ?PROC caller being blocked while the new process executes.

When a process which lacks the ?PVPC privilege tries to create a son, the operating system will
create the son if

• The number of sons and their combined ?PPCR count (maximum number of sons which can be
created) is less than or equal to the caller's ?PCPR value. (If the sum is more, the operating
system signals an error.)

• Bit ?PVEX is set. (This lets the new process remain unblocked while its sons execute.)

Setting Maximum CPU Time

Offset ?SMCH specifies the maximum number of CPU milliseconds you want to assign the new
process and all its subordinates. You must express this parameter as a double-precision unsigned
Integer. When a process exceeds its CPU time limit, the operating system terminates that process and
returns error code ERTLM to its father.

When a process with a CPU time limit creates a son process, the operating system blocks the father
and limits the son to the father's remaining CPU time. You can assign the son less than the father's
remaining CPU time, but not more. If yOU assign more, the system takes the ?PROC E'ITOr return and
returns error code ERSMX (error in setting CPU time). As soon as the son terminates, the father
receives whatever CPU time remains.

If you set offset ?SMCH to -1, the son acquires the rest of the father's CPU time. If you set offset
?SMCH to 0; the son has no CPU time limit, unless the father has a time limit. If the father has a
time limit, the son gets the father's remaining time.

2-544 Licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

Setting the Working Set Size

Offsets ?PWMI and ?PWSS specify the new process's minimum and maximum working set size,
respectively. Both values relate to the number of physical pages the process needs to execute
efficiently. To set these values, the calling process must have privilege ?PVWS.

By default, the operating system a<ljusts the working set parameters dynamically, based on the
process's type, page fault history, and general system overhead. When you set ?PWMI and ?PWSS,
you direct the operating system to keep the working set within specific limits.

A process's working set size does not necessarily relate to the size of its logical address space. In
fact, a larger process can require fewer physical pages than a smaller one if the larger process
localizes its references and uses its databases efficiently. If you do set the working set size, take
care not to set the maximum too low, because doing so increases paging I/O and processing time.
Also, take care not to set the minimum working set size too high, because doing so can reduce
efficient memory usage throughout your system.

CAUTION: Generally, you will hurt the performance of the system if you define the size of a
process's working set. Use this option with care; most of the time you'll be better off
taking the default and allowing the operating system to make the necessary
adjustments.

Extension Packet

You specify the existence of an optional extension packet by setting bit ?PFXP in offset ?PFLG of
the main parameter packet. Then place the extension packet itself immediately after the end of the
main parameter packet. The length of the combined packet is ?PXLE words.

Figure 2-180 contains the structure of the ?PROC extension packet for AOSNS and AOSIRT32 and
Table 2-162 describes its contents. Figure 2-181 contains the structure of the ?PROC extension
packet for AOSNS II and Table 2-163 describes its contents.

086-Q00195 updates
093-000542 Licensed Material - Property ~ Data General Corporation 2-545

?PROC Continued

o 15 16 31
1-------------------------+-------------------------1

?PXSPI 1 Packet identifier 1

1-------------------------+-------------------------1
?PXCPU*I CPU number 1 User locality I?PXULOC*

-------------------------+-------------------------1
?PXLLOC* Legal localities 1 Extender flags 1 ?PXFLG*

-------------------------+-------------------------1
?PXPGN Reserved (set to -1) 1

---1
?PXPUN Byte pointer to ?PROC-related username 1

-------------------------+-------------------------
?PXUPID 1st of 8 reserved words 1 2nd of 8 reserved words

II (set to 0) 1 (set to 0)

II

II

II

II

-------------------------+-------------------------
3rd of 8 reserved words 14th of 8 reserved words
(set to 0) I (set to 0)

-------------------------+-------------------------
5th of 8 reserved words 16th of 8 reserved words
(set to 0) I (set to 0)

-------------------------+-------------------------
7th of 8 reserved words 18th of 8 reserved words
(set to 0) I (set to 0)

-------------------------+-------------------------
?PXLE = combined packet length (?PLTH + 18.)

* This offset differs between AOS/VS and AOS/RT32. See Table 2-162.

Figure 2-180. Structure of?PROC Extension Packet for AOS/VS and AOS/RT32

o 15 16 31
-------------------------+-------------------------

?PXSPI Packet identifier
-------------------------+-------------------------

?PXCPU CPU number I User locality ?PXULOC
-------------------------+-------------------------

?PXLLOC Legal localities I Extender flags ?PXFLG

?PXPGN

?PXPUN

?PXPAG

?PXPGI

?PXRSO

?PXRS1

2-546

-------------------------+-------------------------
Reserved. (Set to -1.)

Byte pointer to ?PROC-related username
-------------------------+-------------------------

Byte pointer to group access control list
-------------------------+-------------------------
Group list length in I Reserved. (Set to 0.) ?PXRES

-------------------------+-------------------------
Reserved. (Set to 0.)

-------------------------+-------------------------
Reserved. (Set to 0.)

?PXLE = combined packet length (?PLTH + 18.)

Figure 2-181. Structure of?PROC Extension Packet for AOS/VS II

Licensed Material- Property of Data General Corporation
086-00)195 updates

093-000542

In Table 2-162, the column heads "VS" and "RT" represent AOSNS and AOSIRT32, respectively.
The entries in these columns have the following codes:

[no entry]
The operating system does not define a value for the given offset.
The operating systems handle the offset in the sameway.

Table 2-162. Contents of ?PROC Parameter Packet Extension for AOSNS and AOSIRT32

1 1
Offset VS RT

========= === ===
?PXSPI
(dbl wd)

?PXCPU

?PXULOC

?PXLLOC

?PXFLG

?PXPGN
(dbl wd)

1

1

1

I
I

?PXPUN I
(dbl wd) 1 I

1 1

1 1
1 1
1 1

1 1 1
1 ?PXUPID 1 1
1 (8 words) 1 1 1

1

Description 1
===1

1
Packet identifier. Place 0 here. I

CPU number. Place here the ID of the CPU on
which this process executes. AOS/RT32 does not
use this value; suppiy -1.

Place here the user locality as you have defined
it. AOS/RT32 does not use this value; supply -1.

Legal user localities. This offset indicates
the legal user localities that the new process
may change to. The format is a bit map. If a
bit is set, the new process may change to the
corresponding user locality. Note that this
format is the same one that ?PROFILE returns, so
you can take the legal user localities from the
profile and insert them directly into this
extension packet. AOS/RT32 ignores this offset;
supply -1.

Extender flags word. This contains bit ?PFLL.
If the bit is set, AOS/VS uses a default value
for the son's legal locality. In other words,
AOS/VS would NOT refer to offset ?PXLLOC to get
the son's locality. If the bit is not set,
AOS/VS obtains the son's locality from offset
?PXLLOC. AOS/RT32 does not use this information;
supply -1.

Reserved. (Set to -1.)

Byte pointer to the ?PROC-related username that
the new process will be created with, but only
if the process has Superprocess privilege and
has turned it on. Otherwise, supply -1. Normally
only Data General software such as EXEC supplies
a byte pointer here.

Reserved. (Set these 8 words to 0.)

I
I

1 1 ___ 1 ___ 1 __ __

086--000195 updates
093-000542 Licensed Material - Property of Data General Corporation 2-547

•

•

?PROC Continued

Table 2-163. Contents of ?PROC Parameter Packet Extension for AOSNS II

Offset Description
================ ===

?PXSPI Packet identifier; ?PXSID defines the packet
for AOS/VS II use.

?PXCPU CPU number. Place the ID of the CPU on which
this process executes.

?PXULOC Specify the user locality.

?PXLLOC Legal user localities. This offset indicates

2-548

the legal user localities to which the ne\v
process may change. The format is a bit map. If
a bit is set, the new process may change to the
corresponding user locality. Note that this
format is the same one that ?PROFILE returns, so
you can take the legal user localities from the
profile and insert them directly into this
extension packet.

?PXFLG Extender flags word. This word contains bit
?PFDLL. If the bit is set, AOS/VS uses a

?PXPGN

?PXPUN

?PXPAG

?PXPGI

?PXRES
?PXRESO
?PXRESI

default value for the son's legal locality. In
other words, AOS/VS II would NOT refer to offset
?PXLLOC to get the son's locality. If the bit
is not set, AOS/VS II obtains the son's locality
from offset ?PXLLOC.

Reserved. (Set to 0.)

Byte pointer to the ?PROC-related username that
the new process creates, but only if the process
has Superprocess privilege turned on. Otherwise,
supply -1. Normally only Data General software
such as EXEC supplies a byte pointer here.

Byte pointer to the group access control list.
A group access control list is a double,
null-terminated list of group names. A group name
is a null-terminated, ASCII string with a maximum
length of 16 bytes, including the null character.
A group name corresponds to a filename in the
:GROUPS directory.

If you specify -1, use the parent's group access
control list. If you specify 0, use a null group
access control list.

If you call ?PROC for AOS/VS II with no extension
packet or with the AOS/VS and AOS/RT32 extension
packet, the call behaves as if you specified a -1
in ?PXPAG (process inherits its parent's list of
groups) .

Length of the group access

Reserved. (Set to O.)
Reserved. (Set to O.)
Reserved. (Set to O.)

Licensed Material- Property of Data General Corporation

control list.

086-000195 updates
093-000542

Sample Packet

PKT: .BLK

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. WORD

.LOC

. WORD

093-000542

?PLTH

PKT+?PFLG
?PBRK+O

PKT+?PPRI
-1

PKT+?PSNM

PATH*2

PKT+?PIPC
-1

PKT+?PNM

-1

PKT+?PMEM

20 .

PKT+?PDIR

-1

PKT+?PCON

0

PKT+?PCAL

3 .

PKT+?PWSS
-1

iAllocate enough space for packet.
iPacket length = ?PLTH.

iProcess creation options.
;Create a break file if process traps
iand son is a swappable process.

iPriority of son process
;is same as caller's priority (-1 is
; the default).

iByte pointer to pathname of program
;file for new process to execute.
iByte pointer to PATH.

iAddress of IPC message header.
iNo IPC message header (-1 is the
idefault) .

iByte pointer to new process's simple
;process name.
iSon's simple process name is ASCII
irepresentation of its PID.

iMaximum number of log pages in new
;process.
iMaximum of 20. log pages in new
iprocess.

iByte pointer to name of son's
;working directory.
iSame initial working directory as
ithe caller's (-1 is the default) .

iByte pointer to name of new
iprocess's @CONSOLE device.
iNo device is associated with
i@CONSOLE.

iMaximum number of system calls son
ican issue at the same time.
iSon can issue three system calls
iat a time.

iMaximum working set size for son.
iNo limit to working set size for
ison. (The caller must have the
i?PVWS privilege to set this
iparameter.)

licensed Material - Property of Data General Corporation 2-549

?PROC Continued

.LOC PKT+?PUNM

. DWORD -1

.LOC PKT+?PPRV

. WORD -1

.LOC PKT+?PPCR

. WORD 1

.LOC PKT+?PWMI

. WORD -1

.LOC PKT+?PIFP

. DWORD -1

.LOC PKT+?POFP

. DWORD -1

.LOC PKT+?PLFP

. DWORD 0

.LOC PKT+?PDFP

. DWORD 0

.LOC PKT+?8MCH

. DWORD -1

.LOC PKT+?PLTH

Notes

iByte pointer to son's username.
;8ame username as caller's (-1 is
;the default) .

i80n's file access privileges.

i80n has all caller's file access
iprivileges.

;Maximum number of sons this son can
;create.
iThis son can create one son .

iMinimum working set size.
iNo working set minimum .

iByte pointer to pathname of son's
j@INPUT file.
i8ame @INPUT file as caller.

jByte pointer to pathname of son's
;@OUTPUT file.
j8ame @OUTPUT file as caller.

jByte pointer to pathname of son's
j@LI8T file.
jThere is no @LI8T file.

jByte pointer to pathname of son's
j@DATA file.
jThere is no @DATA file.

;Maximum CPU time allotted to son.
j80n receives remainder of father's
jtime limit.

;End of packet.

• See the description of?XPSTAT in this chapter, which returns the group access control list for a
process.

2-550 Licensed Material - Property of Data General Corporation ~542

?PROFILE Performs a profile request.

?PROFILE [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?PROFILE
packet, unless you specify
the address as an argument
to ?PROFILE

Error Codes in ACO

Source field is too large
Profile entry nonexistent
End of file
Destination field too small

AOSNS

Output

ACO Unchanged

AC 1 Unchanged

AC2 Address of the ?PROFILE packet

ERBTL
EREDX
EREOF
ERIRB
ERPAI
ERPAN
ERPFD
ERPRE
ERPRV
ERPVS
ERRVN
ERUNM
ERVBP
ERVWP

Profile access has already been initialized
Profile access has not been initialized
Error in profile field descriptor packet
Invalid parameter passed as a system call argument
Caller not privileged for this action
Packet revision not supported
Reserved value not zero
Illegal username
Invalid byte pointer passed as a system call argument
Invalid word pointer passed as a system call argument

Why Use It?

Use this system call to obtain information about, create, delete, and change profiles.

Who Can Use It?

You must have Superuser privilege to issue this call, but there are no restrictions concerning file
access.

093--000542 Licensed Material - Property of Data General Corporation 2-551

?PROFILE Continued

What It Does

This system call lets you perform all the functions of utility program PREDITOR (user profile
editor) fron} within your application program. These functions include the followin~~:

• Creating a profile.

• Renaming a profile.

• Deletin!~ a profile.

• Initiating access to a profile.

• Terminating access to a profile.

• Reading a field in a profile.

• Updating a field in a profile.

You may perform only one of these functions each time you issue ?PROFILE. In order to read a
field or update one or more fields, begin by initiating access (function code ?PFIAC in offset
?PFFC). Then, read or update as many fields as you wish. Finish by terminating ac:cess (function
code ?PFTAC in offset ?PFFC).

Figure 2-182 shows the structure of the ?PROFILE parameter packet, and Table 2·-164 describes
its contents.

o 15 16 31
1---------------------+--------------------

?PFRI 1 Reserved (set 1 Packet revision ?PFRV
1 to 0) 1 number
---------------------+--------------------

?PFNF Number of field 1 Function code ?PFFC
descriptor packets 1

---------------------+--------------------
?PFUN Byte pointer to username

?PF'PR First field descriptor packet (8 words)

?PF'PR + 8. Second field descriptor packet (8 words)
1

--1

--1
?PFPR + Last (nth) field descriptor packet 1

8. * (n-l) 1
--1
?PFLB = packet length

(excluding field descriptor packets)

Figure 2-182. Structure of ?PROFILE Parameter Packet

2-552 Licensed Material - Property of Data General Corporation ~0S42

?PFR1

?PFNF

?PFUN
(doub1eword)

?PFPR
(8. words)

?PFPR + 8.
(8. words)

?PFPR +
8. * (n-1)

Table 2-164. Contents of ?PROFILE Parameter Packet

o 15 16 31
---------------------+--------------------

Reserved (Set to 0.) 1 Current revision of ?PFRV
1 this system call
1 packet. Place
1 ?PKRO here.

---------------------+--------------------
Number of field Function code for ?PFFC
description packets. the profile.
They begin at offset
?PFPR. This number ?PFCRE - Create
is zero for some ?PFREN - Rename
functions (create a ?PFDEL - Delete
profile) and at ?PFIAC - Initiate
least one for other access
functions (rename a ?PFTAC - Terminate
profile) . access

?PFRDF - Read field
?PFUFD - Update

field
---------------------+--------------------

Byte pointer to username. Null terminate
this string.

Field descriptor packet number 1.
See Figure 2-183.

Field descriptor packet number 2.
See Figure 2-183.

1--
1 Field descriptor packet number n.

1 See Figure 2-183.
1--

Figure 2-183 shows the structure of each field descriptor packet. The packets (if any) begin at
offset ?PFPR of the ?PROFILE parameter packet.

o 15 16 31
1---------------------+--------------------1

?PFFD 1 Field descriptor 1

1---------------------+--------------------1
?PFDP 1 Data address 1

1---------------------+--------------------1
?PFDL 1 Buffer length 1 Actual data length 1 ?PFAL

1---------------------+--------------------1
?PFER 1 Error code 1 Reserved (set 1 ?PFR3

lito 0) 1
1---------------------+--------------------1
?PFLE = packet length

Figure 2-183. Structure of ?PROFILE Field Descriptor Packet

Here are the 8 words of each field descriptor packet. Their descriptions continue over the next
several pages.

093-000542 Licensed Material - Property of Data General Corporation 2-553

?PROFILE Continued

?PFFD -.(doubleword) field descriptor.

2-554

It describes the data item in the profile that you want to retrieve or modify. Its
format is

o 7 8 15 16 31
1-------------+--------------+---------------------------I
1 P Type 1 Base and Entry Number 1
1-------------+--------------+---------------------------I
"P Type" means parameter type. Its values and their meanings are

?PFBY - Offsets ?PFDP and ?PFDL are byte oriented.
?PFBI - Offset ?PFDP contains a value; ignore ?PFDL.
?PFWD - Offsets ?PFDP and ?PFDL are word oriented.

The 8 bits of the base usually contain ?PFSE. See PARU.32 for other possible
values of these bits.

The rightmost 16 bits of offset ?PFFD (entry number) have the following possible
values. Entries with a bit length of 1 bit are set/returned in the most significant bit.
(lSO). For example, suppose you want to know if a profile has the Superuser privilege.
Set offset ?PFFD to ?PFBI!?PFSE!?PSUSER (or ?PFBI+?PFSE+?PSUSER) and the
other 7 words of the field descriptor packet to zero. The operating system
returns ISO in offset ?PFDP if Superuser privilege is present and OSO otherwise.

• ?PPASSWD - system password, 16 bytes including a null byte (ifbit ?PNCRYPT
is not set). If bit ?PNCRYPT is set, the password is already encrypted. To encrypt a
password you must convert its letters to uppercase, pad it with bytes of <377> to a
length of 16 bytes, and issue system call ?PWDCRYP. See the "What It Does"
section in the description of ?PWDCRYP.

• ?PICROG - initial program, 64 bytes including a null byte.

• ?PICCFN - initial interprocessor communications (lPC) filename, 64 bytes
including a nun byte.

• ?PMXSONS - maximum number of sons, 1 word.

• ?PSOPIO - son's priority, 1 word.

• ?PDISKLM - user's CPD (control point directory) limit, 2 words.

• ?PLOGON - date/time of last logon, 6 words; internal format is

word 0 - seconds
word 1 - minutes
word 2 - hours
word 3 - days
word 4 - months
word 5 - years

Licensed Material - Property of Data General Corporation 093-000542

?PFFD - (doubleword) field descriptor, continued.

086-000195 updates
093-000542

• ?PBATCHP - batch priority, 1 word.

• ?PCNSPRV - terminal usage privilege, 1 bit.

• ?PBCHPRV - batch usage privilege, 1 hit.

• ?PMODPRV - modem usage privilege, 1 bit.

• ?PVCNPRV - virtual terminal usage privilege, 1 bit (negative logic).

• ?PRRAPRV - remote resource access privilege, 1 bit (negative logic).

• ?PPWDPRV - change password privilege, 1 bit (negative logic).

• ?PNCRYPT - system password encrypted indicator, 1 bit.

• ?PMGSYS - system manager privilege, 1 hit.

• ?PCOMMNT - user comment, 80 bytes including a null byte.

• ?PBWSS - batch working set size, 2 words; the internal format is

word 0 - maximum
word 1 - minimum

• ?PBLMEM - batch logical memory, 2 words; the internal format is

word 0 -low order
word 1 - high order

• ?PNBWSS - nonbatch working set size, 2 words; the internal format is

word 0 - maximum
word 1 - minimum

• ?PNBLMEM - nonhatch logical memory, 2 words; the internal format is

word 0 -low order
word 1 - high order

• ?PMYSONS - many sons privilege, 1 bit.

• ?PCHTYP - change type privilege, 1 bit.

• ?PCHPRI - change priority privilege, 1 bit.

• ?PPDPMGR - define PMGR privilege, 1 bit.

• ?PPRNBLK- PROC no-block privilege, 1 bit.

• ?PCHUSER - change username privilege, 1 hit.

• ?PACDEV - access devices privilege, 1 hit.

• ?PUIPCS - use IPC privilege, 1 bit.

• ?PSUSER - Superuser privilege, 1 bit.

• ?PPSUPP - Superprocess privilege, 1 bit.

Licensed Material - Property 01 Data General Corporation

I

I

2-555

?PROFILE Continued

?PFFD - (doubleword) field descriptor, continued.

• ?PWSON - wide son privilege, 1 hit.

• ?PMCTS - (read -only field) memory constraints, 10 words; the internal format is

words 0-1 ?PBWSS
words 2-3 ?PBLMEM
words 4-5 ?PNBWSS
words 6-7 ?PNBLMEM
word 8 ?PSOPIO
word 9 ?PBATCHP

• ?PHRDPRV - (read -only field) hard privileges, 1 word; the internal format is

hits 0-2 0
bit 3 ?PCHWSSL
bit 4 ?PWSON
bit 5 ?PPSUPP
bit 6 ?PMGSYS
bit 7 ?PUIPCS
bit 8 ?PACDEV
bit 9 ?PCHUSER
hit 10 ?PPRNBLK
bit 11 ?PPDPMGR
bit 12 ?PCHPRI
bit 13 ?PSUSER
bit 14 ?PCHTYP
bit 15 ?PMYSONS

• ?PSFTPRV - (read -only field) soft privileges, 1 word; the internal format is

bits 0-9
bit 10
bit 11
bit 12
bit 13
bit 14
bit 15

o
?PPWDPRV (negative logic)
?PRRAPRV (negative logic)
?PVCNPRV (negative logic)
?PMODPRV
?PBCHPRV
?PCNSPRV

• ?PPRCINF - (read -only field) PROC information, 13 words; the internal for:mat is

word 0
word 1
word 2
words 3-12

?PMXSONS
?PSFTPRV
?PHRDPRV
?PMCTS

• ?PINTDIR - initial directory, less than or equal to 64 bytes including a null
byte.

• ?PCHWSSL - change WSS limit privilege, 1 bit.

2-556 licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

?PFFD - (doubleword) field descriptor, continued.

• ?PDLOCY - default terminal (interactive) locality, 1 word.

• ?POLOCY - other terminal (interactive) localities the process may use, 1 word.

• ?PQLOCY - other terminal (interactive) localities enable indicator, 1 word.

• ?PRCRYPT - remote password encrypted flag, 1 bit.

• ?PRPSSWD - remote password, less than or equal to 16 bytes including a null
byte.

• ?PFVER - system profile revision, 2 words.

• ?PN 1FLG - flag word, 1 word.

• ?PN2FLG - flag word, 1 word.

• ?PRHRDPR - remote hard privileges, 1 word.

• ?PRSFTPR - remote soft privileges, 1 word.

• ?PDBLOCY - default batch (noninteractive) locality, 1 word.

• ?POBLOCY - other batch (noninteractive) localities the process may use, 1 word.

• ?PQBLOCY - other batch (noninteractive) localities enable indicator, 1 word.

Place ?PFBY in offset ?PFFD for the rename function.

?PFDP- data address (doubleword). Enter the byte or word address of the buffer that the
operating system returns data in, the byte or word address of the data you want to
write, or the data itself that you want to write. You specify the address type (byte or
word) by the parameter type portion of offset ?PFFD. For the rename function,
offset ?PFDP contains a byte pointer to the null-terminated new username.

?PFDL-

?PFAL-

?PFER-

?PFR3-

Notes

buffer length. Enter the length of either the data buffer (for reads) or the length of
the data you want to write (for updates). You specify the data size in the units
declared by the parameter type portion of offset ?PFFD. Supply zero in ?PFDL for
the rename function.

actual data length. After a read, the operating system returns the actual size of the
specified field. After an update, the operating system returns the data length
specified in offset ?PFDL. You specify the data size in the units declared by the
parameter type portion of offset ?PFFD.

error code. If the operating system detects an error when processing the field
descriptor or when retrieving data that this field descriptor specifies, it returns
ERPFD in ACO and the actual error code in offset ?PFER.

reserved; set to O.

• See the description of?PWDCRYP in this chapter.

• Creating a profile does not implicitly create an initial directory for the user. You must use the
?CREATE or ?XCREATE system call to create an initial directory.

093-000542 Licensed Material - Property of Data General Corporation 2-557

?PRRDY Readies all tasks of a specified priority.

?PRRDY
error return
normal return

Input

ACO Priority number of the
tasks to ready

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

ACl Undefined

AC2 Undefined

You can use ?PRRDY to ready all suspended tasks of a given priority level to be rescheduled and
executed. As we noted earlier, the operating system neither executes nor schedules suspended
tasks. Given more than one ready task at the same priority, the operating system schedules and
executes them on a round-robin basis. Round robin means that the first task in the priority queue
executes first, and so on, down the list. Note that ?PRRDY does not change the relative positions of
the tasks within a priority level.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?PRRDY readies, that is, lifts from suspension, all tasks of the priority level that you specify in
ACO, provided the tasks were suspended with ?SUS, ?IDSUS, or ?PRSUS. If the target tasks were
suspended for other reasons, such as outstanding system calls, ?XMT, or ?REC, the operating
system waits for the appropriate events to complete before it readies the tasks. If there are no tasks
at the speeified priority level, the operating system ignores the ?PRRDY and takes the normal
return.

When you use ?PRRDY to ready tasks that have lower priorities than the caning task, the
operating system reschedules the tasks.

Notes

• See the descriptions of?SUS, ?IDSUS, ?PRSUS, ?XMT, and ?REC in this chapter.

2-558 Licensed Material - Property of Data General Corporation 093-000542

?PRSUS Suspends all tasks of a specified priority.

?PRSUS
error return
normal return

Input

ACO Priority level of the
tasks to suspend

ACl Reserved (Set to 0.)

AC2 Reserved (Set to 0.)

Error Codes in ACO

No error codes are currently defined.

Why Use It?

Output

ACO Unchanged

ACl Undefined

AC2 Undefined

?PRSUS allows you to suspend more than one task at a time. For example, you might group several
tasks together under the same priority level, and then suspend the entire set with ?PRSUS.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?PRSUS is the inverse of ?PRRDY; that is, it suspends all tasks of a given priority level. The tasks
remain suspended until you ready them by issuing a ?PRRDY against the same priority level, an
?IDRDY against each task, or a ?PRKIL to terminate all tasks at that level.

Before you issue ?PRSUS, load ACO with the priority level of the tasks to suspend. Note that
?PRSUS also suspends the calling task, if it is a member of the priority group specified in ACO. If
there are no tasks at the specified priority level, the operating system ignores the ?PRSUS and
takes the normal return.

Notes

• See the description of ?PRRDY in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-559

?PSTAT Returns status information on a process.

?PSTAT [packet address]
error return
normal return

1
1 Operating System Differences 1

1==============================1
1 Accumulator 1

1 Input and Output None 1

1 Error Codes None 1

1 Parameter Packet Some 1

1 1

Input Output

ACO One of the following:

• PID or VPID of the target process

• Byte pointer to the name of
the target process

• -1 for status information
about the calling process

AC 1 One of the following:

• -1 if ACO is a byte pointer

• Any other value if ACO
contains either -1 or a PID

AC2 Address of the ?PSTAT
packet, unless you specify
the address as an argument
to ?PSTAT

Error Codes in ACO

ACO Unchanged

AC 1 Unchanged

AC2 Unchanged

ERIRB Insufficient room in buffer (for username, ?PROC-related username, memory
descriptors, or process group name)

ERPNM
ERPRH
ERPVS
ERVBP
ERVWB
ERVWP

Illegal process name
Attempt to access process not in hierarchy
Packet revision not supported
Illegal byte pointer in ACO
Packet failed read/write validation
Illegal word pointer in AC2

Why Use It?

Like ?RUNTM, ?WHIST, and ?XPSTAT, ?PSTAT helps you to determine how well a process
competes with others of the same type for system resources, such as memory and CPU time. Note
that the operating system updates most of the ?PSTAT information as the process executes.

2-560 Licensed Material - Property of Data General Corporation 09:H>00542

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?PSTAT returns internal statistics about the calling process or about any process the caller
specifies in ACO. The operating system returns the statistics in the packet. Figure 2-185 shows the
structure and Table 2-165 describes the contents of the ?PSTAT packet.

The ?PSAL words in the packet return information about son PIDs from 1 through 255. However,
system call ?SONS provides you with the information in these offsets - and with information
about son PIDs greater than 255. System call ?XPSTAT has almost all the functionality of?PSTAT
along with much new functionality and considerably less execution time. We recommend that you
use ?XPSTAT and/or ?SONS instead of?PSTAT in new programs.

In addition to the process statistics, the operating system returns seven sets of memory descriptors
in the packet, one descriptor for each of the rings 1 through 7. Each descriptor contains information
about the program currently running in that ring. Figure 2-184 shows the memory descriptor
structure.

o 31
1--I

?PUSPR I Number of unshared pages in the program file I
1---I

?PBLKS I Number of unshared memory pages the process is I
I currently using I
1---I

?PSHSZ 1 Number of shared pages in the program file 1
1---I

?PSHST 1 Logical page number of the first shared memory pagel
1---1

?PSPRST 1 Logical page number of the program's starting page I

1---I
?PSHSH I Logical page number of the program's first I

1 shared page 1

1---I

?PDESLN = Length of single memory descriptor

Figure 2-184. Structure of?PSTAT Memory Descriptor

093-000542 Licensed Material - Property of Data General Corporation 2-561

?PSTAT Continued

2-562

o 15 16 31
1-------------------------+-------------------------

?PSFP I Father process's PID I Start of Bit array... ?PSSN
-------------------------+-------------------------

I ... End of bit array ?PSEN

?PSNR

?PSST

?PSFL

?PSF3

?PSF5

?PSCW

?PSEX*

?PSRH

?PSCH

?PSCPL

?PSPH

?PSSL*

?PSMX
(low)

I (?PSAL words long)
-------------------------+-------------------------

Number of tasks in I Number of blocked tasks
suspended process I awaiting system stacks

-------------------------+-------------------------
Process status word Priority queue factor

-------------------------+-------------------------
Process flag word Second flag word

-------------------------+-------------------------
Third flag word I Fourth flag word

-------------------------+-------------------------
Fifth flag word, I Process priority
including process type I

-------------------------+-------------------------
Current working set sizel Process's privilege bits
in pages I (see ?PROC system call)

-------------------------+--------------------------
Time slice exponent Process PID

-------------------------+-------------------------
Number of seconds elapsed since process was created

Milliseconds of CPU time used by process

Maximum CPU time allocated to this process

CPU time in page-seconds
-------------------------+-------------------------

Number of subslices left I Maximum logical pages ...
I

-------------------------+--------------------------
... allowed the Ring 7 IMaximum working set size

process I
-------------------------+-------------------------

?PSWM Minimum working set size INumber of page faults ...
I

1-------------------------+-------------------------
?PSFA I ... since process was I Start of memory
(low) I created I descriptors

1-------------------------+-------------------------
?PMDSENI End of memory area I Number of blocks read ...

I I
1--------------------------+-------------------------

?PSIH I ... or written by the I Number of page faults ...
(low) I process I

1--------------------------+-------------------------
?PSLFAI ... that did not require I First of 19. reserved
(low) I disk I/O I words (Set to 0.) ...

1-------------------------+-------------------------
I I ... Last of 19. reserved
I I words (Set to 0.)
1-------------------------+-------------------------

?PSLTH = packet length

?PSNS

?PSQF*

?PSF2

?PSF4

?PSPR I
I
I

?PSPV I
I
I

?PSPD I
I
I
I
I
I
I
I
I
I

?PSMX I
(high)

?PSWS

?PSFA
(high)

?PMDIS

?PSIH
(high)

I
?PSLFAI
(high) I

-*-T-h-i-s-o-f-f-s-e-t-d-i-f-f-e-r-s-b-e-t w-e-e-n-A-0-S-/-:-V-S-a-n-----=-d----A-0-S-/:-:R-=T=-=3:-:2=--. -S-=-e-e--=T:-a7b-=l-e---::2:---:1:-6::-;:-5-.

