
t. Data General
Software Documentation

AOS/VS
Debugger and File Editor

User' s Manual

AOS/VS
Debugger and File Editor

User's Manual

093-000246-01

For the latest enhancements. cautions. documentation changes. and other information on I
this product, please see the Release Notice (OB5-series) supplied with the software.

Ordering No. 093-000246
~Data General Corporation, 1980, 1985
All Rights Reserved
Printed in the United States of America
Revision 01, January 1985
Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENT A TION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/aOOO, TRENDVIEW, SWAT,
GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/l,
DG/GATE, DG/XAP, ECLIPSE MV/l0000, GW/4000, GDC/l000, REV-UP, XODIAC, DEFINE, SLATE,
microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

AOSjVS
Debugger and File Editor

User's Manual
093-000246

Revision History:

Original Release - November 1980
First Revision - January 1985

CONTENT UNCHANGED

AOSjVS Rev. 1.00

The content in this revision is unchanged from (093-000246-00). This revision changes only
printing and binding details.

Preface

This manual describes the use and operation of the Advanced Operating System/Virtual Storage (AOS/VS)
Debugger (DEBUG) and File Editor (FED) utility. Use this product to debug ECLIPSE® MV /8000 assembly
language programs and to edit AOS/VS disk files.

We have designed this manual for programmers familiar with the ECLIPSE® MV /8000 assembly language
instruction set and the AOS/VS operating system. We present information at a medium pace and provide
numerous examples so that relatively inexperienced programmers will be able to use this manual.

Suggested Manuals
Many concepts we mention in this manual are documented in greater depth in other Data General
publications. In certain instances, you may need to refer to one of the following documents for further
information:

• AOS/VS Link and Library File Editor User's Manual (093-000245)

• AOS/VS Macroassembler (MASM) Reference Manual (093-000242)

• AOS/VS Programmer's Manual (093-000241)

• AOS/VS and AOS Command Line Interpreter (CLI) User's Manual (093-000122)

• ECLIPSE® MV/BOOO Principles of Operation (014-000648)

093-000246 Licensed Material-Property of Data General Corporation iii

Reader, Please Note:
We use these conventions for command formats in this manual:

arg {,argJ ... $X

Where

arg

{argJ

$

x

Means

You must enter some argument. Sometimes, we use

{
arg 1 }
arg2

which means you must enter one of the arguments. Don't enter the braces; they
only set off the choice.

You have the option of entering this argument. Don't enter the brackets; they
only set off what's optional.

You may repeat the preceding entry or entries. The explanation will tell you
exactly what you may repeat.

You must enter the escape character (ASCII value 33 8). Enter this character by
pressing the ESC key on your keyboard. The Debugger echoes the escape
character as a dollar sign.

You must enter the single letter as shown. This character represents a particular
command to the Debugger.

Other conventions we use throughout this manual are:

Symbol

1

T

$

<$>

CTRL-X

TAB

iv

Meaning

The NEW LINE character (ASCII value 128)

The carriage return (CR) character (ASCII value 15 8)

The uparrow character (ASCII value 136 8)

The escape (ESC) character (ASCII value 33 8)

The dollar sign character (ASCII value 448)

A control character sequence. Hold down the control (CTRL) key while you
strike another key (represented by X).

The horizontal tab character (ASCII value 118)

Llcen .. d Material-Property of Data General Corporation 083-000248

If your keyboard does not conform to the ANSI standard, the meanings of J and 1 are reversed. That is, 1
means NEW LINE and J means carriage return. Refer to Chapter 1 for more information.

We use the following format to present bit fields:

80-02305

Bit 0 is the first bit; we call this the most significant bit. Bit 31 is the least significant bit in a 32-bit sequence.

Note that we divide bit fields into 16-bit quantities. Each 16-bit segment is called a word.

Lastly, we use the term console to refer to both video (CRT) terminals and hard-copy devices.

Contacting Data General
We welcome your comments and suggestions concerning this and other Data General publications. If you:

• Have comments on this manual-- Please use the prepaid Remarks Form that appears after the Index.

• Require additional manuals -- Please contact your local Data General sales representative.

• Experience software problems -- Please notify your local Data General systems engineer.

End of Preface

093-000246 Licensed Material-Property of Data General Corporation v

Contents

Chapter 1 - Introduction to the AOS/VS Debugger

Overview. · 1-1
Debugger Features.
The File Editor (FED).

· 1-1
.. ... 1-2

Differences Between Consoles. · 1-3

Chapter 2 - DEBUG Operating Procedures

Entering the Debugger ... 2-1
Entering the Debugger from the CLI 2-1
Entering the Debugger from a Program 2-2

Debugger Commands. 2-3
Command Format ... 2-3
Correcting Typing Errors ... 2-3
Error Responses . 2-4

Starting Program Execution 2-4
Leaving the Debugger. 2-5
General Use Commands , 2-6

The Help Command . 2-6
Saving the Debugging Session 2-8

Opening a Log File. 2-8
Closing a Log File. 2-8
Entering Commands in a Log File. 2-10

Pushing to the CLI . 2-11

Chapter 3 - Accessing Memory

Memory ... ,3-2
Rings .3-2

AOS/VS Addresses .3-2
Ring Register ($G). .3-2
Ring Field Operator (J .3-3

Location Counter and Program Counter. 3-3
Examining and Modifying Memory. 3-4

Examining Memory Locations 3-4
Closing a Location with / or \ 3-7
Examining Locations in Various Display Modes . 3- 7

Modifying Memory Locations . 3-8
Legal Entry Values ... 3-9
Permanent Memory Modifications . 3-10

Displaying and Searching Memory 3-10
Displaying Memory. 3-12

Displaying Instructions . 3-13
Searching Memory 3-14

093-000246 Licensed Material-Property of Data General Corporation vii

Chapter 4 - Accessing Registers
Examining and Modifying Registers 4-1
Machine State Registers. 4-4

Accumulators and Carry ... 4-4
Processor Status Register ... 4-5
Floating Point Acumulators and FPSR 4-6
Stack Registers. 4-8
Program Counter ······ ... 4-9

Debugger Registers ... 4-9
Radix Register . 4-10
Global Display Mode Register 4-10
Proceed Count Registers . 4-12
Ring Register. ',' 4-12

Chapter 5 - Breakpoints and Program Restarts
Setting Breakpoints .. 5-2
Displaying Breakpoints 5-3
Deleting Breakpoints. 5-4
Conditional Breakpoints . 5-4
Proceed Counts .. 5-5
Program Restarts . 5-7

Restarting Your Program at a Breakpoint 5-8
Restarting Your Program at a Location . 5-9

Chapter 6 - Symbol Recognition and Definition
Program Symbol Recognition ... 6-1

Disabling a Symbol Table .. 6-2
Enabling a Symbol Table ... 6-2

Temporary Symbols ... 6-3
Defining Temporary Symbols .. 6-3
Displaying Temporary Symbols 6-4
Deleting Temporary Symbols 6-4

Special Debugger Symbols ... 6-5
Checking a Symbol's Value. 6-6
Address Symbols . 6-6
Entering Symbols .. 6-7

Entering Symbolic Addresses . 6-7
Debugger's Symbolic Displays . 6-8

Displaying Symbolic Addresses . 6-8
Displaying the Contents of Memory and Registers in
Symbolic Mode 6-10

Chapter 7 - Debugger Expressions
Expression Syntax .. 7-1
Operands . 7-1

Integers ... 7-2
Symbols .. 7-2

Opera tors . 7 -3
Arithmetic Operators ... 7-4
Logical Operators ... 7-5
Relational Operators ... 7-6
Indirect Operators .. 7-7

viii Licensed Material-Property of Data General Corporation 093-000246

ASCII Character Operators. 7-8
Half-word Compression Operator 7-9
Ring Field Operator . 7-10
Operator Precedence. 7 -11

Special Expressions .. 7-11
Floating Point Numbers. 7-12
Instructions . 7 -13

Checking an Expression's Value .. 7-14

Chapter 8 - Debugger Display Modes

The 10 Display Modes ... 8-1
Numeric Mode (1) .. 8-2
Numeric Word Mode (2) .. 8-3
Instruction Mode (3) ... 8-3
Symbolic Mode (4) .. 8-4
Half-word Mode (5) ... 8-5
Byte-pointer Mode (6) .. 8-5
ASCII Mode (7) .. 8-6
Floating Point Mode (8). 8-7
System Call Mode (9) .. 8-8
AOS/VS Error Message Mode (0) 8-9

Setting Display Modes .8-9
Keyboards With Function Keys . 8-11

Local Display Demands . 8-12
Global Display Commands . 8-14

Keyboards Without Function Keys 8-14
Local Display Commands . 8-14
Global Display Commands 8-16

The Global Display Mode Register 8-17

Chapter 9 - Debugging 16-Bit Programs

Accumulators . 9-1
The Stack. 9-1
Symbolic Displays. 9-1
Overlays ... 9-2

Chapter 10 - The AOS/VS File Editor (FED)

FED Commands . 10-1
FED Operating Procedures 10-3

Program and User Data Files 10-4
Addressing the Preamble 10-5

AOS/VS System Files

Appendix A - DEBUG Error Messages A-I

Appendix B - ASCII Character Set B-1

Appendix C - DEBUG Command Summary C-l

DEBUG Command Summary Card

093-000248 Licensed Material-Property of Data General Corporation ix

Figure Caption

2-1

3-1

5-1

8-1
8-2

$H Help Display .

The $S Command.

Breakpoint Logic Diagram.

Function Keys
AOS/VS Debugger Keyboard Templates.

Illustrations

.2-7

3-11

· .5-6

· 8-11
· 8-12

10-1 A Program File on Disk. 10-4

x Licensed Material-Property of Data General Corporation 093-000246

Tables

T able Caption

2-1 General Use Commands ... 2-6

3-1 Memory Access Methods ..
3-2 Closing Memory Locations.

4-1 Register Command Summary.
4-2 Display Mode Values

5-1 Breakpoint Command Summary.

6-1 Symbol Command Summary.
6-2 Special Debugger Symbols

7-1 DEBUG Operators ..
7-2 Arithmetic Operators
7 -3 Logical Operators. . .
7 -4 Relational Operators.
7-5 Relational Operators.
7-6 ASCII Character Operators.

8-1 Display Modes
8-2 Display Mode Commands for Various Keyboards
8-3 Display Mode Register Values.

10-1 FED Commands
10-2 FED Command Switches.

093-000246 Licensed Material-Property of Data General Corporation

· 3-1
· 3-5

· 4-2
4-11

· 5-1

. 6-1

. 6-5

7-3
7-4
7-5
7-6
7-7
7-8

8-1
8-10
8-17

10-2
10-3

xi

Chapter 1
Introduction to the AOS/VS Debugger

Overview
Frequently, the most formidable task in assembly language program development involves detecting, locating,
and removing errors. We call this process debugging your program.

The debugging process comes after you successfully assemble and link your program (i.e., MASM and Link
do not return any errors). If, at this time, you execute your program and it does not perform the desired
action(s), you must correct the errors (or "bugs"). (See the AOS/VS Macroassemhler Reference Manual for
an overview of the assembly language program development process.)

Sometimes you can readily detect the errors in your program. In these cases, simply correct your source file,
then reassemble and relink your program.

If you cannot easily detect the errors in your assembly language program, you can use the AOS/VS Debugger
(DEBUG) utility. Using the Debugger, you can monitor and control your program's execution; that is, you can
stop your program at any location, examine or modify the contents of memory and registers, then continue
program execution at any location.

After you locate the errors in your program, leave the Debugger utility and correct your source file. Then,
reassemble and relink the program. Lastly, execute the new program file to make sure you did indeed correct
the problem.

Debugger Features
The following is a partial list of the AOS/VS Debugger (DEBUG) debugging tools and features. Detailed
descriptions appear elsewhere in this manual.

Interactive Debugging
(Chapter 2)

Memory Access
(Chapter 3)

Register Access
(Chapter 4)

093-000246

The AOS/VS Debugger is an interactive program~ that is, DEBUG executes
your commands one at a time as you enter them. This allows you to make
decisions during your debugging session on the basis of DEBUG's response to
earlier commands.

The AOS /VS Debugger provides a variety of commands that allow you to
examine and modify the contents of memory. Command options permit you to
view one to four words of memory at a time, search for a particular value, and
step forward or backward through memory.

You can examine and modify the contents of the following ECLIPSE ~
MV /8000 machine state registers: carry bit, fixed-point accumulators, stack
registers, floating-point accumulators, program counter, and processor status
register. In addition, the Debugger provides four special registers that access
internal DEBUG variables (for example, the output radix).

Licensed Material-Property of Data aeneral Corporation 1-1

Breakpoints
(Chapter 5)

Program Symbol Recognition
(Chapter 6)

DEBUG allows you to place up to 20 10 breakpoints in your program. A
breakpoint is a location in your program where you wish to stop execution.
When your program encounters a breakpoint, you can examine and modify
the contents of memory and registers.

DEBUG automatically recognizes the global symbols in your program (i.e.,
those symbols declared in .ENT pseudo-op statements). Using DEBUG
commands, you can enable and disable symbol table files at will.

Temporary Symbol Definition DEBUG allows you to define up to 20 10 symbols during your debugging
(Chapter 6) session.

Expressions
(Chapter 7)

Display Modes
(Chapter 8)

16-Bit Program Support
(Chapter 9)

General Use Commands
(Chapter 2)

When passing numeric values to the Debugger, you may enter mathematical
expressions. DEBUG provides a variety of operators (for example, arithmetic,
logical, relational, and indirection operators).

You can direct DEBUG to present values in a variety of different display
modes including numeric, half-word, symbolic, instruction, floating point, and
ASCII character mode.

You can use DEBUG with 16-bit programs (i.e., programs developed for the
16-bit Advanced Operating System (AOS) but relinked for use on the 32-bit
AOS/VS operating system). The Debugger provides full overlay support for
16-bit programs.

The AOS/VS Debugger provides special commands that make DEBUG
especially convenient to use. Using these commands you may generate a son
CLI process and save a copy of your debugging session in a log file. In
addition, the Debugger includes a help command that presents information
about all DEBUG commands.

The File Editor (FED)
The AOS/VS Debugger utility is only for use with executable program files; that is, files of type PRY
(program filenames usually end with the .PR extension). However, built into your AOS/VS Debugger
software package is a disk file editor utility, called the AOSjVS File Editor (FED). Using FED, you can
examine and modify any kind of file; you are not limited to executable program files.

The FED commands form a subset of the DEBUG commands. When you edit a file, that file is not being
executed. Thus, all DEBUG commands relating to program execution, breakpoints, and machine state
registers are illegal under FED.

Refer to Chapter 10 for a complete description of the AOS/VS File Editor (FED) utility.

1-2 Licensed Material-Property of Data General Corporation 093-000246

Differences Between Consoles
The AOS/VS Debugger supports a variety of consoles, both video (CRT) terminals and hard-copy devices.
For the most part, DEBUG commands are the same for all consoles.

However, certain DEBUG commands vary depending on your keyboard layout. More specifically, some
DEBUG commands vary according to the following keyboard characteristics:

• whether your keyboard has/unction keys

• whether you keyboard conforms to the ANSI standard

Function keys are blank keys located at the top of your terminal keyboard. Data General's DASHERTM Dl
(6052), D2 (6053), D3, D4, D5, and D200 video display terminals all have function keys on their keyboards;
the DASHER DIOO terminal and hard-copy devices TPI and TP2 do not. The DEBUG display mode
commands vary depending on whether you keyboard has function keys or not. "Setting Display Modes" in
Chapter 8 provides a complete discussion on the command differences.

The American National Standards Institute (ANSI) has developed a standard for the arrangement of keys on
terminal keyboards. According to this standard, the NEW LINE key is larger than the other keys since you
use NEW LINE so often. However, on some non-ANSI keyboards, carriage return (CR), not NEW LINE, is
the larger key.

NEW LINE and carriage return have special meanings to the Debugger when you are examining memory. A
NEW LINE character simply closes an open location while a carriage return closes the location and also opens
the subsequent address. "Examining Memory Locations" and Table 3-2 in Chapter 3 provide more
information on this use of NEW LINE and carriage return.

If you are using a non-ANSI keyboard, the meaning of NEW LINE and carriage return is reversed. That is,
carriage return closes an open location while NEW LINE closes the location and opens the subsequent one. In
sum, the big key (either NEW LINE or carriage return) closes an open location. The smaller of the two keys
closes an open location and opens the next one.

In this manual, we use J to represent the NEW LINE character and 1 to represent carriage return. Reverse the
meaning of these two arrows if you are using a non-ANSI keyboard.

Note that DEBUG uses your terminal's device characteristics to determine whether your keyboard has
function keys and conforms to the ANSI standard. Refer to the CHARACTERISTICS command description
in the AOS and AOSjVS Command Line Interpreter (CLI) User's Manual for more information.

End of Chapter

093-000246 Licensed Material-Property of Data General Corporation 1-3

Chapter 2
DEBUG Operating Procedures

This chapter contains two major sections. The first explains the various ways you may enter and then leave the
AOS/VS Debugger utility. It also presents general information on Debugger commands and explains how to
begin program execution while in the Debugger.

The second section entitled "General Use Commands", explains how to save a copy of your debugging session,
how to generate a son CLI process, and how to use the help command.

Entering the Debugger
To operate the AOS/VS Debugger utility, you must satisfy the following general requirements:

• your user profile must allow you to generate a son process

• you must leave four I/O channels open for DEBUG's exclusive use

Assuming you satisfy these requirements, you can enter a debugging session in one of two ways:

• issue a DEBUG command from the Command Line Interpreter (CLI)

• issue a ?DEBUG system call from your assembly language program

The following two sections explain these methods for invoking the AOS/VS Debugger utility.

Entering the Debugger from the Cli
In most cases, you will invoke the Debugger from the AOS/VS Command Link Interpreter (CLI). Simply
enter the following command:

DEBUG program-file {program-argJ ...

where:

DEBUG

program-file

program-arg

is the CLI command that invokes the AOS/VS Debugger

is the pathname of the program file you wish to debug; you need not include the .PR
extension when entering the filename

is one or more arguments that program-file requires for execution; not all programs require
arguments so program-arg is optional

There are no DEBUG command switches. If your program uses switches, you may include them immediately
after program-file on the DEBUG command line.

093-000246 Licensed Material-Property of Data General Corporation 2-1

After DEBUG loads your program, it displays the values of the four accumulators and the carry bit. Then the
Debugger presents an underscore character, the DEBUG prompt. For example,

) DEBUG PROG 1 J
AOSjVS Debugger - Rev. 001.000.000.000
00000000000 00000000000 00000000000 00000000000 00000000000

The number following Rev. indicates which revision of the AOS/VS Debugger software you are using. The
five numbers on the second line are the octal values for ACO, ACl, AC2, AC3, and the carry bit.

The third line shows an underscore character. Whenever DEBUG displays this prompt, it is ready to accept a
command.

When you first receive the DEBUG prompt, your program has not yet begun execution. Thus, before you
execute your program, you may set breakpoints and modify memory or registers. To begin execution of your
program, use the $R command (see "Starting Program Execution" later in this chapter).

As an alternative to issuing the DEBUG command, you may use the /DEBUG switch on the CLI PROCESS
command. For example,

) PROCESS/DEBUG/DEFAUl T IBlOCK/IOC PROG1J

This command loads program PROG 1 and begins your debugging session. Refer to the AOS and AOSjVS
Command Line Interpreter (CLI) User's Manual for more information on the PROCESS command and other
PROCESS switches.

When you enter a debugging session, DEBUG automatically searches for your program's symbol table file
(i.e., a file with the same name as your program but with an .ST extension). If available, DEBUG uses the .ST
file for symbol recognition. See "Program Symbol Recognition" in Chapter 6 for more information.

Entering the Debugger from a Program
Rather than entering a debugging session from the CLI, you may invoke the Debugger directly from the
program you wish to debug. Simply issue the ?DEBUG system call from your assembly language program.
Like other system calls, ?DEBUG has both error and normal return statements. The AOSjVS Programmer's
Manual presents the format for the ?DEBUG system call.

When your program encounters the ?DEBUG call at runtime, control passes to the AOS/VS Debugger utility.
DEBUG presents the four accumulator values and the carry bit followed by the Debugger prompt
(underscore) :

AOSjVS Debugger - Rev. 001.000.000.000
00000000000 00000000000 00000000000 00000000000 00000000000

Whenever DEBUG displays its prompt, you may issue a Debugger command.

If you enter the Debugger from your program (i.e., via ?DEBUG), you must adhere to the following rules:

• you may not modify the contents of memory

• you may not set breakpoints

All other DEBUG commands are legal. You may examine the contents of memory and examine or modify the
various register values.

Note that your program may issue a ?DEBUG system call when you are already in a debugging session. That
is, you may issue a CLI DEBUG command and then begin or continue program execution. During execution,

2-2 licensed Material-Property of Data General Corporation 093-000246

your program may issue a ?DEBUG system call and the Debugger will again get controL The above ?DEBUG
restrictions do not apply when you enter the AOS/VS Debugger in this manner.

As a final note, when you enter the Debugger with a ?DEBUG call, the program counter (PC) holds the
address of ?DEBUG's normal return statement, not your program's starting address ..

Debugger Commands
After the Debugger displays its prompt (the underscore character), you can enter a Debugger command -- a
command that directs the Debugger to perform some operation.

Appendix C lists and briefly describes all the Debugger commands; detailed descriptions appear throughout
this manual.

Command Format
Debugger commands conform to the following general format:

{argj. .. $X

where:

arg is one or more arguments to the Debugger command. Not all commands permit arguments; some
allow several. If you supply more than one argument, separate them by commas.

$ represents the escape character (ASCII code 33 8). Enter this character by pressing the ESC key
on your keyboard. DEBUG echoes the ESC key with a dollar sign.

X is a single uppercase alphabetic character from A to Z. This character represents a particular
Debugger command.

When DEBUG encounters an escape character (i.e., $ in the above format), it expects a single command
character to follow (i.e., X). As soon as you enter the command character, DEBUG immediately executes the
command. You do not have to terminate Debugger commands with NEW LINE or carriage return.

DEBUG echoes the escape (ESC) character as a dollar sign ($) at your console. Consequently, in this manual,
we use the symbol $ to represent the escape character, not the dollar character. When we want to refer to the
dollar character (ASCII 448), we surround the dollar sign with angle brackets, <$>, to represent the dollar
character. Refer to the Preface for a complete list of the notation conventions we use in this manual.

Though most Debugger commands conform to this general command format, the commands that open and
close memory locations do not (i.e., commands /, \ , J , 1 , and T). Refer to Chapter 3 for a complete
description of these commands.

Correcting Typing Errors
If you make a typing error while entering a value or command, you can correct it by using

• the RUBOUT or DEL (delete) key
• the CTRL-U command

Pressing the RUBOUT or DEL key removes the last character you typed.

Use the CTRL-U command to delete your entire entry. Typing CTRL-U deletes everything you entered since
the last Debugger prompt. To enter a CTRL-U command, hold down the CTRL key and press U at the same
time.

You can not delete the escape (ESC) character. If you make a mistake and have already hit the ESC key,
enter a NEW LINE or carriage return. The debugger will return a question mark followed by a prompt. You
can then enter the correct command.

093-000246 Licensed Material-Property of Data General Corporation 2-3

Error Responses

Occasionally, you will enter a command or expression that the Debugger does not understand. DEBUG
responds to errors in one of two ways:

• If the error involves an undefined symbol, DEBUG responds with U?

• For all other errors, DEBUG simply returns a question mark: ?

After DEBUG returns U? or ?, it displays the Debugger prompt (an underscore). Usually, you can readily
detect your error. In these cases, simply enter the correct version of the command.

The following examples show illegal commands and DEBUG's error responses:

_429,439$S 9 is an illegal octal digit
?-
_FILE1$X DEBUG cannot locate file FILE!
?UNABLE TO OPEN OR ACCESS SPECIFIED FILENAME
_ST ART / U? Symbol START is undefined
_7$A? _ There is no accumulator 7

If you do not know why the Debugger returned an error, you can issue the $? command. This command directs
DEBUG to print a diagnostic error message for the last error it encountered. The command format is

$?

where:

$ represents the escape (ESC) character

? directs DEBUG to display a diagnostic error message for the last error it detected

The following examples show illegal DEBUG commands followed by $? commands:

_429,439$S
?-$?
ILLEGAL OCTAL DIGIT IN NUMBER
_ST ART / U? _$?
UNDEFINED SYMBOL
_7$A
?-$?
UNRECOGNIZED COMMAND FORMAT

In each example, we entered the $? command after DEBUG's error response. DEBUG then displayed the
appropriate error message.

Appendix A lists the various error messages DEBUG can return when you enter an $? command.

Starting Program Execution
When you enter the Debugger from the CLI, your program has not begun execution. To start program
execution, issue the $R command as follows:

f address J $R

2-4 Licensed Material-Property of Data General Corporation 083-000246

where:

address is an optional number, symbol, or expression that indicates an address in your program

$ represents the escape (ESC) character

R directs DEBUG to start executing your program

If you do not pass an address to the $R command, program execution begins at the current value of the
program counter (PC). When you use the CLI DEBUG command to enter the Debugger, your PC value
initially specifies the starting address for your program. If you enter the Debugger via ?DEBUG, the PC value
indicates the address of ?DEBUG's normal return statement. See Chapter 3 for information on the program
counter.

To begin program execution at an address other than the current PC value, pass an address to the $R
command in the address argument. DEBUG will start your program at the supplied address.

After you issue a $R command, your program will run until it encounters a breakpoint or until it ends (i.e.,
executes a ?RETURN system call or terminates itself via ?TERM). If your program hits a breakpoint,
execution stops and you receive a DEBUG prompt. At this point, you may examine or modify memory and
registers. We describe breakpoints in Chapter 5.

To continue program execution after a breakpoint, issue a $R or $P command. You may not use the $P
command when you first begin program execution; only use $P after breakpoints. See '·Program Restarts" in
Chapter 5 for more information.

Leaving the Debugger
Your debugging session may end in one of three ways:

• you may issue a $Z command

• you may enter a CTRL-D sequence

• the program you are debugging may end

Normally, you will terminate your debugging session by entering the following Debugger command:

$Z

where:

$ represents the escape (ESC) character

Z directs DEBUG to terminate the debugging session

A $Z command terminates the Debugger and returns control to the father CLI process. $Z always returns
control to the CLI, regardless of how you entered the Debugger (via the CLI DEBUG command or ?DEBUG
system call).

Though the $Z command is the preferred means for leaving a debugging session, a CTRL-D sequence will also
terminate the Debugger. CTRL-D is an end-of-file indicator and, when issued from your keyboard (i.e., from
generic file @CONSOLE), ends your debugging session. To enter a CTRL-D sequence, hold down the CTRL
key and press D.

If your program ends while you are in the Debugger, your debugging session also ends. That is, if you enter a
$R or $P command (start or continue program execution) and your program encounters a ?RETURN system
call statement before a breakpoint, DEBUG will terminate.

093-000246 Licensed Material-Property of Data General Corporation 2-5

General Use Commands
The AOS/VS Debugger provides several general use commands. These commands perform useful functions
not related to any specific debugging operations. We present them here, at the beginning of the manual,
because they will be useful during all stages in your program debugging session.

Table 2-1 describes the general use commands.

Table 2-1. General Use Commands

Command Action

$C Generate a son CLI process (Le., "push" to the CLI)

$H Help command: list the various topics that DEBUG can supply information about

keyword$H Help command: supply specific information about the topic identified by keyword

$Y Close the current log file

logfile$Y Close the current log file, if any, and open a new one

;commentJ Enter the character string comment in the current log file

The remainder of this chapter describes each general use command in detail.

