

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, IN FOS,
MANAP, microNOV A, NOV A, PROXI, SUPERNOV A, ECLIPSE
MV /4000, ECLIPSE MV /6000, and ECLIPSE MV /8000 are U.S. registered
trademarks of Data General Corporation. AZ-TEXT, COMPUCALC, DG IL,
DESKTOP GENERATION, ECLIPSE MV /10000, GW /4000, GDC/IOOO,
GENAP, PRESENT, REV-UP, SWAT, TRENDVIEW, DEFINE, SLATE,
microECLIPSE, BusiPEN, BusiGEN, BusiTEXT, and XODIAC are U.S.
trademarks of Data General Corporation.

Copyright © Data General Corporation, 1982, 1984
All Rights Reserved

(J

_. Data General

AOS,
AOS/VS USER
self-study course

Licensed Material - Property of Data General

Student Orientation

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

Module 7

Module 8

Module 9

Module 10

Module 11

Appendix A

Appendix B

Addendum

Table of Contents

AOS, AOS jVS Principles

Gaining Access to the System

CLI Commands

Directories and Pa thnames

File Security

Queues

The CLI Environment

The Process Tree

Advanced CLI Concepts

The SPEED Editor

Program Development

Module Tests Answers

AOS, AOSjVS Reference Manuals

The SED Editor

Student Orientation

Course Description

This course teaches you to use your AOS or AOS/VS system. You will learn to develop
and execute programs. You will also learn to build and maintain files on the system.

Prerequisites

This course is designed for students who are familiar with data processing concepts and
who have some programming experience. Students can become familiar with data
processing concepts by attending the Introduction to Small Computers lecture course, or
by taking the Introduction to Small Computers Self-Study Course. Programming
experience can be gained by attending the Introduction to Assembly Language lecture
course. Students do not need a familiarity with Data General computers.

Course Goals

Upon successful completion of this course, you should be able to:

1. Describe the function of AOS or AOS/VS.

2. Describe the steps involved in signing on to an AOS or AOS/VS system.

3. Given a command, write an instruction in the proper format.

4. Describe the function of a directory.

5. Describe the operation of file security.

6. Describe the operation of queues in AOS or AOS/VS.

7. Write the commands needed to change the CLI environment.

8. Write the commands needed to create a subordinate process.

2 Student Orientation

Resources

9. Write commands to edit with the SPEED editor.

10. Develop and execute a program using AOS or AOS/VS.

11. Write commands using macros and pseudo-macros.

To complete this course, you will need:

• AOS, AOS/VS User Student Guide.

• Audiotapes for 11 modules.

• Audiotape playback unit.

• Optional resource: Access to a functioning AOS or AOS/VS system.

Related Publications
Appendix B of this Student Guide lists the Data General reference manuals that contain
additional information about AOS and AOS/VS.

Course Organization

This course is completely self-contained and is arranged in a modular, self-paced format.
You can progress through the course at your own pace and in your own setting. The
course contains 11 modules, each of which covers a specific topic or theme. Most
modules consist of two parts:

1. An audiocassette tape.

2. A section of text, figures, and exercises contained in this Student Guide.

When you are instructed, listen to the audiotape as you follow along in the Student
Guide. The Student Guide highlights the audiotaped lectures.

At the beginning of each module of the Student Guide, there is a list of Module
Objectives that tell you exactly what you should learn in the module. You can evaluate
your performance of these Module Objectives by completing the exercises and Module
Test contained in each module. Answers are provided in Appendix A of this StudentGuide
so that you can score your own test to see how well you do. If you successfully complete
the material, then you may continue with the next module; otherwise, you should restudy
the module material before proceeding.

In addition, most modules contain Lab Activities that allow you to practice the module's
Module Objectives. If you have a computer running AOS or AOS/VS available for your
own use, then it is recommended that you do the Lab Activities using the computer.
However, this is not required; the Lab Activities are designed so that you can do them
without a computer.

On the next page is a Course Map. It illustrates the order in which you should progress
through the course. As you can see, the modules should be studied consecutively as they
appear in the Student Guide.

,..---
{

Student Orientation 3

Course Map

STUDENT ORIENT A TION

l
MODULE 1

AOS. AOS / VS PRINCIPLES

l
MODULE 2

GAINING ACCESS
TO THE SYSTEM

l
MODULE 3

Cli COMMANDS

~
MODULE 4

DIRECTORIES AND PATHNAMES

~
MODULE 5

FILE SECURITY

~
MODULE 6

QUEUES

t
MODULE 7

THE Cli ENVIRONMENT

t
MODULE 8

THE PROCESS TREE

l
MODULE 9

ADVANCED Cli CONCEPTS

!
MODULE 10

THE SPEED EDITOR

~
MODULE 11

PROGRAM DEVElOPMENT

C":,'-0/693

Figure 1 Course Map

4 Student Orientation

Course Duration

This is a self-paced instruction course. Work at your own pace; there is no specific
completion time for this course. However, with diligent attention to the instructional
materials, an average completion time is three to five working days.

Typesetting Conventions

This course uses the following typesetting format to illustrate the various AOS and
AOS /VS system procedures:

THIS TYPEFACE TO SHOW YOUR ENTRY

THIS TYPEFACE TO SHOW SYSTEM RESPONSES

This concludes the Student Orientation. Continue to Module 1.

Module 1

AOS, AOS/VS Principles

Introduction

This module introduces you to the AOS and AOS jVS operating systems. It teaches the
purpose and function of these operating systems. In addition, it introduces the Command
Line Interpreter (CLI).

Module Objectives

Upon successful completion of this module, you should be able to:

1. Identify the function of the AOS and AOSjVS operating systems.

2. Define the Command Line Interpreter (CLI).

Resources

To complete this module, you will need:

• Module 1 audiotape.

• Module 1 of your Student Guide.

• Audiotape playback unit.

1-2 AOS, AOS/VS Principles

Module Outline

Module 1 discusses the following topics:

1. Purpose of AOS and AOS/VS

2. Function and features of AOS and AOS/VS

3. The eLI and its purpose

Now start the Module 1 audiotape. As you listen, follow along in Module 1 of your
Student Guide.

AOS, AOS/VS Principles 1-3

AOS and AOSjVS

U;-O/694

Both AOS (Advanced Operating System) and AOS/VS (Advanced Operating System/
Virtual Storage) are general-purpose, disc-based operating systems. These systems can
be used as time-sharing, batch, or real-time control systems.

AOS and AOS/VS control and monitor processing on the computer system. They are
multiprogramming systems, running more than one program at a time. Each program
shares the resources of the computer with other users.

A user of the system's resources is called a process. AOS can have up to 64 processes
running simultaneously; AOS/VS can have up to 255 simultaneous processes.

AOS and AOS/VS manage the resources of the computer system. The operating
system:

• Controls input and output requests.

• Controls file processing.

• Acts as a program controller.

The resources managed by the operating system are the:

• Processor. Users share the Central Processing Unit (CPU).

• Memory. Memory is shared by swapping processes to disc.

• Files of information. The operating system supports four types of files.

• Devices. The operating system keeps track of device characteristics.

FIXED I DATA II DATA I I DATA II DATA II DATA I

VARIABLE

DYNAMIC

DATA
SENSITIVE

'--S_IZ_E---' ___ D_A_T_A __ II SIZE I DATA I
DATA I r:::::l (NUMBER OF
~ BYTES SPECIFIED

'--------' WITH EACH

TRANSFER)

Figure 1. 1 The Four Types of Data Records

1-4 AOS, AOS/VS Principles

DIGITAL
PLOTTERS

CONSOLE
TELETYPEWRITERS

OR DISPLAYS

CARD
READERS

CS-OI695

LINE
PRINTER~

MOVING-HEAD
DISCS

DISKETTES

FIXED-HEAD
DISCS

MAGNETIC TAPE
TRANSPORTS

UNIT-

DCU/50
DATA

MULTIPLE
SYNCHRONOUS

LINES

MULTIPLE
ASYNCHRONOUS

LINES

PAPER TAPE
----~~--- READERS/PUNCHES

MUL TIPROCESSOR
COMMUNICATIONS

ADAPTERS
- DCU / 50 IS OPTIONAL WITH

COMMUNICATION LINES.

Figure 1.2 Types of Peripheral Devices

,...-...,
{

AOS. AOS/VS Principles 1-5

The Command Line Interpreter (CLI)

The Command Line Interpreter, or CLI, is the user's primary interface with the operating
system. Through the eLI, you can execute programs, control peripheral devices, and set
and display system variables. There are over 90 commands available through the eLI.

To ensure system security, each user has distinct privileges that are established by the
system manager. In addition, users can protect their own files from unauthorized use by
determining who can have access to their files.

Now take the Module 1 Test on the next page.

1-6 AOS, AOS/VS Principles

Module 1
Test

Directions: Answer the following questions by completing the sentence.

1. One function of the operating system is:

a. Managing the resources of the computer system.

b. Controlling the writing of computer programs.

c. Limiting the control of the computer user.

2. The Command Line Interpreter (CLI) is:

a. An operating system.

b. A user process.

c. An interface between the operating system and the user.

d. Dedicated to a specific user.

3. A process is:

a. Just another name for a program.

b. A set of procedures.

c. A user of system resources.

d. A Data General buzzword.

Now check your answers to the Module 1 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 2. Otherwise, go back and review the
material in Module 1 and take the Module 1 Test again.

This concludes Module 1.

Module 2

Gaining Access to the System

Introduction

This module introduces the procedure for gaining access to your AOS or AOS/VS
system. It explains the procedures for logging on and methods for controlling your
console. Finally, it teaches some basic CLI commands and the correct way to log off the
system.

Module Objectives

Upon successful completion of this module, you should be able to:

1. Identify the functions of console control characters.

2. State the procedures for logging on and off the system.

3. Write the CLI commands to display the date, time, and your process ID.

4. Identify the correct procedure for changing your password.

Resources

To complete this module, you will need:

• Module 2 audiotape.

• Module 2 of your Student Guide.

• Audiotape playback unit.

2-2 Gaining Access to the System

Module Outline

Module 2 discusses the following topics:

1. Logging on
a. Username
h. Password

2. Console control
a. Control characters
h. Control sequence

3. CLI commands
a. DATE
h. TIME
c. WHO
d.BYE

Now start the Module 2 audiotape. As you listen, follow along in Module 2 of your
Student Guide.

~

Gaining Access to the System 2-3

Logging On

To communicate with the system, you must first tell the system who you are. You are
identified by a user profile. This profile is established by your system manager. Your
user profile includes:

• Username

• Password

• Privileges
Access to disc space
Priority of execution
Ability to create additional processes

• Initial program
eLI
Basic Interpreter
A text editor

Figures 2.1 through 2.6 illustrate the steps of the log-on procedure. The position of the
cursor is indicated by the white box on the screen.

Figure 2.1 Initial Log-on Message

2-4 Gaining Access to the System

Figure 2.2 EXEC Requests Your UsernCime.

Figure 2.3 EXEC Requests Your Password.

Gaining Access to the System 2-5

AOS EXEC REV 00.00 10-SEP-81 12:39:33 @CON10
USERNAME:MYNAME1
PASSWORD:
INVALID USERNAME-PASSWORD PAIR
USERNAME:MYNAME1
PASSWORD:
INVALID USERNAME-PASSWORD PAIR
USERNAME:MYNAME1
PASSWORD:
INVALID USERNAME-PASSWORD PAIR
USERNAME:MYNAME1
PASSWORD:
INVALID USERNAME-PASSWORD PAIR
USERNAME:MYNAME1
PASSWORD:
INVALID USERNAME-PASSWORD PAIR
TOO MANY ATTEMPTS, CONSOLE LOCKING FOR 10 SECONDS
I

Figure 2.4 Invalid Username-Password Pair

Figure 2.5 Enter CTRL-L at the End of Your Old Password.

2-6 Gaining Access to the System

Valid password characters are:

A-Z
0-9
_ (underscore)
. (period)
? (question mark)
$ (dollar sign)

Also, upper-case characters and lower-case characters are equivalent.

Figure 2.6 A Sample System Message

Review of the log-on procedure:

1 ~ Press NEW LINE.

2. Enter your username; press NEW LINE.

3. Enter your password; press NEW LINE.

Now do Exercise 2-1 on the next page.

Gaining Access to the System 2-7

Exercise 2-1

Directions: Answer the following questions by completing the sentences.

1. The steps in the log-on procedure are:

a. ____________________ _

b. ______________ _

c. ____________________ _

2. The program that starts to run when you log on is the _________ _

3. The name that identifies you to the system is your _____ _

4. You have a(n) to prevent unauthorized use of your log-on privileges.

Now check your answers on the next page.

2-8 Gaining Access to the System

Exercise 2-1
Answers

1. a. Press NEW LINE.
b. Enter your username; press NEW LINE.
c. Enter your password; press NEW LINE.

2. Initial program

3. Username

4. Password

If you answered all the questions correctly, continue with Module 2 by restarting the
Module 2 audiotape. Otherwise; review the material and do this exercise again before
you continue.

""..-..

Gaining Access to the System 2-9

Console Control

Control Characters

The delete key, or DEL, removes characters that precede the cursor. (This key may also
be labeled RUBOUT.)

To enter control characters, hold down the CTRL key and press the appropriate character.
Control characters work only on video terminals, not on printer terminals.

Control Result
Character

CTRL-L Clears the display screen.

CTRL-S Stops the scrolling display of information.

CTRL-Q Restarts the scrolling display of information.

CTRL-O Cancels the display of information.

CTRL-A Recalls previous command line.

CTRL-E Inserts characters into command line.

CTRL-U Deletes command line.

Table 2.A Control Characters

The CTRL-A character recalls the last CLI command line, allowing you to modify only
those characters that you wish to change.

Example
Q PRINT FILE 1

(CTRL-A)
QPRINT FILE2A

(CTRL-A)
QPRINT FILE2B

Control Sequences

Control sequences consist of two control characters that are entered as a pair, one after
the other.

Control Sequence Result

CTRL-C, CTRL-A Cancels current CLI command.

CTRL-C, CTRL-B Cancels current process and returns to creating process.

Table 2.B Control Sequences

Use control characters and control sequences as you do the Lab Activities in this course.

2-10 Gaining Access to the System

,,---..

Gaining Access to the System 2-11

Exercise 2-2

Directions: Name the control character that performs the stated function.

1. Stops display upon the terminal.

2. Clears the display.

3. Repeats the previous CLI command.

4. Restarts the display of information.

5. Erases the current command line.

6. Cancels the display of information.

7. Inserts a character.

Directions: Name the control sequence or key that performs the stated function.

8. Cancels only the effects of the current CLI command. ___ _

9. Cancels the current process. ___ _

10. Removes the character that precedes the cursor. ___ _

Now check your answers on the following page.

2-12 Gaining Access to the System

Exercise 2-2
Answers

1.

2.

3.

4.

5.

6.

7.

CTRL-S

CTRL-L

CTRL-A

CTRL-Q

CTRL-U

CTRL-O

CTRL-E

8. CTRL-C, CTRL-A

9. CTRL-C, CTRL-B

10. The delete key (DEL or RUBOUT)

If you answered all the questions correctly, continue with Module 2 by restarting the
Module 2 audiotape. Otherwise, review the material and do this exercise again before
continuing.

-

Gaining Access to the System 2-13

CLI Commands

Command Result

DATE Returns the system date (DAY:MONTH:YEAR).

TIME Returns the system time (HOURS:MINUTES:SECONDS).

WHO Returns the process identification.

BYE Logs you off the system correctly.

Table 2.C Four Basic CLI Commands

Figure 2.7 The DATE. TIME. and WHO Commands

2-14 Gaining Access to the System

Figure 2.8 The BYE Command for Logging· Off

Gaining Access to the System 2-15

Lab Activity 2-1

Complete this Lab Activity if you do not have access to a computer system, or if you
want some practice before logging on to a working system.

Directions: After viewing the screen, correctly complete the sentence.

1. When you see the screen in Figure 2.9, you ______________ _

Figure 2.9

2. When you see the screen in Figure 2.10, you __________ _

Figure 2.10

2-16 Gaining Access to the System

3. When you see the screen in Figure 2.11, you _________ _

Figure 2.11

4. The screen in Figure 2.12 is displayed if you ___________ _

Figure 2.12

Gaining Access to the System 2-17

5. You would enter CTRL-L at the end of the old password (as shown in Figure 2.13) if
you wanted to _____________ _

Figure 2.13

6. Does the message in Figure 2.14 appear on every screen? ___ _

AOS EXEC REV 00.00 1-JAN-82 12:39:33
USERNAME:MYNAME
PASSWORD:

LAST MESSAGE CHANGE 1-JAN-82 08:23:31
SYSTEM NEWS

NEW COBOL COMPILER INSTALLED
PICK UP YOUR NEW MANUAL

SYSTEM WILL BE UP ALL WEEKEND

LAST PREVIOUS lOGON 31-DEC-81 14:45:21

AOS ell REV 12.34 1-JAN-82 17:12:19
)1

Figure 2.14

@CON10

2-18 Gaining Access to the System

7. Name the eLI command to:

a. Determine today's date. ___ -.:.... _____ _

b. Determine your process ID. ________ _

c. Determine the time of day. ___________ _

d. Terminate your terminal session. _________ _

N ow check your answers on the next page.

Lab Activity 2-1
Answers

1. Press NEW LINE.

2. Enter your username.

3. Enter your password (you will not see it displayed).

4. Incorrectly enter your username or password.

5. Change your password.

Gaining Access to the System 2-19

6. No. This is a local message generated by the operator.

7. a. DATE
b. WHO
c. TIME
d. BYE

If you answered all the questions correctly, continue to Lab Activity 2-2. Otherwise,
review the material and do Lab Activity 2-1 again before you continue.

2-20 Gaining Access to the System

Gaining Access to the System 2-21

Lab Activity 2-2

Directions: To receive the maximum benefit from this activity, you should complete it at
a functioning AOS or AOSjVS system. If one is not available, write the appropriate
responses. When you finish, check your answers on the following page. Before beginning
this Lab Activity, obtain a username and profile from your system manager. Be sure
that your initial program is the CLI. As you do this and subsequent Lab Activities, you
may wish to use some of the control characters listed in Table 2.A.

1. Find a terminal displaying the appropriate message to begin logging on, or turn on a
terminal.

2. Press the correct key to begin logging on.

3. Enter your username and password.

4. Determine if you have successfully logged on. (You should see the CLI prompt.)

5. Display today's date.

6. Determine your process 10.

7. Determine the time of day. (Do not use your watch!)

8. Log off the system.

N ow check your answers on the next page.

2-22 Gaining Access to the System

Lab Activity 2-2
Answers

1. The terminal displays this message if it is on:
** TYPE NEW LINE TO BEGIN LOGGING ON **

2. Press NEW LINE or the return key to begin logging on.

3. Enter the username and password assigned by your system manager. Press the new-line
key after entering each one. For example:
USERNAME : JONES
PASSWORD: (Here enter your password. It does not show on the screen.)

4. If you have successfully logged on, you will see a message that tells you the AOS eLI
revision, date, and time. For example:
AOS CLI REV 12.34 1-JAN-82 10:11:12

5. Enter the eLI command DATE. A sample response is:
1-JAN-82

6. Enter the eLI command WHO. A sample response is:
PIO 27 USER1 CON22 :CLI .PR

7. Enter the eLI command TIME. A sample response is:
10:11:12

8. Enter the eLI command BYE. A sample response is:
AOS CLI TERMINATING 1-JAN-82 10:11:12

If you successfully completed Lab Activity 2-2, go on to the Module 2 Test. If you had
difficulty, review the material and do this Lab Activity again before you continue.

Module 2
Test

Gaining Access to the System 2-23

1. Select the correct procedure to change your password.

a. Enter username, followed by NEW LINE.
Enter old password, followed by CTRL-G.
Enter new password, followed by NEW LINE.

b. Enter username, followed by NEW LINE.
Enter old password, followed by CTRL-L.
Enter new password, followed by NEW LINE.

c. Enter username, followed by NEW LINE.
Enter new password, followed by CTRL-L.

d. Enter username, followed by NEW LINE.
Enter old password, followed by NEW LINE.
Enter new password, followed by CTRL-L.

Directions: Match the control characters with the appropriate result.

2. CTRL-L a. Restarts the display of information.

3. _ CTRL-E b. Erases the current command line.

4. CTRL-S c. Clears the display.

5. CTRL-Q d. Stops the display of additional information.

6. CTRL-U e. Cancels the display of additional information.

7. CTRL-A f. Inserts characters.

8. CTRL-O g. Repeats previous command.

Directions: Complete the following sentences:

9. The control sequence to cancel a CLI command is:

a. CTRL-C, CTRL-B

b. CTRL-C, CTRL-F

c. CTRL-C, CTRL-A

10. The control sequence to cancel a process and return to the creating process is:

a. CTRL-C, CTRL-B

b. CTRL-C, CTRL-F

c. CTRL-C, CTRL-A

2-24 Gaining Access to the System

11. The eLI command that displays the system date is ________ _

12. The eLI command that displays the system time is ________ _

13. The eLI command that displays your process ID is ________ _

14. The eLI command that logs you off the system is ________ _

15. The steps of the log-on procedure are:
a. ___________________ _

b. _________________ _

c. __________________ _

Now check your answers to the Module 2 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 3. Otherwise, go back and review the
material in Module 2 and take the Module 2 Test again.

This concludes Module 2.

.~.

Module 3

CLI Commands

Introduction

This module introduces the CLI command format. In Module 2, you learned to use
simple CLI commands. In this module you will learn to use some more complex
commands and see the general structure of CLI commands.

Module Objectives

Resources

Upon successful completion of this module, you should be able to:

1. Identify the elements of a CLI command line.

2. Determine if a CLI command line is correctly coded.

3. Determine if a filename is correct or incorrect.

4. Use coding aids to combine several command lines into one.

5. Write the following eLI commands:
HELP
CREATE
TYPE
DELETE
COpy
RENAME

To complete this module, you will need:

• Module 3 audiotape.

• Module 3 of your Student Guide.

• Audiotape playback unit.

,/

3-2 CLI Commands

Module Outline

Module 3 discusses the following topics:

1. Coding a CLI command line
a. Switches
b. Arguments

2. Files and filenames

3. CLI commands
a. HELP
b. CREATE

4. More CLI commands
a. COpy
b. DELETE
c. RENAME
d. TYPE

5. Coding aids
a. Multiple-command line
b. Multiple-line commands
c. Parentheses
d. Brackets

Now start the Module 3 audiotape. As you listen, follow along in Module 3 of your
Student Guide.

-,-

CLI Commands 3-3

Coding a CLI Command Line

The format of a CLI command line is:

COMMANDl/SWITCHl ... /SWITCHX),[ARGUMENTl ,ARGUMENTX)

The command identifies the operation that you want to perform.
The switch modifies the function of the command.
The argument is the filename, pathname, or device that the command affects.

Commands and switches can be abbreviated. Use any number of characters that uniquely
identifies the command or switch.

For the TIME command:

T Not unique
TI Acceptable
TIM Acceptable
TIME Acceptable

For the TYPE command:

T Not unique
TY Acceptable
TYP Acceptable
TYPE Acceptable

The rules for command abbreviations also apply to switches.

Possible variations of the ISORT switch:

IS
ISO
ISOR
ISORT

If you use a command abbreviation that is too short, you receive the message
COMMAND ABBREVIATION NOT UNIQUE. If you use a switch abbreviation that is too short, you
receive the message ARGUMENT IS NOT A UNIQUE ABBREVIATION.

A switch is a slash (I), followed by a word, number, or expression. Switches modify the
default action of a CLI command. The order of switches is not important.

3-4 CLI Commands

Command Switch Effect
'"

TIME/L /L Sends output to the current listfile. (1)
Simple switch

TIME/L = FILENAME /L = FILENAME Sends output to the file specified by filename. (2)
Keyword switch

TIME None Sends output to your console. (3)

Table 3.A The TIME Command

TERMINAL ~

~
KEYBOARD

DISC FILE

CS-OI696

Figure 3.1 TIME Going to the Printer, Disc File, and Console

CLI Commands 3-5

(:ommand Switches

There are five common switches that can be used with most CLI commands. These are:

• II =
• 12=
• IL
• IL=PATHNAME
• IQ

The switches II = and 12= pertain to error handling. Invalid commands cause errors
(exceptional conditions). There are two classes of errors. Class 1 errors are severe; class
2 errors are less serious.

The system can take four possible actions in response to an error. These actions are
described in Table 3.B.

Setting Result

IGNORE No effect. The exception is ignored and processing
continues.

WARNING (Default class 2) A warning message is displayed and processing
continues.

ERROR (Default class 1) Execution of the current command stops. A message
is displayed and CLI prompts for a new command.

ABORT Return to creating process. If you are in CLI, you will
be logged off the system.

Table 3.B Four Error Actions

• IL Writes the CLI output of the current command to the listfile, which is usually
the line printer.

• IL= Writes the CLI output of the current command to the file specified by the
pathname.

• IQ Compresses the output of the CLI command by reducing spaces and tabs to
single spaces by turning SQUEEZE on.

3-6 CLI Commands

Delimiters

Example: Output without SQUEEZE
DIRECTORY :UDD:FLUFF:MORT

-FLUFF.TMP TXT 11-FEB-82 13:39:58
-FLUFF. TUBE TXT 11-FEB-82 13:40:02
MORT.FR UDF 20-MAR-81 11:15:50
TEMP TXT 11-FEB-82 13:41:06
MOUT TXT 10-FEB-82 16:24:06
TEMP.BU TXT 11-FEB-82 13:39:46
MORTIN UDF 10-FEB-82 16:26:10
MORT.PR PRG 25-SEP-80 11:11:50
PRCMORT UDF 10-FEB-82 16:21:38

Example: Same output with SQUEEZE
DIRECTORY :UDD:FLUFF:MORT

-FLUFF.TMP TXT 11-FEB-82 13:39:580
-FLUFF. TUBE TXT 11-FEB-82 13:40:026
MORT.FR UDF 20-MAR-81 11:15:50 1096
TEMP TXT 11-FEB-82 13:41:06 0
MOUT TXT 10-FEB-82 16:24:06 3579
TEMP.BU TXT 11-FEB-82 13:39:46 195
MORTIN UDF 10-FEB-82 16:26:10 18
MORT.PR PRG 25-SEP-80 11:11:5065536
PRCMORT UDF 10-FEB-82 16:21:38 61

o
6

1096
o

3579
195

18
65536

61

A command and each of its arguments must be separated by a delimiter. Delimiters are:

• Space or spaces

• Tabs
• Commas

Example
These commands are equivalent:

TYPE FILEt (single space)

TYPE,FILEt (comma)

TYPE FILEt (tab)

Terminators

CLI Commands 3-7

A correctly coded CLI command line must be terminated. Valid terminators are:

• NEW LINE

• Carriage return

• Form-feed (CTRL-L)

• End of file (CTRL-D)

Example
These commands are equivalent:

TIME (NEW LINE)
TIME (carriage return)
TIME (form-feed)
TIME (end of file)

Now do Exercise 3-1 on the next page.

3-8 CLI Commands

CLI Commands 3-9

Exercise 3-1

Directions: In items 1 through 4, match the terms with the elements of the command line.

TYPE/L,FILEt

+ + + +
1 234

1. __ Delimiter

2. __ Command

3. __ Argument

4. __ Switch

Directions: Indicate by writing a C for correct and an I for incorrect which of the
following command lines are coded correctly.

5. __ TYPE /L FILEt

6. __ TYPE/L,FILEt

7. __ TYPE/L FILEt

8. __ TYPE/L FILEt

9. __ TYPE L,FILEt

Now check your answers on the next page.

3-10 CLI Commands

Exercise 3-1
Answers

1.3

2. 1

3.4

4.2

5. I

6. C

7. C

8. C

9. I

If you answered all the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Files and Filenames

Filenames

• Maximum of 31 characters

• Valid characters are:
A through Z (upper-case and lower-case)
o through 9

FILE 1

FILE#2

? (question mark)
. (period)
_ (underscore)
$ (dollar sign)

Invalid Reason

Invalid space

not allowed

FILE/NUMBER/THREE / not allowed

WHAT*IS*THIS? * not allowed

MONEY$_STUFFI I not allowed

Valid

FILE.1

FILE_2

FILE_NUMBER_ THREE

WHAT _IS_THIS?

MONEY$_STUFF

Table 3.C Examples of Valid and Invalid Filenames

Now do Exercise 3-2 on the next page.

ClI Commands 3-11

3-12 CLI Commands

CLI Commands 3-13

Exercise 3-2

Directions: Mark the following filenames V for valid or I for invalid.

1. __ more_information

2. __ here_is_my_favorite_file_in_the_whole_world

3. __ THIS.IS.A.goodJile

4. _ DA T A#FILE

5. __ important_stuff

6. __ I_don't_know?

7. __ PAYROLL!

8. __ 9t05

N ow check your answers on the next page.

3-14 ,CLI Commands

,Exercise 3-2
Answers

1.V

2. I (This filename contains more than 31 characters, and therefore is too long.)

3. V

4. I (# is an invalid character.)

5. V

6. I (Single quote is an invalid character.)

7. I (! is an invalid character.)

8. V

If you answered all of the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

CLI Commands 3-15

eLI Commands

HELP Command

The HELP command provides you with information about eLI commands.

Figure 3.2 Result of the HELP Command

Using the IV switch invokes the verbose option, which provides more detailed information.