I
I
I
I
I
I
I
I
I
I

Figure 2-185. Structure of ?PSTAT Packet

Licensed Material - Property of Data General Corporation 093-000542

In Table 2-165, the column heads ''VS'' and "RT" represent "AOSNS" and "AOSIRT32,"
respectively. The entries in these columns have the following codes:

U
[no entry]

The operating system does not define a value for the given offset.
The operating system handles the offset differently (uniquely).
The operating systems handle the offset in the sameway.

Table 2-165. Contents of ?PSTAT Parameter Packet

1 1 1
Offset IVS RT 1 Description 1

========= === === ===1

09~542

1

?PSFP PID of the process's parent process. The 1

operating systems reserve a 16-bit word for the 1

small PID. User programs that mask the value 1

returned to 8 bits (length of "low pids") will 1

not return correct PID values for creating 1

processes with hybrid- or anyPIDs. 1

1

?PSSN Bit array that identifies those processes 1

subordinate to the target processes that have 1

small PIDs. (Use the ?SONS system call for PID 1

information on subordinate processes with 1

hybrid- or anyPIDS.) The position of the bits 1

indicates the PID numbers. If Bit 33 is set, 1

for example, the target process has a 1

subordinate process with a PID of 33. This 1

bit array is ?PSAL words long. Ignore Bit o. 1

1

? PSEN End of the bit array. 1

1

1

?PSNR Number of tasks in the process currently 1

suspended on ?IREC system calls. 1

1

?PSNS Number of tasks that are blocked awaiting 1

system stacks. 1

1

?PSST Process status word (Bit 6: process is blocked). 1

1

?PSQF Priority queue factor (indicates the process's 1

priority for execution relative to other 1

processes of the same type). AOS/RT32 does not 1

return this information. 1

1

?PSFL Process flag word 1

1

?PSSP is set and ?PSPP is not set 1

process is swappable 1

?PSSP is not set and ?PSPP is set 1

process is pre-emptible 1

1 ?PSSP is not set and ?PSPP is not set 1

1 process is resident 1

1 1

? PSF2 1 Second f lag word. 1

__ I 1

(continued)

Licensed Material - Property of Data General Corporation 2-563

?PSTAT Continued

Table 2-165. Contents of ?PSTAT Parameter Packet

1 1
Offset VS RT Description

========= === === ===

2-564

?PSF3

?PSF4

?PSF5

?PSPR

?PSCW

?PSPV

?PSEX

?PSPD

?PSRH
(dbl wd)

?PSCH
(dbl wd)

?PSCPL
(dbl wd)

?PSPH
(dbl wd)

U U

Third flag word.

Fourth flag word.

Fifth flag word. It returns the process type as
follows:

?PSXPT is not set and ?PSHRP is not set
type A process

?PSXPT is set and ?PSHRP is not set
type B process

?PSXPT is set and ?PSHRP is set
type C process

Process priority.

Current number of shared and unshared pages in
process's logical address space (the OS
user-defined "working set" size).

Process's privilege bits. (See ?PROC in this
system call dictionary for information on
privileges.)

Current time slice exponent (value indicating
the amount of CPU time currently allocated to
the target process). Systems determine value
heuristically using "subslice," a constant,
and "s", the time-slice exponent:

1

IAOS/VS: (time slice exponent range of 1 - 6)
time slice = subslice * 2**s 1

1

IAOS/RT32: Returns O.
1 __ __

(See offset ?PSSL in this table and the
functional description below.)

PID of the process. 1

1

Number of seconds that have elapsed since the 1

process was created. 1

1

CPU time (in milliseconds) used by the process. 1

1

1

Maximum CPU time allocated to this process. 1

1

1

CPU time (in page-seconds) . 1

1

--~--~~----:I (continued)

Licensed Material - Property of Data General Corporation 093-000542

1
1 Offset
1=========
1

Notes

?PSSL

?PSMX
(dbl wd)

?PSWS

?PSWM

?PSFA
(dbl wd)

?PMDIS

?PMDSEN

?PSIH
(dbl wd)

?PSLFA
(dbl wd)

1
VS

U

1

Table 2-165. Contents of ?PSTAT Parameter Packet

RT

U

1

1

1

1

1

1

1

1

1

1

Description
===

Number of remaining subslices in the process's
time slice. This value is based on the current
time slice exponent returned in ?PSEX. If the
time slice exponent is 1, an AOS/VS process has
two remaining subslices (that is, 2**1).
AOS/RT32 does not break time slices into
subslices, so it returns o.

Maximum number of logical pages allowed the
process in Ring 7.

Maximum working set size in pages.

Minimum working set size in pages.

Number of page faults since the process was
created (with ?PROC) .

Start of memory descriptors.

End of memory area.

Number of blocks read or written by the process.

Number of page faults that did not require disk
input/output.

___ 1 __ _

(concluded)

• See the descriptions of?RUNTM and ?WHIST in this chapter.

• The parameters shown in Figure 2-184 are offsets from the memory descriptor base address. To
get the base address for a particular ring, use the following formula:

<base_of_packet> + ?PMDIS + (?PDESLN 1t (ring number-1))

where

?PMDIS

?PDESLN

is the starting offset in the ?PSTAT packet that contains the memory
descriptors.

is the length of each memory descriptor.

Assume, for example, that you loaded a program file into Ring 5 with the ?RINGLD system call.
To obtain the base address of the descriptor for that ring, you would use the following formula:

<base_of_packet> + ?PMDIS + (?PDESLN 1t 4)

093-000542 Licensed Material- Property of Data General Corporation 2-565

?PSTAT Continued
Sample Packet

PKT: .BLK

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

. LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. WORD

.LOC

.WORD

.LOC

. DWORD

.LOC

. DWORD

.LOC

2-566

?PSLTH

PKT+?PSFP
0
PKT+?PSSN
0
PKT+?PSEN
0
PKT+?PSNR

iAllocate enough space for packet.
iPacket length = ?PSLTH.
iPID of father process.

iBit array showing PIDs of process's
isons.
iEnd of bit array.

PKT+?PSSN+?PSAL
iNumber of tasks in the process that
iwould also work.

0

PKT+?PSNS
0
PKT+?PSST
0
PKT+?PSQF
0
PKT+?PSFL
0
PKT+?PSF2
0
PKT+?PSF3
0
PKT+?PSF4
0
PKT+?PSF5
0
PKT+?PSPR
0
PKT+?PSCW
0
PKT+?PSPV
0
PKT+?PSEX
0
PKT+?PSPD
0
PKT+?PSRH
0
PKT+?PSCH
0
PKT+?PSCPL
0
PKT+?PSPH
0
PKT+?PSSL
0
PKT+?PSMX
0
PKT+?PSWS
0
PKT+?PSWM
0
PKT+?PSFA
0
PKT+?PMDIS
0
PKT+?PMDSEN
0
PKT+?PSIH
0
PKT+?PSLFA
0
PKT+?PSLTH

iare currently suspended on ?IREC
isystem calls.
iNumber of tasks that are blocked
iawaiting system stacks.
iProcess status word.

iPriority queue factor.

iProcess flag word.

iSecond flag word.

iThird flag word.

iFourth flag word .

iFifth flag word. (Reserved; set
ito 0.)
iProcess priority.

iNumber of pages in current working
;set .
;Process's privilege bits.

iCurrent time slice exponent for the
itarget process .
iPID of the process.

iNumber of seconds elapsed since
iprocess creation.
;CPU time process used (in
imilliseconds) .
iMaximum CPU time allocated to this
;process.
iPage usage over CPU time (in pages/
; second) .
iSubslices remaining in process's
itime slice.
iMaximum number of logical pages
iallowed this process in Ring 7.
;Maximum working set size (in pages) .

iMinimum working set size (in pages) .

iNumber of physical page faults since
iprocess creation.
iStart of memory descriptors.

iEnd of memory area.

;Number of blocks read or written by
iprocess.
;Number of logical page faults.

iEnd of packet.

Licensed Material - Property of Data General Corporation 093-000542

?PTRDEVICE Controls input from a pOinter device.

?PTRDEVICE [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

AC1 Reserved (Set to 0.)

AC2 Address of the ?PrRDEVICE
packet, unless you specify
the address as an argument
to ?PTRDEVICE.

Error Codes Returned in ACO

AOSNS

Output

ACO Unchanged or error code

AC1 Unchanged

AC2 Address of the ?PrRDEVICE
packet

ERIPP Invalid pointer device parameter
ERPKT Invalid packet ID
ERRVN A reserved value not 0
ERVBP Invalid byte pointer passed as a system call argument
ERVWP Invalid address passed as a system call argument
ERWNE The window you specified does not exist

Error codes from the file system

Why Use It?

?PrRDEVICE lets you control the type of input you receive from a pointer device. Input from a
pointer device can tell you what the user is currently doing with the pointer device (such as moving
the pointer into a window or pressing a pointer device button). You can also use ?PTRDEVICE to
find out the current status and location of the pointer.

?PrRDEVICE is useful only if your program will run in an AOSNS windowing environment. The
call applies to a single window at a time. For example, if you want to find out the status of the
pointer for every window belonging to your program, you must issue the ?PTRDEVICE call
repeatedly, specifying a different window each time.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does
?PrRDEVICE is a multifunctional system call. To perform a particular function, you set the offset
?PrRDEV _PKT.FUNC (in the main ?PrRDEVICE packet) to the function code you want.
Table 2-166 lists the valid function codes and the functions they perform.

093-000542 Licensed Material - Property of Data General Corporation 2-567

?PTRDEVICE Continued

Table 2-166. ?PTRDEVICE Function Codes

Function Code
========================

?PTRDEV_GET_PTR_
LOCATION

?PTRDEV_GET_TABLET_
LOCATION

2-568

1

What It Lets You Do 1

===1

Specify the types of pointer events you want to
receive in a window's input buffer. (See the
section "Selecting the Pointer Events You
Want.")

Specify how far the pointer device should move
in a window before you receive a movement
event. (See the section "Specifying a Pointer
Delta.")

Return information about the most recent
pointer event to occur in a window. (See the
section "Getting Information About the Last
Pointer Event.")

Control the operation of the pointer within a
window (enable or disable the pointer, set its
shape, and/or control digitizing). (See the
section "Controlling the Operation of the
Pointer.")

Return the current pointer device settings for
a window (which events you have requested, the
current shape of the pointer, whether or not it
is visible, and so on.) (See the section
"Getting the Pointer Status.")

Generate a pointer event as if it had corne from
the physical pointer device. Useful for
moving the pointer or simulating pointer device
input. (See the section "Moving the Pointer.")

Return the current location of the pointer, and
show which pointer device button(s) are
currently down. (See the section "Getting the
Location and Status of the Pointer.")

Return the current location of a tablet's puck
or pen and it.s button state. (See the section
"Getting the Tablet Status.")

1

1

1

1

I
I
I
1

1

I
1

I

Licensed Material - Property of Data General Corporation 093-000542

The Main ?PTRDEVICE Packet

When you issue a ?PTRDEVICE call, you set up both a main packet (common to all functions of the
call) and a subpacket (unique for each function). The structure for the main packet appears in
Figure 2-186; we cover the subpackets later, when we discuss each function.

The ?PTRDEVICE call applies to one window at a time; in the main packet, you specify which
window you want. You can specify a window in one of three ways:

• Channel number

• Window pathname

When you open an I/O channel to a window (using ?OPEN), the
operating system returns a channel number.

When you create a window, you give it a window name. A
window's pathname takes the form @ PMAPn:windowname,
where @ PMAPn is the name of the pixel-mapped terminal that
contains the window. The window pathname must end in a null
character, <0>; it can be a maximum of?MXPL characters long
(including the null terminator).

• Window ID number When you create a window, the operating system returns the
window ID number in the main ?WINDOW packet.

Set the offset ?PTRDEV _PKT.FLAGS to indicate which method you are using to specify a target
window (see Table 2-167). You can use only one method at a time. Fill in the appropriate field in
the packet (channel number, pathname, or ID number), and set the other two fields to zero.

In addition to specifying the target window, you supply the following information in the main
?PTRDEVICE packet:

?PTRDEV_PKT.
PKT_ID

?PTRDEV_PKT.
FUNC

?PTRDEV_PKT.
FLAGS

?PTRDEV_PKT.
PATH

?PTRDEV_PKT.
PATH_BUF_LEN

?PTRDEV_PKT.
WIND_ID

?PTRDEV_PKT.
SUBPKT

093-000542

o 15 16 31
1----------------------+-----------------------1
1 Packet identifier
1

1----------------------+-----------------------
1 Function code 1 Channel number of ?PTRDEV_PKT
1 1 target window .CHAN_NUM
1----------------------+-----------------------
1 Flag word
1

1--
1 Byte pointer to pathname of target window
1

1----------------------+-----------------------
1 Length of buffer 1 Length of pathname ?PTRDEV_PKT
1 containing window 1 returned by operating . PATH_LEN
1 pathname 1 system
1----------------------+-----------------------
1 Window ID number of target window
1

1---
1 Word pointer to subpacket
1--

Figure 2-186. Structure of the ?PTRDEVICE Main Packet

Licensed Material - Property of Data General Corporation 2-569

?PTRDEVICE Continued

Table 2-167. Contents of the ?PTRDEVICE Main Packet

Offset Contents
========================== ==

?PTRDEV_PKT.PKT_1D Packet identifier; set to ?PTRDEV_PKT_PKT1D.
(doubleword)

?PTRDEV_PKT.FUNC The code for the function you want. You must
always supply a function code. (Function
codes are listed in Table 2-166.)

?PTRDEV_PKT.CHAN_NUM Channel number of target window. When
specifying the window by its channel number,
you must also set flag
?PTRDEV_PKT.FLAGS.1N_CHAN in flag word
?PTRDEV_PKT.FLAGS.

?PTRDEV_PKT.FLAGS
(doubleword)

?PTRDEV_PKT.PATH
(doubleword)

2-570

Set this offset to 0 when specifying the
target window by its pathname or window 1D.

Flag word

?PTRDEV_PKT.FLAGS.1N_PATH -- Set this flag
when specifying the target window by its
pathname.

?PTRDEV_PKT.FLAGS.1N_WIND_1D Set this flag
when specifying the target window by its
window 1D.

?PTRDEV_PKT.FLAGS.1N_CHAN -- Set this flag
when specifying the target window by its
channel number.

Byte pointer to pathname of target window.
When specifying the window by its pathname,
you must also set flag
?PTRDEV_PKT.FLAGS.1N_PATH in flag word
?PTRDEV_PKT.FLAGS.

Set this offset to 0 when specifying the
target window by its channel number or window
1D.

(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-167. Contents of the ?PTRDEVICE Main Packet

1

1 Offset
1==========================
1

1 ?PTRDEV_PKT.PATH_BUF_LEN
1

?PTRDEV_PKT.WIND_ID
(doubleword)

?PTRDEV_PKT.SUBPKT
(doubleword)

Using a Digitizing Tablet

Contents
==

Length of the buffer containing the window
pathname. The buffer length must include the
null terminator; the maximum buffer length is
?MXPL.

Set to O. For functions that return a
pathname, the length of the pathname is
returned here.

Window ID number of target window. When
specifying the window by its window ID, you
must also set flag
?PTRDEV_PKT.FLAGS.IN_WIND_ID in flag word
?PTRDEV_PKT.FLAGS.

Set this offset to 0 when specifying the
target window by its pathname or channel
number.

Word pointer to the subpacket for the
function. If the function does not require a
subpacket, set this offset to o.

(concluded)

Three ?PTRDEVICE functions return location values. These functions are

Digitize Option

When you use a digitizing tablet the word "location" depends on tablet options as shown in
Figure 2-187. Before AOSNS Revision 7.60 location always meant the location of the cursor
relative to the origin of the active window. This definition still holds for all events that occur on the
scaled portion of the tablet unless you select the digitize option that was first available in AOSNS
Revision 7.60. (You make this selection by placing ?PTRDEV _PTR_STATE_DIGITIZE in offset
?PTRDEV _SET_PTR.STATE for main function ?PTRDEV _SET_POINTER; see Table 2-172.) With
digitizing enabled, ?PTRDEVICE returns the absolute location of the puck or pen on the tablet -
as opposed to the location of the cursor on the screen. The resolution of the returned absolute
location corresponds to the resolution of the tablet (2794 by 2794) to provide digitized applications
with the best possible resolution.

The operating system converts the origin of the tablet to the upper-left corner for all options. (The
actual origin of the hardware is the lower-left corner.) Depending on the options you choose, an
application program might be interested in an absolute position over the entire tablet or else in just
being able to address the lower portion of the tablet. In both cases you consider the absolute origin
to be the upper-left corner of the tablet; furthermore, both the x and y coordinates range from 0 to

2793.

093-000542 Licensed Material - Property of Data General Corporation 2-571

?PTRDEVICE Continued

Selecting the digitize option results in the operating system's returning your requested tablet
events in absolute coordinates across the entire tablet. Not selecting the digitize option results in
the operating system's returning your requested tablet events in absolute coordinates only in the
dead space of the tablet. See Figure 2-187. With the origin in the upper-left. corner the dead space
has absolute coordinates for x between 0 and 2793, and for y between 2236 and 2793.

Digitize Option

(0,0) origin (2793,0)
+------------------------+ , ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
+------------------------+
(0,2793) (2793,2793)

Regular Tablet

(0,0) origin
(2793,0)
(1024,0) *

+------------------------+ , ,
, scaled tablet space , , ,
'(0,2276) (2793,2276)'
+------------------------+
, (1024,800)*' , ,
, "dead" tablet space , , ,
+------------------------+
(0,2793) (2793,2793)

* for low resolution systems

Figure 2-187. Tablet States

The hotspot of a cursor (the single pixel of a cursor image that defines the cursor location) cannot
normally go off the physical screen. However, the operating system allows the cursor to completely
leave the physical screen when tablet events occur; this way, the user is not confused when the
cursor appears to be on the screen while events occur in the lower tablet space.

?PTRDEVICE does not support its ?PTRDEV _SET_DELTA function when you have enabled
digitizing. This means that no filtering occurs and that the operating system returns movement
events as the tablet reports them.

Tablet Location Example

Suppose you want to place a template over the dead area of the tablet. Your application will listen
for events occurring in this area and respond accordingly. And, your application uses the scaled
portion of the tablet as it always has (i.e., before AOSNS Revision 7.60). See Figure 2-188.

2-572 Licensed Material - Property of Data General Corporation 093-000542

+-----------------------------------+
1(0,0) (2793,0)1 \
1 1 1
1 1 1
1 1 1
1 1 >
1 1 1
1 1 1
1 1 1
1 (0,2276) (2793,2276) 1 I
+-----+-----+-----+-----+-----+-----+
1 1 1 1 1 1 1 \
1 AlB 1 C 1 DIE 1 F 1 >
1 1 1 1 1 1 1 I
+-----+-----+-----+-----+-----+-----+

"Normal" movement of
the cursor in
the application
window

Menu items for the
application

Figure 2-188. An Example of a Tablet Area Menu

Selecting the Pointer Events You Want

A pointer event is a 16-byte sequence that describes an action the user has just taken with the
pointer device. The operating system inserts pointer events into the input data stream of the
window in which the event took place. From the input stream, the events go into the window's
input buffer, where they stay until you issue a ?READ on that window.

You must tell the operating system what types of pointer events you want it to send to each
window. By default, each window receives no pointer events; to receive events, issue the
?PTRDEVICE call with function code ?PTRDEV _SET_EVENTS. In the main ?PTRDEVICE packet,
specify the window for which you are setting the events, and provide a word pointer to the
?PTRDEV _SET_EVENTS subpacket. Figure 2-189 shows the subpacket structure.

o 31
1----------------------------1
1 Packet identifier (set to 1

1 ?PTRDEV_SET_EVTS_PKTID) 1

1----------------------------1
1 Flag word: Events 1

1 (see Table 2-168) 1
1----------------------------1
1 Flag word: Buttons 1
1 (see Table 2-169) 1
1----------------------------1

Figure 2-189. Structure of the ?PTRDEV_SET_EVENTS Subpacket

The ?PTRDEV _SET_EVENTS subpacket contains flag words that let you specify

• The pointer events you want to receive. You can specify one or more pointer events. (See
Table 2-168.)

• The buttons in which you are interested (if you request pointer events that concern buttons).
(See Table 2-169.)

093-000542 Licensed Material - Property of Data General Corporation 2-573

?PTRDEVICE Continued

Four tablet events became available with AOSNS Revision 7.60. They allow your application to
choose button events that occur in the dead portion of the tablet to return in absolute coordinates.
Their function codes are

• ?PrRDEV _SET_EVTS.EVTS.TAB_MOVEMENT

• ?PrRDEV _SET_EVTS.EVTS.TAB_BTN_DOWN

When you choose one of these four tablet events and the operating system returns a tablet event,
the returned location will have its origin in the upper-left corner of the tablet along with the
resolution of the tablet device (2794 by 2794). The extent of the tablet's dead area is (0,2236)
through (2793,2793). Any events occurring in the scaled portion of the tablet (corresponding to the
screen) work the same in all revisions of the operating system: the location is relative to the origin
of the active window and the resolution is that of the monitor device.

Also, when you choose one of these tablet events and there is more than one window in the active
group, only the upfront window in the active group can receive tablet events. Other windows in the
active group continue to receive other requested pointer events.

If you enable the digitize option, the operating system considers the location of all events to be
absolute. Only the four special tablet events in the previous bulleted list are returned to your
application when you have enabled digitizing; all other specified events are ignored. The origin is
the upper-left corner of the tablet, and the x and y coordinates range from ° to 2793.

Furthermore, the operating system returns error ERIPP (invalid pointer device parameter) if you
specify one of the four special tablet events for a relative device such as a mouse.

Table 2-168 shows the pointer device events you can select by placing event flags in offset
?PrRDEV _SET_EVTS.EVTS. The actions of these events differ depending on whether or not you
have enabled digitizing.

If you have enabled digitizing, the operating system returns the last four events (whose flag names
contain TAB) over the entire tablet in absolute coordinates. Although the operating system does not
return the other events with digitizing enabled, setting them does not cause an error. Why not?
You might want to select the events after you have disabled digitizing. And, applications receive
tablet events from the entire tablet only if you have enabled digitizing for the upfront window of
the active group.

2-574 Licensed Material - Property of Data General Corporation 093-000542

Table 2-168. Flags for Selecting Pointer Events (Flag Word ?PTRDEV_SET_EVTS.EVTS)

1

Flag 1 Description 1

================================= ==1
?PTRDEV_SET_EVTS.EVTS.MOVEMENT Set this flag to receive movement

events that occur in this window. (A
movement event occurs if the pointer
moves while it is within the window.)

?PTRDEV_SET_EVTS.EVTS.WINDOW Set this flag to receive window events
that occur in this window.

?PTRDEV_SET_EVTS.EVTS.
TAB_MOVEMENT

?PTRDEV_SET_EVTS.EVTS.
TAB_BTN_DOWN

?PTRDEV SET_EVTS.EVTS.
TAB_BTN_UP

?PTRDEV SET_EVTS.EVTS.
TAB_DBL_CLICK

There are four kinds of window events:
Enter window
Exit window
Activate window
Deactivate window

Set this flag to receive button-down
events for this window. (A button-down
event occurs if the user presses a
button while the pointer is within the
window.)

Set this flag to receive button-up
events for this window. (A button-up
event occurs if the user releases a
button while the pointer is within the
window.)

Set this flag to receive double-click
events for this window. (A double-click
event occurs when the user presses and
releases a button twice quickly.)

Set this flag to receive tablet
movement events in absolute
coordinates.

Set this flag to receive tablet button
down events in absolute coordinates.

Set this flag to receive tablet button
up events in absolute coordinates.

Set this flag to receive tablet double
click events in absolute coordinates.

Table 2-169. Flags for Selecting Buttons (Flag Word ?PTRDEV _SET _EVTS.BTNS)

1

Flag Description 1

==============================

?PTRDEV_SET_EVTS.BTNS.THREE

===1
Set this flag to receive button events
that concern pointer device button 1.

Set this flag to receive button events
that concern pointer device button 2.

Set this flag to receive button events
that concern pointer device button 3 .

1

1

1

I
1

1

1

1

1

. _____________________ .1

093--000542 Licensed Material - Property of Data General Corporation 2-575

?PTRDEVICE Continued

Specifying a Pointer Delta

The pointer delta is the number of pixels the pointer must move before the operating system sends
you a movement event. To specify the pointer delta, issue the ?PTRDEVICE call, function code
?PTRDEV _SET_DELTA.

In the main ?PTRDEVICE packet, specify the window for which you are setting the pointer delta,
and provide a word pointer to the ?PTRDEV_SET_DELTA subpacket.

In the ?PTRDEV_SET_DELTA subpacket, you specify the number of pixels the pointer must move
in order to generate a movement event. You can specify different values for movement along the x
and y-axes. Figure 2-190 shows the subpacket structure; Table 2-170 details its contents.

o 31
1-------------------------------1

?PTRDEV_SET_DELTA.PKT_ID 1 Packet identifier 1
1-------------------------------1

?PTRDEV_SET_DELTA.FLAGS 1 Flag word 1
1-------------------------------1

?PTRDEV_SET_DELTA.DELTA.X 1 Delta for horizontal movement 1

1-------------------------------1
?PTRDEV_SET_DELTA.DELTA.Y 1 Delta for vertical movement 1

1-------------------------------1

Figure 2-190. Structure of the ?PTRDEV_SET_DELTA Subpacket

2-576 Licensed Material - Property of Data General Corporation 093-Q00542

Table 2-170. Contents of the ?PTRDEV_SET_DELTA Subpacket

Offset Contents
============================ ===

?PTRDEV_SET_DELTA.PKT_ID
(doubleword)

?PTRDEV_SET_DELTA.FLAGS
(doubleword)

?PTRDEV_SET_DELTA.DELTA.X
(doubleword)

?PTRDEV_SET_DELTA.DELTA.Y
(doubleword)

Packet identifier; set to
?PTRDEV_SET_DELTA_PKTID.

Flag word. If you are supplying a value,
you must set the corresponding flag.

?PTRDEV_SET_DELTA.FLAGS.X -- Set this flag
if you are specifying a delta for
horizontal movement; set offset
?PTRDEV_SET_DELTA.DELTA.X to the delta
value you want.

?PTRDEV_SET_DELTA.FLAGS.Y -- Set this flag
if you are specifying a delta for vertical
movement; set offset
?PTRDEV_SET_DELTA.DELTA.Y to the delta
value you want.

Number of pixels the pointer must travel
horizontally in order to cause a movement
event. This value must be an unsigned
32-bit value greater than o. (You must also
set the flag ?PTRDEV_SET_DELTA.FLAGS.X
in the flag word ?PTRDEV_SET_DELTA.FLAGS.)

Number of pixels the pointer will travel
vertically in order to cause a movement
event. This value must be an unsigned 32-bit
value greater than o. (You must also set
the flag ?PTRDEV_SET_DELTA.FLAGS.Y in the
flag word ?PTRDEV_SET_DELTA.FLAGS.)

Getting Information About the Last Pointer Event

?PTRDEV _LAST_EVENT returns information about the last pointer event that was generated for
a particular window.

In the main ?PTRDEVICE packet, specify the window for which you want the last event, and
provide a word pointer to the ?PTRDEV _LAST_EVENT subpacket. The operating system returns
information in the subpacket (see Figure 2-191 and Table 2-171).

o 15 16 31
1----------------+---------------1
1 Packet identifier 1

1--------------------------------1
1 Pointer location, X coordinate 1

1--------------------------------1
1 Pointer location, Y coordinate 1

1----------------+---------------1

1
1
1
1

1

1

1

1

1

?PTRDEV_LEVENT.BTN 1 Button number 1 Events 1 ?PTRDEV_ 1

1----------------+---------------1

?PTRDEV_LEVENT_LEN = packet length

LEVENT.EVTS 1

1

1
__ .1

Figure 2-191. Structure of the ?PTRDEV_LABT_EVENT Subpacket

09~542 Licensed Material - Property of Data General Corporation 2-577

?PTRDEVICE Continued

Table 2-171. Contents of the ?PTRDEV _LAST_EVENT Subpacket

Offset
==========================

?PTRDEV_LEVENT.PKT_ID
(doubleword)

?PTRDEV_LEVENT.PTR_LOC.X
(doubleword)

?PTRDEV_LEVENT.PTR_LOC.Y
(doubleword)

?PTRDEV_LEVENT.BTN

?PTRDEV_LEVENT.EVTS

Contents
===

Packet identifier; set to
?PTRDEV_LEVENT_PKTID.

X coordinate of pointer location at the time
the last event occurred, in pixels. This is
either relative to the origin of a window's
virtual terminal or else is an absolute
tablet coordinate. (Returned by the OS.)

Y coordinate of pointer location at the time
the last event occurred, in pixels. This is
either relative to the origin of a window's
virtual terminal or else is an absolute
tablet coordinate. (Returned by the OS.)

The number of the button involved in the
event (if any). If the last event did not
involve a button, this offset is set to -1.
(Returned by the operating system.)

The type of pointer event that last occurred
(returned by the operating system). If you
have selected both pointer and tablet events
in the ?PTRDEV_SET_EVENTS subpacket in
Figure 2-189, the operating system may return
either type of event. If no event has yet
occurred, this offset is set to -1. Event
types are

?PTRDEV EVENTS_MOVEMENT Movement

?PTRDEV_EVENTS_ACTIVATION Activation

?PTRDEV_EVENTS_DEACTIVATION Deactivation

?PTRDEV_EVENTS_TAB_MOVEMENT Tablet movement
events in absolute coordinates

?PTRDEV_EVENTS_TAB_BTN_DOWN Tablet button
down events in absolute coordinates

?PTRDEV_EVENTS_TAB_BTN_UP Tablet button-up
events in absolute coordinates

?PTRDEV_EVENTS_TAB_DBL_CLICK Tablet double
click events in absolute coordinates 1

___________________________ --__ 1

2-578 Licensed Material - Property of Data General Corporation 093-000542

Controlling the Operation of the Pointer

You use ?PTRDEVICE, function code ?PTRDEV_SET_POINTER, to control how the pointer looks
when it is within a particular window or to control digitizing. You can

• Select a shape from the predefined pointer shapes.

• Make the pointer visible or invisible.

• Enable or disable digitizing.

In the main ?PTRDEVICE packet, specify the window for which you want to set the pointer, and
provide a word pointer to the ?PTRDEV _SET_POINTER subpacket. Any changes you make to the
pointer will be in effect only when the pointer is within the window you specify.

By default you create a window with the graphics pointer enabled and digitizing disabled. Enabling
digitizing automatically disables the graphics cursor. Selecting either of the flags
?PTRDEV _PTR_STATE_ENABLE or ?PTRDEV _PTR_STATE_DISABLE in offset
?PTRDEV _SET_PTR.STATE will both disable digitizing and enable the graphics pointer.

Figure 2-192 shows the structure of the ?PTRDEV _SET_POINTER subpacket; Table 2-172 details
its contents.

o 15 16 31
1----------------+---------------1

?PTRDEV_SET_PTR.PKT_ID 1 Packet identifier 1

1--------------------------------1
?PTRDEV_SET_PTR.FLAGS 1 Flag word 1

1----------------+---------------1
?PTRDEV_SET_PTR.SHAPE 1 Pointer shape 1 Pointer state 1 ?PTRDEV_

1 1 1 SET_PTR.STATE
1----------------+---------------1

Figure 2-192. Subpacket for ?PTRDEV_SET_POINTER Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-579

?PTRDEVICE Continued
Table 2-172. Contents of the ?PTRDEV_SET_POINTER Subpacket

Offset
==========================

?PTRDEV_SET_PTR.PKT_ID
(doubleword)

?PTRDEV_SET_PTR.FLAGS
(doubleword)

Contents
===

Packet identifier; set to
?PTRDEV_SET_PTR_PKTID.

Flag word. Indicates which pointer
attributes you are changing.

?PTRDEV_SET_PTR.FLAGS.SHAPE -- Set this flag
if you are changing the pointer shape.