The Help Command
The Debugger utility supplies a help command that displays information about using the various DEBUG
commands. There are two formats for issuing the help command:

• A general help command format that lists the various help topics

• A specific help command format that lists detailed information about particular topics

The format for issuing the general help command is

$H

where:

$ represents the escape (ESC) character

H directs DEBUG to list the various help topics

When you issue a $H command, DEBUG lists all the topics it can supply more information about. Figure 2-1
shows the $H display.

2-6 Licensed Material-Property of Data General Corporation 093-000246

SO-02306

Welcome to DEBUG, the assembly language debugger for AOS/VS.
For help on any of the following topics, enter:

<keyword><escape>H

The DEBUG keywords are:

A - examine/modify accumulators
B - set/display breakpoints
C - push to the cli
D - delete breakpoint(s)
E - examine/modify stack regs
F - examine/modify floating ACs
G - examine/modify ring reg
H - this help message
I - define/list temp symbols
J - delete temp symbol(s)
L - examine/modify PC

MEM - examining/modifying memory
DIS - changing display modes

N - examine/modify output radix
P - proceed from breakpoint
Q - examine/modify bkpt proceed count
R - proceed from program counter
S - memory display/search
T - examine/modify display mode
V - examine/modify PSR
X - enable/disable symbol table
Y - enable/disable logfile
Z - exit

- display verbose error message

Figure 2-1. $H Help Display

To obtain information about a specific help topic, enter the following:

keyword$H

where:

keyword is a keyword that indicates which help topic you want information about (see Figure 2-1)

$ represents the escape (ESC) character

H directs DEBUG to display information on the topic identified by keyword

As an example, to obtain information about fixed-point accumulator commands, enter

DEBUG responds with a description of the various accumulator display and modify commands (i.e., A, OA,
I$A, 2$A, and 3$A).

093-000248 Licensed Material-Property of Data General Corporation 2-7

Saving the Debugging Session
Frequently, you will want to save a copy of your debugging session for future reference. For example, after you
debug your program, you will probably want to modify your source file. By saving a copy of the debugging
session, you can record all the changes that allow your program to run correctly.

The following sections explain how to record terminal activity (both your input and DEBUG's output) in a
disk file, called the log file.

Opening a Log File

To open a log file, issue the command

logfile$Y

where:

logfile is the pathname of the file that will contain a copy of the Debugging session

$ represents the escape (ESC) character

Y directs DEBUG to record the debugging session in file logfile

When you issue this command, DEBUG opens file logfile and records all terminal activity (both your input
and DEBUG's output) in that file.

If logfile already exists, DEBUG appends the debugging session to the existing file; otherwise, DEBUG
creates logfile. If a log file is already open when you issue a logfile$Y command, DEBUG closes that file and
opens the new one.

The following example shows how to use the logfile$Y command:

_DEBFILE$Y _J
_500,510$5
16000000500/ 000000
16000000501/ 000001
16000000502/ 000002
16000000503/ 000003
16000000504/ 000004
16000000505/ 000005
16000000506/ 000006
16000000507/ 000007
16000000510/ 000010
_$Z

Open file DEBFILE as the log file. Display the contents of locations 500 8 through
510 8

End the Debugging session

After this debugging session, log file DEBFILE will contain the following:

_500,510$S
16000000500/ 000000
16000000501/ 000001
16000000502/ 000002
16000000503/ 000003
16000000504/ 000004
16000000505/ 000005
16000000506/ 000006
16000000507/ 000007
16000000510/ 000010
_$Z

Closing a Log File

You may want to record only part of your debugging session in a log file. DEBUG allows you to open and close
your log file as often as you wish. The Debugger only records terminal activity when a log file is open.

2-8 Licensed Material-Property of Data General Corporation 093-000246

To close a log file, issue the command

$Y

where:

$ represents the escape (ESC) character

Y directs DEBUG to close the current log file

When DEBUG encounters a $Y command, it closes the log file. That is, DEBUG will stop recording the
debugging session.

If you issue a $Y command and a log file is not open, DEBUG returns an error.

The following example shows how to open and close a log file:

_LlST1$Y _J
_470,475$S
16000000470/ 000000
16000000471/ 000000
16000000472/ 000000
16000000473/ 000000
16000000474/ 000000
16000000475/ 000000
_$Y _J
_O$A 00000000000 _J
_ 1 $A 00000000000 _J
_LlST1$Y _J
_1000,1005$S
16000001000/ 177777
16000001001/ 177777
16000001002/ 177777
16000001003/ 177777
16000001004/ 177777
16000001005/ 177777
_$Z

Open file LISTI as the log file. Display the contents of locations 470 8 through 475 8

Close the current log file (i.e., LISTl). Examine ACO and AC1

Re-open file LIST1 as the log file. Display the contents of locations 10008 through
1005 8

End the debugging session

Because DEBUG only records the debugging session when a log file is open, after the above sequence of
Debugger commands, file LIST 1 contains the following:

_470,475$S
16000000470/ 000000
16000000471/ 000000
16000000472/ 000000
16000000473/ 000000
16000000474/ 000000
16000000475/ 000000
-$Y
_1000,1005$S
16000001000/ 177777
16000001001/ 177777
16000001002/ 177777
16000001003/ 177777
16000001004/ 177777
16000001005/ 177777
_$Z

Note that the log file does not contain the accumulator examine commands (O$A and I$A). Again, DEBUG
only records terminal activity when a log file is open.

093-000246 Licensed Material-Property of Data General Corporation 2-9

Entering Comments in a Log File

Frequently, you will want to document the debugging changes you make to your program in your log file. This
can save a great deal of time and effort when reviewing the log file at a later date.

To enter comments in a log file, type the following command:

;commentJ

where:

is a semicolon character that directs DEBUG to enter comment in the current log file

comment is the ASCII character string that you want to place in the log file

represents the NEW LINE character and terminates the comment string~ you may use carriage
return (1) instead of NEW LINE (J) if you wish

When DEBUG encounters a comment command, it simply copies the comment into the currently enabled log
file, if any. The Debugger does not interpret comments and they do not influence the debugging session in any
way.

The following example shows how to use the ;commentJ command to document a debugging session:

_LOG4$Y _J
_;EXAMINE ACCUMULATORS;
_$A (ACO,AC1.AC2,AC3.CARRY)
00000000025 00000000050 00000000077 00000000100 00000000001
_;AC2 SHOULD EQUAL 75J
_2$A 00000000077 _7~;
_;CONTINUE EXECUTIONJ
-$P
1 B 1600000003600
00000000025 00000000050 00000000075 00000000100 00000000001
_;SUCCESSW
_$Z

After this Debugging session, log file LOG4 will contain the following:

_~EXAMINE ACCUMULATORS
_$A (ACO,AC 1 ,AC2,AC3,CARR Y)
000000000250000000005000000000077 0000000010000000000001
_~AC2 SHOULD EQUAL 75
_2$A 00000000077 _75
_~CONTINUE EXECUTION
-$P
1 B 1600000003600
000000000250000000005000000000075 0000000010000000000001
_~SUCCESS!!
_$Z

2-10 Licensed Material-Property of Data General Corporation 093-000246

Pushing to the Cli
In certain situations, you may wish to execute CLI commands without terminating the current debugging
session. DEBUG allows you to generate a son CLI process by entering the command

$C

where:

$ represents the escape (ESC) character

C directs DEBUG to generate a ClI process

To issue the $C command, your user profile must give you the privilege to create two or more son processes.

When you enter $C, DEBUG generates a son CLI process (or pushes to the CLI). After you receive the CLI
prompt,), you can enter CLI commands.

To return to your debugging session, enter the ClI command BYE. The BYE command terminates the son
CLI process and returns control to DEBUG.

The following example shows how to use the $C command:

_$C
AOS/VS CLI REV01.00.00.00 19-MAY-80 11:33:52
) DIRECTORYJ
:UDD:JEFF
)WHOJ
PID: 9 JEFF 009 :CLI.PR
) BYEJ
AOS/VS CLI TERMINATING 19-MAY-80 11:35:56

In this example, the $C command directed DEBUG to generate a CLI process. Once in the ClI, we entered
two ClI commands: DIRECTORY and WHO. When we typed BYE, we terminated the ClI process and
returned to the debugging session (as signaled by the DEBUG prompt _).

End of Chapter

093-000248 Licensed Material-Property of Data General Corporation 2-11

Chapter 3
Accessing Memory

The Debugger allows you to view the contents of memory before your program begins execution and after
encountering a breakpoint. DEBUG provides two methods for accessing the contents of your program's
memory space. Each serves a different purpose and has its own command format. Generally, you will use the
two methods to

• examine or modify the contents of a few specific memory locations

• display or search a wide range of memory locations

Table 3-1 gives more information.

Table 3-1. Memory Access Methods

Examinins and MocIifyins Memory Displayins and·Searchinl Memory

Command addre$$/ (One-word examine) add1,add2./condJ./incrJ,/sizeJ $8
Syntax

address\ (Two-word examine)

Major Uses Examine the contents Display the contents of a wide range of memory
of a few specific locations
memory locations

Modify the contents Search for all occurrences ofa value in a range
of a memory location of memory locations

Special You may step forward You may specify an increment value so that
feature(s) or backward through DEBUG will only display every nth location

memory (one or two
You may specify a size value so that DEBUG words at a time)
will display one to four words of memory starting
at each location

Before discussing these two memory access methods, we should briefly review some characteristics of
AOS/VS memory and also describe the location counter and the program counter.

093-000246 Licensed Material-Property of Data General Corporation 3-1

Memory
For addressing purposes, the basic unit of AOS/VS memory is the 16-bit word. The AOS/VS operating
system allows your program to occupy up to 256MW or 512MB of memory (MW and MB mean megaword
and megabyte and equal 1,048,576 10 words and bytes, respectively). The area of memory accessible by your
program is your logical address space.

Numeric memory addresses are in octal (base 8) and refer to word locations in your program. Location 0
contains the first word in your logical address space, location 1 holds the second word, etc. Thus, when we
refer to location 525 8 , we mean the 526 8 th 16-bit word in the current ring within your logical address space.

Rings
AOS/VS organizes memory into a hierarchical series of rings, numbered 0 through 7. Ring 0, the innermost
ring, is superior in the hierarchy. Every program running under AOS/VS resides in one of these eight rings.
Refer to the AOS/VS Programmer's Manual for a complete description of the AOS/VS ring structure.

The Debugger allows you to examine and modify any location in rings 4 through 7. In addition, you may
access the unshared portion of ring 3, which contains your program's system tables. You can never access
locations in rings 0 through 2, the system rings.

Your program usually resides in ring 7. Thus, you can always view the contents of your program's memory
space.

AOS/VS Addresses
All AOS/VS addresses are 32-bits long. Bits 1 through 3 compose the ring field; it contains the address' ring
number (i.e., a value from 0 through 7). Thus, the address 16000000355 8 specifies location 355 8 in ring 7.
Note that 16000000355 8 contains the value 7 in bits 1 through 3.

When DEBUG presents an address value, it always displays the complete 32-bit number, ring field included.

Ring Register ($G)
Frequently, when you specify an address, you do not indicate a value for the ring field. For example, when you
enter the value 100 as an address, you really mean location 1008 in some ring, usually 7. Thus, 16000000100 8

is the address that you want to reference (ring 7, location 100).

When you enter an address without a ring value, DEBUG automatically supplies one for you. By default,
DEBUG inserts the ring value of the initial program counter (i.e., the address where your program begins
execution). DEBUG stores this default ring value in the ring register.

To view the current default ring value, enter the $G command as follows:

$G

where:

$ represents the escape (ESC) character

G directs the Debugger to display the contents of the ring register

As an example, suppose your program resides in ring 7. When you enter the Debugger, the ring register will
hold the value 7. You can check this by entering

DEBUG responds as follows:

_$G 00000000007 -

3-2 LIcensed Material-Property of Data General Corporation 093-000246

This shows 7 as the current default ring value. Thus, any time you enter an address that does not explicitly
include a value in the ring field (bits 1 through 3), DEBUG will assume you are ref(~rring to ring 7.

After DEBUG displays the ring value, the ring register is open; that is, you may enter a new default ring
value. After entering a value, close the ring register with a NEW LINE or carriage return.

For example, to change the default ring to 6, open the ring register with a $G command,. enter the value 6, and
close the register.

_$G 00000000007 _6J

The default ring is now 6. You may verify this by entering $G:

_$G 00000000006 _

If you now enter an address that does not include a ring value, DEBUG assumes you are referring to ring 6.
For example, DEBUG interprets address 1008 as 140000001008 (ring 6, location 100).

As mentioned throughout this discussion, DEBUG only uses the ring register value if your address does not
have a value in the ring field (bits 1 through 3). Thus, if you enter

_16000000100/

DEBUG would not refer to the ring register because your address explicitly indicates ring 7.

Note that DEBUG will return an error if you try to address an illegal location. Unlt:5s you have explicitly
issued a ?RINGLD system call, all your program resides in ring 7. Thus, references to locations in other rings
will result in errors. For this reason, you will not usually modify the value in the ring register.

Ring Field Operator (;)

In addition to the ring register ($G), DEBUG provides the ring field operator; (semicolon). You may use; to
insert a value in the ring field of an address. For example, DEBUG expands the expression 100;5 into
120000001008 (location 100 in ring 5).

If you enter the expression 100;5 as an address, DEBUG does not refer to the ring register because 100;5
explicitly indIcates a ring value. Refer to Chapter 7 for a complete description of the ring field operator (;).

Location Counter and Program Counter
The location counter is an internal Debugger variable; it holds the address of the location that DEBUG most
recently displayed. For example, if you view the contents of location 537 8, then the location counter equals
address 5378 until you display another location.

The single-character symbol. (period) represents the value of the location counter. You may use this symbol in
any expression or anywhere you would use a 32-bit numeric value.

For example, you could use the location counter symbol to deposit an address in either a register or memory.
Suppose you view location 1108 and wish to place a pointer to that location in accumulator O. You could open
that accumulator with the O$A command (see Chapter 4) and enter a period. This would deposit the address
of the last location DEBUG displayed (110 8) into accumulator O.

You will frequently use the location counter symbol in conjunction with the indirect operators @ and # . @
extracts a one-word value at the supplied address; # indicates the two-word value starting at the supplied
address (see Chapter 7 for a complete description). The expression @ . equals the one-word value at the
address in the location counter; # . equals the two-word value starting at the same address. You will find these
two expressions particularly useful when issuing search ($S) commands since you usually want to compare the
contents of the current location (i.e., @ . or # .) with some other value (see "Searching Memory" later in this
chapter).

093-000246 Licensed Material-Property of Data General Corporation 3-3

Do not confuse the location counter with the program counter. The program counter (PC) is a register that
holds the address of the next instruction in your program that will be executed. Thus, if you stop program
execution before the instruction in location 200 8 , the program counter's value equals address 200 8 • During this
pause in program execution, you may examine location 405 8 • At this point in the Debugging session, the
program counter holds the address 200 8 (the address of the next instruction to be executed) and the location
counter holds address 405 8 (the last address DEBUG displayed).

Again, it is the location counter you may access with the symbol. (period). The $L command allows you to
examine the program counter (see Chapter 4) and the symbol < $ > L represents the program counter's
value (see Chapter 6).

Examining and Modifying Memory
The commands we discuss in this section allow you to examine and optionally modify the contents of specific
memory locations. You will perform two or possibly three operations when using these commands:

1. Open a one- or two-word location by supplying an address value to a memory examine command (i.e., / or
\). When you open a location, DEBUG displays the contents of that location.

2. Modify the contents of the open location. When a location is open, you may deposit a new value. This is an
optional step; you need not alter the contents of memory.

3. Close the open location by entering a NEW LINE, carriage return, or uparrow character, or by entering a
new DEBUG command. Depending on how you close the location, DEBUG may open the following
location, open the previous location, or execute a new command.

The following section, "Examining Memory Locations", explains how to open and close memory locations
(steps 1 and 3 above). It also presents the syntax for using the / and \ commands. "Modifying Memory
Locations" describes how to enter new values into memory (step 2).

If you enter the Debugger via a ?DEBUG system call, you may not modify memory (step 2). You may,
however, examine the contents of any location. (See "Entering the Debugger from a Program" in Chapter 2.)

Examining Memory Locations
DEBUG provides two general formats for examining memory locations:

address/

address\

where:

address

\

One-word (l6-bit) examine

Two-word (32-bit) examine

is a number, symbol, or expression whose value specifies a word location in your logical address
space; you will frequently place a label in this argument

is a slash and directs DEBUG to display the one-word (l6-bit) value at location address

is a backslash and directs DEBUG to display the two-word (32-bit) value starting at memory
location address; that is, DEBUG will present the contents of word locations address and
address+ 1

When you enter one of these commands, the Debugger will display the appropriate value on the same line
followed by a prompt. For example, suppose your logical address space contains the following values (all
numbers are octal and all locations are ring 7):

3-4 licensed Material-Property of Data General Corporation 093-000248

Memory (Word) Locations Contents

500
501
502
503
504
505

If you enter the command

000001
000002
000003
000004
000005
000006

the Debugger will return the one-word value at location 500. Thus, the command and the Debugger response
would be

_500/ 000001 _

Similarly, if you enter the two-word examine command

the Debugger returns the contents of word locations 500 and 501 as a single 32-bit integer as follows:

_500\ 00000200002 _

After DEBUG displays the contents of a memory location, that location is open; that is, you may deposit a new
value into that location, if you wish. We explain how to place new values in memory next, "Modifying
Memory Locations".

After you examine (open) a location, you must close that location by entering one of the following:

• NEW LINE (J)
• carriage return (1)
• uparrow (T)
• a DEBUG command

In the following discussion, we describe each of these four methods for closing locations; Table 3-2 provides a
brief summary.

.....
C'osins MethPCI

'UparrOW "
(,ASCH:v.·''''· • .)

ADEBUO'conunand

Table 3-2. Closing Memory Locations

Representation
ift this Maual

)'·(.rvedtll'row)

t (down arrow)

t

Meaning

Close location

Close location and open subsequent location

Close location and open previous location

Close location and execute new command

NOTlt:ff".ur~i~d!14yout ~not~nform to. the ANSI staQda,rd, the meanings for NEW LINE and carriage
: '.. ,~"JIr,!r~*.~t(U'ead ~"DifTetencuBctweenConsoles" in Chapter 1.

093-000246 licensed Material-Property of Data General Corporation 3-5

The NEW LINE character simply closes the open location and returns the DEBUG prompt. For example,

_502/ 000003 _J Examine location 502.

Closing a one-word location with carriage return automatically instructs DEBUG to open the next location in
memory. In this case, DEBUG will skip down a line and present the next address and its contents.

When displaying address values, DEBUG always writes the compkte 32-bit address, including the ring value.
For example, DEBUG will print 16000000502, not simply 502, when displaying address 502 in ring 7.

Also, DEBUG presents addresses in symbolic mode, by default. However, in this chapter we show DEBUG
presenting numeric addresses since each program references a different symbol table. Refer to Chapter 6 for
more information on symbols and symbol tables.

The following example shows how to use the carriage return to step forward through memory:

_500/ 000001 -1
16000000501/000002 -1
16000000502/000003 _J

Examine locations 500 through 502. DEBUG does not display location 503
since we closed 502 with a NEW LINE, not a carriage return

When addressing double-word locations (via \), DEBUG will display the next 32-bit quantity if you close with
a carriage return.

_500\ 00000200002 -1 Examine sequential two-word locations starting with address 500
16000000502\ 00000600004 -1
16000000504\ 00001200006 _J

If you close a one-word location with the uparrow character, DEBUG automatically opens the previous
location. For example,

_502/ 000003 - T
16000000501/000002 - T
16000000500/ 00000 J _J

Examine locations 502, 501, and 500

If you close a two-word location with uparrow, DEBUG will display the previous 32-bit quantity.

_504\ 00001200006 _ T Examine the 32-bit values starting at addresses 504, 502, and 500
16000000502\ 00000600004 - T
16000000500\ 00000200002 _J

The last way you may close a location is by entering a DEBUG command. The Debugger will automatically
close the location and execute the new command. For example, suppose you open location 502:

_502/ 000003 _ Open location 502

You may close that location by entering a DEBUG command as follows:

_502/ 000003 _O$A 00000000177 _ Close location 502 with the O$A command. Then, display the contents
of accumulator 0

The next example closes a location with another memory display command.

_500/ 000001 _504/ 000005_

3-6

First, open location 500. Since we enter the command 504/, DEBUG
closes location 500 and opens 504

Licensed Material-Property of Data General Corporation 093-000246

Closing a Location with / or \

In the previous section, we said you could close a memory location by entering a new DEBUG command.
Thus, you can close an open location by issuing another / or \ command. If you close with the single
characters / or \ , DEBUG uses the contents of the open location as an address and opens the new location.

For example, suppose you examine the word at location 550 8 .

550/ 000720

The word at location 550 8 is now open. If you close with / or \ , DEBUG interprets 720 8 as an address and
opens one or two words at that location. For example,

_550/ 000720 _ / 001025_ Open location 550. Since we close with /, DEBUG interprets 720 as an
address and opens that location (i.e., the value at location 720 equals
1025)

There is no limit to the number of indirections you may perform. As an example, suppose your logical address
space appears as follows:

Location Contents

5000 5001
5001 5002
5002 5003
5003 5004
5004 5005

Initially, you may open location 5000.

_5000/ 005001 _ Open location 5000

If you close with /' DEBUG interprets the contents of location 5000 as an address and opens that location.

_5000/ 005001 _ / 005002 _ Close location 5000 with /; open location 5001

You can continue to perform address indirections by closing each location with the / command.

_5000/ 005001 _ / 005002 _ / 005003 _ / 005004

In this example, the contents of each location is, in turn, used as an address.

Examining Locations in Various Display Modes
In all the previous examples, the Debugger displays the contents of memory loc:ations as 16-bit or 32-bit
integers; that is, by default, the Debugger presents values in the numeric display mode. You may direct
DEBUG to present the contents of memory in a variety of other display modes (e.g., symbolic, half-word,
ASCII, instruction, floating point, etc.). Chapter 8 describes the various display modes available.

In most modes, DEBUG abides by the size constraints associated with the / and \ commands. Thus, if you are
half-word display mode, the / command still directs DEBUG to present 16-bits of memory; however, now the
Debugger presents that word as two 8-bit integers. For example, instead of

~
_500/ 000001 _ Numeric display mode

DEBUG displays the contents of address 500 as follows:

_500/ 000 001 _ Half-word display mode

093-000246 Licensed Material-Property of Data General Corporation 3-7

Similarly, the \ command still examines two words of memory but DEBUG presents those words in the
current display mode.

There are two display modes for which the / and \ commands do not present one and two words of memory,
respectively:

• floating point display mode
• instruction display mode

If DEBUG is in floating point display mode, the / command presents two words of memory as a single
precision (32-bit) floating point number. The \ command displays four words of memory as a double precision
(64-bit) floating point number. The following examples show the use of / and \ in floating point display mode:

_500/ O. OOOOOOOE + 0 _1
16000000502/ 1. 5213623E-69 _1
16000000504/ -1.3036937E-32_)

_500\ O. OOOOOOOOOOOOOOOOE + 0-1
16000000504\ -1.3036898356298341E-32_1
16000000510\ 2. 8337356298367154E-78 _)

In floating point display mode, the / command opens
two words of memory

The \ command opens four words of memory when
DEBUG is in the floating point display mode

If DEBUG is in the instruction display mode, the / and \ commands direct the Debugger to present the
complete instruction starting at the supplied address. Since instructions are of variable length (from one to
four words), DEBUG does not use the one- and two-word display properties of the / and \ commands but
rather opens as many locations as necessary to present the complete instruction. Stepping forward through
memory (via the carriage return) displays consecutive instructions, not sequential one- or two-word values.
The following examples will help clarify this discussion (instruction display mode):

_500/ XWLDA 0,1 -1
16000000502/ LCALL 0,1,4_1
16000000506/ W ADD 0,1 -1
16000000507/ WBR 530_J

_500\ XWLDA 0,1 -1
16000000502\ LCALL 0,1,4-1
16000000506\ WADD 0,1 -1
16000000507\ WBR 530_

DEBUG presents consecutive instructions, not consecutive words

For displaying purposes, the / command operates the same as the
\ command when in the instruction mode

Modifying Memory Locations
As we have seen, when you enter an address followed by a / or \ character, DEBUG displays the one- or
two-word value starting at that address. After DEBUG displays the contents of a memory location, that
location is open; that is, you may deposit a new value, if you wish. Simply enter the new value on the same line
as the Debugger's prompt and close that location.

Every time you modify memory, your console beeps. That is, when you modify the contents of a memory
location, DEBUG sends a bell character (ASCII value 7) to your console.

As an example, suppose you want to place the value 23 in memory location 500 8 , First, open that location.
After DEBUG displays the contents of location 500, enter the value 23 and close the location.

_500/ 000001 _23J

3-8 Licensed Material-Property of Data General Corporation 093-000246

Subsequent examinations of location 500 will reveal the value 23.

_500/ 000023 _J

If a two-word location is open, a new value will replace both words of memory. For example,

_500\ 00000200002 _23J

The two-word value starting at address 500 now equals 23, as shown in the following examination:

_500\ 00000000023_J

In the previous examples, we closed all open locations with the NEW LINE character. As discussed earlier,
NEW LINE directs DEBUG to enter the value in memory, close the location, and return a prompt.

If you wish to modify the contents of more than one location, you may close locations with either a carriage
return or the uparrow character. Again, a carriage return closes the current location and opens the next one;
the uparrow closes the current location and opens the previous one.

Using a carriage return, you may modify consecutive locations without having to specify each address. For
example,

_501/ 000002 -121
16000000502/000003 _ 131
16000000503/000004 _14J

Open location 501 and deposit the value 12. Since we close with a
carriage return, DEBUG opens the next location (502). Again, 'we deposit
a new value and close with a carriage return. Since we close the last
location (503) with a NEW LINE, DEBUG returns a prompt

Similarly, using the uparrow, you may step backward through memory modifying the contents of each
location.

_503/ 000014 -4T
16000000502/000013 -3T
16000000501/000012 _2J

Open location 503 and deposit the value 4. Since we close with an
uparrow, DEBUG opens the previous location (502). Again, we deposit a
value and close with an uparrow. Since we close the last location (501)
with a NEW LINE, DEBUG returns a prompt

As mentioned earlier, you need not modify each open location. Thus, using a carriage return or the uparrow,
you can step through memory modifying select locations. For example,

_501 / 000002 -1
16000000502/000003 -1
16000000503/000004 _ 1001
16000000504/000005 _J

Examine the contents of locations 501 through 504. Modify the contents
of 503 (i.e., deposit 100) but do not alter other l()«ations

,
Our examples have mainly used the one-word examine command (j). You may use carriage return and
uparrow to modify consecutive two-word locations as well. For example,

_500\ 00000000000001 _101
16000000502\ 00000000000002 _201
16000000504\ 00000000000003 _30J

Legal Entry Values

Deposit the two-word values 10, 20, and 30 starting in
locations 500, 502, and 504, respectively. DEBUG does not
open location 506 because we close 504 with a NEW LINE,
not a carriage return

In the above examples, we entered integer values when modifying memory. You may also enter symbols,
expressions, floating point numbers, and instructions. The Debugger will compute the appropriate value and
deposit it in the open location.

093-000246 Licensed Material-Property of Data General Corporation 3-9

If you enter a number, symbol, or expression that is too large for the open location, DEBUG returns an error.
In the following example, we open a one-word location and enter a two-word value:

500/ OOOOOO?