Example
Enter HELP /V,HELP

~EL~ PROVIDE HELPFUL INFORMATION

~0RM~- ~ELP ITEM)

)MMAN[SWITCHES 11= 12= IL(=) IQ
. . 1,' PROVIDE MORE INFORMATION IF AVAILABLE

:~ ll=il -(PE HELP WITH NO ARGUMENTS, YOU WIll BE SHOWN A LIST OF TOPICS
;'BOUT WHICH YOU MAY ASK FOR HELP. EACH TOPIC BEGINS WITH AN ASTERISK.
'OU Milr GIVE ONE OR MORE OF THESE TOPICS AS ARGUMENTS TO A HELP COMMAND.
,OU MUST INCLUDE THE ASTERISK. ALL AOS SYSTEMS PROVIDE THE TOPICS
*COMMANDS AND *PSEUDO-MACROS. YOUR SYSTEM WILL PROBABLY HAVE OTHER
TOPICS
AS WELL

HELP *COMMANDS
WILL GIVE YOU A LIST OF ALL ClI COMMANDS. YOU CAN FIND OUT THE

ARGUMENT REQUIREMENTS OF A COMMAND AND ITS COMMAND SWITCHES BY TYPING
THE COMMAND NAME AS AN ARGUMENT TO A HELP COMMAND. IF THERE IS
ADDITIONAL
INFORMATION AVAILABLE ON YOUR SYSTEM FOR THAT COMMAND, YOU WILL BE
REMINDED
THAT YOU CAN RE-ISSUE THAT HELP COMMAND WITH THE IV COMMAND SWITCH TO SEE
THE ADDITIONAl INFORMATION .•

Figure 3.3 Result of the HELP/V, HELP Command

3-16 CLI Commands

HELP Command Summary:

• Provides information about more than the CLI.

• Contains topics of information for system users.

• Some information is provided by Data General.

• Some infor~ation is provided by users of the system.

CREATE Command

CS-Ol694

The CREATE command creates a d~ta file.

Figure 3.4 HELP Output for the CREATE Command

FIXED I DATA II DATA II DATA II DATA II DATA I
VARIABLE

DYNAMIC

DATA
SENSITIVE

~S_IZ_E ______ D_A_T_A __ II SIZE I DATA I
DATA I r::::l (NUMBER OF
~ BYTES SPECIFIED

~------ WITH EACH
TRANSFER)

Figure 3.5 Four Types of Data Records

,~""

C:REA TE Command

Example 1
CREA TEjDA T ASENSITIVE,FIRST _FILE

Example 2
CREA TEjV ARIABLE, V AR_FILE

Example 3
CREA TEjDYNAMIC,DYN_FILE

Example 4
CREATEj FIXED= 10,FIXED_FILE

Example 5
CREA TE,FILE 1

Example 6
CREA TEjI,NEWFILE
) THIS IS THE TEXT.
))

Now do Exercise 3-3 on the next page.

CLI Commands 3-1 7

3-18 CLI Commands

CLI Commands 3-19

Exercise 3-3

Directions: Write the CLI command that will:

I. Supply you with information about the DATE command.

2. Create a file called DYNAM_FILE using the dynamic record format.

3. Create a file CALLED FIX_FILE using the fixed record format. Records should be
15 characters in length. __________ _

4. Create a text file that allows you to enter data from your console. Call the file
DATA_FILE. __________ _

5. Supply you with a list of CLI commands. __________ _

Check your answers on the next page.

3-20 CLI Commands

Exercise 3-3
Answers

1. HELP DATE

2. CREATE/DYNAMIC,DYNAM-FILE

3. CREATE/FIXED = lS,FIXJ1LE

4. CREATE/I,DATLFILE

5. HELP *COMMANDS

If you answered all the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

CLI Commands 3-21

More CLI Commands

COpy Command

The COpy command creates an additional copy of one or more files.

Format: COPY,DESTINATION_FILE,SOURCE_FILE

These switches are used when the destination file already exists:

• j A Appends the contents of the source file to the destination file.

• jD Deletes the old contents of the destination file and replaces them with the
contents of the source file.

Example 1
COPY,FILEA,FILEB

Copy FILEB into FILEA. Create FILEA. Before this command was issued, FILEA did
not exist, and FILEB contained data B. After the COpy command is issued, both
FILEA and FILEB contain data B.

Example 2
COpy / A,FILEA,FILEB

Append FILEB to FILEA. Before this command was issued, FILEA contained data A,
and FILEB contained data B. After the COPY command is issued, FILEA contains
both data A and data B, and FILEB contains its original data B.

Example 3
COPY /D,FILEA,FILEB

Replace the contents of FILEA with FILEB. Before this command was issued, FILEA
contained data A, and FILEB contained data B. After the COPY command is issued,
FILEA contains data Band FILEB also contains data B. Data A, the original contents
of FILEA, has been deleted as a result of the jD switch.

----------"-,,--" "---"------_._---

3-22 CLI Commands

DELETE Command

The DELETE command deletes one or more files.

Format: DELETE,FILENAME

These switches help prevent you from accidentally deleting files:

• IC Confirm before deleting files .

• IV Verify after deleting files.

Example 1
DELETE/C,FILLONE
FILE-ONE? Y

Example 2
DELETE/C/V,FILEA,FILEB
FILEA? N
FILE NOT DELETED
FILEB? Y
FILEB DELETED

You always should use the IC and IV switches to protect your files from accidental
deletion.

N ow do Exercise 3-4 on the next page.

CLI Commands 3-23

Exercise 3-4

Directions: Write the CLI command that will:

I. Append the contents of FILEX to the contents of FILEY. ______ .

2. Replace the contents of FILEX with the contents of FILEZ. ____ _

3. Delete FILEI and FILE2, ask for confirmation before deletion, and verify the results.

4. Create FILEV and put the contents of FILEK into FILEV in one command.

Check your answers on the next page.

3-24 ClI Commands

Exercise 3-4
Answers

1. COPY/A FILEY,FILEX

2. COPY /D FILEX,FILEZ

3. DELETE/C/V FILEl,FILE2

4. COPY FILEV,FILEK

If you answered all questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

More CLI Commands (Continued)

RE:NAME Command

The RENAME command changes the name of a file.

Format: RENAME,OLD_NAME,NEW _FILE

Example

RENAME,OLD_DATA,NEW _DATA

CLI Commands 3-25

The file originally called OLD_DATA is now called NEW_DATA. There is no file
named OLD_DATA after execution of this command.

TYPE Command

The TYPE command displays a file at your console.

Format: TYPE,FILENAME

Example
CREATEjI,TESTFILE
) TEST LINE 1
) TEST LINE 2
))
TY PE, TESTFILE
TEST LINE 1
TEST LINE 2

Now do Exercise 3-5 on the next page.

3-26 CLI Commands '

,'-'

CLI Commands 3-27

Exercise 3-5

Directions: Write the CLI command that will:

1. Change the name of a file called JUNK to GOOD_STUFF. _______ _

2. Display the contents of a file called GOOD_STUFF. __________ _

Check your answers on the next page.

3-28 CLI Commands

Exercise 3-5
Answers

1. RENAME,JUNK,GOOD-STUFF

2. TYPE,GOOD-STUFF

If you answered the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do the exercise again before
you continue.

CLI Commands 3-29

<=oding Aids

Multiple-Command Line

A multiple-command line allows you to enter more than one command on a line, by
using a semicolon to separate the commands.

Example
TYPE,FILE_ONE;RENAME,FILE_ONE,NEW _FILE;TYPE,NEW _FILE

Multiple-Line Command

A multiple-line command is one command that requires more than one line. Use an
ampersand (&) to continue to the next line.

Example 1
TYPE,FILE_ONE,FILE_ TWO,SPECIALFILE_DA T A,FILE_ THREE &
&) FILE_FOUR

Example 2
TYPE,FILE.F,FILE.V &
&) FILE.X&
&) FILE.B

WRITE Command

Parentheses

The WRITE command displays its arguments on your terminal.

Example
WRITE This is an aardvark.
This is an aardvark.

"

Parentheses allow command repetition. Commands are executed as if each argument
were entered on a separate line.

Example 1
TYPE (A B C) expands to:
TYPE A
TYPED
TYPEC

Example 2
WRITE A(D C)D expands to:
WRITE ADD
WRITE A C D

At your terminal, you see:

ABO
A C 0

3-30 CLI Commands

Example 3
(TYPE DELETE) FILE-ONE expands to:

TYPE FILE-ONE
DELETE FILE-ONE

Example 4
WRITE (A B CXX Y) expands to:

WRITE AX
WRITE BY
WRITEC

At your terminal, you see:

AX
BY
C

Angle Brackets

Angle brackets allow argument expansion. In the same command line, you can have one
command with several arguments. The argument expands across the line.

Example 1
TYPE FILE<1 2 3> expands to:

TYPE FILEI FILE2 FILE3

Example 2

WRITE <A B C> < 1 2> expands to:

WRITE Al A2 Bl B2 Cl C2

At your terminal, you see:

A1 A2 B:1 B2 C1 C2

Now do Exercise 3-6 on the next page.

.~.

CLI Commands 3-31

Exercise 3-6

Directions: Answer the following questions:

1. Correctly write the following CLI commands on a single line:
TYPE FILEt
RENAME FILE3 OLD_FILE ____________ _

2. Name the character used to extend a command line to a second line. _____ _

3. Write a single CLI command using parentheses and/or angle brackets to accomplish
the following tasks.

a. TYPE FILEt FILE2 FILE3 _________ _

b. TYPE FILEt FILE2 TESTt TEST2 _________ _

c. TYPE FILEt2 ________ _
TYPE FILE22
TYPE FILE32

Check your answers on the next page.

3-32 CLI Commands

Exercise 3-6
Answers

1. T¥PE,FILE1;RENAME,FILE3,OLD_FILE

2. Ampersand (&)

3. a.T¥PE,FILE<I,2,3>
b.T¥PE, <FILE,TEST> < 1,2>
c.T¥PE,FILE(I,2,3)2

If you answered all the questions correctly, continue to Lab Activity 3-1. Otherwise,
review the material and do this exercise again before you continue.

CLI Commands 3-33

l,ab Activity 3-1

Directions: Write the commands that will do each of the following. You can write the
answers before entering the command at your terminal. Check your answers on the
following page if you are unsure of your response.

1. Write a command to provide information about the CREATE command. (Use the
option that provides the most information.)

2. Write commands to provide information about the other commands covered in this
module (COPY, DELETE, RENAME, and TYPE).

3. Write the command to create a file named MODULE_3_PART_1. When you
create the file, include the following text:

THIS IS THE FIRST PART
OF THE INFORMATION TO BE
ENTERED INTO A FILE IN
THE AOS, AOS/VS USER COURSE

4. Write the command to create another file. Call it MODULE_3_PART_2. Include
this text in the file:

THIS IS THE SECOND PART
OF THE TEXT.
THIS IS THE END OF THE TEXT.

5. Write a single command line to display the contents of MODULE_3_PART_I and
MODULE_3_PART_2.

6. Build a file called PART_I_DUPLICATE that contains the exact information that
MODULE_3_PART_I contains. (Do not enter the data again.)

7. Use the TYPE command to verify the success of Step 6.

8. Add the contents of MODULE_3_PART_2 to the file created in Step 6.

9. Since PART_I_DUPLICATE now contains the contents of both files, change its
name to MODULE_3_WHOLE_FILE.

10. Type the contents of MODULE_3_WHOLE_FILE to see if it is all there.

11. Delete MODULE_3_PART_I and MODULE_3_PART_2. Be sure to use the
confirm and verify switches.

Now check your answers on the next page.

3-34 CLI Commands

Lab Activity 3-1
Answers

1. HELP /V CREATE

2. HELP /V COPY
HELP /V DELETE
HELP /V RENAME
HELP/V TYPE

3. CREATE/I MODULL3_PART_I
THIS IS THE FIRST PART
OF THE INFORMATION TO BE
ENTERED INTO A FILE IN
THE AOS, AOS/VS USER COURSE

4. CREATE/I MODULL3_PART_2
THIS IS THE SECOND PART
OF THE TEXT.
THIS IS THE END OF THE TEXT.

5. TYPE MODULL3_PART_<1,2> or TYPE MODULE_3_PART(I,2)

6. COPY PART_I-DUPLICATE,MODULL3JART_I

7. Use the TYPE command verify the success of Step 6.

TYPE PART_I_DUPLICATE

8. COPY/A PART_I_DUPLICATE,MODULE_3_PART_2

9. RENAME PART_I_DUPLICATE,MODULL3_WHOLE

10. TYPE MODULL3_WHOLE

11. DELETE/V /C MODULE_3_PART_I
DELETE/V/C MODULL3JART_2

If you answered all the questions correctly, continue to the Module 3 Test. Otherwise,
review Module 3 and do the Lab Activity again before you continue.

CLI Commands 3-35

1. Identify the elements of the following command line:

CRE~ TE/DY1AMIC.NEWfILE

ABC D

A. __ 1. CLI prompt

B. __ 2. Argument

C. __ 3. Delimiter

D. __ 4. Command

5. Switch

Directions: Which of the following command lines are correctly coded? Mark C for
correct and I for incorrect.

2. __ HELP/V HELP

3. __ RENAME,FILEI FILE3

4. __ TYPE FILE4

5. __ DELETE/C/V FILE9

6. __ WRITE X

Directions: Which of the following are valid filenames? Mark a V for valid and an I for
invalid.

7. __ FILE-ONE

8. __ MASTELFILE

9. __ BACICUP_OF_TAPE_FILE_CREATED_LAST_FRIDAY

10. __ BACICUP&SAVE

12. FILEI

13. __ FILE?

14. __ DOLLAR$_AMOUNT

15. __ 1ST-DETAIL

16. MY_DOCUMENT

3-36 CLI Commands

Directions: Write the CLI command that will:

17. Delete a file named XYZ. _______________ _

18. Display the contents of a file called NEWS_FILE. __________ _

19. Change the name of a file called GOOD_STUFF to OLD_JUNK.

20. Create a file and allow data to be entered from the terminal. Call the file
TERMINAL_DATA. __________________ _

21. Copy the contents from a file called PAYROLL into a file called PERSONNEL.
PERSONNEL does not yet exist. _______ _

22. Display at your terminal information about the DELETE command.

Directions: Expand the commands as shown in the example:

Example
DELETE FILE(A B) Expands to:

DELETE FILEA
DELETE FILEB

23. COPY/A,MASTEILFILE,FILE<l 2><A B> __________ _

24. (TYPE DELETE),USELESS_FIL,.:..E _____________ _

25. TYPE,<FILE TEST> <1 2> _________________ _

26. DELETE FILE<l 23>.OLD, ________________ _

27. TYPE,(FILE TEST)(l 2) (Note: Compare this to Item 25.)

Now check your answers to the Module 3 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 4. Otherwise, go back and review the
material in Module 3 and take the Module 3 Test again.

This concludes Module 3.

Module 4

Directories and Pathnames

Introduction

This module introduces the concept of the directory and the directory structure. It also
teaches how to select a particular file from within the structure. Finally, directory
creation is also discussed.

Module Objectives

Resources

Upon successful completion of this module, you should be able to:

1. Identify the major components of the AOS or AOSjVS directory structure.

2. Write the pathname of a file given a directory structure.

3. Write CLI command lines using the following commands:
CREATE
FILESTATUS
DIRECTORY
SEARCHLIST
PATHNAME

4. Use templates to access multiple files with one command.

To complete this module, you will need:

• Module 4 audiotape.

• Module 4 of your Student Guide.

• Audiotape playback unit.

/

4-2 Directories and Pathnames

Module Outline

Module 4 discusses the following topics:

1. Directories
a. Definition
h. Working directory
c. AOS or AOS/VS directory structure
d. Directory creation
e. DIRECTORY command

2. Pathnames
a. Definition
h. Prefixes

3. Searchlists and templates
a. Definition of searchlist
h. File templates

4. FILESTATUS command

Now start the Module 4 audiotape. As you listen, follow along in Module 4 of your
Student Guide.

,.,-

Directories and Path names 4-3

Directories

CS-O/697

A directory is a file containing a catalog of bookkeeping information, and pointers to
files and other directories. There are two types of directories. A Control Point Directory,
or CPD, has fixed maximum disc space. A directory has no space limit.

r::l
~

Fi!~ure 4.1 Sample Directory Structure

Inferior or subordinate directories are lower in the directory structure. Superior
directories are higher in the directory structure.

,..

4-4 Directories and Pathnames

CS-OJ698

PERIPHERAL
DEVICES

MTAO

LPT

CONO

Figure 4.2 Typical Directory Structure

BIND PROJECT3

SPEED

CONVERT

USER
... ---..... PROFILES

UTILITY
PROGRAMS

BASIC

KIM

BETH

BETH __ FllE

C5-0/699

ROOT

INITIAL
.-- DIRECTORY

Directories and Path names 4-5

Fiuure 4.3 Partial Directory Structure

Use the DIRECTORY switch on the CREATE command to build a directory. Also, use
the MAXSIZE switch to create a Control Point Directory (1 block = 512 characters).

Example 1
CREATE/DIRECTORY,BETH_DIR

Example 2
CREATE/DIRECTORY /MAXSIZE = 100,BETH_DIR

Now do Exercise 4-1 on the next page.

4-6 Directories and Pathnames

Directories and Pathnames 4-7

I:xercise 4-1

1. Use the following labels to fill in the blanks in the directory structure shown
in Figure 4.4.

UPD
UDD
User directory
User file
UTIL
@ or PER

CS-01700

Figure 4.4

2. Write the command to add the directory file named REPORTDIR to UTIL.

Check your answers on the next page.

4-8 Directories and Path names

Exercise 4-1
Answers

1.

CS-OJ70J

Figure 4.6

2. CREATEjDIR,REPORTDIR

If you answered all the questions correctly, continue with Module 4 by restarting the
Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

,-

Directories and Path names 4-9

Pathnames

A pathname is a route through the directory structure used to locate a particular file.

FILE __ 1 FILE_1

:UDD:JOHN:FILE_1 ~ :UDD:MARY:FILE_1

CS-O/702

Figure 4.6 Directory Tree with Two Pathnames

The working directory is a reference point in the directory structure.

These CLI commands help you to move through the directory structure shown in
Figure 4.7.

DIRECTORY

:UDD:DIR_A

Returns name of your working directory.

DIRECTORY DIR_C Makes DIR_C your current working directory.

DIRECTORY /1 Returns to initial working directory.

4-10 Directories and Pathnames

FILE_1

CS-OJ70J

WORKING
DIRECTORY~

FILE_1 FILE_1

Figure 4.7 Working Directory

A pathname is a path through the directory structure to a particular file. A pathname
consists of an optional prefix, and/or a series of filenames separated by colons.

In a path name, each filename, except the last, must be a directory, and each must be
inferior to the previous. A fully qualified pathname starts with a colon. Valid prefixes for
pathnames are shown in Table 4.A.

Prefix Result

: Start with root directory. (Also used to separate
files in a pathname.)

T Move up to superior directory.

= Start with working directory.

@ Start with peripheral directory.

Table 4.A Path name Prefixes

WORKING
DIRECTORY

C'S-OJ 704

FILE_1

Directories and Path names 4-11

FILE_1

Figure 4.8 Hypothetical Directory Structure

Example 1
Assume DIR_AB in Figure 4.8 is your working directory. To access FILE_I, which is
subordinate to DIR_AB, enter the pathname FILE_I, or = FILE_I, or
:UDD:DIILA:DIR_AB:FILE_I.

Example 2
To access FILE_I, which is subordinate to DIR_A, enter the pathname TFILE_I, or
:UDD:DIR_A:FILE_I.

Example 3
The PATHNAME command displays the fully qualified pathname. Assume DIR_AB
is your working directory.

PATH NAME FILE_I
:UDD:DIR __ A:DIR __ AB:FILE __ 1

N ow do Exercise 4-2 on the next page.

4-12 Directories and Pathnames

Directories and Pathnames 4-13

.:::xercise 4-2

Directions: Refer to Figure 4.9 to answer the following questions.

FILE_1

!cS-O/705

Figure 4.9

Assuming USER_1 is your working directory in Figure 4.9, write the pathnames for
each of the following files:

1. FILE_1 __________ _

2. FILE_A __________ _

3. FILE_B __________ _

4-14 Directories and Pathnames

Assuming USER-2 is your working directory in Figure 4.9, write the pathnames for
each of the following files:

4. FILE_2 ______ _

5. FILE-A ______ _

6. FILE_B ______ _

Check your answers on the next page.

E:"ercise 4-2
Answers

1. DILl:FILE_l or :UDD:USELl:DILl:FILE_l

2. FILE--A or :UDD:USELl:FILE_A

3. TUSEL2:FILE_B or :UDD:USER_2:FILE_B

Directories and Path names 4-15

4. TUSER_l:DILl:FILE_2 or :UDD:USER_l:DILl:FILE_2

5. TUSELl:FILE--A or :UDD:USELl:FILLA

6. FILE_B or :UDD:USEL2:FILE_B

If you answered all of the questions correctly, continue with Module 4 by restarting the
Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

4-16 Directories and Pathnames

Searchlists and Templates

Searchlists

Templates

A search list is a list of directories to be searched in sequence when a file is not found in
the working directory. The searchlist is only searched when the entry specified has no
prefix.

Example 1
SEARCHLIST
:000, :UTIL

Example 2
SEARCHLIST :UDD,:UTIL,:UDD:MYNAME:MYDIR

SEARCHLIST
:OOO,:UTIL,:UOO:MYNAME:MYOIR·

Charac- Matches
ter

* Matches anyone character, except a period or a
space.

- Matches any string of characters, except those
including a period.

+ Matches any series of characters, including those
with a period.

Table 4.8 Template Characters

.---

Directories and Path names 4-17

FILE1 PROG.TEST

FILE2 PROG.SR

FILE34 PROG999

MY_FILE

CS-O/706

Figure 4.10 The Use of Templates

Template Filenames Matched

FILE 1 FILE 1

FILE* FILE 1, FILE2

FILE- FILE 1, FILE2,FILE34

PROG.- PROG.SR, PROG.TEST

PROG+ PROG.SR, PROG999, PROG.TEST

+ All filenames

PROG.SR, PROG.TEST

Table 4.C Templates

Now do Exercise 4-3 on the next page.

4-18 Directories and Pathnames

Directories and Path names 4-19

}:xercise 4-3

CS-01707

Figure 4.11

Directions: Use Figure 4.11 to answer the following questions.

FILE1 FILE.1 FILE2 FILE12 FILE.12 FILE3

In Figure 4.11, which files are selected by the following templates? Note that MYDIR
is the working directory.

l.FILE* ______________________________ __

2.FILE- ____________________________ __

3. FILE+ ______________ _

4.FILE1* ___________________________ __

5. FILEl + _______________ _

6.FILE1- ___________________ _

Check your answers on the following page.

4-20 Directories and Path names

Exercise 4-3
Answers

1. FILE 1, FILE2, FILE3

2. FILE 1, FILE2, FILE 12, FILE3

3. All files.

4. FILE12

5. FILE1, FILE12

6. FILE1, FILE12

If you answered all the questions correctly, continue with Module 4 by restarting the
Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Directories and Pathnames 4-21

Filestatus

The FILESTATUS command displays the names of the files in your working directory.

Switch Result

IASSORTMENT Display type, date and time created, and length of file.

IOCR Display date created.

ILENGTH Display length of file.

ITCR Display time and date created.

ITYPE Display type of file.

Table 4.0 Switches on the FILESTATUS Command

FILE1 FIlE2 FILEC FllEAB

(,S-01708

Figure 4.12 Directory Structure of DIR_ONE

Example 1
FILESTATUS
FIlE1
FIlE2
FIlEC
FIlEAB

Example 2
FILESTATUSj ASSORTMENT
FIlE1 UDF 25-SEP-79
FIlE2 UDF 25-0CT-80
FIlEC PRG 10-NOV-80
FIlEAB UDF 11-0CT-80

Example 3
FILESTATUSjTYPE FILE*
FIlE1 UDF
FIlE2 UDF
FIlEC PRG

10:54:50
10:50:50
09:20:15
10:20:19

Now do Exercise 4-4 on the next page.

1090
80
70

100

4-22 Directories and Path names

Directories and Path names 4-23

Exercise 4-4

CS-0/709

Figure 4.13

Directions: Given the directory structure in Figure 4.13, which file(s) will be selected by
the following commands?

AFllE

WORKING
DIRECTORY

BFllE CFllE ABFllE 9TEST

l.FILESTATUS ________________________________ ___

2.FILESTATUS-FILE ____________________________ __

3.FILESTATUS*FILE ____________________________ __

4.FILESTATUS*TEST ____________________________ ___

Check your answers on the next page.

4-24 Directories and Pathnames

Exercise 4-4
Answers

1. AFILE BFILE CFILE ABFILE 9TEST

2. AFILE BFILE CFILE ABFILE

3. AFILE BFILE CFILE

4.9TEST

If you answered all of the questions correctly, continue to Lab Activity 4-1 and the
Module 4 Test. Otherwise, review the material and do the exercise again before you
continue.

Directories and Path names 4-25

]~ab Activity 4-1

Directions: Enter the command or commands necessary to accomplish each of the following
tasks. There may be more than one way to perform each operation. If you have any
problems, remember to use the HELP command for assistance. If that does not provide
enough assistance. turn to the solution on the following page.

1. Determine what your working directory is.

2. Display the name and some information about all files that are inferior to the
working directory. (These should be the files created in the Module 3 Lab Activity.)

3. Create a directory inferior to your working directory. Call it MYDIR and allow an
unlimited amount of space for it.

4. Make MYDIR your working directory. Verify the sucess of this operation by
repeating Step 1.

5. Determine if MYDIR has any inferior files. (There should be none.)

6. Change the working directory back to what it was when you signed on to the system.

7. Create a Control Point Directory inferior to your working directory. Allow for 10
blocks of space in the CPO and all associated files. Call it MYCPD.

8. Repeat Step 2. Be sure to notice the file type associated with MYDIR and MYCPD.
(Use the assortment switch.)

9. Determine your current searchlist.

10. Determine the pathname of MYCPD.

11. Add MYCPD to your searchlist. (You saw the pathname for MYCPD in Step 10.)

12. Determine the pathname of the SPEED editor (SPEED.PR). Note the directory in
which it is located.

13. Move from your current working directory to the directory immediately superior to
it.

14. Display the new working directory. (Notice your current location in Figure 4.2.)

15. Log off.

Check your answers on the next page.

--_._---_._--_._----------- -------------

4-26 Directories and Pathnames

Lab Activity 4-1
Answers

Listed below are solutions to each question. Each solution listed is not the only one, but
only one of the methods that work. If your answer is not the same, it still may be correct.

1. DIRECfORY

2. FILESTATUS/ASSORTMENT

3. CREATE/DIRECfORY MYDIR

4. DIRECfORY MYDIR
DIRECfORY

5. FILESTATUS/ASSORTMENT

6. DIRECfORY II

7. CREATE/DIRECfORY/MAXSIZE=10 MYCPD

8. FILESTATUS/ASSORTMENT

9. SEARCHLIST

10. PATHNAME MYDIR

11. SEARCHLIST (include your searchlist from Step 9), (include the pathname from
Step 10.)

12. PATHNAME SPEED.PR

13. DIRECfORY T

14. DIRECfORY

15. BYE

If you completed Lab Activity 4-1 successfully, go on to the Module 4 Test. If not,
review this module before continuing to the Test.

.-

,.--

lVlodule 4
Test

2

~0171()
Figure 4.14

Directories and Pathnames 4-27

Directions: Fill in the blanks numbered 1 through 5 in the directory structure in Figure
4.14.

LINK FILE_A

FILL 2

4-28 Directories and Pathnames

CS-OJ7J1

Figure 4.15

Direc;tions: Given this partial directory structure in Figure 4.15, write the fully qualified
pathname for the files labeled 6 through 10.

6

6.

7.

8.

9.

7

FILE_1 IMPORTS EXPORTS

10. __ __
-.

CS-·OI712

Figure 4.16

1040.A.FORMS

WORKING
DIRECTORY ---.,

PAYROLL1

PAYROLL2

Directories and Pathnames 4-29

PAYROLL82

PAYROLL3

Directions: Write the template to make the following selections from the directory
structure in Figure 4.16.

11. All of the files with PAYROLL in the name. __________ .

12. PAYROLLl, PA YROLL2, PA YROLL3.

13. All of the files with FORMS in the name. __________ _

14. All of the files except those with a period (.). ______ _

15. All of the files with a 2 in the name. _____________ _

Directions: Write the CLI command to:

16. Create a directory with the name SUPER_DIR. _________ . __ _

17. Create a Control Point Directory with 10 blocks of space called LITTLE __ C.P.D.

18. List all of the files in your working directory. __________ _

19. Display your working directory. __________ _

20. Change your working directory to :UTIL ... ________ _

4-30 Directories and Pathnames

21. Display your searchlist. _____________ _

22. Change your searchlist to include only :UTIL. _________ _

23. Determine the pathname of FORTRAN.PR. __________ _

Now check your answers to the Module 4 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 5. Otherwise, go back and review the
material in Module 4 and take the Module 4 Test again.

This concludes Module 4.

Module 5
File Security

Introduction

This module discusses the need for and the implementation of file security. It explains
various types of protection against unauthorized use of files and directories.

l\lodule Objectives

R.esources

Upon successful completion of this module, you should be able to:

1. Identify the access permitted by each of the access types for directory and
nondirectory files.

2. Change the Access Control List (ACL) for a file after determining the ACL of the
file.

3. Change the default Access Control List (DEF ACL) for a file after determining the
DEFACL of the file.

4. Describe the superuser privilege.

To complete this module, you will need:

• Module 5 audiotape.