?PTRDEV_SET_PTR.FLAGS.STATE -- Set this flag
if you are changing the state of the pointer
(making it visible or invisible, or enabling
digitizing) .

The pointer shape you want; available ones are

?PTRDEV_PTR_SHAPE_DEFAULT The operating system
determines shape.

?PTRDEV_PTR_SHAPE_FINGER A pointing finger.

?PTRDEV_PTR_SHAPE_FXHAIR A full-screen
cross-hair.

?PTRDEV_PTR_SHAPE_HOURGLASS
An hourglass.

The state of the pointer (visible or
invisible, and digitizing). By default, the
pointer is visible.

?PTRDEV_PTR_STATE_ENABLE Set this flag to
make the pointer visible and to
disable digitizing. The OS returns
pointer events for the scaled area of
the tablet.

?PTRDEV_PTR_STATE_DISABLE Set this flag to
make the pointer invisible and to
disable digitizing. The OS returns
pointer events for the scaled area of
the tablet.

?PTRDEV_PTR_STATE_DIGITIZE Set this flag
to enable digitizing for the target
window. If it is the upfront window,
then the graphics pointer does not ap
pear on the entire screen and the OS
does not return pointer events for the
scaled portion of the tablet. The OS
treats any event generated over the I
ENTIRE tablet as an absolute tablet I
event. If the target window is not I
the upfront window, then it receives 1

no pointer events and the graphics I
pointer is unaffected. Select this I
state only for a digitizing tablet; I
otherwise, you receive error ERIPP. I

_____________________________ ---_ .. 1

2-580 Licensed Material - Property of Data General Corporation 093-000542

Getting the Pointer Status

You can use ?PTRDEVICE, function code ?PTRDEV _GET_PTR_STATUS, to get the following
information about the current state of the pointer:

• The current delta values.

• The events you have requested.

• The buttons you have requested.

• The current pointer shape.

• The current state of the pointer: enabled (visible) or disabled (invisible) or digitizing.

In the main ?PTRDEVICE packet, specify the window for which you want the pointer status, and
provide a word pointer to the ?PTRDEV _GET_PTR_STATUS subpacket. The operating system
returns information in the subpacket. Figure 2-193 shows the subpacket structures; Table 2-173
details its contents.

o 15 16 31
----------------+---------------1

?PTRDEV_GSTATUS.PKT_ID Packet identifier 1

--------------------------------1
?PTRDEV_GSTATUS.DELTA.X Horizontal delta value 1

--------------------------------1
?PTRDEV_GSTATUS.DELTA.Y Vertical delta value 1

--------------------------------1
?PTRDEV_GSTATUS.EVTS Events 1

--------------------------------1
?PTRDEV_GSTATUS.BTNS Buttons 1

----------------+---------------1
?PTRDEV_GSTATUS.PTR_SHAPE Pointer shape 1 Pointer state 1

1 1

1 1
----------------+---------------1

?PTRDEV_
GSTATUS.

PTR_STATE

Figure 2-193. Structure of the ?PTRDEV_GET YTR_STATUS Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-581

?PTRDEVICE Continued

Table 2-173. Contents of the ?PTRDEV_GET_PTR_STATUS Subpacket

Offset
==========================

?PTRDEV_GSTATUS.PKT_ID
(doubleword)

?PTRDEV_GSTATUS.DELTA.X
(doubleword)

?PTRDEV_GSTATUS.DELTA.Y
(doubleword)

?PTRDEV_GSTATUS.EVTS

?PTRDEV_GSTATUS.BTNS

Contents
==

Packet identifier. Set to
?PTRDEV_GSTATUS_PKTID_REVI.

Delta value for horizontal movement, in
pixels. (Distance the pointer must move
horizontally in order to cause a movement
event.)

Delta value for vertical movement, in pixels.
(Distance the pointer must move vertically
in order to cause a movement event.)
Flag word for pointer device events that can
occur. See Table 2-174.

Flag word to indicate the buttons that the
button-related events apply to, as follows.

?PTRDEV_GSTATUS.BTNS.ONE If this flag is
set you will re
ceive events for
button 1.

?PTRDEV_GSTATUS.BTNS.TWO If this flag is
set you will re
ceive events for
button 2.

?PTRDEV_GSTATUS.BTNS.THREE If this flag is
set you will re
ceive events for
button 3.

?PTRDEV_GSTATUS.PTR_SHAPE The current pointer shape. Possible shapes
are

2-582

The default
pointer shape.

An arrow.

A pointing
finger.

A small
cross-hair.

?PTRDEV_PTR_SHAPE_FXHAIR A full-screen
cross-hair.

--~--~-(continued)

Licensed Material - Property of Data General Corporation 093-000542

Table 2-173. Contents of the ?PTRDEV_GET_PTR_STATUS Subpacket

Offset Contents
========================== ===

7PTRDEV_GSTATUS.PTR_STATE Whether the pointer is visible (enabled) or
invisible (disabled) and whether digitizing
is enabled or disabled. By default, the
pointer is visible (enabled).

09:HlO0542

7PTRDEV PTR_STATE_ENABLE The graphics
pointer is enabled in this window and
digitizing is disabled. The OS
returns pointer events for the scaled
area of a tablet.

7 PTRDEV __ PTR_STATE_DISABLE The graphics
pointer is disabled in this window
and digitizing is disabled. The OS
returns pointer events for the scaled
area of a tablet.

7PTRDEV __ PTR_STATE_DIGITIZE Digitizing is
enabled for the target window.
If it is the upfront window, then
the graphics pointer does not appear
on the entire screen and the OS does
not return pointer events for the
scaled portion of the tablet. The OS
treats any event generated over the
ENTIRE tablet as an absolute tablet
event. If the target window is not
the upfront window, then it receives
no pointer events and the graphics
pointer is unaffected.

(concluded)

Licensed Material - Property of Data General Corporation 2-583

?PTRDEVICE Continued

If a flag in Table 2-174 is set you will receive events of the corresponding type. See offset
?PrRDEV _GSTATUS.EVTS in Table 2-173.

Table 2-174. Flags for Each Possible Pointer Device Event (Flag Word
?PTRDEV _GSTATUS.EVTS)

Flag Description
================================= ==

?PTRDEV_GSTATUS.EVTS.MOVEMENT If this flag is set you will receive
movement events that occur in this
window. (A movement event occurs if
the pointer moves while it is within
the window.)

?PTRDEV_GSTATUS.EVTS.WINDOW If this flag is set you will receive
window events that occur in this
window.

?PTRDEV_GSTATUS.EVTS.BTN_DOWN

?PTRDEV_GSTATUS.EVTS.BTN_UP

?PTRDEV_GSTATUS.EVTS.DBL_CLICK

?PTRDEV_GSTATUS.EVTS.
TAB_MOVEMENT

?PTRDEV_GSTATUS.EVTS.
TAB_BTN_DOWN

?PTRDEV_GSTATUS.EVTS.
TAB_BTN_UP

?PTRDEV_GSTATUS.EVTS.
TAB_DBL_CLICK

Moving the Pointer

There are two kinds of window events:

o Window edge
o Window activation

If this flag is set you will receive
button-down events for this window.
(A button-down event occurs if the
user presses a button while the
pointer is within the window.)

If this flag is set you will receive
button-up events for this window.
(A button-up event occurs if the
user releases a button while the
pointer is within the window.)

If this flag is set you will receive
double-click events for this window.
(A double-click event occurs when the
user presses and releases a button
twice quickly.)

If this flag is set you will receive
tablet movement events in absolute
coordinates.

If this flag is set you will receive
tablet button-down events in absolute
coordinates.

If this flag is set you will receive
tablet button-up events in absolute
coordinates.

If this flag is set you will receive
tablet double-click events in absolute
coordinates.

You can use the ?Pl'RDEV _GENERATE_EVENT function to move the pointer within a window in
the active group. The system moves the pointer to the location you specify, and places a pointer
event in your input buffer that describes the pointer movement.

2-584 Licensed Material - Property of Data General Corporation 093-000542

For example, suppose you use this function to move the pointer to location (50,50) in your
application's window. In addition to moving the pointer, the system places a pointer event in the
window's input buffer. This event is identical to a normal pointer event, except that it was
generated via a system call instead of being caused by a user's action. The event tells your
application that a movement event has taken place in your window, and that the pointer is now at
location (50,50).

Because the pointer events you generate with this function are identical to those generated by a
user's action with a physical pointer device, you can also use ?PTRDEV_GENERATE_EVENT to
simulate pointer movement and button clicks. ?PTRDEV _GENERATE_EVENT is particularly
useful for demonstrating and/or testing programs that read and interpret pointer event data.

NOTE: If the user has an absolute pointer device, such as a bit pad,
?PTRDEV _GENERATE_EVENT can change the pointer position only temporarily.
Although the pointer does move to the position you specify, when the user next moves the
pointer device, the pointer jumps back to the absolute position indicated by the pointer
device.

In the main ?PTRDEVICE packet, specify the window for which you want to generate a pointer
event, and provide a word pointer to the ?PTRDEV _GENERATE_EVENT subpacket.

In the ?PTRDEV _GENERATE_EVENT subpacket, you specify

• The type of pointer event you want to generate: movement, button up, button down, or double
click.

• The coordinates to which you are moving the pointer (if you are generating a movement event).

• Whether the coordinates you are specifying are relative to the origin of the virtual terminal or to
the origin of the physical screen.

• The button number (if you are generating a button-related event).

Figure 2-194 shows the subpacket structure; Table 2-175 details its contents.

o 31
1--------------------------1

?PTRDEV_GEN_EVENT.PKT_ID 1 Packet identifier 1
1--------------------------1

?PTRDEV_GEN_EVENT.FLAGS 1 Flag word 1
1-------------+------------1

?PTRDEV_GEN_EVENT.EVENT 1 Event type 1 Button 1 ?PTRDEV_GEN_
1-------------+------------1 EVENT.BUTTON

?PTRDEV_GEN_EVENT.POS.X 1 Pointer position, X axis 1

1--------------------------1
?PTRDEV_GEN_EVENT.POS.Y 1 Pointer position, Y axis 1

1--------------------------1

Figure 2-194. Structure of the ?PTRDEV _GENERATE_EVENT Subpacket

093-000542 Licensed Material - Property of Data General Corporation 2-585

?PTRDEVICE Continued

Table 2-175. Contents of the ?PTRDEV _GENERATE_EVENT Subpacket

Offset
===========================

?PTRDEV_GEN_EVENT.PKT_ID
(doubleword)

?PTRDEV_GEN_EVENT.FLAGS
(doubleword)

?PTRDEV_GEN_EVENT.POS.X
(doubleword)

?PTRDEV_GEN_EVENT.POS.Y
(doubleword)

1

Contents 1

==1
Packet identifier: set to
?PTRDEV_GENERATE_EVENT_PKTID.

Flag word. Flags are

1

1

1

1

I
1

?PTRDEV_GEN EVENT.FLAGS.X -- Set this I
flag if you are specifying a new X 1

coordinate for the pointer position. If I
you are not changing the X coordinate, 1

set both this flag and the offset to O. 1

?PTRDEV_GEN_EVENT.FLAGS.Y -- Set this
flag if you are specifying a new Y
coordinate for the pointer position. If

I
1

1

1

1 you are not changing the Y coordinate,
1 set both this flag and the offset to O.
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I
1

1

?PTRDEV_GEN_EVENT.VIRTUAL -- Set this
flag if you are specifying a pointer
position relative to the origin of the
virtual terminal. (The position you
specify on the virtual terminal must be
visible.)

?PTRDEV GEN_EVENT.PHYSICAL -- Set this
flag if you are specifying a pointer
position relative to the origin of the
physical screen.

The type of event you want to generate.
Event types are

Movement

Button up

Button down

Double click

The number of the button (if any)
involved in the event. For a movement
event, you must set this field to O.

X coordinate of the desired pointer
position. If relative to the origin of
the physical screen, specify in pixels.
If relative to the origin of the virtual
terminal, specify in units appropriate
to the virtual terminal type.

Y coordinate of the desired pointer
position. If relative to the origin of
the physical screen, specify in pixels.
If relative to the origin of the virtual
terminal, specify in units appropriate
to the virtual terminal type.

____________________________ 1 __ __

2-586 Licensed Material - Property of Data General Corporation 093-000542

Getting the Location and Status of the Pointer

You use ?PTRDEVICE, function code ?PTRDEV _GET_PTR_LOCATION, to find out the current
status of the pointer. This function returns

• The current location of the pointer within the specified window.

• The current status of the pointer device buttons.

In the main ?PTRDEVICE packet, specify the window for which you want to get the pointer's
location and button status, and provide a word pointer to the ?PTRDEV _GET_PTR_LOCATION
subpacket. (You can specify only one window at a time; if the pointer is not within that window,
this function returns an error.) The operating system returns the pointer's location and button
status in the subpacket.

Figure 2-195 shows the structure of the ?PTRDEV _GET_PTR_LOCATION subpacket; Table 2-176
details its contents.

o 31
1----------------------------------1

?PTRDEV_GET_LOC.PKT_ID 1 Packet identifier 1
1----------------------------------1

?PTRDEV_GET_LOC.LOC.X 1 X coordinate of pointer location 1
I---------------------------~------I

?PTRDEV_GET_LOC.LOC.Y 1 Y coordinate of pointer location 1

1----------------------------------1
?PTRDEV_GET_LOC.BTNS 1 Flag word: buttons 1

093--000542

1----------------------------------1

Figure 2-195. Structure of the ?PTRDEV_GET_PTRpOCATION Subpacket

Table 2-176. Contents of the ?PTRDEV_GET_PTR_LOCATION Subpacket

Offset

?PTRDEV_GET_LOC.PKT_ID
(doubleword)

?PTRDEV_GET_LOC.LOC.X
(doubleword)

?PTRDEV_GET_LOC.LOC.Y
(doubleword)

?PTRDEV_GET_LOC.BTNS
(doubleword)

Contents

Packet identifier. Place
?PTRDEV_GET_LOC PKTID here.

X coordinate of pointer location
within the window specified in the
main packet. The coordinate value is
in characters for a character window,
in pixels for a graphics window.

Y coordinate of pointer location
within the window specified in the
main packet. The coordinate value is
in characters for a character window,
in pixels for a graphics window.

Flag word. Indicates which buttons on
the pointer device are currently down.
For each button that is down, the
operating system sets the bit that
corresponds to the button number. (For
example, if Button 2 is down, the
operating system sets Bit 2 of the
flag word.)

Licensed Material - Property of Data General Corporation 2-587

?PTRDEVICE Continued

Getting the Tablet Status

You use ?PTRDEVICE with function code ?PTRDEV_GET_TABLET_LOCATION to poll the puck
or pen position and state. The position that the operating system returns is the absolute location of
the pointing device on the tablet. You might or might not see the cursor on the screen.

Function code ?PTRDEV _GET_TABLET_LOCATION yields results that are quite similar to those
offunction code ?PTRDEV_GET_PTR_LOCATION. A significant difference is the values of the
locations that the operating system returns. The former code returns the absolute location of the
pointer device on the tablet with a resolution for both x and y coordinates between 0 and 2793. The
state of digitizing (enabled or disabled) has no effect on this code. The latter code returns the
position of the cursor relative to the active window in virtual coordinates.

The operating system returns error ERIPP (invalid pointer device parameter) if you issue
?PTRDEVICE with function code ?PTRDEV _GET_TABLET_LOCATION and with a relative device
such as a mouse.

In the main ?PTRDEVICE packet, specify the window for which you want to get the pointing
device's absolute location on the tablet, and provide a word pointer to the
?PTRDEV _GET_TABLE T_LOCATIO N subpacket. You can specify only one window at a time. The
operating system returns the locations (absolute x and y coordinates) in the subpacket.

Figure 2-196 shows the structure of the ?PTRDEV _GET_TABLET_LOCATION subpacket;
Table 2-177 details its contents.

o 31

?PTRDEV_GET_TABLOC. Packet identifier
PKT_ID

?PTRDEV_GET_TABLOC. X coordinate on tablet
LOC.X

?PTRDEV_GET_TABLOC. Y coordinate on tablet
LOC.Y

?PTRDEV_GET_TABLOC. Flag word: button states
BTNS

Figure 2-196. Structure of the ?PTRDEV __ GET_TABLET_LOCATION Subpacket

2-588 Licensed Material - Property of Data General Corporation O~0542

Notes

Table 2-177. Contents of the ?PTRDEV_GET_ TABLET_LOCATION Subpacket

Offset

?PTRDEV_GET_TABLOC.PKT_ID
(doubleword)

?PTRDEV_GET_TABLOC.LOC.X
(doubleword)

?PTRDEV_GET_TABLOC.LOC.Y
(doubleword)

?PTRDEV_GET_TABLOC.BTNS
(doubleword)

Contents

Packet identifier. Place
?PTRDEV_GET_TABLOC_PKTID here.

X coordinate of the pointer location
on the tablet. The value is an
absolute coordinate.

Y coordinate of the pointer location
on the tablet. The value is an
absolute coordinate.

Flag word. Indicates which buttons on
the pointer device are currently down.
For each button that is down, the
operating system sets the bit that
corresponds to the button number. (For
example, if Button 2 is down, the
operating system sets Bit 2 of the
flag word.)

• See the description of ?GECHR in this chapter.

093-000542 Licensed Material - Property of Data General Corporation 2-589

•
?PWDCRYP Performs a password data encryption request .

?PWDCRYP [packet address]
error return
normal return

Input

ACO Reserved (Set to 0.)

ACI Reserved (Set to 0.)

AC2 Address of the ?PWDCRYP
packet unless you specify
the address as an argument
to?PWDCRYP

Error Codes in ACO

AOSNS

Output

ACO Undefined

AC 1 Unchanged

AC2 Unchanged

ERVBP
ERRVN
ERPVS
ERPRE

Invalid byte pointer passed as an argument
Reserved value not zero
Packet revision not supported
Invalid parameter passed as system call argument

Why Use It?

You can use ?PWDCRYP to add a level of security to the system password file. By using the
?PWDCRYP system call, the plain text password input to the call will be encrypted and returned to
the caller. This system call could be used by products wishing secure system storage of various user
profiles at a higher level functional layer than that of the operating system.

Who Can Use It?

There are no special process privileges needed to issue this call, and there are no restrictions
concerning file access.

What It Does

?PWDCRYP performs a one way password encryption which uses the password as both the plain
text and the "key" in the algorithm. The algorithm is based on the Data Encryption Standard
(DES) algorithm proposed by the National Bureau of Standards (NBS).

?PWDCRYP performs the following function on behalf of the calling process:

• Perform a one-way password encryption of a plain text password whose byte address is
contained in offset ?PWBP of the packet. The candidate password must be 1 to 32 bytes in
length and be null terminated in the buffer. (EXEC requires passwords to contain between 6
and 15 bytes, but you can use ?PWDCRYP on longer passwords in your applications.)

The encrypted password is a multiple of 8 bytes long. If, for example, the input is 9 bytes plus a
null terminator then the output is 16 bytes long; ?PWDCRYP has encrypted the null terminator.

2-590 Licensed Material - Property of Data General Corporation 093-{)00542

We recommend that you pad all passwords to 16 bytes (using ASCII <377> as the pad character)
and supply the null character in the 17th byte. For example, the recommended way to supply the
password WESTBOROUGH is

WESTBOROUGH<377><377><377><377><377><OOO>

Before issuing ?PWDCRYP, set the flags word (?PWFW) according to the function to be performed
(see Table 2-178), and set the remaining offsets appropriately (see Figure 2-197). The operating
system will return the length in bytes of the null terminated encrypted password. The length of the
packet is ?PWSZ words.

Figure 2-197 shows the structure of the ?PWDCRYP packet, and Table 2-178 describes the
con tents of each offset.

o 15 16 31
1-------------------------+-------------------------1

?PWFW 1 Flags Word 1 Current Packet Revision 1 ?PWRV
1 (see Table 2-178) 1 1
1-------------------------+-------------------------1

?PWBP 1 Byte pointer to password buffer; ?PWDCRYP 1

1 overwrites this buffer 1

1-------------------------+--------------------------1
?PWLO 1 Byte length of null 1

1 terminated password 1

lout 1

093-000542

1-------------------------1

?PWSZ = packet length

Figure 2-197. Structure of ?PWDCRYP Packet

Table 2-178. Contents of ?PWDCRYP Packet

Offset Contents
======== =======================:===================================

?PWFW Flags word contains the following flags:

?PWRV

?PWBP

?PWLO

?PWOW--perform a one-way password encryption

(Flag ?PWOW must be SE~t on input to ?PWDCRYP.)

Current packet revision number; should be zero.

Byte address of password buffer containing the password
in your logical address space.

NOTE: The password buffer length must be at least 33
bytes in length.

Length in bytes of the output password that is null
terminated. The OS returns this value.

Licensed Material - Property of Data General Corporation 2-591

?PWRB

?PWRB [packet address]
error return
normal retu rn

Performs physical block 1/0.

See the description of ?PRDB in this chapter for further information on ?PWRB.

?R through ?Z

Descriptions of the system calls whose first letters begin with ?R through ?Z are in Chapter 2 of the
manual AOS / VS, AOS / VS II, and AOS / RT32 System Call Dictionary, ?R Through ?Z
(093-000543).

End of System Calls? A Through ?Q

2-592 Licensed Material - Property of Data General Corporation 093--000542

Index

Within the index, a bold page number indicates a primary reference. A range of paf;{e numbers
indicates the reference spans those pages. A reference such as ?RTODC_PKT ... indIcates that all
references beginning with those characters are found on the referenced pages.

Symbols
! operator, 1-4

? CLI macro, 2-217

?CID _PKT.PKT _ID offset, 2-58.7-2-58.25

?ID7 value, 2-410

* and ** symbols, v, xi

< and> symbols, v, xi

Numbers
16-bit process system calls (names o£), 2-14

A
AC O-AC 3 , 1-2-1-4

access
control list, 2-77,2-174,2-240,2-245,

2-650,2-882
shared, 2-699
to a protected file, permitting, 2-519
to all devices

disabling, 2-81
enabling,2-83

to memory, read/write, 2-782

accumulators, 1-2, 1-5

ACKO and ACKI characters, 2-674

ACL
changing a file's group, 2-240
getting a file's group, 2-882
getting a file's, 2-77, 2-174, 2-245, 2-650

acquiring
a new resource, 2-328
resource, 2-594

active
group of windows, 2-574
PIDs, returning, 2-217

Ada language, 1-10

address
logical, 2-781

request
for consoles, 2-58.6
for terminals, 2-58.6

ring base, 2-565
space

logical, mapping a device into, 2-373
remapping a process's, 2-353

?AEPR value, 2-618

Agent, changing the wiring characteristics,
2-18

?ALAU value, 2-618

?ALLOCATE system call, 2-15-2-20,2-213

allocated blocks, reading, 2-23

allocating, disk blocks, 2-15

ANSI-standard terminal, 2-182

?AOPR value, 2-618

AOSIRT32
and old file system, 2-205
system calls names of, -3

AOSNS
and old file system, 2-205
system resources system calls (names of),

2-12

AOSNS II, and new file system, 2-205

?APND value, 2-408, 2-412

?ASEB value, 2-618

assembly language, iv, 1-1, x
programming, 1-5-1-9
sample program sets, iv, x

?ASSIGN system call, 2-17

attribute, permanent file, 2-653

?AUAL value, 2-618

autobaud matching, 2-198

auxiliary clock, 2-401

?AWENT value, 2-18

?AWIRE system call, 2-18

?AWUDS value, 2-18

086-000195 updates
093-000542 licensed Material- Property 01 Data General Corporation Index-1

B
B operator, 1-4

?B32N offset, 2-20

?BADL and ?BADR offsets, 2-20

base
address, ring, 2-565
current resource, 2-186

BASIC language, 1-10

baud, autobaud matching, 2-198

baud rate, split baud, 2-197

?BBAC offset, 2-20

?BBAL offset, 2-20

?BBAN offset, 2-20

?BBLC offset, 2-20

?BBLL offset, 2-20

?BBLN offset, 2-20

BCC character, 2-674

?BCHN offset, 2-20

?BERR offset, 2-20

bias factor values
getting, 2-176
setting, 2-655

binary
mode, 2-40
synchronous communications line, opening a,

2-405

bisecond, 2-74

bit
setting a, 1-4
significant, 1-5

?BITM value, 2-376

?BLBB offset, 2-20

?BLKIO system call, 2-19-2-20, 2-213, 2-216,
2-596

?BLKPR system call, 2-26

bloc, disk identification, 2-291

block
output to a data channel line printer,

2-600-2-601
reading allocated, 2-23

block 1/0, 2-19, 2-183, 2-210
disk, 2-598
MCA,2-599
opening a file for, 2-210, 2-405

performing, 2-19, 2-596
physical, 2-24-2-25, 2-210, 2-525, 2-592
reading, 2-596
tape, 2-599
writing, 2-596, 2-844

blocking a process, 2-26

?BLTH value, 2-20

?BM32R value, 2-21

?BMAFE value, 2-21

?BMBI value, 2-115-2-116, 2-117

BMC device, 2-151, 2-271

?BMDA value, 2-116

?BMDEV offset, 2-198

?BMDEV value, 2-191

?BMDIO value, 2-21

?BMEOR value, 2-21

?BMEP value, 2-115

?BMFO value, 2-117

?BMIO value, 2-21

?BMNAB value, 2-21

?BMNH and ?BM8B values, 2-115

?BMNMB value, 2-21

?BMNO value, 2-117

?BMNR value, 2-116

?BMOP value, 2-117

?BMPE value, 2-116

?BMPIO value, 2-21

?BMRA value, 2-117-2-118

?BMSH value, 2-116

?BMTB value, 2-115

?BMTI value, 2-117-2-118

?BMUC value, 2-117

?BNAME system call, 2-28

BOOMER.SR sample program, A-2,
A-32-A-36

boot clock, SCP, 2-401

?BPEL offset, 2-20

?BPER offset, 2-20

?BPVB offset, 2-20

?BROBIT-?BR4BIT, baud rate offsets, 2-196

BRACO-BRAC3 status words, 2-30

BRAN utility program, 2-382

Index-2 Licensed Material- Property 01 Data General Corporation
086-000195 updates

09~542

break
connection, 2-516, 2-523
customer/server relationship, 2-80, 2-92
file

creating a, 2-29
disabling a, 2-95
enabling a, 2-94

line, 2-40
sequences, 2-198

?BRFCT offset, 2-197

BRFP status word, 2-30

?BRKFL system call, 1-2, 2-29-2-30

BRPC status word, 2-30

BRSB status word, 2-30

BRSL status word, 2-30

BRSP status word, 2-30

BRTID status word, 2-30

BSC
error statistics, 2-686
line

device name for, 2-669
enabling a, 2-669
receiving information over a, 2-709
sending information over a, 2-720

protocol data-link control characters, 2-674

?BSTS offset, 2-20

?BTBC offset, 2-20

?BTBL offset, 2-20

buffer
mode of tape I/O, 2-214, 2-412
moving bytes from a customer, 2-377
moving bytes to a customer, 2-379

byte pointer, 1-5

c
C language, 1-10

?C 16B offset, 2-198

?C8BT value, 2-178, 2-181

?CABD offset, 2-198

?CACC offset, 2-198

?CACP offset, 2-62-2-68
example of, 1-7

calendar, system, 2-660

calling resource, 2-328

?CALLOUT offset, 2-198

calls, system, 1-1

canceling, character device, 2-82

carriage return character, 2-663

cascaded virtual timer, 2-794

?CBKO offset, 2-198

?CBK1 offset, 2-198

?CBK2 offset, 2-198

?CCPS offset, 2-66-2-68,2-168

?CCTD offset, 2-198

?CCTYPE offset, 2-199

?CDAY system call, 2-31

?CDEH offset, 2-66-2-68

?CDEL offset, 2-66-2-68

?CDRXONvalue, 2-40-2-41

?CDSBRK value, 2-40, 2-41

?CDTO-?CDT3 values, 2-179, 2-181, 2-195

?CEBO and ?CEB1 values, 2-179

?CEOC value, 2-179, 2-195

?CEOL value, 2-178

?CEOS value, 2-179, 2-194

?CEPI value, 2-178

?CESC value, 2-179

?CFF value, 2-178

?CFKT value, 2-180, 2-614

?CFTYP offset, 2-61-2-68
example of, 1-6

?CGNAM system call, 2-32

?CH4 offset, 2-180

CHAIN command, 2-255

?CHAIN system call, 2-33-2-34

chaining
new procedure, 2-595
programs, 2-33

changing
agent wiring characteristics, 2-18
priority of a process, 2-531
priority of a task, 2-280, 2-530
process type, 2-75
un shared memory pages, 2-384
user locality, 2-354
working directory, 2-89

channel
closing a, 2-38
graphics output, 2-225
map, data, 2-729
numbe~2-226,2-405,2-569

getting a file's complete pathname from,
2-32

086-000195 updates
093-000542 licensed Material- Property of Data General Corporation Index-3

character device, 2-177,2-190
assigning to a process, 2-17
canceling or deassigning a, 2-82
de assigning a, 2-82

characteristics
another's, 2-191
changing the Agent's wiring, 2-18
current, 2-191
current and default, 2-190, 2-679
default, 2-191
device, 2-177
extended, 2-190
extended device, 2-679
owned, 2-191
packet parameters, 2-193
shared console, ownership, 2-198
special keys and device types, 2-200

CHECK.F77 sample program, A-2, A-42

?CHFS offset, 2-64-2-65
example of, 1-6

?CID_PKT.CHAN_NUM offset, 2-58.7-2-58.25

?CID_PKT.CON_LEN offset, 2-58.7

?CID_PKT.CON_PTR offset, 2-58. 7

?CID_PKT.RBUF _PTR offset, 2-58.7

?CID_PKT.RBUF _LEN offset, 2-58.7

?CID_PKT.RDATA_LEN offset, 2-58.7

?CID_PKT. USER_FLGS offset, 2-58.7

?CID_PKT_LEN offset, 2-58.7

?CID_RET_TYPES offset, session connection
types, 2-58.9

?CINT value, 2-711, 2-723

?CKVOL system call, 2-35

?CL_ ... offsets and values, 2-37

class
assignments logical processor, 2-362
IDs, 2-36
matrix, 2-51
process, 2-514
scheduling

statistics
accumulating, 2-42
returning, 2-45

system calls (names o{), 2-12

?CLASS system call, 2-36-2-56

clear to send modem option, 2-180

Clearing, LBUS interrupts, 2-272

clearing
default access control list, 2-77
device, 2-40
execute-protection status, 2-141-2-142

?CLFP offset, 2-199

? CLI, macro, 2-217

CLI
message, getting a, 2-250
message format, 2-255
program, 1-1

CLI-format
command line, sending via ?PROC, 2-543
IPC message, 2-307

CLI.PR, summary of, A-39

clip rectangle, 2-223

?CLMAX value, 2-180, 2-190

?CLMIN value, 2-190

?CLMSK data field length mask, 2-197

?CLN5 offset, 2-197

?CLN6 offset, 2-197

?CLN7 offset, 2-197

?CLN8 offset, 2-197

clock
auxiliary, 2-401
real-time, 2-313
SCP boot, 2-401
system, 2-187,2-201,2-258,2-645,2-732

?CLOSE system call, 2-38-2-56, 2-183
example of, A-23

closing
channel, 2-38
file, 2-38, 2-183
shared-access file, 2-658

?CLRDV system call, 2-40-2-41

?CLS_ACC value, 2-44

?CLS_GET value, 2-44

?CLS_PKT ... offsets and values, 2-43-2-44

?CLS_SCHED value, 2-44

?CLS_SET value, 2-44

?CLSCHED system call, 2-42-2-43

?CLST_ ... offsets and values, 2-47-2-50

?CLSTAT system call, 2-45-2-50

?CLTO offset, 2-197

?CLT1 offset, 2-197

?CLTH value, 2-62, 2-64, 2-66
example of, 1-7

Index--4 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?CMAT_ ... offsets and values, 2-53-2-55