Since only one word of memory is open, DEBUG returns an error and location 500 8 remains unchanged.

If you enter a floating point number or instruction that is too long for the open location, DEBUG does not
truncate the value. Instead, DEBUG inserts the complete value, modifying as many words of memory as are
necessary. For example, suppose you open one word of memory and insert a two-word instruction:

_500/ 000000 ~WLDA 0,1)

DEBUG will insert the complete two-word value of the XWLDA instruction starting at address 5008 even
though only one word of memory is open. Thus, the above command sequence modifies locations 500 and 501.

For more information on symbols, refer to Chapter 6. Chapter 7 provides more information on expressions,
instructions, and floating point numbers.

Permanent Memory Modifications

Generally, the values you deposit in memory are temporary. They are present during the debugging session,
but are not transferred to the program file on disk. The next time you execute your program, you will find the
original contents of memory unchanged by the debugging operations.

There is one exception to this rule: If you modify the contents of a shared memory locatioll, that change will
permanently alter the program file.

A shared page of memory is accessible by more than AOS/VS process at a time -- only one copy of the shared
page exists in physical memory. AOS/VS always copies modified shared pages into the program file on disk.
Thus, all modifications to a shared page will permanently alter the program file.

In addition, since more than one AOS/VS process can access a shared page in memory, changes you make in
shared memory will affect all users. For example, if you set a breakpoint in a shared page, all processes
executing that page will stop at the breakpoint (regardless of whether they are in the Debugger).

In general, you should make sure no one else is using a shared program while you are debugging it.

The AOS/VS Link and LFE User's Manual and the AOS/VS Macroassembler (MASM) Reference Manual
provide information on the shared and unshared portions of your logical address space and also explain how to
place code in these two areas of memory.

Displaying and Searching Memory
The commands we discussed in the previous section (i.e., / and \) are useful for examining a small number of
memory locations. In this section, we will describe the $S command which allows you to

• display the contents of a large number of locations with a single command

• search for all occurrences of a value within a given memory range

The complete command syntax for the $S command is

address 1 ,address2, [conditioIlJ,fincrementJ,fsizeJ $S

where:

addressl is a number, symbol, or expression that specifies the starting location for the memory display or
search

3-10 Licensed Material-Property of Data General Corporation 093-000246

address2 is a number, symbol, or expression that specifies the final location for the memory display or
search

condition is an optional expression that serves as a condition for performing memory searches. DEBUG
displays a location only if condition is true (i.e., does not equal 0) for the current address. The
default value for condition is true. In general, you will supply a relational expression in the
condition argument

increment is an optional value that specifies how much DEBUG should increment the location counter
between each display or search. DEBUG will add the increment value to the location counter to
determine the next address for the search or display. The default value for increment is 1 -
display or search consecutive 16-bit words of memory

size is an optional value that indicates how many words of memory DEBUG will present at each
address in the display or search. size must be between 0 and 4, inclusive. The default value is 1 -
display the one-word value at each location. Only use a size value of 0 when displaying
instructions (see discussion in the next section)

$ represents the escape (ESC) character

S directs the Debugger to perform a display/search operation

The following sections present a detailed description of the $S command. Figure 3-1 gives an overview of the
operations DEBUG performs during a $S command.

SO-02280

Increment the location
counter by increment
words (default value

is 1).

End
$ScomlllMd

Display
size

worcr.·ofmemory
startitt8 at _

acIdrets in.''''
locathm<:Otmter

(default., ...
f is 1).

Figure 3-1. The $S Command

Before discussing the various uses of the $S command, we must inject a word of caution. You may NOT
interrupt a $S command without aborting your debugging session. The only time DEBUG stops a SS
command is when it encounters an illegal address. In this case, DEBUG stops th{: memory display or search,
generates an appropriate error message, and returns a prompt.

093-000246 Licensed Material-Property of Data General Corporation 3-11

Displaying Memory
The simplest form of the $S command is

address 1 ,address2$S

This command directs DEBUG to display the one-word contents of each memory location from address 1 to
address2, inclusive. Thus, to display the contents of locations 100 through 200, enter the command

_100,200$S

The Debugger would respond as follows (default ring is 7):

16000000100/ 000000
16000000101/000000
16000000102/000000

16000000176/ 000000
16000000177/000000
16000000200/000000

DEBUG displays one word of memory at each location, by default. If you wish to view more words at each
address, use the size argument. For example, the following command displays all two-word values starting at
addresses 100 through 200:

100,200",2$S

Note that we had to enter extra commas in the $S command so DEBUG would know that 2 is a size
argument, not a condition or increment value (see the discussion of the $S command).

After you enter this command, DEBUG would respond as follows:

16000000100/00000000000
16000000101/00000000000
16000000102/00000000000

16000000176/ 00000000000
16000000177/ 00000000000
16000000200/00000000000

Again, the Debugger displays the two-word value starting at each one-word address from 100 to 200. That is,
the Debugger presents the two-word values in locations 100 and 101, 101 and 102, 102 and 103, etc.

In many cases, you want to display consecutive, nonoverlapping two-word values. That is, you wish to view
locations 100 and 101, 102 and 103, 104 and 105, etc. You may accomplish this by using the increment
argument in the $S command. For example,

_100,200,,2,2$S

3-12 licensed Material-Property of Data General Corporation 093-000246

The increment of 2 directs DEBUG to increment the address by 2 words before each display. Therefore, this
command directs DEBUG to display the two-word values starting at every other address from 100 to 200.
DEBUG would respond to this command as follows:

16000000100/00000000000
16000000102/00000000000
16000000104/00000000000

16000000174/00000000000
16000000176/00000000000
16000000200/ 00000000000

You may supply an increment without a size if you wish to view every other one-word value. For example, the
command

_100,200,,2$5

directs the Debugger to display the one-word contents of every other location from address 100 through 200 as
follows:

16000000100/000000
16000000102/000000
16000000104/ 000000

16000000174/ 000000
16000000176/ 000000
16000000200/000000

Displaying Instructions
As we noted earlier, DEBUG always presents the contents of a location in the permanent display mode (see
Chapter 8). Thus, if you are in the instruction display mode (mode 3), DEBUG presents the contents of each
location as an instruction. For example, if you enter

_200,300$5

the Debugger would respond as follows:

16000000200/ XWLDA O,B
16000000201/ LEF 0,77
16000000202/ LCALL 0,1,4
16000000203/ JMP 0
16000000204/JMP 1
16000000205/JMP 4
16000000206/ WBR ARP

The problem with this presentation is that the Debugger interprets the contents of each location as the
beginning of an instruction. In reality, instructions are of variable length (1 to 4 words long) and many words
are argument fields for other instructions. In the previous example, locations 203 through 205 contain the
displacement value and argument count for the four-word LCALL instruction starting at location 202.
However, DEBUG interpreted each of the four words as an instruction and displayed three nonexistent JMP
statements.

093-000246 Licensed Material-Property of Data General Corporation 3-13

To account for this exceptional case, the Debugger provides a special value for the size field of the $S
command. If you specify a display size of 0, DEBUG will present consecutive instructions, not locations. The
Debugger will only present those locations that contain the first word of an instruction. Thus, the command

_200,300",0$S

produces the following output:

16000000200/ XWLDA O,B
16000000202/ LCALL 0,1,4
16000000206/ WBR ARP

DEBUG does not present locations 201, 203, 204, and 205 becaus.e those words are argument fields for the
XWLDA and LCALL instructions.

When specifying a size value of 0, you must adhere to the following rules or DEBUG returns an error:

• you may not supply condition or increment values in the $S command

• the permanent display mode must be set to instruction (see Chapter 8)

Searching Memory
In addition to displaying a range of memory locations, the $S command can also search memory for all
occurrences of a specific value. To perform a memory search, enter an expression in the condition argument to
$S. The Debugger evaluates the condition for each value of the location counter from address 1 to address2,
taking into account the increment and size arguments (again, see the $S command syntax discussion). If the
value of the expression is not 0, the condition is true and DEBUG displays the contents of the current location.
If the expression equals 0, the condition is false and DEBUG moves on to the next address in the $S sequence
without displaying the contents of the current location (see the flowchart in Figure 3-1).

Generally, your condition argument will be a relational expression (i.e., will include one of the relational
operators =, < >, < =, > =, < >). In addition, your expression will usually refer to the contents of the
current location via one of the indirect operators, @ or # . Briefly, the @ operator extracts the one-word
contents of the supplied address; # indicates the two-word value starting at the supplied address. (Chapter 8
describes all DEBUG operators.)

A few examples will help clarify the use of the condition argument. Suppose you want to find every occurrence
of the one-word integer 7 in a given address range. You would enter the command

_ 1 00,200,@. = 7$S

@ . equals the one-word value at the current location. Thus, the condition @ . = 7 is true only if the contents of
the current location equals 7. If locations 104, 143, 174, and 177 all contain sevens, DEBUG would respond as
follows:

16000000104/000007
16000000143/000007
16000000174/000007
16000000177/ 000007

3-14 Licensed Material-Property of Data General Corporation 093-000246

You may use a condition in conjunction with size and increment values. For example, to search double words
of memory for values of 50 or more, enter the following command:

_100,200,#.> =50,2,2$8

. equals the two-word value starting at the current location. Thus, the condition # . > = 50 is true when the
two-word value starting at the current location is greater than or equal to 50. The increment and size values of
2 direct DEBUG to search consecutive two-word values from location 100 to location 200 (i.e., the two-word
values in locations 100-1 ° 1, 102-103, 104-105, ... ,200-201). The Debugger would respond to the previous
command as follows:

16000000106/00000000050
16000000124/00000233570
16000000142/00000000110
16000000144/00000000051
16000000174/00000002271

To search memory for a specific instruction, you must test the instruction's assembled value in the condition
argument. For example, to search for the instruction ADD 0,0, enter the following command

_ 1 00,200,@. = 103000$8

This command directs DEBUG to search the contents of each memory location from address 100 through 200
for the one-word integer 103000, the assembled value for instruction ADD 0,0. If the permanent display mode
is set to instruction, the Debugger's response to the previous command might be

16000000105/ ADD 0,0
16000000113/ ADD 0,0
16000000126/ ADD 0,0
16000000154/ ADD 0,0
16000000171/ ADD 0,0

To obtain the assembled value of an instruction, enter the instruction and hit the numeric function key (Fl).
DEBUG will immediately return the instruction's value. Refer to the sections of Chapter 8 that describe local
display commands for more information.

End of Chapter

093-000246 Licensed Material-Property of Data General Corporation 3-15

Chapter 4
Accessing Registers

The AOS/VS Debugger allows you to examine and modify the contents of two types of registers:

• machine state registers
• Debugger registers

Machine state registers are internal variables that contain program status information. DEBUG allows you to
examine and modify the following machine state registers: fixed-point accumulators, carry bit, processor status
register, floating point accumulators, floating point status register, program counter, and stack control
registers.

Debugger registers are internal variables that DEBUG uses when performing certain operations. You may
examine and modify the following Debugger registers: display mode, proceed count, output radix, and ring.

Next, we explain how to examine and modify the contents of a register. This is a general discussion providing
information common to all registers.

After the general discussion, we describe machine state and Debugger registers in more detail.

Examining and Modifying Registers
The syntax for examining a register is

[nJ$W

where:

n is an integer value; only certain register examine commands accept an argument

$ represents the escape (ESC) character (ASCII value 33 8)

W is a single letter representing a register or class of registers (see Table 4-1)

Table 4-1 lists the commands you use to access the various registers.

093-000246 Licensed Material-Property of Data General Corporation 4-1

Table 4-1. Register Command Summary

Registers Command Register(s) Action

$A Accumulators and Carry Bit Display the contents of the four fixed-point accumulators
and the carry bit

n$A Accumulator or Carry Bit If 0< -n <=3, open fixed-point accumulator n; ifn==4, open
the carry bit

$E Stack Registers Display the four stack registers

Machine n$E A Stack Register Open the stack pointer (n==O), frame pointer (n ==: 1),
State stack limit (n == 2), or stack base (n == 3) register

$F Floating Point Accumulators Display the four floating point accumulators and the
and FPSR floating point status register (FPSR)

nSF Floating Point Accumulator If 0<==n<==3, open floating point accumulator n; if n==4,
or FPSR open the first 32 bits of the FPSR; if n == 5, display the last

32-bits of the FPSR (i.e., the floating point PC)

$L Program Counter Open the program counter

$V Processor Status Register Open the processor status register

$G Ring Open the ring register

Debugger $N Radix Open the output radix register

nSO Proceed Count Open the proceed count register for breakpoint n

$T Display Mode Open the global display mode register

After you enter a register examine command, DEBUG displays the contents of that register or group of
registers. For example, to view the current value of the program counter (PC), enter

DEBUG responds on the same line with the PC value:

_$L 16000000446 _

Similarly, to view the fixed-point accumulators and carry bit, enter

4-2 Licensed Material-Property of Data General Corporation 093-000246

DEBUG responds by displaying the contents of all four accumulators and the carry bit as follows:

_$A (A CO,AC1 ,AC2,AC3,CARRY)
00000000000 00000000000 00000000000 00000000000 00000000000

If you wish to view only accumulator 2 (AC2), you must precede the escape character with the value 2:

This instructs DEBUG to display the contents of AC2 as follows:

_2$A 00000000000 _

Table 4-1 shows which register examine commands display a single register and which commands display a
group of registers.

After DEBUG displays the contents of a single register, that register is open; that is, you may deposit a new
value, if you wish. Simply enter the new value after the Debugger prompt.

For example, to change the program counter, open that: register and deposit the new value as follows:

_$L 16000000446 _ 16000000555 Open the location counter register and deposit the value 16000000555

When modifying a register, you may enter an integer, a symbol, or an expression. If the value you enter is too
large, DEBUG truncates the high-order (most significant) bits. If your entry value is too small, DEBUG pads
on the left with zeros. There is one exception to these rules: if you enter a floating point number or assembly
language instruction that is too large for the open register, DEBUG returns an error and does not alter the
register value.

If you modify the contents of a register, you must close that register before performing other Debugging
operations. Normally, you will enter a NEW LINE (J) or carriage return (1) to close a location.

_4$A 00000000001 _OJ Open the carry bit, deposit the value 0, and close with NEW LINE

If you do not modify the contents of a register, you can enter a new command immediately after DEBUG
displays a register's value. That is, you need not use a NEW LINE or carriage return to close the register if
you do not enter a new value. For example,

_$L 16000000555 _2$A 00000000000_ First, we display the contents of the PC register. Then, we
immediately enter the 2$A command to open AC2

Similarly, you can use the memory examine commands (j and \) immediately after DEBUG displays a
register. These commands close the register and open the location identified by the register's contents. For
example,

_$L 16000000555 _ / 000177 _

In this example, we first direct DEBUG to display the contents of the program counter (PC) by entering the
command $L. Since we close the PC register with a slash command (j), DEBUG interprets the contents of the
PC as an address and opens one word of memory at that location (in this case, location 555 8). Thus, the 16-bit
value starting at location 555 8 equals 177 8 , Refer to Chapter 3 for more information on memory access and
the memory examine commands / and \ .

093-000246 Licensed Material-Property of Data General Corporation 4-3

Machine State Registers
You may examine and modify the following machine state registers:

• the four fixed-point accumulators (ACs)
• the carry bit
• the processor status register (PSR)
• the four floating point accumulators (FPACs)
• the floating point status register (FPSR)
• the four stack registers
• the program counter (PC)

The following sections of this chapter explain how to access these registers. This manual does not describe the
use of the various machine state registers within your program; refer to the ECLIPSE MV/8000 Principles of
Operation manual for that information.

The Debugger provides a set of special symbols that represent the contents of the MV /8000 machine state
registers. See "Special Debugger Symbols" in Chapter 6 for a description of these symbols.

Accumulators and Carry
To examine the contents of the four fixed-point accumulators and the carry bit, enter the following command:

$A

where:

$ represents the escape (ESC) character

A directs DEBUG to display the accumulators and carry bit

When displaying them as a group, DEBUG always presents the four fixed-point accumulators and carry in
numeric mode, regardless of the current display mode.

An example command and response is

_$A (ACO,ACI,AC2,AC3,CARRY)
00000000000 00000000000 00000000000 00000000000 00000000000

The $A command does not open the registers for modification, but simply displays their contents.

To open a specific accumulator or the carry bit, enter

n$A

where:

n is an integer value from 0 to 4, inclusive. If n equals 4, DEBUG opens the carry bit; otherwise,
DEBUG opens the accumulator specified by n (i.e., ACn)

$ represents the escape (ESC) character

A informs DEBUG that you wish to access an accumulator or the carry bit

When displaying a single register, DEBUG uses the current display mode.

As an example, to open accumulator 1 (ACl), enter

_1$A

4-4 Licensed Material-Property of Data General Corporation 093-000246

The Debugger will display the contents of ACI and open that accumulator for modification. Enter a new
value, if you wish, and close the register. For example,

_1$A 00000000000 _177J Open ACl, deposit the value 177, and close with NEW LINE

To open the carry bit, enter the command

DEBUG displays the carry value and opens that bit for modification. The carry value must be either 0 or 1; if
you enter a different value, DEBUG returns an error. The following example opens and modifies the carry bit:

_4$A 00000000001 _OJ Open the carry bit, deposit the value 0, and close with NEW LINE

Processor Status Register
The processor status register (PSR) is a 16-bit hardware register that contains information about the state of
the ECLIPSE MV /8000. The format of the PSR register is

SO-02281

OVK OVR reserved

The first two bits (bits 0 and 1) of the PSR contain overflow information. The OVK bit (bit 0) is the overflow
mask and the OVR bit (bit 1) is the overflow indicator. Bits 2 through 15 are reserved for use by the hardware.
See the ECLIPSE MV/8000 Principles of Operations manual for more information on the PSR.

To open the processor status register (PSR), enter the following DEBUG command:

$V

where:

$ represents the escape (ESC) character

v directs DEBUG to open the PSR

When DEBUG displays the contents of the PSR, it always shows bits 2 through 15 as zeros since these bits are
reserved for hardware use. DEBUG's display does, however, reflect the current values for bits 0 and 1 (i.e.,
OVK and OVR).

The following example shows a $V command and the Debugger's response:

_$V 00000140000 _

This display shows that the OVK and OVR bits are both set to 1. Note that DEBUG presents the PSR as a
32-bit value even though it is only one word (16 bits) in length. Ignore the first word of DEBUG's display.

After DEBUG displays the PSR, that register is open for modification. DEBUG only allows you to modify bits
o and 1 (OVK and OVR). Bits 2 through 15 are reserved for hardware use and if you try to modify them,
DEBUG returns an error. After you enter a new value, close the PSR register with a NEW LINE or carriage
return.

093-000246 Licensed Material-Property of Data General Corporation 4-5

The following examples show how to modify the PSR register:

_$V 00000000000 _ 140000J Open the PSR, set the OVK and OVR bits to 1, and close with NEW
LINE

_$V 00000140000 _100000J Open the PSR, set the OVK bit to 1 and the OVR bit to 0

_$V 00000100000 _40000J Open the PSR, set the OVK bit to 0 and the OVR bit to 1

_$V 00000040000 _377J

?-
ERROR: The Debugger does not allow you to modify bits 2 through 15
of the PSR register

Floating Point Accumulators and FPSR
DEBUG allows you to examine the contents of the four floating point accumulators (FPACs) and the Floating
Point Status Register (FPSR) by entering the following command:

$F

where:

$ represents the escape (ESC) character

F directs DEBUG to display the floating point accumulators and the FPSR

The floating point registers are each four-word (64-bit) values. When displaying them as a group, DEBUG
presents the four floating point accumulators (FPACs) as double-precision (64-bit) floating point numbers,
regardless of the current display mode. DEBUG presents the FPSR as two 32-bit integers; the first one holds
the floating point status information, the second holds the floating point program counter (PC). Refer to the
ECLIPSE MV/BOOO Principles of Operation manual for more information on the floating point registers.

An example $F command and the Debugger response is

_$F
O.OOOOOOOOOOOOOOOOE + 0 0.0000000000000000 E + 0
O.OOOOOOOOOOOOOOOOE + 0 O.OOOOOOOOOOOOOOOOE + 0
0000160000 00000000000

The first line of DEBUG's response shows the values of FPACO and FPACl; the second line shows FPAC2
and FPAC3. The last line displays the FPSR as two 32-bit integers.

The $F command does not open the registers for modification, but simply displays their contents.

To view a specific floating point accumulator or the FPSR, enter

n$F

where:

n

$

F

4-6

is an integer value from 0 to 5, inclusive. If n=4, DEBUG opens the status portion of the FPSR
(the first 32-bits); if n = 5, DEBUG displays the floating point program counter portion of the
FPSR (the last 32 bits); otherwise, DEBUG opens the accumulator specified by n (i.e., floating
point accumulator FPACn)

represents the escape (ESC) character

informs DEBUG that you wish to access a floating point register

Licensed Material-Property of Data General Corporation 093-000246

As an example, to open floating point accumulator 3 (FPAC3), enter

The Debugger displays the four-word (64-bit) contents of FPAC3 on the same line:

_3$F 000000 00000000000 000000 _

When displaying the contents of a single register, DEBUG uses the current display mode (numeric, by
default). To view the contents of a floating point register in floating point notation, you must set the display
mode accordingly (see Chapter 8). If you are currently in floating point display mode, DEBUG responds to
your register examine command as follows:

_3$F 0.0000000000000000£ + 0 _

After DEBUG displays the contents of a floating point accumulator, that resister is open for modification.
Enter a new value, if you wish, and close the register. For example,

_3$F 0.0000000000000000£+0 _ 7.125E-6J Open FPAC3, deposit the value 7.125E-6, and close
with NEW LINE

FPAC3 now contains the value 7.125E-6, as shown by the following command:

3$F 7.125000000000000£-6

To open the status portion (bits 0 through 31) of the Floating Point Status Register (FPSR), enter the
command

DEBUG presents the first 32 bits of the FPSR in the current display mode, followed by a prompt. At this
point, you may modify the status value, if you wish.

_4$F 00001600000 _41600000J Open the status portion of the FPSR. Enter the value 41600000 and
close with NEW LINE

To view the floating point PC (i.e., bits 32 through 61 of the FPSR), enter

DEBUG displays the 32-bit floating point PC in the current display mode. For example (in numeric mode),

_5$F 000000000000 _

Though DEBUG presents the floating point PC value, that register is not open for modification. You may not
enter a new floating point PC value. If you try to do so, DEBUG returns an error.

093-000246 Licensed Material-Property of Data General Corporation 4-7

Stack Registers

Using the $E command, you may display the four ECLIPSE MV /8000 stack registers: stack pointer, frame
pointer, stack limit, and stack base. The command syntax is

$E

where:

$ represents the escape (ESC) character

E directs DEBUG to display the four stack registers

When displaying them as a group, DEBUG always presents the four stack registers in numeric mode,
regardless of the current display mode.

An example $E command and the Debugger's response is

_$E (SP,FP,SL,SB)
16000001004 00000000000 16000001077 16000001004

The $E command does not open registers for modification, but simply displays their contents.

To open a specific stack register, enter

n$E

where:

n is an integer value from 0 to 3, inclusive. n identifies one of the four stack registers as follows:

Value of n Register

o Stack Pointer (SP)

Frame Pointer (FP)

2 Stack Limit (SL)

3 Stack Base (SB)

$ represents the escape (ESC) character

E informs DEBUG that you wish to open a stack register

When presenting a single register, DEBUG always uses the current display mode.

The following command opens the stack pointer:

The Debugger will display the stack pointer and open that register for modification. Enter a new value, if you
wish, and close the register. For example,

_O$E 16000001004 _ 16000002117 J Open the stack pointer, enter the value 16000002117, and close
with NEW LINE

4-8 Licensed Material-Property of Data General CorporatIOn 093-000246

Program Counter
The program counter (PC) holds the address of the next instruction your program will execute. To open the
program counter, enter

$L

where:

$ represents the escape (ESC) character

L directs DEBUG to open the PC register

The following example shows a $L command and the Debugger's response:

$L 16000000446

After DEBUG displays the program counter, that register is open for modification. Enter a new value, if you
wish, and close the register.

_$L 16000000446 _500;7J Open the PC register, enter the value 500;7 (location 500 in ring 7), and
close with NEW LINE

After this command, the PC register identifies address 500 8 in ring 7. Your program will now begin (or
continue) execution at that location.

Since the PC register holds an address, the value you enter must include the ring value for your program in
bits 1 through 3. If the PC value does not address the appropriate ring, DEBUG returns an error when you try
to continue program execution. See "Rings" in Chapter 3 for more information.

You may wish to close the PC register using the memory examine commands / and \ . As described earlier,
these characters direct DEBUG to close the PC and open the location specified by the PC value. For example,

_$L 16000000446 _ / 103000J Open the PC register. Since we close with /, DEBUG uses the PC value as
an address and opens that location (Le., location 16000000446 contains the
value 103000)

Chapter 3 provides more information on memory access and the memory examine commands / and \ . That
chapter also contrasts the program counter and the location counter.

Debugger Registers
The Debugger uses various internal registers when performing certain operations. You cannot access these
registers from your program, but you may examine and modify them directly during the debugging session.
The Debugger registers include

• output radix register

• global display mode register

• proceed count registers

• ring register

The following sections discuss each of these registers. We describe some in more detail elsewhere; in these
cases, we provide brief descriptions in this chapter and references for more information.

093-000246 Licensed Material-Property of Data General Corporation 4-9

Radix Register
The value in the radix register determines the radix (base) that DEBUG will use when presenting numeric
values. By default, DEBUG presents numeric values in octal (base 8), but you may set the output radix to any
base from 2 (binary) to 16 10 (hexadecimal), inclusive.

To examine the radix register, enter

$N

where:

$ represents the escape (ESC) character

N directs DEBUG to display the radix register in the current display mode. DEBUG always
presents this value as a decimal (base 10) number

An example command and response is

8. equals 810

After DEBUG displays the current output radix, the register is open for modification. You may insert any
value from 2 to 16 10; DEBUG interprets the new value in octal unless you include a a decimal point (i.e., 16.
equals 16 10).

The following example, shows the use of the $N command:

_$N 8._J
_O$A 00000000077 _J
_$N 8. _10J
_O$A 0000000063_J
_$N 10. _16.J
_O$A 0000003F_J
$N 16.

Examine the radix register (default output radix is octal) and close with NEW
LINE. DEBUG displays the contents of ACO in octal. Again, open the radix
register. This time, deposit the value 10 10 • Now, DEBUG presents the contents
of ACO in decimal. Lastly, change the output radix to hexadecimal (16 10) and
display ACO. At the end of this example, the output radix is hexadecimal

Note that the number of digits DEBUG displays varies with the radix value. For example, when the radix is
octal, DEBUG requires 11 \0 digits to present a 32-bit integer. However, DEBUG presents decimal and
hexadecimal 32-bit values using only 10 10 and 8 10 digits, respectively.

00000000077
0000000063
0000003F

The 32-bit value 6310 in octal, decimal, and hexadecimal. Note the number of columns
DEBUG requires in each case

Global Display Mode Register
The Debugger may present data in a variety of modes (e.g., numeric, instruction, symbolic, floating point,
ASCII, half-word, etc.). The global display mode register holds a value that indicates which mode DEBUG is
currently using.

Table 4-2 lists the various display mode register values and the corresponding DEBUG display modes.

4-10 Licensed Material-Property of Data General Corporation 093-000246

Table 4-2. Display Mode Values

Relister Value
Display Mode

Decimal Octal

1 1 Numeric (default mode)
2 2 Numeric words
3 3 Instruction
4 4 Symbolic
5 5 Half-word
6 6 Byte pointer
7 7 ASCII
8 10 Floating point
9 11 System call
0 0 AOSjVS error message

Chapter 8 provides more information on each of these display modes.