• Module 5 of your Student Guide.

• Audiotape playback unit.

5-2 File Security

Module Outline

Module 5 discusses the following topics:

1. File security
a. Need for security
b. Solution to the need

Access Control List
Types of access
The ACL command
The DEFACL command

2. Superuser privilege

Now start the Module 5 audiotape. As you listen, follow along in Module 5 of your
Student Guide.

File Security 5-3

14i1e Security

ACL

File security protects your files and allows access only to authorized users. The Access
Control List (ACL) is a list of usernames and the types of access that these users are
permitted. There are five types of access:

• Owner

• Write

• Append

• Read

• Execute

Access Abbre- Nondirectory File Directory File
viation

Execute E User can execute the file. User can use the directory in a path-
name.

Read R User can read (examine) data User can examine the list of files.
in the file.

Append A N/A User can insert new files in directory.

Write W User can modify the contents User can insert and delete files and
of the file. change ACLs of files in the directory.

Owner 0 User can change file's ACL User can change directory's ACL or
or delete files. delete the directory.

Table 5.A Five Types of File Access

The ACL command displays or resets the Access Control List for a file. The access given
is that indicated by the first match in the ACL list.

To display an ACL:

Example 1
ACL MYFILE
JOHN OWARE

Indicates that John has all access privileges. All other users have no access.

Example 2
ACL OTHERFILE
JOHN E
SUE1 RE
SUE* WRE

Indicates that John has only execute access. SUE 1 has read and execute accesses. and
SUE followed by any character except a I or a period has write, read, and execute
access. All other users have no privileges.

6-4 File Security

Default ACL

Example 3
ACL OTHERFILE
JOHN E
SUE* WRE
SUE1 RE

Indicates that SUEl has write, read, and execute access. All other accesses are the same
as in Example 2.

To reset an ACL:

Example 4
ACL MYFILE,JOE,RE

Change the ACL for MYFILE to allow only JOE to have read and execute access. All
others have no access.

Example 5
ACL OTHERFILE,JOHN,OWARE,SUE,WARE, + ,RE

Change the ACL for OTHERFILE to allow JOHN all five types of access. SUE has
write, append, read, and execute access, but not owner access. All other users have read
and execute access only.

The default ACL is the ACL assigned at the time of creation of a file. The DEFACL
command sets or displays the default ACL of a file. The new default ACL remains in
effect only for the current session.

Example 1
To determine the current default ACL:

DEFACL
GARY OWARE

Example 2
To change the default ACL:

DEFACL JOHN,OW ARE,SUE,RE, + ,E

~ ...

Superuser

File Security 5-5

The superuser privilege is assigned by the system manager. This privilege:

• Allows all accesses to all files.

• Allows access to any file.

• Causes the prompt character to change from) to *).

Example
SUPERUSER
OFF
SUPER USER ON
*)SUPERUSER
ON
*)SUPERUSER OFF

Now do Exercise 5-1 on the next page.

5-6 File Security

,-

File Security 5-7

E:xercise 5-1

Directions: Fill in the blanks in the table below:

Access Abbre- Nondirectory File Directory File
viation

1. E User can execute the file.

2. R User can examine list of files.

3. A N/A

4. W User can insert and delete files and change ACLs
of files in the directory.

5. 0 User can change file's ACL or delete files.

Table 5.B Exercise: ACLs

Directions: Write the command that:

6. Changes the access to the file OURFILE to permit all users to read and execute the
file. ___________ _

7. Makes all files that will be created have access by John only and John has all accesses.

8. Determines the setting of the superuser privilege. _____________ _

N ow check your answers on the next page.

5-8 File Security

Exercise 5-1
Answers

1. EXECUTE. User can use the directory in a pathname.

2. READ. User can read (examine) data in the file.

3. APPEND. User can insert new files in the directory.

4. WRITE. User can modify the contents of the file.

5. OWNER. User can change the directory's ACL or delete the directory.

6. ACL,OUTFILE, + RE

7. DEFACL,JOHN,OWARE

8. SUPERUSER

If you answered all of the questions correctly, go on to Lab Activity 5-1 and the Module
5 Test. Otherwise, review the material in Module 5 and do the exercise again before you
continue.

.. ~

File Security 5-9

I.Jab Activity 5-1

Directions: After logging on to an AOS or AOSjVS system, try the following activities.
If you have any problems, refer to the answers on the following pages.

1. Determine your default Access Control List.

2. Create a file called D_FILE_1.

3. Change your default Access Control List to give yourself owner, write, read, and
execute access to any files that you create. Verify the success of this action.

4. Create a file called D_FILE_2.

5. Examine the Access Control Lists of D_FILE_I and D_FILE_2. Note the
differences.

6. Return your default Access Control List to what it was in Step 1. Verify that you
have been successful.

7. Determine the ACL of MYDIR. (You created this file in the Module 4 Lab
Activity.) Is it the same as your default ACL?

8. Change the Access Control List of MYDIR to allow yourself all privileges except
execute access, and user John execute access. Verify the result.

9. Try to make MYDIR your working directory. What happened? Why?

10. Now change the ACL of MYDIR to give yourself all privileges and make it the
working directory.

Check your answers on the next page.

5-10 File Security

Lab Activity 5-1
Answers

1.

2.

3.

4.

5.

DEFACL

CREATE D_FILILI

DEFACL MYID,OWARE,+E
DEFACL

CREATE D_FILIL2

ACLDJILILI
ACL D_FILIL2

The ACL for D_FILE_I should be your old default ACL. D_FILE_2 should have
the new default ACL.

6. DEFACL (Include the results returned in Step 1.)

7. ACL MYDIR (It should be the same as your original default ACL.)

8. ACL MYDIR,MYID,OW AR,JOHN,E
ACLMYDIR

9. DIR MYDIR (You should have received a message, indicating that you did not have
the proper access to perform this action.) .

10. ACL MYDIR,MYID,OW ARE
DIR MYDIR

If you answered all of the questions correctly, continue to the Module 5 Test. Otherwise,
review the material in Module 5 and do Lab Activity 5-1 again before you continue.

Module 5
Test

r--"

Access

Execute

Read

Append

Write

Owner

Directions: Answer the following question:

1. Describe the superuser privilege.

Directions: Write the command to:

File Security 5-1 1

2. Determine the ACL of FILE_I. ___________ _

3. Change the ACL of FILE_I to allow John all accesses and Mary only read access.

4. Determine your current default ACL. ___________ _

5. Change your default ACL to allow all access to all users. _______ _

6. Turn on the superuser privilege. __________ _

7. Turn off the superuser privilege. _________ _

Directions: Complete the following table by filling in the blanks with a description of the
access permitted for each access type.

Abbre- Nondirectory File Directory File
viation

E

R

A

W

0

Table 5.C Module 5 Test: ACLs

Now check your answers to the Module 5 Test in Appendix A. If you answered all the
questions correctly, go on to Module 6. Otherwise, review the material in Module 5 and
take the test again before continuing.

This concludes Module 5.

-/

Module 6

Queues

Introduction

This module introduces the concept of a queue. It teaches you to use queues to print and
process your data.

Module Objectives

Resources

Upon successful completion of this module, you should be able to:

1. Describe the operations of a queue.

2. Describe the batch processing operations.

3. Write CLI command lines using the following commands:
QPRINT
QBATCH
QCANCEL
QUNHOLD
QHOLD
QPLOT
QPUNCH

To complete this module, you will need:

• Module 6 audiotape.

• Module 6 of your Student Guide.

• Audiotape playback unit.

6-2 Queues

Module Outline

Module 6 discusses the following topics:

1. Queue concepts

2. Batch concepts

3. Using batch and queues

4. Queue manipulation

5. Printing

Now start the Module 6 audiotape. As you listen, follow along in Module 6 of your
Student Guide.

Queues 6-3

TELLER 1
ALL TRANSACTIONS

TELLER 2
ALL TRANSACTIONS

CS-O/7/3

Figure 6.1 A Queue in a Bank

TELLER 3
BUSINESS CUSTOMERS

A queue is an ordered list of elements. AOS and AOS/VS have queues for:

• Batch processing

• Printing

• Plotting

• Punching (AOS only)

(~DISPLA Y Command

The QDISPLA Y command displays the queue status.

Format: QDISPLA Y

Switches:

• /QUEUE= Display only a specific queue
(BATCH_INPUT,BA TCH,OUTPUT ...).

• /TYPE= Display only a specific type of queue
(BATCH,PRINT,PUNCH,PLOT).

6-4 Queues

Example 1
QDISPLAY

Display all queues.

BATCH

PRINT

OPEN

OPEN

BATCILINPUT

BATCH-OUTPUT
* 3620 NANETTE :QUEUE:NANETTE.OUTPUT.362

BATCILLIST

LPT

PRINT OPEN

PRINT OPEN
367 N GEORGE :UDD:GEORGE:AMOD6:QSIXBI
368 N GEORGE :UDD:GEORGE:AMOD6:QSIX
369 N GEORGE :UDD:GEORGE:AMOD6:QSIX1
370 N GEORGE :UDD:GEORGE:AMOD6:QSIXI

LQP PRINT OPEN
* 366 MENARD :UDD:MENARD:OEM

FLAGS EXPLANATION:
o = IDELETE
N = INOTIFY
* = ACTIVE

Example 2
QDISPLAY/QUEUE=BATCILINPUT

Display only the BA TeH_INPUT queue.

BATCH OPEN BATCILINPUT
* 360 ON

362
CAROL :UDD:CAROL:TRAINING __ CREDIT __ SYSTEM:?020.CLI.003.JOB
NANETTE :LD1:REGISTRATION--SYSTEM:MACROS:GENERATE--REPORTS

FLAGS EXPLANATION:
o = IDELETE
N = INOTIFY
* = ACTIVE

,-

Example 3
QDISPLA Y /TYPE = PRINT

Display all PRINT queues.

BATCH_OUTPUT PRINT OPEN

BATCH_LIST PRINT OPEN

LPT PRINT OPEN

ID-LPT PRINT OPEN

LQP PRINT OPEN

* 97 N GARYS :UDD:GARYS:N3:1ST:M1:SCR3.LP
98 N GARYS :UDD:GARYS:N3:INFO:CONTENTS

FLAGS EXPLANATION:
N = INOTIFY
* = ACTIVE

QBATCH Command

Queues 6-5

The QBATCH command creates a batch job and places it in the batch queue. Your job
executes independently of your terminal. You don't need to be logged on for your job to
run.

Format: QBATCH ARGUMENT

Switches:

• IHOLD Do not execute the job until released by owner.

• INOTIFY Inform the user when job is complete.

• II Create job from subsequent lines -from terminal.

• I AFTER = Do not execute job until time specified.

• I JOBNAME= Assign the name that follows the = to the batch job.

Example 1
QBATCH XEQ NET

Example 2
QBATCH/NOTIFY XEQ NET

Example 3
QBATCH/HOLD/JOBNAME=PAYROLL XEQ COBOL FILEt

Compiles FILE 1 when released.

6-6 Queues

Example 4
QBATCH/I
)XEQ PROGI
)DIR DIR4
)XEQ PROG4

»

Execute PROGI from current directory, then change to DIR4 and execute PROG4.
While this is happening, you can be doing something else.

QHOLD Command

The QHOLD command holds a queue entry by putting the job in a waiting status.

Format: QHOLD JOBNAME or SEQ NUMBER

Example 1
QHOLD PAYROLL

Holds entry called PAYROLL. (You must have specified /JOBNAME switch when the
entry was created.)

Example 2
QHOLD 36

Holds queue entry number 36.

QUNHOLD Command

The QUNHOLD command releases a held queue entry and puts the job back into
active status.

Format: QUNHOLD JOBNAME or SEQ NUMBER

Example 1
QUNHOLD PAYROLL

Releases an entry called PAYROLL. (You must have specified /JOBNAME switch.)

Example 2
QUNHOLD36

Releases queue entry number 36.

QCANCEL Command

The QCANCEL command deletes a queue entry.

Format: QCANCEL SEQ NUMBER or JOBNAME

Example 1
QCANCEL JOBI

Cancels the entry named JOB l.

Example 2
QCANCEL 36

Cancels the entry with sequence number 36.

C~PRINT Command

The QPRINT command places an entry in the printer queue.

Format: QPRINT PATH NAME

Switch Result

/NOTIFY Informs the user when printing is fin-
ished.

/COPIES=n Creates n copies of the output.

/TITLES Includes titles on printed document.

/FORMS= Uses special forms for printing.

/QUEUE= Places in a specified queue.

Table 6.A QPRINT Command Switches

Example 1
QPRINT DATAl

Prints file DATA 1.

Example 2
QPRINT/NOTIFY /TITLES DATAl

This notify message is displayed when the file printing is complete:
FROM PID3: (EXEC) @LPB COMPLETED :UDD:USER1:DATA1

The title looks like this:
UDD: USEWI: DATA1 10-MARCH-82

Example 3
QPRINT/FORMS=FORM2 DATAl

14:35:21 PAGE 1

Queues 6-7

6-8 Queues

QPLOT Command

The QPLOT command places an entry in the plotter queue.

Format: QPLOT PATHNAME

Switches:

• /COPIES=n Plot n copies of the file.

• /NOTIFY Inform user when plotting is finished.

Example
QPLOT/COPIES=3/NOTIFY DATA-PLOT

QPUNCH Command

The QPUNCH command places an entry in the punch queue (AOS only).

Format: QPUNCH PATHNAME

Switches:

• /COPIES=n Punch n copies of the file.

• /NOTIFY Inform user when punching is complete.

Example
QPUNCH/COPIES=2/NOTIFY DATA-PUNCH

Now do Exercise 6-1 on the next page.

Queues 6-9

;Exercise 6-1

Directions: Match the following commands with their results.

1. ___ QPRINT a. Prevent an entry from being processed until later.

2. __ QPLOT b. Delete an entry from a queue.

3. __ QPUNCH c. Submit an entry for CPU processing.

4. ___ QDISPLA Y d. Place an entry in the printer queue.

5. ___ QBA TCH e. List the queues and their contents.

6. __ QCANCEL f. Place an entry in the paper-tape punch queue.

7. __ QHOLD g. Place an entry into the plotter queue.

Directions: Mark the following statements true or false.

8. ____ The QPRINT command actually causes the file to be printed.

9. The QDISPLA Y command can be used to print a file on the line printer.

10. You can use the /FORMS switch to have your file printed on special
paper.

11. You can check the contents of the queues by using the QDISPLA Y
command.

12. The QPUNCH command is used to have output punched on a paper-tape
punch.

13. If a queue entry is placed on hold, it must be released by the QRELEASE
command.

14. An entry can be put on hold either by the QHOLD command or by the
/HOLD switch.

15. ____ To cancel an entry in the batch queue, use the QUNBA TCH command.

Check your answers on the following page.

6-10 Queues

Exercise 6-1
Answers

1. d.

2. g.

3. f.

4. e.

5. c.

6. b.

7. a.

8. F

9. F

10. T

11. T

12. T

13. F

14. T

15. F

If you answered all of the questions correctly, continue to Lab Activity 6-1 and the
Module 6 Test. Otherwise, review the material and do this exercise again before you
continue.

Queues 6-11

Lab Activity 6-1

Directions: Enter the commands to perform the following functions. If you have any
problems, you can check the answers on the following page.

1. Create a batch entry that will execute a program named JOB_ONE and put the job
on hold when you create it.

2. Determine the sequence number of the job created in Step 1 and release it.

3. Display all of the queues.

4. Create a job that will execute the following series of steps:

• Change the working directory to :UDD:MYDIR:SPECIAL.

• Execute MY JOB.

• Return to the initial directory.

• Execute MY JOB_ONES.

(Note: This job should be put on hold when created.)

5. Find the sequence number of the job in Step 4.

6. Cancel this job.

7. Print out the file MODULE_3_ WHOLE_FILE (from the Module 3 Lab Activity).
Include the title at the top of each page. Have the system notify you when the file is
printed.

8. Create a job that will issue a series of HELP commands to inform you about some of
the commands that you learned in this module. Name this job HELPER. Be sure to
examine the printed output of this job.

Now check your answers on the next page.

6-12 Queues

Lab Activity 6-1
Answers

1. QBATCH/HOLD XEQ JOB_ONE

2. QDISPLAY
QUNHOLD3

3. QDISPLAY

4. QBATCH/HOLD/I
)DIRECTORY :UDD:MYDIR:SPECIAL
)XEQ MYJOB
) DIRECTORY II
)XEQ MYJOB_ONE

5. QDISPLAY/TYPE=BATCH

6. QCANCEL 99

7. QPRINT I NOTIFY ITITLES MODULE-3_ WHOLE-FILE

8. QBATCH/I/JOBNAME=HELPER
)HELP/V QBATCH
)HELP IV QCANCEL
)HELP/V QPRINT
) HELP IV QHOLD
)HELP/V QUNHOLD
))

If you successfully completed Lab Activity 6-1, continue to the Module 6 Test. Otherwise,
review the material and do the Lab Activity again before you continue.

Module 6
Test

Queues 6-13

Directions: Complete the following sentences.

1. When you submit a job to the batch queue:

a. Your terminal is locked until the job terminates.

b. You are free to continue working at your terminal.

c. Your CLI process is blocked.

d. Your CLI process is automatically swapped.

2. You can cancel a queue entry by using either the ______ number or the
_____ name.

Directions: Write the CLI command to do the following:

3. Place a file named PRINT_l in the print queue and notify you when finished.

4. Place a file named PLOT_FILE in the plotter queue and notify you when finished
plotting five copies. ______ _

5. Display the contents of the plotter queue only. _______ _

6. Cancel entry 453. _____________ _

7. Hold entry 29.

8. Release entry 90. _______________ _

9. Place a file named INDEPENDENT _1 in the batch queue.

Now check your answers to the Module 6 Test in Appendix A. If you answered all the
questions correctly, go on to Module 7. Otherwise, review the material in Module 6 and
take the Test again before continuing.

This concludes Module 6.

Module 7

The eLI Environment

Introduction

This module introduces you to the CLI environment. The CLI environment consists of
several parameters that you can control. This module shows you these parameters and
the commands necessary to display and change these parameters.

Module Objectives

Upon successful completion of this module, you should be able to:

1. Write commands to change the CLI environment.

2. Write commands to display and change the components of the CLI environment.

Resources

To complete this module, you will need:

• Module 7 audiotape.

• Module 7 of your Student Guide.

• Audiotape playback unit.

Module Outline

Module 7 discusses the following topics:

1. The CLI environment
a. Overview
b. Levels of the CLI environment
c. PUSH and POP commands

2. CLI commands to change the environment
a. SUPERUSER
b. SUPERPROCESS

7-2 The eLi Environment

c. SCREENED IT
d. SQUEEZE
e. CLASSl
f. CLASS2
g. Variables
h. LISTFILE
i. DATAFILE

3. More environmental CLI commands
a. DIRECTORY
b. SEARCHLIST
c. DEFACL
d. STRING
e. PROMPT
f. CHARACTERISTICS

Now start the Module 7 audiotape. As you listen, follow along in Module 7 of your
Student Guide.

The CLI Environment 7-3

The eLI Environment

Your CLI environment is composed of several parameters. These parameters are:

LEVEL LISTFILE

SUPER USER DATAFILE

SUPERPROCESS LOGFILE

SCREENEDIT DIRECTORY

SQUEEZE SEARCHLIST

CLASS! DEFACL

CLASS2 STRING

TRACE PROMPT

VARIABLES CHARACTERISTICS

These parameters are initialized to default values when you log on. You can use the
CURRENT command to list the settings.

1 CURRENT
LEVEL 0
SUPERUSER ON
SUPERPROCE55 OFF
SCREENEDIT ON
;QUEEZE OFF
=LASSl ERROR
=LASS2 WARNING
TRACE
~ARIABLES 0 0 0 0

o 000
~I5TFILE ~LIST
DATAFILE ~DATA
LOGFILE
DIRECTORY UDD BUBBlE MODULE?
SEARCHLIST UTIL, UTIL INFOS, .UDDBUBBIE
DEFACL BUBBIE,OWARE t,RE
STRING TIME
PROMPT TIME ,DIRECTORY
CHARACTERISTICS 1605X/LPP=24/CPL=S0

ION/ST/EB0/ULC/PM/WRP

o
o

IOFF/SfF/EPI/SBT/SPO/RAF/RAT/RAC/NAS/OTT/EOL/UCO/LT/FF/EBI/NRK1MOD/TO/TSP
IPBHlESC/FKT/NNLI

Figure 7.1 Sample Output of the CURRENT Command

LEVEL Command

The level is your location within the CLI environment. Zero is the highest level.

The LEVEL command displays your current level. Each level contains all environment
parameters.

Example
LEVEL
LEVEL 0

7-4 The CLI Environment

PUSH and POP Commands

CS-OJ714

Use the PUSH command to move one level down.

Use the POP command to move one level up.

p

o
p

LEVEL 0

LEVEL 1

LEVEL 2

p

U
S
H

Figure 7.2 The PUSH and POP Commands

The PREVIOUS command is similar to the CURRENT command. It displays the same
information as the CURRENT command, but for the next higher level of the
environment.

Example
If you are at level 2:

CURRENT
Displays level 2.

PREVIOUS
Displays level 1.

1 __ _

2

3

4

5

6

7

Figure 7.3 Changing Your Environment Level

Now do Exercise 7-1 on the next page.

The eLi Environment 7-5

Exercise 7-1

Directions: Write the command to:

1. Move down one level. ______ _

2. Move up one level. ______ _

3. Display the current setting of the environment's variables. ____ _

4. Display your location in the environment. _______________ _

5. Display the setting of the next higher level of your environment's variables.

Now check your answers on the next page.

7-6 The eLi Environment

Exercise 7-1
Answers

1. PUSH

2. POP

3. CURRENT

4. LEVEL

5. PREVIOUS

If you answered all of the questions correctly, continue with Module 7 by restarting the
Module 7 audiotape. Otherwise, review the material and do this exercise again before
you continue.

,-

The eLI Environment 7-7

CLI Commands to Change the Environment

jP Switch

The /P switch sets a variable to setting in previous level of the environment.

Example
DIRECTORY:UTIL
PUSH
DIRECTORY :UDD:ME

DIRECTORY/P
DIRECTORY
:UTIL

Superuser Privilege

SUPER USER {ON }

{OFF}

Example 1
To display the status:

SUPERUSER

Example 2
To turn SUPERUSER on:

SUPERUSER ON

Example 3
To turn SUPERUSER off:

SUPER USER OFF

Superprocess Privilege

SUPER PROCESS {ON }

{OFF}

Example 1
To display the status:

SUPERPROCESS

Example 2

When SUPERUSER is on, you can access any file. Enter
the SUPERUSER command without an argument to
display SUPERUSER status.

When SUPERPROCESS is on, you can control any
process. Enter the SUPERPROCESS command without
an argument to display SUPERPROCESS status.

To turn SUPERPROCESS on:

SUPERPROCESS ON

7-8 The CLI Environment

Example 3
To turn SUPERPROCESS off:

SUPERPROCESS OFF

SCREENEDIT

SQUEEZE

SCREENEDIT {ON }

{OFF}

When SCREENEDIT:is on, you can use the cursor
control characters listed in Table 7.A.

Control Effect on the Cursor
Character

CTRL-A Move to the end of the character string.

CTRL-B Move to the end of the previous word.

CTRL-E Enter/exit the insert character mode.

CTRL-F Move to the beginning of the next word.

CTRL-H Move to the beginning of the character string.

CTRL-I Insert a tab.

CTRL-K Erase everything to the right of the cursor.

CTRL-X Move to the right one character. (The _ key on the function
keypad has the same effect.)

CTRL-Y Move to the left one character. (The _ key on the function
keypad has the same effect.)

RUBOUT Delete the previous character.

Table 7.A SCREENEDIT Cursor Control Characters

Example 1
To display the status:

SCREENEDIT
ON

Example 2
To turn SCREENEDIT on:

SCREENEDIT ON

Example 3
To turn SCREENED IT off:

SCREENEDIT OFF

SQUEEZE {ON }

{OFF}

Example 1
To display the status:

SQUEEZE OFF

When SQUEEZE is on, output is compressed by removing
spaces.

The eLi Environment 7-9

Example 2
To turn SQUEEZE on:

SQUEEZE ON

Example 3
To turn SQUEEZE off:

SQUEEZE OFF

Class 1 and Class 2 Errors

Variables

CLASSl {ABORT}
{ERROR}
{WARNING}
{IGNORE}

Sets or displays reaction level to class 1 errors (errors that affect the environment).
CLASS2 { ABORT}

{ERROR}
{WARNING}
{IGNORE}

Sets or displays reaction level to class 2 errors (errors that do not affect the environment).

Assume XYZ does not exist in Examples 1 and 2.

Example 1
DIRECTORY XYZ
ERROR: FILE DOES NOT EXIST, FILE XYZ

TYPE XYZ
WARNING: FILE DOES NOT EXIST, FILE XYZ
Example 2
CLASSl IGNORE
CLASS2 ABORT

There are 10 variables you can use to pass data between programs.

CLI Commands

VARO
VARl

VAR9

Example 1
VAR7,25

Sets variable 7 to 25.

7-10 The eLi Environment

Example 2
VAR4
37

Displays value of variable 4.

LISTFILE Command
The LIST FILE command sets or displays the filename used for output in conjunction
with the /L switch.

Example 1
LISTFILE,HOLD_DAT LONE

To use the listfile HOLD_DA T A-ONE:

TYPE/L FILEA
FILESTATUS/L
QPRINT,HOLD_DATLONE

The displayed output of the TYPE and FILEST A TUS commands are stored in
HOLD_DA T A-ONE. It is printed with the QPRINT command.

DATAFILE Command

The DA T AFILE command sets or displays the filename used for input.

Example
DATAFILE,DATA-IN_ONE

LOGFILE Command
The LOGFILE command sets or displays the filename used as the logfile.

EXAMPLE
LOGFILE,LOGGER

The logfile can be used in conjunction with the TRACE command.

TRACE Command
The TRACE command keeps a record of the activity at your console. When TRACE is
on, all CLI transactions at your terminal are recorded in the logfile.

Example
To turn TRACE on:
TRACE/ON/LOG

To turn TRACE off:
TRACE/OFF/LOG

N ow do Exercise 7-2 on the next page.

The eLi Environment 7-11

Exer'cise 7-2

Directions: Write the CLI command that will:

1. Turn on the superuser privilege. _____________ _

2. Set the listfile to be a file called GARBAGE_OUT. _______ _

3. Set the datafile to be a file called GARBAGE_IN. ________ _

4. Turn off SCREENEDIT. ___________ _

5. Set the action for severe errors to ABORT. _________ _

6. Turn SQUEEZE on. ___________ _

7. Display variable 6.

8. Set the logfile to LOG7. ____________ _

9. Turn on TRACE. _____________ _

Now check your answers on the next page.

7-12 The eLI Environment

Exercise 7-2
Answers

1. SUPERUSER,ON

2. LISTFILE,GARBAGE-OUT

3. DATAFILE,GARBAGE-IN

4. SCREENEDIT,OFF

5. CLASSl,ABORT

6. SQUEEZE,ON

7. VAR6

8. LOGFILE,LOG7

9. TRACE/ON/LOG

If you answered all of the questions correctly, continue with Module 7 by restarting the
Module 7 audiotape. Otherwise, review the material and do this exercise again before
you continue.

-

The CLI Environment 7-13

More Environmental CLI Commands

Command Result

DIRECTORY Sets or displays your working directory.

SEARCHLIST Sets or displays your searchlist.

DEFACL Sets or displays your default Access Control list.

Table 7.8 Review of Three CLI Commands.

STRING Command

The STRING command sets or displays the contents of the string (used to return
information from programs).

Example
STRING THIS IS THE NEW STRING
STRING
THIS IS THE NEW STRING

PROMPT Command

The PROMPT command sets or displays the prompt (information that appears before
the right parenthesis).

Example
PROMPT TIME
08:30:01
PROMPT,TIME,DATE
08:31:05
10-MAR-82
PROMPT/K

CHARACTERISTICS Command

The CHARACTERISTICS command sets or displays the characteristics of your
terminal. (Use one of the first five switches to identify your console.)

7-14 The Cli Environment

Switch Result

/HARDCOPY Hard-copy terminals.

/40101 DGC Model 40101.

/6012 DGC Model 6012.

/605x DGC Model 6052 or 6053.

/CRT4 Other CRTs.

/LPP=n Lines-per-page, in decimal.

/CPL=n Characters-per-line, in decimal.

ION Set the bit in the device characteristics words for each of the command switches that
follow. This bit remains set until you issue a /OFF switch or a delimiter. (Note: This bit
is automatically set unless you include the /OFF switch. Therefore, this switch is
optional.)

/EBO If you want echoing to occur on your console, you must set /EBO or /EB 1. This causes
the system to echo control characters such as "'A, and "'B, and to echo ESC as $. For
more information see 1GCHR in the ADS Programmer's Manual.

/EPI Accept only even parity on input; if this switch is off, accept any parity on input.

/EOL Do not output a NEW LINE if CPL length is exceeded on output.

/ESC ESC character produces "'C"'A interrupt.

/FF Output a form-feed on open.

/LT Output 60 (decimal) nulls on open and close.