?CMATRIX system call, 2-51

?CMDOP offset, 2-198

?CMIL offset, 2-64-2-68
example of, 1-7

?CMOD value, 2-179, 2-181, 2-657, 2-680

?CMPLT value, 2-59

?CMRI value, 2-178, 2-181, 2-657, 2-680

?CMRS offset, 2-64-2-66
example of, 1-7

?CMSH offset, 2-64-2-65
example of, 1-7

?CNAS value, 2-178, 2-181-2-182

?CNLX function, 2-192

?CNNL value, 2-180,2-181,2-680

?CNRM value, 2-179, 2-682

COBOL language, 1-10

CODE, MASM macro, 2-101

codes
and text error, returning, 2-683
error, 1-9
exception, 1-2
parametric, 1-3

command line (CLI-format), sending via
?PROC, 2-543

Commands, format conventions, xi

communication, operator/current process, 2-437

complete path name
getting a, 2-32, 2-205
returning generic file, 2-239

COMSWITCH device, 2-40

?CON system call, 2-56, 2-160

?CON_PKT. USER_FLGS offset, input values,
2-58.8

conditional I/O, 2-220, 2-707

?CONFIG system call, 2-58-2-58.5

?CONFIG_ ... function codes, 2-58.1-2-58.5

?CONFIG_ ... offsets and values, for current
device route, 2-58.3

?CONFIG_RESET_ ... contents and values,
channel rerouting, 2-58.4

?CONINFO
and connection errors, 2-58.9

for TCONS, 2-58.9
and Permanent Virtual Circuits (PVCs),

2-58.9

and teletype connections, 2-58.9
and Telnet connections, 2-58.9
and Xerox Network Services (XNS),

connections, 2-58.9
?CON_CON_ ... offsets, 2-58.12-2-58.13
?CON_ITC_ ... offsets, 2-58.14-2-58.15
?CON_PVC_ ... offsets, 2-58.16-2-58.17

subackets, 2-58.18-2-58.25
?CON_TCP _ ... offsets, 2-58.10
?CON_TNET_ ... offsets, 2-58.13-2-58.14
?CON_TSC_ ... offsets, 2-58.15-2-58.16
?CON_XNS_ ... offsets, 2-58.11-2-58.12
console line numbers, 2-58.8
console types, 2-58.9
return packet types, 2-58.8
TermServer console, 2-58.9

?CONFINFO packet contents, 2-58.7

?CONINFO system call, 2-58.6-2-58.25
connect time-out, 2-677

connection
breaking, passing, and re-establishing a,

2-516,2-523
management, 2-57

message, 2-295
system caBs (names 00, 2-11, 2-13

session types, 2-:-58.9

connections, Xerox Network Services (XNS),
2-58.9

console
address request, 2-58.6
line numbers, 2-58.8
types, 2-199

construction, program, 1-8

?CONT value, 2-711,2-716,2-723

Contacting Data General, xii
contacting Data General, vi

continue/receive call, 2-714

control
characters (data-link), BSC protocol, 2-674
passing from one program to another, 2-33
point directory

?CREATE packet for, 2-64
maximum size of, 2-58.26

station, multipoint, 2-715

control characters, effect
erase line, 2-200
move left, 2-200
move right, 2-200
rub out echo, 2-200

CONTROL @EXEC family of commands, 2-438

control keys, characteristics, 2-200

control--character terminal interrupt
disabling, 2-333

086-{)O()195 updates
093-000542 Licensed Material- Property of Data General Corporation Index-5

re-enabling, 2-334

controller
intelligent, 2-190
status word, 2-528-2-529

converting
date to a scalar value, 2-143
scalar date value, 2-31
scalar time value, 2-74
time of day to a scalar value, 2-171

?COTT value, 2-178

?CPBN value, 2-179, 2-181

?CPEN offset, 2-197

CPI/24 device, 2-41

?CPM value, 2-179, 2-181

?CPMAX system call, 2-58.26, 2-213

?CPMCN offset, 2-59

?CPMFW offset, 2-59

?CPMH8 offset, 2-59

?CPML8 offset, 2-59

?CPM8K parity mask, 2-197

?CPOR offset, 2-62-2-63

?CPRI offset, 2-197

?CPR2 offset, 2-197

?CPRO offset, 2-197

?CPTY offset, 2-197

CPU device, 2-151,2-271

CR character, 2-663

?CRII0 offset, 2-196

?CRI2H offset, 2-196

?CR134 offset, 2-196

?CR150 offset, 2-196

?CRI8H offset, 2-196

?CRI9K offset, 2-196

?CR20H offset, 2-196

?CR24H offset, 2-196

?CR300 offset, 2-196

?CR36H offset, 2-196

?CR38K offset, 2-196

?CR45 offset, 2-196

?CR48H offset, 2-196

?CR50 offset, 2-196

?CR600 offset, 2-196

?CR72H offset, 2-196

?CR75 offset, 2-196

?CR96H offset, 2-196

?CRAC value, 2-178

?CRAF value, 2-178

?CRAT value, 2-178

?CREATE system call, 1-1, 1-5, 2-6~2-68,
2-168

example of, 1-6

CREATE_WINDOW.8R sample program, A-2,
A-46-A-55

creating
break file, 2-29
directory or file, 2-60, 2-405, 2-849
dump file, 2-381
label for diskette or magnetic tape, 2-336
logical processor, 2-365
operator interface, 2-424
pipe file, 2-68
process, 2-534
queued task manager, 2-294
user data area, 2-70

?CRTl-?CRTI5 values, 2-181

?CRUDA system call, 2-70, 2-213

?C810 offset, 2-197

?C815 offset, 2-197

?CS20 offset, 2-197

?CSBDS value, 2-680

?CSBEN value, 2-680

?C8FF value, 2-178

?CSMK stop bit mask, 2-197

?CSPO value, 2-178

?CSRDS offset, 2-198

?CST value, 2-178

?CTCC offset, 2-199

?CTCD offset, 2-199

?CTDW offset, 2-199

?CTERM system call, 2-72-2-73

?CTHC offset, 2-199

?CTIM offset, 2-62-2-68
example of, 1-7

?CTLT offset, 2-199

?CTO value, 2-179, 2-734

?CTOD system call, 2-74

?CTSP value, 2-179, 2-181

?CTYPE system call, 2-75-2-76

Index-6 Licensed Material - Property 01 Data General Corporation
086-000195 updates

093-000542

?CUCO value, 2-178

?CULC value, 2-179,2-181

current
characteristics, 2-190, 2-679
date, 2-187, 2-313
process/operator process communication,

2-437
resource, base of the, 2-186
time, 2-313

cursor hotspot, 2-573

customer, 2-56
buffer

moving bytes from a, 2-377
moving bytes to a, 2-379

process, terminating a, 2-72
verifying a, 2-786, 2-789

customer/server relationship, 2-34, 2-57
breaking a, 2-80, 2-92
terminating a, 2-72

?CWIN offset, 2-198

?CWIN value, 2-191

?CWRP value, 2-179

?CXLT offset, 2-198

?CXLT sets DG ANSI mode, 2-191

D
?DAC2 offset, 2-91, 2-748-2-749

?DACL system call, 1-2,2-77-2-78

?DADID system call, 2-79

data, password encryption, 2-590

data channel
line printer, 2-70, 2-600-2-602
map, 2-729

data compression
and native mode, 2-215
magnetic tape, 2-215

Data Encryption Standard, 2-590

data field length, mask, 2-197

Data General, contacting, vi, xii

data-link control characters, BSC protocol,
2-674

data-sensitive files, default delimiters for,
2-663

date
converting to a scalar value, 2-143
current, 2-187,2-313

last accessed value, 2-214
setting the, 2-400
value, converting a scalar, 2-31

day
current, 2-187
time of, 2-258

?DCC offset, 2-91, 2-751-2-752

DCR device, 2-151, 2-271

?DCI offset, 2-91, 2-751-2-752

?DCL2 offset, 2-748

?DCON system call, 2-80

?DDIS system caB, 2-81

dead space on a tablet, 2-572

?DEASSIGN system call, 2-82

deassigning, character device, 2-82

?DEBL system call, 2-83

?DEBUG system caB, 2-84
example of, A-16

debugger, symbolic utility program, 1-3, 2-84

debugging
program, 2-29-2-30
system cans (names o£), 2-7

decimal number specification, v, xi

default
access control list, 2-77
characteristics, 2-190, 2-679

defining
kill-processing routine, 2-330
poll-address pair, 2-664
polling list, 2-664
select-address pair, 2-664
terminal interrupt task, 2-293
user device, 2-269

fast, 2-149

definition table, map, 2-153, 2-154, 2-272,
2-731

?DELAY system can, 2-85

delaying, task, 2-85, 2-809

?DELETE system call, 2-86,2-213
example of, A-19

deleting
directory or file, 2-86
logical processor, 2-367

delimiter table, 2-188, 2-416, 2-662
getting a, 2-188
setting a, 2-662

delimiters for data-sensitive files, default,
2-663

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation Index-7

density values, tape, 2-337

DES, 2-590

descriptor information, file, 2-780

device
assigning to a process, 2-17
character, 2-177, 2-190
characteristi cs

commonly used, 2-180-2-202
complete, 2-194-2-199
extended, 2-679
reading, 2-177

clearing a, 2-40
control table, 2-151, 2-271
driver routine, 2-150, 2-270
fast user, 2-149
interrupt handler service routine, 2-156,

2-275
mapping into logical address space, 2-373
powerfailJrestart routine, user, 2-277
termination routine, 2-272

user, 2-276
time-out value, 2-733-2-735
user, 2-18, 2-269, 2-304.9

device reset, pending status, 2-58

devices
disabling access to all, 2-81
enabling access to all, 2-83

?DFLGS offset, 2-91, 2-748-2-749

?DFLRC value, 2-749

?DFRSCH system call, 2-88

DGNIEW windowing user interface, 2-828

DIB, 2-291

?DID offset, 2-91,2-748,2-749

digitize option for a tablet, 2-572, 2-574, 2-579

?DIR system call, 1-5, 2-89
examples of, 1-6, A-42

DIRCREATE.F77 sample program, A-2,
A-41-A-45

DIRCREATE.SR sample program, 1-5-1-9

direct-access vertical forms control unit,
2-600-2-601

directory
changing the working, 2-89
creating a, 2-60
deleting a, 2-86
entries, 2-207
file

?CREATE packet for, 2-64
getting status of, 2-168-2-169

filenames, 2-207

disabling
access to all devices, 2-81
break file, 2-95
BSC line, 2-661
class scheduling, 2-42
control ... character terminal interrupt, 2-333
LEF mode, 2-350
relative terminal, 2-667
task rescheduling, 2-88
task scheduling, 2-93
terminal interrupt, 2-403

disconnecting, customer/server relationship,
2-80,2-92

disk
block I/O, 2-598
blocks, allocating, 2-15
identification bloc, 2-291
initialized logical, 2-630
logical, 2-630
logical, initializing an extended, 2-886
unit image, synchronized logical, 2-887

Disk Jockey utility, 2-213

diskette label, 2-336

display MRC routes, current, 2-58

DLCC, 2-674

DLE character, 2-674

DLE EOT characters, 2-674

DLIST.SR sample program, A-2, A-2~A-27

?DLNK offset, 2-91, 2-748, 2-749

?DLNKB offset, 2-91, 2-748, 2-749

?DLNKBL offset, 2-748

?DLNKL offset, 2-91

?D LNL offset, 2-748

?DNUM offset, 2-91, 2-748, 2-749

Document sets, ix

documentation, related, iv, x

?DPC offset, 2-91, 2-748, 2-749

?DPCL offset, 2-748

?DPRI offset, 2-91,2-748,2-749

?DQTSK system call, 2-90

?DRCON system call, 2-92

?DRES offset, 2-91, 2-748-2-749

?DRSCH system call, 2-93

DRT device, 2-41,2-151, 2-271

?DSCH value, 2-88

?DSFLT offset, 2-91, 2-748-2-749

?DSH offset, 2-91, 2-751-2-752

Index-8 Licensed Material- Property 0/ Data General Corporation
086-000195 upda1es

093-000542

?DSL TH value, 2-748

?DSMS offset, 2-91, 2-751-2-752

DSR value, 2-677

?DSSL offset, 2-748-2-749

?DSSZ offset, 2-91, 2-748-2-749

?DSTB offset, 2-91, 2-748-2-749

?DSTL offset, 2-748

DUART device, 2-151,2-271

DUMP CLI command, 2-110

dump file, creating a, 2-381

Dump Tool utility program, 2-382

DUMP_II CLI command, 2-110

dumping, a memory image, 2-381

duplex, half, 2-198

DVFU, 2-600

.DWORD assembly language statement, 1-4

?DXLTH value, 2-91, 2-751

E
?EBAS value, 2-618

?EFFP offset, 2-606, 2-617

?EFLN offset, 2-606, 2-617

?EFMAX value, 2-606, 2-617

?EFNF offset, 2-606, 2-617

?EFTL offset, 2-606, 2-617

?EFTY offset, 2-606,2-617

?ELAC offset, 2-419, 2-421

?ELCR offset, 2-419-2-420

?ELCT offset, 2-419-2-420

?ELFS offset, 2-419, 2-421

?ELGN offset, 2-419-2-420

?ELL1-?ELL3 values, 2-421

?ELLN value, 2-419

?ELRE offset, 2-419-2-420

?ELUH offset, 2-419, 2-421

?ELUT offset, 2-419, 2-421

?ELVL offset, 2-419-2-420

?ELVR offset, 2-419-2-420

.ENABLE assembly language statement, 1-4

enabling
access to all devices, 2-83
break file, 2-94
BSC line, 2-669
class scheduling, 2-42
LEF mode, 2-351
multitask scheduling, 2-102
terminal interrupt, 2-404

?ENBFL offset, 2-95-2-96

?ENBLN value, 2-96

?ENBRK system call, 2-94-2-96

encryption, password, 2-554, 2-590

?ENCST value, 2-96

end-of-volume, forcing on labeled tape, 2-148

?ENDIR value, 2-96

?ENESH offset, 2-96

?ENET offset, 2-406-2-407, 2-411,
2-606-2-607

?ENEUS offset, 2-96

?ENFNP offset, 2-96

?ENID value, 2-672

?ENOV offset, 2-527

?ENOV value, 2-598

?ENPRE value, 2-96

ENQ character, 2-675

?ENQUE system call, 2-98

?ENR4-?ENR7 values, 2-95-2-96

?ENSH value, 2-96

?ENSSH offset, 2-96

?ENSUS offset, 2-96

entering
event in the system log file, 2-360
privilege state, 2-744
Superprocess mode, 2-735
Superuser mode, 2-737

entry
directory, 2-207
link, 2-202

?ENUS value, 2-96

environment, restoring the previous, 2-778

EOT character, 2-675

?EPIP offset, 2-406-2-407, 2-411

?ERBA offset, 2-684

?ERCH offset, 2-684

?ERCS offset, 2-684

?ERLTH value, 2-684

086-000195 updates
093-000542 licensed Material- Property 01 Data General Corporation Index-9

ERMES file, 2-99-2-102

?ERMSG system call, 2-99-2-102

ERPFL pipe is full, 2-417

error
codes, and text, 2-683
message file, 2-99
reporting, 1-9
return, 1-2
statistics, BSC, 2-686

error codes, 1-9

?ERSCH system call, 2-102

?ESBB value, 2-614

?ESBE value, 2-614

escape key, characteristics, and device types,
2-200

?ESCP value, 2-613

?ESCR offset, 2-606, 2-612

?ESDD value, 2-613

?ESED value, 2-613

?ESEP offset, 2-606, 2-612

?ESFC offset, 2-606, 2-612

?ESFF system call, 2-103, 2-213

?ESGT value, 2-614

?ESLN value, 2-606, 2-612

?ESNE value, 2-614

?ESNR value, 2-613

?ESPE value, 2-614

?ESRD value, 2-613

?ESRP value, 2-614

ESS, 2-284

?ESSE value, 2-613

ETB character, 2-675

?ETBB value, 2-716, 2-722

?ETER offset, 2-406-2-407, 2-411

?ETFL offset, 2-606

?ETFT offset, 2-407, 2-606

?ETLL offset, 2-606

?ETLT offset, 2-407, 2-411, 2-606

?ETMX value, 2-406-2-408

?ETSL offset, 2-606

?ETSN offset, 2-406-2-407, 2-411

?ETSP offset, 2-407, 2-605

ETX character, 2-675

?ETXB value, 2-716, 2-722

event codes
in system log file, B-1
special, B-1
standard, B-1

?EXAC value, 2-781

examining
class scheduling, 2-42
default access control list, 2-77
execute-protection status, 2-141-2-142
privilege state, 2-744
Superprocess mode, 2-735
Superuser mode, 2-737

exception code, 1-2

exclusion bit map packet, 2-743

EXEC (CONTROL @EXEC) family of
commands, 2-438

?EXEC functions
backing up your files, 2-110
batch processing, 2-112
changing queuing parameters, 2-133
dismounting a unit (extended request), 2-132
dismounting unlabeled and labeled tapes,

2-109
holding, unholding, canceling queue requests

(AOSNS), 2-127
IPC print notification, 2-122
mounting unlabeled and labeled tapes,

2-106-2-112
obtaining

EXEC status information, 2-129
extended status information, 2-130
QDISPLAY information, 2-138
queue names, 2-136

queuing a file entry, 2-112
spooling output, 2-112
submitting a job to a MOUNT queue, 2-131
summary of, 2-104

?EXEC system call, 2-104, 2-438

EXEC utility program, 2-104

EXECUTE command, 2-255

execute-protection status, 2-141-2-142

execution
path, task, 2-278
program, 1-8

exiting
from an interrupt service routine, 2-314
from an overlay, 2-510

?EXPO system call, 2-141

extended
characteristics, 2-190

Index-10 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

device characteristics, 2-679
state save area, 2-284
status information about a process, 2-900

?EXTG pseudo-operation, A-17

F
F77BlliLD_SYM program, A-40

?FAAB value, 2-245-2-246

?FACA value, 2-78, 2-210, 2-246, 2-520

?FACE value, 2-78, 2-210, 2-246, 2-520

?FACO value, 2-78, 2-210, 2-246, 2-520

?FACR value, 2-78, 2-210, 2-246, 2-520

factors, bias, 2-176, 2-655

?FACW value, 2-78, 2-210, 2-246, 2-520

?FAEA value, 2-169

?FAEB value, 2-245-2-246

?FAOB value, 2-245-2-246

?FARA value, 2-169

?FARB value, 2-245-2-246

fast user device, 2-149

father process, getting the PID of a, 2-79

?FAWB value, 2-245-2-246

?FBEX offset, 2-145, 2-147

?FBSTF offset, 2-145

?FCPC offset, 2-145, 2-146, 2-147

?FCPD file type, 2-61, 2-64-2-66, 2-415,
2-852

?FCPD value, 2-167

FCU, 2-600-2-601

?FDAY system call, 2-143

?FDBAoffset, 2-145, 2-147

?FDBFZ offset, 2-146

?FDBL offset, 2-145, 2-147

?FDIR file type, 2-61, 2-64-2-66, 2-415, 2-852

?FDIR value, example of, 1-6-1-7

?FDLE value, 2-169

?FEDFUNC system call, 2-144-2-158

?FEOV system call, 2-148

?FEXPR value, 2-147

FF,2-663

?FFCC file type, 2-61, 2-852

?FFLAG offset, 2-145-2-147

?FFLPT value, 2-147

?FGLT file type, 2-61, 2-852

?FIDEF system call, 2-149-2-156, 2-794,
2-803

warnings about, 2-156

field translation, 2-616

FILCREATE.SR sample program, A-2,
A-I9-A-21

file
attribute, permanent, 2-653
block I/O, opening a, 2-210
changing group ACL, 2-240
closing a, 2-38, 2-183
complete pathname of generic, 2-239
creating a, 2-60,2-405
creation and management system calls

(names 00, 1-6
creation options, 2-413
deleting a, 2-86
descriptor information, 2-780
directory, getting status of, 2-168-2-169
dump, 2-381
error message, 2-99
flushing to disk, 2-103
generic, 2-206
getting ACL, 2-77, 2-174, 2-245, 2-650
getting group ACL, 2-882
input/output system calls (names 00, 2-7-2-8
IPC, 2-211,2-213,2-288
IPC, getting status of, 2-166
opening a, 2-405
opening for shared-access, 2-699
other types, getting status of, 2-168
pointer

getting the position, 2-220
positioning the, 2-610, 2-707

protected, 2-519
protected shared, 2-701
recreating a, 2-629
renaming a, 2-632
shared, 2-659, 2-699

access, opening a, 2-405
flushing to disk, 2-103

specifications word, 2-412
status information, getting, 2-163
symbol table, 2-261

file (continued)
system log, 2-739
truncating a, 2-259, 2-773
unit, getting status of, 2-165

File Editor functions
change radix, 2-144
delete a temporary symbol, 2-147
disassemble an instruction, 2-146

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation Index-11

evaluate a FED string, 2-145
examining dump file, 2-381
insert a temporary symbol, 2-146
interfacing to, 2-144
open symbol table file, 2-145

filename
directory, 2-207
program CPR), returning, 2-640
templates, 2-208

FILESTATUS command, 2-214

?FINA offset, 2-146

?FINST value, 2-147

?FIPC file type, 2-61, 2-63, 2-66-2-67, 2-415,
2-852

?FIPC value, 2-211

?FIXMT system call, 2-157-2-158

?FLCC file type, 2-61, 2-852

?FLCHN offset, 2-161, 2-173

?FLCR value, 2-145

?FLDIS value, 2-146

?FLDU value, 2-167

?FLEFS value, 2-145

?FLEX offset, 2-145,2-147

?FLLEN value, 2-161, 2-173

?FLNK file type, 2-61, 2-852

floating-point status register, 2-285

floating-point unit, initializing the, 2-285

?FLOCK system call, 2-159-2-160

?FLOG file type, 2-741

?FLOST value, 2-145

flow control, hardware, 2-197
output, 2-197

?FLPID offset, 2-161, 2-173

?FLREV offset, 2-161, 2-173

?FLRSW offset, 2-161, 2-173

?FLSEL offset, 2-161, 2-173

?FLSYM value, 2-146, 2-147

?FLTY offset, 2-161, 2-173

?FLUSH system call, 2-162

flushing
file descriptor information, 2-780
shared file memory pages to disk, 2-103
shared page to disk, 2-162

?FMDB value, 2-169

?FMEFS value, 2-147

?FNCC file type, 2-61, 2-852

?FNIR offset, 2-145

?FOCC file type, 2-61, 2-852

forcing, end-of-volume on labeled tape, 2-148

form feed character, 2-663

Format conventions, xi

Format conventions, v

Forms Control Utility program, 2-600-2-601

FORTRAN 77
language, 1-10-1-11
operating system interface sample program

set, A-2-A-3, A-39
sample program set, iv, x

?FPIP file type, 2-61, 2-852

?FPRG file type, 2-61, 2-852

?FPRM value, 2-169

?FPRV file type, 2-61, 2-415, 2-852

?FQUE file type, 2-61, 2-852

frame information, stack, 2-807

frame pointer, 1-2

?FRCR value, 2-144

?FRDIS value, 2-144, 2-146

?FRDTS value, 2-144, 2-147

?FREFS value, 2-144, 2-145, 2-147

frequency of the system clock, 2-201
getting the, 2-201

?FRESD offset, 2-145, 2-147

?FRESS offset, 2-145

?FRFNC offset, 2-145-2-147

?FRITS value, 2-144, 2-146

?FROST value, 2-144-2-145

?FRRR offset, 2-146

?FSDF file type, 2-61, 2-852

?FSHB value, 2-169

?FSNL offset, 2-146, 2-147

?FSNM offset, 2-146, 2-147

?FSPR file type, 2-61, 2-63, 2-66-2-67, 2-852

?FSTAT system call, 2-163-2-164, 2-214

?FSTF file type, 2-61, 2-852

?FSVAL offset, 2-146, 2-147

?FSVLL offset, 2-146,2-147

?FTCK value, 2-161

Index-12 Licensed Material - Property of ~ata General Corporation
086-000195 updates

093-000542

?FTER value, 2-161

?FTEX value, 2-161

?FTOD system call, 2-171

?FTPN value, 2-161

?FTSH value, 2-161

?FTXT file type, 2-61, 2-415, 2-852

?FUDA value, 2-169

?FUDF file type, 2-61, 2-410, 2-415, 2-852

?FULA value, 2-173

full process name, 2-265, 2-521

?FUNLOCK system call, 2-172-2-173

?FUNX file type, 2-61, 2-852

?FUPF file type, 2-61, 2-852

?FVVFloffset,2-146

?FWFL value, 2-161

G
?GACL system call, 2-174

?GARG value, 2-252, 2-254

GATE.ARRAY.SR sample program, A-2, A-17

?GBIAS system call, 2-176

?GCFC value, 2-255

?GCHR system call, 2-335
See also The ?GECHR system call

?GCLOSE system call, 2-183-2-184, 2-214,
2-216,2-412

?GCMD value, 2-252, 2-254, 2-255

?GCNT value, 2-252, 2-254

?GCPCN offset, 2-71, 2-87, 2-175, 2-632.2,
2-652,2-654

?GCPFW offset, 2-71, 2-87, 2-175, 2-632.2,
2-652,2-654

?GCPLTvalue, 2-71, 2-87, 2-175, 2-632.2,
2-652,2-654

?GCPN system call, 2-185

?GCRB system call, 2-186

?GDAY system call, 2-187

?GDLC value, 2-253-2-255

?GDLM system call, 2-188-2-189

?GECHR system call, 2-190-2-192

generic file, 2-206
complete pathname of, 2-239

get/set class ID code, 2-36-2-56

?GFCF value, 2-252

?GHRZ system call, 2-201

?GLINK system call, 2-202

?GLIST system call, 2-203

global port number
and PID association, 2-219
local port number with, 2-308
modifying a ring field within a, 2-289
returning a, 2-288
ring field with, 2-308
translate local to global equivalent, 2-770

?GMEM system call, 2-204

?GMES value, 2-252, 2-254, 2-255

GMT, 2-247, 2-400

?GNAME system call, 2-205, 2-239

?GNFN system call, 1-1,2-207-2-209
example of, A-26

?GNUM offset, 2-251, 2-253, 2-255

?GOPEN system call, 2-168,2-210-2-216
example of, A-26

?GPID system call, 2-217

?GPORT system call, 2-219

?GPOS system call, 2-220-2-221

?GPRNM system call, 2-222

?GRAPH_CLOSE_PIXELMAP function, 2-224,
2-229

?GRAPH_CRE ... offsets and values, 2-228

?GRAPH_CREATE_MEMORY_PIXELMAP
function, 2-224-2-225, 2-227

?GRAPH_GET_DRAW _ORIGIN function,
2-224

?GRAPH_MAP _00. offsets and values, 2-233

?GRAPH_MAP _PIXELMAP function, 2-224,
2-233

?GRAPH_OPEN ... offsets and values,
2-226-2-258

?GRAPH_OPEN_ WINDOW _PlXELMAP
function, 2-224, 2-226

?GRAPH_PlXELMAP _STATUS function,
2·-224, 2-229

?GRAPH_PIXSTAT ... offsets and values,
2-229-2-258

?GRAPH_PKT ... offsets and values, 2-223,
2-225,2-228-2-229,2-234

?GRAPH_RDPAL ... offsets and values, 2-236

?GRAPH_READ_PALETTE function, 2-224,
2-235-2-236

086-000195 updates
093--000542 Licensed Material- Property of Data General Corporation Index-13

?GRAPH_RECT_STATE_DISABLE value,
2-230,2-232

?GRAPH_RECT_STATE_ENABLE value,
2-230,2-232

?GRAPH_SET_CLIP ... offsets and values,
2-231-2-258

?GRAPH_SET _CLIP _RECTANGLE function,
2-224,2-230

?GRAPH_SET_DRAW _ORIGIN function, 2-224

?GRAPH_UNMAP _PIXELMAP function,
2-224,2-232,2-234

?GRAPH_ WRITE_PALETTE function, 2-224,
2-234

?GRAPH_ WRPAL ... offsets and values, 2-235

graphics channel, output, 2-225

?GRAPHICS functions
closing a pixel map, 2-229
creating a pixel map in memory, 2-227
getting the coordinates of the draw origin,

2-237-2-238
getting the status of a pixel map, 2-229
mapping a pixel map into a program's address

space, 2-233
opening a graphics window's pixel map,

2-225-2-226
reading from a palette, 2-235-2-236
setting the clip rectangle, 2-230
setting the draw origin, 2-236
transferring data between pixel maps and

files, 2-232-2-233
unmapping a pixel map from a program's

address space, 2-234-2-235
writing to a palette, 2-234

graphics output channel, 2-225

?GRAPHICS system call, 2-191, 2-223-2-238
example of, A-58

graphics window, 2-226

?GRAPHICS_GET_DRAW _ORIGIN function,
2-237-2-238

?GRAPHICS_GET_ORG ... offsets and values,
2-238

GRAPIDCS_SAMPLE.SR sample program,
A-2, A-56-A-60

?GRAPHICS_SET_DRAW _ORIGIN function,
2-236

?GRAPHICS_SET_ORG ... offsets and values,
2-237

?GRCH offset, 2-649

Green wich Mean Time, 2-400

?GREQ offset, 2-251, 2-252

?GRES offset, 2-251, 2-252, 2-254, 2-255

?GRIH offset, 2-649

?GRLTH value, 2-649

?GRNAME system call, 2-239

group
access control list, 2-548, 2-883-2-885
buffe~2-241-2-242
list, 2-884
name defined, 2-548

?GROUP system call, 2-240, 2-548

?GROUP _ ... offsets and values, 2-241-2-242

GRP MASM macro, 2-101

?GRPH offset, 2-649

?GRRH offset, 2-649

?GSHPT system call, 2-243

?GSID system call, 2-244

?GSWoffset,2-251,2-252,2-255

?GSWS value, 2-253-2-255

?GTACP system call, 2-245-2-246

?GTIME system call, 2-247-2-249

?GTMES system call, 2-250, 2-543
examples of, A-26, A-33, A-37

?GTNAM system call, 2-256-2-257

?GTOD system call, 2-258

?GTRUNCATE system call, 2-213, 2-259
?GTSVL system call, 2-261-2-262

?GTSW value, 2-252, 2-253-2-255

?GUHBP offset, 2-264

?GUHFL offset, 2-264

?GUHFN offset, 2-264

?GUIDD offset, 2-264

?GUHLN offset, 2-264

?GUHLR offset, 2-264

?GUHPO value, 2-264

?GUHPI system call, 2-263

?GUID value, 2-264

?GUNM system call, 2-265

?GVPID system call, 2-266

H
handler service routine

device interrupt, 2-275

Index-14 Licensed Material- Property 01 Data General Corporation
086-000195 updates

093--000542

fast device interrupt, 2-156

?HAPH array offset, 2-287, 2-812

?HAPL array offset, 2-287, 2-812

?HARAY array offset, 2-287, 2-812

hardware processor identification, unique,
2-263

HEAR.SR sample program, A-I, A-3-A-4

hertz, definition of, 2-645

?IllBUF offset, 2-287

?IllEND offset, 2-287

high-level language interface, 1-1, 1-10-1-11

high-level language sample program set, iv, x

high-order bits, 1-5

?IllST offset, 2-287

histogram
killing a, 2-329
multiprocessor, 2-393
starting a, 2-286, 2-393, 2-810
uniprocesso~2-393