To examine the display mode register, enter the command

$T

where:

$ represents the escape (ESC) character

T directs DEBUG to present the global display mode register

An example of this command and the Debugger's response is

_$T 00000000001 _

After DEBUG presents the display mode register, that register is open for modification. Enter a new value
from 0 to 9 10 (0 to lIs), if you wish, and close the register. For example,

_$T 00000000001 _5J Open the display mode register (current display mode is numeric). Change the
global display mode to half-word (Le., enter 5) and close the register with NEW
LINE

The following example is more extensive and shows how the display mode affects Debugger output.

_$T 00000000001 _J
_O$A 11420245505 _J
_$T 00000000001 _5J
_O$A 114 101 113 105_J
_$T 000 000 000 005 _7J
_O$A LAKE_J

The display mode register equals 1, so DEBUG displays ACO in numeric
mode. Change the display mode to half-word (5) and view ACO. Lastly, change
the display mode to ASCII (7) and again view ACO

The $T command is only one of several ways you may modify the display mode. Refer to Chapter 8 for a
complete description of the various display modes and the commands that invoke those modes.

093-000246 Licensed Material-Property of Data General Corporation 4-11

Proceed Count Registers
A proceed count determines how many times DEBUG must encounter a breakpoint before it stops your
program. Proceed counts are particularly useful when you set a breakpoint inside a loop or routine and want
DEBUG to stop execution the nth time it encounters that breakpoint.

Each breakpoint has a proceed count associated with it. This value resides in that breakpoint's proceed count
register. The default value for each proceed count register is 1; i.e., stop program execution each time DEBUG
encounters the breakpoint.

To examine a proceed count register, enter the following command:

n$Q

where:

n

$

Q

is an integer value that identifies a breakpoint

represents the escape (ESC) character

directs DEBUG to open the proceed count register for breakpoint n

The following example shows a typical n$Q command and the Debugger's response:

_2$Q 00000000001 _ Open the proceed count register for breakpoint number 2

After DEBUG displays a proceed count register, that register is open for modification. Enter a new value, if
you wish, and close the register. For example,

_2$Q 00000000001 _5J Open the proceed count register for breakpoint 2, deposit the value 5, and close
with NEW LINE

After this command, the proceed register for breakpoint 2 equals 5. That is, DEBUG will stop program
execution the fifth time it encounters breakpoint number 2.

If you enter an n$Q command and there is no breakpoint n currently defined, DEBUG returns an error.

This discussion is meant as a very brief overview of proceed count registers. "Proceed Count" in Chapter 5
provides much greater detail on the subject and includes a number of examples.

Ring Register
All AOS jVS addresses contain a ring value between 0 and 7, inclusive. This value resides in bits 1 through 3
of the address. Thus, your addresses will generally be of the form

16000000100

This number represents location 1008 in ring 7. (Note that the value in bits 1 through 3 of the address equals
7.)

Usually, all addresses you wish to access reside in the same ring (often, ring 7). Rather than explicitly
specifying the ring field in each address, you may select a default value and let DEBUG insert it for you. This
default ring value resides in the ring register. It initially equals the ring value in the program counter.

Thus, if the ring register holds the value 7, DEBUG assumes any address that does not explicitly include a ring
value refers to ring 7. For example,

_100/

4-12 Licensed Material-Property of Data General Corporation 093-000246

Since the address 100 does not specify a ring, DEBUG inserts the value from the ring register (Le., 7) into bits
1 through 3. In this case, DEBUG converts the entry 100 into address 16000000100.

To examine the ring register, enter the command

$G

where:

$ represents the escape (ESC) character

G directs DEBUG to present the ring register

The following example, shows a $G command and DEBUG's response.

_$G 00000000007 _ Open the ring register

After DEBUG displays the ring register, that register is open for modification. Enter a new value, if you wish,
and close the register. For example,

_$G 00000000007 _6J Open the ring register, enter the value 6, and close with NEW LINE

After this command, ring 6 is the default addressing ring.

Again, DEBUG only refers to the ring register when an address does not include a ring value. If you specify an
address that includes a ring value, DEBUG uses that value and not the ring register.

This discussion is meant as a brief overview. Refer to "Rings" in Chapter 3 for more information on rings and
$G.

If you are using the FED utility (not DEBUG), you may deposit a -1 value in the ring register. This allows you
to examine locations in your program's preamble. Refer to Chapter 10 for more information on FED and the
-1 ring register value.

End of Chapter

093-0002"6 Licensed Material-Property of Data General Corporation 4-13

Chapter 5
Breakpoints and Program Restarts

A breakpoint is a position in your program where you wish to suspend execution. When your program
encounters a breakpoint, it immediately passes control to the Debugger. You may then enter commands to
examine and modify memory locations, machine state registers, and Debugger registers (see Chapters 3 and
4). After performing the desired actions, you may continue program execution at the breakpoint or at any
other location in your program.

In this chapter, we explain how to set, examine, and delete breakpoints, and how to continue program
execution after a breakpoint. Note that you may not set breakpoints in your program if you enter the
Debugger via a ?DEBUG system call. Refer to "Entering the Debugger from a Program" in Chapter 2 for
more information.

Table 5-1 summarizes the various breakpoint-related commands. Figure 5-1, under "Proceed Counts", is a
flowchart of the Debugger's breakpoint logic.

Table 5-1. Breakpoint Command Summary

Command Action

$B Display all breakpoints

address$B Set a breakpoint at location address

address,condition$B Set a conditional breakpoint at location address

$0 Delete all breakpoints

n$O Delete breakpoint n

$P Continue program execution at the last breakpoint encountered

n$P Continue program execution at the last breakpoint encountered and set the proceed count for
that breakpoint to n

n$O Open the proceed count register for breakpoint n

$R Resume program execution at the current program counter (PC)

address$R Resume prOgram execution at location address

093-000246 licensed Material-Property of Data General Corporation 5-1

Setting Breakpoints
DEBUG allows you to have 20 JO breakpoints in your program at a time. The command for setting a
breakpoint is

address$B

where:

address is a number, symbol, or expression whose value specifies a word location where you want to set a
breakpoint; you will frequently pass a label as an address argument to $B

$ represents the escape (ESC) character

B informs DEBUG that you want to set a breakpoint

The address$B command directs DEBUG to set a breakpoint in your program at location address. During
program execution, DEBUG will stop your program before the instruction at location address is executed.
You can then examine and modify memory locations and registers.

Be sure you set your breakpoints at the beginning of executable instructions. Do not set breakpoints at the
following locations:

• data entries

• instructions modified during program execution

• within multiword instructions

Also, if the address value does not specify a memory ring, DEBUG inserts one from the ring register (see
"Rings" in Chapter 3).

An example command for setting a breakpoint is

_1500$B _

DEBUG sets a breakpoint at word address 1500 8 and returns a prompt. During execution, your program will
stop and pass control to DEBUG each time it encounters the breakpoint at address 1500 8 ,

Often, you will supply a label in the address argument to $B. For example,

_LOC$B _J
_LOC+40$B _

DEBUG sets two breakpoints; one at address LOC and one at address LOC+40 (assuming LOC is a valid
symbol). Chapter 6 describes symbol use in more detail.

In the above discussion, we present the simplest way to set breakpoints. Later we discuss two features that
make breakpoints more powerful: conditions and proceed counts.

5-2 Licensed Material-Property of Data General Corporation 093-000246

Displaying Breakpoints
As mentioned earlier, DEBUG allows your program to contain up to 20 10 (248) breakpoints at a time. To
display a list of breakpoints, their locations, and their proceed counts, enter

$8

where:

$ represents the escape (ESC) character

8 directs DEBUG to display all breakpoints, their locations, and their proceed counts

For example, suppose you set breakpoints at address 446 8 , 500 8 , and 5408 as follows:

_446$8 _J Set breakpoints at addresses 446, 500, and 540
_500$8 _J
540$8

If you now enter the display command, DEBUG will show you all currently set breakpoints.

_$8
BO 16000000446 #1
Bl 16000000500 #1
B2 16000000540 #1

The first entry on each line shows the breakpoint number. BO is breakpoint 0, Bl is breakpoint 1, etc. Since
DEBUG displays the numbers in octal, it numbers breakpoints from 0 to 23 8 , and BI0 refers to breakpoint
10 8 •

The second entry shows the address of the breakpoint. In the above example, BO is at location 16000000446 8 •

(Note that DEBUG automatically inserted ring values in the addresses; see "Rings" in Chapter 3.)

If DEBUG has access to a symbol table, it will try to present the breakpoint addresses in symbolic mode. For
example, suppose symbol START equals 160000004468 and symbol LOC equals 16000000500 8 • DEBUG
would present the above three breakpoints as

_$8
BOSTART#1
Bl LOC#1
B2 LOC+ 40 #1 _

Refer to Chapter 6 for more information on symbols and symbol tables.

The last entry on each line indicates the proceed count for that breakpoint. In the above example, all
breakpoints have a proceed count of 1 (i.e., # 1). This means that DEBUG will suspend program execution
every time it encounters one of those breakpoints. "Proceed Count" later in this chapter gives more
information on this subject.

093-000248 Licensed Material-Property of Data General Corporation 5-3

Deleting Breakpoints
To delete all breakpoints from your program, enter the command

$0

where:

$ represents the escape (ESC) character

o informs DEBUG that you wish to delete breakpoints

To delete a specific breakpoint from your program, enter

n$O

where:

n is the number of a previously set breakpoint (as shown in a $B display)

$ represents the escape (ESC) character

o informs DEBUG that you wish to delete a breakpoint

For example, suppose you set breakpoints at locations 446 8 ,500 8 , and 540 8 • A $B display would show

_$8
BO 16000000446 #1
B1 16000000500 #1
B2 16000000540 #1

If you want to delete breakpoint B 1 from your program, enter the command

To verify the deletion, enter another $B command.

_$8
BO 16000000446 #1
B2 16000000540 #1

This display shows that DEBUG deleted breakpoint B1. Note that. all other breakpoints retain their same
identification numbers (e.g., the breakpoint at location 16000000540 8 is still breakpoint 2).

If you do not delete breakpoints from your program before leaving the debugging session, DEBUG will
automatically remove them for you.

Conditional Breakpoints
When you set a breakpoint, you have the option of associating a condition with that breakpoint. Each time
DEBUG encounters the breakpoint, it will evaluate the condition. If the condition is false (equal to 0),
DEBUG will not stop program execution. If, on the other hand, the condition is true (not equal to 0), DEBUG
will stop your program at that breakpoint.

5-4 Licensed Material-Property of Data General Corporation 093-0002<46

The command for setting a conditional breakpoint is

address,condition$8

where:

address is a number, symbol, or expression whose value specifies a word location where you want to set a
conditional breakpoint

condition is an expression that DEBUG evaluates when it encounters the breakpoint. If the expression is
true (does not equal 0), DEBUG stops your program at the breakpoint; otherwise, program
execution continues

$ represents the escape (ESC) character

8 informs DEBUG that you wish to set a breakpoint

In most cases, your condition argument will contain a relational operator -- >, <, ==, > =, < =, or < >.

Consider the following example:

_446,@1500> = 5$8

This command directs DEBUG to set a conditional breakpoint at address 446 8 • When your program
encounters the breakpoint, DEBUG will evaluate the conditional expression @ 1500 > = 5. If it is true (not
equal to 0), DEBUG will stop program execution at the breakpoint.

@ 1500 equals the one-word value at location 1500 8 • Thus, the expression @ 1500 ::> = 5 is true if the contents
of word 1500 8 is greater than or equal to 5. See "Operators" in Chapter 7 for more information on the @
operator.

Our second example sets a conditional breakpoint that compares an accumulator value to a constant (the
symbol < $ > represents the dollar sign character, not escape):

_523,2<$>A= 177$8

This command sets a conditional breakpoint at location 523 8 • The expression 2 < $ > A represents the value
of AC2 (see Chapter 6 for information on including register values in expressions). Thus, when your program
encounters this breakpoint, DEBUG compares the value of AC2 to the constant 177 8 • If AC2 equals 177, the
condition is true and DEBUG stops program execution. Otherwise, DEBUG ignores the breakpoint and
program execution continues.

Proceed Counts
Each breakpoint has a proceed count associated with it. The proceed count is a value that indicates how many
times your program must encounter the breakpoint before DEBUG gets control.

By default, DEBUG assigns each breakpoint a proceed count of 1. Each time your program encounters a
breakpoint, it decrements that breakpoint's proceed count by 1 and checks the result. If the proceed count
equals 0, your program stops, control passes to the Debugger, and you may enter commands.

If the result is not 0, program execution continues. After your program stops execution at a breakpoint,
DEBUG sets that breakpoint's proceed count to 1, the default value.

Proceed counts are particularly useful when you set a breakpoint in a loop or routine but only want your
program to stop execution when it encounters that breakpoint for the n th time.

093-000246 Licensed Material-Property of Data General Corporation 5-5

Figure 5-1 shows DEBUG's logic for stopping program execution at a breakpoint. Note that the flowchart
includes logic for the optional breakpoint condition (see "Conditional Breakpoints" earlier in this chapter).

80-02282

Figure 5-1. Breakpoint Logic Diagram

To determine the proceed count values for your breakpoints, enter the breakpoint display command $B. For
example,

_$8
BO 16000000446 #1
B1 16000000500 #1
B2 16000000540 #1

The last entry on each line (e.g., # 1) indicates the proceed count for the breakpoint. In this example, BO, B 1,
and B2 all have proceed counts of 1.

DEBUG provides two ways to modify the proceed count for a breakpoint:

• open the proceed count register and enter a new value (via the n$Q command)

• supply a proceed count when you continue program execution at a breakpoint (via the n$P command)

5-6 Licensed Material-Property of Data General Corporation 093-000246

The proceed count value for each breakpoint resides in a proceed count register. To open this register, enter
the command

n$O

where:

n is the number of a previously set breakpoint (as shown in a $B display)

$ represents the escape (ESC) character

o directs DEBUG to open the proceed count register for breakpoint number n

In the previous example, breakpoint Bl has a proceed count of 1 (# 1). To open Bl 's proceed count register,
enter

DEBUG responds with the proceed count for breakpoint 1. At this point that register is open and you may
enter a new proceed count value, if you wish. For example,

_1$0 00000000001 _4) Open the proceed count register for B 1 by entering 1 $Q. After DEBUG
displays the proceed count (1), enter the new value 4 and close the register with
NEWLINE

The proceed count for B 1 now equals 4. That is, your program will ignore B 1 the next three times it is
encountered. However, on the fourth encounter, program execution stops and control passes to DEBUG. After
the program stops at Bl, DEBUG resets the corresponding proceed count register to 1.

Refer to Chapter 4 for more information on the proceed count register and registers in general.

The second way to alter a proceed count is to wait until your program encounters the breakpoint. Then, restart
your program with the command

n$P

DEBUG will set the proceed count for the breakpoint just encountered to n and will continue program
execution at that breakpoint.

Refer to "Restarting Your Program at a Breakpoint" later in this chapter for more information on the $P
command.

Program Restarts
When your program stops at a breakpoint, DEBUG presents a display similar to the following:

BO 16000036000
00000000000 00000000000 00000000000 00000000000 00000000000

The first line identifies the breakpoint (e.g., BO is breakpoint number 0) and its address. The following five
numbers show the values of ACO, ACl, AC2, AC3, and the carry bit, from left to right.

093-000246 Licensed Material-Property of Data General Corporation 5-7

After you issue various DEBUG commands, you can either continue program execution or end your debugging
session. The Debugger supplies two commands for restarting program execution after a breakpoint. You may

• restart your program at the breakpoint (via $P) or

• restart your program at a specified location (via $R)

If you want to end your debugging session, enter the $Z command (see "Leaving the Debugger" in Chapter 2
for more information).

If your program traps during execution, control returns to the Debugger. At this point, you can examine
memory and registers but may not continue program execution. If you try to do so, DEBUG will terminate the
debugging session. Refer to the AOS/VS Programmer's Manual for information on traps.

Restarting Your Program at a Breakpoint
To restart program execution at the last breakpoint encountered, issue the command

$P

where:

$ represents the escape (ESC) character

P directs DEBUG to proceed with program execution at the last breakpoint encountered

Remember, when your program encounters a breakpoint, it stops before executing the instruction originally at
the breakpoint address. Thus, when you issue the $P command, your program will restart at that address.

When you restart your program at a breakpoint via $P, you may also specify a proceed count for that
breakpoint (see "Proceed Counts" earlier in this chapter). The syntax for this command is

n$P

where:

n is the new proceed count for the last breakpoint encountered

$ represents the escape (ESC) character

P directs DEBUG to continue program execution at the last breakpoint encountered

As an example, suppose your program runs through a loop 100 10 times but you only want to DEBUG your
code during the last iteration of that loop. One way to do this is to set a breakpoint at the beginning of the loop
and enter the $P command each time your program stops. However, you have to issue the $P command 99 10

times before your program finally enters the last (100 th) iteration of the loop.

Alternatively, after your program stops at the breakpoint for the first time, you could enter the command

This command sets the proceed count for the breakpoint to 99 10 and restarts your program at that breakpoint.
Now program execution will not stop at that breakpoint until the 99 th iteration of the loop. Again, see
"Proceed Counts" for more information on their use.

Note that you may only issue a $P command after your program encounters a breakpoint. If you try to start
your program with $P, DEBUG returns an error.

5-8 Licensed Material-Property of Data General Corporation 093-000246

Restarting Your Program at a Location
To restart your program at the address in the program counter (PC), enter the command

$R

where:

$ represents the escape (ESC) character

R directs DEBUG to resume program execution at the PC value

When program execution stops at a breakpoint, the program counter (PC) holds the address of that
breakpoint. Thus, the $R command directs DEBUG to resume execution at the breakpoint.

Note that after a breakpoint, the $P and $R commands perform the same operation (i.e., continue program
execution at the breakpoint).

If you want to continue program execution at a location other than the current PC value, you can either

• modify the address in the program counter (PC) via the $L command (see Chapter 4) and then enter $R to
continue execution at that address, or

• pass an address directly in the $R command as follows:

address$R

where:

address is a number, symbol, or expression that indicates the address in your program where you want to
continue execution

$ represents the escape (ESC) character

R directs DEBUG to resume program execution at location address

If you enter an address$R command, DEBUG will continue program execution at location address.

As an example, suppose your program just encountered a breakpoint. If you want to continue execution at
location 1025 8 rather than at the breakpoint, enter

_1025$R

DEBUG would restart your program at location 1025 8 •

Of course, you may pass symbols to $R. For example, to continue execution at label LOOP!, enter

_LOOP1$R

In the previous section, we said you could only issue the $P command after your program encounters a
breakpoint. This is not true for the $R command; in fact, you must use this command to initiate program
execution when your first enter the debugging session (see "Starting Program Execution" in Chapter 2).

End of Chapter

093-000246 Licensed Material-Property of Data General Corporation 5-9

Chapter 6
Symbol Recognition and Definition

The AOS/VS Debugger allows you to enter symbolic values and can present data in symbolic mode. DEBUG
can recognize three symbol types:

• symbols defined in your program's symbol table (i.e., in the .ST file)

• temporary symbols you define during the debugging session

• special Debugger symbols that represent the contents of the location counter and the various MV /8000
machine state registers

In the following sections, we first describe these three types of symbols and then show how to use them during
the debugging session.

The section entitled "Checking a Symbol's Value" explains how to obtain any symbol's value.

Table 6-1 lists the DEBUG commands that we describe in this chapter.

Table 6-1. Symbol Command Summary

Program Symbol Recognition
When you enter a debugging session, DEBUG automatically searches for your program's symbol table file.
Normally, your program's symbol table file has the same name as your program file, less the .PR extension
and with the new extension .ST.

Thus, if you invoke the Debugger from the CLI with the command

) DEBUG PROG1J

the Debugger will search for file PROG I.ST and will use it as the symbol table, if available.

093-000246 Licensed Material-Property of Data General Corporation 6-1

DEBUG recognizes your program's global symbols; that is, the symbol's you declare in .ENT pseudo-op source
statements. DEBUG does not recognize any other symbols you define in your program. Refer to the AOS/VS
Macroassembler Reference Manual for a description of the .ENT pseudo-op.

In addition to .ENT symbols, your program's symbol table includes all the AOS/VS memory parameter
symbols (e.g., ?ZBOT, ?NMAX, ?CLOC) and certain symbols from the system library URT32.LB. The
AOS/VS Link and LFE User's Manual contains more information on these symbols.

Disabling a Symbol Table
If you want to stop using the current symbol table, enter the command

$X

where:

$ represents the escape (ESC) character

x directs DEBUG to close the symbol table

After you issue a $X command, DEBUG will not recognize any symbols in your program. Consider the
following example,

_START / 006017 _J
_$X_J
START/ U?

By default, DEBUG recognizes symbol START (your program declares START in
an .ENT statement). After you disable the symbol table with $X, DEBUG does not
recognize START

If you enter the $X command and no symbol table is currently enabled, DEBUG returns an error message.

There is no way to disable a specific symbol in your .ST symbol table. You must either enable or disable the
whole set.

Enabling a Symbol Table
To enable a symbol table, enter the command

file$X

where:

file is the complete pathname of a file that contains a symbol table; include the .ST extension when
specifying the filename

$ represents the escape (ESC) character

X informs DEBUG that you want to open a symbol table

When DEBUG encounters a file$X command, it first closes the current symbol table, if one is open. Then
DEBUG opens the specified file as the new symbol table.

Consider the following example:

_$X_J
_LOC1/ U?_J
_PROG 1.ST$X _J
_LOC1/ 000077 _

$X disables the current symbol table; DEBUG does not recognize symbol LOCI.
Open file PROGl.ST as the symbol table. DEBUG now recognizes symbol LOCI,
defined in PROGI.ST

Note that we explicitly included the .ST extension when specifying the symbol table file PROG I.ST; the
Debugger does not add this extension for you. Should you omit it, the Debugger will send an error message.

6-2 Licensed Material-Property of Data General Corporation 093-000246

Temporary Symbols
DEBUG allows you to define up to 20 10 symbols during the debugging session. We refer to these as
temporary symbols since they are known only for the duration of the current debugging session.

Temporary symbol definitions reside in the temporary symbol table. When displaying or interpreting symbols,
DEBUG refers to the temporary symbol table first; the .ST symbol table second. Thus, if you define a
temporary symbol that has the same name as one in the .ST symbol table, DEBUG uses the value in the
temporary symbol table.

Defining Temporary Symbols
The syntax for defining a temporary symbol is

symbol,value$1

where:

symbol is the name of the temporary symbol you want to define; the following discussion states the rules
for temporary symbol names

value is a number, symbol, or expression that specifies a value for symbol

$ represents the escape (ESC) character

informs DEBUG that you are defining a temporary symbol

Each temporary symbol (i.e., symbol, in the above command syntax) may contain up to 32 10 characters.
Symbol names must conform to the following format:

a {b ... ;

where:

a is the first character of the symbol and may be any upper- or lowercase letter, period (.), question
mark (?), or dollar sign ($)

b represents subsequent characters in the symbol and can include upper- and lowercase letters,
numbers (0 through 9), period (.), question mark (?), dollar sign ($), and underscore (_)

According to this definition, the following are all legal temporary symbols:

LOCATIONl .START ?IOD

The Debugger is case sensitive. Thus, the symbol 'start' is not the same as 'START'.

The following example defines the three temporary symbols COL, LIB, and TJ:

_COL,25$I_J
_LlB,144$I_J
_TJ,47$1-

Define temporary symbols COL, LIB, and T J

DEBUG now recognizes these three symbols. You may use them anywhere you would use the corresponding
numeric values. In addition, DEBUG will use them for display purposes. Later in this chapter, we discuss how
you and DEBUG may use symbolic references.

093-000246 Licensed Material-Property of Data General Corporation 6-3

Displaying Temporary Symbols
To display a list of the currently defined temporary symbols and their values, enter the command

$1

where:

$ represents the escape (ESC) character

directs DEBUG to display all temporary symbols and their values

Consider the following example:

_COL,25$I_J Define temporary symbols COL, LIB, and T J
_LIB, 144$I_J
_TJ,47$I_J
_$1 Display all currently defined temporary symbols
COL 00000000025
LIB 00000000144
TJ 00000000047

Deleting Temporary Symbols
To delete all temporary symbols and their definitions, enter

$J

where:

$ represents the escape (ESC) character

J directs DEBUG to delete all temporary symbol definitions from the current debugging session

The $J command deletes all temporary symbol definitions but does not affect your program's symbol table
(i.e., the .ST file).

If you wish to delete a specific temporary symbol, enter the command

symbol$J

where:

symbol is the name of the temporary symbol you want to delete

$ represents the escape (ESC) character

J directs DEBUG to delete symbol from the temporary symbol table

As an example, suppose symbols COL, LIB, and TJ have values 25, 144, and 47, respectively. A $1 display
would show

-$1
COL 00000000025
LIB 00000000144
TJ 00000000047

6-4 Licensed Material-Property of Data General Corporation 093-000246

If you want to delete temporary symbol LIB, enter

To verify the deletion, enter another $1 display command.

-$1
COL 00000000025
TJ 00000000047

This display shows that DEBUG deleted symbol LIB from the temporary symbol table.

Special Debugger Symbols
The Debugger provides special symbols that you may use to represent the contents of the location counter and
the various MY /8000 machine state registers. You can use these special symbols any place you can use
temporary or program file (.ST) symbols.

Table 6-2 lists the special Debugger symbols (< $ > represents the dollar sign character, not the escape).

Table 6-2. Special Debugger Symbols

Y • ,

The current value ~f the location counter

The «lntents ,ot: fixed point accumulator n (Le., ACn) for O<=n< = 3; the contents of the carry bit for
'0=4

the current value'of the MV /8000 stack pointer (n=O), frame pointer (n= 1), stack limit (n=2), or
stack _se(n~ 3) resister

'TMNP~"(tJl()Stsignifi~nt).32 bits of floatiqpoint accumulator n(i.e., fPACn) for,0<==0<=3;
the Iitst3Zbits:ottbe FPSR forn-==4; tbelast32 bits of the FPSR. (thetloatingpointPC) forn=S

T~e cur,rent, value of' the program counter (PC)
, . ' ,

The ~ntv41lue(,rthe processor status register (PSR)

The location counter holds the address of the location that DEBUG most re4;;ently displayed. Refer to
"Location Counter and Program Counter" in Chapter 3 for more information.

To use the value of the location counter during your debugging session, enter the single character symbol
. (period). For example,

_4501 000010_J
_1$A OOOOOOOOOOO_J

.1 000010

Examine location 450 8 ; the location counter now holds that address. Open ACt
and deposit the value of the location counter (i.e., deposit address value 450 into
ACI

Examine the contents of the location counter; note that ./ is equivalent to 450/
at this point in the debugging session

You will often combine the location counter symbol with the indirect operators @ and # . For example, the
expression @ . equals the 16-bit value starting at the address in the location counter. See "Indirect Operators"
in Chapter 7 for more information on @ and # .

093-000248 licensed Material-Property of Data General Corporation 6-5

In addition to the location counter, the Debugger provides special symbols that represent all of the MV /8000
machine state registers (see Table 6-2). The symbol format for entering a register value is the same as the
corresponding register examine command, except you use the dollar sign instead of the escape character. In
this manual, we use $ to represent the escape character (ASCII 33 g) and <$> to represent the dollar sign
(ASCII 44 g).