/MOD Device is on a modem interface.

/NAS Set non-ANSI! standard bit.

/NRM Do not allow this console to receive SEND messages.

Ion On input, convert octal 175 and 176 to octal 33.

/PBN (Packed Binary Notation. Card readers only.)
Packed format on binary read, 4 columns are put in 3 words. If you don't include this
switch, columns are right-justified in memory.

/PM Page mode. On output, write LPP lines per page, then suspend output until you type
CTRL-Q.

/RAC (Rubout After Carriage return.) Send two rubouts after each NEW LINE and carriage
return.

/RAF Send 21 (decimal rubouts after each form-feed.)

/RAT Send two rubouts after each tab (CTRL-I).

/SFF Simulate form-feed.

/SPO Output characters in even parity; if this switch is off, output characters as sent by
program.

/ST Simulate tab stop every eight columns.

/TO Enable time-outs.

/TSP (Card readers only.)
Include trailing spaces; if this switch is off, trailing blanks are surpressed.

/UCO On output, convert lower-case to upper-case.

/ULC On input, accept both upper-case and lower-case; if this switch is off, lower-case input
is converted to upper-case.

/WRP Hardware aenerates NEW LINE on line-too-Iong (Wrap).

Table 7.C Setting and Displaying the Characteristics of Your Terminal

Example 1
To turn on page mode:

CHARACI'ERISTICS/ON/PM

The eLi Environment 7-15

Example 2
To turn off page mode:

CHARACTERISTICS/OFF /PM

Example 3
To set characters-per-line to 132:

CHARACTERISTICS/CPL = 132

Example 4
To convert output to upper-case:

CHARACTERISTICS/ON /UCO

This command only changes those characteristics listed in the eLI command. All those
not specified remain at their previous setting.

Now do Exercise 7-3 on the next page.

---------- --,--~--.-----

7-16 The eLi Environment

The eLi Environment 7 -17

Exercise 7-3

Directions: Write the command to:

1. Set your prompt to date and directory. _________ _

2. Set the string variable to "PROGRAM 7 FAILED TO
EXECUTE." _____________ _

3. Change your terminal's characteristics to turn off the switch to accept lower-case
input. ____________ _

4. Set lines-per-page to 60, using the CHARACTERISTICS command.

Now check your answers on the next page.

7-18 The eLi Environment

Exercise 7-3
Answers

1. PROMPT,DATE,DIRECfORY

2. STRING PROGRAM 7 FAILED TO EXECUTE

3. CHARACfERISTICS/OFF/ULC

4. CHARACfERISTICS/LPP=60

If you answered all the questions correctly, continue with Module 7 by doing Lab
Activity 7-1. Otherwise, review the material and do this exercise again before
you continue.

,-

The eLI Environment 7 -19

Lab Activity 7-1

Directions: Log onto your system. Then enter the command or commands to:

1. Display the current level and the present setting of all of the parameters associated
with this level.

2. Try to move up one level. Note what happens.

3. Change your prompt to display the current level.

4. Move down one level.

5. Change your prompt to display the date, time, and directory.

6. Display the characteristics of your terminal.

7. Display the environment of level zero.

8. Change your prompt to what it was at level zero.

9. Set your listfile to a file called HOLD_OUTPUT.

10. Use the appropriate switch to cause the FILESTATUS command to list your files in
the listfile.

11. Display the contents of the listfile.

12. Change the prompt to display your working directory.

13. Place the value 25 into variable 7.

14. Try to delete a file called DOES_NOT _EXIST. (Your should see a warning
message.)

15. Set the reaction level for class 2 errors to IGNORE.

16. Repeat Step 14.

17. Log off.

Now check your answers on the next page.

7-20 The eLi Environment

Lab Activity 7-1
Answers

1. CURRENT

2. POP (The screen displays ERROR: CAN'T POP FROM LEVEL ZERO.)

3. PROMPT LEVEL

4. PUSH

5. PROMPT DATE TIME DIRECfORY

6. CHARACTERISTICS

7. PREVIOUS

8. PROMPT/P

9. LISTFILE,HOLD_OUTPUT

10. FILESTATUS/L

11. TYPE,HOLD_OUTPUT

12. PROMPT, DIRECTORY

13. VAR7,2S

14. DELETE/C/V,DOES~OT-EXIST

15. CLASS2,IGNORE

16. DELETE/C/V,DOES_NOT-EXIST (You should not see any warning message.)

17. BYE

If you successfully completed Lab Activity 7-1, go on to the Module 7 Test. If you had
any difficulty with the lab, review the material and do the Lab Activity again before
continuing.

Module 7
Test

The eLI Environment 7-21

Directions: In each of the following questions, select the best answers.

1. Select the command that moves you down one level.

a. POP

b. DOWN

c. PUSH

d. LEVEL +1

2. Select the command that moves you up one level.

a. POP

b. UP

c. PUSH

d. LEVEL-l

3. Select the command that displays only the present level of the environment.

a. POP

b. LEVEL

c. PREVIOUS

d.CURRENT

4. Select the command that displays the present settings of the environment.

a. POP

b. LEVEL

c. PREVIOUS

d.CURRENT

5. Select the command that displays the settings of the next higher level of the
environment.

a. OLD

b. LEVEL

c. PREVIOUS

d.CURRENT

7-22 The eLi Environment

6. Which of the following commands can you use to gain access to any file in the
system?

a. SUPERPROCESS

b. SEARCHLIST

c. SUPERUSER

d. SQUEEZE

7. Which file can you use to hold output data?

a. SEARCH LIST

b. LISTFILE

c. DATAFILE

d. PROMPT

8. Which of the following commands can you use to change your working directory?

a. SEARCHLIST

b. DATA FILE

c. CHARACTERISTICS

d. DIRECTORY

9. Which of the following commands can you use to hold a message from a program?

a. STRING

b. PROMPT

c. DEFACL

d. SQUEEZE

10. Which of the following commands can you use to change the system's reaction to an
error condition?

a. ERROR

b. SQUEEZE

c. CLASS2

d. LISTFILE

The eLi Environment 7-23

Directions: Write the command to:

11. Move down to a new environment level. ___________ _

12. Move up to the previous level. ________________ _

13. Display the current level. __________________ _

14. Display the settings of the environment. _________ _

15. Set your prompt to display the time of day. ___________ _

16. Set your listfile to be the file called TEMPORARY_OUTPUT.

17. Display the setting of SUPERUSER. __________ _

18.SetSUPERPROCESStoon. _______________ _

19. Turn SQUEEZE on. ________ _

20. Set the action for less severe errors to IGNORE. ________ __

Now check your answers to the Module 7 Test in Appendix A. If you answered all the
questions correctly, go on to Module 8. Otherwise, review the material in Module 7 and
take the Test again before continuing.

This concludes Module 7.

"'-,,

Module 8

The Process Tree

Introduction

This module discusses the process tree, which is the relationship of one process to
another. You will learn to create a process and to terminate a process. This module also
discusses the processes that control your use of the system.

Module Objectives

Resources

Upon successful completion of this module, you should be able to:

1. Identify a process and the components of a process.

2. List the types and states of a process.

3. Identify the major components of the process tree.

4. Write CLI command lines using the TREE, PROCESS, TERMINATE,
SUPERPROCESS, and WHO commands.

To complete this module, you will need:

• Module 8 audiotape.

• Module 8 of your Student Guide.

• Audiotape playback unit.

Module Outline

Module 8 discusses the following topics:

1. Process concepts
a. Elements of a process
b. Process functions
c. Process tree

8-2 The Process Tree

2. Creating processes with EXECUTE

3. Creating processt(s with PROCESS

4. Process control
a. TERMINATE command
b. SUPERPROCESS command

Now start the Module 8 audiotape. As you listen, follow along in Module 8 of your
Student Guide.

The Process Tree 8-3

The Process Concept

A process is a set of system resources. A process is more than just a program, however.
It is composed of a program plus:

• Unique ID
• Username

• Memory

• Priority

• Privileges

• State

• Type

Component Explanation

Program Set of instructions supplied by the user or the system.

Unique ID PID, or process ID (1-255).

Username Your unique username, assigned by the system manager.

Memory Active storage space.

Priority 1-3 or 1-255. Determines use of main storage.

Privileges Create a new process.
Change priority.
Change type.

Type The way a process uses memory. There are three types.
Resident: Always in main memory.
Preemptible: Can be moved to disc, but usually in memory.
Swappable: Can be moved to disc to allow other processes to execute.

State Eligible
Ineligible
Blocked

Table 8.A Components of a Process

Process States

State refers to the ability of a process to access the central processor. A process may be
in one of three states:

• An eligible process is allocated main memory. (To gain CPU control, a process must
be allocated main memory.)

• An ineligible process is not allocated main memory. An ineligible process becomes
eligible when memory is allocated.

• A blocked process is waiting for an external event to occur. A process can become
blocked by creating another process.

8-4 The Process Tree

SD-00200

Figure 8.1 Process Types and Priorities

PROCESS
TYPE

RESIDENT
(ALWAYS IN
MEMORY)

PROCESS
PRIORITIES

IHIGHI
I
I
I

I LOW I
IHIGHI

I
PREEMPTIBLE I

SWAPPABLE

I

ILOWI

IHIGHI
I
I
I

ILOWI

INCREASING
OPPORTUNITIES
TO ACQUIRE
MEMORY

PROCESS
IS

SWAPPED
OUT TO

DISC 4

PROCESS
IS

CREATED

2

YES

11

MAIN 10

MEMORY IS
ALLOCATED

NO

ELIGIBLE STATE

UNBLOCKING
EVENTS
OCCUR 7

PROCESS
IS SWAPPED
OUT TO DISC 6

YES

8

The Process Tree 8-5

BLOCKING
ACTIONS

OCCUR

5

L
INELIGIBLE STATE 3

BLOCKED BY
SUPERIOR PROCESS

C5-0171_5 ________ ---1

PROCESS IS BLOCKED

Figure 8.2 State Transitions of a Process

C5-017l6

Figure 8.3 A Basic Process Tree

PMGR is the peripheral manager that manages input and output operations. OP is a
highly privileged process that can create other processes.

The process hierarchy is similar to the data file and directory hierarchy.

8-6 The Process Tree

SUPERIOR

INFERIOR

CS-OI717

Figure 8.4 Process Tree

Example 1
WHO 3
PIO: 3 OP EX :UTIL:EXEC.PR

Example 2
TREE 14
PIO:14, FATHER: 5 SONS: 17 18 25

] SONS

Note: The TREE and WHO commands will not work for PID O.

Follow the steps below to construct the process hierarchy on your system.

1. TREE 1
PIO: 1 FATHER: 0 SONS:

2. WHO 1
PIO: 1 PMGR PMGR : PMGR . PR

3. TREE 2
PIO: 2 FATHER: 0 SONS: 3 4 17

4. WHO 2
PIO:2 OP OP :CLI.PR

5. WHO 3
PIO:3 EXEC EXEC :UTIL:EXEC.PR

6. WHO 4
PIO:40P INFOS :INFOS.PR

7. WHO 17
PIO:17 OP FORMQ :UTIL:AZTEXT:FORMQ.PR

8. TREE 3
PIO: 3 FATHER: 2 SONS: 569 10 11

The Process Tree 8-7

9. WHO 5

These steps result in the process hierarchy illustrated in Figure 8.5.

C5-017/8

Figure 8.5 The Complete Process Hierarchy

(S-0/7/9

Figure 8.6 Creating Sons

8-8 The Process Tree

CS-Ol720

Processes B, C, D, E, F, and G are all subordinate to A. Process F is subordinate to B. E
and G are subordinate to D.

Any privilege that a father has can be passed on to a son. No father can pass a privilege
that he lacks to a son.

PRIVILEGES

Figure 8.7 Passing Privileges

Now do Exercise 8-1 on the next page.

The Process Tree 8-9

Exercise 8-1

Directions: Fill in the blanks in the process tree in Figure 8.8.

C5-01721

Figure 8,8

Directions: Using the process tree in Figure 8.9, answer the following questions.

C5-01722

Figure 8.9

3. D is subordinate to ___________ _

4. D is superior to _____________ _

5. A is superior to ____________ _

6. The father of F is __________ _

7. The sons of Dare ___________ _

Now check your answers on the next page.

8-10 The Process Tree

Exercise 8-1
Answers

l.PMGR

2.0P

3. A

4.E,F

5.B,C,D,E,F

6. D

7. E, F

If you answered all of the questions correctly, continue with Module 8 by restarting the
Module 8 audiotape. Otherwise, review the material and do this exercise again before
you continue.

,-

The Process Tree 8-1 1

Creating Subordinate Processes

EXECUTE Command

C5-0/723

• The EXECUTE command creates a subordinate swappable process with the same
priority and privileges as your process.

• The program comes from the file that you specify as the argument.

• The new process blocks your process.

Example 1
EXECUTE PROGI

The command invokes a program called PROG 1. That is, it creates a subordinate
process whose program is PROG 1. Figure 8.10 illustrates a portion of the process tree
before and after the command takes effect. PROG 1 has the same priority and privileges
as YOU.

BEFORE AFTER

Figure 8.10 Before and After EXECUTE

Now do Exercise 8-2 on the next page.

8-12 The Process Tree

The Process Tree 8-13

Exercise 8-2

CS-O/724

Directions: Given the process tree in Figure 8.11, draw the process tree if process USER
issued the following command:

EXECUTE, USElLPROG_ TEN

Figure 8.11 Process Tree Before EXECUTE Command

N ow check your answer on the next page.

8-14 The Process Tree

Exercise 8-2
Answers

CS-OI725

Figure 8.12 Process Tree After EXECUTE Command

If your answer is correct, continue with Module 8 by restarting the Module 8 audiotape.
Otherwise, review the material and do this exercise again before you continue.

The Process Tree 8-15

PRO(:ESS Command

The PROCESS command creates a son process. It differs from the EXECUTE commapd
in two ways. Using the PROCESS command:

• You can determine privileges, priority, and type.

• Does not always block your process.

If you specify no switches, the new process has no privileges.

Switch Result

Some Switches:

/DEFAULT Pass same privileges as creating process.

/BLOCK The new process will block the old process, if you use /BLOCK, you must also
use /IOC.

/PREEMPTIBLE Make the type of the new process preemptible.

/RESIDENT Make the type of the new process resident.

/PRIORITY=n Set the priority of the new process to n.

Privilege Passing:

/CHPRIORITY Allow new process to change its priority.

/CHTYPE Allow new process to change its type.

/SUPERUSER Allow new process to use the superuser privilege.

/SUPERPROCESS Allow new process to use the superprocess privilege.

Parameter Setting and Passing:

/CONSOLE Make the new process's console the same as the parent's.

/CONSOLE = name 1 Make the new process's console the file referred to by name 1.

I /INPUT Make the new process's input the same as the parent's.

/INPUT=name2 Make the new process's input the file referred to by name2.

/OUTPUT Make the new process's output the same as the parent's.

/OUTPUT = name3 Make the new process's output the file referred to by name3.

/IOC Make the new process's input, output and console the same as the parent's.
(You must also use /BLOCK if you use /IOC).

/IOC=name4 Make the new process's input, output, and console th file referred to by name4.

/DATA Make the new process's datafile the same as the parent's.

/DA T A = name5 Make the new process's datafile the file referred to by name5.

/LiST Make the new process's listfile the same as the parent's.

/LiST = name6 Make the new process's listfile the file referred to by name6.

/SONS Make the new process's number of sons one less than the parent's number 0

sons.

/SONS=n Make the new process's number of sons equal to n.

/DIRECTORY Make the new process's directory the same as the parent's.

/DIRECTORY=name7 Make the new process's directory the file referred to by name7.

Table 8.B Switches on the PROCESS Command

If you try to pass a privilege that you do not have, you will see the following message:

ERROR: CALLER NOT PRIVILEGED FOR THIS ACTION

8-16 The Process Tree

Example 1
PROCESS PROGRAMl

BEFORE AFTER

CS-OJ726

Figure 8.13 Process Tree Before and After PROCESS Command

PROGRAM! has only the privileges that you give it. Since you passed no privileges,
PROCESS_SON has no privileges.

Example 2
PROCESS/IOC/BLOCK:CLI.PR -

Your process becomes blocked, and a new CLI is created using the same console for
input and output operations. If you use the flOC switch, you must also use fBLOCK.

Example 3
PROCESS/RESIDENT/PRIORITY.l/SONS/SUPERUSER PAYROLL_3

Now do Exercise 8-3 on the next page. -

The Process Tree 8-1 7

Exercise 8-3

Directions: Answer the following questions.

1. If you pass no privilege to a process that you create, it will have:

a. All privileges.

b. No privileges.

2. Can you pass a privilege that you do not have?

a. Yes

b. No

3. Write the command to create a process to run PROG_I, block your process, and use
your terminal for input, output, and console files.

4. Write the command to create a process to run PGM_IO that has the same privilege as
your process. ____________ _

Now check your answers on the next page.

8-18 The Process Tree

Exercise 8-3
Answers

1. b.

2. b.

3. PROCESS/IOC/BLOCK PROG_l

4. PROCESS/DEFAULT PG~IO

If you answered all of the questions correctly, continue with Module 8 by restarting the
Module 8 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Process Control

TERMINA TE Command

CS-Oj 727

Format: TERMINATE PID

Example 1
TERMINATE 14

BEFORE

Figure 8.14 Process Tree Before and After TERMINATE Command

Example 2
TERMINATE 14

The Process Tree 8-1 r

AFTER

8-20 The Process Tree

BEFORE AFTER

YOUR_GRANDSON (31)

CS-OJ728

Figure 8.16 Process Tree Before and After TERMINATE Command

PID 14 and PID 31 are both terminated by the TERMINATE 14 command.

SUPERPROCESS Command

The SUPERPROCESS command sets or displays the superprocess setting. When
SUPERPROCESS is on, you can control any process.

Format: SUPERPROCESS ION}
OFF}

Prompt Super process superuser

) OFF OFF

*) OFF ON

+) ON OFF

#) ON ON

Table 8.C Superuser and Superprocess Prompts

Example 1
1. SUPERPROCESS

OFF

2. SUPERPROCESS ON

3. +)SUPERPROCESS
ON

4. +)SUPERUSER
OFF

5. +)SUPERUSER ON

6. #)SUPERPROCESS OFF

7. *)SUPERUSER OFF

N ow do Exercise 8-4 on the next page.

The Process Tree 8-21

8-22 The Process Tree

The Process Tree 8-23

Exercise 8-4

Directions: Using the process tree in Figure 8.16, write the command to:

1. Terminate process XYZ. __________ _

2. Terminate USER2 and ABC in one command. ___________ _

3. Turn on the superprocess privilege. _____________ _

USER_1 (10)

XYZ (15) ABC (14)

0;-0/729

Figure 8.16

Now check your answers on the next page.

8-24 The Process Tree

Exercise 8-4
Answers

1. TERMINATE IS

2. TERMINATE 13

3. SUPERPROCESS ON

If you answered all of the questions correctly, go on to Lab Activity 8-1. Otherwise,
review the material and do the exercise again before continuing.

The Process Tree 8-25

Lab Activity 8-1

1. Try to determine the process hierarchy on your system. Keep in mind that the
hierarchy may be changing as you are doing this exercise.

a. Use the TREE command on Process 1

b. Use the WHO command to determine the name of each process listed

c. Repeat a and b for Process 2

d. Repeat c for the sons of Process 2.

e. Continue with the grandsons of Process 2.

Note: (Some of the processes in Steps d and e may terminate as you are working.)

2. Create a process. Make this process execute another copy of the CLI (:CLI.PR).
Determine the process ID of the new process. Terminate the new process, but do not
affect the creating process.

3. Determine the setting of the superprocess switch. Try to turn on superprocess. (You
may not have the privilege.) If you turned it on, turn it off.

Now check your answers on the next page.

8-26 The Process Tree

Lab Activity 8-1
Answers

1. The process hierarchy differs from system to system. Refer to the example before
Figure 8.S if you have difficulty.

2. PROCESS/BWCK/IOC :CLI.PR
WHO
TERMINATE on

3. SUPERPROCESS
SUPERPROCESS ON
SUPERPROCESS OFF

If you successfully completed this Lab Activity, continue to the Module 8 Test. If you
had any difficulty, review the module and do the Lab Activity again before taking the
Test.

/'-~

Module 8
Test

The Process Tree 8-27

Directions: Answer the following questions by completing the sentence.

1. The three process types are:

a. ____________________ __

b. ____________________ __

c. ____________________ __

2. The three possible states that a process can attain are:

a. ____________________ __

b. ____________________ __

c.

3. The state in which all processes begin is:

a. Ineligible.

b. Eligible.

c. Blocked.

d. Resident.

4. A process consists of:

a. ____________________________ _

b. ____________________________ _

c. ____________________________ _

d. __________________________ __

e. ____________________________ _

f.

g. -----------------------------
h. ____________________________ _

8-28 The Process Tree

CS-OI730

Figure 8.17

5. Identify the processes in the process tree shown in Figure 8.17.

6. Select the command that you can use to determine the father process of a process:

a. TREE

b.PARENT

c. PROCESS

d. SON

7. Select the command that you can use to determine the son of a process:

a. TREE

b.PARENT

c. PROCESS

d. SON

8. Select the command that cancels a subordinate process, but keeps your process
intact:

a. BYE

b. TERMINATE

c. CANCEL

d.OFF

The Process Tree 8-29

9. Select the command that creates a new subordinate process:

a. START

b. CREATE

c. PROCESS

d. SON

10. Select the command that allows you to control any process:

a. SUPERUSER

b. BOSS

c. MASTER

d. SUPER PROCESS

Directions: Write the command to:

11. Find the father and any sons of process 14. _________ _

12 . Terminate process 1 7.

13. Turn on the superprocess privilege. _______________ _

14. Determine the process name of process 13. ____________ _

15. Create a process that blocks your process, uses your console for input and output,
and runs a program called GOOD_STUFF. ___________ _

16. Create a process that has no privileges and executes a program called
MODULE_EIGHT_CONCLUSION.

Now check your answers to the Module 8 Test in Appendix A. If you answered all the
questions correctly, go on to Module 9. Otherwise, review the material in Module 8 and
take the Test again before continuing.

This concludes Module 8.

Module 9

Advanced CLI Concepts

Introduction

In this module we will discuss the use of macros and pseudo-macros. We will see how to
use them to ease the performance of repetitive tasks. In addition, we will look at some
commands that you can use in conjunction with magnetic tape processing.

Module Objectives

Resources

Upon successful completion of this module, you should be able to:

1. Write a CLI macro.

2. Use pseudo-macros in command lines.

3. Use the CLI commands LOAD and DUMP to perform magnetic tape operations.

To complete this module, you will need:

• Module 9 audiotape.

• Module 9 of your Student Guide.

• Audiotape playback unit.

Module Outline

Module 9 discusses the following topics:

1. Tape processing
a. DUMP command
b. LOAD command

9-2 Advanced CLI Concepts

2. Macros
a. Creating macros
b. Using macros
c. Passing arguments

3. Pseudo-macros
a. Environmental
b. Conversion
c. Conditional

Now start the Module 9 audiotape. As you listen, follow along in Module 9 of your
Student Guide.

Advanced CLI Concepts 9-3

Tape Processing

Tape backup:

- Adds data security.

- Protects against disasters.

- Protects against mistaken deletions.

- Protects against hardware problems.

DUMP Command

The DUMP command copies one or more files into a specified destination file.

Forma t: DUMP,DESTINA TION_FILENAME,SOURCE_P A THNAME

Switches on the DUMP command:

-IV
- INACL

Verifies or lists the names of the files dumped.

Eliminates ACLs when files are dumped.

Example 1
DUMP @MTAO:O,SPECIAL+

Dump all files that are named SPECIAL followed by any other characters onto the tape
mounted on the tape drive referred to as MT AD.

Example 2
DUMP jV,:UTIL:DUMP -AREA_8

Dump all files in the working directory and in all subordinate directories into a disc file
called :UTIL:DUMP _AREA_8. Whenever you do not specify a source file, all files in
or subordinate to the working directory are dumped. Use extreme caution to ensure that
the dump file is not in or subordinate to the working directory. The IV switch causes all
files dumped to be listed at your console.

To back up your files without the help of a macro, use this procedure:

Monday

DUMP,@MTAl:O,FILE_l

DUMP,@MTAl:l,DATA_FILE

DUMP,@MTAl:2,SPECIALDATA

DUMP,@MTAl:3,PERSONNEL_FILE

DUMP,@MTAl:4,PAYROLL_FILE

DUMP,@MTAl:5,ACCOUNT_DATA

Tuesday

DUMP,@MTA t :O,FILE_l

DUMP,@MTAl:t,DATA_FILE

DUMP,@MTAt:2,SPECIAL_DATA

DUMP,@MTAt:3,PERSONNEL_FILE

DUMP,@MTAt:4,PAYROLL_FILE

DUMP,@MTAt:5,ACCOUNT_DATA

9-4 Advanced CLI Concepts

Wednesday

DUMP •••
DUMP •••
DUMP •••
DUMP •••
DUMP •••
DUMP ...

LOAD Command

The LOAD command copies one or more files from FILENAME to a specified
source file.

Format: LOAD,FILENAME,SOURCLFILENAME

Switches on the LOAD command:

-/DELETE

- IN
-IV
Example 1

Deletes any existing file that has the same name as file on the dump file
and replaces it with file from the dump file.

Do not load files; only list file names and dates.

Verify each loaded file.

LOAD @MTAO:O +.BU

Load all files that end in the characters .BU from the first file on tape drive MT AO into
the working directory.

Example 2
LOADjN @MTAl:l

List the filenames and dates of all the files in the second file that is mounted on tape
drive MTAI.

Example 3
LOADjV jDELETE DUMP_FILLA

Load all of the files that are in the disc file DUMP _FILE-A into the working directory.
If a file of the same name exists, delete the existing file and replace it with the one from
the dump file. Provide a list of all files that are loaded.

Macros

Advanced CLI Concepts 9-5

A macro is a file that contains a list of commands. To create a macro, you can use the
CREATE command.

Example 1

1. CREATE/I DUMPER.CLI
2.)DUMP,@MTA1:0,FILE_l
3.)DUMP,~MTA1:l,DATA_FILE

)DUMP,@MTA1:2,SPECIALDATA
) DUMP,@MTA1:3,PERSONNELFILE
)DUMP,@MTA1:4,PAYROLLFILE
)DUMP,@MTA1:5,ACCOUNT_DATA

4.))

To invoke this macro, only a single command is required. Note that it is not necessary to
add the .CLI extension to the macro name.

DUMPER

To back up your files after you have written this macro, all that you must do is:

Monday DUMPER

Tuesday DUMPER

Wednesday DUMPER

Thursday DUMPER

Example 2
If you wanted to also have a file TRANSACTION_Ol_22_82 (01_22_82 is the
transaction date.) in your dump file, you would write DUMPER this way:

CREA TEll DUMPER.CLI
)DUMP,@MTA1:0,FILE_l
)DUMP,@MTA1:l,DATLFILE
)DUMP,@MTA1:2,SPECIAL_DATA
)DUMP,@MTA1:3,PERSONNEL_FILE
)DUMP,@MTA1:4,PAYROLL_FILE
)DUMP,@MTA1:5,ACCOUNT_DATA
)DUMP,@MTA1:6,TRANSACTION_ % 1 %
))

(Add this line to include transaction file.)

You would run DUMPER this way: DUMPER 06_01_82

9-6 Advanced CLI Concepts

Argument Passing

CS-Ol732

% 1 % First argument

%2% Second argument

%3% Third argument

%n% nth argument

%0% Macro name

Example 1
CREATEjIEASY~CRO

)WRITE THIS IS A TEST WRITTEN FOR % 1 %.

»

To execute and see the results:

EASY-MACRO GARY
THIS IS A TEST WRITTEN FOR GARY.

EASY-MACRO,GARY
... --

%0% %1%

JEASY _MACRO, GARY:..----_
j

THIS IS A TEST WRITTEN FORI GARY I
EASY_MACRO, GARY

t t
%0% %1%

I

Figure 9. 1 Results of EASY_MACRO

Example 2
CREATEjITEST-MACRO

1.)WRITE THIS IS A MESSAGE FROM THE %0% MACRO
2.)WRITE THIS LINE DISPLAYS THE FIRST ARGUMENT: % 1 %
3.)WRITE HERE IS THE SECOND ARGUMENT: %2%
4.)WRITE YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE: % 1 %
5.)WRITE THE THIRD ARGUMENT IS HERE AT % 3 % • I HOPE YOU ARE IMPRESSED!

CS-O/7 33

To execute and see the results:

TEST_MACRO TESTt 2ND_ARG THE_END
THIS IS A MESSAGE FROM THE TESLMACRO MACRO
THIS LINE DISPLAYS THE FIRST ARGUMENT: TEST1
HERE IS THE SECOND ARGUMENT: 2ND __ ARG
YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE: TEST1
THE THIRD ARGUMENT IS HERE AT THE __ END. I HOPE YOU ARE IMPRESSED!

TEST_MACRO TESTt 2ND_ARG THE_END

%0% %1% %2% %3%

)TEST _MACRO TEST1 2ND_ARG THE_END!
THIS IS A MESSAGE FROM THEITEST _MACRO MACRO
THIS LINE DISPLAYS THE FIRST ARGUMENT: ITEST1
HERE IS THE SECOND ARGUMENT:12ND ARG
YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE:ITEST11

Advanced CLI Concepts 9-7

THE THIRD ARGUMENT IS HERE AT THE1END. I HOPE YOU ARE IMPRESSED I

TEST_MACRO TEST1 2ND_ARG THE_END

t t t t
%0% %1% %2% %3%

I I I
I
I

FigurE! 9.2 Results of TEST_MACRO

Now do Exercise 9-1 on the next page.