?IllWDS offset, 2-287

?HNAME system call, 2-267-2-268

IHOFC switch, 2-180

host
ID, 2-168, 2-217, 2-267
local, 2-28
remote, 2-28, 2-639

hostname, 2-267

hotspot, cursor, 2-573

?HPRH array offset, 2-287, 2-812

?HPRL array offset, 2-287, 2-812

?HRDFLC hardware flow control offset, 2-197

?HRDFLC value, 2-180

?HSBH array offset, 2-287, 2-812

?HSBL array offset, 2-287, 2-812

?HSIH array offset, 2-287, 2-812

?HSIL array offset, 2-287, 2-812

?HTTH array offset, 2-287, 2-812

?HTTL array offset, 2-287, 2-812

?HWBUF offset, 2-811

?HWEND offset, 2-811

?HWLTH value, 2-287, 2-811

?HWST offset, 2-811

?HWWDS offset, 2-811

I
I/O

and MCA protocol, 2-527
physical block, 2-525, 2-592

1/0
and new file system, 2-210
block, 2-19, 2-596
conditional, 2-220, 2-707
disk block, 2-598
file, 2-220, 2-707
MCA block, 2-599
modified sector, 2-216
physical block, 2-210
reading and writing record, 2-604
tape block, 2-599
writing block or record, 2-844

?IBAD offset, 2-39, 2-221, 2-407, 2-410,
2-605,2-609

?IBIN value, 2-408, 2-608, 2-611

?IBLT value, 2-406, 2-407, 2-606, 2-608

?ICH offset, 2-39, 2-221, 2-406-2-408,
2-605-2-606

?ICRF value, 2-408, 2-412,2-608

ID
host, 2-168, 2-217,2-267
pixel map, 2-226

?ID8 value, 2-410,2-417

?ID16 value, 2-410, 2-417

?ID5 value, 2-410, 2-417

?ID6 value, 2-410, 2-417

?ID62 value, 2-410, 2-417

?ID7 value, 2-417

?IDAM value, 2-410, 2-417

?IDEF system call, 2-269-2-272

?IDEL offset, 2-39, 2-221, 2-406, 2-407, 2-411,
2-416,2-605,2-608,2-610

identification, unique processor hardware,
2-263

identification bloc, disk, 2-291

identifier
checking volume, 2-35
host, 2-267
system, 2-244, 2-719
unique task, 2-688, 2-690, 2-777

?IDGOTO system call, 2-278

086-000195 updates
093--000542 Licensed Material- Property 01 Data General Corporation Index-15

?lDKIL system call, 2-279
example of, A-29

?lDPH offset, 2-306, 2-310, 2-311

?lDPN offset, 2-296

?lDPRI system call, 2-280

?lDRDY system call, 2-281

?lDSTAT system call, 2-282

?lDSUS system call, 2-283

?lESS system call, 2-284

?lEXO value, 2-408, 2-412

?lFNBK value, 2-296, 2-311

?lFNP offset, 2-39, 2-221, 2-407,2-411,2-605,
2-610

?lFNSP value, 2-306, 2-311

?lFOP value, 2-609

?lFPR value, 2-296, 2-311

?lFPU system call, 2-285

?lFRFM value, 2-296, 2-311

?lFRING value, 2-296, 2-311

?lFSOV value, 2-296, 2-311

?lFSTM value, 2-306, 2-311

?lIDST system call, 2-286

?IIPC value, 2-409, 2-611

?lLKUP system call, 2-288
examples of, A-4, A-7

?lLTH offset, 2-296, 2-306, 2-310, 2-311

?lMERGE system call, 2-289

?lMFF value, 2-409

?lMHN value, 2-609

?lMIO offset, 2-527

?IMIO value, 2-598

?lMNH value, 2-409

?lMP2 value, 2-406, 2-409, 2-609

implicit system call, A-39

?lMRS offset, 2-39, 2-68, 2-221, 2-407, 2-410,
2-605,2-609

for pipe size, 2-416

?lMSG system call, 2-290

index levels, 2-64

indicating, prior rescheduling state, 2-88

?lNID value, 2-436

?lNIT system call, 2-291,2-887

initial IPC message, 2-250

INITIALIZE CLI command, 2-292
initializing

extended state save area, 2-284
floating-point unit, 2-285
job processor, 2-317
logical disk, 2-291, 2-630
logical disk (extended), 2-886

initiating, a task, 2-747
initiation queue, task, 2-294

INRING.SR sample program, A-2, A-I6-A-18
intelligent

asynchronous controller, 2-17, 2-41, 2-271,
2-405,2-534,2-604

controller, 2-190
?INTEO value, 2-411
interface

assembly language, 1-5-1-9
high-level language, 1-1
operator, 2-424

internal time, returning the OS-format, 2-313

interprocess communications system calls
(names oD, 2-10

interprocess signaling mechanism, 2-688,
2-690,2-691,2-845

interrupt
control-character terminal, 2-333, 2-334
disabling terminal, 2-403
enabling terminal, 2-404
handler service routine

device, 2-275
fast device, 2-156

sequences, keyboard, 2-332
service message, 2-290
service routine, 2-151, 2-271

exiting from an, 2-314
transmitting a message from an, 2-157,

2-315
task, 2-278

terminal, 2-293, 2-335
intertask message

receiving an, 2-627
receiving without waiting, 2-628
transmitting an, 2-898, 2-899

?INTWT system call, 2-293
IOC device, 2-151, 2-271

?IOPH offset, 2-296
?IOPN offset, 2-306, 2-310, 2-311
?IOSZ value, 2-39, 2-221, 2-406, 2-407, 2-606,

2-608
IPC

file, 2-211,2-213,2-288
getting status of, 2-166

Index-16 Licensed Material - Property 0/ Data General Corporation
086-000195 updates

093-000542

message, 2-219, 2-289
CLI-format, 2-307
receiving an, 2-295
sending an, 2-305
sending and then receiving an, 2-309
sending via ?PROC, 2-543

?IPKL value, 2-406, 2-408, 2-608

?IPLTH value, 2-296, 2-306

?IPRLTH value, 2-310

?IPST value, 2-608, 2-610, 2-707-2-708

?IPTR offset, 2-296, 2-300, 2-306, 2-310,
2-311

?IQTSK system call, 2-294

?IRCL offset, 2-39, 2-221, 2-407,2-411,2-605,
2-609,2-707-2-708

?IREC system call, 1-2, 2-295-2-297
example of, A-4

?IRES offset, 2-39, 2-221, 2-407, 2-410 2-605
2-609 ' ,

?IRLR offset, 2-39, 2-221, 2-407, 2-411, 2-605
2-610 '

?IRLT offset, 2-310, 2-311

?IRMV system call, 2-151, 2-276, 2-304.9

?IRNH offset, 2-39, 2-221, 2-407, 2-411,
2-605,2-610,2-707-2-708

?IRNW offset, 2-39,2-221,2-407,2-411,
2-605,2-610

?IRPT offset, 2-310, 2-311

?IRSVoffset, 2-310, 2-311

?IS.R system call, 2-309-2-312

ISC device, 2-271

?ISEND system call, 2-305-2-306
example of, A-7

?ISFL offset, 2-296, 2-306, 2-310, 2-311,
2-543

?ISPLIT system call, 2-297, 2-308

?ISTI offset, 2-39, 2-221,2-406-2-410,2-412,
2-413,2-605,2-608,2-609,2-707

?ISTO offset, 2-39, 2-221, 2-406, 2-407, 2-409,
2-410,2-605,2-609

ISYS FORTRAN 77 function, 1-10

ITB character, 2-676

?ITIME system call, 2-313

?IUFL offset, 2-73, 2-296, 2-297-2-304.8,
2-306,2-310,2-311,2-543

example of, 2-297

?IXIT system call, 2-151, 2-276, 2-277, 2-314

?IXMT system call, 1-2, 2-151, 2-315

J
job processor

getting the status of a, 2-324
initializing a, 2-317
moving to a new logical processor, 2-320
releasing a, 2-322

?JPI_PKT ... offsets and values, 2-318-2-319

?JPID_MAX value, 2-319, 2-321, 2-323

?JPID_MIN value, 2-319, 2-321, 2-323

?JPINIT system call, 2-317-2-336

JPLCS instruction, 2-319

?JPM_PKT ... offsets and values, 2-321

?JPMOV system call, 2-320

? JPR_PKT ... offsets and values, 2-323

?JPREL system call, 2-322-2-323

?JPS_GEN value, 2-325

?JPS_GEN ... offsets and values, 2-326

?JPS_PKT ... offsets and values, 2-325

?JPS_SPEC value, 2-325

?JPS_SPEC ... offsets and values, 2-327

?JPSTAT system call, 2-324

JPSTATUS instruction, 2-324

086-000195 updates
093-000542 Licensed Material - Property of Data General Corporation Index-17

K
Kanji character sets, 2-192

and VT100, 2-192
Japanese, 2-192
Taiwanese, 2-192

?KCALL system call, 2-328

keyboard interrupt sequences, 2-332

?KHIST system call, 2-329

?KILAD system call, 2-330

kill-processing routine, 2-279, 2-330

?KILL system call, 2-331
example of, A-33

killing
histogram, 2-329
task, 2-279, 2-331, 2-510
tasks of a specified priority, 2-533

?KINTR system call, 2-332

?KIOFF system call, 2-333

?KION system call, 2-334

?KWAIT system call, 2-335

L
?LABEL system call, 2-336

labeled
diskette, 2-336
magnetic tape, 2-35, 2-38, 2-336, 2-418

forcing end-of-volume, 2-148
trailer, 2-38

LAC device, 2-41

language
assembly, 1-1
interface, high-level, 1-1, 1-10-1-11

Language Front-end Processor, options, 2-199

?LB8 value, 2-337, 2-338

?LBI6 value, 2-338

?LB5 value, 2-338

?LB6 value, 2-338

?LB62 value, 2-338

?LB7 value, 2-338

?LBAC offset, 2-337-2-338

?LBAM value, 2-338

?LBDV offset, 2-337-2-338

?LBFG offset, 2-337-2-338

?LBIM value, 2-338

?LBLN value, 2-337

?LBMF value, 2-338

?LBMP value, 2-338

?LBMR value, 2-338

?LBMS value, 2-338

?LBOI offset, 2-337-2-338

?LBSC value, 2-338

?LBST offset, 2-337-2-338

?LBUV offset, 2-337-2-338

?LBVD offset, 2-337-2-338

LCALL instruction, A-14

?LDMA event code, 2-361

LDUimages
initializing, 2-340
mirroring and synchronizing, 2-385

?LDU _IMAGE_HARDWARE_MIRRORED
value, 2-345

?LDU_IMAGE_REMOVED value, 2-344

?LDU _MIRROR_BEING_SYNCHRONIZED
value, 2-344

?LDU _MIRRORED value, 2-344

?LDU _PKT ... offsets and values, 2-343-2-347

?LDU_PRIMARY_IMAGE value, 2-345

?LDUINFO system call, 2-340-2-350

?LDUINFO_". offsets and values, 2-341,
2-345-2-346

least significant bit, 1-5

leaving
privilege state, 2-744
Superprocess mode, 2-735
Superuser mode, 2-737

LEF mode, 2-81, 2-83, 2-350
disabling, 2-350
enabling, 2-351
status, returning, 2-352

?LEFD system call, 2-350

?LEFE system call, 2-351

?LEFS system call, 2-352

?LFOP value, 2-357

line
break, 2-40
BSC

disabling a, 2-661
receiving information over a, 2-709
sending information over a, 2-720

printer, data channel, 2-70, 2-600-2-602

Index-18 licensed Material- Property 0/ Data General Corporation
086-000195 updates

093-000542

link entry, 2-202

Link utility program, 1-8

listing
directory entries, 2-207
shared partition size, 2-243
unshared memory parameters, 2-383

?LMAP system call, 2-353

?LMAX event code, 2-361

LOAD CLI command, 2-110

LOAD_II CLI command, 2-110

loading
overlay, 2-511
program file, 2-637

?LOC_ ... offsets and values, 2-355-2-356

local
host, process or queue name, 2-28
port number, 2-219, 2-770

locality
process, 2-514
scheduling matrix, class, 2-51
user, changing, 2-354

?LOCALITY system call, 2-354

locating, process name, 2-28

locking, an object, 2-159

log file
?GROUP entry, 2-241
system, 2-360,2-739
system call, 2-357

?LOGCALLS system call, 2-357-2-359

LOGCALLS utility program, 2-358

?LOGDREC value, 2-359

?LOGEV system call, 2-360

?LOGFI6U value, 2-358

logging, system calls, 2-357

?LOGHREC value, 2-358

logical
address, 2-781
address space, mapping a device into, 2-373
disk

information, returning, 2-340
initialized, 2-340, 2-630
initializing a, 2-291
initializing a (extended), 2-886
unit image, synchronized, 2-887

processor
class assignments, 2-362
creating a, 2-365
deleting a, 2-367

getting the status of a, 2-369
moving a job processor to, 2-320

shared memory, 2-243

low-order bits, 1-5

lower ring
loading and stopping, 2-642
mapping, 2-353

?LPC_PKT ... offsets and values, 2-366

?LPCL_PKT ... offsets and values, 2-363-2-364

?LPCLASS system call, 2-362-2-364

?LPCREA system call, 2-365-2-366

?LPD_PKT ... offsets and values, 2-368

?LPDELE system call, 2-367-2-368

?LPID_MAX value, 2-319, 2-321, 2-365

?LPID_MIN value, 2-319, 2-321, 2-365

?LPS_FUNC_MAX value, 2-370

?LPS_FUNC_MIN value, 2-370

?LPS_GEN ... offsets and values, 2-370

?LPS_PKT ... offsets and values, 2-370

?LPS_SPEC ... offsets and values, 2-370-2-372

?LPSTAT system call, 2-369-2-370

?LSMI event code, 2-361, 2-742

?LSTART value, 2-357

?LTSF event code, 2-742

?LUMAX value, 2-742

?LUMI event code, 2-361

M
Macroassembler program, iv, 1-8, x

magnetic tape, 2-417
data compression, 2-215
densities

absolute, 2-212
relative, 2-212

labeled,2-35,2-336,2-418
unit, Model 6352, 2-212, 2-214, 2-338, 2-412

magnetic tape drives, and native mode, 2-215

maintaining, and creating an operator
interface, 2-424

manager, queued task, 2-294

manipulating
pixel maps, 2-223
the system log file, 2-739
windows, 2-813

map
data channel, 2-729

086-000195 updates
093-000542 Licensed Material - Property 01 Data General Corporation Index-19

definition table, 2-153-2-154, 2-272, 2-731
pixel, 2-223

?MAPDV system call, 2-373-2-375

?MAPDV_PKT_PKTID value, 2-374, 2-376

mapping
device into logical address space, 2-373
lower ring, 2-353

mask, bit, 1-4

MASM, 1-5-1-9

MASM.PR program, 1-8

MASM.PS file, 1-8

MASM_32CHAR.PS file, 1-9, A-54, A-74

?MAXIMAGES value, 2-895

?MBAH offset, 2-378, 2-380

?MBBC offset, 2-378, 2-380

?MBCH offset, 2-378, 2-380

?MBFC system call, 2-377-2-378

?MBID offset, 2-378,2-380

?MBLTH value, 2-378, 2-380

?MBNHR value, 2-390

?MBNLD value, 2-390, 2-391

?MBOOP value, 2-390

?MBTC system call, 2-379-2-380

?MBTRP value, 2-390

?MBWAIT value, 2-390

MCA
block 1/0, 2-599
unit, 2-210

MCA protocol, with 1/0, 2-527

?MCOBIT value, 2-56

MCP1 device, 2-41

?MCPID value, 2-56

?MCRNG value, 2-56

?MDAC offset, 2-375, 2-376

?MDAL offset, 2-375, 2-376

?MDCL offset, 2-374, 2-375, 2-376

?MDDL offset, 2-374, 2-375, 2-376

?MDDT offset, 2-374, 2-375, 2-376

?MDID offset, 2-375, 2-376

?MDIL offset, 2-374, 2-375, 2-376

?MDLA offset, 2-374, 2-375, 2-376

?MDLL offset, 2-375, 2-376

?MDNO-?MDN1 offsets, 2-374-2-376

?MDNL offset, 2-375, 2-376

?MDNP offset, 2-375, 2-376

?MDOP offset, 2-374,2-375, 2-376

?MDOX offset, 2-375, 2-376

?MDPO value, 2-375

?MDPC offset, 2-374, 2-375, 2-376

?MDPK offset, 2-374, 2-375, 2-376

?MDPL offset, 2-374, 2-375, 2-376

?MDPV value, 2-373

?MDRE offset, 2-375, 2-376

?MDRL offset, 2-374, 2-375, 2-376

?MDRP offset, 2-374, 2-375, 2-376

?MDRT offset, 2-374, 2-375, 2-376

?MDUMP system call, 2-381-2-382,2-471

?MEM system call, 2-383

?MEMI system call, 2-384

memory
address, 1-1
dump, 2-471
image, dumping a, 2-381
logical shared, 2-243
management system calls (names of), 2-3
mapped device, 2-373-2-374
pages

changing (unshared), 2-384
flushing (shared file) to disk, 2-103
undedicated, 2-204

parameters (unshared), listing, 2-383
read/write access to, 2-782

meridian, prime, 2-247, 2-400

message
CLI, 2-250
error file, 2-99
initial IPC, 2-250
IPC, 2-219, 2-295, 2-305
task, 2-771
terminal, 2-681

?MFBRK value, 2-390

?MFSYM value, 2-390

microcode for a job processor, 2-318

?MIFUN offset, 2-389-2-390

?MII 1 and ?MII2 values, 2-390

?MIID offset, 2-389, 2-391

?MILD offset, 2-389, 2-391

?MIOP offset, 2-389-2-390

?MIPHI offset, 2-389-2-390

Index-20 Lioensed Material - Property of Data General Corporation
086-000195 updates

093-000542

?MIPLO offset, 2-389-2-390

?MIPUL offset, 2-389, 2-391

?MIR1-?MIR4 offsets, 2-389-2-391

?MIRES offset, 2-389-2-390

?MIRROR system call, 2-385-2-389

?MIRROR_ ... offsets and values, 2-386-2-388

mirroring, LDU images, 2-385, 2-886-2-897

?MMAP value, 2-374, 2-376

mode, binary, 2-40

Model 6236-6240 disks, 2-25

Model 6352 magnetic tape unit, 2-212, 2-214,
2-338,2-412

modem
carrier detect, 2-198
connection, timing, 2-199
hardware input flow control, 2-198
options, 2-198
user access, 2-198

modem support, 2-180

modified sector 1/0,2-20,2-216

modifying, ring field within a global port
number, 2-289

month,current,2-187

most significant bit, 1-5

MOUNT command, 2-210

mouse movement, 2-191

moving
bytes from a customer buffer, 2-377
bytes to a customer buffer, 2-379
job processor to a new logical processor, 2-320

?MPH_ ... offsets and values, 2-393-2-398

?MPHIST system call, 2-393-2-395

?MPHIST_ ... offsets, 2-396-2-398

MRC device routes
current, 2-58
diverted, 2-58
primary, 2-58
secondary, 2-58

?MRDO value, 2-374, 2-376

multipoint control station, 2-715

multipoint tributary station, 2-716

multiprocessor histogram, 2-393

multiprocessor management system calls
(names of), 2-11, 2-13

multitask scheduling, enabling, 2-102

multitasking system calls (names of), 2-9-2-10

?MXFN value, 2-345, 2-895

?MXHN value, 2-267

?MXLPN value, 2-63

?MXPL value, 2-202, 2-203, 2-641, 2-694,
2-695

?MXUN value, 2-265, 2-908

?MYTID system call, 2-399
example of, A-29

N
NAK character, 2-676

name, full process, 2-265, 2-521

National Bureau of Standards, 2-590

NBS, 2-590

new file system, 2-205

New Line character, 2-663

NEWTASK.SR sample program, A-2,
A-29-A-31

?NFKY offset, 2-208

?NFLN value, 2-208

?NFNM offset, 2-208

?NFRS offset, 2-208

?NFTP offset, 2-208

NL,2-663

normal return, 1-2

?NPAL offset, 2-218

?NPAP offset, 2-218

?NPFW offset, 2-218

?NPKEY offset, 2-218

?NPLTH value, 2-218

?NPNEN offset, 2-218

?NPNUM offset, 2-218

?NPPR offset, 2-218

?NPRS1 offset, 2-218

?NTIME system call, 2-400

?NTRN value, 2-722

null character, 1-10, 2-663

number
channel, 2-226,2-569
global port, 2-219, 2-288, 2-289, 2-770
local port, 2-219, 2-770
window ID, 2-226, 2-569

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation Index-21

number specification
decimal, v, xi
octal, v, xi

o
?OBBQ value, 2-426

?OBCD value, 2-426

?OBCO value, 2-426

?OBGM value, 2-426

?OBHD value, 2-426

obituary message, 2-298

object
locking an, 2-159
unlocking an, 2-172

?OBLD value, 2-426

?OBLT value, 2-426

?OBMI value, 2-426

?OBPR value, 2-426

?OBQU value, 2-426

?OBUD value, 2-426

?OBUT value, 2-426

?OCIL offset, 2-432-2-433

?OCO L offset, 2-432-2-433

?OCRl-?OCR9 offsets, 2-432-2-433

?OCRD offset, 2-432-2-433

octal number specification, v, xi

?ODBS value, 2-215

?ODBY offset, 2-215, 2-216

?ODFI offset, 2-211, 2-215, 2-216

?ODHD offset, 2-215, 2-216

?ODHS value, 2-215

?ODIS system call, 2-403

?ODMB value, 2-215

?ODND value, 2-215

?ODPO value, 2-215

?ODSEC offset, 2-215, 2-216

?ODST value, 2-215

?ODTEO value, 2-215

?ODTL value, 2-210, 2-211, 2-213, 2-214,
2-215,2-259

?ODTP value, 2-215

?ODTRK offset, 2-215, 2-216

?OEBL system call, 2-404

?OFCE value, 2-409, 2-410, 2-413

?OFCR value, 2-409, 2-410, 2-413

?OFE2 offset, 2-428-2-429

?OFEI offset, 2-428-2-429

?OFEO offset, 2-428-2-429

?OFER offset, 2-428-2-429

offset, 1-3

?OFID value, 2-429, 2-430

?OFIN value, 2-409, 2-414

?OFIO value, 2-409, 2-414

?OFOT value, 2-409, 2-414

?OIGB value, 2-436

?OIGN value, 2-436

?OIIL offset, 2-435-2-436

?OIN2 offset, 2-435-2-436

?OIND offset, 2-435-2-436

?OINL value, 2-435

?OINP offset, 2-435-2-436

?OINR offset, 2-435-2-436

?OINT offset, 2-435-2-436

?OIOL offset, 2-435-2-436

old file system, 2-205

?OMBFM value, 2-410

?OMSTR value, 2-410

?ONE2 offset, 2-427

?ONEI offset, 2-427, 2-428

?ONEO offset, 2-427, 2-428

?ONER offset, 2-427

?ONID value, 2-427

?OOF2 and ?OOF3 offsets, 2-428-2-429

?OOFE offset, 2-428-2-429

?OOFL value, 2-428

?OOFN offset, 2-428-2-429

?OOFT offset, 2-428-2-429

?OOG2 offset, 2-427

?OOGT offset, 2-427

?OON2 and ?OON3 offsets, 2-427

?OONE offset, 2-427

?OONL value, 2-427

Index-22 licensed Material - Property 01 Data General Corporation
086-000195 updates

093--000542

?OONN offset, 2-427

?OONT offset, 2-427

?OPAM value, 2-35, 2-212-2-214

?OPCH offset, 2-211, 2-212

?OPDO-?OPD2 values, 2-108

?OPDH value, 2-35, 2-212,2-213

?OPDL value, 2-35, 2-212, 2-213

?OPDM value, 2-35, 2-212, 2-213

?OPEH offset, 2-213

?OPEN system call, 1-3, 2-160, 2-405
examples of, A-3, A-11, A-14, A-16, A-19,

A-22,A-26,~29,A-33,A-58

opening
file, 2-405
file for block 1/0,2-210
file for shared access, 2-699
protected shared file, 2-701

?OPER functions
?OPINFO, 2-425, 2-435-2-436
?OPOFF, 2-425, 2-428-2-429
?OPON, 2-425, 2-427
?OPRCV, 2-425, 2-432-2-433
?OPRESP, 2-425, 2-434
?OPSEND, 2-425, 2-432

?OPER system call, 2-424-2-425, 2-438

operating system, getting information,
2-692-2-692a

operator
!, B, and S, 1-4
in terface, 2-424
process/current process communication,

2-437

?OPEW offset, 2-213

?OPEX commands, 2-476
access, 2-442
align, 2-443
allocate, 2-443
batch_list, 2-444
batch_output, 2-445
binary, 2-446
brief, 2-447
cancel, 2-448
close, 2-448
consolestatus, 2-449-2-450
con tinue, 2-451
CPL, 2-452
create, 2-453
defaultforms, 2-454
delete, 2-454
disable, 2-455-2-456

dismounted, 2-456
elongate, 2-457
enable, 2-458-2-459
even, 2-460
flush, 2-461
font, 2-461
forms, 2-462
halt, 2-463
headers, 2-464
hold, 2-465
limit, 2-466
logging, 2-467
Ipp,2-469
mapper, 2-470
mdump, 2-471
message, 2-471
modify, 2-471
mounted, 2-472
mountstatus, 2-473
operator, 2-476
pause, 2-477
premount, 2-478
priority, 2-479-2-480
prompts, 2-480
purge, 2-480
qpriority, 2-481-2-482
refused, 2-483
release, 2-484
restart, 2-485
silence, 2-486
spoolstatus, 2-487-2-490
stack,2-490-2-492
start, 2-492-2-494
status, 2-494-2-498
stop, 2-499
terminate, 2-499
trailers, 2-500
unhold, 2-501
unitstatus, 2-502-2-504
unlimit, 2-504
unsilence, 2-505
verbose, 2-508
xbias, 2-508

?OPEX system call, 2-437-2-472

?OPFC offset, 2-168, 2-213

?OPFL offset, 2-212, 2-213, 2-214

?OPIL offset, 2-434

?OPINFO function, 2-425

?OPK2 offset, 2-425-2-426

?OPKT offset, 2-425-2-426

?OPLT value, 2-211, 2-213

?OPMBF value, 2-212

?OPMD value, 2-212

?OPME value, 2-212, 2-213

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation Index-23

?OPMST value, 2-212

?OPNL value, 2-425

?OPOFF function, 2-425

?OPON function, 2-425

?OPPH offset, 2-211

?OPRCV function, 2-425

?OPRESP function, 2-425

?OPSEND function, 2-425

?OPSP offset, 2-425-2-426

?OPTY offset, 2-211, 2-213

?OPXL value, 2-215, 2-216

?OPXP bit, 2-214

?OPXP value, 2-212

?OPXS offset, 2-215, 2-216

?ORC2-?ORC4 offsets, 2-432-2-433

?ORCL value, 2-432

?ORCN offset, 2-432-2-433

?ORCP offset, 2-432-2-433

?ORCQ offset, 2-432-2-433

?ORCS offset, 2-432-2-433

?ORCT offset, 2-432-2-433

?ORDS value, 2-66-2-67

?ORDY value, 2-66-2-67

?ORE2 offset, 2-425-2-426

?ORES offset, 2-425-2-426

?OREV offset, 2-425-2-426

?ORFX value, 2-66-2-67

?ORLC value, 2-431

?ORLO value, 2-431

?ORMNVvalue,2-431

?ORMU value, 2-431

?ORP2-?ORP4 offsets, 2-434

?ORPE offset, 2-434

?ORPL value, 2-434

?ORPN offset, 2-434

?ORPP offset, 2-434

?ORPS offset, 2-434

?ORPT offset, 2-434

?ORSC offset, 2-432-2-433

?ORVR value, 2-66-2-67

OS abbreviation, 2-2

?OSID offset, 2-432

?OSIL offset, 2-432

?OSLN value, 2-432

?OSN2 and ?OSN3 offsets, 2-432-2-433

?OSNF offset, 2-432

?OSNG value, 2-431

?OSNL value, 2-431

?OSNN offset, 2-432

?OSNO value, 2-431

?OSNP offset, 2-432

?OSNQ offset, 2-432

?OSNR offset, 2-432

?OSNT offset, 2-432

?OSOL offset, 2-432

?OSPI offset, 2-425-2-426

other file types, getting status of, 2-168

output, restarting, 2-40

overhead, pipe, 2-416

overlay
exiting from an, 2-510
loading an, 2-511
releasing an, 2-509, 2-513

overrun, timing, 2-790

?OVEX system call, 2-509

?OVKIL system call, 2-510

?OVLOD system call, 2-511-2-514

?OVREL system call, 2-513

owner of a port, finding the, 2-308

p
?PACDEV value, 2-555, 2-556

packet address and parameters, 1-3

pages
shared, flushing to disk, 2-103, 2-162, 2-643
undedicated memory, 2-204
unwiring, 2-779
wiring, 2-76

palette, 2-223

?PALW value, 2-417

parity setting, field mask, 2-197

partition, shared, 2-718

partition size, changing a process's, 2-787

Index-24 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

PARU file, A-39, A-40

PARU.16.SR file, 1-3

PARU.32.SR file, 1-3, 1-8, 1-9

PARU_LONG.SR file, 1-3, 1-8

Pascal language, 1-10

passing
connection, 2-516, 2-523
control from one program to another, 2-33

PASSTHRU mode, 2-115

password
data encryption, 2-590
encrypting a, 2-554
length, 2-590

path, task execution, 2-278

pathname
complete, 2-205
complete, of generic file, 2-239
getting a file's complete, 2-32
process or program, 2-222
remote host, 2-639
window, 2-226, 2-569

?PBATCHP value, 2-555, 2-556

?PBCHPRV value, 2-555, 2-556

?PBLKS offset, 2-561, 2-904

?PBLMEM value, 2-555, 2-556

?PBLT value, 2-597, 2-705

?PBRK offset, 2-30

?PBRK value, 2-538

?PBWSS value, 2-555, 2-556

PBX support, callout, 2-198

?PCAD offset, 2-526-2-527, 2-597, 2-598,
2-705

?PCAL offset, 2-537, 2-540,2-543

?PCHPRI value, 2-555, 2-556

?PCHTYP value, 2-555, 2-556

?PCHUSER value, 2-555,2-556

?PCHWSSL value, 2-556

?PCL ... offsets and values, 2-515

?PCLASS system call, 2-514

?PCNSPRV value, 2-555, 2-556

?PCNX system call, 2-516

?PCOMMNT value, 2-555

?PCON offset, 2-537, 2-540

?PCSl-?PCS8 offsets, 2-526-2-527

?PDBLOCY value, 2-557

?PDEL value, 2-409, 2-412

?PDESLN value, 2-561, 2-565, 2-904, 2-907,
2-909

?PDFP offset, 2-537, 2-541

?PDIR offset, 2-537, 2-539

?PDISKLM value, 2-554

?PDLOCY value, 2-557

?PDMP value, 2-539

PED, 2-217

:PER directory, 2-60

peripheral directory, 2-60

permanent file attribute, 2-653

permitting, access to a protected file, 2-519

?PFADWoffset, 2-520, 2-702

?PFAL offset, 2-557

?PFBI value, 2-554

?PFBS value, 2-538

?PFBY value, 2-557

?PFCRE value, 2-553

?PFDA value, 2-538

?PFDB value, 2-84, 2-538

?PFDEL value, 2-553

?PFDL offset, 2-554, 2-557

?PFDLL value, 2-548

?PFDP offset, 2-554, 2-557

?PFER offset, 2-557

?PFEX value, 2-538

?PFFC offset, 2-552, 2-553

?PFFD offset, 2-554

?PFFLG offset, 2-520, 2-701-2-702

?PFFO value, 2-520, 2-701-2-702

?PFIAC value, 2-552, 2-553

?PFIH offset, 2-520, 2-702

?PFLB value, 2-552

?PFLE value, 2-553

?PFLG offset, 2-84, 2-537-2-540, 2-544

?PFLNG value, 2-520, 2-702

?PFNF offset, 2-552, 2-553

?PFPID offset, 2-520, 2-702

?PFPM value, 2-538, 2-540

?PFPP value, 2-538

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation Index-25

?PFPR offset, 2-552, 2-553

?PFRI offset, 2-552, 2-553

?PFR3 offset, 2-557

?PFRDF value, 2-553

?PFREN value, 2-553

?PFRNG offset, 2-520, 2-702

?PFRP value, 2-75, 2-539

?PFRS value, 2-75, 2-539

?PFRV offset, 2-552, 2-553

?PFRW value, 2-520, 2-702

?PFSE value, 2-554

?PFTAC value, 2-552, 2-553

?PFUFD value, 2-553

?PFUN offset, 2-552, 2-553

?PFVER value, 2-557

?PFWD value, 2-554

?PFXP value, 2-538, 2-545

?PHRDPRV value, 2-556

physical block 1/0, 2-210, 2-405, 2-525, 2-592

?PICCFN value, 2-554

?PICROG value, 2-554

PID
and global port number association, 2-219
getting information about, 2-517
of a process's father, getting the, 2-79
returning active, 2-217
translating a, 2-769
virtual, 2-266