The following examples show the use of the special register symbols:

_ 1 $A 00000000001 _J
_460/ 777777 _1 <$>AJ
_460/ 000001 _J

Examine the value of ACl. Open location 460 g , and deposit the
value of AC 1; then verify the new value

_1$E 16000000730 _1 <$>E+6J
_ 1 $E 16000000736 _

Open the frame pointer and increase its value by 6; then check
the new value

_O$A 00000000000 _3<$>AJ Open ACO and deposit the value of AC3

_2$A 00000000000 _3<$>A+ 1 <$>AJ Open AC2 and deposit the sum of AC3 and ACI

Refer to Chapter 4 for more information on examining and modifying the MV /8000 machine state registers
during your debugging session.

Checking a Symbol's Value
To check a symbol's value, simply enter the symbol and strike the numeric function key (Fl). DEBUG will
immediately respond with that symbol's value.

For example,

_ V AR5TT 16000000477 _

In this example, we entered the symbol V AR5 and hit the numeric function key. (DEBUG echoes function
keys with two uparrow characters.) After we hit the function key, DEBUG immediately displays the value of
VAR5, 16000000477 g.

Refer to Chapter 8 for more information on the numeric function key and the various display modes available.

Address Symbols
The Debugger distinguishes between address symbols and other types of symbols. As described in Chapter 3,
under "Rings", all AOS/VS addresses contain a 3-bit ring value from 0 to 7 (in bits 1 through 3 of the
address). Thus, any symbol whose value specifies an address will have a value in bits 1 thorugh 3. The
following example will help clarify this point:

Suppose you define two symbols, LOC 1 and A, in your assembly language module as follows:

. TITLE MOD

. ENT LOCl,A

.LOC 500
LOCI: A=500

. END

6-6

;Source module MOD .
;LOC 1 and A are global symbols .
;Start assigning address at absolute
;location 500 (octal). LOCI equals
;the address 500, and A equals the
;value 500 .

Licensed Material-Property of Data General Corporation 093-000246

In this example, A receives the absolute value 500 8 (00000000500 8 in 32-bit octal notation). Label LOCI
r~prese~ts ~he address 500 8 • Ho~e~er, since LOCI represents an address, its value specifies a ring (usually
nng 7) m bits 1 through 3. That IS, mstead of 500 8, LOCI's value is really 160000005008 (i.e. ring 7 location
500). ' ,

~n address symbol is. a symbol ~hose value indicates a ring in bits 1 through 3. Address symbols may be
either global symbols (m the .ST fIle), temporary symbols (defined by $1), or special Debugger symbols.

In the above example, LOCI is an address symbol; A is not. Similarly, in the following example, LOC2 is an
address symbol but B is not.

_LOC2,16000000477$I_J
8,477$1

The distinction between address symbols and other symbols will be important in the following discussions.

Entering Symbols
DEBUG allows you to enter symbols anywhere you would use the corresponding numeric values. Thus, you
can use symbols to specify addresses, to modify the contents of memory and registers, and within expressions.

When it encounters a symbol, DEBUG first looks for that symbol in the temporary symbol table. If the
temporary table contains the symbol, DEBUG stops its search and uses that definition.

If DEBUG does not find the symbol in the temporary table, it then searches the .ST symbol table, if one is
currently enabled. Again, if DEBUG finds the symbol in the .ST file, it uses that definition.

If DEBUG cannot find a symbol's definition in either table, you will receive an undefined symbol error (i.e.,
DEBUG will print U?).

The following examples show how you may enter symbols during your debugging session. Assume that all
definitions reside in either the temporary or .ST symbol table.

_START I 000177 _

_3$A 00000000050 _M + 3J

_LOC+ 12\ 00000010113 _GHJ

Entering Symbolic Addresses

Use symbol START as an address

Open AC3 and deposit the value of symbol M plus 3

Open the two words of memory starting at location LaC + 12. and
deposit the value of symbol GH

As discussed previously, all addresses must contain a ring value in bits 1 through 3. Thus, if you supply an
address value that does not specify a ring, DEBUG automatically inserts the ring value currently in the ring
register ($G).

As an example, suppose your .ST symbol table file defines two symbols: LaC and V AR. LaC is an address
symbol and equals 16000000731 8 (ring 7, address 731). V AR is not an address symbol; its value is 731 8.

If you enter LaC as an address in a command, DEBUG will use LaC's value as is because it includes a ring
specification. However, if you use VAR as an address, DEBUG will insert the default ring into bits 1 through
3 of V AR's value. Assuming the default ring is 7, the following two commands produce identical results:

_LOCI 000177 _ Open location LaC (i.e., address 16000000731 8). Since LaC's value specifies a ring (7),
DEBUG does not refer to the ring register

_VARI 000177 _ Open location VAR. Since VAR's value (731 8) does not specify a ring, DEBUG inserts
the default ring from ring register (7) into bits 1 through 3. That is, DEBUG converts
V AR's value from 7318 to 16000000731 8 and opens that location

093-000246 Licensed Material-Property of Data General Corporation 6-7

Again, DEBUG only supplies a ring value if you specify an address that does not already contain one. If your
address has a ring value, or if your value is not in an address argument, DEBUG does not insert a ring. For
example,

_VAR;6/ 000000 - The expression VAR;6 equals 14000000731 8 .. Since this value specifies a ring (6),
DEBUG does not refer to the ring register

Refer to "Rings" in Chapter 3 and "Ring Register" in Chapter 4 for more information.

Debugger's Symbolic Displays
DEBUG can display addresses and the contents of memory and registers in symbolic mode. The following two
sections explain how DEBUG presents symbolic displays and how you can control them.

Displaying Symbolic Addresses
The Debugger always tries to present addresses in symbolic mode; that is, as a symbol plus a numeric value:

addr-symbol ! +offsetJ

where:

addr-symbol

offset

is an address symbol whose definition resides in either the temporary symbol table or the
.ST symbol table file (see "Address Symbols" earlier in this chapter)

is a numeric value that, when added to addr-symbol, equals the address DEBUG is
displaying

As an example, suppose your program's .ST symbol table contains the following definitions:

Symbol

X
BEGIN
LOCI
LOC2

Octal Value

00000000575
16000000573
16000000576
16000000600

If you step through memory one word at a time starting at address BEGIN, the Debugger would present
addresses as follows:

_BEGIN / 000000 -1
BEGIN + 1 / 000000_1
BEGIN + 2 / 000000_1
LOC 1 / 000000_1
LOC 1 + 1 / 000000_1
LOC2/ 000000_)

Open location BEGIN (i.e., 16000000573). Since we close with carriage return,
DEBUG displays the next location. DEBUG presents that address as BEGIN + 1.
When it presents location 16000000576, DEBUG uses symbol LOCI rather than
displaying BEGIN + 3

Note that DEBUG presents each address as a symbol plus a numeric offset (if the offset is 0, DEBUG does
not display it). DEBUG uses the symbol whose value is closest to, but. not greater than, the address DEBUG is
displaying.

When presenting addresses, DEBUG only uses symbols whose values specify the correct ring. That is, DEBUG
searches for address symbols with the same ring value as the address it wishes to present. In the above
example, symbol X's value does not include a ring, so DEBUG ignores X when presenting addresses. BEGIN,
LOC 1, and LOC2, on the other hand, are all address symbols (in ring 7), so DEBUG does refer to them when
displaying addresses.

6-8 Licensed Material-Property of Data General Corporation 093-000246

Our next example shows a $S memory display command. Assume the following symbol table configurations:

Temporary Symbol Table

Symbol

Tl
TEMPI
TEMP2

Octal Value

00000001050
16000001045
16000001050

.ST Symbol Table

Symbol Octal Value

Y 00000001047
ADDRI 16000001045
ADDR2 16000001047

Suppose you want to view the one-word values in locations 1045 8 through 1052 8 • You could issue the
command

_1045,1052$S

DEBUG first converts the numbers 1045 and 1052 into 32-bit address values by inserting a ring value from the
ring register into bits 1 through 3 of the address (see "Rings" in Chapter 3). If the;: ring register specifies ring
7, DEBUG converts the above command to

_16000001045,16000001052$S

As DEBUG presents each address between 16000001045 and 16000001052, it searches the symbol table for a
value that is less than or equal to that address. DEBUG then adds a numeric offset, if necessary.

Thus, DEBUG would respond to the $S command with the following display:

_ 1045, 1052$S Display the one-word value between addresses 1045 and 1052, inclusive
TEAfPI/ 000000
TEAfPI + 1/ 000000
ADDR2/ 000000
TEAfP2/ 000000
TEAfP2+ 1/ 000000
TEAfP2+ 2/ 000000

Note that DEBUG uses the symbol TEMPI rather then ADDRI when displaying location 16000001045.
DEBUG checks the temporary symbol table before the .ST symbol table and, thf:refore, encounters TEMPI
before ADDRI in its search for the address.

Also note that DEBUG does not use symbols TI and Y when presenting addresses. As mentioned earlier,
DEBUG only uses address symbols whose values specify the correct ring.

As mentioned at the beginning of this section, DEBUG always tries to present addresses in symbolic mode.
The Debugger presents address as numbers only if there is no address symbol with an appropriate value (i.e.,
in the correct ring and less than or equal to the address DEBUG is displaying).

The simplest way to have DEBUG present numeric addresses is to disable your .S1' symbol table file (via a $X
command) and delete all temporary symbols (via $J). With no symbols available, DEBUG will present all
addresses in numeric mode.

Note that the current display mode does not affect how DEBUG presents addresses. See Chapter 8 for more
information on display modes.

093-000246 licensed Material-Property of Data General Corporation 6-9

Displaying the Contents of Memory and Registers in Symbolic Mode
In the previous section, we showed that DEBUG always presents addresses in symbolic mode, if possible.
However, when presenting the contents of memory and registers, DEBUG uses the global display mode to
present values.

When you enter a debugging session, the display mode is set to numeric (mode 1). DEBUG presents the
contents of memory and registers as numeric values, by default. You may, however, direct DEBUG to present
memory and registers in symbolic mode.

Chapter 8 describes the various modes and explains how to invoke them. The current discussion describes
features of DEBUG's symbolic display mode (mode 4).

When DEBUG is in the symbolic display mode, it presents the contents of memory and registers as a symbol
plus a numeric offset; that is

symbol! + offset J

where:

symbol is a symbol defined in either the temporary symbol table or the .ST symbol table file

offset is a numeric value that, when added to symbol, equals the value DEBUG is displaying

As an example, suppose your symbol tables contain the following symbol definitions:

Temporary Symbol Table

Symbol

Tl
T2
T3

Octal Value

00000000177
00000001045
00000002077

.ST Symbol Table

Symbol Octal Value

X 00000000205
Y 00000001045
Z 00000001557

If you want to view the contents of ACO, AC1, AC2, and memory locations 400 and 401, you would enter

_O$A 00000000177 _J
_1$A 00000001047 _J
_2$A 00000001557 _J
_4001 000207 _J
_401 1 003000 _

By default, DEBUG presents the contents of registers and memory in numeric
mode

If you now set the display mode to symbolic (see Chapter 8), DEBUG responds to the register and memory
examine commands as follows:

_O$A T1 _J Now DEBUG presents the contents of memory and registers as symbols plus numeric offsets
_1$A T2+2_J
_2$A Z_J
_4001 X+2_J
401IT3+1

When DEBUG presents values in symbolic mode, it uses the symbol whose value is closest to, but not greater
than, the value DEBUG is displaying. DEBUG then adds a numeric offset to that symbol, if necessary.

Note that DEBUG uses symbol T2 rather than X in the above example. DEBUG always searches the
temporary symbol table before the .ST symbol table file and uses the first symbol it finds, if there is a conflict.

Refer to Chapter 8 for more information on display modes and the commands that invoke the symbolic display
mode (mode 4).

End of Chapter

6-10 Licensed Material-Property of Data General Corporation 093-0002<46

Chapter 7
Debugger Expressions

An expression is a combination of integers, symbols, and operators. The Debugger allows you to enter
expressions any place you can enter numeric values (e.g., as numeric arguments to DEBUG commands or as
new values for the contents of memory and registers).

The Debugger represents numeric values in two words (32 bits) of memory. Thus, you may use unsigned
numeric values from 0 through 4,294,967,295 10 (i.e., 0 to 2 32 -1). Signed values can range from
-2,147,483,648 10 to +2,147,483,647 10.

The Debugger performs all arithmetic operations with 32 bits of precision.

Expression Syntax
The general syntax for Debugger expressions is

[u-operatorj operand [b-operator[u-operatorjoperandj ...

where:

u-operator is a unary operator. Unary operators require only one operand, which must appear
immediately after the operator

operand may be an integer, symbol, or another expression

b-operator is a binary operator. Operands must both precede and follow every binary operator in your
expression

You may not include spaces within a Debugger expression.

According to the above definition, the following are all legal expressions:

START+30 -6·5+7 A·-B+C

The following sections describe the various operands and operators you may include in your expressions.

Operands
The Debugger allows you to use the following two types of operands within express:ions:

• integers
• symbols

You may not use floating point numbers or assembly language instructions within expressions; rather, they are
expressions by themselves and cannot be used with operators. (See "Special Expressions" at the end of this
chapter.)

093-000246 Licensed Material-Property of Data General Corporation 7-1

Integers
Integers, or constants, are whole numbers. The input format for an integer is

dld .. .}{.!

where:

d is a digit in the range 0 through 7 for octal integers, or 0 through 9 for decimal integers

is an optional decimal point. If you include a decimal point, DEBUG interprets the integer in
decimal (base 10); otherwise, DEBUG interprets the integer in octal (base 8). Do not place a
digit after the decimal point

According to this definition, the following are all legal integers:

137 17349. 60771

The following are all illegal integers; the first one contains an illegal character (i.e., A), the second includes a
digit after the decimal point, and the third contains a digit that is illegal for octal integers (i.e., 9):

21A7 177.3 259007

Symbols
You may include any legal symbol in a DEBUG expression:

• symbols defined in the currently enabled symbol table (usually your program's .ST file)

• temporary symbols defined during the current debugging session

• special Debugger symbols that specify the contents of the location counter and the various MY /8000
machine state registers

The following expressions show the use of symbolic operands in expressions (< $ > represents the dollar sign
character, not the escape):

LOC+50 F*2&B 1 <$>A+ 177

If you use an unknown or illegal symbol in an expression, DEBUG returns an error.

Refer to Chapter 6 for a complete discussion on the three types of symbols.

7-2 licensed Material-Property of Data General Corporation 093-000246

Operators
Table 7-1 lists the operators that the AOSjVS Debugger recognizes:

Table 7-1. DEBUG Operators

Operator Operation

+ Addition or unary plus

Arithmetic - Subtraction or unary minus

Operators
* Multiplication

I Division

"- Logical NOT (unary operator)

Logical
! Inclusive OR

Operators !! Exclusive OR

& Logic3:1 AND

> Greater than

< Less than

Relational = Equal to

Operators
<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Indirect
@ Extract the one-word 06-bit) contents of the supplied address (unary operator)

Operators
Extract the two-word (32-bit) contents of the supplied address (unary operators)

ASCII , Return the ASCII code for the following character (unary operator)
Character
Operators " Return the ASCII codes for the following two characters (unary operator)

Half-word
Compression
Operator

] Pack values into consecutive 8-bit bytes

Ring Field
Insert a value from 0 to 7 into the ring field (bits 1 through 3) of an address Operator ,

093-000246 Licensed Material-Property of Data General Corporation 7-3

There are two general classes of operators:

• binary operators
• unary operators

Binary operators require two operands; one before and one after the operator. For example, the following
expressions contain binary operators:

5+3 6&4 A>=B 17] 15

Unary operators require only one operand, which must appear immediately after the operator. Thus, a unary
operator may either begin an expression or follow another operator within an expression. The following
characters may function as unary operators:

+ @ #

Examples of expressions that use unary operators are

-5 +4 6·-3 5!--2

The following sections describe the various DEBUG operators, both unary and binary.

Arithmetic Operators
Table 7-2 lists the four arithmetic operators.

Table 7-2. Arithmetic Operators

Operator Operation

+ Addition or unary plus

- Subtraction or unary minus

. Multiplication

I Division

These operators perform standard mathematical operations. Note that the vertical bar (ASCII 1748)
functions as the division operator. (Remember, / is the one-word memory examine command.)

The following expressions show the use of the arithmetic operators:

Expression

3+2
10-3
2·3
612
5+2+1

Octal Value

5
5
6
3
10

In the above examples, + and - function as binary operators. You may also use them as unary operators, in
which case they indicate the sign of the following expression (positiv(: or negative).

7-4 Licensed Material-Property of Data General Corporation 093-000246

Logical Operators
The Debugger provides four logical operators; see Table 7-3.

Table 7-3. Logical Operators

Operator Operation

""- Logical NOT (complement)

! Inclusive OR

!! Exclusive OR

& Logical AND

To perform a logical operation, DEBUG inspects the bit pattern of the operand(s).

The logical NOT operator (,.....,) is a unary operator (i.e., requires only one operand). This operator directs
DEBUG to complement each bit of the operand. That is, the result in a given bit position is 1 if the operand
contains a 0 in that bit position; the result is 0 if the operand contains a 1 in that bit. For example, the logical
NOT operation for the expression,....., 5 is

Bit representation of 5: 00000000000000000000000000000 101

Result of,....., operation: 11 III III III III III III III III 111010

Thus, the value of,.....,5 is 37777777772 8.

The inclusive OR operator (/) directs DEBUG to compute the logical OR of two operands. The result in a
given bit position is 1 if either or both operands contain a I in that bit position. Otherwise, the result in that bit
position is o. The following example shows how DEBUG evaluates the expression 6!3:

Bit representation of 6: 00000000000000000000000000000 110
Bit representation of 3: 00000000000000000000000000000011

Result of! operation: 00000000000000000000000000000 III

Thus, the value of the expression 6!3 is 78 (i.e., 1112).

The exclusive OR operator (/ /) directs DEBUG to compute the logical XOR of two operands. DEBUG returns
a 1 in a given bit position if one and only one of the operands contains a 1 in that bit position. If both operands
contain Os or 1 s in the same bit position, DEBUG returns a 0 in that bit. For example, DEBUG evaluates the
expression 6!!3 as follows:

Bit representation of 6: 00000000 000 000 000 000 000 000 000 110
Bit representation of 3: 00000000000000000000000000000011

Result of!! operation: 00000000000000000000000000000 101

The value of 6!!3 is 58 (i.e., 101 2).

093-000246 Licensed Material-Property of Data General Corporation 7-,5

The logical AND operator (&) directs DEBUG to return a 1 in a given bit position only if both operands
contain a 1 in that bit position. Otherwise, DEBUG returns a O. The following example shows how DEBUG
evaluates 6&3:

Bit representation of 6: 00 000 000 000 000 000 000 000 000 000 110
Bit representation of 3: 00000000000000000000000000000011

Result of & operation: 00000000000000000000000000000010

The value of 6&3 is 28 (i.e., 10 2).

Note that the Debugger operates on all 32 bits of the operand(s) when performing a logical operation. For
instance, in our logical NOT example, all leading zeros became ones.

More examples of logical expressions follow:

Expression

--17
30!20
30!!20
30&20
--5! 100
177&17

Octal Value

37777777760
30
10
20
37777777772
17

Relational Operators
Relational operators direct the Debugger to compare the unsigned values of two operands. If the comparison
is true, the value of the expression is -1; if the comparison is false, the expression's value is o.

You will find relational operators particularly useful when performing conditional operations; for example,
when setting conditional breakpoints (see Chapter 4) or performing memory searches (see Chapter 3).

Table 7-4 lists the six relational operators.

Table 7-4. Relational Operators

Operator Operation,

> Greater than

< Less than

= Equal to

>= Greater·thanor equal to

<= Less than or equal to

<> Not equal to

The following examples show how DEBUG evaluates relational expressions:

Expression

5>3
7=3
17>=17
107<>41
6>7
104<=277

7-6

Octal Value

-1
o
-1
-1
o

-1

(True)
(False)
(True)
(True)
(False)
(True)

Licensed Material-Property of Data General Corporation 093-000246

The Debugger always presents integer values as unsigned. Thus, when displaying a true relation, DEBUG
writes '37777777777', not '-1 '. The bit representations for the these two integers is identical.

Indirect Operators
The Debugger provides two unary indirect operators: the commercial at sign (@) and the number sign (#).
The indirect operators require you to supply one operand -- an address. The value of an indirect expression is
the contents of that memory location.

Using the @ and # operators, you may extract either a one- or two-word value sta,rting at the specified
address. Table 7-5 summarizes the two indirect operators.

Table 7-5. Relational Operators

As an example, assume memory contains the following values:

Memory (Word) Location

500
501
502
600
601

16-bit Contents

000010
000020
000600
100777
000001

The following expressions show how DEBUG evaluates indirect operators given the above memory
configuration:

Expression

@500

@501

@500+1

@(500+ 1)

#500

#600

@(@502)

Odal Value

10

20

11

20

2000020

20177600001

100777

Comment

The 16-bit value starting at address 5008 equals 10

The 16-bit value starting at address 5018 equals 20

The 16-bit value at address 5008 is 10; add 1 and the result is 11

The 16-bit value at address 5018 is 20

The 32-bit value at address 5008 equals 20000208

The 32-bit value at address 6008 equals 20177600001 8

Double indirection: the parenthetical expression equals 6008 (i.e., the
16-bit contents of location 5028); the 16-bit contents of address 6008
equals 100777 8

Since the operand you pass to an indirect operator represents an address, DEBUG requires that value to
specify an address ring. That is, bits 1 through 3 of each address in your program (:ontain a ring value from 0
to 7. Therefore, each address value DEBUG uses must also contain a ring value.

If the address value you supply to DEBUG does not specify a ring in bits 1 through 3, DEBUG will use the
default ring value stored in the ring register ($G). Refer to "Rings" in Chapter 3 for more information on
rings and the ring register.

093-000246 Licensed Material-Property of Data General Corporation 7-7

ASCII Character Operators
The Debugger provides two unary operators that convert characters to their 8-bit ASCII values. Table 7-6
describes these ASCII character operators.

Table 7-6. ASCII Character Operators

Operator Operation

. Return the ASCII code for the following character

.. Return the ASCII codes for the following two characters

The ASCII character operators are unique in that they require character operands, not numeric values. The
examples later in this section illustrate this rule.

When DEBUG encounters the operator" it stores the ASCII code for the following character in the low-order
8 bits of the integer representation (bits 24-31 in 32-bit notation). For example, DEBUG stores the expression
'A as follows:

1° 0

15

1

1

16
23r

31

1
0 A

80-02283

The" operator directs DEBUG to store the ASCII codes for the next two characters in consecutive bytes. In a
two-word value, the two ASCII codes will reside in the low-order bytes (bits 16 through 23 and 24 through
31). Thus, the Debugger represents the expression "AB as

r 0

15

1

r 23r
31

1
A B

80-02284

DEBUG always strips the parity bit from the character before returning its ASCII value. Thus, the first bit of
each character byte always equals O.

If you pass too many characters to the ASCII operators, DEBUG returns an error.

7-8 Licensed Material-Properly of Data General Corporation 093-000246

The following expressions show how DEBUG evaluates the ASCII character operators:

Expression Octal Value Comment

'A 101 Return the ASCII code for A (i.e., 101 8)

'B 102 The ASCII code for B is 102 8

"AB 40502 Place the ASCII codes for A and B in consecutive bytes

'5 65 The ASCII code for the character 5 is 65 8

"32 31462 Place the ASCII codes for 3 (638) and 2 (628) in consecutive bytes

"AI 40457 Store the ASCII codes for A (1018) and I (578) in consecutive bytes

"ABC ERROR The" operator accepts ony 2 characters

'AB ERROR The' operator accepts only 1 character

As mentioned earlier, the operators ' and " require characters, not numeric values, as operands. In the
expressions '5 and "32, DEBUG uses the ASCII codes for the characters 5, 3, and 2.

In the expression "AI, we supplied a slash to an ASCII character operator. DEBUG treated this character as
any other; that is, DEBUG stored its ASCII value. DEBUG did not interpret I as the one-word memory
examine command.

In general, DEBUG allows you to pass any character to the ASCII operators -- there are no restrictions. In all
cases, DEBUG simply stores the ASCII value for the character (with the parity bit set to 0).

Appendix B lists the ASCI I codes for all characters.

Half-word Com pression Operator
The half-word compression operator (j) allows you to pack values into consecutive 8-bit bytes of memory. The
syntax for using this operator is

operand 1]operand2

When DEBUG encounters the] operator, it performs the following operation:

operand 1 • 4008 + (operand2 • 3778)

That is, DEBUG represents the expression operand 1]operand2 as follows:

I 0
0

15

1

r 23f
31

1
operand 1 operand2

SO-02285

Since the] operator places operand values in 8-bit bytes, you will normally use values between 0 and 377 8 ,

inclusive (or signed values between -200 8 and + 1778). If an operand value is too large, DEBUG will truncate
the value to 8 bits before performing the] operation.

093-000246 Licensed Material-Property of Data General Corporation 7-9

If you wish to pack more than two values, apply the] operator more than once. For example, DEBUG
represents the expression 5] 32] 17 as follows:

32

Similarly, DEBUG stores 177]4]61]11 in the following manner:

1° 4

r 61 11

The following expressions show the use of the half-word compression operator (]):

Expression

1] 1
3]27
14]31
3]3]3
15]7] 1
22] 11]6]2
1]2]3]4

Octal Value

401
1427
6031
601403
3203401
2202203002
00100401404

Ring Field Operator

80-02286

80-02287

AOS/VS organizes memory into a hierarchy of 8 rings, numbered 0 to 7. Bits 1 through 3 of each AOS/VS
memory address indicates one of these 8 ring values.

As an example, to indicate the 66 th word in ring 7, you enter the value 16000000066 8 • Note that bits 1
through 3 of the address specify the value 7.

Rather than explicitly enter the 32-bit address (e.g., 160000(0066), you may use the ring field operator (;).
The ring field operator inserts a ring value into bits 1 through 3 of a memory address.

The syntax for using the ring field operator is

address;ring

Thus, to represent the address value 16000000066 8 (ring 7, address 66), you could enter the expression 66;7.

7-10 Licensed Material-Property of Data General Corporation 093-000246

Since the ring field is only 3 bits long, the ring value you supply to the; operator should be between 0 and 7,
inclusive. If you supply a ring value that is too large, DEBUG will truncate the value to 3 bits before placing it
in the address.

Also, if the address operand you supply to the; operator already has a ring value in bits 1 through 3, DEBUG
replaces it with the new ring value (i.e., the value in the ring argument).

The following expressions show how DEBUG interprets the ring field operator (;):

Expression

100;7
17001 ;6
742;7
342111;5
1044;7

Octal Value

16000000100
14000017001
16000000742
12000342111
16000001044

Refer to "Rings" in Chapter 3 for more information.

Operator Precedence
All Debugger operators are of equal precedence. Thus, DEBUG evaluates the operators in an expression in
order from left to right.

You may use parentheses to impose operator priority. The Debugger always evaluates parenthetical
expressions first.

The following examples show how DEBUG evaluates expressions with and without parentheses:

Expression

5-2+ 1
5-(2+ 1)
6<4+3
6«4+3)
415+2
41(5+2)
"AB+ 100·2
"AB+(100· 2)
3]2· 10
3](2· 10)

Octal Value

4
2
3
-1 (true)
7
7
101404
40702
14020
1420

Special Expressions
In addition to arithmetic expressions that use the operators described above, DEBUG allows you to use the
following two types of special expressions:

• floating point numbers
• assembly language instructions

We refer to these as special expressions because DEBUG does not allow you to use floating point numbers or
assembly language instructions as operands in expressions. Rather, they are expressions by themselves. That is,
you may enter a floating point number or instruction any place you can enter an expression, but you cannot
perform operations on them.