9-8 Advanced Cli Concepts

Advanced CLI Concepts 9-9

Exercise 9-1

Directions: Select the correct answer.

1. Select the command to copy all of the files in your working directory to a tape.

a. LOAD @MTAO:O

b. COpy TAPE DIRECTORY

c. DUMP @MTAO:O

d. DUMP @MTAl:3,MYFILES

2. Select the command that loads the contents of a tape into your working directory.

a. LOAD @MTAO:O

b. COpy TAPE DIRECTORY

c. DUMP @MTAO:O

d. DUMP @MTAl:3,MYFILES

3. The primary purpose of using a macro is:

a. To save storage space.

b. To save work for the computer user.

c. To reduce computer usage.

d. To create back-up tapes.

4. You can pass arguments to a macro.

a. True

b. False

5. The LOAD and DUMP commands only work with magnetic tape.

a. True

b. False

Directions: Construct macros for the following.

6. Write a macro called SEE_FILES that displays the names of all of the files in your
working directory and writes a message ALL FINISHED after the display.

9-10 Advanced CLI Concepts

7. Write a macro called SPECIAL that accepts a name as an argument and returns
THIS IS ESPECIALLY FOR, and then the name that was entered.

Now check your answers on the next page.

Exercise 9-1
Answers

1. c.

2. a.

3. b.

4. a.

5. b.

6. CREATEjl SEE_FILES.CLI
) FILEST A TUS
)WRITE ALL FINISHED
))

7. CREATEjl SPECIAL.CLI
)THIS IS ESPECIALLY FOR % 1 %

))

Advanced CLI Concepts 9-1 1

If you answered all of the questions correctly, continue with Module 9 by restarting the
Module 9 audiotape. Otherwise, review the material and do this exercise again before
you continue.

9-12 Advanced CLI Concepts

Pseudo-macros

Pseudo-macros return values that you can use in your processing. They are always
enclosed in square brackets and preceded by an exclamation point (Le., [!pseudo-macro]).
The three types of pseudo-macros are:

• Environmental settings (Le., SEARCHLIST, ACL, TIME, DATE).

• Conditional execution (Le., EQUAL, ELSE, END).

• Conversions (Le., OCTAL, DECIMAL).

Pseudo-macro Expands to:

IACL ACL of a file.

IASCII Character corresponding to value.

I DATE System date.

IDECIMAL Decimal value of octal number.

IDEFACL Current default ACL.

IDIRECTORY Working directory.

IELSE Conditional.

lEND Conditional.

IEQUAL Conditional.

IEXPLODE Expands argument with spaces.

INEQUAL Conditional.

IOCTAL Converts decimal to octal.

IPID Process 10.

IREAD Displays text and accepts argument.

ISEARCHLIST Your search list.

ITIME System time.

IUSERNAME Your username.

Table 9.A Commonly Used Pseudo-macros

Example 1
WRITE [!DATE]
16-MAY-82

Example 2
WRITE [!SEARCHLIST]
:UTIL,:UTIL:INFOS,:UDD:RYAN

Example 3
WRITE [!OCTAL 999]
1747

Example 4
WRITE [!DECIMAL 777]
511

~-

Example 5
WRITE [!ASCII 207]
(You will hear a beep tone <CTRL-G»

Example 6
WRITE [!USERNAME] IS P.I.D. [!PID]
RYAN IS P.I.D. 14

Example 7
SEARCHLIST
:UTIL, :UTIL:INFOS
SEARCHLIST,[!SEARCHLIST],:UDD:PROJECT _x
SEARCH LIST
:UTIL, :UTIL:INFOS, :UDD:PROJECT __ X

Example 8
DIRECTORY
:UDD
DIRECTORY [!DIRECTORY]:MODULE_9
DIRECTORY
:UDD:MODULE __ 9

Example 9
The !ACL pseudo-macro always requires an argument.

ACL OLDFILE
RYAN,OWARE, i-.JOE,RE
ACL,OLDFILE,[!ACL,OLDFILE], +,E
ACL OLDFILE
RYAN,OWARE,JOE,RE, i-,E

Example 10
CREATE/) DELMAC.CLI
)DELETE/V /C [!READ DELETE WHAT FILE?]
)WRITE DELETIONS COMPLETED AT [!TIME] ON [!DATE]
))
DELMAC
DELETE WHAT FILE? + .BU
= SCRIPT. BU? Y

DELETED =SCRIPT.BU
=GUIDE.BU? Y
DELETED =GUIDE.BU
DELETIONS COMPLETED AT 16:16:13 ON 22-JAN-82

Advanced CLI Concepts 9- 1 3

9-14 Advanced ClI Concepts

CS-OJ734

Example 11
The following macros illustrate how to use the time of day as input to a program that
requires a random number as input.

CREATE/I RANDO.CLI This line creates a CLI command that
)RANDOM [!EXPLODE [!TIME]] ~ looks like this:
)WRITE DONE RANDOM 1 5 : 2 3 : 0 5
)

Time 15 :23:05

lffffltl
Argument 1 2 3 4 5 6 7 8

CREATE/I RANDOM.CLI
)XEQ MYPROG %8% %5% ~~
)

To execute:

RANDO

FROM CLI RANDO.CLI

This will call a macro named RANDOM.CLI
and pass eight arguments to it. Each of
the numbers is an argument, and each colon
is also an argument.

This will execute a program named MYPROG
and pass a random number in the range of
00 to 99 to it. The number is composed
of the digit portion of the seconds from
the time of day and the digit portion
from the minutes.

RANDOM.CLI

..----I~ RANDOM [IEXPLODE [ITIME]] 1----t"'EXECUTE MYPROG % 8 % % 6 %

.... ------1 WRITE DONE ----------------

Figure 9.3 Flow of Control of RANDO Macro

.--

Advanced CLI Concepts 9-1 5

Conditional pseudo-macros allow selected execution of commands.

Example 1
CREATE/I AM_PM.CLI
)[!EQUAL % 1 % 0]
)WRITE MORNING
)[!ELSE]
)WRITE AFTERNOON
)[!END]
))
AM_PM 0
MORNING
AM_PM 1
AFTERNOON

Example 2
CREATE/I SAFETY.CLI
)[!EQUAL [!USERNAME] MANAGER]
)XEQ ACCOUNTS
)[!ELSE]
)WRITE *** EXECUTION ABORTED INVALID USER ***
)[!END]
))

For any user not logged on as username MANAGER, the program accounts will not
execute. This method can be used to add a level of security beyond simply using ACLs.

Now do Exercise 9-2 on the next page.

9-16 Advanced CLI Concepts

Advanced CLI Concepts 9-1 7

Exercise 9-2

Directions: Fill in the appropriate returned value, given the following conditions:

USERNAME: TRICIA
TIME: 10:45 PM
DATE: 10-24-82
WORKING DIRECTORY: :UDD:MACRO_DIR
PID: 21

Example
WRITE [!TIME] 22:45:00 (Remember the proper format.)

1. WRITE [!DATE] _________________ _

2. WRITE YOUR WORKING DIRECTORY IS [!DIRECTORY]

3. WRITE [!USERNAME] IS PROCESS I.D. [!PID]

4. WRITE [!EXPLODE [!USERNAME))

5. WRITE THIS IS THE END, _____________ _

6. In the space below, write a macro to write the time of day if you enter a T and write
the date otherwise. Call the macro TIDA.CLI.

Check your answers on the next page.

9-18 Advanced CLI Concepts

Exercise 9-2
Answers

1. 24-0CT-82

2. YOUR WORKING DIRECTORY IS :UDD:MACRO-DIR

3. TRICIA IS PROCESS I.D. 21

4. T RIC I A

5. THIS IS THE END

6. CREATEjI TIDA.CLI
)[!EQUAL % 1 %.T]
)WRITE [!TIME]
) [!EISE]
)WRITE [!DATE]
) [!END]
)

or:

CREATEjI TIDA.CLI
)[!EQUAL % 1 % T]
)TIME
) [!EISE]
) DATE
)[!END]
)

If you answered all of the questions correctly, continue to Lab Activity 9-1. Otherwise,
review the material and do this exercise again before you continue.

,,-,

Advanced CLI Concepts 9-1 9

Lab Activity 9-1

Directions: Enter the commands necessary to accomplish each of the following tasks.

1. Write and execute a macro that displays the time, date, and working directory.
Call the macro WHEN_WHERE.

2. Write and execute a CLI command line that displays the time with a space
between each character.

3. Enter and execute a macro that prints OPTION 1 if you enter a 1 as an argument,
and prints INVALID if you enter any other character.

4. Back up all of the files in your directory on magnetic tape.

5. Get a list of the files on the tape, but do not replace them in your directory.

6. Create a macro to do Steps 4 and 5. Include in the macro steps that tell you what
is happening as it happens.

7. Examine some macros on your system. Make: UTIL your working directory. List
the files in :UTIL that have the .ClI extension. Type some of the files that are of
interest to you and to which you have read access.

Now check your answers on the next page.

9-20 Advanced CLI Concepts

Lab Activity 9-1
Answers

1. CREATE/I WHEN_WHERE.CLI
)TIME
) DATE
) DIRECTORY
)

2. WRITE [!EXPLODE [!TIME]]

3. CREATE/IOPTION.CLI
[!EQUAL % 1 %,1]
WRITE OPTION 1
[!ELSE]
WRITE INVALID
[!END]

4. DUMP @MTAO:O (See your system manager for correct magnetic tape drive).

5. LOAD/N @MTAO:O

6. CREATE/I SUPERDUMP.CLI
DUMP @MTAO:O
WRITE FILES ARE DUMPED
LOAD/N @MTAO:O
WRITE MACRO COMPLETE

7. DIRECTORY:UTIL
FILESTATUS + .CLI
TYPE •••• CLI

If you completed this Lab Activity successfully, continue to the Module 9 Test. If you
had any difficulty, review the material and try again before continuing.

Module 9
Test

Directions: Answer the following questions.

1. Which of the following is in the correct format?

a. I!DATE}

b. [!DATE]

c. {DATE}

d. [DATE]

Advanced CLI Concepts 9-21

2. Which of the following can be used to create a back-up file?

a. LOAD

b. DUMP

c. WRITE

d. SAVE

3. Which of the following can be used to copy a back-up file into your directory?

a. LOAD

b. DUMP

c. WRITE

d. SAVE

4. Which of the following commands converts an octal III to decimal?

a. WRITE [!DECIMAL 111]

b. WRITE [!DECIMAL 73]

c. WRITE [!OCT AL 111]

d. WRITE [!OCTAL 73]

5. To access the macro name within a macro, which would you use?

a. %0%

b. %1%

c. %2%

d. %3%

9-22 Advanced CLI Concepts

6. Write a macro called QUIZ6_6.CLI that executes a program called PROG 1 and
prints a message when completed.

7. Write a macro that executes PROG2 if you enter a 1 as an argument, and executes
PROG2 otherwise.

8. Using pseudo-macros, write a command line that adds the directory :UTIL to your
searchlist.

9. Write a series of macros called MAC1, MAC2, that prints out the seconds portion
of the time of day.

Now check your answers to the Module 9 Test in Appendix A. If you answered all the
questions correctly, continue to Module 10. Otherwise, go back and review the
material in Module 9 and take the Module 9 Test again.

This concludes Module 9.

Module 10

The SPEED Editor

Introduction

This module explains the elementary features of the SPEED text editor (AOS, AOS/VS).
Although not all of the features of SPEED are discussed, this module allows you to use
enough of the features to develop and edit files for use in program development. For a
more detailed discussion of all of the features, refer to SPEED Text Editor (AOS and
AOS/VS) User's Manual.

Module Objectives

Upon successful completion of this module, you should be able to:

1. List the steps involved in a typical editing session.

2. Identify and use the SPEED commands that perform the following functions:
a. Open a file for input.
b. Create and open a file for output.
c. Change the location of the Character Pointer.
d. Insert text into the edit buffer.
e. Search for text in the edit buffer.
f. Display text in the edit buffer.
g. Change text in the edit buffer.
h. Delete text from the edit buffer.
i. Read text into the edit buffer.
j. Move text to the output file.
k. Create temporary output files.
1. Create back-up files.
m. Close files.
n. Return to the CLI.

10-2 The SPEED Editor

Resources

To complete this module, you will need:

• Module 10 audiotape.

• Module 10 of your Student Guide.

• Audiotape playback unit.

Module Outline

Module 10 discusses the following topics:

1. SPEED concepts
a. Units of text
b. Files and the edit buffer
c. Editing steps
d. Command structure
e. Character Pointer

2. Sample editing session
a. Opening an output file
b. Inserting text
c. Character Pointer commands
d. Editing text
e. Moving text to the output file
f. Returning to the CLI
g. Opening and reading from an input file

3. Advanced commands
a. Page and window mode
b. Commands that perform several functions
c. Creating a temporary output file
d. Creating a back-up file

The SPEED Editor 10-3

SPEED Concepts

Units of Text

Text is a sequence of one or more ASCII characters.

Unit of Text Definition Example

Character A single ASCII alphanumeric character. SPEED uses the full A
upper-case and lower-case ASCII character set.

String A sequence of ASCII characters. A string can contain any THIS IS A STRING
ASCII character, except delimiters such as carriage returns.

Line A sequence of characters up to and including a carriage THIS IS A LINE l
return.

Page A sequence of characters ending in a new page character: (See Figure 10.1.)
CTRL-L. A page has no size limit.

Window A sequence of characters divided into a specific number of (See Figure 10. 1.)
lines.

Table 10.A Units of Text that SPEED Recognizes

Special-purpose characters:

• Command terminators: CTRL-D = $$

• String delimiter: ESCape $

• Command separator: ESCape $

Edit Buffer

• Area of memory where SPEED manipulates your text.

• Limited by memory size.

• 36 buffers available.

10-4 The SPEED Editor

--

PAGE!
THIS IS LINE 1l

} WINDOW THIS IS LINE 2)
THIS IS LINE 3)
THIS IS LINE 4)

} WINDOW THIS IS LINE 5)
THIS IS LINE 6)
tL

{
THIS IS LINE 7)

} WINDOW PAGE THIS IS LINE 8)
THIS IS LINE 9)
tL

/ THIS IS LINE 10)
} WINDOW THIS IS LINE 11)

THIS IS LINE 12)
THIS IS LINE 13)

} WINDOW PAGE ~ THIS IS LINE 14)
THIS IS LINE 15)
THIS IS LINE 16)

} WINDOW THIS IS LINE 171
, THIS IS LINE 18)

tL

CS-00989

Figure 10.1 Pages and Windows

The SPEED Editor 10-5

Editing Steps

+ INPUT MODE: READY TO ACCEPT COMMANDS (!)

INVOKE SPEED
! EXECUTION MODE: CARRYING OUT COMMANDS

1
IF AN INPUT FILE
EXISTS, OPEN IT

t
OPEN OUTPUT

FILE

J
READ (YANK) A PORTION PAGE MODE: YANK ONE PAGE

r+- OF THE INPUT FILE INTO
THE BUFFER WINDOW MODE: YANK ONE WINDOW

+
INSERT/MODIFY TEXT

IN EDIT aUF FER

+
WRITE (PUT) CONTENTS
OF 3UFFER TO OUTPUT

FILE

I

J

CLOSE FILES

+

EXIT FROM SPEED

+

IC~0099" ___ ~
Figure 10.2 Editing Steps

More than one of the steps shown in Figure 10.2 may be performed with a single
command.

10-6 The SPEED Editor

Step 1: When you issue the command to execute SPEED, two things happen:

• The program is called in from the disc.

• An edit buffer is created.

SPEED.PR

EDIT BUFFER

MAIN MEMORY

CS-Ol735

Figure 10.3 SPEED is Invoked

SPEED.PR
PROG.1

DISC

The SPEED Editor 10-7

Steps 2 and 3: Open files on the disc. Files remain unchanged.

SPEED.PR

EDIT BUFFER

MAIN MEMORY

CS-O/736

Figure 10.4 Open Files for Output and Input

DISC

OPENED,
BUT EMPTY

10-8 The SPEED Editor

CS-OJ737

Step 4: Data is moved into the edit buffer when a READ command is issued.

Step 5: Add, change, or delete data in the edit ,buffer.

SPEED.PR

EDIT BUFFER
PAGE 1 OF

PROG.1

MAIN MEMORY

EDITED
---- VERSION

DISC

Figure 10.5 Read a Page of PROG.1 for Editing

CS-0/738

Step 6: WRITE commands move data to output file.
Step 7: Close the files.

PROG.l

I SPEED.PR I
EDIT BUFFER

1-

PROG.l

'-

MAIN MEMORY

Figure 10.6 WRITE the Edited Version Out to Disc

DISC

The SPEED Editor 10-9

EDITED
VERSION

10-10 The SPEED Editor

Step 8: Return to CLI.

CLI.PR

MAIN MEMORY

CS~J7J9

Figure 10.7 Terminate SPEED; Reinvoke eLi

Console Control Procedures

PROG.1

CTRL-U deletes an entire SPEED command line.

Example 1
55
I THIS IS AN EXAMPLE OF CfRL-U

(CTRL-U)

Example 2
55
I HELLO, THIS IS A TEST

(CTRL-U)

DISC

I NEWPROGI

CTRL-C, CTRL-A deletes a multiple-line SPEED command.

Example 1
55
I THIS IS AN EXAMPLE OF THE
CfRL-C, CfRL-A COMBINATION

(CTRL-C, CTRL-A)

Example 2
$$
I THIS IS AN EXAMPLE OF THE
CTRL-C, CTRL-A COMBINATION
THIS IS AN EXAMPLE
OF WHAT IS REQUIRED
TO DELETE A SEGMENT
OF TEXT, WHICH SPANS SEVEN LINES
THE TEXT WILL NOW BE DELETED

(CTRL-C,CTRL-A)

Now do Exercise 10-1 on the next page.

The SPEED Editor 10-11

10-12 The SPEED Editor

Exercise 10-1

Part 1

Part 2

Part 3

Directions: Match the letter of the correct definition with the term on the right.

1. __ Character a. A group of pages.

2. __ String b. Ends with NEW LINE.

3. __ Line c. Occupies one position.

4. __ Page d. Sequence of ASCII characters.

5. __ Window e. Ends with CTRL-L (NEW LINE).

Directions: Mark the following statements true or false.

6._

7._

8._

9._

A string is a sequence of characters up to and including a carriage return.

A page is a sequence of characters ending in a CTRL-L.

You can only edit text if it resides in the edit buffer.

A SPEED command line is terminated by entering CTRL-D.

Directions: Given the following steps in an edit cycle, list them in in their usual order:

a. Edit text in the edit buffer.
b. Open files for input and output.
c. Close the input and output files.
d. Invoke SPEED.
e. Exit from SPEED.
f. Write text from the edit buffer to the output file.
g. Read text from the input file to the edit buffer.

1. __ 2. __ 3. __ 4. __ 5. __ 6. __ 7. __

Directions: ChOQse the letter of the response that best completes the statement.

1. To delete only the last character typed, press:

a. RUBOUT or DELETE

b. CTRL-U

c. CTRL-D

d. ESCAPE

e. CTRL-C, CTRL-A

The SPEED Editor 10-13

2. To delete one command line (that does not contain any new-line characters), press:

a. RUBOUT or DELETE

h. CTRL-U

c. CTRL-D

d. ESCAPE

3. To terminate a command line and allow SPEED to execute it, you press:

a. RUBOUT or DELETE

h. CTRL-U

c. CTRL-D

d. ESCAPE

e. Repeated ruhouts or deletes

4. SPEED command termination (CTRL-D) is echoed as:

a. $$

h. $

c. !

d. ?

Now check your answers on the next page.

10-14 The SPEED Editor

Exercise 10-1
Answers

Part 1

Part 2

Part 3

1. c.

2. d.

3. b.

4. e.

5. a.

6.F

7. T

8. T

9. T

1. d.

2. b.

3. g.

4. a.

5. f.

6. c.

7. e.

1. a.

2. b.

3. c.

4. a.

If you answered all the questions correctly, continue with Module 10 by restarting the
Module 10 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Manipulating Files with SPEED

There are two ways that you can enter SPEED.

Example 1
Specify no file.

XEQ,SPEED
SPEED REV 3.00

(! is the SPEED prompt.)

Example 2
Specify file to be edited.

XEQ,SPEED,MYFILE

There are two possible responses.

If the file exists:

SPEED REV 3.00

If the file does not exist:

SPEED REV 3.00
CREATE NEW FILE? (Respond Y or N)

File Management

Opening Input Files

The FR command opens an existing file for input.

Example 1
FRFILEA$$

Opens FILEA for input.

Example 2
FRFILEB$$
ERROR: FILE DOES NOT EXIST
FRFILEB

Opening Output Files

The FW command opens and creates a file for output.

The SPEED Editor 10-15

10-16 The SPEED Editor

Example 1
FWFILEASS

Example 2
FWFILEBSS
ERROR: FILE ALREADY EXISTS
FWFILEB

Opening Input and Output Files

Closing Files

The FO command opens a file for updating and reads in first page.

Example 1
FOFILEASS

Example 2
FOFILEBSS
ERROR: FILE DOES NOT EXIST
FOFILEB

Command Type

FR Input

FW Output

FO Input/Output

Table 10.8 File Opening Summary

Example

FR FILE1

FW FILE1

FO FILE 1

The Fe command closes all files.

Example
FCSS

Error Message Features

NO FILE

FILE PRESENT

NO FILE Reads first page.

The FU command updates.and closes files, clears the buffer area, and copies the input
file to output file.

Example
FUSS

The FB command closes and backs up files. This command performs the same function
as the command FU and creates a back-up file.

Example
FBSS

Before SPEED editing:
FILEt Input to SPEED

After SPEED editing:·
FILEt Updated file

FILEt.BU Back-up file

The SPEED Editor 10-17

I Command Arguments Effect on Buffers Effect on Input Special Features
File

FC None None None None

FU None Copies to output Copies to output None
file. file.

FB None Copies to output Copies to output Creates back-up
file. file. file.

Table 10.C File Closing Summary

Read C:ommands

The Y command reads one page from input file into the buffer and destroys the current
contents of the buffer.

Example
¥$$

The A command appends a page to the current buffer and does not affect the current
contents of the buffer.

Example
A$$

Write Commands

The P, or put, command writes the current buffer to output file, appends a form-feed
character at the end of output data, and does not destroy contents of the buffer.

Example
P$$

The nP command writes n lines of the buffer to the output file, appends a form-feed
character at the end of output data, and does not destroy contents of the buffer.

Example
2P$$

BEFORE
Buffer contains:

THIS IS THE FILE
THIS IS THE FILE
TO BE EDITED
IT CONTAINS LOTS AND LOTS
OF IMPORTANT
INFORMATION.

Output:

AFTER
Buffer contains:

10-18 The SPEED Editor

THIS IS THE FILE
TO BE EDITED
IT CONTAINS LOTS AND LOTS
OF IMPORTANT
INFORMATION.

Output:

THIS IS THE FILE
TO BE EDITED (Form-feed)

The PW command writes the current buffer to output files, does not append a form-feed
character at the end of data, and does not destroy the contents of the buffer.

The E, or eject, command writes buffer and remainder of input file to output file.

The R, or roll, command writes the current buffer to the output file and reads next page
of input file.

Example
R$$

BEFORE
Input file contains:

THIS IS A FILE THAT CONTAINS
MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1. (Form-feed)

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

PAGE THREE IS THE LAST PAGE OF
THIS FILE. (Form-feed)

Buffer contains:

THIS IS A FILE THAT CONTAINS
MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1
THIS IS THE END OF PAGE 1. (Form-feed)

Output file is empty.

AFTER
Input file contains:

THIS IS A FILE THAT CONTAINS
MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1
THIS IS THE END OF PAGE 1. (Form-feed)

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

PAGE THREE IS THE LAST PAGE OF
THIS FILE. (Form-feed)

Buffer contains:

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

Outut file contains:

THIS IS A FILE THAT CONTAINS
MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1
THIS IS THE END OF PAGE 1. (Form-feed)

Status Command

The F? command lists all files currently open.

Example
XEQ SPEED
SPEED REV 3.00
F?
GLOBAL:
INPUT FILE-NONE
OUTPUT FILE-NONE
LOCAL:
INPUT FILE-NONE
OUTPUT FILE-NONE
FRFILEI
FWFILE2
F?
GLOBAL:
INPUT FILE-FILE1
OUTPUT FILE-FILE2
LOCAL:
INPUT FILE-NONE
OUTPUT FILE-NONE
Fe
F?
GLOBAL:
INPUT FILE-NONE
OUTPUT FILE-NONE
LOCAL:
INPUT FILE-NONE
OUTPUT FILE-NONE

Terminating the Editing Session

The H command allows you to exit from SPEED.

Example 1
If the buffer is empty:

!"$$
)

The SPEED Editor 10-19

10-20 The SPEED Editor

Example 2
If the buffer is not empty:

IH$$
CONFIRM?Y
)

or

IH$$
CONFIRM?N

Summary of SPEED Commands

Invoke and exit
XEQSPEED

XEQ SPEED,FILEI

H$$

Open and close files
FR File read

FW File write

Fe Files close

FO File open

FU File update

Invoke SPEED.

Invoke and open file.

Exit SPEED.

FB File backup

F? File status

Read and write files .
Y Yank

P

A

E

R

Put

Append

Eject

Put and yank

N ow do Exercise 10-2 on the next page.

The SPEED Editor 10-21

Exercise 10-2

Directions: Match the commands in the right column with the correct result in the left
column. (Note that there are two sections to this matching exercise. Each section is
exclusive of the other section.)

1. __ Open input. a. FU

2. __ Open output. b. FR

3. __ Open input and output. c. FC

4. __ File write and back up. d. FW

5. __ Close files. e. FO

6. __ Close and write. f. FB

7. Write then read. a. H

8. Read from input. b. P

9. Halt and return to CLI. c. A

10. Write buffer to output.
(Do not affect the rest of the file.) d. Y

11. Append. e. E

12. Write rest of file to output. f. R

Check your answers on the next page.

10-22 The SPEED Editor

Exercise 10-2
Answers

1. b.

2. d.

3. e.

4. f.

5. c.

6. a.

7. f.

8. d.

9. a.

10. b.

11. c.

12. e.

If you answered all the questions correctly, continue with Module 10 by restarting the
Module 10 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The Character Pointer (CP)

Example 1
CP on DASHER® CRT

#T$$
*THIS IS THE SAMPLE TEXT.
LINE TWO*OF SAMPLE.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.*I

Example 2
CP on DASHER® hard-copy terminal

('''')THIS IS A SAMPLE TEXT
LINE TWO OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

The 1..1 Command

nL$$ Move the CP n lines from current position.

Current buffer:

THIS IS A SAMPLE TEXT
LINE TWO OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

(* is the Character Pointer.)

Example 1

The SPEED Editor 10-23

L$$ Move CP to beginning of the current line.

T$$ } - ___ Display the current line.
*THIS IS THE SAMPLE TEXT.

Example 2
3L$$ Move CP three lines forward.

T$$ } ----- Display the current line.
*FOURTH AND LAST LINE.

Example 3
-2L$$ Move CP two lines backwards.
T$$ } --____ Display the current line.
*LINE TWO OF SAMPLE.

10-24 The SPEED Editor

The J Command

nJ$$ Move the CP to the nth line in the edit buffer.

Current buffer:

THIS IS THE SAMPLE TEXT
LINE TWO OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

(* is the Character Pointer.)

Example 1
2JSS Move the CP to line two.
TSS } __ _
*LINE TWO OF SAMPLE. Display the current line.

Example 2
JSS Move the CP to the beginning of the buffer.

TSS } ____ Display the current line.
*THIS IS THE SAMPLE TEXT.

Example 3
ZJSS Move the CP to the end of the buffer .

. TSS} ______________ __
*1 Display the current line.

The M Command
nM$$ Move the CP n character positions from the current location.

Current buffer:

THIS IS A SAMPLE TEXT
LINE TWO OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

Example 1
SMSS Move the CP five characters to·the right.
TSS } __ _
LINE *TWO OF SAMPLE. Display the current line.

Example 2
-3MSS Move the CP three characters to the left.

~: *TWO OF SAMPLE.} -----Display the current line.

The T Command

Command Result

T$$ Display the line with the character pointer.

nT$$ Display n lines, starting from the CP line.

#T$$ Display all lines.

Table 10.D The T Command

Current buffer:

THIS IS THE SAMPLE TEXT
LINE TWO OF SAMPLE.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1

T$$ } ____ _
*LINE TWO OF SAMPLE. Display the current line.

Example 2

The SPEED Editor 10-25

2T$$ }
LINE TWO OF SAMPLE. ---Display two lines starting from current line.
THE THIRD LINE OF THE SAMPLE.