?PIDS system call, 2-517-2-518

?PIECE_PKT ... offsets and values,
2-347-2-348

?PIFG offset, 2-416-2-417

?PIFP offset, 2-537, 2-541

?PILN value, 2-416

?PILRP offset, 2-518

?PILTH value, 2-518

?PIMXP offset, 2-518

?PINTDIR value, 2-556

PIO instructions, 2-151,2-271

?PIPC offset, 2-537, 2-539, 2-543

?PIPD offset, 2-416-2-417

pipe extension packet, 2-406, 2-416

pipe file, creating a, 2-68

pipe length, maximum, 2-410

pipe size, offset ?IMRS, 2-416

pipes, overhead, 2-416

?PIPloffset, 2-416-2-417

?PIPR offset, 2-518

?PIRS offset, 2-416-2-417

?PIRV offset, 2-416-2-417

PIT device, 2-151, 2-271

?PITloffset,2-416-2-417

?PITOT offset, 2-518

pixel map
changing colors, 2-234
deleting, 2-228
ID,2-226
manipulating, 2-223
related palette, 2-234

?PKRO value, 2-106-2-112, 2-553

?PKRI value, 2-121, 2-122, 2-694

PLfllanguage, 1-10

?PLFP offset, 2-537, 2-541

?PLOGON value, 2-554

?PLTH value, 2-537, 2-546-2-548

?PMCTS value, 2-556

?PMDIS offset, 2-562, 2-565

?PMDSEN offset, 2-562, 2-565

?PMEM offset, 2-537, 2-539, 2-543

?PMGSYS value, 2-555, 2-556

?PMODPRV value, 2-555, 2-556

?PMTPF system call, 2-160, 2-519-2-520

?PMXSONS value, 2-554, 2-556

?PMYSONS value, 2-555, 2-556

?PNIFLG value, 2-557

?PN2FLG value, 2-557

?PNAME system call, 2-521-2-524b

?PNBLMEM value, 2-555, 2-556

?PNBWSS value, 2-555, 2-556

?PNCRYPT value, 2-554

?PNM offset, 2-537, 2-539

?PNVR value, 2-417

?POBLOCY value, 2-557

?POFP offset, 2-537, 2-541

point-to-point station, 2-715

pointer
byte, 1-5

Index-26 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

device, controlling input from a, 2-567
event, 2-191
file, 2-220, 2-610, 2-707
frame, 1-2

poll, address and list, 2-664-2-667

?POLOCY value, 2-557

port number
global, 2-219, 2-288, 2-289, 2-308, 2-770
local, 2-219, 2-770
terminal, 2-185

position, bit, 1-4

powerfaiJ/restart routine, user device, 2-277

?PPASSWD value, 2-554

?PPBLT value, 2-526

?PPCR offset, 2-537, 2-540

?PPDPMGR value, 2-555,2-556

?PPRCINF value, 2-556

?PPRIoffset,2-537,2-539,2-543

?PPRNBLK value, 2-555, 2-556

?PPRV offset, 2-537, 2-540

?PPSUPP value, 2-555, 2-556

?PPWDPRV value, 2-555, 2-556

?PQBLOCYvalue,2-557

?PQLOCY value, 2-557

?PRBB offset, 2-526-2-529

?PRCL offset, 2-260, 2-526-2-527, 2-597,
2-598,2-705

?PRCNX system call, 2-523-2-524b

?PRCRYPT value, 2-557

?PRDB system call, 2-525-2-526

PREDITOR utility program, 2-552, 2-744

?PRES offset, 2-597, 2-598, 2-705

?PRHRDPR value, 2-557

?PRI system call, 2-530

prime meridian, 2-247, 2-400

priority
changing a process, 2-531
changing a task, 2-530
getting calling task, 2-399

?PRIPR system call, 2-531-2-534b

privilege state, 2-744

privileges, access control, 2-245

?PRKIL system call, 2-533

?PRNH offset, 2-16, 2-260, 2-526-2-527,
2-596,2-597,2-598,2-705

?PRNL offset, 2-597, 2-598

?PROC extension packet, 2-545-2-548

?PROC functions
creating offspring, 2-544
sending a CLI-like command line, 2-543
setting maximum CPU time, 2-544
setting the working set size, 2-545

?PROC system call, 2-240, 2-534-2-534h
examples of, A-9, A-48

procedure, chaining to a new, 2-595

process
address space, remapping a, 2-353
blocking a, 2-26
changing priority of a, 2-531
class and locality, 2-514
communication, operator/current, 2-437
creating a, 2-534
getting the PID of a father, 2-79
getting the virtual PID of a, 2-266
location, 2-28
management system calls (names of),

2-4-2-5
name

full, 2-265, 2-521
locating a, 2-28

partition size, changing, 2-787
pathname, getting a, 2-222
priority values, 2-532
returning status information, 2-560
run time statistics, 2-648
son, 2-696
status information, extended, 2-900
synchronizing, 2-305
terminal, 2-771
terminating a, 2-29, 2-754
termination

code, 2-299
message, 2-295-2-297, 2-297,2-635

termination message, 16-bit B-type or
C-type, 2-304.6

termination messages
B-type, 2-304-2-304.8
C-type, 2-304-2-304.8

type, changing a, 2-75
unblocking a, 2-776
username,2-265
waiting for another, 2-845

PROCESS command, 2-255

Process Environment Display utility program,
2-217

process types, 2-297, 2-304

086-000195 updates
093-000542 licensed Material - Property 0/ Data General Corporation Index-27

processor
class assignments, logical, 2-362
identification, unique hardware, 2-263

profile requests and functions, 2-551-2-552

?PROFILE system call, 2-547, 2-548,
2-551-2-552

program
assembly language example, 1-5-1-9
chaining to, 2-33
construction and execution, 1-8
file, loading a, 2-637
getting a pathname, 2-222
returning CPR) filename, 2-640
sample sets, iv, 1-5-1-9, x

protected file, 2-519

protected shared file, 2-701
opening a, 2-701

protecting, a task from being redirected, 2-757

protocol data-link control characters, BSC,
2-674

?PRPSSWD value, 2-557

?PRRAPRV value, 2-517, 2-555, 2-556

?PRRDY system caU, 2-558

?PRSFTPR value, 2-557

?PRSUS system caU, 2-559

?PSAL value, 2-562, 2-563

?PSCH offset, 2-562, 2-564

?PSCPL offset, 2-562, 2-564

?PSCW offset, 2-562, 2-564

?PSEN offset, 2-562, 2-563

?PSEX offset, 2-562, 2-564, 2-565

?PSF2-?PSF5 offsets, 2-562-2-564

?PSFA offset, 2-562, 2-565

?PSFL offset, 2-562, 2-563

?PSFP offset, 2-562, 2-563

?PSFTPRV value, 2-556

?PSHRP value, 2-564, 2-906

?PSHSH offset, 2-561, 2-904

?PSHST offset, 2-561, 2-904

?PSHSZ offset, 2-561, 2-904

?PSIH offset, 2-562, 2-565

?PSLFA offset, 2-562, 2-565

?PSLTH value, 2-562

?PSMX offset, 2-562, 2-565

?PSNM offset, 2-537, 2-539

?PSNR offset, 2-562, 2-563

?PSNS offset, 2-562, 2-563

?PSOPIO value, 2-554, 2-556

?PSPD offset, 2-562, 2-564

?PSPH offset, 2-562,2-564

?PSPP value, 2-563, 2-905

?PSPR offset, 2-562, 2-564

?PSPRST offset, 2-561, 2-904

?PSPV offset, 2-562, 2-564

?PSQF offset, 2-562,2-563

?PSRH offset, 2-562, 2-564

?PSSL offset, 2-562, 2-565

?PSSN offset, 2-562, 2-563

?PSSP value, 2-563,2-905

?PSST offset, 2-562, 2-563

?PSTAT system caU, 2-560-2-566

?PSTI offset, 2-16, 2-526-2-529, 2-597, 2-598,
2-704,2-705

?PSTO offset, 2-526-2-527, 2-597, 2-598,
2-705

?PSUSER value, 2-555, 2-556

?PSWM offset, 2-562, 2-565

?PSWS offset, 2-562, 2-565

?PSXPT value, 2-564, 2-906

PTE abbreviation, 2-781

?PTRDEV _EVENTS ... values, 2-578, 2-586

?PTRDEV _GEN_EVENT ... offsets and values,
2-585-2-586

?PTRDEV _GENERATE_EVENT function,
2-568,2-584-2-586

?PTRDEV _GENERATE_EVENT_PKTID value,
2-586

?PTRDEV _GET_LOC ... offsets, 2-587-2-588

?PTRDEV _GET_PTR_LOCATION function,
2-568,2-571,2-587

?PTRDEV _GET_PTR_STATUS function, 2-568,
2-581

?PTRDEV _GET_TABLET_LOCATION
function, 2-568,2-571, 2-588-2-589

?PTRDEV _GET_TABLOC ... offsets and values,
2-588

?PTRDEV _GSTATUS ... offsets and values,
2-581-2-584

?PTRDEV _LAST _EVENT function, 2-568,
2-571,2-577

Index-28 Licensed Material- Property a/ Data General Corporation
086-000195 updates

093-000542

?PTRDEV _LEVENT ... offsets and values,
2-577-2-578

?PTRDEV _PKT ... offsets and values,
2-569-2-571

?PTRDEV _PTR_SHAPE ... values,
2-580-2-581,2-582

?PTRDEV _PTR_STATE ... values, 2-580-2-581

?PTRDEV _SET_DELTA function, 2-568, 2-573,
2-576-2-577

?PTRDEV _SET_DELTA ... offsets and values,
2-576-2-577

?PTRDEV _SET_DELTA_LEN value, 2-576

?PTRDEV _SET_EVENTS function, 2-568,
2-573

?PTRD EV _SET _EVTS ... offsets and values,
2-573,2-574-2-576

?PTRDEV _SET _POINTER function, 2-568,
2-579-2-580

?PTRDEV _SET _PTR ... offsets, 2-579-2-580

?PTRDEVICE functions
controlling the operation of the pointer,

2-579-2-580
dead tablet space, 2-574
generating a pointer event, 2-584-2-586
getting

information about the last pointer event,
2-577

pointer status, 2-581
status of the pointer device, 2-587

getting the tablet status, 2-588
moving the pointer, 2-584-2-586
selecting pointer events, 2-573-2-575
specifying a pointer delta, 2-576

?PTRDEVICE system call, 2-191,2-567-2-568
example of, A-61

?PTWO value, 2-417

?PUDAH offset, 2-603

?PUDAL offset, 2-603

?PUDCN offset, 2-603

?PUDFW offset, 2-603

?PUDLT value, 2-603

?PUIPCS value, 2-555, 2-556

?PUL_MAX_NAMES value, 2-388, 2-892

?PUL_PKT ... offsets and values, 2-388, 2-892

?PUNM offset, 2-537, 2-540

?PUSPR offset, 2-561, 2-904

PVC circuit connections, see ?CONINFO,
2-58.9

?PVCNPRV value, 2-555, 2-556
?PVDV value, 2-542

?PVEX value, 2-542

?PVIP value, 2-542

?PVPC value, 2-542
?PVPP value, 2-542

?PVPR value, 2-542

?PVSP value, 2-542

?PVSU value, 2-542

?PVTY value, 2-542

?PVUI value, 2-542

?PVWM value, 2-542

?PVWS value, 2-542,2-545

?PWBP offset, 2-591

?PWDCRYP system call, 2-554, 2-590-2-591

?PWFW offset, 2-591

?PWLO offset, 2-591

?PWMI offset, 2-537, 2-541, 2-545

?PWOW value, 2-591

?PWRB system call, 2-213, 2-525-2-526,
2-592

?PWRV offset, 2-591

?PWSON value, 2-556
?PWSS offset, 2-537, 2-540, 2-545

?PWSZ value, 2-591

?PXCPU offset, 2-546-2-548

?PXFLG offset, 2-546-2-548

?PXLE value, 2-545, 2-546-2-548

?PXLLOC offset, 2-546-2-548

?PXPAG offset, 2-546-2-548

?PXPGloffset,2-546-2-548

?PXPGN offset, 2-546-2-548

?PXPUN offset, 2-546-2-548

?PXRES offset, 2-546-2-548
?PXRSO and ?PXRS 1 offsets, 2-546-2-548

?PXSID value, 2-548
?PXSPI offset, 2-546-2-548
?PXULOC offset, 2-546-2-548

?PXUPID offset, 2-546-2-547

Q
QSYM.F77.IN file, A-40

086-000195 updates
093-000542 Licensed Material- Property ~ Data General Corporation Index-29

queue
name, locating a, 2-28
removing tasks from a, 2-90
task manager, 2-294

queues
batch, document names, 2-122
print, document names, 2-122

R
radix, v, xi

?RCALL system call, -594

?RCHAIN system call, 2-595

?RCID value, 2-433

?RDAC value, 2-781

?RDB system call, 2-596-2-601

?RDUDA system call, 2-602-2-603

re-enabling
control-character terminal interrupt, 2-334
relative terminal, 2-667, 2-685

re-establishing, connection, 2-516, 2-523

?READ system call, 2-191, 2-604
examples of, A-12, A-19, A-22-A-23, A-33,

A-67

read/write access to memory, 2-782

reading
allocated blocks, 2-23
block I/O, 2-596
device characteristics, 2-177
error message file, 2-99
record I/O, 2-604
shared-page, 2-704
task message from the process terminal,

2-771
time-of-day conversion data, 2-645
user data area, 2-602-2-604

readying
task, 2-281
task status word, 2-282
tasks of a specified priority, 2-558

real-time clock, 2-313

?REC system call, 2-627
example of, A-34

receive/continue call, 2-714

receiving
after sending an IPC message, 2-309
information over a BSC line, 2-709
interrupt service message, 2-290

intertask message, 2-627
intertask message without waiting, 2-628
IPC message, 2-295

?RECNW system call, 2-628

record I/O, 2-604
performing, 2-604
writing, 2-604, 2-844

?RECREATE system call, 2-629

recreating, a file, 2-629

rectangle, clip, 2-223

redirecting, task, 2-774
execution path, 2-278
protection, 2-757

register
floating-point status, 2-285
stack, 2-314

Related manuals, ix

relative terminal, 2-667, 2-685
disabling a, 2-667
re-enabling a, 2-667, 2-685

?RELEASE system call, 2-630

releasing
initialized logical disk, 2-630
job processor, 2-322
overlay, 2-509, 2-513
resource, -594
shared page, 2-643

?REM value, 2-168

remapping, a process's address space, 2-353

remote host, 2-639
process and queue name on, 2-28

removing
permanent file attribute, 2-653
tasks from a queue, 2-90
user device, 2-304.9

?RENAME system call, 2-632-2-632.2

renaming, a file, 2-632

reporting, index, 1-9

request, profile, 2-551

?RESCHED system call, 2-633

rescheduling
disabling task, 2-88
task, 2-280
time slice, 2-633

reserved symbols, 1-5

reset MRC routes, current, 2-58

?RESIGN system call, 2-634

Index-30 Licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

resource
acquiring a, -594
acquiring a new, 2-328
base of the current, 2-186
calling, 2-328
releasing a, -594

resources, system calls, 2-12

restoring, the previous environment, 2-778

return
error and normal, 1-2
normal, 1-2

?RETURN system call, 1-2,2-635
examples of, 1-6-1-7, A-4, A-6, A-8-A-9,

A-12, A-15, A-19, A-23, A-27, A-29,
A-33-A-34,A-37-A-38,A-43,A-48,
A-59

returning
active PIDs, 2-217
class scheduling statistics, 2-45
code and text (error), 2-683
complete pathname of generic file, 2-239
error code and text, 2-683
extended status information on a process,

2-900
from a process, 2-635
global port number, 2-288
LEF mode status, 2-352
logical disk information, 2-340
number of undedicated memory pages, 2-204
OS-format internal time, 2-313
PID associated with a global port number,

2-219
process statistics, 2-560
program CPR) filename, 2-640
stack frame information, 2-807
status information on a process, 2-560
status of a task, 2-756, 2-777
text and code (error), 2-683
unique task identifier, 2-688, 2-690, 2-777

?RFAB value, 2-298, 2-635

?RFCF value, 2-298, 2-635
example of, 1-7

?RFEC value, 2-298, 2-635
example of, 1-7

?RFER value, 2-298, 2-635
example of, 1-7

?RFWA value, 2-298, 2-635

ring
base address, 2-565

field, 2-289
loading, stopping, 2-642
lower, 2-353

?RINGLD system call, 2-160,2-637-2-641
example of, A-14

RINGLOAD.SR sample program, A-2,
A-14-A-18

?RLFRC offset, 2-630

RMA access, 2-517

?RNAME system call, 2-639

?RNGBP offset, 2-641

?RNGLB offset, 2-641

?RNGNM offset, 2-641

?RNGPL value, 2-641

?RNGPR system call, 2-640-2-641

?RNGST system call, 2-642

routine, power, fai1Jrestart, 2-272

?RPAGE system call, 2-643-2-644

?RSID value, 2-435

RTC device, 2-151, 2-271

?RTDS value, 2-409, 2-412, 2-608, 2-609

?RTDY value, 2-409, 2-608, 2-609

?RTFX value, 2-409, 2-608, 2-609

?RTODC system call, 2-645-2-647

?RTODC_PKT ... offsets and values,
2-646-2-647

?RTUN value, 2-409, 2-608, 2-609

?RTVB value, 2-409, 2-608, 2-609

?RTVR value, 2-409, 2-608, 2-609

runtime process statistics, 2-648
getting, 2-648

RUNTIME.SR sample program, A-I,
A-11-A-13

?RUNTM system call, 2-648
example of, A-11

?RVBPL value, 2-783

?RVBPX value, 2-783

RVI character, 2-676

?RVWPL value, 2-783

086--000195 updates
093-000542 licensed Material- Property of Data General Corporation Index-31

s
S operator, 1-4

?SACK value, 2-711

?SACL system call, 2-213, 2-650-2-652

?SACP offset, 2-165-2-170

?SAFM offset, 2-527

?SAFM value, 2-598

?SAKO and ?SAK1 values, 2-711

sample programs, 1-5-1-9

?SASC value, 2-671, 2-677

?SATR system call, 2-653-2-654

?SAVS value, 2-693

?SBER offset, 2-686, 2-687

?SBIAS system call, 2-655

?SBSC value, 2-672

?SBUL offset, 2-721

?SBUP offset, 2-710,2-712,2-721,2-723

?SBYC offset, 2-710, 2-712, 2-721, 2-723

?SBYM offset, 2-710, 2-713, 2-721, 2-723

scalar date value, converting a, 2-31

scalar time value, converting a, 2-74

scaled space on a tablet, 2-572

scheduler, system, 2-27

scheduling
disabling task, 2-93
enabling multitask, 2-102

?SCHN offset, 2-670, 2-671

?SCHR system call, 2-656-2-657

?SCIT value, 2-671

?SCLOSE system call, 2-658-2-659

?SCON value, 2-722

SCP boot clock, 2-401

SCP device, 2-151, 2-271

?SCPS offset, 2-168

?SCRC value, 2-671

screen management extension, 2-612

?SCSH offset, 2-167, 2-168

?SCSL offset, 2-167, 2-168

?SDAC value, 2-712, 2-716, 2-722

?SDAD offset, 2-710, 2-713

?SDAY system call, 2-660

?SDBL system call, 2-661

?SDCN value, 2-188, 2-662

?SDCU offset, 2-165

?SDDN value, 2-188, 2-662

?SDEH offset, 2-168

?SDEL offset, 2-168

?SDET value, 2-723

?SDIS value, 2-723

?SDLM system call, 2-662-2-663

?SDMD value, 2-671

?SDPOL system call, 2-664-2-666

?SDPP value, 2-671

?SDPR value, 2-671

?SDRT system call, 2-667-2-668

?SDSC value, 2-671

?SDTI value, 2-188, 2-662

?SDTO value, 2-188, 2-662

?SDTP value, 2-188, 2-662

search list
getting contents of a, 2-203
setting the, 2-695

?SEBC value, 2-671

?SEBL system call, 2-669-2-678

?SECHR system call, 2-41, 2-679-2-680

sector I/O, modified, 2-20, 2-25, 2-216

?SEFH offset, 2-167, 2-168

?SEFL offset, 2-167, 2-168

?SEFM offset, 2-167, 2-168

?SEFW offset, 2-167, 2-168

?SEID value, 2-431

se lect address, 2-665

se lect-address pair, 2-664

?SELN value, 2-670

?SEND system call, 2-681-2-682
example of, A-27

sending
information over a BSC line, 2-720
IPC message, 2-305, 2-309
terminal message, 2-681

?SEOT value, 2-723

?SEPR value, 2-671, 2-677

sequences, keyboard interrupt, 2-332

Index-32 Licensed Material - Property cI Data General Corporation
086-000195 updates

093-000542

?SERMSG system call, 2-683-2-684

?SERT system call, 2-667, 2-685

?SERVE system call, 2-685

server
becoming a, 2-685
becoming a customer of, 2-56
resigning as a, 2-634

server/customer relationship, 2-34, 2-57
disconnecting a, 2-80,2-92
terminating a, 2-72

service
message, interrupt, 2-290
routine

device interrupt handler, 2-275
fast device interrupt handler, 2-156

session, connection types, 2-58.9

set/get class ID code, 2-36-2-56

setting
access control list, 2-650
bias factor values, 2-655
binary I/O on a pipe, 2-611
bit, 1-4
class IDs, 2-36
class matrix, 2-51
data channel map, 2-729
default access control list, 2-77
delimiter table, 2-662
device time-out value, 2-733
execute-protection status, 2-141-2-142
extended device characteristics, 2-679
file-pointer position, 2-707
IPC no wait, 2-i09, 2-611
logical processor class assignments, 2-362
maximum size for a control point directory,

2-58.26
permanent file attribute, 2-653
search list, 2-695
system

calendar, 2-660
clock, 2-732
identifier, 2-719

time of day, 2-400, 2-732

?SFAH offset, 2-167, 2-168

?SFAL offset, 2-167, 2-168

?SGES system call, 2-686-2-687

?SGLN value, 2-686

shared
access, 2-699
access file

closing a, 2-658
opening a, 2-405

file, 2-659, 2-699
protected, 2-701

file memory pages, flushing to disk, 2-103
page, 2-643

flushing a disk, 2-162
read, 2-704

partition, 2-243,2-718

?SHCO offset, 2-198

?SHCO value, 2-335

?SHCO value, 2-180

?SHFS offset, 2-167

?SHOP value, 2-409, 2-i14

/SHR switch, 2-180

?SHSP value, 2-672

?SIDX offset, 2-167, 2-168

?SIEX value, 2-693

signaling
another task, 2-688, 2-690
mechanism, interprocess, 2-688, 2-690

signaling mechanism, interprocess, 2-691,
2-845

significant bits, least and most, 1-5

?SIGNL system call, 2-688-2-689, 2-691,
2-845,2-848

?SIGWT system call, 2-690-2-691

?SIID offset, 2-693

?SILN offset, 2-693

?SIMM offset, 2-693

?SINFO system call, 2-692-2-692b

?SINT value, 2-723

?810S offset, 2-693

?8IPL value, 2-693

?8IRL offset, 2-721, 2-723

?SIRN offset, 2-693

?SIRS offset, 2-693

?SITB value, 2-711, 2-716, 2-722

size, shared partition, 2-243

?SLAU offset, 2-167, 2-168

?SLBC value, 2-739-2-740

?SLCON value, 2-739

?SLC8U value, 2-739-2-740

?SLDS value, 2-739

?SLEC value, 2-739-2-740

?8LE8 value, 2-739

086-000195 updates
093-000542 licensed Material - Property 0/ Data General Corporation Index-33

?SLEX value, 2-739

?SLFL value, 2-739

?SLIST system call, 2-695

@SLNx device, 2-669

?SLON value, 2-739

?SLRC value, 2-671, 2-677

?SLRE value, 2-739

?SLRF value, 2-739-2-740

?SLRS value, 2-739

?SLSEX value, 2-739

?SLSF value, 2-739-2-740

?SLSP value, 2-739

?SLST value, 2-739-2-740

?SLSU value, 2-739

?SLTE value, 2-739

?SLTH value, 2-165-2-170

?SMCH offset, 2-537, 2-541, 2-544

?SMDI offset, 2-670, 2-672

?SMIL offset, 2-167, 2-168

?SMSH offset, 2-167

?SMSL offset, 2-167

?SNAK value, 2-711

?SNID value, 2-673, 2-723

?SNKC offset, 2-686, 2-687

?SNPR value, 2-671, 2-677

?SOAL offset, 2-697-2-698

?SOFP offset, 2-697-2-698

?SOFW offset, 2-697-2-698

SOH character, 2-676

?SOHB value, 2-711, 2-716, 2-722

?SOKEY offset, 2-697-2-698

?SOLTH value, 2-697

son process, 2-696

SON.SR sample program, A-1, A-9-A-10

?SONEN offset, 2-697-2-698

?SONS system call, 2-696-2-698

?SOPEN system call, 2-699-2-700

?SOPN offset, 2-165, 2-166, 2-167, 2-168

?SOPPF system call, 2-160,2-701-2-702

?SOPR value, 2-671, 2-677

?SORP offset, 2-697-2-698

?SOSON offset, 2-697-2-698

?SOSP offset, 2-697-2-698

?SPAGE system call, 2-704

?SPAR value, 2-618

SPEAK.SR sample program, A-1, A-7

special key characteristics, 2-191

?SPET value, 2-712

?SPLR value, 2-711, 2-716

?SPNH offset, 2-166

?SPNK value, 2-712

?SPNL offset, 2-166

?SPOS system call, 2-707-2-708
example of, A-22

?SPRO value, 2-705

?SPRV value, 2-712

?SPTM offset, 2-73

?SR32 value, 2-693

?SRCVoutput values, 2-716

?SRCV system call, 2-673, 2-709-2-710

?SRES offset, 2-721, 2-723

?SRID value, 2-673, 2-711, 2-713

?SRVI value, 2-711

?SSHPT system call, 2-718

?SSID system call, 2-719

?SSIL offset, 2-710, 2-712

?SSIN offset, 2-693

?SSIS offset, 2-710-2-712, 2-721-2-723

?SSLR value, 2-711, 2-716

?SSND system call, 2-673, 2-720

?SSNL value, 2-710, 2-721

?SSTloffset,2-669-2-672

?SSTO offset, 2-687

?SSTS offset, 2-165-2-170

stack
frame information, 2-807
register, 2-314
unwinding the, 2-778

?STAH offset, 2-165-2-170, 2-214

?STAL offset, 2-165-2-170, 2-214

standard format for system calls, 1-2

starting a histogram, 2-286, 2-393, 2-810

state save area, 2-284

Index-34 Licensed Material- Property 01 Data General Corporation
086-000195 updates

093-000542

station
identification, 2-672-2-673,2-713,2-725
multipoint and point-to-point control, 2-715
multipoint tributary, 2-716

statistics
BSC error, 2-686
returning class scheduling, 2-45
runtime process, 2-648

status
information about a process, extended, 2-900
information on a process, returning, 2-560
register, floating-point, 2-285
word

controller, 2-528-2-529
task, 2-282

?STCH offset, 2-165-2-168

?STCL offset, 2-165-2-170

?STIM offset, 2-165-2-170

?STMAP system call, 2-729-2-731

?STMH offset, 2-165-2-170

?STML offset, 2-165-2-170

?STOC offset, 2-670, 2-672, 2-677

?STOD system call, 2-732

?STOM system call, 2-733-2-734

stop bits, stop bit mask, 2-197

?STOV offset, 2-710, 2-713, 2-721, 2-723

streaming mode of tape 1/0,2-215,2-412

?STTD value, 2-723

?STTO offset, 2-686

STX character, 2-676

?STXB value, 2-711, 2-716, 2-722

?STYP offset, 2-165-2-167, 2-168

Superprocess
mode, 2-735
privilege, 2-745

Superuser
mode, 2-737
privilege, 2-745

?SUPROC system call, 2-735-2-740

?SUS system call, 2-736

?SUSER system call, 2-737-2-740

suspending
task, 2-27, 2-85, 2-283,2-736,2-809
tasks of a specified priority, 2-559

?SWAK value, 2-712, 2-723

?SYFBM offset, 2-743

?SYFLT offset, 2-743

?SYLEN value, 2-740,2-743

?SYLID value, 2-743

?SYLOG, viewing output, 2-741

?SYLOG system call, 2-360, 2-739-2-740
symbol table file, 2-256, 2-261

symbolic debugger utility program, 1-3

symbols, reserved, 1-5

SYN character, 2-677

synchronized logical disk unit image, 2-887

synchronizing
LDU images, 2-385
processes, 2-305

SYSID file, A-39, A-40

SYSID.32.SR file, 1-8

:SYSLOG file, 2-360, 2-739-2-740

SYSLOG record formats, iii, ix, B-1

?SYSPRV system call, 2-744

?SYSPRV _ ... offsets and values, 2-745-2-746

system
area, 2-213
calendar, 2-660
call

implicit, A-39
log file, 2-357

clock, 2-187, 2-258, 2-645
frequency of the, 2-201
setting the, 2-732

identifier
getting the, 2-244
setting the, 2-719

log file
entering an event in the, 2-360
event codes, B-1
manipulating the, 2-739
record formats, B-1

scheduler, 2-27

system cans, 1-1
16-bit process (names of), 2-14
AOSIRT32 (names of), 2-3
AOSNS system resources (names of), 2-12
class scheduling (names of), 2-12
connection management (names of), 2-11,

2-13
debugging (names of), 2-7
file creation and management (names 00,2-6
file input/output (names on, 2-7-2-8
interprocess communications (names of), 2-10
logging, 2-357

system calls, 1-1 (continued)
memory management (names of), 2-3

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation Index-35

multiprocessor management (names 00, 2-11,
2-13

multitasking (names 00, -9-10
process management (names 00, 2-4-2-5
standard format for, 1-2
windowing (names 00, 1-9

system log, record formats, iii, ix

system log, writing records, B-1

system log file, iii, ix

system log file, B-1

System Manager privilege, 2-745

system resources, system calls, 2-12

SYSTEM_CALL_SAMPLES subdirectory of
:UTIL, A-I

?SYSULEN value, 2-743

T
?T32T value, 2-300, 2-301

table
delimiter, 2-188, 2-416, 2-662
file, symbol, 2-261
map definition, 2-153, 2-154, 2-272, 2-731

tablet
dead space on, 2-572
digitize option for, 2-572, 2-574, 2-579
digitizing, 2-571-2-572
location example, 2-573
scaled space on, 2-572

?TABR value, 2-300

?TALOCK value, 2-757, 2-774

?TAOS value, 2-300

tape
block I/O, 2-599
density values, 2-337
I/O

buffered and streaming modes, 2-215
buffered mode of, 2-214

labeled magnetic, 2-35, 2-38, 2-418
forcing end-of-volume, 2-148

magnetic, 2-212, 2-417

task
changing priority of a, 2-530
changing the priority of a, 2-280
control block, 2-282
delaying a, 2-85, 2-809
execution path, 2-278
extended definition, 2-751
identifier, 2-399

unique, 2-688,2-690,2-777

initiating a, 2-747
initiation queue, 2-294
interrupt, 2-278
killing a, 2-279, 2-331, 2-510
killing a group, 2-533
manage~queued,2-294
message, reading from the process terminal,