When entering instructions and floating point numbers in registers, be sure the value is less than or equal to
two words (32 bits) in length. If the value is too long, DEBUG will return an error and will not modify the
register. For example, if you open accumulator 0 (ACO) and enter the instruction LWLDA 0,1, DEBUG will
return an error because L WLDA is a three-word instruction and ACO is only two words long.

093-000246 Licensed Material-Property of Data General Corporation 7 -11

If, on the other hand, you enter an instruction or floating point number in an open memory location, DEBUG
will modify as many words of memory as are necessary to represent the value. "Legal Entry Value" in Chapter
3 provides more information on entering instructions and floating point numbers in memory.

Floating Point Numbers
DEBUG allows you to enter floating point numbers anywhere you can use an expression. Floating point
numbers have three components:

• A sign (positive or negative)

• A fractional part called the mantissa; DEBUG normalizes all floating point numbers such that the mantissa
is always greater than or equal to 1/16 and less than 1

• An exponent. expressed in excess-64 representation (the AOS/VS Macroassembler Reference Manual
explains excess-64 representation)

You can specify two types of floating point numbers:

• single precision (2 words)

• double precision (4 words)

DEBUG represents single precision floating point numbers in two words of memory as follows:

lor 7r
15

1
sign exponent mantissa

r 31

1 80-02288

mantissa

Double precision floating point numbers reside in four words of memory:

IT 7r
15

1
sign exponent mantissa

r 31

1
mantissa

r 471

mantissa

r
e 63

1 80-02289

mantissa

7-12 Licensed Material-Property of Data General Corporation 093-000246

Use the E and D characters to designate single and double precision floating point values, respectively. The
following is the input format for floating point numbers:

(sign] d (d ...] .d (d .. .] {~} (sign] d (d]

where:

sign indicates the sign of a value (positive or negative) and is one of the following characters: + oro.
If the sign appears at the beginning of the number, then it defines the sign of that number. If a
sign appears after the letter E or D, it defines the exponent's sign. If you do not supply a sign,
DEBUG assumes the value is positive

d is a digit in the range 0 through 9. The Debugger always interprets floating point numbers in
decimal (base 10)

is a decimal point (period). You must enter at least one digit before and one digit after the
decimal point

E specifies single precision (2 word) floating point number representation

o specifies double precision (4 word) floating point number representation

According to the above syntax, you must conform to the following rules when entering floating point numbers:

• You must include a decimal point

• You must both precede and follow the decimal point with digits

• You must specify either single (E) or double (D) precision representation

• You must follow the E or D with one or two digits

Also, DEBUG evaluates all floating point numbers in decimal (base 10).

The following examples show legal floating point numbers and their octal values:

Floating Point Expression

1.1 E 1
5.6E1
6.4937011
-3.4000050-02
25433.E-2
254.33EO
0.25433E03

Octal Value

040660 000000
041070 000000
045227 030567 155200 000000
137613 041642 166377 071070
041 376 0521 72
041 376 0521 72
041 376 0521 72

The integers under "Octal Value" each represent one-word values (i.e., the values are in numeric word display
mode -- see Chapter 8 for more information on this display mode).

Remember, a floating point number is the equivalent of an entire expression; do not use floating point numbers
as operands within other expressions.

Instructions
Anywhere you can enter an expression, you can also enter an MV/8000 assembly language instruction.
DEBUG will compute the assembled value of the instruction and use that value accordingly.

093-000246 Licensed Material-Property of Data General Corporation 7-13

If you enter a memory reference (MRI) instruction and do not specify an addressing mode (or index),
DEBUG will try to use PC relative addressing by default (i.e., index value of 1). If DEBUG cannot resolve the
address relative to the program counter (PC), DEBUG will then try to use absolute addressing (i.e., index
value 0).

As with floating point numbers, instructions are the equivalent of complete expressions; you may not use them
as operands within other expressions.

Checking an Expression's Value
To check an expression's value, simply enter the expression and strike the numeric function key (FI). DEBUG
will immediately respond with that expression's value.

For example,

500+22TT 00000000522

In this example, we entered the expression 500+ 22 and hit the numeric function key (DEBUG echoes
function keys with two uparrow characters). After we hit the function key, DEBUG evaluated the expression
500+22 and displayed its value, 00000000522 8 ,

Similarly, to check the value of a floating point number or an assembly language instruction, enter the
expression and strike the numeric function key:

_XWLDA O,2TT 20302200002 -

Refer to Chapter 8 for more information on the numeric function key and the various display modes available.

End of Chapter

7-14 Licensed Material-Property of Data General Corporation 093-000246

Chapter 8
Debugger Display Modes

The AOS/VS Debugger can display data in a variety of different modes. In the following sections, we first
describe the various display modes. and then show how to invoke them.

The 10 Display Modes
The Debugger can display data in any of the 10 modes listed in Table 8-1.

Table 8-1. Display Modes

Description

,Present each value as an octalnumher (defaultdtSpiaymode)

:Presenteachv~Jue asaseries or ene-word O~bit)ootal numbers

Interpret each value as an instruction,; (X)mpiete with arguments

Present each value as a symbofplU$ a numeric offset

'Pr~teach value asa series of half;.worii (8.;bit) octal numhers

.. ' 'DisplaY: e3eb value asaffoating point number

Intetptet .. each value as a system call CodeaJtCJ prirttdle corresponding
sys10mcall

AOS1VSerrot code and ptint the

Please note that DEBUG uses the display modes when presenting the contents of memory and registers, but
does not use the modes when displaying memory addresses. The Debugger always tries to present addresses in
symbolic mode. See "Displaying Symbolic Addresses" in Chapter 6 for more information.

093-000248 Licensed Material-Property of Data General Corporation 8-1

Numeric Mode (1)
By default, the Debugger presents values in the numeric display mode (mode 1); that is, as octal integers.

Depending on the inherent length of the value (i.e., 1 to 4 words), DEBUG displays the value as follows:

Length of Value

One word (16 bits)

Two words (32 bits)

Three words (48 bits)

Four words (64 bits)

Representation in Numeric Mode

A single one-word octal integer

A single two-word octal integer

Two octal integers: a one-word value followed by a two-word value

Three octal integers: a one-word value, a two-word value, and another one-word
value

As an example, suppose memory contains the following values:

Memory (Word) Location

500
501
502
503
504
505
506
507
510

Contents

000000
000001
000002
000003
000004
000005
000006
000007
000010

If you are in the numeric display mode, DEBUG responds to memory display commands as follows:

_5000/ 000000_1
16000000501/000001 -1
16000000502/000002 _J

_500\ 00000000001 -1
16000000502\ 00000400003 -1
16000000504\ 00001000005 _J

Examine single words of memory; DEBUG displays them as one-word
octal integers

Examine double words of memory; DEBUG presents them as two-word
octal values

_500,505,,3,3$8 Display the three-word values between addresses 500 and 505; DEBUG
16000000500/000000 00000200002 presents each three-word value as a one-word integer followed by a
16000000503/00000300001000005 two-word integer

_500,507,,4,4$8 Display the four-word values between addresses 500 and 507:
16000000500/00000000000200002000003 DEBUG presents each four-word value as a series of three
16000000504/00000400001200006000007 integers -- one-word, two-words, and one-word in length

Note that the Debugger does not present three- and four-word values as single octal numbers. Rather,
DEBUG presents the first word as as seperate integer from the rest of the value.

Most three- and four-word values represent assembly language instructions. Thus, when displaying them as
numbers, you usually want to view the first word of the instruction (the opcode) as a separate value from the
instruction's arguments. The numeric mode provides a convenient way to view instructions and their
arguments as octal values.

8-2 Licensed Material-Property of Data General Corporation 093-000246

Numeric Word Mode (2)
Using the numeric word display mode (mode 2), you can direct the Debugger to present values as a series of
one-word (l6-bit) octal integers.

For example, assume memory contains the following values:

Memory (Word) Location

500
501
502
503
504

Contents

000000
000001
000002
000003
000004

If you are in numeric word display mode, DEBUG presents data as a series of one-word integers as follows:

_500 / 000000 -1 Examine one-word memory locations
16000000501/000001 -1
16000000502/000002 _J

_5000\ 000000 000001 -1 Examine two-word memory locations
16000000502/000002000003 _J

_O$A 000000 000000 _J Examine ACO and ACI
_ 1 $A 000000 000000 _J

Instruction Mode (3)
When set to the instruction display mode (mode 3), the Debugger presents values as MV /8000 assembly
language instructions, complete with arguments (e.g., accumulators, displacements, etc.).

When presenting data as an instruction, DEBUG interprets the first word as the instruction's operation code
(or opcode, for short). From this value, DEBUG can determine how long the instruction is (i.e., from 1 to 4
words).

When you examine memory via the / and \ commands, DEBUG displays as many words of memory as are
necessary to present the complete instruction. That is, after interpreting the first word of the instruction (the
opcode), DEBUG will use as many subsequent words of memory as required by that instruction. As an
example, consider the following memory examine commands (instruction display mode):

_700/ XWLDA 0,1_1
16000000702/ LCALL 0,1,4_1
16000000706/ WADD 0,1 _J

_700\ XWLDA 0,1 -1
16000000702\ LCALL 0,1,4_1
16000000706\ WADD 0,1 _J

When in instruction mode, the / and \ commands display the same values.
Note that stepping forward through memory displays consecutive
instructions, not consecutive locations

Refer to "Examining Locations in Various Modes" and "Displaying Instructions" in Chapter 3 for more
information on examining memory in the instruction display mode.

When you are in the instruction display mode, the Debugger presents all registers in numeric mode, by default.
This is a desirable feature since you rarely want to view register values as instructions.

093-000246 Licensed Material-Property of Data General Corporation 8-3

If you do want to display a register as an instruction, first open the register (as described in Chapter 4). After
DEBUG displays the register's value, redisplay that value in the instruction mode using a local display
command (we describe local and global display commands later in this chapter).

When displaying values of definitive length (e.g., registers), DEBUG may have to truncate or pad the value to
produce an instruction. DEBUG truncates and pads values as follows:

• If the first word (opcode) indicates an instruction that is shorter than the data value, DEBUG truncates on
the right (i.e., DEBUG uses the most significant words)

• If the first word (opcode) indicates an instruction that is longer than the data value, DEBUG pads on the
right with zeros

Three final notes on the instruction display mode:

• The Debugger presents all I/0 instructions as LEF instructions

• DEBUG never prints MRI index values of 0 or 1

• When displaying MRI instructions, DEBUG presents displacement values in symbolic mode if the
addressing index is 0 or 1 (i.e., PC relative or absolute addressing); if the addressing index is 2 or 3 (i.e., AC
relative addressing), DEBUG displays the address as an octal integer

Symbolic Mode (4)
Using the symbolic display mode (mode 4), you can direct the Debugger to present data as a symbol plus a
numeric offset.

When in the symbolic mode, DEBUG searches for a symbol whose value is less than or equal to the data value.
DEBUG then adds a numeric offset to that symbol, if necessary. For example, suppose the Debugger
recognizes the following symbols:

Symbol

VARI
VAR2
VAR3

Odal Value

00000000500
00000000510
00000000512

Using these symbol definitions, DEBUG presents values as follows:

Odal Value

00000000505
00000000507
00000000510
00000000511
00000000512
00000000513
00000000470

Symbolic Representation

VAR1+5
VAR1+7
VAR2
VAR2+1
VAR3
VAR3+1
470

Note that DEBUG uses the symbol whose value is closest to, but not greater than, the value DEBUG is
displaying.

When searching for symbol values, DEBUG checks the temporary symbol table first and your program's .ST
symbol table second. Chapter 6 contains more information on these two symbol tables.

If DEBUG cannot find a symbol less than or equal to the data value, it presents the value as an octal integer.
In the last line in the above example, there is no symbol value less than or equal to 470, so DEBUG presents
that value as a number.

8-4 Licensed Material-Property of Data General Corporation 093-000246

Similarly, if there are no symbols defined, DEBUG presents values in numeric mode.

Refer to Chapter 6, especially "Debugger's Symbolic Displays", for more information on symbols, symbol
tables, and symbolic displays.

Half-word Mode (5)
In half-word display mode (mode 5), the Debugger presents data as a series of half-word (8-bit) octal integers .

. For example, assume ACO holds the value 11420245505 8 and memory contains the following values:

Memory (Word) Location

1000
1001
1002
1003

Contents

000000
000001
000002
000003

When the Debugger is in the half-word display mode, it responds to commands as follows:

_10001 000000 -1 Examine one-word memory locations
16000001001/000001 -1
16000001002/000002 _J

_1000\ 000 000 000 001 -1 Examine two-word memory locations
16000001002\ 000 002 000 003 _J

_O$A 114 101 113 105 _ Examine accumulator 0 (ACO)

Again, each three-digit octal integer represents the value of an 8-bit byte.

Byte-pointer Mode (6)
A byte pointer is a value that specifies the address of an 8-bit byte in memory. The format for a byte pointer is

2· address + b

where:

address

b

is the address of the word that contains the byte

is a one-bit value: 0 specifies the left byte of the the word at location address; 1 indicates the
right byte

According to this format, the internal representation of a byte pointer is

address

50-02290

093-000246 Licensed Material-Property of Data General Corporation 8-5

When the Debugger is in byte-pointer display mode (mode 6), it interprets data as byte pointers; that is,
DEBUG displays values as two integers: an address value and a one-bit byte indicator. If DEBUG is
presenting a 32-bit value, the first 31 bits are the address and the last bit (bit 31) is the byte indicator.
Similarly, in a 16-bit value, the first 15 bits represent the address and the last bit (bit 15) is the byte indicator.

As an example, suppose your accumulators contain the following values:

Accumulator

ACO
ACI
AC2
AC3

Octal Value

34000001000
34000001001
00000002136
00000002137

If you are using the byte-pointer display mode, DEBUG presents the accumulators as follows:

_O$A 16000000400 0 _J
_ 1 $A 16000000400 1 _J
_2$A 00000001057 O_J
_3$A 00000001057 1 _

Examine the accumulators in byte-pointer mode; DEBUG presents each
accumulator as two integers: an address followed by a one-bit value

ASCII Mode (7)
The ASCII display mode (mode 7) directs DEBUG to interpret data as a series of ASCII characters. The
Debugger will interpret each 8-bit byte as an ASCII code and will display the corresponding character, if
possible. DEBUG does not consider the parity bit (the leftmost bit) when interpreting a byte as an ASCII
character code.

For example, suppose the four accumulators contain the following values:

Accumulator

ACO
ACI
AC2
AC3

Octal Value

11420245505
10220246104
06114431464
00101000101

If you are using the ASCII display mode, DEBUG will present the accumulators as follows:

_O$A LAKE _J Examine the four accumulators in the ASCII display mode
_ 1 $$A BALD _J
_2$A 1234_J
3$A <1><4><0>A

In each of these examples, DEBUG interprets the two-word accumulator value as a series of four ASCII
characters.

If the ASCII code in a byte does not represent a printable character, DEBUG prints out the octal value of the
byte (including the parity bit) inside angle brackets, < > . In the last line of the above example, DEBUG
presents the first three bytes of AC3 as octal numbers because their values do not represent printable ASCII
characters.

Appendix B lists the ASCII characters and their octal values.

8-6 Licensed Material-Property of Data General Corporation 093-000246

Floating Point Mode (8)
The floating point display mode (mode 8) instructs the Debugger to present data as single preClSlon
(two-word) or double precision (four-word) floating point numbers. DEBUG presents floating point values as
follows:

{sign} d.d [d .. .} {~} [signJ d [d}

where:

sign indicates the sign of a value (positive or negative) and is one of the following characters: + or -.
If the sign appears at the beginning of the number, then it defines the sign of that number. If the
sign appears after the letter Ear D, it defines the exponent's sign. If DEBUG does not indicate a
sign, the value is positive

d is a digit in the range 0 through 9. The Debugger presents floating point numbers in decimal
(base 10)

is a decimal point

E specifies single precision (two-word) floating point number representation

o specifies double precision (four-word) floating point number representation

When presenting floating point numbers, DEBUG conforms to the following rules:

• DEBUG always places one digit to the left of the decimal point and either 7 or 16 digits to the right,
depending on the precision of the floating point number

• All floating point numbers are decimal (i.e., base 10)

• DEBUG always presents the exponent after the letter Ear D, even if its value is 0

When in floating point mode, DEBUG displays two-word values as single precision floating point numbers and
four word values as double precision floating point numbers. For example,

_O$A 7.1791535E+ 13_J
_1$A 6.5970912E+ 1 _J
_2$A O.OOOOOOOE+O_J

_O$F 1.8231491520767509E-63 _J
_1$F 4.0250000000000000E+ 2_J
_2$F O.OOOOOOOOOOOOOOOOE + 0 _J

093-000246

DEBUG presents fixed-point accumulators (two-word values) as
single precision floating point numbers

DEBUG presents the floating point accumulators (four-word
values) as double precision floating point numbers

Licensed Material-Property of Data General Corporation 8-7

When examining memory in floating point display mode, the / and \ commands take on new meaning. The /
command directs DEBUG to present two words of memory (not one) as a single precision floating point
number. The \ command displays four words of memory (not two) as a double precision floating point value.
For example,

_500/ 1.7507244E-40_1
16000000502/ -7.8076683E+43 -1
16000000504/ 5.8790504E-2_J

In floating point mode, / directs DEBUG to present two words
of memory

_570\ 1.7507260661445691 E-40 -1
16000000574\ 5.8790518001246290E-2_1
16000000600\ 8. 1445004799992258E-30 _J

The \ command directs DEBUG to present four words of
memory

As discussed in Chapter 3, once you examine a memory location, that location is open for modification (i.e.,
you can enter a new value). Normally, you can enter the new value in any of the various modes. However,
when examining memory in floating point mode, you should modify locations only by entering floating point
numbers. If you enter a different type of value, you may receive unexpected results.

For more information on floating point values, refer to "Floating Point Numbers" in Chapter 7.

System Call Mode (9)
The system call display mode (mode 9) instructs DEBUG to interpret each value as a system call code and to
print the name of the corresponding system call.

System calls are predefined macros that perform common assembly language operations. Each system call
name begins with a question mark and contains uppercase letters (e.g., ?OPEN, ?READ, ?WRITE). The
AOS/VS Programmer's Manual describes each system call in detail.

Each system call occupies two entries in your program file. The first entry is a jump instruction that passes
control to the system call handling routine (JSR for 16-bit programs and XJSR for 32-bit programs). The
second entry contains a system call code -- a one-word value that identifies a particular system call. Files
SYSID.16.SR and SYSID.32.SR, supplied with your AOS/VS software package, list the numeric code for
each system call.

When in system call display mode, DEBUG interprets each value as one of the system call codes. If the code is
valid, DEBUG prints the corresponding system call. If the code does not represent a system call, DEBUG
returns an error.

As an example, suppose your source code contains the following statements:

LOC:

.TITLE MOD

.NREL

.ENT LOC

?OPEN

.END

;Declare symbol LOC in an .ENT
;statement so DEBUG will recognize
;it (see Chapter 6 for information
;on symbol recognition).
;Issue on ?OPEN system call at
;location LOC. (?OPEN opens a
;file.)

As mentioned above, all system calls in 32-bit programs expand to three words in your program file (Le., a
two-word XJSR instruction followed by a one-word system call code). Thus, the two-word value at location
LOC represents an XJSR instruction; the following word (at location LOC+2) contains the numeric code for
an ?OPEN system call.

8-8 Licensed Material-Property of Data General Corporation 093-000246

To verify this, inspect location LOC+2 in the system call display mode (mode 9):

_LOC+21 ?OPEN

DEBUG recognizes the one-word value at LOC+2 as the system call code for ?OPEN.

AOS/VS Error Message Mode (0)
The AOS/VS error message display mode (mode 0), directs the Debugger to int(!rpret values as AOSjVS
error codes and to print the corresponding error messages.

As an example, suppose ACO contains the value 00000000025 8 . If you are using the AOSjVS error message
display mode, DEBUG will present the contents of ACO as follows:

O$A FILE DOES NOT EXIST

DEBUG interprets the contents of ACO (i.e., 25 8) as a CLI error code and prints the corresponding error
message.

The Debugger's AOSjVS error message response for a value n is the same response you receive when you issue
the CLI command

) MESSAGE nJ

where n is a numeric error code.

The AOS and AOS/VS Command Line Interpreter (CLI) User's Manual presents more information on the
MESSAGE command and AOSjVS errors.

Setting Display Modes
The Debugger supplies several different ways to invoke the various display modes. Generally, you can issue
two types of display mode commands:

• global

• local

The global display mode is the display mode that DEBUG is currently using to present data. When you enter
a debugging session, the global display mode is numeric (mode I).

You can change the global display mode in two ways:

• issue a global display mode command

• enter a new value in the global display mode register (via $T)

After you change the global display mode, DEBUG presents data in the new mode. You can alter the global
display mode as often as you wish.

As an alternative to changing the global display mode, you can enter a local display mode command. A local
display command directs DEBUG to present the last value it typed out in a new display mode. You can also
use local display commands to obtain the value of a symbol or expression. Local display commands do not alter
the global display mode.

The local and global display commands vary depending on whether your keyboard has function keys (blank
keys at the top of the keyboard). Data General's DASHER Dl (6052), D2 (6053), D3, D4, D5, and D200
video display terminals all have function keys. The DASHER D 1 00 terminal and hard-copy devices TPI and
TP2 do not.

093-000246 Licensed Material-Property of Data General Corporation 8-9

The following sections explain how to change local and global display modes for keyboards with and without
function keys; only read the section that describes your keyboard. Table 8-2 summarizes the various display
mode commands.

Regardless of whether your keyboard has function keys, you can alter the global display mode by directly
modifying the display mode register. Refer to the last section of this chapter, "Display Mode Register", for
information.

8-10

Table 8-2. Display Mode Commands for Various Keyboards

Keyboard Commands
Display Mode

Numeric (1)
Numeric Word (2)
Instruction (3)
Symbolic (4)
Half-word (5)
Byte-pointer (6)
ASCII (7)
Floating.point(8)

D2&D200

Local *

D1

Fl
F2
F3
F4
F5
F6
F7

System Call (9;) . '. .' ..••.
AOS/VSErrOt.~(tj)i

Fl
F2
F3
F4
F5
F6
F7
F8
F9
FlO

F8
TAB 9
TAB 0

Numeric (1)
Numeric Word (2);
Instruction (3) ..
Symbolic (4)
Half-word (5)
Byte-pointer (6)
ASCII (7)
Floating point (8)

Global **
': . .i. ,'"

CTRL .. FI CTRL-FI
r i;::' GntL .. fi2 CTRL-F2

" CTRt .. F3 CTRL-F3
;,0 ·Qnt .. p<4 CTRL-F4

·,CTRJ;.;PS CTRL-F5
·;·C'fRL.;P6· CTRL-F6
..... . .Ctttf~F7 CTRL-F7

. ctkt-FS CTRL-F8
System Call (9) .' CTkt-FJ ; . 'fABTAB 9

enu.';'PHF' TAaTABO AOS/VS Error Message (0)

Keyboards Without
Function Keys

TAB I
TAB 2
TAB 3
TAB 4
TAB 5
TAB 6
TAB 7
TAB 8
TAB 9
TAB 0

TAB TAB I
TAB TAB 2
TAB TAB 3
TAB TAB 4
TAB TAB 5
TAB TAB 6
TAB TAB 7
TAB TAB 8
TAB TAB 9
TAB TAB 0

·•· •.•...•....•...•.. if':.:;:;ii··.··.····.·";~:·:i .. ' .
* Fl through FlO represent tbefuMtj~·~~~:itii~ASHERT,..'D200 terminal; they are numered

from left to right (see Figure 8 .. 1). . . .

.. In addition to the commands in this table. you~nSet:the global display mode by entering a new
value in the display mode register (ST).

Licensed Material-Property of Data General Corporation 093-000246

Keyboards With Function Keys
Figure 8-1 shows the location of the function keys on the D2 and D200 keyboards. In the figure, we number
the leftmost function keys Fl through FlO, though they are blank on your keyboard.

02

0200
80-02307 Figure 8-1. Function Keys

093-000246 Licensed Material-Property of Data General Corporation 8-11

The AOS/VS Debugger documentation package includes keyboard templates that fit over the DASHER
function keypads. Figure 8-2 shows the keyboard templates over the DASHER D2 and D200 function keys.
Note that the templates associate each function key with a particular display mode.

02

0200 Figure 8-2. AOS/VS Debugger Keyboard Templates 50-02308

Using the function keys, you can easily alter the local and global display modes, as described in the following
sections.

If you are using a DASHER Dl keyboard, you have only eight function keys (Fl through F8). When issuing
display commands, you can use the function keys for display modes 1 through 8 (as on the D2 and D200
keyboards). However, to use the system call and AOS/VS error message modes (modes 9 and 0), you must
either issue the display commands for keyboards that do not have function keys or modify the display mode
register (see "Keyboards Without Function Keys" and "The Global Display Mode Register" later in this
chapter). Generally, you will not use the system call and AOS/VS error message display modes during your
debugging session. Thus, the missing function keys on the D 1 keyboard should not cause any inconvenience.

Local Display Commands
You will use local display commands when you want to

• view the last value DEBUG presented in a new display mode

• obtain the value of a number, symbol, expression, or instruction in a particular display mode

8-12 Licensed Material-Property of Data General Corporation 093-000246

To issue a local display command, simply press the function key that specifies the desired display mode.
DEBUG will immediately reply with the appropriate value.

Local display mode commands do not affect the global display mode in any way.

In the following examples, we illustrate the local display mode commands. Note that DEBUG echoes each
function key as two uparrow characters (T T).

In our first example, we examine two-word locations in memory. The global display mode is set to numeric
(mode 1), but we want to view certain locations in other modes.

_500\ 2112220100_1
16000000502\ 22302200003 -1
16000000504\ 20302200001 -TT 101411 000001 -TT XWLDA 0,1 -1
16000000506\ 20426254063 -1
16000000510\ 05051430253 -1
16000000512\ 12424440520 -TT 050 246060253 -TT TRAP -1
16000000514\ 05051230252_J

DEBUG presents the two-word values in the global display mode (i.e., numeric, by default). After DEBUG
displays the value at location 504 8 , we hit the numeric word function key (F2). DEBUG immediately presents
the two-word value at location 504 as two I-word octal integers (e.g., in numeric word mode). We then hit the
instruction (F3) function key and DEBUG interprets the same value as an instruction.

Finally, we close that two-word location and continue stepping through memory. Note that the local display
commands do not alter the global display mode; that is, DEBUG continues to present values in numeric mode.

At location 512 8 , we again issue local display commands. First, we press the half-word function key (F5) and
then the ASCII function key (F7). Each time, DEBUG presents the two-word value at location 512 in the
specified display mode.

At the end of the above example, the global display mode is still numeric.

Our second set of examples show how to use local display commands to evaluate: symbols, expressions, and
instructions in various modes. Simply enter the symbol, expression, or instruction and press the appropriate
function key. DEBUG evaluates the entry and presents that value in the specified mode.

S*3+42TT 000064 -TT 000032 0

-LOCTT 16000036000 -TT 070000 036000 -TT 160000074000 _

_ 32.6E02TT 10362740000 -TT 103 313 300 000 _

_ 100;7TT 16000000100 _

_ XWLDA O,1377,2TT 30302201377 -

_LCALL 0, 1, 14 777TT 127311 21777777777 001377 -

On the first line, we enter the expression 6*3 +42 and hit the numeric function key (Fl). DEBUG
immediately computes the expression's value and displays it in numeric mode. We then hit the byte-pointer
function key (F6) and DEBUG presents the value in byte-pointer notation.