Example 3

~:X~$IS THE SAMPLE TEXT. l
LINE TWO OF SAMPLE. ---Display entire buffer.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

10-26 The SPEED Editor

The I Command

ITEXT-STRING$$ Insert text-string at current location of the CPo

Current buffer:

THIS IS THE SAMPLE TEXT.
LINE TWO OF SAMPLE.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1
ITHIS IS THE SAMPLE TEXT. Insert the text.
LINE TWO OF SAMPLE.
THE mlRD LINE OF SAMPLE.
FOURm AND LAST LINE.55
T55 }
FOURTH AND LAST LINE. *1 ---- Display the current line and the CPo

Example 2
I
55

Insert a character at the current location of CPo

~~$IS THE SAMPLE TEXT. !
LINE TWO OF SAMPLE. -- Display CP and line.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 3
3J$$
ITHIS FITS BETWEEN 3 AND 2
$$

Move the CP to line 3.: Insert a line.

~~~$IS THE SAMPLE TEXT. ! 
LINE TWO OF SAMPLE. -- Display the whole buffer. 
THIS FITS BETWEEN 3 AND 2 
THE THIRD LINE OF THE SAMPLE. 



The S Command 

STEXT-STRING$$ 

Current buffer: 

Search for text-string. 

THIS IS THE SAMPLE TEXT. 
LINE TWO OF SAMPLE. 
THIS FITS BETWEEN 3 AND 2 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

Example 1 
STHIRD$$ Search for "THIRD". 

~H~$ THIRD* LINE OF THE SAMPLE.} -- Display the current line. 

Example 2 
STEXT$$ Search for "TEXT". 
ERROR: UNSUCCESSFUL SEARCH} __ _ 
STEXT$$ Error message. 

Example 3 
3JT$$ Move to line 3. 
(A)THIS FITS BETWEEN 3 AND 2 Display the CPo 

The SPEED Editor 10-27 

-3SSAMPLE TEXT$$ Search backwards three lines. 
T$$ } __ _ 
THIS IS THE SAMPLE TEXT(A). Display the new CPo 

Example 4 
$$ 
OSTHIS$$ Search backward. 
T$$ } __ _ 
THIS(A) IS THE SAMPLE TEXT. Display the CPo 

Example 5 

T$$ } ----Display the CPo 
THIS(A) IS A SAMPLE TEXT. 
1, 1 OOSFITS$$ Search for "FITS". 
T$$ t 
THIS FITS(A) BETWEEN 3 AND 2f ---Display the new CPo 

Command Result 

nSTEXT-STRING$$ Search for text-string starting from CP and going n lines 
back toward the beginning of the buffer. 

OTEXT-STRING$$ Search for text-string, starting from CP and going back to 
the beginning of the current line. 

n,zSTEXT-STRING$$ Search for text-string, starting from character position n 
+ 1 and continuing to character position z. 

Table 10.E The S Command 



10-28 The SPEED Editor 

The N Command 

NTEXT-STRING$$ Search for text-string throughout the entire input file. 

Current buffer: 

THIS IS THE SAMPLE TEXT. 
LINE TWO OF SAMPLE. 
THIS FITS BETWEEN 3 AND 2. 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

Example 1 
JSS Move CP to beginning of buffer. 
NTHIRD LINESS Search for "THIRD LINE". 
TSS } __ 
THE THIRD LINE* OF THE SAMPLE. Display current line. 

Example 2 
SS 
NLINETWOSS 

Search for "TEXT". 

ERROR: NO OPEN FILE} 
NLINE TWO -----Error message. 

The C Command 

COLD-TEXT$NEW -TEXT$$ 

Current buffer: 

Search for old-text. 
Delete old-text. 
Insert new-text. 
Leave CP after new-text. 

THIS IS THE SAMPLE TEXT. 
LINE TWO OF SAMPLE. 
THIS FITS BETWEEN 3 AND 2. 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

Example 1 
JSS 
CSAMPLESPRACfICESS 

Move CP to beginning of buffer. 
Change "SAMPLE" to "PRACTICE". 

TSS } 
THIS IS THE PRACTICE* TEXT. --~I Display current line. 

Example 2 
CfHIS ISSLINE ONE OF S$ Change "THIS IS" to "LINE ONE OF ". 
ERROR: UNSUCCESSFUL SEARCH} __ _ 
CTHIS IS$ Error message. 



Example 3 
. J$$ 
CTHIS IS $LINE ONE OF $$ 

Move CP to line one . 

T$$ } ___ Display the current line. 
LINE ONE OF*THE PRACTICE TEXT 

Example 4 
CTEXT -STRINGS$ 

C3 AND 2$$ 
T$$ 
THIS FITS BETWEEN (A) 

Search for text-string. 
Delete text-string. 
Leave CP after text-string. 

The D Command 

nD$$ 

·-nD$$ 

Delete n characters to the right of the CPo 

Delete n characters to the left of the CPo 

Current buffer: 

LINE ONE OF THE PRACTICE TEXT. 
LINE TWO OF SAMPLE. 
THIS FITS BETWEEN 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

The SPEED Editor 10-29 

Example 1 
40$$ Delete four characters following CPo 
$$ 
T$$ } __ _ 
.ONE OF THE PRACTICE TEXT. Display current line. 

Example 2 
STWO$$ 
T$$ 
LINE TWO· OF SAMPLE. 

Move the CP to "TWO" in line. 

-30$$ Delete three characters preceding CPo 
T$$ } _____ _ 
LINP OF SAMPLE Display results. 



10-30 The SPEED Editor 

The K Command 

nK$$ 

-nK$$ 

Delete n lines following CP. 

Delete n lines preceding CPo 

Current buffer: 

LINE ONE OF THE PRACTICE TEXT. 
LINE TWO OF SAMPLE. 
THIS FITS BETWEEN 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

Example 1 
U$$ 
lK$$ 

Move CP to line 2. 
Delete (kill) one line following CPo 

~!$:F THE PRACTICE TEXT. ! 
THIS FITS BETWEEN ---Display entire buffer. 
THE THIRD LINE OF THE SAMPLE. 
FOURTH AND LAST LINE. 

Example 2 
U$$ 
-lK$$ 

Move CP to line 2. 
Delete one line preceding CP. 

THIS FITS BETWEEN #T$$ l 
THE THIRD LINE OF THE SAMPLE. -- Display buffer. 
FOURTH AND LAST LINE. 

Example 3 
STHIRD$$ 
T$$ 
THE THIRD* LINE OF THE SAMPLE 

Move CP to the middle of a line. 

K$$ ----------Delete the characters in the front of the line. 
T$$ 
* LINE OF THE SAMPLE. 



Summary of Text Commands 

CP Movers 
L 

J 

M 

Searchers 
S 

C 

N 

Insert 
I 

C 

Delete 
C 

D 

K 

Line move 

Jump to a line 

Move character positions 

Search 

Change 

Nonstop search 

Insert 

Change 

Change 

Delete characters 

Kill lines 

Now do Exercise 10-3 on the next page. 

The SPEED Editor 10-31 



10-32 The SPEED Editor 



The SPEED Editor 10-33 

Exercise 10-3 

Directions: Match the commands on the left with the functional descriptions on the right. 

1. C a. Delete lines of text. 

2. __ J 

3. __ D 

4. __ L 

5. __ S 

6. __ K 

7. T 

8. M 

9. __ N 

IO. __ #T 

11. __ 1 

b. Search for string, delete it, insert another string. 

c. Insert string at CP location. 

d. Delete characters. 

e. Search for string in buffer, put, yank (if there are open files). 

f. Search for string in buffer. 

g. Move CP character positions. 

h. Move CP to beginning of specified line, relative to start of buffer. 

i. Move CP to beginning of a line, relative to current line. 

j. Display contents of entire buffer. 

k. Display contents of current line with CP. 

Check your answers on the next page. 



10-34 The SPEED Editor 

Exercise 10-3 
Answers 

1. b. 

2. h. 

3. d. 

4.i. 

5. f. 

6. a. 

7. k. 

8. g. 

9. e. 

10. j. 

11. c. 

If you answered all the questions correctly, continue to Lab Activity 10-1 and the 
Module 10 Test. Otherwise, review the material and do the exercise again before 
continuing. 



Lab Activity 10-1 

1. Invoke SPEED and create a file called SPEED.LAB. 

2. Display the status of your files. 

3. Input the following text: 

SPEED IS A TEXT EDITOR THAT YOU CAN 
USE WITH WITH AOS OR AOS/VS. 

The SPEED Editor 10-35 

YOU CAN USE IT TO CREATE AND MODIFY FILES. 

4. Write this data to the output file, appending an end of page character. 

5. Insert this text: 

MODULE 10 OF THE AOS, AOS/VS USERS COURSE IS 
DEVOTED TO TEACHING YOU TO USE THE SPEED 
EDITOR. THIS LAB ACTIVITY WILL INDICATE 
YOUR ABILITY TO USE THE EDITOR. 

6. Repeat Step 4. 

7. Insert this text: 

SUCCESSFUL COMPLETION OF THIS EXERCISE 
INDICATES YOU HAVE MASTERED THE BASICS OF SPEED. 

8. Write this text to the output file. 

9. Close the files. 

10. Exit from SPEED and return to the CLI. 

11. Invoke SPEED once again. This time do not specify a file to edit. 

12. Check filestatus. 

13. Open SPEED.LAB for both input and output. 

14. Display the contents of the buffer. 

15. Change "CREATE" on the first page to "BUILD." 

16. Insert the following line after the second line: 

YOU CAN RUN IT ON A DATA GENERAL COMPUTER. 

1 7. Delete the fourth linc. 

18. Display the buffer. 



10-36 The SPEED Editor 

19. Write out the buffer to the output file. 

20. Read forward to the third page. 

21. Display the buffer to verify the success of the previous step. 

22. Return to the CLI. 

Check your answers on the next page. 



Lab ~t\ctivity 10-1 
Answers 

1. X SPEED SPEED.LAB 

2. F? 

3. ISPEED IS A TEXT EDITOR THAT YOU CAN 
USE WITH AOS OR AOS/VS. 
YOU CAN USE IT TO CREATE AND MODIFY FILES. 
$$ 

4. P 

5. IMODULE 10 OF THE AOS, AOS/VS USERS COURSE IS 
DEVOTED TO TEACHING YOU TO USE THE SPEED 
EDITOR. THIS LAB ACTIVITY WILL INDICATE 
YOUR ABILITY TO USE THE EDITOR. 
$$ 

6. P 

The SPEED Editor 10-37 

7. ISUCCESSFUL COMPLETION OF THIS EXERCISE 
INDICATES YOU HAVE MASTERED THE BASICS OF SPEED. 
$$ 

8. P 

9. FC 

10. H$$ 

11. X SPEED 

12. F? 

13. FO SPEED.LAB 

]4. #T 

IS. CCREATE$BUILD$$ 

16.3J 
IYOU CAN RUN IT ON A DATA GENERAL COMPUTER. 

17.4J 
lK 

18. #T 

19. P 

20. PY OR R 

21. #T 

22. FU 
H 

If you completed this Lab Activity successfully, continue to the Module 10 Test. If you 
had any difficulty, review the material and try again before continuing. 



10-38 The SPEED Editor 

Module 10 
Test 

Directions: List in order the eight steps involved in editing with SPEED. 
1. ______________________ _ 

2. ________________________ _ 

3. _______________________ _ 

4. ____________________ _ 

5. ____________________ _ 

6. ____________________ _ 

7. ___________________ _ 

8. _____________________ _ 

Directions: Fill in the blanks. 

8. The FR command is used to ________________ a file for 

9. The S command will ______________ for a particular string of text. 

10. To move the Character Pointer to the beginning of the buffer, use the 
____________ command. 

11. A form of the _______________ command is used to display text. 

12. The I command is used to _____________ text. 

13. To open a file for both input and output, the ______________ command 
can be used.· 

14. To close a file that was opened for both input and output, the 
____________ command must be used. 

15. The two commands that can be used to read from the input file into the buffer are ______________ and ________________ __ 

16. To write text from the buffer into a file, the _________ or 
_________ command can be used. 

17. The command used to substitute one string of text for another is 

Now check your answers to the Module 10 Test in Appendix A. If you have answered all 
the questions correctly, continue to Module 11. Otherwise, go back and review the 
material in Module 10 and take the Module 10 Test again. 

This concludes Module 10. 

,,-



Module 11 

Program Development Cycle 

Introduction 

This module is concerned with the steps involved in the development of your application 
programs. First, you will look at the program development cycle in a general way, and 
then you will see how to develop Assembly Language, FORTRAN, COBOL, and 
BASIC programs. 

Module Objectives 

Upon successful completion of this module, you should be able to: 

1. Identify the steps involved in program development. 

2. Identify the meaning of the following terms: 
Translator 
Compiler 
Assembler 
Interpreter 

3. Write the CLI command line that assembles (or compiles) an Assembly Language 
(or FORTRAN or COBOL) program. 

4. Write the CLI command line that creates an executable file from an object file. 

5. Write the CLI command line that executes an application program. 

6. If you are a BASIC programmer, show the commands to execute the BASIC 
interpreter, save an application program on disc, read it back into main memory, 
and execute it. 



11-2 Program Development Cycle 

Resources 

To complete this module, you will need: 

• Module 11 audiotape. 
• Module 11 of your Student Guide. 
• Audiotape playback unit. 

Module Outline 

Module i 1 discusses the following topics: 

1. Program development cycle 
a. Development steps 
b. Translation phase 
c. Loading phase 

2. Development examples 
a. BASIC programming 
b. Assembly Language programming 
c. FORTRAN programming 
d. COBOL programming 

Now start the Module 11 audiotape. As you listen, follow along in Module 11 of your 
Student Guide. 



.. 

DEFINE THE PROBLEM 

DETERMINE THE SOLUTION 

USE A PROGRAMMING LANGUAGE 
TO CODE THE SOLUTION , 

ENTER THE SOURCE CODE 
INTO THE COMPUTER SYSTEM 

9 
USE A TRANSLATOR TO CORRECT 

ERRORS CONVERT THE CODE 
INTO MACHINE LANGUAGE 

SYNTAX ER RORS 
...- , 

LINK SUPPORT MODULES 
AND ASSIGN MEMORY 
LOCATIONS 

EXECUTE, TEST, AND VALIDATE 
THE PROGRAM (DEBUG) 

LOGICAL ERRORS 

(RUN-TIME ERRORS) 

MAINTAIN AND 
UPDATE 

C5-0/740 

Figure 11. 'I The Program Development Cycle 

At Step 4 in Figure 11.1, use a text editor. 
At Step 5, use a compiler or an assembler. 
At Step 6, use the LINK or BIND utilities. 

1 

2 

3 

4 

5 

6 

7 

8 

Program Development Cycle 11-3 

CONVERSATIONA 
LANGUAGES 

t 

USE AN 
INTERPRETER 

I 

L 

z 
o 
~ 
<t 
I
Z 
w 
~ 
:::> 
u o c 



11-4 Program Development Cycle 

MOST LANGUAGES 

EDITOR I 
CONVERSATIONAL 

,LANGUAGE 

1 

-- -1- --1- - 1 

- - - 1-

5 
TRANSLATE 

CODE 

LlNK

6

CODE { 

EX~CUTE { 

CS-OI741 

LISTING 

Figure 11.2 Types of Translators 

HIGH LEVEL 
LANGUAGE 
SOURCE CODE 

ASSEMBLY 
LANGUAGE 
SOURCE CODE 

COMPILER 

OBJECT 
CODE 

EQUIVALENT 
ASSEMBLY 
LANGUAGE 
CODE 

OBJECT 
CODE 

ASSEMBLER 

LISTING 

EXECUTABLE 
CODE 

a: 
w 
t
w 
a: 
a. 
a: 
w 
t
Z 



CS-01742 

MAKE 
CORRECTIONS 

Figure 11. ~I Syntax Errors and Corrections 

SYNTAX 

ERROR 

I -

SOURCE CODE 
(TEXT FILE) 

, 

TRANSLATOR 
(SYNTAX CHECK) 

Program Development Cycle 11-5 

NO 
SYNTAX 
ERRORS 

LIST FILE 
(ERROR REPORT) 

OBJECT CODE 
(FILENAME.OB) 



11-6 Program Development Cycle 

I 
.~ 

DEFINE THE PROBLEM 

DETERMINE THE SOLUTION 

USE A PROGRAMMING LANGUAGE 
TO CODE THE SOLUTION 

I , 
ENTER THE SOURCE CODE 
INTO THE COMPUTER SYSTEM 

9 
USE A TRANSLATOR TO CORRECT 

ERRORS CONVERT THE CODE. 
INTO MACHINE LANGUAGE 

SYNTAX ERRORS 

LINK SUPPORT MODULES 
AND ASSIGN MEMORY 
LOCATIONS 

EXECUTE, TEST, AND VALIDATE 
THE PROGRAM (DEBUG) 

LOGICAL ERRORS 

(RUN-TIME ERRORS) 

MAINTAIN AND 
UPDATE 

CS-OJ740 

Figure 11.4 The Program Development Cycle 

1 

2 

3 

CONVERSATIONA 
LANGUAGES , 

4 

5 

USE AN 
INTERPRETER 

6 

7 

8 

I 

L 

2 
o 
~ 
I-
2 
w 
:E 
::l 
(J 
o 
c 



Program Development Cycle 11-7 

Where Do I Go from Here? 

1. Stop the Module 11 audiotape, and do Exercise 11-1 in this Student Guide. If you 
have difficulty with any of the questions, go back and review the material and do the 
exercise again before continuing. 

2. a. If you are a BASIC programmer, read the section titled "BASIC Programming." 

b. If you are an Assembly language programmer (or if you want to be able to 
complete the Lab Activity in this module), read the section titled "Assembly 
Language Programming." 

c. If you are a COBOL programmer, read the section titled "COBOL Programming." 

d. If you are a FORTRAN programmer, read the section titled "FORTRAN 
Programming. " 

e. If you program in another language, such as PL/l or ALGOL, read either 
"COBOL Programming" or "FORTRAN Programming." 

3. Do Lab Activity 11-1. 

4. Take the Module 11 Test. 

Now do Exercise II-Ion the next page. 



11-8 Program Development Cycle 



Program Development Cycle 11-9 

Exercise 11-1 

Directions: Mark the following statements true or false. 

1. __ _ 

2. __ _ 

3. __ _ 

4. __ _ 

A translator accepts source code as input and produces relocatable object 
code for output. 

The LINK or BIND combines several object modules into a single 
executable file. 

A library file is a collection of executable, or save, files. 

An interpreter, used with BASIC, combines several program development 
steps into one. 

5. Fill in the boxes in Figure 11.5 on the next page, using the choices below. 

• DEFINE THE PROBLEM 

• CORRECT ERRORS 

• USE A PROGRAMMING LANGUAGE TO CODE THE SOLUTION 

• USE AN INTERPRETER 

• EXECUTE, TEST, AND VALIDATE THE PROGRAM 

• USE A TRANSLATOR TO CONVERT THE CODE INTO MACHINE 
LANGUAGE 



11-10 Program Development Cycle 

I 

DETERMINE THE SOLUTION 

I 

t 
ENTER THE CODE INTO 
THE COMPUTER SYSTEM 

9 
~ 

SYNTAX ERRORS -
LINK SUPPORT MODULES 
AND ASSIGN MEMORY 
LOCATIONS 

LOGICAL ERRORS 

(RUN-TIME ERRORS) 

MAINTAIN AND 
UPDATE 

CS-OJ743 

Figure 11.5 

Check your answers on the next page. 

1 

2 

3 

4 

5 

6 

7 

8 

CONVERSATIONAL 
LANGUAGES 

t 

J 

z o 
;::: 
<t 
t
Z 
w 
~ 
:;, 
U o 
C 



Exercise 11-1 
Answers 

1. True 

2. True 

3. False 

4. True 

5. See Figure 11.6. 

Program Development Cycle 11-11 



11-12 Program Development Cycle 

CS-OI740 

Figure 11.6 

I 

DEFINE THE PROBLEM 

DETERMINE THE SOLUTION 

USE A PROGRAMMING LANGUAGE 
TO CODE THE SOLUTION 

• 
ENTER THE SOURCE CODE 
INTO THE COMPUTER SYSTEM 

9 
CORRECT USE A TRANSLATOR TO 

ERRORS CONVERT THE CODE. 
INTO MACHINE LANGUAGE 

SYNTAX ERRORS 

LINK SUPPORT MODULES 
AND ASSIGN MEMORY 
LOCATIONS 

EXECUTE, TEST, AND VALIDATE 
THE PROGRAM (DEBUG) 

LOGICAL ERRORS 

(RUN-TIME ERRORS) 

MAINTAIN AND 
UPDATE 

1 

2 

3 

4 

6 

6 

7 

8 

CONVERSATIONA 
LANGUAGES 

t 

USE AN 
INTERPRETER 

I 

L 

z 
o 
i= « 
I
Z 
w 
:E 
:J 
o o 
c 

If you answered all the questions correctly, continue to the appropriate section of this 
module. Otherwise, review the material and do this exercise again before you continue. 



Program Development Cycle 11-13 

BASIC Programming 

This section leads you through a sample session in BASIC. It assumes that you have 
some experience with the BASIC language. 

To create a BASIC program: 

1. Invoke the BASIC interpreter and get into BASIC by typing the CLI command: 

XEQ BASIC 

2. Write a series of BASIC program statements. BASIC has its own editor and an 
interactive compiler that rejects bad syntax as you type each statement. 

3. Run the program with the BASIC command: 

RUN 

4. If the program runs correctly, you're done! Save the program on disc with the LIST 
command. Type BYE to get back to the CLI. 

5. If your program contains runtime errors, fix it using erroneous output or BASIC 
runtime error messages. Go to Step 3. 

Writing BASIC Programs 

You write a BASIC program as a series of statements, which you must begin with a 
number between 1 and 9999. Each statement includes a BASIC command. 

At various points, you can examine the statements in your program with the LIST 
command, or tell BASIC to execute the statements with the RUN command. BASIC's 
error messages will help you correct errors; you can correct offending statements by 
typing their line numbers, then the new text. When you're satisfied with a program, save 
it on disc with the command LIST "FILENAME"; later, you can read it back into memory 
with the command ENTER "FILENAME". To print it on the line printer, type 
LIST "@LPT". To start work on another program, type NEW, then proceed. To 
sign off BASIC and return to the CLI, type BYE. 

You can execute a BASIC program only from BASIC; you cannot do it from the CLI. 
The BASIC interpreter accepts both upper-case and lower-case characters, and translates 
lower-case letters to upper-case. 

Example: BASIC Program 

The BASIC example in this section is a simple program to calculate home mortgage 
payments, taxes, and deductions in a general way, and write its computations to the 
console. Figure 11.7 shows a flowchart of the program, and Figure 11.8 shows the 
program itself. 

You can enter the program using the BASIC interpreter. The BASIC interpreter checks 
the syntax of each line as you type it in. 

You can examine the lines you've typed by typing LIST. To list a portion of the lines, 
type LIST number comma number, where each number is a line number (e.g., LIST 
10,100). 



11-14 Program Development Cycle 

Periodically as you type the program in, and when you're done, type LIST 
"MORTGAGE.BA" to write the program to disc; you can also get a hard-copy listing 
by typing LIST, or LIST "@LPT" if you have a line printer. 

Examine the flowchart (Figure 11.7) and program (Figure 11.8) before proceeding to 
the next section. 



CS-00999 

GET AMOUNT, RATE, 
TIME, LOCAL TAXES 

FIGURE MONTHLY PAYMENT 
amount x i x (1 + in) 

(1 + i)n-1 
FIGURE TAXES 

GET TAX 
BRACKET 

FIGURE AND PRINT AVERAGE 
MO TOTAL WITH DEDUCTIONS 

FOR 2 YEARS 

PRINT SUMMARY 

YES 

Figure 11.7 MORTGAGE Program Flowchart 

Program Development Cycle 

FIGURE AVERAGE MO TOTAL 
WITH DEDUCTIONS FOR 2 YEARS. 

11-15 



11-16 

CS-O/744 

Program Development Cycle 

0010 REM 
0020 PRINT 
0030 PRINT 
0040 PRINT 
0050 PRINT 
0060 PRINT 

PROGRAM MORTGAGE.BA, COMPUTES MORTGAGE PAYMENTS, HAS TAX SUBROUTINE. 
"<12> I CALCULATE MORTGAGE PAYMENTS, INTEREST, AND TAXES." 
"TYPE AMOUNT OF PRINCIPAL, INTEREST RATE IN WHOLE NUMBERS," 
"MORTGAGE LIFE IN YEARS, AND ANNUAL PROPERTY TAX BILL FOR HOUSE." 
"SEPARATE ENTRIES WITH A COMMA; FOR EXAMPLE 40000,10.5,25,2000." 

0070 PRINT " AMOUNT? RATE? YEARS? TAXES?" 
0080 INPUT"? ",A,R1,Y,T 
0090 REM GET MONTHLY RATE R (41/12), MAKE INTO FRACTION AS R1 WAS WHOLE NUMBER 
0100 LET R=R1/1200 
0110 REM GET NUMBER OF MONTHS M FOR LOAN. 
0120 LET M=12.Y 
0130 REM COMPUTE MONTHLY PAYMENT. 
0140 LET P=A.R.(1+R)AM/«1+R)AM_1) 
0150 REM DEFINE FORMAT F$ THAT ROUNDS NUMBERS TO NEAREST WHOLE CENT. 
0160 LET F$="------.##" 
0180 REM PRINT TOTALS AND GIVE OPTION FOR TAX SUBROUTINE. 
0190 PRINT "MONTHLY PAYMENT: TAXES: HIDEOUS TOTAL:" 
0200 PRINT USING F$,P," ",T," ",P+T 
0210 PRINT 
0220 PRINT "WANT TO COMPUTE THE TRUE COST AFTER U.S. TAX DEDUCTIONS ON THE" 
0230 PRINT "INTEREST AND TAXES? YOU MUST ITEMIZE TO QUALIFY." 
0240 INPUT "ANSWER Y (YES) OR N (NO). ",Q$ 
0250 REM $ SPECIFIES STRING INPUT (E.G."Y") INSTEAD OF NUMERIC. 
0260 IF Q$="Y" THEN GOSUB 1000 
0270 PRINT 
0280 INPUT "TYPE Y (YES) TO RUN PROGRAM AGAIN, ANYTHING ELSE TO STOP. ",Q$ 
0290 IF Q$="Y" THEN GOTO 0060 
0300 STOP 
1000 REM TAX DEDUCTION COMPUTATION SUBROUTINE. 
1010 INPUT "WHAT IS YOUR TAX BRACKET, IN WHOLE NUMBERS? 
1020 LET B=B1/100 
1030 PRINT 

",B1 

1040 PRINT "SHOULD I LIST PAYMENTS FOR THE FIRST TWO YEARS? I HAVE" 
1050 INPUT "TO FIGURE THE INTEREST ANYWAY. ANSWER Y (YES) OR N (NO). ",Q$ 
1060 REM SET UP VARIABLES A1 (PRINCIPAL PD PER MONTH) AND 11 (FOR TOTALINTEREST)." 
1070 LET AhA 
1080 LET 11=0 
1090 IF Q$<>"Y" THEN GOTO 1110 
1100 PRINT" MONTH PRIN. INT. INT. TOTAL" 
1110 REM FOR-NEXT LOOP COMPUTES (OPTIONALLY LISTS) FIGURES BY MONTH AND TOTALS. 
1120 FOR J=1 TO 24 
1130 LET P1=A1.R/«R+1)AM-1) 
1140 LET I1=I1+(P-P1) 
1150 LET A1=A1-P1 
1160 IF Q$<>"Y" THEN GOTO 1180 
1170 PRINT USING F$,J,P1,P-P1,I1 
1180 NEXT J 
1190 PRINT 
1200 REM GET DEDUCTIONS D FOR 1 YEAR, T(AXES) + 11/2 (HALF OF 2 YRS. INTEREST) 
1210 LET D=T+I1/2 
1220 PRINT "ANNUAL MORTGAGE-RELATED DEDUCTIONS ARE:" 
1230 PRINT USING F$,D 
1240 PRINT "BUT I MUST SUBTRACT THE $3200 STANDARD (0 BRACKET) DEDUCTION" 
1250 PRINT "BUILT INTO THE TAX TABLES. THE TRUE MONTHLY COST IS:" 
1260 LET D1=D-3200 
1270 REM GET REAL MO. COST. (TOTAL MO. PAY = P+T12) - «BRKT * ADJ. DEDS)/12) 
1280 LET C=(P+T/12)-(B*D1/12) 
1290 PRINT USING F$,C 
1300 PRINT" •••• SUMMARY •••• " 
1310 PRINT" LIFE: AMOUNT: RATE: 
1320 PRINT USING F$,Y,A,R1,P+T/12,B1,C 
1330 RETURN 

CASH PAY: BRKT: TRUE COST:" 

Figure 11.8 MORTGAGE Program with Errors 

~ .. 



Program Development Cycle 11-1 7 

Running the BASIC Program 

To run the program, get into BASIC (if you're not already there), and type: 
NEW 

ENTER "MORTGAGE.BA" (or whatever name you gave it.) 
RUN 

I CALCULATE MORTGAGE PAYMENTS, 
INTEREST, AND TAXES. 
TYPE AMOUNT OF PRINCIPAL, INTEREST RATE 
IN WHOLE NUMBERS. 
MORTGAGE LIFE IN YEARS, AND ANNUAL 
PROPERTY TAX BILL FOR HOUSE. 
SEPARATE ENTRIES WITH A COMMA; FOR 
EXAMPLE 400000,10.5,25,2000. 
AMOUNT? RATE? YEARS? TAXES? 
? 

Respond with some plausible figures: 

40000,10.5,25,2000 

The program responds: 

MONTHLY PAYMENT: TAXES: HIDEOUS TOTAL: 
377.67 2000.00 2377.67 

WANT TO COMPUTE THE TRUE COST ... 
' .. ITEMIZE TO QUALIFY 
ANSWER Y (YES) OR N (NO). 

This seems a little high - over $2,000 per month. We forgot to convert the yearly tax 
figure to months. (Depending on the precision generated on your BASIC system, your 