2-771
multi-scheduling, 2-102
readying a, 2-281
redirecting a, 2-278, 2-774
redirection protection, 2-757
rescheduling a, 2-88, 2-280-2-281
returning status of a, 2-756, 2-777
scheduling, disabling, 2-93
signaling another, 2-688, 2-690
status, returning, 2-756, 2-777
status word, 2-282
suspending a, 2-27, 2-85, 2-283, 2-736,

2-809
suspension, 2-281
terminal interrupt, 2-293
waiting for another, 2-845

?TASK system call, 1-2, 2-747-2-748
examples of, A-29, A-33

tasks
readying, 2-558
removing from a queue, 2-90
suspending, 2-559

?TATH offset, 2-63

?TBCX value, 2-73, 2-300

?TBLT value, 2-63

TCB, 2-282

?TCCX value, 2-300

?TCIN value, 2-299-2-301

?TCTH offset, 2-63

?TEFH offset, 2-260

?TEFM offset, 2-260

?TEFW offset, 2-260

template filename characters, 2-208

?TERM system call, 2-754-2-755
example of, A-7

terminal
ANSI-standard, 2-182
interrupt

control-character, 2-333-2-334
disabling, 2-403
enabling,2-404
task, 2-293
waiting for a, 2-335

message, 2-681
port number, 2-185

Index-36 Licensed Material - Property 01 Data General Corporation
086-000195 updates

093-000542

process, 2-771
relative, 2-667, 2-685

terminal services, and console line numbers,
2-58.8

terminating
customer/server relationship, 2-72
process, 2-29, 2-635,2-754

termination
code, process, 2-299
message

16-bit process, 2-303
32-bit process, 2-302
process, 2-297, 2-635

routine, user device, 2-276

termination message, packet structure, B- or
C-type, 2-304.5

text and code error, returning, 2-683

?TEXT value, 2-298-2-304.8

TID
and priority of the calling task, getting, 2-399
unique, 2-688,2-690,2-777

?TIDSTAT system call, 2-756

time
current, 2-313
date and time zone

getting the, 2-247
setting the, 2-400

Greenwich Mean and Universal, 2-247,
2-400

last accessed value, 2-214
of day

conversion data, reading, 2-645
converting to a scalar value, 2-171
getting the, 2-258
setting the, 2-732

overrun, 2-790
returning the OS-format internal, 2-313
slice, rescheduling a, 2-633
value

converting a scalar, 2-74
format, 2-46

time-out
connect, 2-677
value for a device, 2-733-2-735

?TIME_PKT ... offsets and values, 2-248-2-249,
2-401-2-402

TIMEOUT.SR sample program, A-2,
A-37-A-38

Timer Facility, Virtual, 2-790

ITLA FILESTATUS command switch, 2-214

?TLOCK system call, 2-757-2-758

?TLTH value, 2-260

?TM6 value, 2-304.2, 2-762

?TMPID offset, 2-304.2, 2-762

?TMPRVoffset, 2-304.2, 2-762

?TMRS offset, 2-304.2, 2-762

?TMTH offset, 2-63

?TMUPD offset, 2-304.2,2-762

?TMYRINGvalue, 2-757, 2-774

?TPID system call, 2-769

?TPLN value, 2-301

?TPORT system call, 2-770

?TR32 value, 2-300

trailer label, 2-38

?TRAN value, 2-711, 2-716, 2-722

transfer modes, magnetic tape, 2-410

translating
local port number to global equivalent, 2-770
PID, 2-769

translation, field, 2-616

transmitting
intertask message, 2-898, 2-899
message from an interrupt service routine,

2-157,2-315

?TRAP value, 2-300

?TRCON system call, 2-771-2-772

tributary station, 2-665
multipoint, 2-716

Trojan pointer, 2-781

?TRPE offset, 2-198

?TRPE value, 2-191, 2-614, 2-680

?TRUNCATE system call, 2-773, A-39

truncating, a file, 2-259, 2-773

?TSELF value, 2-300

?TSSP value, 2-756

?TSTAT word, 2-282

?TSUP value, 2-300, 2-303

TTD character, 2-677

TTl device, 2-151, 2-271

TTO device, 2-151, 2-271

?TTY value, 2-181

?TUNLOCK system call, 2-774-2-775

u
?UBLPR system call, 2-776

086-000195 updates
093-000542 Licensed Material- Property a Data General Corporation Index-37

?UDBM value, 2-153-2-154, 2-273-2-274

?UDDA-?UDDP values, 2-153-2-154,
2-273-2-274

?UDDRS offset, 2-152, 2-271, 2-272, 2-277

?UDDTR offset, 2-152, 2-271, 2-272, 2-276

?UDELTH value, 2-153, 2-272

?UDFE value, 2-152

?UDFX value, 2-152

?UDID offset, 2-153-2-154, 2-273-2-274

?UDIRL offset, 2-152

?UDLE value, 2-271

?UDLN value, 2-152, 2-271-2-272

?UDLTH value, 2-153, 2-272

?UDNS offset, 2-154, 2-274

UDPR, 2-277

?UDRS offset, 2-152, 2-271, 2-272

UDTR, 2-276

?UDVBX offset, 2-152, 2-272

?UDVIS offset, 2-152, 2-272

?UDVMS offset, 2-152,2-272

?UDVXM offset, 2-152, 2-272

?UIDSTAT system call, 2-777

?ULll-?ULI3 values, 2-392, 2-897

?ULLN value, 2-392, 2-897

?ULNl-?ULN8 offsets, 2-392, 2-897

?ULNC offset, 2-392, 2-897

?ULPHI offset, 2-392, 2-897

?ULPLO offset, 2-392, 2-897

?ULRO-?ULR8 offsets, 2-392, 2-897

unblocking, a process, 2-776

undedicated memory pages, 2-204

uniprocessor histogram, 2-393

unique
hardware processor identification, 2-263
task identifier, 2-688, 2-690, 2-777

unit file, getting status of, 2-165

Universal Time, 2-247, 2-400

unlocking
an object, 2-172
whole files, 2-173

?UNMR value, 2-374, 2-376

un shared
memory pages, changing, 2-384
memory parameters, listing, 2-383

?UNWIND system call, 2-778

unwinding, the stack, 2-778

?UNWIRE system call, 2-779

un wiring, pages, 2-779

?UPDATE system call, 2-213, 2-780

upfront window, 2-574

UPSC device, 2-151, 2-271

?URTB offset, 2-156

user
data area

creating a, 2-70
reading a, 2-602-2-604
writing a, 2-602-2-604, 2-844

device, 2-18
defining a, 2-269
defining a fast, 2-149
powerfail/restart routine, 2-277
removing a, 2-304.9
termination routine, 2-276

locality, changing, 2-354
symbol, 2-261

User Runtime Library, 2-156

username of a process, 2-265

UTC, 2-247, 2-400

?UTID offset, 2-777

:UTIL:SYSTEM_CALL_SAMPLES
subdirectory, A-I

?UTLEN value, 2-777

?UTPRI offset, 2-777

?UTSK offset, 2-156

?UTSTAT offset, 2-777

?UUID offset, 2-777

v
?VALAD system call, 2-781

?VALIDATE system call, 2-782

validating
area for Read or Write access, 2-782
logical address, 2-781

?VBITM value, 2-376

?VCUST system call, 2-786

?VDELIM offset, 2-783

verifying a customer, 2-786, 2-789

Index-38 Licensed Material- Property of Data General Corporation
086-000195 updates

093--000542

?VERRIGN value, 2-793, 2-802

?VERRNTR value, 2-793, 2-802

?VERROR offset, 2-783

?VERRTRM value, 2-793, 2-802

Vertical Form Unit, loading in the VFU printer,
2-527

vertical format unit (VFU), 2-600-2-601

?VFUNC offset, 2-783

Viewing, recent messages, in :SYSLOG and
:CONO_LOG, 2-741

?VINIREV value, 2-792

virtual PID, 2-266

Virtual Timer Facility
attaching, 2-149, 2-151
cascading and setting, 2-794
creating, 2-790
exiting from, 2-806
killing, 2-797
modifying, 2-799
restarting and suspending, 2-804
synchronizing, 2-795
waiting for a signal from, 2-848
waiting for an error message from, 2-846

?VLAC value, 2-781

?VLENGTH offset, 2-783

?VMEM system call, 2-787-2-788

?VMLTH value, 2-788

?VMODILV value, 2-793, 2-802

?VMODNUL value, 2-793, 2-802

?VMODSIG value, 2-793, 2-802

?VMSTAT offset, 2-788

volume identifier, checking, 2-35

?VPLTH value, 2-783

?VPOINTER offset, 2-783

?VRCUST system call, 2-789

?VRES offset, 2-783

?VRESD offset, 2-783

?VRING offset, 2-783

?VRNBR value, 2-783

?VSPIDS value, 2-518

?VTERIOVR value, 2-847

?VTERSOVR value, 2-847

?VTFCAS offset, 2-791-2-792, 2-800-2-801

?VTFCREATE system call, 2-790-2-796,
2-797,2-799,2-805,2-847

?VTFENTR offset, 2-791-2-792, 2-800-2-801

?VTFHUNG value, 2-847

?VTFID offset, 2-791-2-792, 2-798,
2-800-2-801

?VTFIMSK offset, 2-791, 2-794,2-800,2-803

?VTFINISUS value, 2-793

?VTFKILL system call, 2-797-2-798

?VTFKLEN value, 2-798

?VTFKREV value, 2-798

?VTFMODE offset, 2-791, 2-793, 2-800-2-803,
2-805

?VTFMODIFY system call, 2-790,2-799-2-803

?VTFMODSUS value, 2-800-2-803

?VTFMPLN value, 2-791, 2-800

?VTFMREV value, 2-801

?VTFONESHOT value, 2-793, 2-802

?VTFPID offset, 2-791-2-792, 2-800-2-801

?VTFPRI offset, 2-791-2-792,2-800-2-801

?VTFREV offset, 2-791-2-792, 2-798,
2-800-2-801

?VTFRST value, 2-805

?VTFSAVE value, 2-793, 2-802

?VTFSEC value, 2-794, 2-803

?VTFSET offset, 2-791-2-792,2-800-2-801

?VTr'SKEW offset, 2-791-2-792, 2-800-2-801

?VTFSUD value, 2-805

?VTFSUS system call, 2-793, 2-803,
2-804-2-805

?VTFSYNC offset, 2-791-2-792, 2-800-2-801

?VTFTICK value, 2-794, 2-803

?VTFTID offset, 2-791-2-792, 2-800-2-801

?VTFUNIT offset, 2-791, 2-794, 2-800, 2-803

?VTFUSEC value, 2-794, 2-803

?VTFXIT system call, 2-806

?VWSMAX offset, 2-788

w
WACK character, 2-677

waiting
task or process, 2-845
terminal interrupt, 2-335

086-000195 updates
093-000542 Licensed Material- Property of Data General Corporation Index-39

?WALKBACK system call, 1-2,2-807-2-808

walking back through stacks, 2-807

?WDELAY system call, 2-809
examples of, A-4, A-7, A-37

?WHIST system call, 2-810-2-812

?WIN_BORDER_TYPE ... values, 2-822, 2-829,
2-831

?WIN_CRE ... offsets and values, 2-818-2-860

?WIN_CREATE_WINDOWfunction, 2-814

?WIN_DEFINE_PORTS function, 2-814, 2-823

?WIN_DELETE_WINDOW function, 2-229,
2-814,2-822

?WIN_DEVICE_STATUS function, 2-815,
2-837-2-838

?WIN_DEVSTAT ... offsets and values,
2-838-2-839

?WIN_DISABLE_KEYBOARD function, 2-815,
2-827

?WIN_DPORT ... offsets and values,
2-823-2-860

?WIN_ENABLE_KEYBOARD function, 2-815

?WIN_GET_TITLE function, 2-815, 2-832

?WIN_GET_USER_INTERFACE function,
2-815,2-830

?WIN_GET_ WINDOW _ID function, 2-815,
2-837

?WIN_GET_WINDOW_NAME function, 2-815,
2-832

?WIN_GINT ... offsets and values, 2-830-2-860

?WIN_GTITLE ... offsets and values, 2-832

?WIN_HIDE_GROUP function, 2-814, 2-826

?WIN_HIDE_ WINDOW function, 2-814, 2-826

?WIN_LANG_ID ... values, 2-839

?WIN_OUTBACK_GROUP function, 2-814,
2-825

?WIN_OUTBACK_ WINDOW function, 2-814,
2-825

?WIN_PALETTE_TYPE ... values, 2-821-2-822,
2-837

?WIN_PERMANENCE_OFF function, 2-815,
2-827

?WIN_PERMANENCE_ON function, 2-815,
2-827

?WIN_PKT.CHAN_NUM offset, 2-816-2-817

?WIN_PKT.FLAGS ... offset and values,
2-816-2-817

?WIN_PKT.FUNC offset, 2-813,2-816

?WIN_PKT_LEN value, 2-816

?WIN_PKT.PATH ... offsets, 2-816, 2-832

?WIN_PKT.PKT_ID offset, 2-816

?WIN_PKT.SUBPKT offset, 2-816-2-817,
2-822,2-825-2-833,2-837,2-838

?WIN_PKT.WIND_ID offset, 2-816, 2-838

?WIN_PTR_TYPE ... values, 2-839

?WIN_RETURN_DEVICE_ WINDOWS
function, 2-815, 2-840

?WIN_RETURN_GROUP _WINDOWS function,
2-815

peface, 2-840

?WIN_RTN_DEVWINDS ... offsets and values,
2-841

?WIN_RTN_GRPWINDS ... offsets and values,
2-840

?WIN_SET_TITLE function, 2-815,2-831

?WIN_SET_USER_INTERFACE function,
2-815,2-828-2-860

?WIN_SINT ... offsets and values, 2-828-2-829

?WIN_STATUS ... offsets and values,
2-834-2-835

?WIN_STITLE ... offsets and values, 2-831

?WIN_SUSPEND_GROUP function, 2-814,
2-827

?WIN_SUSPEND_WINDOW function, 2-814,
2-826

?WIN_UNHIDE_GROUP function, 2-814,
2-826

?WIN_UNHIDE_ WINDOW function, 2-814,
2-826

?WIN_UNSUSPEND_GROUP function, 2-815,
2-826-2-827

?WIN_ UNSUSPEND _ WINDOW function,
2-814,2-827

?WIN_UPFRONT_GROUP function, 2-814,
2-825

?WIN_UPFRONT_ WINDOW function, 2-814,
2-825

?WIN_ VT_TYPE ... values, 2-836

?WIN_ WINDOW _STATUS function, 2-815,
2-833-2-834

window
active group of, 2-574
graphics, 2-226
ID number, 2-226, 2-569
manipulating, 2-813

Index-40 Licensed Material - Property 01 Data General Corporation
086-000195 updates

093--000542

pathname, 2-226, 2-569
upfront,2-574

?WINDOW functions
bringing a window or group to the front,

2-825
changing the view and scan ports,

2-823-2-860
controlling

keyboard input to a window, 2-827
window output, priority, and visibility,

2-825-2-826
creating new, 2-818
deleting, 2-229, 2-822
getting

current user interface settings,
2-829-2-830

status, 2-833-2-860
status of a physical device, 2-837-2-860
title, 2-831-2-860
window IDs, 2-837-2-860

making hidden window or group visible,
2-826-2-860

resuming output to a suspended window,
2-827

sending a window or group to the back, 2-825
setting window

permanence,2-827
title, 2-831-2-860
user interface, 2-828-2-860

suspending window output, 2-826

?WINDOW system call, 2-191, 2-813-2-841
examples of, A-46-A-57

windowing, system calls (names of), 2-9

?WIRE system call, 2-842-2-843

wiring
Agent, 2-18
pages, 2-76
pages to the working set, 2-842

word, task status, 2-282

.WORD assembly language statement, 1-4

working directory, changing the, 2-89

working set, wiring pages to the, 2-842

?WRAC value, 2-781

?WRB system call, 2-213,2-596-2-597,2-844

?WRITE system call, 2-604, 2-844
examples of, A-3-A-4, A-II, A-14-A-16,

A-19,A-22-A-23,A-26,A-29,A-34

WRITE.SR sample program, A-2, A-22-A-23

writelread access to memory, 2-782

writing
block 1/0, 2-596, 2-844

record 1/0, 2-604
user data area, 2-602-2-604, 2-844

?WRUDA system call, 2-213, 2-602, 2-844

WSB, WSL, and WSP stack registers, 2-314

?WTSIG system call, 2-689, 2-691, 2-845,
2-848

?WTVERR system call, 2-793,2-802,2-846

?WTVSIG system call, 2-791,2-848

?WVBPL value, 2-783

?WVWPL value, 2-783

?XWM 1 offsets, 2-135

x
?XOFC offset, 2-198

?X1FC offset, 2-198

?X1LTH value, 2-113

?X2AP value, 2-121

?X2CD value, 2-120

?X2CM value, 2-121

?X2CN value, 2-120

?X2CP value, 2-121

?X2DD value, 2-121

?X2EB value, 2-120

?X2EX value, 2-120

?X2HO value, 2-120

?X2LN value, 2-120

?X2RC value, 2-121

?X2RM value, 2-121

?X2SD value, 2-121

?X2SE value, 2-120

?X2TO value, 2-121

?X3CO value, 2-121

?X3TR value, 2-121

?XAFD offset, 2-113, 2-118, 2·-131, 2-133,
2-135

?XAFT offset, 2-113, 2-118, 2-131, 2-133,
2-135

?XBFXR value: So String, 2-894

?XBIDS value, 2-894

?XBNHR value, 2-894

?XBORD value, 2-894

?XBTRP value, 2-894

086-000195 updates
09~542 Licensed Material - Property 0/ Data General Corporation Index-41

?XCREA_DIR ... offsets, 2-855-2-856

?XCRE~IPC ... offsets, 2-856-2-857

?XCREA_LNK ... offsets, 2-857

?XCRE~ OTH ... offsets, 2-854-2-855

?XCREA_PKT ... offsets, 2-850-2-851

?XCREA_TIME ... offsets, 2-853

?XCREATE system call, 2-849-2-860

?XD2FG offset, 2-138-2-158

?XD3FG offset, 2-138-2-158

?XDAD offset, 2-139-2-140

?XDAT offset, 2-113, 2-114, 2-131, 2-133

?XDBP offset, 2-139-2-140

?XDCOP offset, 2-139-2-140

?XDEP offset, 2-139-2-140

?XDEVoffset, 2-110-2-111

?XDJN offset, 2-139-2-140

?XDLMT offset, 2-139-2-140

?XDPN offset, 2-139-2-140

?XDQP offset, 2-139-2-140

?XDRSVoffset, 2-139-2-140

?XDSD offset, 2-139-2-140

?XDSFG offset, 2-138-2-158

?XDSQN offset, 2-139-2-140

?XDST offset, 2-139-2-140

?XDTA offset, 2-139-2-140

?XDUL offset, 2-109

?XDUN offset, 2-139-2-140

?XDUT offset, 2-109

XEQ DEBUG command, 2-255

?XFBAT queue type, 2-114

?XFBI value, 2-117, 2-125

?XFBP offset, 2-113, 2-118, 2-131, 2-133,
2-135

?XFDA value, 2-116, 2-125

?XFDUN function, 2-109

?XFEP value, 2-115

?XFFO value, 2-117, 2-126

?XFFTA queue type, 2-114

?XFG2 offset, 2-113, 2-115, 2-131, 2-133,
2-138,2-139-2-140

?XFGRT value, 2-894

?XFGS offset, 2-113, 2-116,2-117, 2-122,
2-123,2-131,2-133,2-138-2-158

?XFGWD value, 2-894

?XFHAM queue type, 2-114

?XFHK offset, 2-136, 2-138, 2-139

?XFLC value, 2-110-2-111

?XFLK offset, 2-136, 2-138, 2-139

?XFLO value, 2-110-2-111

?XFLPT queue type, 2-114

?XFME value, 2-110-2-111

?XFMLT function, 2-107-2-108, 2-131

?XFMNT function, 2-131

?XFMOD function, 2-133, 2-134, 2-471

?XFMUN function, 2-106, 2-131

?XFNH and ?XF8B values, 2-115

?XFNO value, 2-117, 2-125

?XFNQN function, 2-136-2-137

?XFNR value, 2-116, 2-125

?XFNV value, 2-110-2-111

?XFOPvalue, 2-117, 2-125

?XFOTH queue type, 2-114

?XFPl and ?XFP2 offsets, 2-127-2-131

?XFP2L offset, 2-127-2-131

?XFP3 and ?XFP4 offsets, 2-130-2-158

?XFPE value, 2-116, 2-126, 2-131

?XFPLT queue type, 2-114

?XFQDS function, 2-138

?XFQN offset, 2-138, 2-139

?XFRA value, 2-117, 2-126

?XFSH value, 2-116, 2-117, 2-125

?XFSNA queue type, 2-114

?XFSTAT file types, 2-863

?XFSTAT system call, 2-862

?XFSTAT_PKT ... offsets, 2-866-2-876

?XFSTS function, 2-129-2-130

?XFSUB queue type, 2-112, 2-114, 2-131

?XFTB value, 2-115

?XFTI value, 2-117-2-118, 2-126

?XFUC value, 2-117

?XFWP offset, 2-136, 2-139

?XFXDU function, 2-132

?XFXML function, 2-108-2-109

Index--42 Licensed Material- Property 01 Data General Corporation
086-{)()0195 updates

093-000542

?XFXTS function, 2-130

?XFXUN function, 2-107,2-108

?XGTACP system call, 2-882

?XGTACP _ ... offsets, 2-883-2-884

?XHBP offset, 2-113, 2-122, 2-133

?XlCNT offset, 2-893, 2-895

?XlD1-?XID3 offsets, 2-893, 2-895

?XlDIR offset, 2-893, 2-895

?XlFUN offset, 2-893-2-894

?XlGTD value, 2-894

?XlI1 and ?XlI2 values, 2-894

?XlLDN offset, 2-893, 2-895

?XlLN value, 2-893

?XlNIT system call, 2-886

?XlNIT_CACHE value, 2-889

?XlNIT _FIXUP _REC value, 2-890

?XlNIT_LDID_SPECIFIED value, 2-889

?XlNIT_NO_HARDWARE value, 2-889

?XlNIT_OVERRIDE value, 2-889

?XlNIT_PKT ... offsets, 2-888-2-910

?XlNIT_PUL_PKTID value, 2-892

?XlNIT _ROOT value, 2-889

?XlNIT _TARGET _DIR value, 2-889

?XlNIT_TRESPASS value, 2-889

?XlNIT_ WORKING_DIR value, 2-889

?XIOP offset, 2-893-2-894

?XIP1-?XIP3 offsets, 2-893-2-910

?XIPHI offset, 2-893-2-894

?XIPLO offset, 2-893-2-894

?XIR1-?XIR9 offsets, 2-893-2-910

?XIEU\offset, 2-893, 2-896

?XlRES offset, 2-893-2-894

?XLCAN value, 2-127-2-131

?XLDUN value, 2-109

?XLFWP value, 2-139-2-140

?XLHOL value, 2-127-2-131

?XLLC value, 2-110

?XLLO value, 2-110

?XLME value, 2-110

?XLMLT value, 2-107-2-108

?XLMNT value, 2-131

?XLMOD value, 2-133

?XLMT offset, 2-113, 2-115, 2-116, 2-131,
2-133,2-135

?XLMUN value, 2-106

?XLNQN value, 2-137

?XLNV value, 2-110

?XLPN offset, 2-113, 2-115

?XLQDS value, 2-139

?XLQNB value, 2-137

?XLSTS value, 2-129

?XLTH value, 2-113

?XLUNH value, 2-127-2-131

?XLXTS value, 2-130

?XMBP offset, 2-113, 2-122, 2-1a3

?XMDF offset, 2-110-2-111

?XMEL value, 2-108

?XMFC value, 2-108

?XMFG offset, 2-110-2-111

?XMFI value, 2-108

?XMFN offset, 2-110-2-111

?XMFR value, 2-108

?XMFS value, 2-111

?XMIBM value, 2-35

?XMLE offset, 2-108

?XMLF offset, 2-108

?XMLL offset, 2-107-2-108

?XMLR offset, 2-108

?XMLS offset, 2-108

?XMLT offset, 2-107-2-108

?XMLV offset, 2-107-2-108

?XMLX value, 2-108

?XMSQ offset, 2-110-2-111

?XMSQB value, 2-111

?XMT system call, 2-898

?XMTW system call, 2-899
example of, A-33

?XMUE offset, 2-107

?XMUF offset, 2-107

?XMUL offset, 2-106

?XMUQ offset, 2-107

?XMUR offset, 2-107

?XMUS offset, 2-107

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation Index--43

?XMUT offset, 2-106, 2-109

?XMUX value, 2-107

?XNRQ offset, 2-139

?XNRT offset, 2-139

XON value, 2-41

?XPBP offset, 2-113, 2-118, 2-131

?XPCH offset, 2-902, 2-906

?XPCID offset, 2-903, 2-907

?XPCPL offset, 2-902, 2-906

?XPCPU offset, 2-903, 2-907

?XPCW offset, 2-902, 2-906

?XPDBS offset, 2-902, 2-907

?XPDESLN offset, 2-904, 2-907

?XPDIS offset, 2-902, 2-907, 2-909

?XPDRS offset, 2-902, 2-907

?XPEX offset, 2-902, 2-906

?XPF2-?XPF5 offsets, 2-902, 2-905-2-906

?XPFA offset, 2-902, 2-907

?XPFL offset, 2-902, 2-905

?XPFP offset, 2-902, 2-905

?XPGAB offset, 2-909

?XPGBS offset, 2-903, 2-907

?XPGLT offset, 2-909

?XPGRB offset, 2-909

?XPGRS offset, 2-903, 2-907

?XPIH offset, 2-902, 2-907

?XPLFA offset, 2-903, 2-907

?XPLL offset, 2-903, 2-907

?XPLTH offset, 2-909

?XPLTH value, 2-903

?XPMX offset, 2-902, 2-906

?XPNBS offset, 2-903, 2-908

?XPNR offset, 2-902, 2-905

?XPNRS offset, 2-903, 2-908

?XPPD offset, 2-902, 2-906

?XPPG offset, 2-903, 2-907

?XPPH offset, 2-902, 2-906

?XPPL offset, 2-903, 2-907

?XPPR offset, 2-902, 2-906

?XPPU offset, 2-903, 2-908

?XPPVoffset, 2-902, 2-906

?XPR1 offset, 2-902, 2-906

?XPRH offset, 2-902, 2-906

?XPRI offset, 2-113, 2-131, 2-133, 2-135

?XPRI value, 2-116

?XPRV offset, 2-105-2-112, 2-113, 2-114

?XPSF offset, 2-902, 2-905

?XPSID value, 2-905

?XPSID 1 and ?XPSID2 values, 2-905, 2-909

?XPSL offset, 2-903, 2-907

?XPSNS offset, 2-902, 2-905

?XPSP offset, 2-902, 2-905, 2-908

?XPSQF offset, 2-902, 2-905

?XPSTAT system call, 2-900-2-909

?XPSW offset, 2-902, 2-905

?XPSWS offset, 2-904

?XPUBS offset, 2-903, 2-908

?XPULC offset, 2-903, 2-907

?XPUN offset, 2-903, 2-908

?XPUPD offset, 2-903, 2-908

?XPUQSH offset, 2-909

?XPURS offset, 2-903, 2-908

?XPUWS offset, 2-904

?XPWD offset, 2-113, 2-122, 2-133

?XPWM offset, 2-902, 2-906

?XPWS offset, 2-902, 2-906

?XQ1FG offset, 2-137

?XQNJ offset, 2-137

?XQQN offset, 2-137

?XQQT offset, 2-137

?XQRSV offset, 2-137

?XRES1-?XRES4 offsets, 2-110-2-112, 2-122,
2-124,2-131,2-133

?XRFNC function, 2-132

?XRFNC offset, 2-105-2-112

?XSCV value, 2-111

?XSD1 and ?XSD2 values, 2-111

?XSDEN value, 2-111

?XSEL value, 2-111

?XSEQ offset, 2-113, 2-118, 2-131, 2-133,
2-134

?XSIBM value, 2-111

?XSMT value, 2-111

Index--44 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

?XSRO value, 2-111

?XSVU value, 2-111

?XT16T value, 2-304.2, 2-762

?XT32T value, 2-304.2, 2-762

?XTABR value, 2-304.2, 2-762

?XTAOS value, 2-304.2, 2-762

?XTBCX value, 2-304.2, 2-762

?XTCCX value, 2-304.2, 2-762

?XTCIN value, 2-304.2, 2-762

?XTIM offset, 2-113, 2-115, 2-131, 2-133

?XTR16 value, 2-304.2, 2-762

?XTR32 value, 2-304.2, 2-762

?XTSUP value, 2-304.2, 2-762

?XTYP offset, 2-113, 2-114, 2-131, 2-133,
2-134

?XUSR offset, 2-113, 2-122, 2-133

XVCT instruction, 2-155

?XVOL offset, 2-110-2-111

XWO-XW3 values, 2-133

?XWMO-?XWM3 offsets, 2-133, 2-135

?XWWO-?XWW3 offsets, 2-131, 2-133, 2-135

?XWWOL-?XWW3L offsets, 2-131, 2-133

?XWW1 offset, 2-135

?XWW2 offset, 2-135

?XWW3 offset, 2-135

?XXD L offset, 2-132

?XXDP offset, 2-132

?XXDQ offset, 2-132

?XXDT offset, 2-132

?XXWO-?XXW3 offsets, 2-113, 2-119-2-120

?XXWOL-?XXW3L offsets, 2-113, 2-119-2-120

y
yea~current,2-187

z
?ZAC function, 2-439

?ZAC3 and ?ZAC4 offsets, 2-442

?ZACA offset, 2-442

?ZACF offset, 2-442

?ZACI offset, 2-442

?ZACR offset, 2-442

?ZACZ value, 2-442

?ZAG function, 2-439

?ZAG value, 2-443

?ZAGF offset, 2-443

?ZAGI offset, 2-443

?ZAGL value, 2-443

?ZAGN offset, 2-443

?ZAGZ value, 2-443

?ZAK value, 2-441

?ZAL function, 2-439

?ZBI function, 2-439

?ZBIA offset, 2-446

?ZBIB offset, 2-446

?ZBIF offset, 2-446

?ZBII offset, 2-446

?ZBIL value, 2-446

?ZBIZ value, 2-446

?ZBL function, 2-439

?ZBLA offset, 2-444

?ZBLB offset, 2-444

?ZBLF offset, 2-444

?ZBLI offset, 2-444

?ZBLL value, 2-444

?ZBLZ value, 2-444

?ZBO function, 2-439

?ZBOA offset, 2-445

?ZBOB offset, 2-445

?ZBOF offset, 2-445

?ZBOI offset, 2-445

?ZBOL value, 2-445

?ZBOZ value, 2-445

?ZBR function, 2-439

?ZBRF offset, 2-447

?ZBRI offset, 2-447

?ZBRL value, 2-447

?ZBRS offset, 2-447

?ZBRZ value, 2-447

?ZCA function, 2-439

?ZCAI offset, 2-448

086-000195 updates
093-000542 Licensed Material - Property of Data General Corporation Index-45