In this manner, you can use the local mode commands to view any number, symbol, expression, or instruction
in any display mode. Again, local display commands do not alter the global display mode.

093-000246 Licensed Material-Property of Data General Corporation 8-13

Global Display Commands

The global display mode is the display mode DEBUG is currently using to present data. When you enter a
debugging session, the global display mode is set to numeric (mode 1). You can change the global mode by
issuing a global display command as follows:

• hold down the control key (CTRL) and simultaneously press the appropriate function key (i.e., the function
key that represents the desired display mode)

After issuing a global display command, DEBUG presents all data in that mode until you change the global
mode again.

The following examples show how to use the global display mode commands. Note that DEBUG echoes each
CTRL-function key command sequence as two uparrow characters (T T).

_500\ 00000000000_1
16000000502\ 00000000001 -1
16000000504\ 00000000002 _J
_TT_500\ 000 000 000 000_1
16000000502\ 000 000 000 001 -1
16000000504\ 000 000 000 002 _J
_TT_500\ 000000 000000_1
16000000502\ 000000 000001 -1
16000000504\ 000000 000002 _J

By default, the global display mode is numeric (mode 1)

Change the global display mode to half-word (mode 5)

Change the global display mode to numeric mode (mode 2)

In this example, we examine the two-word values between locations 500 and 506 in three different display
modes. To alter the global display mode, we held the CTRL key down and pressed the appropriate function
key (DEBUG echoes these commands as T T).

In the example above, on the fourth line, we changed the global mode to half-word by holding down the CTRL
key and pressing the half-word function key (F5). DEBUG then presented all data in half-word mode until we
issued another global display command.

As discussed in the previous section, you may override the global display mode at any time by issuing a local
display command. Local display commands do not change the global mode.

Instead of issuing global display commands, you can alter the global display mode by modifying the display
mode register. The last section of this chapter provides more information on how to do this.

Keyboards Without Function Keys
In the next two sections, we explain how to issue local and global display commands on keyboards that do not
have function keys (i.e., blank keys at the top of the keyboard).

These commands are also valid for keyboards that include function keys. However, if you have function keys,
you will usually use the commands described in the previous sections of this chapter instead.

Local Display Commands
Issue a local display command when you want to

• view the last value DEBUG presented in a new display mode

• obtain the value of a number, symbol, expression, or instruction in a particular display mode

Local display mode commands do not alter the global display mode.

8-14 Licensed Material-Property of Data General Corporation 093-000246

To issue a local display command on a keyboard without function keys, enter

TAB n

where:

TAB represents the TAB character (ASCII II 8)

n is a single digit between 0 and 9, inclusive. This digit identifies a particular display mode (see
Table 8-1)

The numeric digit you enter in the n argument identifies a particular display mode. Table 8-1 lists the display
modes and the corresponding numbers. Do not place a space between the TAB character and the digit n.

After you enter a TAB n command, DEBUG immediately presents the appropriate value. The following
examples illustrate the use of the local display mode commands. Note that DEBUG echoes display commands
as two uparrow characters (T T).

In our first example, we examine two-word locations in memory. The global display mode is set to numeric
(mode 1), but we want to view the contents of certain locations in other modes.

_500\ 21122200100_1
16000000502\ 22302200003 -1
16000000504\ 20302200001 -TT 101411 000001 -TT XWLDA 0,1 -1
16000000506\ 20426254063_1
16000000510\ 05051430253 -1
16000000512\ 12424440520 -TT 050 246060253 -TT TRAP_1
16000000514\ 05051230252_J

DEBUG presents the two-word values in the global display mode (i.e., numeric, by default). After DEBUG
display the value at location 504 8 , we enter the command TAB 2. DEBUG immediately presents the two-word
value at location 504 as two I-word octal integers (i.e., in numeric word mode). We then enter TAB 3
(instruction mode) and DEBUG presents the same value as an instruction.

Finally, we close location 504 and continue stepping through memory. Note that the local display mode
commands do not alter the global display mode; that is, DEBUG continues to present values in numeric mode.

At location 512 8 , we again issue local display commands. First, we enter a half-word display command (TAB
5) and then an ASCII display command (TAB 7). Each time, DEBUG presents the two-word value at location
512 i!l the specified mode.

At the end of the above example, the global display mode is still numeric.

Our second set of examples show how to use local display commands to evaluate: symbols, expressions, and
instructions in various modes. Simply enter the symbol, expression, or instruction and enter the appropriate
TAB n command. DEBUG evaluates the entry and presents that value in the specified mode.

6+3*42TT 000064 -TT 000320

-LOCTT 16000036000 -TT 070000 036000 -TT 160000074000 _

_ 32.6E02TT 10362740000 -TT 103 313 300000 _

_ 100;7TT 16000000100 _

_ XWLDA O,1377,2TT 30302201377 -

_LCALL O,1,14777TT 12731 21777777777001377 -

093-000246 licensed Material-Property of Data General Corporation 8-15

On the first line, we enter the expression 6*3+42 and then hit TAB and the digit 1. DEBUG immediately
computes the expression's value and displays it in numeric mode. We then enter TAB 6 and DEBUG presents
the value in byte-pointer mode.

In this manner, you can use the local mode commands to view any number, symbol, expression, or instruction
in any display mode. Again, local display commands do not alter the global display mode.

Global Display Com mands

The global.display mode is the display mode DEBUG is currently using to present data. When you enter a
debugging session, the global display mode is set to numeric (mode 1). You can change the global mode by
issuing a global display command as follows:

TAB TAB n

where:

TAB represents the TAB character (ASCII 118)

n is a single digit between 0 and 9, inclusive. This digit identifies a particular display mode (see
Table 8-1)

According to this format, you change the global display mode by entering two TAB characters followed by a
single digit. Do not place any spaces in the command.

The single digit n identifies one of the ten display modes. Table 8-1 lists the display modes and the
corresponding numbers you should enter in the n argument.

After issuing a global display command, DEBUG presents all data in that mode until you change the global
mode again.

The following examples show how to use the global display mode commands. Note that DEBUG echoes each
TAB TAB n command as two uparrow characters (T T).

_500\ 00000000000_1
16000000502\ 00000000001 -1
16000000504\ 00000000002_J
_TT_500\ 000 000 000 000_1
16000000502\ 000 000 000 001 -1
16000000504\ 000 000 000 002_J
_TT_500\ 000000 000000_1
16000000502\ 000000 000001 -1
16000000504\ 000000 000002 _J

By default, the global display mode is numeric (mode 1)

Change the global display mode to half-word (mode 5)

Change the global display mode to numeric word (mode 2)

In this example, we examine the two-word values between locations 500 and 506 in three different display
modes. To alter the global display mode, we entered two consecutive TAB characters followed by a single
numeric digit (DEBUG echoes each of these display commands as T T).

In the example above, on the fourth line, we changed the global mode from numeric to half-word by typing
TAB TAB 5. DEBUG presented all data in half-word mode until we issued another global display command.

As discussed in the previous section, you may override the global display mode at any time by issuing a local
display command. Local display commands do not change the global display mode.

Instead of issuing global display commands, you can alter the global display mode by modifying the display
mode register. The next section explains this.

8-16 Licensed Material-Property of Data General Corporation 093-000248

The Global Display Mode Register
In addition to using global display commands, DEBUG allows you to change the global display mode by
modifying the display mode register. The display mode register holds a value from 0 to 10 10 (0 to 128) that
indicates the current global mode.

Table 8-3 lists the values that DEBUG associates with the various display modes.

Table 8-3. Display Mode Register Values

Display Mode

...

;lSf~c(default mode)
~~,i¢word
l_tttJction
SymbOlic
Half .. word
Byte-pointer
ASCII
Floating point
System call
AOS/VSerrormessage

To examine the display mode register, issue the command

$T

Resister Value

Decimal

1
2
3
4
5
6
7
8
9
o

Octa.

1
2
3
4
5
6
7
10
11
o

DEBUG will immediately display the register value. At this point, the register is open for modification; you
may change the global display mode by entering a value from 0 to 9 10 (0 to 118).

The following example shows how to use the $T commands:

_$T 00000000001 _J
_500\ 00000000000 _J
_$T 00000000001 _2J
_500\ 000000 000000 _J
_$T 000000 000002 _5J
_500\ 000 000 000 000 _J

The global mode equals 1 (numeric) so DEBUG presents the two-word
value at address 500 as a single integer. Change the global mode to
numeric word (mode 2) and again view the value at location 500. Lastly,
change the global display mode to half-word (mode 5) and view the same
location

There is no difference between modifying the display mode register and issuing a global display command
(described earlier). Both instruct the Debugger to present data in a new global mode.

Refer to Chapter 4 for general information on examining and modifying registers. That chapter also contains a
section specifically devoted to the display mode register.

End of Chapter

093-000246 Licensed Material-Property of Data General Corporation 8-17

Chapter 9
Debugging 16-Bit Programs

The AOS/VS Debugger allows you to debug 16-bit programs. J6-bit programs use 16-bit ECLIPSE
instructions and are usually designed to run under Data General's 16-bit Advanced Operating System (AOS).
By relinking them, you can execute 16-bit programs under the 32-bit AOS/VS op(:rating system. Refer to the
AOS/VS Link and Library File Editor User's Manual for information on linking 16-bit programs for use
under AOS/VS.

[n most cases, debugging a 16-bit program is identical to debugging a 32-bit program. However, you should be
aware of certain exceptions and considerations. These pertain to the following:

• accumulators

• the stack

• symbolic displays

• overlays

The following sections explain these four subjects.

Accumulators
When debugging a 16-bit program, remember that 16-bit Arithmetic and Logic (ALC) instructions operate on
the low-order (least significant) 16 bits of the fixed-point accumulators. That is, 16-bit ALC instructions only
affect bits 16 through 31 of the 32-bit ECLIPSE MV /8000 accumulators.

Even though your instructions only access the last 16 bits of the accumulators, DEBUG always presents
accumulators as full 32-bit values. Thus, when viewing an accumulator value, you will usually ignore the first
16 bits of DEBUG's display.

The Stack
The 32-bit ECLIPSE MV /8000 hardware provides four 32-bit stack registers for your use (see the $E
command in Chapter 4). Data General's 16-bit computers do not have hardware stack registers, so 16-bit
programs use absolute locations 40 8 through 43 8 to hold stack information. Thus, when examining stack
parameters in a 16-bit program, you will usually reference locations 40 through 43 8 , not the MY /8000 stack
registers.

Symbolic Displays
In Chapter 6, we describe how DEBUG presents values in symbolic mode (i.e., as a symbol plus a numeric
offset). In that discussion, we said that DEBUG only uses symbols whose values specify the correct ring when
presenting addresses. This is not the case when you are debugging 16-bit programs.

When presenting symbolic values in 16-bit programs, DEBUG only uses the low-order (least significant) 16
bits of each symbol value. When DEBUG is searching for a symbol to match a particular value, it strips the
symbol value to 16 bits before the comparison. Thus, DEBUG only uses bits 16 through 31 of the symbol's
value when trying to find a match.

Refer to Chapter 6 for more information on symbols and DEBUG's symbolic displays.

093-000248 licensed Material-Property of Data General Corporation 9-1

Overlays
The AOS/VS Debugger supports 16-bit programs that include overlays. There are, however, certain
restrictions:

• When using an overlay symbol as an address in a memory examine or display command, be sure the
corresponding overlay is memory resident; if not, DEBUG returns an error

• When presenting addresses in symbolic mode, DEBUG only uses symbols that identify locations currently in
memory

• Do not set breakpoints within movable resources or reference symbols that define addresses in movable
resources

The first restriction on debugging overlayed programs involves the use of symbols that define addresses within
an overlay (for example, labels in an overlay). The Debugger will always recognize symbols defined in your
overlay, whether the overlay is in memory or not. Thus, you can always use overlay symbols to modify register
values, as terms in an expression, etc. However, when using an overlay symbol as an address in a memory
examine or display command, be sure that the corresponding overlay is memory resident. An example will help
clarify this point.

Suppose you define an overlay area that starts at location 1000 8 and one overlay destined for that area defines
label LOC at address 1050 8 • DEBUG always recognizes symbol LOC, whether LOC's overlay is in memory or
not. However, if you want to examine the value at address LOC, you must be sure that LOC's overlay is
resident. If you enter the command

DEBUG opens location 1050 8 only if LOC's overlay is resident. That is, entering LOCI only shows you the
value at address LOC if LOC's overlay is in memory. Otherwise, DEBUG returns an error.

The second overlay consideration pertains to DEBUG's presentation of addresses. As discussed in Chapter 6,
DEBUG always tries to present addresses in symbolic mode (i.e., as a symbol plus a numeric offset). When
presenting symbolic addresses, DEBUG only uses symbols that define locations currently in memory. In the
previous example, DEBUG will only present address 1050 8 as LOC if LOC's overlay is in memory. If LOC's
overlay is not resident, DEBUG will use a different symbol, if possible, or simply present the address as a
numeric value.

Lastly, you can not set breakpoints within movable resources or reference symbols that define addresses within
a movable resource. Movable resources are overlays that are position independent; that is, they need not reside
at the same address each time your program calls them into memory.

Refer to the AOS/VS Link and Library File Editor User's Manual and the AOS/VS Programmer's Manual
for more information on overlays.

End of Chapter

9-2 Licensed Material-Property of Data General Corporation 093-000246

Chapter 10
The AOSjVS File Editor (FED)

The AOS/VS File Editor (FED) utility allows you to examine or modify locations in AOS/VS disk files.
Using FED, you can inspect any kind of file; you are not limited to executable program files (as you are with
DEBUG).

All changes you make to a disk file during the editing session are permanent. That is, FED copies all
modifications into the disk file.

FED Commands
FED uses a subset of the DEBUG commands. When you edit a disk file with FED, that file is not being
executed. Thus, all DEBUG commands that control breakpoints, program execution, and machine state
registers are invalid under FED. More specifically, when using FED, you may NOT

• set, examine, or delete breakpoints ($B, $D)

• issue program restart or proceed commands ($P, $R), or examine proceed count n!gisters ($Q)

• examine or modify the following machine state registers:

• accumulators and carry ($A)

• stack ($E)

• floating point registers ($F)

• program counter ($L)

• processor status register ($V)

• use the special DEBUG symbols that represent the machine state registers (you may, however, use the
location counter symbol.)

093-000246 Licensed Material-Property of Data General Corporation 10-1

All other Debugger commands function under FED as they do under DEBUG. Table 10-1 lists and describes
the FED commands.

Table 10-1. FED Commands

Command Description Reference

address/ Display the one-word value at word location address Chapter 3

address\ Display the two-word value at word location address Chapter 3

$C Push to the CLI Chapter 2

$G Open the ring register Chapters 3, 4

$H Help command: list the various topics that FED can provide Chapter 2
information about

keyword$H Help command: provide information about the topic identified Chapter 2
by keyword

$1 Display all currently defined temporary symbols Chapter 6

symbol, value$1 Define a temporary symbol Chapter 6

$J Delete all temporary symbols Chapter 6

symbol$J Delete a specific temporary symbol Chapter 6

$N Open the output radix ring Chapter 4

$5 Display or search a range of memory locations Chapter 3

$T Open the global display mode register Chapters 4, 8

$X Disable the current symbol table file Chapter 6

file$X Disable the current symbol table file (if any) and enable a new one Chapter 6

$Y Disable the current log file Chapter 2

file$Y Disable the current log file (if any) and enable a new one Chapter 2

$Z Terminate the FED editing session Chapter 2

$7 Display a diagnostic error message for the last error Chapter 2

;comment) Enter the character string comment in the current log file Chapter 2

In addition to the commands in Table 10-1, all local and global display mode commands and all Debugger
expressions are valid under FED (see Chapter 8). Refer to the appropriate sections of this manual for complete
descriptions of the various commands.

10-2 licensed Material-Property of Data General Corporation 093-000246

FED Operating Procedures
To execute the FED utility, enter the following CLI command:

) XEQ FED {lswitchJ... pathname

where:

XEQ is the CLI command that executes a program (the single character X is a legal abbreviation for
XEQ)

FED is the name of the File Editor program (less the .PR extension)

Iswitch is one or more optional FED command switches (see Table 10-2 below)

pathname is the pathname of the file you want to edit

Table 10-2 lists the switches you can include on the FED command line. Table 10-2. FED Command Switches

Table 10-2. FED Command Switches

Switch Description

II=filename Use the commands in filename for the editing session. With this switch. you can build a file of FED
commands and apply them aU at once when you execute FED (i.e.~ you can run FED in batch mode)

IL= filename Use filename as the FED log file. That is, send all FED commands and responses to filename. If
filename does not exist, FED will create it; otherwise, FED appends the new information to the
existing one

Note that the /L= switch performs the same operation as the file$Y command. You will normally
use the IL== switch in conjunction with the 11= switch (Le., when running FED in batch mode)

IN Do not attempt to open a symbol table (.ST) file. (See Chapter 6 for information on symbol tables.)

IP Treat the disk file as a program file (see "Program and User Data Files" below)

IR Allow only read access

IS= filename Use filename as the symbol table file. This switch performs the same operation as the file$X
command. You will normally use this switch in conjunction with the 11= switch (i.e.. when running
FED in batch mode). (See Chapter 6 for information on symbol tables.)

IV Treat the disk file as a user data file (see "Program and User Data Files" below)

IX Treat the disk file as an AOS/VS system file. Only use this switch if you are applying a patch
released by Data General Corp. (see "AOS/VS System Files" below)

If you are executing FED interactively (i.e., without the II = switch), FED will display the following prompt
(same as DEBUG):

This means FED has successfully loaded your file and you may issue commands.

At the end of your editing session, issue the $Z command. FED will return control to the CLI.

If you specify a command file when invoking FED (with the II = switch), you will not receive a FED prompt.
Rather, FED opens your disk file and performs the operations specified in the command file. After editing
your file, FED returns control to the CLI.

093-000246 Licensed Material-Property of Data General Corporation 10-3

Your /1 command file should contain FED commands in the normal format. To modify a location or register,
enter the appropriate command followed by the new value. Then, close the location. For example, to place a
new value at location 500 8 , enter the following line in your command file:

Open location 500 and deposit the value 7. Close with NEW LINE

FED returns control to the CLI when it encounters a $Z command or the end of your command file.

Program and User Data Files
When you enter a file editing session, FED automatically determines whether your file is a program file or a
user data file. FED presents and interprets addresses differently depending on which file type you are editing.

A program file contains executable code and is of file type PRG or PR V {program filenames usually end with
the .PR extension}. AOS/VS program files contain a 20000 8 word preamble before the executable code. This
preamble contains information that AOS/VS requires at program execution time. For example, the preamble
indicates where in memory the various parts of your program will reside. Figure 10-1 shows how a program
file appears on disk.

Addresses
in the

Disk File

upto

o

17777

20000

256MW + 17777 ~ ----.
Figure 10-1. A Program File on Disk

o

upto
256MW-1

Addresses
at Runtime

SD-02291

When you execute your program file, the preamble is not loaded into your logical address space. Thus, for
addressing purposes, location 0 is the first word after the preamble.

Similarly, when you edit a program file, FED interprets the first word after the preamble as location O. In
addition, FED presents shared and unshared addresses as they will appear at runtime. In short, FED
calculates addresses as if you were executing the program file. This is the same addressing scheme that
DEBUG uses.

If your file is not a program file, FED assumes it is a user data file. User data files do not require any special
addressing considerations. That is, when editing a user data file, FED interprets location 0 as the very first
word in the file. Addresses proceed in strict sequential order through the file.

10-4 Licensed Material-Property of Data General Corporation 093-0002"6

Normally, FED automatically determines the file type you are editing. However, you may force FED to
interpret your file as a program file or a user data file by issuing the IP or IU switches, respectively.

As a final note, when in program file UP) mode, FED will search for the corresponding global symbol table
(.ST) file and open it, if available. FED does not search for a symbol table when editing user data files. See the
IN and IS = switch descriptions and Chapter 6 for more information on enabling and disabling symbol tables.

Addressing the Preamble
Usually, when you edit a program file, you do not want to examine locations in the preamble. However, if you
wish, you may inspect the preamble by using one of the following techniques:

• issue the IU switch when editing the program file

• enter a -1 value in the ring register

If you use FED's IU switch when editing a program file, FED opens your file as if it was a user data file (see
above discussion). Thus, location 0 represents the first word in the preamble, not the first word after the
preamble.

Also, when you edit a program file using the IU switch, addresses proceed in strict sequential order through
the file. Thus, there are no unused locations between the unshared and shared portions of your file. Rather, the
shared locations begin immediately after the unshared locations.

As an alternative method for addressing the preamble, you can edit your file in program file UP) . mode and
place the special ring value of -1 in the ring register. FED will then interpret all addresses that do not specify a
ring as locations in the preamble.

Consider the following example:

_400/ 103000 _J Examine location 400 8 • FED automatically inserts the value from the ring register
in bits 1 through 3 of the address

_$G 00000000007 _-1J Open the ring register and change the default ring value to-l

_400/ 000000 _J FED now interprets address 400 8 as a location in your program file's preamble

In short, if the ring register contains -1, all addresses that do not explicitly include a ring value refer to the
preamble.

When the ring register contains -1, your addresses must be between 0 and 17777 8 , inclusive. FED returns an
error for any address outside this range because the preamble is only 20000 8 words long.

Also, note the following rules regarding the -1 ring value:

• You may not use a -1 ring value with the ring field operator (;), only in the ring register

• You may not use a -1 ring value when using the DEBUG utility, only with FED

Refer to Chapter 3 for more information on rings; Chapter 4 describes the ring register and $G command.

093-000246 licensed Material-Property of Data General Corporation 10-5

AOS/VS System Files
In addition to program files and user data files, FED can edit AOS/VS system files. System files contain the
AOS/VS operating system programs and are organized differently from your .PR program files.

The only time you will edit an AOS/VS system file is when applying a patch supplied by Data General Corp.
A patch is a new section of code that replaces or modifies an existing portion of the system file. To apply a
patch, use the /X and II = switches as follows:

) XEQ FED / X / I = patch-file system-file

The IX switch informs FED that you are editing a system file (not a program file or user data file). The II =
switch directs FED to edit the system file according to the commands in patch-file. After this command,
system-file will contain all the edits specified in the patch file.

Again, only edit AOS/VS system files when applying patches supplied by Data General Corp.

End of Cha pter

10-6 Licensed Material-Property of Data General Corporation 093-000246

Appendix A
DEBUG Error Messages

This appendix lists the various error messages that DEBUG may return. Refer to "Error Responses" in
Chapter 2 for more information on DEBUG errors and error messages.

093-000246

ALL BREAKPOINTS ALLOCATED

ASSEMBLY FORMAT ERROR

ASSEMBLY VALUE ERROR

ATTEMPT TO REFERENCE MORE THAN ONE OVERLAY IN AN EXPRESSION

ATTEMPT TO REFERENCE RELOCATABLE RESOURCE IN EXPRESSION

EXPRESSION FORMAT ERROR

EXPRESSION REFERENCE TO NON-RESIDENT LOCATION

ILLEGAL BREAK CHARACTER SEQUENCE

ILLEGAL MEMORY ADDRESS SPECIFIED

ILLEGAL OCTAL DIGIT IN NUMBER

INTERNAL CONSISTENCY ERROR

INVALID SYMBOL TABLE ADDRESS

LINE TOO LONG

MULTIPLE BREAKPOINTS AT THE SPECIFIED ADDRESS

NO OPEN LOCATION

NON-RESIDENT OVERLAY ADDRESS SPECIFIED

UNABLE TO PROCEED - MUST USE THE START COMMAND ($R)

UNDEFINED BREAKPOINT ENCOUNTERED

UNDEFINED SYMBOL

UNRECOGNIZED COMMAND FORMAT

VALUE OUT OF RANGE

WRITE ACCESS DENIED

End of Appendix

Licensed Material-Property of Data General Corporation A-1

Appendix B
ASCII Character Set

LEGEND:

To find the (lcw/ value of a character, locate the character, and
combine the first two digits at the top of the character's column
with the third digit In the far left column

Character code in decimal - I '~6A
EBCDIC equivalent hexadecimal code 0 7C il
Character ______ ~ , ~