answers may differ slightly.) It would be meaningless to proceed, so type: 

N 

TYPE Y (YES) TO RUN PROGRAM AGAIN. 
ANYTHING ELSE TO STOP. 
STOP AT 300 

The problem is in line 200, and you can fix it by dividing the tax variable, T, by 12. 
Replace the existing line 200 by typing: 

200 PRINT USING F$,P, "[] []"n, T / 12m"[]",P + T /12 

and run it again: 

RUN 
I CALCULATE ... I 

AMOUNT? RATE? YEARS? TAXES? 

40000,10.5,25,2000 

MONTHLY PAYMENT: TAXES: HIDEOUS TOTAL: 
377.67 166.67 544.34 

WANT TO COMPUTE ... 
ANSWER Y (YES) OR N (NO). 



11-18 Program Development Cycle 

These figures are more reasonable, so you can proceed with the program: 

y 

WHAT IS YOUR TAX BRACKET, IN WHOLE NUMBER? 

The tax bracket issue is explained later in this section. For now, try 25, a typical bracket: 

2S 

SHOULD I LIST PAYMENTS FOR ... 
. . . ANSWER Y (YES) OR N (NO). Y 

MONTH PRIN. INT. 
1.00 27.67 350.00 
2.00 27.65 350.02 
3.00 27.64 350.04 
4.00 27.62 350.06 

MORTGAGE-RELATED DEDUCTIONS ARE: 
6202.63 
BUT I MUST SUBTRACT THE $3200 ... 
. . . TRUE MONTHLY COST IS: 
481.79 

****SUMMARY ***** 

INT. TOTAL 
350.00 
700.02 

1050.06 
1400.11 

LIFE: AMOUNT: RATE: CASH 
COST: 

PAY: BRKT: TRUE 

25.00 40000.00 10.50 544.34 25.00 81.79 
TYPE Y (YES) TO RUN PROGRAM AGAIN ... 

It works! At least it appears to work. (Clearly, if the TRUE PAY figure exceeds the 
CASH PAY figure, it may not pay you to itemize.) Let's examine the interest schedule 
again though, because the progam bases its deductible figure on the last value of 
variable 11 in this schedule. 

Unfortunately, there is a problem in this schedule - the amount of interest paid each 
month increases while it should decrease. This must be wrong, and being wrong, it voids 
the entire deduction figure. Looking over the FOR-NEXT loop that computes the 
monthly interest, note that we forgot to decrement the month indicator, N, for each 
circuit through the FOR-NEXT loop. You can fix this easily. First, stop the program: 

STOP AT 300 

Having incremented line numbers by 10, you can easily insert a new statement: 

1155 LET M = M-I 



Program Development Cycle 11-19 

Now RUN it again, giving the same figures (40000, 10.5,25,20, and 2000) and tax 
bracket (25), to compare the results. The monthly schedule now says: 

MONTH PRIN. INT. 
1.00 27.67 350.00 
2.00 27.92 349.76 
3.00 28.16 349.51 
4.00 28.41 349.27 

MORTGAGE-RELATED DEDUCTIONS ARE: 
6164.34 
BUT I MUST SUBTRACT ... 
. . . TRUE MONTHLY COST IS: 
482.58 

*****SUMMARY***** 

INT. TOTAL 
350.00 
699.76 

1049.27 
1398.54 

LIFE: AMOUNT: RATE: CASH 
COST: 

PAY: BRKT: TRUE 

25.0040000.00 10.50 544.34 25.00 482.58 
TYPE Y (YES) TO RUN PROGRAM AGAIN ... 

Eureka! The interest is now declining, and the program works correctly. (The difference 
may not seem significant here, but if the FOR-NEXT loop covered 60 months instead of 
24 (i.e., J = 1 to 60), it would be immense.) 

You've fixed the program, so you can write it to disc under its original name; this 
overwrites the old, erroneous version: 

LIST "MORTGAGE.BA" 

You can also print it (LIST "@LPT") if you have a line printer, or type it (LIST). To learn 
BASIC and return to the CLI, type: 

BYE 

All programs you write via the BASIC interpreter reside in the BASIC directory; the 
interpreter automatically goes to this directory when you invoke it. 

Itemized Deductions and Tax Bracket 

For simplicity, this sample BASIC program assumes you are married, and, when you 
acquire this mortgage, you will start itemizing deductions instead of taking the standard 
deduction. When you itemize, the IRS allows you to deduct only the itemized amount 
over the standard deduction ($3200 if married and filing jointly, $2200 if single). The 
standard deduction is already figured into the tax tables. This is why line 420 of the 
program subtracts the standard deduction from the mortgage-related deductions. If you 
are, in fact, moving to itemized deductions, you can deduct much more than mortgage
related expenses (e.g., medical expenses, casualty losses), but the program doesn't deal 
with these. It figures the TRUE COST amount as if you were deducting only the 
mortgage-rela ted amounts. 



11-20 Program Development Cycle 

Thus, if the mortgage moves you from the standard deduction to itemized deductions, 
your real cost per month will be less than the TRUE COST figure. If this is true for you, 
you can modify the program to compute the TRUE figure more accurately. The critical 
figure is the "3200" in line 1260. Your program statements should get all mortgage
unrelated deductions (medical, contributions, casualty losses, etc.) and put them in a 
variable; let's say Q. Then it should add Q to D in line 1260; e.g., LET D 1 = D + Q = 
3200. 

In any case, if you are single, change the 3200 in line 1260 to 2200; e.g., 
LET Dl = D - 2200. 



Program Development Cycle 11-21 

FORTRAN Programming 

This section leads you through a sample session in FORTRAN. It assumes that you have 
some experience with the FORTRAN programming language. 

Follow these steps to run a FORTRAN program: 

1. Create and edit the source code using a text editor, for example the SPEED text 
editor used in Module 10. 

2. Compile the source file with the ClI command: 

FORT4 FILENAME (AOS only) 

or 

FORTS (depending on your compiler.) 

3. Correct any compilation errors by returning to Step 1, if necessary. 

4. link or bind the object file: 

For AOS (FORTRAN IV): XEQ BIND FILENAME,[SUBROUTINE NAME ... ],FORT.LB 

For FORTRAN 5 (AOS or AOS/VS): F5LD FILENAME 

5. Test the program: 

XEQ FILENAME 

6. If the program is correct, you are finished. If not, find the errors and go to Step 1 to 
make corrections. 

7. Pat yourself on the back, you are finished! 

Writing the FORTRAN Source Program 

The example in this section is a FORTRAN program to calculate mortgage payments. 
It produces a month by month schedule of principal and interest. It does this using only 
simple arithmetic operations and calls no subroutines. The program uses two formulas 
that you do not need to understand mathematically. 

The program reads input from the console and writes the results back to your console. 

Review the flowchart (Figure 11.9) and program (Figures 11.10 and 11.11) before 
proceeding to the next section. 



11-22 Program Development Cycle 

.~. 

CALCULATE PAYMENT: 

. (i (1 + un) 
prln (1 + un _ 1 

CALCULATE 
PRIN PAYMENT: 

bal ((1 = iun _ 1) 

CS-OI745 

Figure 11.9 MORTGAGE.FR Program Flowchart 



CS-O/746 

C 

C 

C 

C 

C 

C 

C 

C 

C 

5 

110 

120 

130 

140 

30 
40 

Program Development Cycle 11-23 

REAL I, INT, lTD, LB 
WRITE (10) " ENTER PRINCIPAL, RATE, YEARS," 
WRITE (10) " AND 0 FOR SUMMARY OR 1 FOR" 
WRITE (10) " FULL SCHEDULE. SEPARATE EACH" 
WRITE (10) " PARAMETER WITH A COMMA." 
WRITE (10) " TERMINATE INPUT WITH A NEW LINE." 
READ (11) P, R, L, IFULL 
CHANGE YEARLY RATE (R) TO MONTHLY RATE (I) 
I = R/12. 
CHANGE YEARS (L) TO MONTHS (N) 
N = L*12 
CALCULATE MONTHLY PAYMENT (PAY) 
PAY = P*I*(1+I)**N/«1+I)**N-1) 
WRITE (12,110) P, R, L 
FORMAT (1H1 ,"PRINCIPAL = $",F9.2,/," INTEREST RATE 

-F7.4,/," LOAN LIFE IS",I4," YEARS",/,/) 
WRITE (12,120) PAY 
FORMAT (1HO,"MONTHLY PAYMENT = $",F10.2) 
IF (IFULL .LE.O) GO TO 40 
INITIAL LOAN BALANCE (LB) EQUALS PRINCIPAL 
LB = P 
CREATE COUNT (NN) FOR USE IN OUTPUTTING SCHEDULE 
NN = N 
lTD = O. 
WRITE (12,130) 

-" - , 

FORMAT (1HO," NUM",7X,"INTEREST",5X,"PRIN.PAY PRIN." 
-" BAL",6X,"INTEREST PAID TO DATE",/) 

DO 30 NP=1,NN 
CALCULATE PRINCIPAL PORTION (PN) 
PN = LB*I/«I+1)**N-1) 
N = N-1 
CALCULATE INTEREST PORTION (INT) 
INT = PAY-PN 
UPDATE LOAD BALANCE 
LB = LB-PN 
UPDATE INTEREST PAID TO DATE 
lTD = ITD+INT 
WRITE (12,140) NP, INT, PN, LB, lTD 
FORMAT (1HO,I3,7X,"$",F9.2," $",F9.2," 

-8X,"$",F9.2) 
CONTINUE 
WRITE (10) " TYPE 1 TO REPEAT, 0 TO STOP 
READ (11) IR 
IF (IR .GT. 0) GO TO 5 
END 

$",F9.2, 

Figure 11. 10 MORTGAGE Program (Initial Version with Errors) 

Compiling the Program 

Now that you have written and entered the program into a file, it is time to compile the 
program. The command to compile the program is: 

FORT4 MORTGAGE (For FORTRAN IV) 

FS MORTGAGE (For FORTRAN 5) 

When you look at the output of the compilation, you will see that there were a few 
errors. You will see the error code and an associated line number where the error 
occurred. The error may have actually occurred one or two lines before the point where 
the compiler detected it. Also, one error may generate more than one error message. 



11-24 Program Development Cycle 

CS-OI747 

Refer to the appropriate reference manual, AOS or AOS /VS, for more information 
about compilation errors. 

Figure 11.11 lists the corrected version of the program. 

When these errors are corrected, you can compile the program again and then proceed to 
the next step. 

C 

C 

C 

C 

C 

C 

C 

C 

C 

5 

110 

120 

130 

140 

30 
40 

REAL I, INTEREST, ITO, LB ....... I--------
WRITE (10) " ENTER PRINCIPAL, RATE, YEARS," 
WRITE (10) " AND 0 FOR SUMMARY OR 1 FOR" 
WRITE (10) " FULL SCHEDULE. SEPARATE EACH" 
WRITE (10) " PARAMETER WITH A COMMA." 
WRITE (10) " TERMINATE INPUT WITH A NEW LINE." 
READ (11) P, R, L, IFULL 
CHANGE YEARLY RATE (R) TO MONTHLY RATE (I) 
I = R/12. 
CHANGE YEARS (L) TO MONTHS (N) 
N = L*12 
CALCULATE MONTHLY PAYMENT (PAY) 
PAY = P*I*(1+I)**N/«1+I)**N-1) 
WRITE (12,110),P, R, L 

INT IS A 
PREDEFINED 
FUNCTION 

FORMAT (1H1,"PRINCIPAL = $",F9.2,/," INTEREST RATE =", 
-F7.4,/," LOAN LIFE IS",I4," YEARS",/,/) 
·WRITE (12,120) PAY 
FORMAT (1HO,"MONTHLY PAYMENT =$",F10.2) 
IF (IFULL .LE. 0) GO TO 40 
INITIAL LOAN BALANCE (LB) EQUALS PRINCIPAL 
LB = P 
CREATE COUNT (NN) FOR USE IN OUTPUTTING SCHEDULE 
NN = N 
ITO = O. 
WRITE (12,130) 
FORMAT (1HO," NUM",7X,"INTEREST",5X "PRIN.PAY 

-" BAL",6X,"INTEREST PAID TO DATE"'/~ 
DO 30 NP-1,NN 
CALCULATE PRINCIPAL PORTION (PN) 
PN = LB*I/«I+1)**N-1) 
N = N-1 
CALCULATE INTEREST PORTION (INTEREST ) ........ ~
INTEREST = PAY -PN'" 
UPDATE LOAD BALANCE 
LB = LB-PN 
UPDATE INTEREST PAID TO DATE 
ITO = ITD+INTEREST'" 

PRIN." 

WRITE (12,140) NP, INTEREST, PN, LB, ITO 
FORMAT (1HO,I3,7X,"$",F9.2," $",F9.2," $",F9.2, 

-8X,"$",F9.2) 
CONTINUE 
WRITE (10) " TYPE 1 TO REPEAT, 0 TO STOP " ....... 1-------
READ (11) IR ADD CLOSING 
IF (rR .GT. 0) GO TO 5 QUOTES 
END 

Figure 11.11 MORTGAGE Program (Corrected Version) (Arrows Point to Correct Lines.) 

Binding or Linking the Program 

Before you can execute the program, we must bind or link the object program. You can 
do that with the following eLI commands: 

For AOS (FORTRAN IV): XEQ BIND MORTGAGE,FORT.LB 



Program Development Cycle 11-25 

For FORTRAN 5 (AOS or AOS/VS): F5LD MORTGAGE 

F5LD MORTGAGE is a macro that invokes the LINK or BIND utilities and includes 
the appropriate libraries. 

Executing the Program 

We now proceed to the next step, executing MORTGAGE.PR. To execute this or any 
other program, simply type the XEQ command with the name of the program and follow 
it with a new-line character. Typing XEQ MORTGAGE gives us the following message on 
the console: 

ENTER PRINCIPAL,RATE,YEARS, 
AND 0 FOR SUMMARY OR 1 FOR 
FULL SCHEDULE. SEPARATE EACH 
PARAMETER WITH A COMMA. 
TERMINATE INPUT WITH A NEW LINE. 

We then respond with a request for the summary information (monthly payment only), 
given a mortgage of $20,000 at 9% for 25 years. 

20000,.09,25,0 

Since MORTGAGE writes the summary on the line printer, we won't see the output 
until we terminate the program. 

MORTGAGE prompts: 

TYPE 1 TO REPEAT, 0 TO STOP 
1 

Since we responded with 1, the same initial instructions appear on the console. 

This time we repeat the same arguments but ask for a detailed schedule: 

20000,.09,25,1 

And get the following results. 



11-26 Program Development Cycle 

PRINCIPAL = $ 20000.00 
INTEREST RATE = 0.0900 
LOAN LIFE IS 25 YEARS 

MONTHLY 'PAYMENT = $ 167.84 

NUM INTEREST PRIN. PAY PRIN. BAL INTEREST PAID TO DATE 

$ 150.00 $ 17.84 $ 19982.16 $ 150.00 

2 $ 149.87 $ 17.98 $ 19964.18 $ 299;87 

3 $ 149.73 $ 18.11 $ 19946.07 $ 449.60 

4 $ 149.60 $ 18.25 $ 19927.82 $ 599.19 

5 $ 149.46 $ 18.38 $ 19909.43 $ 748.65 

6 $ 149.32 $ 18.52 $ 19890.91 $ 897.97 

7 $ 149.18 $ 18.66 $ 19872.24 $ 1047.15 

8 $ 149.04 $ 18.80 $ 19853.44 $ 1196.20 

9 $ 148.90 $ 18.94 $ 19834.50 $ 1345.10 

10 $ 148.76 $ 19.08 $ 19815.41 $ 1493.86 

11 $ 148.62 $ 19.23 $ 19796.19 $ 1642.47 

12 $ 148.47 $ 19.37 $ 19776.82 $ 1790.94 /--. 

CS-OI748 

Figure 11. 12 Sample of Extended Schedule from MORTGAGE 



Program Development Cycle 1 1-27 

COBOL Programming 

This section leads you through a sample session in COBOL. It assumes that you have 
some experience with the COBOL programming language. 

Follow these steps to run a COBOL program: 

1. Create and edit the source code using a text editor, for example the SPEED text 
editor used in Module 10. 

2. Compile the source file with the CLI command: 

COBOL FILENAME 

3. Correct any compilation errors by returning to Step 1, if necessary. 

4. Link or bind the object file: 

For AOS: CBIND FILENAME,[SUBROUTINE NAME ... ] 

For AOS/VS: CLINK FILENAME,[SUBROUTINE NAME ... ] 

5. Test the program: 

XEQ FILENAME 

6. If the program is correct, you are finished. If not, find the errors and go to Step 1 to 
make corrections. 

7. Pat yourself on the back; you are finished! 

Writing the COBOL Source Program 

The example in this section is a COBOL program to calculate mortgage payments. It 
produces a month by month schedule of principal and interest. It does this using only 
simple arithmetic operations and calls no subroutines. The program uses two formulas 
that you do not need to understand mathematically. 

The program reads input from the console and writes the results back to your console. 

Review the flowchart (Figure 11.13) and program (Figure 11.14) before proceeding to 
the next section. 



11-28 Program Development Cycle 

CALCULATE PAYMENT: 

. (i (1 + n") 
prm (1 + n" - 1 

CALCULATE 
PRIN PAYMENT: 

bel (1 _ iiI" _ 1) 

" 

CS-OI745 

Figure 11. 13 MORTGAGE Program Flowchart 



CS-O/749 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MORTPROG. 
AUTHOR. JOE SCHMOE. 
DATE-WRITTEN. 6 MARCH 1982 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

ECLIPSE. 
ECLIPSE. 

SELECT OUTFILE, ASSIGN TO PRINTER. 
DATA DIVISION. 
FILE SECTION. 
FD OUTFILE, BLOCK CONTAINS 512 CHARCTERS. 
01 OUTREC. 

02 OUT-PAYMT-NUM 
02 FILLER 
02 OUT-MON-INT 
02 FILLER 
02 OUT -MON- PRIN 
02 FILLER 
02 OUT-BALANCE 
02 FILLER 
02 OUT-INT-TO-DATE 
02 FILLER 

WORKING-STORAGE SECTION. 
01 CRT-INPUTS. 

01 

02 PRINCIPAL 
02 PERCENT 
02 YEARS 
02 FUNCTION 
02 REPEAT-FLAG 

TEMPS. 
02 MONTHLY-INT-RATE 
02 MONTHS 
02 MONTHS-LEFT 
02 MONTHLY-PAYMT 
02 LOAN-BAL 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

ZZZ9. 
X(6). 
$(4)9.99. 
X(3). 
$(6)9.99. 
X( 3) • 
$(6)9.99. 
x(8). 
$(6)9.99. 
X(10). 

PIC 9(6)V99. 
PIC 99V99. 
PIC 99. 
PIC 9. 
PIC 9. 

USAGE COMP-1. 
PIC 9(4). 
PIC 9(4). 
PIC 9(4)V99. 
PIC 9(6)V99. 
PIC 9(6)V99. 

Program Development Cycle 11-29 

02 INT-TO-DATE 
02 PAYMT-NUM 
02 INT-PAYMT 
02 PRIN-PAYMT 

PIC 9(4), USAGE COMPo 
PIC 9(4)V99. 
PIC 9(4)V99. 

01 SUMMARY-LINE1. 
02 FILLER PIC X(16), VALUE "PRINCIPAL = " 
02 SUMMARY-PRIN, PIC $(6)9.99. 
02 FILLER PIC X(50), VALUE SPACES. 

01 SUMMARY-LINE2. 
02 FILLER PIC X(20), VALUE "INTEREST RATE = " 
02 SUMMARY-RATE, PIC 9.9(4). 
02 FILLER PIC X(50), VALUE SPACES. 

01 SUMMARY-LINE3. 
02 FILLER PIC X(18), VALUE "LOAN LIFE = " 
02 SUMMARY-YEARS, PIC Z9. 
02 FILLER PIC X(6), VALUE" YEARS". 
02 FILLER PIC X(50), VALUE SPACES. 

01 SUMMARY-LINE4. 
02 FILLER PIC X(18), VALUE "MONTHLY PAYMENT = " 
02 SUMMARY-PAYMT, PIC $(4)9.99. 

Figure 11. 14 MORTGAGE Program 



11-30 Program Development Cycle 

CS-OI750 

*" 

01 
02 FILLER 
HEADLINE 

VALUE " NUM 
II BAL 

PIC X(50), VALUE SPACES. 
PIC X(80), 

INTEREST PRIN. PAY PRIN. 
INTEREST PAID TO DATE". 

PROCEDURE DIVISION. 
INIT. OPEN OUTPUT OUTFILE. 
OPERATOR. 

DISPLAY IIENTER PRINCIPAL: $" WITH NO ADVANCING. 
ACCEPT PRINCIPAL. 
DISPLAY "INTEREST RATE (S): II WITH NO ADVANCING. 
ACCEPT PERCENT. 
COMPUTE MONTHLY-INT-RATE = PERCENT / 100 / 12. 
DISPLAY IIYEARS TO PAY: " WITH NO ADVANCING. 
ACCEPT YEARS. 
COMPUTE MONTHS = YEARS * 12. 
DISPLAY IIFUNCTION (O=SUMMARY, 1-FULL SCHEDULE): II 

WITH NO ADVANCING. 
ACCEPT FUNCTION. 
COMPUTE MONTHLY-PAYMT ROUNDED = 

PRINCIPAL * MONTHLY-INT-RATE * 
(1 + MONTLY-INT-RATE) ** MONTHS / 

--------«1-~-MONTHLy:INT:RiTE)-ii-MONTHs-:-1):-
PERFORM SUMMARY-OUTPUT. 
IF FUNCTION NOT = 0, 

PERFORM DETAIL-OUTPUT. 
DISPLAY "TYPE 1 TO REPEAT, 0 TO STOP: II WITH NO ADVANCING. 
ACCEPT REPEAT-FLAG. 
IF REPEAT-FLAG NOT = 0, GO TO OPERATOR. 
CLOSE OUTFILE. 
STOP RUN. 

SUMMARY-OUTPUT. 
MOVE PRINCIPAL TO SUMMARY-PRIN. 
WRITE OUTREC FROM SUMMARY-LINE1 BEFORE ADVANCING 1. 
COMPUTE SUMMARY-RATE = PERCENT / 100. 
WRITE OUTREC FROM SUMMARY-LINE2 BEFORE ADVANCING 1. 
MOVE YEARS TO SUMMARY-YEARS. 
WRITE OUTREC FROM SUMMARY-LINE3 BEFORE ADVANCING 2. 
MOVE MONTHLY-PAYMT TO SUMMARY-PAYMT. 
WRITE OUTREC FROM SUMMARY-LINE4 BEFORE ADVANCING 2. 

DETAIL-OUTPUT. 
MOVE PRINCIPAL TO LOAN-BAL. 
MOVE MONTHS TO MONTHS-LEFT. 
MOVE 0 TO INT-TO-DATE. 
WRITE OUTREC FROM HEADLINE BEFORE ADVANCING 2. 
MOVE SPACES TO OUTREC. 
PERFORM DO-DETAIL-LINE 

VARYING PAYMT-NUM FROM 1 BY 1 
UNTIL PAYMT-NUM > MONTHS. 

DO-DETAIL-LINE. 

* 

COMPUTE PRIN-PAYMT ROUNDED = 
LOAN-BA~ * MONTHLY-INT-RATE / 

--------«1-~-MONTHLY:INT:RATE)-ii-MONTHS-LEFT - 1). 
SUBTRACT 1 FROM MONTHS-LEFT. 
COMPUTE INT-PAYMT = MONTHLY-PAYMT - PRIN-PAYMT. 
SUBTRACT PRIN-PAYMT FROM LOAN-BAL. 
ADD INT-PAYMT TO INT-TO-DATE. 
MOVE PAYMT-NUM TO OUT-PAYMT-NUM. 
MOVE INT-PAYMT TO OUT-MON-INT. 
MOVE PRIN-PAYMT TO OUT-MON-PRIN. 

Figure 11. 15 MORTGAGE Program (Continued) 



Program Development Cycle 11-31 

Comltiling the Program 

Now that you have written and entered the program into a file, it is time to compile the 
program. The command to compile the program is: 

COBOL MORTGAGE 

When you look at the output of the compilation, you will see that there were no errors. If 
there were, you would have seen an error code and an associated line number where the 
error occurred. The error may have actually occurred one or two lines before the point 
where the compiler detected it. Also, one error may generate more than one error 
message. Refer to the appropriate reference manual, AOS or AOS/VS, for more 
information about compilation errors. 

When the errors have been corrected, you can compile the program again and then 
proceed to the next step. 

Binding or Linking the Program 

Before you can execute the program, you must link or bind the object program. You can 
do that with the following CLI commands: 

For AOS: CBIND MORTGAGE 

For AOS/VS: CI.INK MORTGA(;E 

Executing the Program 

To execute our COBOL program, or any other program, simply type the XEQ command 
followed by the program name and a new-line character. For our COBOL program, 
then, type: 

XEQ MORTPROG 

This produces the following dialog on the console: 

ENTER PRINCIPAl.: $25000.00 
INTEREST RATE (%): 8.75 
YEARS TO PAY: 20 

FUNCTION (0 = SUMMARY. 1=: FULL SCHEDULE): 
t 

For each of these above three queries, we respond WIth an appropriate answer. In this 
example, we want the monthly payment table for a $25,000 mortgage at 8.75% for 20 
years. We also want the full payment schedule. 

Since the MOR TPROG program writes the payment table out to the line printer, we 
won't see the output until we terminate the program. 

After the MORTPROG program completes its calculations for the principal, rate, and 
term that we selected, it outputs the message: 

TYPE 1 TO REPEA T. 0 TO STOP 

If we type 1, the program will repeat the queries for principal, rate, and years to pay and 
function. Then, once again, the program will calculate the table of monthly payments, 
but not print it. 



11-32 Program Development Cycle 

CS-0175/ 

If we type 0, the output file is closed and the program is terminated. Then, any monthly 
payment tables which we requested from the MORTPROG program will be output to 
the line printer, which we assigned as the output file. We have included a partial listing 
of the monthly payment schedule for a $25,000 mortgage at 8.75% for 20 years in Figure 
11.16. 

PRINCIPAL = $25000.00 
INTEREST RATE = 0.0815 
LOAD LIFE = 20 YEARS 

MONTHLY PAYMENT = $220.93 

NUM INTEREST PRIN.PAY PRIN. SAL INTEREST PAID TO DATE 

$182.29 $38.64 $24961. 36 $182.29 

2 $182.01 $38.92 $24922.44 $364.30 

3 $181.13 $39.20 $24883.24 $546.03 

4 $181.44 $39.49 $24843.15 $121.41 

5 $181.15 $39.18 $24803.91 $908.62 

6 $180.86 $40.01 $24163.90 $1089.48 

1 $180.51 $40.36 $24123.54 $1210.05 

8 $180.28 $40.65 $24682.89 $1450.33 

9 $119.98 $40.95 $24641.94 $1630.31 

10 $119.68 $41.25 $24600.69 $1809.99 

11 $119.38 $41.55 $24559.14 $1989.31 

12 $119.08 $41.85 $24511.29 $2168.45 

Figure 11. 16 Sample Payment Schedule 



Program Development Cycle 11-33 

Assembly Language Programming 

This section leads you through a sample session in Assembly Language. It does not 
attempt to teach you how to program using the Data General Assembly Language. 

Follow these steps to run an Assembly Language program: 

1. Create and edit the source code using a text editor, for example, the SPEED text 
editor used in Module 10. 

2. Assemble the source file with the CLI command: 

XEQ MASM FILENAME 

3. Correct any compilation errors by returning to Step 1, if necessary. 

4. Link or bind the object file: 

For AOS: XEQ BIND FILENAME,[SUBROUTINE NAME .•. ] 

For AOS /VS: XEQ LINK FILENAME,[SUBROUTINE NAME ... ] 

5. Test the program: 

XEQ FILENAME 

6. If the program is correct, you are finished. If not, find the errors and go to Step 1 to 
make corrections. 

7. Pat yourself on the back; you are finished! 

Writing the Assembly Language Source Program 

The example program, entitled WRITE, is a short Assembly Language program that 
goes through the standard I/O cycle and uses two devices: the console and the line 
printer. This program lets you type one or more lines on your console; then it writes these 
on the line printer. When you type a special terminating line (#), the program returns to 
the CLI. Figure 11.17 shows you a flowchart of this program's activity. 

Upon any exceptional condition, the program reports the condition by using ?RETURN. 
The system displays on the console all lines typed on the console. (The system always 
performs this service.) Lines output to the printer are not printed until it is closed, 
whereupon the system prints them with a standard header prefix. 

Study the flowchart and source listing in Figure 11.17 before continuing to the next 
section. 



11-34 Program Development Cycle 

NO 

CS-OI752 

Figure 11. 17 WR ITE Flowchart 

START 

~-------------'1/6 

GET CONSOLE NAME 

.... --..... ------1/7 -1/10 

OPEN CONSOLE. OPEN 
LINE PRINTER 

,-_ .... _--. 1/12 

..--_ ..... _--.... 1/23 - 1/28 

CLOSE THE CONSOLE 
AND LINE PRINTER 

~--..... --.... 1/31 



CS-O/753 

Program Development Cycle 11-35 

0001 WRITE AOS ASSEMBLER REV 01.07 
.TITL WRITE 

09:40:44 01/13/78 

00004'000447 

00011'000442 

00016'000435 

00023'000430 
00024'020434 
00025'024545 
00026'126710 
00027'106415 
00030'000407 

00035'000416 
00036'000761 

00043'000410 

00050'000403 

START: 

CONT: 

CLOSE: 

.ENT START 

.NREL 

?GTMES 
JMP 
?OPEN 
JMP 
?OPEN 
JMP 

?READ 
JMP 
LDA 
LDA 
LDB 
SUB /I 
JMP 
?WRITE 
JMP 
JMP 

GTMFK 
ERTN 
CONSOLE 
ERTN 
LINPT 
ERTN 

jGET ORIGINAL CLI 
jEXCEPTION RETURN 
jOPEN CONSOLE FOR 
jREPORT ERROR 
jOPEN LINE PRINTER 
jREPORT ERROR 

CONSOLE jREAD A RECORD 
ERTN jREPORT ERROR 

COMMAND 

READING 

FOR WRITING 

O,TERM jCHECK FOR "/I" TERMINATOR 