?ZCAL value, 2-448

?ZCAR offset, 2-448

?ZCAS offset, 2-448

?ZCAZ value, 2-448

?ZCL function, 2-439

?ZCO function, 2-439

?ZCOF offset, 2-451

?ZCOI offset, 2-451

?ZCO L value, 2-451

?ZCOS offset, 2-451

?ZCP function, 2-439

?ZCPI offset, 2-452

?ZCPL value, 2-452

?ZCPN offset, 2-452

?ZCPR offset, 2-452

?ZCPZ value, 2-452

?ZCR function, 2-439, 2-451, 2-453, 2-477

?ZCRF offset, 2-453

?ZCRI offset, 2-453

?ZCRL value, 2-453

?ZCRN offset, 2-453

?ZCRQ offset, 2-453

?ZCRR offset, 2-453

?ZCRZ value, 2-453

?ZCS function, 2-439

?ZCS3 offset, 2-449-2-450

?ZCSA offset, 2-449-2-450

?ZCSB offset, 2-449-2-450

?ZCSF offset, 2-449-2-450

?ZCSI offset, 2-449-2-450

?ZCSK offset, 2-449-2-450

?ZCSL valuE~, 2-449-2-450

?ZCSN offset, 2-449-2-450

?ZCSP offset, 2-449-2-450

?ZCSR offset, 2-449-2-450

?ZCSU offset, 2-449-2-450

?ZCSZ value, 2-450

?ZDE function, 2-439

?ZDF function, 2-439

?ZDFA offset, 2-454

?ZDFB offset, 2-454

?ZDFF offset, 2-454

?ZDFI offset, 2-454

?ZDFL value, 2-454

?ZDFZ value, 2-454

?ZDI function, 2-439

?ZDIF offset, 2-455

?ZDn offset, 2-455

?ZDIL value, 2-455

?ZDIN offset, 2-455

?ZDIZ value, 2-455

?ZDM function, 2-439

?ZDM value, 2-471

?ZDS function, 2-439

?ZDSF offset, 2-456

?ZDSI offset, 2-456

?ZDSL value, 2-456

?ZDSM offset, 2-456

?ZDSZ value, 2-456

?ZEL function, 2-439

?ZELF offset, 2-457

?ZELI offset, 2-457

?ZELN value, 2-457

?ZELR offset, 2-457

?ZELZ value, 2-457

?ZEN function, 2-439

?ZEN3 offset, 2-458-2-459

?ZENC offset, 2-458-2-459

?ZENF offset, 2-458-2-459

?ZENI offset, 2-458-2-459

?ZENK offset, 2-458-2-459

?ZENL value, 2-458

?ZENR offset, 2-458-2-459

?ZENT offset, 2-458-2-459

?ZENZ value, 2-459

?ZEV function, 2-439

?ZEVF offset, 2-460

?ZEVI offset, 2-460

?ZEVL value, 2-460

?ZEVR offset, 2-460

?ZEVZ value, 2-460

?ZFL function, 2-439

Index--46 Licensed Material - Property of Data General Corporation
086-000195 updates

093-000542

?ZFLF offset, 2-461

?ZFLI offset, 2-461

?ZFLL value, 2-461

?ZFLS offset, 2-461

?ZFLZ value, 2-461

?ZFN function, 2-439

?ZFO function, 2-439

?ZFOA offset, 2-462

?ZFOB offset, 2-462

?ZFOF offset, 2-462

?ZFOI offset, 2-462

?ZFOL value, 2-462

?ZFOZ value, 2-462

?ZHA function, 2-439

?ZHA value, 2-441

?ZHAF offset, 2-463

?ZHAI offset, 2-463

?ZHAL value, 2-463

?ZHAR offset, 2-463

?ZHAZ value, 2-463

?ZHE function, 2-439

?ZHEH offset, 2-464

?ZHEI offset, 2-464

?ZHEL value, 2-464

?ZHER offset, 2-464

?ZHEZ value, 2-464

?ZHO function, 2-439

?ZHOI offset, 2-465

?ZHOL value, 2-465

?ZHOR offset, 2-465

?ZHOS offset, 2-465

?ZHOZ value, 2-465

?ZJ30 value, 2-476

?ZJ90 value, 2-480

?ZJF 1 value, 2-446

?ZJHO value, 2-457

?ZJIO value, 2-460

?ZJS 1 value, 2-482

?ZN1-?ZJV9 values, 2-496

?ZJVD-?ZNE values, 2-496

?ZLI function, 2-439

086-000195 updates
093-{)OO542

?ZLIA offset, 2-466

?ZLIB offset, 2-466

?ZLII offset, 2-466

?ZLIL value, 2-466

?ZLIZ value, 2-466

?ZLO function, 2-439

?ZL03-?ZL06 offsets, 2-467-2-468

?ZLOC offset, 2-467-2-468

?ZLOF offset, 2-467-2-468

?ZLOI offset, 2-467-2-468

?ZLOL value, 2-467

?ZLOP offset, 2-467-2-468

?ZLOZ value, 2-468

?ZLP function, 2-439

?ZLPI offset, 2-469

?ZLPL value, 2-469

?ZLPN offset, 2-469

?ZLPR offset, 2-469

?ZLPZ value, 2-469

?ZMD function, 2-439

?ZMD value, 2-441

?ZME function, 2-439

?ZMO function, 2-439

?ZMOA offset, 2-472

?ZMOB offset, 2-472

?ZMOF offset, 2-472

?ZMOI offset, 2-472

?ZMOL value, 2-472

?ZMOM offset, 2-472

?ZMOR offset, 2-472

?ZMOZ value, 2-472

?ZMP function, 2-439

?ZMPA offset, 2-470

?ZMPB offset, 2-470

?ZMPF offset, 2-470

?ZMPloffset,2-470

?ZMPL value, 2-470

?ZMPZ value, 2-470

?ZMS function, 2-439

?ZMSO offset, 2-473

?ZMS3-?ZMS9 offsets, 2-473-2-474

Licensed Material- Property 0/ Data General Corporation Index--47

?ZMSA offset, 2-473

?ZMSD offset, 2-473

?ZMSE offset, 2-473-2-474

?ZMSF offset, 2-473-2-474

?ZMSG offset, 2-473-2-474

?ZMSloffset, 2-473-2-474

?ZMSK offset, 2-473-2-474

?ZMSL value, 2-473

?ZMSM offset, 2-473

?ZMSP offset, 2-473-2-474

?ZMSQ value, 2-474

?ZMSR offset, 2-473

?ZMSS offset, 2-473

?ZMST offset, 2-473

?ZMSU offset, 2-473

?ZMSVoffset, 2-473

?ZMSX offset, 2-473

?ZMSZ offset, 2-473

?ZON function, 2-439

?ZOP function, 2-439

?ZOPF offset, 2-476

?ZOPI offset, 2-476

?ZOPL value, 2-476

?ZOPR offset, 2-476

?ZOPZ value, 2-476

?ZPA function, 2-439

?ZPAF offset, 2-477

?ZPAI offset, 2-477

?ZPAL value, 2-477

?ZPAS offset, 2-477

?ZPAZ value, 2-477

?ZPE function, 2-440

?ZPE3 and ?ZPE4 offsets, 2-478

?ZPEF offset, 2-478

?ZPEI offset, 2-478

?ZPEL value, 2-478

?ZPER offset, 2-478

?ZPEU offset, 2-478

?ZPEV offset, 2--478

?ZPEZ value, 2-478

?ZPI function, 2-440

Index--48

?ZPIA offset, 2-479

?ZPIB offset, 2-479

?ZPIF offset, 2-479

?ZPII offset, 2-479

?ZPIL value, 2-479

?ZPIR offset, 2-479

?ZPIZ value, 2-479

?ZPR function, 2-440

?ZPR value, 2-441

?ZPRF offset, 2-480

?ZPRI offset, 2-480

?ZPRL value, 2-480

?ZPRR offset, 2-480

?ZPRZ value, 2-480

?ZPU function, 2-440

?ZQP function, 2-440

?ZQPA offset, 2-481-2-482

?ZQPB offset, 2-481-2-482

?ZQPC offset, 2-481-2-482

?ZQPF offset, 2-481-2-482

?ZQPH offset, 2-481

?ZQPI offset, 2-481-2-482

?ZQPL value, 2-481

?ZQPN offset, 2-481

?ZQPO offset, 2-481

?ZQPP offset, 2-481

?ZQPS offset, 2-481

?ZQPU offset, 2-481

?ZQPX value, 2-481

?ZQPZ value, 2-482

?ZRE function, 2-440

?ZREF offset, 2-484

?ZREI offset, 2-484

?ZREL value, 2-484

?ZRER offset, 2-484

?ZREZ value, 2-484

?ZRF function, 2-440

?ZRF value, 2-441

?ZRFF offset, 2--483

?ZRFI offset, 2--483

?ZRFL value, 2-483

Licensed Material- Property d Data General Corporation
086-000195 updates

093-000542

?ZRFM offset, 2-483

?ZRFZ value, 2-483

?ZRT function, 2-440

?ZRTA offset, 2-485

?ZRTB offset, 2-485

?ZRTI offset, 2-485

?ZRTL value, 2-485

?ZRTZ value, 2-485

?ZSlB offset, 2-487-2-490

?ZSlC offset, 2-487-2-490

?ZSlF offset, 2-487-2-490

?ZSlL value, 2-487

?ZSlM offset, 2-487-2-490

?ZSlP offset, 2-487-2-490

?ZSlS offset, 2-487-2-490

?ZSI function, 2-440

?ZSIF offset, 2-486

?ZSII offset, 2-486

?ZSIL value, 2-486

?ZSIS offset, 2-486

?ZSIZ value, 2-486

?ZSK function, 2-440

?ZSK3 offset, 2-490

?ZSKF offset, 2-490

?ZSKI offset, 2-490

?ZSKL value, 2-490

?ZSKR offset, 2-490

?ZSKZ value, 2-491

?ZSP function, 2-440

?ZSP3-?ZSP9 offsets, 2-487-2-488

?ZSPB offset, 2-487-2-488

?ZSPC offset, 2-487-2-488

?ZSPD offset, 2-487-2-488

?ZSPE offset, 2-487-2-490

?ZSPF offset, 2-487-2-488

?ZSPH offset, 2-487-2-488

?ZSPI offset, 2-487-2-488

?ZSPK offset, 2-487-2-488

?ZSPN offset, 2-487-2-488

?ZSPP offset, 2-487-2-488

?ZSPQ offset, 2-487-2-488

?ZSPR offset, 2-487-2-490

?ZSPS offset, 2-487-2-488

?ZSPT offset, 2-487-2-488

?ZSPV offset, 2-487-2-488

?ZSPZ value, 2-488

?ZSR function, 2-440, 2-492

?ZSR3-?ZSR7 offsets, 2-492

?ZSRB offset, 2-492

?ZSRC offset, 2-492

?ZSRF offset, 2-492

?ZSRI offset, 2-492

?ZSRL value, 2-492

?ZSRM offset, 2-492

?ZSRQ offset, 2-492

?ZSRR offset, 2-492

?ZSRS offset, 2-492

?ZSRX offset, 2-492

?ZSRZ value, 2-493

?ZSS function, 2-440

?ZSSO-?ZSS9 offsets, 2-495, 2-497-2-498

?ZSSA-?ZSSZ offsets, 2-495-2-498

?ZST function, 2-440

?ZSTA offset, 2-499

?ZSTB offset, 2-499

?ZSTF offset, 2-499

?ZSTI offset, 2-499

?ZSTL value, 2-499

?ZSTZ value, 2-499

?ZSXO-?ZSX9 offsets, 2-495-2-498

?ZTE function, 2-440

?ZTR function, 2-440

?ZTRI offset, 2-500

?ZTRL value, 2-500

?ZTRR offset, 2-500

?ZTRT offset, 2-500

?ZTRZ value, 2-500

?ZUC function, 2-440

?ZUH function, 2-440

?ZUm offset, 2-501

?ZUHL value, 2-501

?ZUHR offset, 2-501

086-000195 updates
093--000542 Licensed Material- Property 0/ Data General Corporation Index--49

?ZUHS offset, 2-501

?ZUHZ value, 2-501

?ZUL function, 2-440

?ZULF offset, 2-504

?ZULI offset, 2-504

?ZULL value, 2-504

?ZULS offset, 2-504

?ZULZ value, 2-504

?ZUN function, 2-440

?ZUNF offset, 2-505

?ZUNI offset, 2-505

?ZUNL value, 2-505

?ZUNS offset, 2-505

?ZUNZ value, 2-505

?ZUS function, 2-440

?ZUS3-?ZUS7 offsets, 2-502-2-503

?ZUSF offset, 2-502-2-503

?ZUSI offset, 2-502-2-503

?ZUSK offset, 2-502-2-503

?ZUSL value, 2-502

?ZUSM offset, 2-502-2-503

?ZUSP offset, 2-502-2-503

?ZUSR offset, 2-502-2-503

?ZUSU offset, 2-502-2-503

?ZUSV offset, 2-502-2-503

?ZUSZ value, 2-503

?ZVE function, 2-440

?ZVEF offset, 2-508

?ZVEI offset, 2-508

?ZVEL value, 2-508

?ZVES offset, 2-508

?ZVEZ value, 2-508

?ZXB function, 2-440

?ZXFG offset, 2-438, 2-441

?ZXFU offset, 2-438-2-440

?ZXID offset, 2-438, 2-439

?ZXIZ value, 2-439

?ZXLN value, 2-438

?ZXNA offset, 2-438,2-441

?ZXNB offset, 2-438, 2-441

?ZXNL offset, 2-438, 2-441

?ZXRS offset, 2-438,2-441

?ZXSP offset, 2-438, 2-441

?ZXTP offset, 2-438, 2-441

?ZYOO value, 2-456

?ZY10 value, 2-472

?ZY20-?ZY29 values, 2-474

?ZY2G-?ZY2J values, 2-474

?ZY30 value, 2-476

?ZY40 value, 2-478

?ZY50 value, 2-483

?ZY60 value, 2-484

?ZY70-?ZY74 values, 2-503

?ZY80-?ZY87 values, 2-468

?ZY90 value, 2-480

?ZY9G-?ZY91 values, 2-442

?ZYBO-?ZYB9 values, 2-450

?ZYCO-?ZYC2 values, 2-455

?ZYDO-?ZYD9 values, 2-459

?ZYDA and ?ZYDB values, 2-459

?ZYEO value, 2-443

?ZYFO-?ZYF2 values, 2-446

?ZYGO value, 2-454

?ZYHO value, 2-457

?ZYIO value, 2-460

?ZY JO value, 2-462

?ZYJ2 value, 2-446

?ZYKO-?ZYK9 values, 2-488

?ZYKA and ?ZYKB values, 2-488

?ZYLO value, 2-444

?ZYMO value, 2-445

?ZYMF value, 2-470

?ZYNO value, 2-447

?ZYOO value, 2-451

?ZYPO value, 2-453

?ZYQO value, 2-477

?ZYRO-?ZYR2 values, 2-479

?ZYSO and ?ZYS1 values, 2-482

?ZYTO value, 2-486

?ZYUO-?ZYU8 values, 2-493

?ZYVO-?'ZYV9 values, 2-496

?ZYVA-?'ZYVE values, 2-496

Index-50 Licensed Material - Property of Data General Corporation
086--000t95 updates

093-000542

?Z¥WO value, 2-499

?ZY.XO value, 2-504

?ZYYO value, 2-505

?ZYZO value, 2-508

?ZZOO value, 2-456

?ZZ 10 value, 2-472

?ZZ20-?ZZ29 values, 2-474

?ZZ2G-?ZZ2J values, 2-474

?ZZ30 value, 2-476

?ZZ40 value, 2-478

?ZZ50 value, 2-483

?ZZ60 value, 2-484

?ZZ70-?ZZ74 values, 2-503

?ZZ80-?ZZ87 values, 2-468

?ZZ90 value, 2-480

?ZZ9G-?ZZ91 values, 2-442

?ZZBO-?ZZB9 values, 2-450

?ZZCO-?ZZC2 values, 2-455

?ZZDO-?ZZD9 values, 2-459

?ZZDA and ?ZZDB values, 2-459

?ZZEO value, 2-443

?ZZFO-?ZZF2 values, 2-446

?ZZGO value, 2-454

086--000195 updates
093-000542

?ZZHO value, 2-457

?ZZIO value, 2-460

?ZZJO value, 2-462

?ZZKO-?ZZK9 values, 2-488

?ZZKA-?ZZKC values, 2-488

?ZZLO value, 2-444

?ZZMO value, 2-445

?ZZMF value, 2-470

?ZZNO value, 2-447

?ZZOO value, 2-451

?ZZPO value, 2-453

?ZZQO value, 2-477

?ZZRO-?ZZR2 values, 2-479

?ZZSO and ?ZZS 1 values, 2-482

?ZZTO value, 2-486

?ZZUO-?ZZU8 values, 2-493

?ZZVO-?ZZV9 values, 2-496

?ZZVA-?ZZVE values, 2-496

?ZZWO value, 2-499

?ZZXO value, 2-504

?ZZYO value, 2-505

?ZZZO value, 2-508

Licensed Material- Property of Data General Corporation Index-51

Document Set
For Users

AOS/VS and AOS/VS II Glossary (069-000231)

For all users, this manual defines important terms used in AOSNS and AOSNS II manuals,
both regular and preinstalled.

Learning to Use Your AOS/VS System (069-000031)

A primer for all users, this manual introduces AOSNS (but the material applies to AOSNS II)
through interactive sessions with the CLI, the SED and SPEED text editors, programming
languages, Assembler, and the Sort/Merge utility.
Using the CLI (AOS and AOS /VS) is a good follow-up.

SED Text Editor User's Manual (AOS and AOS/VS) (093-000249)

For all users, this manual explains how to use SED, an easy-to-use screen-oriented text editor
that lets you program function keys to make repetitive tasks easier. The SED Text Editor
template (093-000361) accompanies this manual.

Using the AOS / VS System Management Interface (SM1) (069-000203)
Using the AOS / VS II System Management Interface (SMl) (069-000311)

For those working with preinstalled systems and those on regular systems who want an
alternative to the CLI, the SMI is an easy-to-use, menu-driven program that helps with
system management functions and some file maintenance tasks.

Using the CLI (AOS /VS and AOS /VS 11) (093-000646)

For all users, this manual explains the AOSNS and AOSNS II file and directory structure and
how to use the CLI, a command line interpreter, as the interface to the operating system. This
manual explains how to use the eLI macro facility, and includes a dictionary ofCLI commands
and pseudomacros.

For System Managers and Operators

AOS /VS and AOS /VS II Error and Status Messages (093-000540)

For all users, but especially for system managers and operators of regular systems, this manual
lists error and status messages, their source and meaning, and appropriate responses. This
manual complements Installing, Starting, and Stopping AOS /VS; Installing, Starting, and
Stopping AOS / VS II; and Managing AOS / VS and AOS / VS II.

AOS / VS and AOS / VS II Menu-Based Utilities (093-000650)

A keyboard template to identify function keys. A number of system management
programs-such as Disk Jockey, VSGEN, and the SMI-and the BROWSE utility use the
function keys identified on this template.

086-000195 updates
093--000542 Licensed Material- Property of Data General Corporation Docset-1

I

I

Information Update: Starting Your ECLIPSE MV /1000 DC (014-001728)

Updates Starting and Updating Preinstalled ADS /VS and Starting and Updating Preinstalled
ADS/VS II.

Installing, Starting, and Stopping ADS/VS (093-000675)
Installing, Starting, and Stopping ADSNS II (093-000539)

For system managers and operators of regular (as opposed to preinstalled) systems, these
manuals explain the steps necessary to format disks, install a tailored operating system, create
the multiuser environment, update the system or microcode, and routinely start up and shut
down the system. ADS / VS and ADS / VS II Error and Status Messages and Managing ADS I VS
andADS/VS II are companions to these manuals.

Managing ADSNS and ADSNS II (093-000541)

For system managers and operators, this manual explains managing an AOSNS or AOSNS II
system. Managing tasks include such topics as editing user profiles, managing the multiuser
environment with the EXEC program, backing up and restoring files, using runtime tools, and
so forth. This manual complements the "Installing" manuals, whether for regular or
preinstalled systems.

Starting and Updating Preinstalled ADS /VS (069-000293)
Starting and Updating Preinstalled AOS/VS II (069-000294)

For those working with preinstalled (as opposed to regular) operating systems on all computers
except ECLIPSE MY/3500 TM DC and MY/5000 Series systems, these manuals explain how to
start, update, and change certain system parameters. The manuals also help you interpret
error messages and codes. Companion manuals are Using the AOS / VS System Management
Interface and Using the ADS/VS II System Management Interface.

Starting and Updating Preinstalled AOS / VS on ECLIPSE MV /3500 TM DC and MV / 5000 TM DC
Series Systems (069-000481)
Starting and Updating Pre installed AOS / VS II on ECLIPSE MV /3500 TM DC and MV /5000 ™ DC
Series Systems (069-000480)

For those working with preinstalled (as opposed to regular) operating systems on ECLIPSE
MV/3500 TM DC and MY/5000 TM DC Series computers, these manuals explain how to start,
update, and change certain system parameters. The manuals also help you interpret error
messages and codes. Companion manuals are Using the AOS / VS System Management
Interface and Using the AOS / VS II System Management Interface.

If you have one of these computer systems, use the pertinent manual above; discard any other
Starting and Updating Preinstalled manuals you receive.

Using the AOS /VS System Management Interface (SM!) (069-000203)
Using the AOS/VS II System Management Interface (SMI) (069-000311)

For those working with preinstalled systems and those on regular systems who want an
alternative to the CLI, the SMI is an easy-to-use, menu-driven program that helps with
system management functions and some file maintenance tasks.

Docset-2 Licensed Material - Property of Data General Corporation
08EH>OO19S updates

09~0542

For Programmers

AOS / VS, AOS / VS II, and AOS / RT32 System Call Dictionary, ?A through ?Q (093-000542)
AOS /VS, AOS /VS II, and AOS / RT32 System Call Dictionary, ?R through ?Z (093-000543)

For system programmers and application programmers who use system calls, this two-volume
manual provides detailed information about system calls, including their use, syntax,
accumulator input and output values, parameter packets, and error codes. AOS / VS System
Concepts is a companion manual.

AOS /VS Debugger and File Editor User's Manual (093-000246)

For assembly language programmers, this manual describes using the AOSNS and AOSNS II
debugger for examining program files, and the file editor FED for examining and Inodifying
locations in any kind of disk file, including program and text files. The AOS / VS Debug / FED
template (093-000396) accompanies this manual.

AOS /VS Link and Library File Editor (LFE) User's Manual (093-000245)

For AOSNS and AOSNS II programmers, this manual describes the Link utility, which builds
executable program files from object modules and library files, and which can also be used to
create programs to run under the AOS, MP/AOS, RDOS, RTOS, or DGfUX lM operating systems.
This manual also describes the Library File Editor utility, LFE, for creating, editing, and
analyzing library files; and the utilities CONVERT and MKABS, for manipulating RDOS and
RTOS files.

AOS/VS Macroassembler (MASM) Reference Manual (093-000242)

For assembly language programmers, this reference manual describes the use and operation of
the MASM utility, which works under AOSNS and AOSNS II.

AOS/VS System Concepts (093-000335)

For system programmers and application programmers who write assembly-language
subroutines, this manual explains basic AOSNS system concepts, most of which apply to
AOSNS II as well. This manual complements both volumes of the AOS / VS, AOS / VS II, and
AOS / RT32 System Call Dictionary.

SPEED Text Editor (AOS and AOS /VS) User's Manual (093-000197)

For programmers, this manual explains how to use SPEED, a powerful (but unforgiving)
character-oriented text editor.

Other Related Documents

AOS/VS and AOS/VS II Performance Package User's Manual (093-000364)

For system managers, this manual explains how to use the AOSNS and AOSNS II
Performance Package (Model 30718), a separate product that is useful for analyzing and
perhaps improving the performance of AOSNS and AOSNS II systems.

Backing Up and Restoring Files With DUMP _3/ LOAD _3 (093-000561)

For system managers, operators, and experienced users, this manual explains the
DUMP _3/LOAD_3 product, separately available, which provides backup and enhanced
restoration functions, including precise indexing of files on a backup tape set.

086-000195 updates
093-000542 Licensed Material- Property 01 Data General Corporation Docset-3

Configuring and Managing the High-Availability Disk-Array / MY (H.A.D.A/ MY) Subsystem
(014-002160)

For system managers of the H.A.D.A.fMV subsystem (a separate product), this manual explains
how to configure, operate, and replace subsystem controllers, disk modules, and tape modules.
This manual also explains how to replace fans, power supplies, and other subsystem hardware.

Configuring Your Network with XTS (093-00689)

For network administrators, managers, or operators responsible for designing, configuring, or
maintaining a network management system, this manual describes how to manage and operate
Data General's XODIAC 1M Transport Service (XTS and XTS II) under AOSNS and AOSNS II.

Installing and Administering DG TCP / IP (093-701027)

For network managers and operators, this manual explains how to install and manage a
TCP/IP network under AOSNS.

Managing AOS /VS II ONCTM / NFS® Services (093-000667)

For network managers and operators, this manual explains how to install and manage an ONC
Network File server software under AOSNS II.

Managing AOS / VS II TCP / IP (093-000704)

For network managers and operators, this manual explains how to install and manage a
TCP/IP network under AOSNS II.

Managing and Operating the XODIACTM Network Management System (093-000260)

For network managers and operators, this manual describes how to install and manage the
Data General proprietary network software.

Managing XTS II with DG / OpenNMS (093-000698)

For network managers and operators, this manual explains how to use DG/OpenNMS to
manage the XTS II transport service for large communications networks. It also identifies the
XTS II components and explains how to use the NMI menus and screens to manage the XTS 11
subsystems and the Message Transport Agent (MTA).

Managing }{>ur DG / PC*Integration Network with DG / ONMS (093-000624)

For network managers, this manual explains how to manage XTS II and DGIPC*Integration
components with DG/OpenNMS.

Managing Your Network with DG / OpenNMS (093-000486)

For network managers, administrators, and operators, this manual describes how to use the
DG/OpenNMS software. It also explains how to load the software, create the DG/OpenNMS
environment, and use the Network Management Interface (NMI) to manage the network.

Managing Your XODIACTM Network with DG/ONMS (093-000625)

For network managers, this manual explains how to manage XTS II, MTA, and the XODIAC
agents (FTA, RMA, and SVTA) with DGIOpenNMS.

Docset-4 Licensed Material- Property of Data General Corporation
086-000195 updates

093-000542

Programming with the Remote Procedure Call (RPC) on ADS / VS II (093-000770)

For experienced network programmers, this manual provides information necessary to write the
Remote Procedure CaB for the AOSIVS II UDPIIP and TCPIIP networks.

Using CLASP (Class Assignment and Scheduling Package) (093-000422)

For system managers, this manual explains how to use the AOSIVS and AOSIVS II Class
Assignment and Scheduling Package (Model 31134), a separate product that is useful for
tailoring process scheduling to the needs of a specific site.

Using the MV Data Center Manager (093-000769)

For system managers, this manual explains how to use the MV Data Center Manager software,
a separate product that manages multiple ECLIPSE MVlFamily computers from an AViiON
workstation.

086-000195 updates
093--000542

End of Document Set

Licensed Material - Property of Data General Corporation Docset-5

'fOORDER
1. An order can be placed with the TIPS group in two ways:

a) MAlL ORDER- Use the order form on the opposite page and fill in all requested information. Be sure to
include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space
provided on the order form.

Send your order form with payment to: Data General Corporation
ATTN: Educational ServicestrIPS G 155
4400 Computer Drive
Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by c'redit card or paid for
by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

l\fETHOD OF PAYMENT
~L As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must
accompany order.

b) Check or Money Order - Make payable to Data General Corporation.
c) Credit Card - A minimum order of $20 is required for MasterCard or Visa orders.

~~HIPPING
a. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:
Total Quantity
1-4 Items

Shipping & Handling Charge
$5.00

5-10 Items
11-40 Items
41-200 Items
Over 200 Items

$8.00
$10.00
$30.00

$100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A
separate charge will be determined at time of shipment and added to your bill.

'vOLUME DISCOUNTS
4:. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount
$0-$149.99 0%
$150-$499.99 10%
Over $500 20%

~rERMS AND CONDITIONS
Ei. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

lJELIVERY
€.. Allow at least two weeks for delivery.

llETURNS
7. I terns ordered through the TIPS catalog may not be returned for credit.
8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS
£I. Customers outside of the United States must obtain documentation from their local Data General

Subsidiary or Representative. Any TIPS orders received by Data General U.S. Headquarters will be
forwarded to the appropriate DG Subsidiary or Representative for processing.

Mail To:
TIPS ORDER FORM

Data General Corporation
Attn: Educational ServicesfTl PS G 155
4400 Computer Drive
Westboro, MA 01581 - 9973

COMPANY NAME COMPANY NAME ---------------------------------- --------------------------------------~ ATTN: ________________ ATTN: ___________________ --1

ADDRESS ADDRESS (NO PO '-'_"
--------------------------~ CITY CITY

---~ STATE ___ . ________ ZIP _____ STATE ________ _ ZI

Priority Code __________ (See label on back of catalog)

Authorized Signature of Buyer
(Agrees to terms & conditions on reverse side)

0 UPS AQO.
1-4 Items $5.00

5-10 Items $8.00

11-40 Items $10.00

41-200 Items $30.00
100.00

Additional charge to be determined at time of
shipment and added to your bill.

o UPS Blue Label (2 day shipping)
o Red Label might shipping)

o Purchase Order Attached ($50 minimum)

Title

Oreler Amount

$0-$149.99
$150-$499.99
Over $500.00

P.O. number is . (Include hardcopy P.O.)

Save

0%
10%
20%

o Check or Money Order Enclosed o Visa 0 MasterCard ($20 minimum on credit cards)

Account Number Expiration Date

I

Authorized Signature
(Credit card orders w~hout signature and expiration date cannot be processed.)

Date Phone (Area Code) Ext.

ORDER TOTAL

Tax Exempt #
or Sales Tax
(if applicable) +

+

TOTAL-See C

THANK YOU FOH YOUR ORDER

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to oollect applicable sales or use tax on all
purchases shipped to states where DG maintains a place of business, which
oovers all 50 states. Please include your local taxes when determining the total
value of your order. If you are uncertain about the correct tax amount, please
call 508-87(}-1600.

Fonn 702
Rev. 8/87

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS

SERVICE
TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technicallnfonnation and Publications Service (TIPS) solely in accordance with the follOwing
tenns and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form. These tenns and conditions
apply to all orders, telephone, telex, or mail. By accepting these products the Customer accepts and agrees to be bound by these tenns and
conditions.

1. CUSTOMER CERTIRCATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the
subject matter of the publication(s) ordered hereunder.

2. TAXES
Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under this Agreement,
exclusive of taxes based on DGC's net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details and
other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the tenns and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY
DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a period of ninety
(90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided it is returned postage prepaid to
DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and DGC's sole obligation and liability for defective
media. This limited media warranty does not apply if the media has been damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY
EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND RTNESS FOR PARTICULAR PURPOSE ON ANY OF
'THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

IS. LIMITATION OF LIABILITY
.A. CUSTOMER AGREES THAT DGC'S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO LIABILITY ARISING
lOUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT EXCEED THE CHARGES PAID BY
CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED. THIS LIMITATION OF LIABILITY SHALL NOT APPLY
TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY DGC'S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED
IHEREIN, IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES
WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PRORTS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST
IDATA, OR DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY
'THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

lB. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES.

'1. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Fonn. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. Such contract is not
assignable. These tenns and conditions constitute the entire agreement between the parties with respect to the subject matter hereof and
:~upersedes all prior oral or written communications, agreements and understandings. These tenns and conditions shall prevail notwithstanding
any different, conflicting or additional tenns and conditions which may appear on any order submitted by Customer. DGC hereby rejects all
:~uch different, conflicting, or additional terms.

l!t.IMPORTANT NOTICE REGARDING AOs/vS INTERNALS SERIES (ORDER #1865 & #1875)
Customer understands that information and material presented in the AOSNS Internals Series documents may be specific to a particular
revision of the product. Consequently user programs or systems based on this infonnation and material may be revision-locked and may not
1'unction proper1y with prior or future revisions of the product. Therefore, Data General makes no representations as to the utility of this
infonnation and material beyond the current revision level which is the subject of the manual. Any use thereof by you or your company is at
your own risk. Data General disclaims any liability arising from any such use and I and my company (Customer) hold Data General completely
hannless therefrom.

AOSNS, AOSNS 11,
and AOS/RT82

System Call
Dictionary

? A Through ?Q

093-000542-02

L ______________ --1-_______________

Cut here and insert in binder spine pocket