OCTAL

o 8 BS It1,S OLE 24 CAN 32' 40 4$ 56 o ~ NUL - (BACK- 1P ~ 1X ~ SPACE ~ (~ 0 78 8
~~~~ ______ ~'8_'+-_S_P_A_C_E __ ) ~ ______ -+_'8_, ~------;-~'~-------r~r-------;-~r-------~~------~ 

1 SOH 9 HT 17 DCl 2S EM ~ 41 49 57 
1 ~ 1A Os (TAB) 71'" 10 ~ 1Y '$A , ~., ) ~ 1 ~ 

2 STX to NL 18 DC2 26 SUB 34 ,,42 50 58 
2 ~ - (NI;W ___ ~ ~ ~ * ""!!!'" 2 ~ 

02 1B 15 LINE) i2 1R 3F 1Z ,IF (QUOTE)~CF2 7A 

3 ETX 11 VT 19 DC3 27 ESC3643' 51 59 
3 ~ 1C ~ (~~~1 7; 1S ~ (ESCAPE)"'7ii ;; ~ + 73 3 Te 

4 EOT 12 FF 20, DC4 28 FS ~ 44 52 60 
4 -37 10 ~ (FORM ~ 1T ~ 1\ - $ ~ (COMMA) ~ 4 ~ 00 FEED) 3C lC 58 68 F4 4C 

5 ENO 13 RT a1 NAK 29 GS 37 % '45 53 61 
5 20 1E ~ (RETURN) ~ 1U '1D 11 6C' ~ - 7t 5 ~ 

OCTAL 

7 BEL 15 SI ~ ETB 31 US» '47 ..!l ~ 
7 "'iF 1G ~ 10 26~ 1W 7 1~ "t) (APOS) ~ / F1 7 SF 

64 
0Tc' 

65 
1 -

C1 

2..!!. 
C2 

3!!. 
C3 

4e 
C4 

5~ 
C5 

6~ 
C6 
71 

7~ 

A 

B 

c 

o 

E 

F 

G 

72 rca 
73 

~ 
74 
~ 
01 

75 
~ 
02 

18 
03 

71 -04 
78 -D5 

79 
~ 

H p 

81 

'Dr Q 

J R 

K 
83 

E2 s 

L T 

M 
85 

74 u 

N v 

o w 

88 

E7 
89 -E8 

91 

~ 
92 

70 
93 r-;o 
94 -SF 

95 

6D 

x ~ 104 
79 (GRAVE) Ta 

y 

z 

101 
~ 
Ji5 

102 
or ~ ~ 

~ - or - 81 

a 

b 

c 

d 

e 

9 

105 

~ 
106 
~ 

91 

107 -92 

108 

93 

110 

"'is 

h 

k 

m 

n 

o 

112 ---97 

115 -A2 

118 
~ 
AS 

120 
p ~ 

Q 

5 

u 

v 

w 

9 

<: 

> 

? 

x 

y 

I 

(TILDE) 

DEL 
(RUBOUT) 

SO-00217 Character code in octal at top and left of charts, 1 means CONTROL 

End of Appendix 

093-000246 Llcenaed Material-Property of Da .. General Corporation 8-1 





Appendix C 
DEBUG Command Summary 

Table A-I is a command summary for the AOS/VS assembly language debugger (DEBUG). The commands 
are divided into logical categories. For each command, we provide a brief description of its purpose and a 
reference for additional information. 

We use the following notation in the command summary: 

Symbol Meaning 

$ The escape (ESC) character 

address An AOS/VS memory address 

file The complete pathname to a file 

CTRL The control key 

f-key Function key (i.e., a blank key at the top of the keyboard) 

n An integer value 

symbol The name of a symbol (see Chapter 6 for rules on legal symbol names) 

T AS The horizontal tab character 

For a complete summary of the conventions and notation we use in this manual, please refer to the Preface. 

For a summary of the available File Editor (FED) commands, refer to Table 10-1 (Chapter 10). 

093-000246 Licensed Material-Property of Data General Corporation C-1 





Comm~nd Description Reference Comm~nd Description Reference Commilnd Description Reference 

Memory Access Commilnds Commilnds tflilt ilccess debugger registers symbol$J Delete a specific temporary Chapter 6 
,ymbol 

address/ Display the one-word value Chapter 3 $G Open the ring register Chapters 3, 4 
starting at word location $X Disable the current symbol Chapter 6 
address and open that $N Open the output radix Chapter 4 table file 
word for modification register 

file$X Disable the current symbol Chapter 6 
address\ Display the two-word Chapter 3 n$Q Open the proceed count Chapters 4, 5 table fi Ie (if any) and 

value starting at word register for breakpoint n enable a new one 
location address and open 
those two words for $T Open the global display Chapters 4, 8 DisplilY mode commilnds 
modification mode register 

Commilnds thilt control progrilm eJ(ecution 
(f-key) Redisplay the last value in Chapter 8 

) (NEWLINE) Close the open location Chapter 3 the specified display mode 
(for consoles with function 

1 (carriage return) Close the open location Chapter 3 $B Display all breakpoints Chapter 5 keys) 
and open the subsequent 
location address$B Set a breakpoint at location Chapter 5 CTRL-(f-key) Modify the global display Chapter 8 

address mode (for consoles with 
t (uparrow) Close the open location Chapter 3 function keys) 

and open the previous address,condition$B Set a conditional Chapter 5 
location breakpoint at location TAB-n Redisplay the last value in Chapter 8 

address the specified display mode 
$S Display or search a range Chapter 3 (for consoles without 

of memory locations $D Delete all breakpoints Chapter 5 function keys) 

C~nd. IlYt ilccess MV 11000 milchine stilte registers n$D Delete breakpoint n Chapter 5 TAB-TAB-n Modify the global display Chapter 8 
mode (for consoles 

SA Display the contents of the Chapter 4 $P Continue program Chapter 5 without function keys) 

four fixed-point execution at the last 

accumulators and the carry breakpoint encountered Generill use commilnds • 

bit 
n$P Continue program Chapter 5 $C Push to the CLI Chapter 2 

nSA If 0< =n < =3, open Chapter 4 execution at the last 

fixed-point accumulator n; breakpoint encountered $H Help command: list the Chapter 2 
if n = 4, open the carry bit and set the proceed count various topics that 

for that breakpoint to n DEBUG can provide 
$E Display the four stack Chapter 4 information about 

registers n$Q Open the proceed count Chapters 4, 5 
register for breakpoint n keyword$H Help command: provide Chapter 2 

nSE Open the stack pointer Chapter 4 information about the 
(n=O), frame pointer $R Start or resume program Chapters 2, 5 topic identified by 
(n = 1), stack limit (n = 2), execution at the current keyword 
or stack base (n = 3) program counter (PC) 

register $Y Disable the current log file Chapter 2 
address$R Start or resume program Chapters 2, 5 

SF Display the four floating Chapter 4 execution at location file$Y Disable the current log file Chapter 2 
pomt accumulators and the address (if any) and enable a new 
floating point status one 
register (FPSR) Comm.mds relilted to symbol use 

$Z Terminate the DEBUG Chapter 2 
nSF If 0< =n < =3, open Chapter 4 $1 Display the currently Chapter 6 sessIOn 

floating point accumulator defined temporary 

n; if n = 4, open the first 32 symbols $? Display a diagnostic error Chapter 2 
bits of the FPSR; ifn=5, message for the last error 
display the last 32 bits of symbol,value$1 Define a temporary Chapter 6 
the FPSR (i.e., the floating symbol ;comment) Enter the character string' Chapter 2 
point PC) comment in the current 

$J Delete all temporary Chapter 6 log file 
SL Open the program counter Chapters 3, 4 symbols 

(PC) 

$V Open the processor status Chapter 4 
rf>"i~tf>r (PSRl 

DEBUG Command Summary 





Command Description Reference Command Description Reference Command Description Reference 

Memory Access Commands Commands t"at olccess debugger registers symbol$J Delete a specific temporary Chapter 6 
symbol 

address/ Display the one-word value Chapter 3 $G Open the ring register Chapters 3,4 
starting at word location $X Disable the current symbol Chapter 6 
address and open that $N Open the output radix Chapter 4 table file 
word for modification register 

lile$X Disable the current symbol Chapter 6 
address\ Display the two-word Chapter 3 n$Q Open the proceed count Chapters 4, 5 table file (if any) and 

value starting at word register for breakpoint n enable a new one 
location address and open 
those two words for $T Open the global display Chapters 4, 8 DisplolY mode commands 
modification mode register 

Commands that control program el(ecution 
(I-key) Redisplay the last value in Chapter 8 

) (NEW LINE) Close the open location Chapter 3 the specified display mode 
(for consoles with function 

1 (carriage return) Close the open location Chapter 3 $B Display all breakpoints Chapter 5 keys) 
and open the subsequent 
location address$B Set a breakpoint at location Chapter 5 CTRL-(I-key) Modify the global display Chapter 8 

address mode (for consoles with 
t (uparrow) Close the open location Chapter 3 function keys) 

and open the previous address,condition$B Set a conditional Chapter 5 
location breakpoint at location TAB-n Redisplay the last value in Chapter 8 

address the specified display mode 
$S Display or search a range Chapter 3 (for consoles without 

of memory locations $0 Delete all breakpoints Chapter 5 funclion keys) 

Command. that access MV 18000 machine state regi.ters n$O Delete breakpoint n Chapter 5 TAB-TAB-n Modify the global display Chapter 8 
mode (for consoles 

SA Display the contents of the Chapter 4 $P Conlinue program Chapter 5 without function keys) 
four fixed-point execution at the last 

accumulators and the carry breakpoint encountered General use commands 
bit 

n$P Continue program Chapter 5 $C Push to the CLI Chapter 2 
"SA If 0< =n < =3, open Chapter 4 execution at the last 

fixed-point accumulator n; breakpoint encountered $H Help command: list the Chapter 2 
if n = 4, open the carry bit and set the proceed count various topics that 

for that breakpoint to n DEBUG can provide 
SE Display the four stack Chapter 4 information about 

registers n$Q Open the proceed count Chapters 4, 5 
register for breakpoint n keyword$H Help command: provide Chapter 2 

"SE Open the stack pointer Chapter 4 information about the 
(n=O), frame pointer $R Start or resume program Chapters 2, 5 topic identified by 
(n= I), stack limit (n=2), execution at the current keyword 
or stack base (n = 3) program counter (PC) 

register $Y Disable the current log file Chapter 2 
address$R Start or resume program Chapters 2,5 

SF Display the four floating Chapter 4 execution at location lile$Y Disable the current log file Chapter 2 
point accumulators and the address (if any) and enable a new 
floating point status one 
register (FPSR) Commands related to symbol use 

$Z Terminate the DEBUG Chapter 2 
nSF If 0< =n < =3, open Chapter 4 $1 Display the currently Chapter 6 sessIOn 

floating point accumulator defined temporary 
n; ifn=4, open the first 32 symbols $? Display a diagnostic error Chapter 2 
bits of the FPSR; if n = 5, message for the last error 
display the last 32 bits of symbol, value$1 Define a temporary Chapter 6 
the FPSR (i.e., the floating symbol ;comment) Enter the character string' Chapter 2 
point PC) comment in the current 

$J Delete all temporary Chapter 6 log file 
SL Open the program counter Chapters 3.4 symbols 

(PC) 

SV Open the processor status Chapter 4 
rel!ister (PSR) 

DEBUG Command Summary 





Within this index, the letter "r' means "and the 
following page"; "fr' means "and the following pages". 
Also, primary references are listed first. 

! (logical operator) 7-5 
!! (logical operator) 7-5 
.. (ASCII character operator) 7-8f 
# 7-7, 3-3, 3-14, 6-5 
$ (escape character) 2-3 
-- (logical operator) 7-5 
, (ASCII character operator) 7-8f 
* (arithmetic operator) 7-4 
+ (arithmetic operator) 7-4 
- (arithmetic operator) 7-4 
. (location counter symbol) 3-3,6-5 
.ST file see symbol table 
jDEBUG switch 2-2 
;comment command 2-10 
< $ > 6-5f 
< $ > A command 6-5 
< $ > E command 6-5 
< $ > F command 6-5 
< $ > L command 6-5 
< $ > V command 6-5 
? (error response) 2-4 
?DEBUG 2-lf 
@ 7-7, 3-3, 3-14, 6-5 
@ CONSOLE 2-5 
] (half-word compression operator) 7-9f 
T (logical operator) 7-5f, iv 
_ (DEBUG prompt) 2-2 
J iv 
1 iv 
I (arithmetic operator) 7-4 

A 

aborting debugging session 3-11 
accessing 

memory 3-1 ff 
registers 4-1 ff 

accumulators 
examine 4-4f 
floating point 4-6f 

address (argument) 2-5 
address symbols 6-6f 
address,condition$B command 5-5 
addressj command 3-4ff, 3-1 

Index 

address 1 ,address2 c;ommand 3-10f 
addresses 

AOSjVS, ring value 4-12f 
depositing 3-3 
entering symbolic 6-7f 

address \ command 3-4ff, 3-1 
ANSI standard keyboards 1-3 
AOSjVS 

addresses, ring value 4-12f 
error message display mode 8-9, 4-11, 8-1 
error messages A-I 
memory addresses 3-2 
system files 10-6 

editing 10-6 
patch 10-6 

arguments 
condition 3-14 
increment 3-14 
size 3-14 

arithmetic operators 7-4 
ASCII 

character operators 7-8f 
&" 7-8f 
, 7-8f 

character set B-1 
display mode 8-6, 4-11, 8-1 

assembly language 
instructions 7-13f 

checking value 7-14 
program 1-1,2-1 

B 

B command 5-2f 
bell character (ASCII value 7) 3-8 
binary operators 7-4 
breakpoints 5-lff, 2.-2 

command summary 5-1 
conditional 5-4f 

relational operators 7-6 
data entries 5-2 
deleting 5-4 
displaying 5-2 
modified instructions 5-2 
multiword instructions 5-2 
proceed count .5-5ff, 4-12, 5-3 
program restarts 5-7f 
setting 5-2 
symbol table 5··3 

byte-pointer display mode 8-5f, 4-1, 4-11,8-1 

093-000246 Licensed Material-Property of Data General Corporation Index-1 



C command 2-11 
carry bit, examine 4-1 f 
channels, I/0 2-1 
character 

operators 7-8 
ASCII set B-1 

c 

checking an expression's value 7-14 
assem bly language instruction 7-14 
floating point number 7-14 
numeric function key 7-14 

checking symbol value 6-6 
CLI2-1 

entering debugger from 2-1 f 
process, generate a 2-11 
pushing to 2-11 

closing 
log file 2-8f 
memory locations 3-5ff 

Command Line Interpreter see CLI 
command 

format 
conventions iv 
debugger 2-3 

line, DEBUG 2-1 
summary 

breakpoint 5-1 
Debugger C-l 
symbols 6-1 
switches, DEBUG 2-1 

commands 
debugger 2-3 
FED 10-If 
general use 2-6ff 
illegal 2-4 

comment command 2-10 
conditional breakpoints 5-4f 

relational operators 7-6 
console v 

differences 1-3 
contacting Data General v 
conventions iv 

command formats iv 
correcting typing errors 2-3 
counter 

location 3-3f 
program 3-3f 

CTRL iv 
CTRL-D 2-5 
CTRL-U 2-3 

D command 5-4 

D 

data entries and breakpoints 5-2 
Data General, contacting v 
DEBUG 

operating procedures 2-1 ff 

opera tors 7 -3 ff 
prompt 2-2 

debugger 
commands 2-3 

summary C-l 
entering 2-1 ff 
expressions 7-1 ff 
leaving 2-5 
registers 4-9ff, 4-1 

global display mode 4-10f 
proceed count 4-12 
radix 4-10 
ring 4-12f 

symbolic displays 6-8ff 
terminating 2-5 

debugging 1-1 
16-bit programs 9-If 

accumulators 9-1 
overlays 9-2 
stack 9-1 
symbolic displays 9-1 

debugging session 
aborting 3-11 
saving 2-6ff 

defining temporary symbols 6-3 
DEL (delete) key 2-3 
deleting 

breakpoints 5-4 
temporary symbols 6-4f 

depositing an address 3-3 
disabling symbol table 6-2 
disk file editor see FED 
display 

accumulators 4-4f 
carry bit 4-4f 

display mode 
AOS/VS error message 8-9, 4-11,8-1 
ASCII 8-6, 4-11, 8-1 
byte-pointer 8-5f, 4-11, 8-1 
floating point 8-7f, 4-1, 4-11, 8-1 
global 6-1 
half-word 8-5, 4-11, 8-1 
instruction 8-3, 4-11, 8-1 
numeric words 8-2, 4-11, 8-1 
register 8-17 
symbolic 8-4f, 4-11, 8-1 
system call 8-8f, 4-11, 8-1 
values 4-11 

display modes 3-7f 
commands 

global8-9f 
local8-9f 

setting 8-9f 
display stack registers 4-8 
displaying 

breakpoints 5-3 
memory 3-1 Off, 3-1 

contents, symbolic mode 6-10 
registers, symbolic mode 6-10 
temporary symbols 6-4 

Index-2 Licensed Material-Property of Data General Corporation 093-000246 



displays, debugger symbolic 6-8ff 
double precision floating point numbers 7-12f 

E 

E command 4-8 
enabling symbol table 6-2 
end-of-file indicator 2-5 
entering comments in log file 2-10 
entering debugger 

from CLI 2-1 f 
from program 2-2f 

modifying memory 2-2 
setting breakpoints 2-2 

entering symbolic addresses 6-7f 
entering symbols 6-7f 

error 
messages, AOSjVS A-I 
responses 2-4 

errors 
command or expression 2-3 
correcting typing 2-3 

examine 
accumulators 4-4f 
carry bit 4-4f 
memory locations 3-4ff, 3-1 

executable instructions, breakpoints 5-2 
expressions 

debugger 7 -1 ff 
operands 7 -1 f 
special 7-11 ff 

assembly language instructions 7-1 Iff 
floating point numbers 7-1 Iff 

syntax 7-1 

F 

F command 4-6 
FED 10-Iff, 1-2,4-13 

AOS jVS system files 10-6 
commands 10-1 f 
operating procedures 10-3ff 
program and user data files 10-4f 

file editor see FED 
file$X command 6-2 
file, symbol table 2-2 
floating point 

accumulators 4-6f 
display mode 8-7f, 3-8, 4-11, 8-1 

checking value 7-14 
numbers 7-12f 

double precision 7 -12f 
restrictions 7-13 
single precision 7 -12f 

status register 4-6f 
FPAC see floating point accumulators 
FPSR see floating point status register 
frame 

limit 4-8 

pointer 4-8 
function keys 8-9ff, 1-3 

keyboards with 8-11 ff 
global display commands 8-14 
local display commands 8-12f 

keyboards without function keys 8-14ff 
global display commands 8-16 
local display commands 8-14ff 

G 

G command 4-13 
general use commands 2-6ff 
generate a CLI process 2-11 
global display 

commands 
keyboards with function keys 8-14 
keyboards without function keys 8-16 

mode 8-9f, 6-1 
register 8-17, 4-1 Of 

symbols 1-2 

H command 2-6f 
half-word 

H 

compression operator 7-9f 
display mode 8-5, 3-7,4-11, 8-1 

handling routine, system call 8-8 
help 2-6f 

I command 6-5 
I j 0 channels 2-1 
illegal integer operands 7-2 
indirect opera tors 7- 7, 6-5 

# 7-7 
@7-7 

instruction display mode 8-3, 3-8, 4-11, 8-1 
instructions, displaying memory 3-13f 
integers 

operands 7 -1 f 
format 7-2 
illegal 7-2 

J command 6-4 

keyboards 1-3, v 

K 

with function k(~ys 8-11 ff 
global display commands 8-14 
local display commands 8-12f 

without function keys 8-14ff 
global display commands 8-16 
local display commands 8-14ff 

keyword$H command 2-6 

093-000246 Licensed Material-Property of Data General Corporation Index-3 



L 

L command 4-9 
leaving the debugger 2-5 
legal entries, modifying memory locations 3-9f 
local display commands 

keyboards with function keys 8-12f 
keyboards without function keys 8-14f 

local display mode 8-9f 
location counter 3-3f 
log file 2-8ff, 1-2 

closing 2-8f 
entering comments 2-10 
opening 2-8f 

logical operators 7-5f 
loop 5-5, 5-8 

M 

machine state registers 4-4ff, 1-1, 4-1 
accumulators 4-4f 

floating point 4-6f 
carry bit 4-4f 
floating point status register 4-6f 
process status 4-5 

macros, predefined 8-8 
mathematical operators 7-4 
memory 3-2f, 1-1 

access methods 3-1 ff 
AOS/VS addresses 3-2 
displaying instructions 3-13f 
locations 

close 2-3 
modifying, legal entries 3-9f 
open 2-3 

reference instruction 7-14 
searches, relational operators 7-6 
ring 3-2 

field operator 3-3 
register 3-2f 

messages, error A-I 
modes, display 1-2 
modified instructions and breakpoints 5-2 
modify memory locations 3-8ff, 3-1 

legal entries 3-9f 
permanent 3-10 

MRI see memory reference instruction 
multiword instructions and breakpoints 5-2 

N command 4-10 
numeric 

N 

display mode 8-2f, 3-7, 4-11, 8-1 
offset 6-8ff 
words display mode 8-2, 4-11, 8-1 

o 

offset, numeric 6-8ff 
open location 3-4 

close 3-4ff 
modify 3-8ff, 3-4 
program counter 4-9 

opening log file 2-8f 
operands 7 -1 f 

character 7-8 
integer 7-If 

format 7-2 
illegal 7-2 

symbols 7-If 
operating procedures, FED 10-3ff 
operations, mathematical 7-4 
operator precedence, debugger 7-10 

priority 7-10 
operators 1-2 

arithmetic 7-4 
ASCII character 7-8f 
binary 7-4 
DEBUG 7-3ff 
debugger, precedence 7-10 
half-word compression 7-9ff 
indirect 3-14f, 3-3, 7-7 
logical7-5f 
relational 7-6f, 3-14, 5-5 
ring field 7-1 Of, 3-3 
unary 7-4 

output radix 4-10 
overlays (l6-bit programs) 9-2 
OVK bit 4-5 
OVR bit 4-5 

P command 5-8 
patch 10-6 

p 

PC see program counter 
permanent memory modifications 3-10 
preamble 10-5 

program file 10-5 
user data file 10-5 

precedence, debugger operators 7-10 
predefined macros 8-8 
proceed count 5-5ff, 4-12 

registers 4-12 
breakpoints 5-3 
values 5-6 

modify 5-6f 
process status register 4-5f 
profile, user 2-1 
program 

counter 3-3f 
debugging 16-bit 9-1 f 

Index-4 Licensed Material-Property of Data General Corporation 093-000246 



accumulators 9-1 
overlays 9-2 
stack 9-1 
symbolic displays 9-1 

execution, starting 2-5 
file 10-4f 

addressing preamble 10-5 
permanent modifications 3-10 

restarts 5-lff, 5-7ff 
breakpoint 5-7f 
location 5-7f 

symbol recognition 6-1 f 
traps 5-8 

prompt, DEBUG 2-1 
PSR see process status register 
pushing to the eLI 2-11 

Q 

Q command 5-7 

R 

R command 5-9 
radix register 4-10 
register 

command summary 4-2 
global display mode 8-17 

registers 
accessing 4-1 ff 
debugger 4-9ff, 4-1 
machine state 4-4ff, 1-1, 4-1 
stack 4-8 

relational expression 3-14f 
relational operators 7 -6f, 3-14f, 5-5 

conditional breakpoints 7-6 
memory searches 7-6 

responses, error 2-4 
restarting program 

breakpoint 5-7f 
location 5-7f 

ring 
field operator 7-10f, 3-3 
register 3-2f, 4-12f 
value 4-12f, 6-6ff, 7-10 

truncating 7-10 
rings, memory 3-2 
RUBOUT key 2-3 

s 

S command 3-10f 
saving the debugging session 2-6ff 
searching memory 3-10ff, 3-1 
setting 

breakpoints 5-2 
display modes 8-9f 

shared memory locations 3-10 
single precision floating point numbers 7 -12f 
16-bit programs 1-2 

debugging 9-1 f 
accumulators 9-1 
overlays 9-2 
stack 9-1 
symbolic displays 9-1 

size field 3-13 
special debugger symbols 6-5f, 6-1 

location counter 6-5f 
machine state registers 6-5f 

special expressions 
assembly language instructions 7-11 f 
floating point. numbers 7-1lf 

stack 
base 4-8 
pointer 4-8 
registers 4-8 

frame limit 4-8 
stack base 4-8 
stack pointer 4-8 

starting program execution 2-5 
switch, jDEBUG 2-2 
switches, program 2-1 
symbol 

command summary 6-1 
recognition and definition 6-1 ff 
table 6-1ff 

file 2-2 
breakpoints 5-3 
disabling 6-2 
enabling 6-2 

value, checking 6-6 
symbol,value$I command 6-3 
symbolic 

addresses, entering 6-7f 
display mode 8-4f, 4-1, 4-11, 8-1 
displays, debugger 6-8ff 
mode 

symbols 

displaying memory contents 6-10 
displaying registers 6-10 

address 6-6f 
entering 6-7f 
operands 7-1 f 
program defined 6-1 
special debugger 6-5f, 6-1 
temporary 6-3ff, 6-1 

defining 6-3 
deleting 6-4f 
displaying 6-4 

syntax, expression 7-1 
SYSID.16.SR 8-8 
SYSID.32.SR 8-8 
system call 

display mode 8-ff, 4-11, 8-1 
handling routine 8-8 

093-000246 Licensed Material-Property of Data General Corporation Index-5 



T v 

V command 4-5 T command 4-11 
TABiv values, display mode 4-11 
temporary symbols 6-3ff 

deleting 6-4f 
terminating the debugger 2-5 
traps, program 5-8 
typing errors, correcting 2-3 

u 

U? (error response) 2-4 
unary operators 7-4 
user 

data file 10-4f 
addressing preamble 10-5 

W command 4-1 

X command 6-2 

y command 2-9 

profile 2-1 Z command 2-5 

I n de x -6 Llcenaed Material-Property of Data General Corporation 

w 

x 

y 

z 

093-000248 







t. Data General 
TIPS ORDER FORM 

Technical Information & Publications Service 
BILL TO: SHIP TO: (if different) 

COMPANY NAME COMPANY NAME 

ADDRESS ADDRESS 

CITY CITY 

STATE ZIP STATE ZIP 

ATTN: ATTN: 

QTY MODEL # DESCRIPTION UNIT LINE 
PRICE DISC 

(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL 

Tax Exempt II Sales Tax 
or Sales Tax (if applicable)' 

Shipping 

TOTAL 

METHOD OF PAYMENT --------- SHIP VIA 
o Check or money order enclosed 0 DGC will select best way (C.P.S or Postal) 

F or orders less than $100.00 
o Other: 

o Visa 0 MasterCard 
Expiration Date ___ _ 

o U .P.S. Blue Label 
o Air Freight 
o Other 

o Charge my 
Acc't No. ___ _ 

o Purchase Order Number: ________ _ 

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING. 

Person to contact about this order _____________ Phone ___ . ___ _ 

Mail Orders to: 

Data General Corporation 
Attn: Educational ServiceslTIPS F019 
4400 Computer Drive 
Westboro, MA 01580 
Tel. (617) 366-8911 ext. 4032 

Buyer's Authorized Signature 
(agrees to terms & conditions on reverse side) 

Title 

Extension 

TOTAL 
PRKE 

--

Date 

DGC Sales Representative (If Known) Badge II 

DISCOUNTS APPLY TO 
MAIL ORDERS ONLY 012-1780 



DATA GENERAL CORPORATION 
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE 

TERMS AND CONDITIONS 

Data General Corporation ("DGC") provides its Technical Infonnation and Publications Service (TIPS) solely in accordance with the following 
tenns and conditions and more specifically to the Customer signing the Educational Services TIPS Order Fonn shown on the reverse hereof 
which is accepted by DGC. 

1. PRICES 
Prices for DGC publications wiJI be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or 
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Fonn shown on the reverse hereof. Prices are 
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to 
collect or pay on the sale, license or delivery of the materials provided hereunder. 

2. PAYMENT 
Tenns are net cash on or prior to delivery except where satisfactory open account credit is established, in which case tenns are net thirty (30) 
days from date of invoice. 

3. SHIPMENT 
Shipment will be made F.O.B. Point of Origin. DGC nonnally ships either by UPS or U.S. Mail or other appropriate method depending upon 
weight, unless Customer designates a specific method and/or carrier on the Order Fonn. In any case, DGC assumes no liability with regard 
to loss, damage or delay during shipment. 

4. TERM 
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until tenninated by either party upon 
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC 
publications wiJI be governed by the tenns and conditions of this Agreement. 

5. CUSTOMER CERTIFICATION 
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject 
matter of the publication(s) ordered hereunder. 

6. DATA AND PROPRIETARY RIGHTS 
Portions of the publications and materials supplied under this Agreement are proprietary and wiJI be so marked. Customer shall abide by such 
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details 
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the tenns and 
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into 
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure. 

7. DISCLAIMER OF WARRANTY 
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BeT NOT LIMITED TO, WARRANTIES OF MERCHANT
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER. 

8. LIMITATIONS OF LIABILITY 
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN 
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS. 

9. GENERAL 
A valid contract binding upon DGC wiJI come into being only at the time of DGC's acceptance of the referenced Educational Services Order 
Fonn. Such contract is governed by the Jaws of the Commonwealth of Massachusetts. Such contract is not assignable. These tenns and con
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written 
communications, agreements and understandings. These tenns and conditions shall prevail notwithstanding any different, conflicting or addi
tional tenns and conditions which may appear on any order submitted by Customer. 

DISCOUNT SCHEDULES 

DISCOUNTS APPLY TO MAIL ORDERS ONLY. 

LINE ITEM DISCOUNT 

5-14 manuals of the same part number - 20% 
15 or more manuals of the same part number - 30% 

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY. 



t. DataGeneral 

TIPS ORDERING PROCEDURE: 

Technical literature may be ordered through the Customer Education Service's Technical Information 
and Publications Service (TIPS). 

1. Turn to the TIPS Order Form. 

2. Fill in the requested information. If you need more space to list the items you are ordering, use an 
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal" 
on the form. 

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the 
back of the TIPS Order Form.) 

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.) 

If your order totals less than 100.00, enclose a certified check or money order for the total (include 
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling. 

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified, 
orders are normally shipped U.P .S. 

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order 
Form. 

7. Sign on the line provided on the form and enclose with payment. Mail to: 

TIPS 
Educational Services - M.S. F019 
Data General Corporation 
4400 Computer Drive 
Westboro, MA 01580 

8. We'll take care of the rest! 

[~) 







IIIIIIIIIIIIIIIIIIIIIII~~IIIIII~II 
Data General Corporation, Westboro, MA 01580 093-000246-01 