1,CONSOLE+3 jGT BYTEPTR FROM CONSOLE 
1,1 jGET 1ST CHARACTER 
0,1,SNR jSKIP IF 1ST CHAR. NOT /I 
CLOSE jTERMINATOR, CLOSE DEVICES. 
LINPT ;WRITE THE RECORD TO THE PRINTER 
ERTN j REPORT ERROR 
CONT jREAD ANOTHER CONSOLE RECORD 

CONSOLE 
ERTN 
LINPT 
ERTN 
2,2 

jCLOSE THE CONSOLE 
jREPORT THE ERROR 
jCLOSE THE LINE PRINTER 
jREPORT ERROR 

PKT 

02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

00051 '152620 
Oj0052'000402 

?CLOSE 
JMP 
?CLOSE 
JMP 
SUBZR 
JMP .+2 

;SET "GOOD RETURN" FLAG 
jAND SKIP OVER ERROR FLAG SETTINGS 

00053'030404 ERTN: 

00056'000775 

00057'150000 FLAGS: 
00060'000043 TERM: 
00061'000074 IBUF: 

LDA 
?RETURN 
JMP 

2,FLAGS jGET ERROR FLAGS 
jRETURN TO CLI 

ERTN jTRY TO REPORT ?RETURN ERROR 

?RFEC+?RFCF+?RFER j?RETURN FLAGS 
043 ;ASCII CODE FOR "/I" 
.BLK 60. ;120 CHARS MAXIMUM PER LINE 
jPARAMETER PACKETS 

j?GTMES PACKET 

00155'000003 GTMPK: 
00156'000001 
00157'000000 
00160'000342" 

?GARG 
1 jGET THE CONSOLE NAME 
o 
CON*2 jBYTE POINTER TO ADRS OF CONSOLE NAME 

jEND OF ?GTMES PACKET 

00161 '000006 CON: .BLK 6 

00167'000000 
00170'000022 
0;0171 '000000 
00172'000142" 
00173'00000 
00174'000170 
00175'000000 
00176'000000 
00177'000000 

jREAD PACKET 

CONSOLE:O 
?RTDS+?OFIN 
o 
IBUF*2 
o 
120. 
o 
o 
o 

;AREA TO RECEIVE CONSOLE NAME 

jPACKET TO OPEN AND READ CONSOLE 
jDATA SENSITIVE READS 

jBYTE POINTER TO READ BUFFER 

;120 CHAS. MAX IN EACH RECORD 

Figure 11.18 WRITE 



11-36 Program Development Cycle 

10002 WRITE 
01 00200'000342" CON*2 ;BYTE POINTER TO CONSOLE NAME 
02 00201 '177777 -1 
03 00202'177777 -1 
04 ;END OF ?READ PACKET 
05 
06 ;START OF ?WRITE PACKET 
07 
08 00203'000000 LINPT: 0 
09 00204'000012 ?RTDS+?OFOT 
10 00205'000000 0 
11 00206'000142" IBUF*2 ;BYTE POINTER TO RECORD BUFFER 

12 00207'000000 0 
13 00210'000170 120. ;WRITE 120 RECORDS MAXIMUM 
14 00211'000000 0 
15 00212'000000 0 
16 00213'000000 0 
17 00214'000436" LINP*2 
18 00215'177777 -1 
19 00216'177777 -1 
20 ;END OF ?WRITE PACKET 
21 
22 00217'040114 LINP .TXT "@LPT" 
23 050124 
24 000000 
25 
26 
27 .END START ;START AT THE BEGINNING 

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS 

0003 WRITE 

CLOSE 000037' 1/18 1/23 
CON 000161' 1/44 1/48 2/01 
CONSO 000167' 1/08 1/13 1/15 1/24 1/52 
CONT 000017' 1/12 1/21 
ERTN 000053' 1/06 1/08 1/10 1/13 1/20 1/24 1/26 

1/30 1/32 
FLAGS 000057' 1/30 1/34 
GTMPK 000155' 1/06 1/41 
IBUF 000061' 1/36 1/55 2/11 
LINP 000217' 2/17 2/22 
LINPT 000203' 1/10 1/20 1/26 2/08 
START 000000' EN 1/02 1/05 2/27 
TERM 000060' 1/14 1/35 
?CLOS 002277 MC 1/23 1/25 
?GTME 002424 MC 1/05 
?OPEN 002254 MC 1/07 1/09 
?READ 002322 MC 1/12 
?RETU 002447 MC 1/31 
?WRIT 002345 MC 1/19 
?XCAL 000001 1/06 1/08 1/10 1/13 1/20 1/24 1/26 

1/32 

CS-OJ754 

Figure 11.19 WRITE (Continued) 

Assembling the Program 

Now that you have written and entered the program into a file, it is time to compile the 
program. The command to compile the program is: 

XEQ MASM WRITE 

r-. 

r--.. ,. 



Program Development Cycle 11-37 

When you look at the output of the compilation, there should be no errors. If there are 
errors, you will see them flagged with an error indicator following the line number of the 
line where the error occurred. For more information on errors and Assembly Language 
programming in general, refer to the reference manuals. 

Binding or Linking the Program 

Before you can execute the program, you must link or bind the object program. You can 
do that with the following CLI commands: 

For AOS: XEQ BIND WRITE 

For AOS/VS: XEQ LINK WRITE 

Executing the Program 

To tryout our program, we type the following: 

XEQ WRITE @CON13 

After waiting briefly for our process to be created, we then type in a test line: 

WRITE RUNS RIGHT,Q.E.D. 

and follow this with a terminating line: # 

These lines echo on the console, and our program ends and reinvokes the CLI. Our test 
line is printed on the line printer. 



11-38 Program Development Cycle 

Lab Activity 11-1 

The Lab Activity for this module is to execute the program in the programming section 
that you read. You should complete the steps necessary to enter, compile, correct, link or 
bind, and execute the program. Of course, if you are a BASIC programmer, you will not 
do all of these steps. 

There is no solution listed for this Lab Activity. You will know that you completed it 
successfully if the program gives you the correct results. Then, continue to the Module 
11 Test on the next page. 

,.,-



Module 11 
Test 

Program Development Cycle 11-39 

Directions: Complete the following sentences: 

1. The utility program that converts a high-level language into machine code is called 
a(n) 

2. The utility program that converts Assembly Language into machine code is called 
a(n) 

3. The general term for the program that converts a source language into machine 
language is __________ _ 

4. The file that is input to the program in Question 3 is in _______ _ 
format. 

5. A(n) , used with conversational languages, combines several 
program development steps into one. 

6. The program that combines several separately translated sections of code, links 
them, and produces an executable file is called _________ _ 

7. The files that are input to the program in Question 6 are in _________ _ 
code. 

8. The CLI command used to test a program called TESTI that has been compiled and 
linked is __________ _ 

9. The next command that you must issue after you have successfully compiled a 
program called TESTI is __________ _ 

10. What command would you use to (choose one unless you program BASIC, then skip 
this question) assemble a program, compile a FORTRAN program, compile a 
COBOL program named TEST1? 

11. Fill in the boxes in Figure 11.20 using the information below. 

• CORRECT ERRORS 

• EXECUTE, TEST, AND VALIDATE THE PROGRAM 

• USE A TRANSLATOR TO CONVERT THE CODE INTO MACHINE 
LANGUAGE 

• USE A PROGRAMMING LANGUAGE TO CODE THE SOLUTION 

• ENTER THE CODE INTO THE COMPUTER SYSTEM 

• LINK SUPPORT MODULES AND ASSIGN MEMORY LOCATIONS 

• USE AN INTERPRETER 

• DEFINE THE PROBLEM 



11-40 Program Development Cycle 

CS-OI755 

Figure 11.20 

I 

DETERMINE THE SOLUTION 

~ 

I 

t 

9 

SYNTAX ERRORS 

LOGICAL ERRORS 

(RUN·TIME ERRORS) 

MAINTAIN AND 
UPDATE 

1 

2 

3 

4 

5 

6 

7 

8 

CONVERSATIONAL 
LANGUAGES , 

I 

2 
o 
i= 
<{ 
f-
2 
w 
:?! 
:::::» 
o o 
c 

Now check your answers in Appendix A of your Student Guide. If you did not answer all 
the questions correctly, review the material and do the Test again. 

This concludes the ADS, ADS/VS User Self-Study Course. 



Module 1 

Module 2 

1. a. 

2. c. 

3. c. 

1. h. 

2. c. 

3. f. 

4. d. 

5. a. 

6. h. 

7. g. 

8. e. 

9. c. 

10. a. 

11. DATE 

12. TIME 

13. WHO 

14. BYE 

15. Press NEW LINE. 

Appendix A 

Module Tests Answers 

Enter your username, followed by NEW LINE. 
Enter your password, followed by NEW LINE. 
Wait for the system prompt. 



A-2 Module Tests Answers 

Module 3 
1. A4 

B5 
C3 
D2 

2. I (No space after the command.) 

3. V 

4. V 

5. I (No spaces between switches.) 

6. V 

7. I 

8. V 

9. I 

10. I 

11. V 

12. V 

13. V 

14. V 

15. I 

16. V 

17. DELETE/V IC.XYZ 

18. TYPE,NEWS_FILE 

19. RENAME,GOOD~TUFF,OLD_JUNK 

20. CREATE/I,TERMINALDATA 

21. COPY,PERSONNEL,PAYROLL 

22. HELP IV DELETE 

23. COpy I A,MASTER_FILE,FILEIA,FILEIB,FILE2A,FILE28 

24. TYPE,USELESS_FILE 
DELETE,USELESS_FILE 

25. TYPE,FILEl,FILE2,TESTl,TEST2 

26. DELETE FILEl.OLD,FILE2.0LD,FILE3.0LD 

27. TYPE,FILEI 
TEST,TEST2 



Module 4 

Module 5 

1. 

2. @ or PER 

3. UTIL 

4. UPD 

5. UDD 

6. :UDD:USERI:DIRA:DIRA2:FILEC 

7. :UDD:USERI:DIRB:FILEI 

8. :UDD:USER2:FILED 

9. :UDD:USER3 

10. :UDD:USER3:STUFF:IMPORTS 

11. PAYROLL+ OR PA YROLL-

12. PAYROLL* 

13. + FORMS 

14. -

15. +2+ 

16. CREATE/DIRECTORY,SUPER_DIR 

17. CREATE/DIRECTORY /MAXSIZE= to,LITTLE_C.P.D. 

18. FILEST A TUS 

19. DIRECTORY 

20. DIRECTORY,:UTIL 

21 . SEARCH LIST 

22. SEARCHLIST.:UTIL 

23. PATHNAME,FORTRAN.PR 

Module Tests Answers A-3 

1. The superuser privilege allows the user access to any file. It overrides checking of any 
file's ACL. When superuser is in effect, the user's prompt changes from) to *). 

2. ACL,FILE_l 

3. ACL,FILE_l,JOHN,OWARE,MARY,R 

4.DEFACL 

5. DEFACL,+,OWARE 



A-4 Module Tests Answers· 

Module 6 

6. SUPERUSER,ON 

7. SUPERUSER,OFF 

8. 
Access Abbre- Nondirectory File 

viation 

Execute E User can execute the file. 

Read R User can read (examine) data 
in the file. 

Append A N/A 

Write W User can modify the contents 
of the file. 

Owner 0 User can change file's ACL 
or delete files. 

Table 5.0 Module 5 Test Answers: ACLs 

1. b. 

2. Sequence 
job 

3. QPRINT /NOTIFY,PRINT_l 

Directory File 

User can use the directory in a path-
name. 

User can examine the list of files. 

User can insert new files in directory. 

User can insert and delete files and 
change ACLs of files in the directory. 

User can change directory's ACL or 
delete the directory. 

4. QPLOT /COPIES=S/NOTIFY,PLOT_FILE 

5. QDISPLAY/TYPE=PLOT 

6. QCANCEL,4S3 

7. QHOLD,29 

8. QUNHOLD,90 

9. QBATCH,INDEPENDENT_l 

Module 7 

1. c. 

2. a. 

3. b. 

4. d. 

5. c. 

6. c. 

7. b. 

8. d. 

-

~. 



Module 8 

9. a. 

10. c. 

11. PUSH 

12. POP 

13. LEVEL 

14. CURRENT 

15. PROMPT,TIME 

16. LISTFILE,TEMPORARY _OUTPUT 

17. SUPER USER 

18. SUPERPROCESS,ON 

19. SQUEEZE,ON 

20. CLASS2,IGNORE 

1. a. Resident 
b. Preemptible 
c. Swappable 

2. a. Eligible 
b. Ineligible 
c. Blocked 

3. a. 

4. (In any order:) 
Unique ID 
Username 
Memory 
Priority 
Privileges 
State 
Type 
Program 

Module Tests Answers A-5 



A-6 Module Tests Answers 

5. 

CS-OJ73J 

Figure 8.18 

6. a. 

7. a. 

8. b. 

9. c. 

10. d. 

11. TREE,14 

12. TERMINATE,14 

13. SUPERPROCESS,ON 

14. WHO,13 

15. PROCESSjBLOCKjIOC,GOOD_STUFF 

16. PROCESS MODULE_EIGHT_CONCLUSION 



Module 9 

Module 10 

1. b. 

2. b. 

3. a. 

4. a. 

5. a. 

6. CREATEjI QUIZ6_6 
)EXECUTE PROGI 
)WRITE ALL FINISHED 
)) 

7. CREATEjI QUIZ6_7 
)[!EQUAL % 1%,1] 
)EXECUTE PROG 1 
)[!ELSE] 
)EXECUTE PROG2 
)[!END] 

8. SEARCHLIST [!SEARCHLIST]: UTIL 

9. CREATEjI MAC1.CLI 
)MAC2 [!EXPLODE[!TIME]] 
)) 

CREA TEjI MAC2.CLI 
)WRITE %7% %8% 
)) 

1. Invoke SPEED. 

2. Open files for input. 

3. Open files for output. 

4. Read a portion of the file into the buffer. 

5. Insert or modify text. 

6. Write buffer to output. 

7. Close files. 

8. Exit SPEED. 

9. Open, input 

10. Search 

11. L 

12. T 

Module Tests Answers A-7 



A-a Module Tests Answers 

Module 11 

13. Insert 

14.FO 

15. FU 

16. Y, A 

17. P, E 

18. C 

1. Compiler 

2. Assembler 

3. Translator 

4. Text or source code 

5. Interpreter 

6. Link or bind 

7. Object code 

8. XEQ TESTl 

9. For AOS: XEQ BIND TESTl 
For AOS/VS: XEQ LINK TESTl or FSLD TESTl (FORTRAN5) 

For COBOL: 

For AOS: CBIND TESTl 
For AOS /VS: CLINK TESTl 

10. For COBOL: COBOL TESTl 
For FORTRAN: FORT4 TESTl or FS TESTl 
For ASSEMBLER: XEQ MASM TESTl 

/-



11. 

• 

DEFINE THE PROBLEM 

• 

DETERMINE THE SOLUTION 

USE A PROGRAMMING LANGUAGE 
TO CODE THE SOLUTION 

f 
ENTER THE SOURCE CODE 
INTO THE COMPUTER SYSTEM 

9 
CORRECT USE A TRANSLATOR TO 

ERRORS CONVERT THE CODE 
INTO MACHINE LANGUAGE 

SYNTAX ERRORS 

LINK SUPPORT MODULES 
AND ASSIGN MEMORY 
LOCATIONS 

EXECUTE, TEST, AND VALIDATE 
THE PROGRAM (DEBUG) 

LOGICAL ERRORS 

(RUN-TIME ERRORS) 

MAINTAIN AND 
UPDATE 

CS-O/740 

Figure 11.21 

1 

2 

3 

4 

5 

6 

7 

8 

Module Tests Answers A-9 

CONVERSATIONAL 
LANGUAGES 

t 

USE AN 
INTERPRETER 

J 

l 

z 
o 
r« rz 
w 
~ 
::> 
u o c 





Appendix B 
AOS, AOS/VS Reference Manuals 

Advanced Operating System (AOS) 

069-000016 
069-000018 
069-000020 
069-000030 
093-000120 
093-000122 
093-000150 
093-000190 
093-000191 
093-000192 
093-000193 
093-000194 
093-000195 
093-000197 
093-000198 
093-000217 
093-000218 
093-000230 
093-000254 
093-000259 

Introduction to the Advanced Operating System 
Learning to Use Your Advanced Operating System 
AOS Software Documentation Guide 
ECLIPSE ® Data Systems: Software for Commercial Applications 
AOS Programmer's Manual 
Command Line Interpreter User's Manual (AOS, AOS/VS) 
AOS Console User's Handbook 
AOS Binder User's Manual 
AOS Shared Library Builder User's Manual 
AOS M acroasssembler Reference Manual 
AOS System Manager's Guide 
AOS Operator's Guide 
AOS Debugger and File Editor User's Manual 
SPEED Text Editor User's Manual (AOS, AOS/VS) 
AOS Library File Editor User's Manual 
How to Load and Generate Your AOS System 
AOS LINEDIT Text Editor User's Manual 
Plastic ring binder for AOS Console User's Handbook 
AOS Link User's Manual 
Running AOS on Your ECLIPSE® MV/8000 Computer (MV/8000) 

Advanced Operating System/Virtual Storage (AOS/VS) 

093-000122 
093-000197 
093-000241 
093-000242 
093-000243 
093-000244 
093-000245 
093-000246 
093-000247 
093-000248 

Command Line Interpreter User's Manual (AOS,AOS/VS) 
SPEED Text Editor User's Manual (AOS,AOS/VS) 
AOS/VS Programmer's Manual 
AOS/VS Macroassembler Manual 
Managing AOS/VS 
AOS/VS Operator's Guide 
AOS/VS Link and File Editor User's Manual 
AOS/VS Debugger User's Manual 
AOS/VS System Management binder for 93-122, -243, -244 
AOS/VS SED Text Editor (6053) template for DASHER®D2 



8-2 AOS, AOS/VS Reference Manuals 

093-000249 
093-000256 

093-000276 
093-000278 

AOSjVS SED Text Editor User's Manual 
AOS/VS SED Text Editor (6108/6109) template for 
DASHER® D200 

~9S/\,~}~~\)~gffE~_(~Q_52l§05~)_~~~pl~te for DASHER® D2 
AOS/VS Debug/FED (6108/6109) template for DASHER® D200 

FORTRAN IV (AOS, RDOS, DOS, RTOS, SOS, *CB) 

069-000029 
093-000053 
093-000068 
093-000142 
093-000239 _ 

Data General's FORTRANs: A Technical Comparison 
FORTRAN IV User's Manual 
FORTRAN IV Runtime Library User's Manual (NOVA® ) 
FORTRAN IV Runtime Library User's Manual (ECLIPSE® ) 
FORTRAN QCALLs Reference Manual (AOS) 

FORTRAN IV (AOS, MP lOS) 

093-400004 MPjFORTRAN IV Programmer's Reference 

FORTRAN 5 (AOS, AOSIVS, RDOS) 

069-000029 
093-000085 
093-000154 
093-000227 

BASIC (AOS, MP lOS) 

093-400005 

Data General's FORTRANs: A Technical Comparison 
FORTRAN 5 Reference Manual 
FORTRAN 5 Programmer's Guide (AOS,AOSjVS) 
FORTRAN 5 Programmer's Guide (RDOS) 

MPjBASIC Programmer's Reference 

Business BASIC (AOS, AOSIVS, RDOS, DOS) 

069-000028 
093-000226 
093-000228 
093-000212 
093-000213 
093-000265 

Commercial BASIC (CB) 

A Guide to Using Business BASIC 
Business BASIC Directory 
Business BASIC System Management 
File/Screen Maintenance 8-key template for DASHER ® D2 
File/Screen Maintenance 3-key template for DASHER® D2 
Business BASIC 15-key template for DASHER® D200 

Model 3896 includes DOS and Business BASIC manuals. 

Model 3897 includes RDOS, RDOS Sort/Merge, and Business BASIC manuals. 

Extended BASIC (AOS, AOS/VS, RDOS, DOS, SOS*) 

069-000003 
093-000065 
093-000119 

basic BASIC (AOS, AOSjVS, RDOS, DOS) 
Extended BASIC User's Manual 
Extended BASIC System Manager's Guide 



COBOL (AOS, AOSjVS, RDOS) 

COBOL Reference Manual (RDOS) 

COBOL Pocket Reference (RDOS) 

AOS. AOS/VS Reference Manuals 8-3 

093-000180 

093-000200 

093-000223 COBOL Reference Manual (AOS, AOSjVS) 





Addendum 
The SED Editor 

Introduction 

The SED Editor Addendum is a self-paced text only module that explains the elementary 
features of the SED text editor. Although not all the features of SED are discussed, this 
addendum allows you to use enough of the features to develop and edit files for use in 
program development. For a more detailed discussion of all the features, refer to your 
SED Text Editor User's Manual. 

Module Objectives 

Resources 

Upon successful completion of this addendum, you should be able to: 

1. List the steps involved in a typical editing session. 

2. Use arguments to SED commands in a SED editing session. 

3. Use the SED commands that perform the following functions: 

a. Add text to a file 
b. Modify text in a file 
c. Change the line position 
d. Locate text in a file 
e. Move and duplicate text 
f. Delete text 
g. Update files 
h. Access the CLI 
i. Terminate SED. 

You only need this addendum; there is no accompanying audiotape. 



2 The SED Editor 

Module Outline 

The SED Editor Addendum discusses the following topics: 

1. SED Overview 

Introduction to SED 
Aids for using SED 

2. Arguments to SED Commands 

Address 
Range 
Source 
Destina tion 
Searchstring 

3. SED Commands 

Adding Text 
APPEND 
INSERT 

Modifying Text 
MODIFY 
REPLACE 
SUBSTITUTE 
CUT 
PASTE 
SPLIT 
JOIN 

Displaying Information 
HELP 
DISPLA Y _STATUS 
LIST 
VIEW 

Locating Text 
POSITION 
FIND 
BACKFIND 

Moving and Duplicating Text 
MOVE 
DUPLICATE 

Deleting Text 
DELETE 
UNDO 

Accessing the CLI 
DO 
CLI . 

Updating Files 
SAVE 
BYE 

r'-



The SED Editor 3 

SED Overview 

Introduction to SED 

SED is a screen-oriented text editor, which allows you to create and modify text files 
from your terminal. SED is known as a screen-oriented text editor because it deals with 
lines, pages, and screens of text. 

SED can be used with most Data General Corporation terminals. On a DASHER®D 1 
terminal, however, it can be used only with certain limitations. The DASHER D 1 
terminal is uppercase only and does not have all the special function keys that SED 
allows. 

Figure 1 illustrates an overview of a typical SED editing session. The first step is to 
execute the SED utility from your working directory. The second step is to create a new 
file or bring in an old file for modifications. The third step is to make the modifications 
using SED features. These SED features are explained later in this addendum. The last 
step is to update the file and terminate the SED session and return to the CLI. 

CS-023 I 2 

CREATE 

NEW FILE 

EXECUTE 
SED 

BRING IN 
OLD FILE 

ADD OR MODIFY FILE 
USING SED COMMANDS, 

SCREEN EDITING FEATURES, 

OR POSITIONING FEATURES 

TERMINA TE THE 
SED SESSION 

'-----------,---,---------------' 

Figure 1 SED Editing Overview 

Now let us look at an actual editing session. There are two ways to execute SED. You 
can give the CLI command, xeq sed, with or without specifying a file to be edited. 



4 The SED Editor 

If you give the command, xeq sed, without specifying a file, SED asks for the file. You 
must respond with a file pathname. The pathname may specify an existing file or a new 
one to be created by the SED utility. The file pathname must follow the CLI naming 
conventions. Example 1 shows how to execute SED to edit a file called sampleflle 
without specifying the file. 

Example 1 
)xeqsed 
Name of the file to ed1 t: samplefile 

If you give the command xeq sed with a filename, SED will search for the file. If the file 
exists, the editing session begins. If the file does not exist, then SED will ask if you wish 
to create the file. If you answer y or yes, then the file will be created and the SED editing 
session begins. If you answer n or no, then you can enter another pathname. Example 2 
shows how to execute SED with a filename of a newly created file called sampleflle. 

Example 2 
)xeq sed samplefile 
Do you want SAMPLEFILE to be created? y 

. When SED is ready to begin the editing session, it displays its prompt, an asterisk (*), at 
the top of your screen above a line. You can now use SED commands, screen editing 
features, and screen positioning features to add to or modify your file. 

There are two modes you may use during a SED editing session: the keyboard input 
mode and the command mode. In the keyboard input mode you enter text into the file. 
SED displays a cursor to mark where text entries start; this is called the current position. 
In the command mode you can issue the SED commands that modify files. The last 
command given is displayed next to the SED asterisk prompt and is called the current 
command. You start a SED session in the command mode, but will ordinarily move back 
and forth between modes several times in a session. 

Figure 2 shows the CRT display from a short SED editing session. SED displays two 
commands: the current command and the command given prior to the current command. 
The current SED command is displayed next to the asterisk above the line. The command 
given immediately prior to the current command is shown above the current command. 
In Figure 2 the current command is APPEND. The APPEND command allows you to 
input text into the file. The command given immediately prior to the APPEND command 
is the VIEW command. The VIEW command is explained later. The current position 
line and page is shown above the line to the right. Text is entered below the line. SED 
will automatically number lines as the text is entered. 

To conclude an appending session press the ESCAPE key, <ESC>. Press the ESCAPE 
key only after entering a NEW-LINE, <NL>, at the end of the text; otherwise, the 
last line of text will be lost. The SED prompt will return. To terminate the SED session 
and return to the CLI type the command, BYE, after the SED prompt. 



view 
*append 
1 this is the text. 
2 

The SED Editor 5 

page 1 line 1 

Figure 2 Short Editing Session 

Example 3 demonstrates how to use SED to create a new file called text with the 
message This is the text. in it. 

Example 3 
) xeq sed text 
Do you want TEXT to be created? y 

*append 
This is the text. <NL> 
<ESC> 
*bye 
) 

Starts SED naming the file text to be edited. 
Creates a new file called text. 
Allows you to enter text into the file. 
Entered text is placed at the current line. 
Ends APPEND session and returns you to command mode. 
Terminates SED session and returns you to the CLI. 

This section has introduced the SED editor and described a simple editing session. 
Answer the questions in Exercise 1 and do Lab Activity 1 before continuing with the rest 
of the addendum. 



6 The SED Editor 

.".--. 



The SED Editor 7 

Exercise 1 

1. List the four steps in a typical SED editing session. 

a. 

b. 

c. 

d. 

2. Match each command with its effect. 

a. XEQ SED 
b. APPEND 
c. BYE 

1. Ends SED session. 
2. Initiates SED session. 
3. Used to enter text. 

Directions 
Now check your answers with those on the next page. 



8 The SED Editor 

Exercise 1 
Answers 

1. a. Execute SED. 
b. Create a new file or bring in an old file for editing. 
c. Add or modify a file. 
d. Terminate the session. 

2. 1. c 
2.a 
3. b 

Directions 
If you answered all the questions correctly, continue to the next page. Otherwise, review 
the material and do this exercise again before you continue. 



The SED Editor 9 

Lab Activity 1 

Directions 
Follow the instructions below to create a new file called text with the message this is the 
text. in it. 

1. Execute SED from your working directory. 
) xeq sed text 

2. Create a new file called text by answering y for yes to SED's request. 
Do you want TEXT to be created? y 

3. The SED screen will appear. The asterisk indicates the location where commands 
are displayed. Issue the APPEND command to enter text. 
*append 

4. The number 1 will brighten indicating the position of the current line. Text entered 
at the keyboard will be placed in the current line. Enter the text, this is the text., 
followed by <NL>. After pressing <NL> a bright 2 will appear on the left to 
indicate that line 2 is now the current line. 
1 this is the text. <NL> 
2 

5. Press <ESC> to end APPEND mode. Do not press <ESC> at the end of a line 
of text. Always enter the text first by pressing <NL>; otherwise, the last line of 
text will be lost. 
<ESC> 

6. Terminate the SED session by entering the BYE command. You will return to your 
working directory and the CLI prompt will appear. 
*bye 

) 

Directions 
After you have successfully completed Lab Activity 1, continue to the next page. 



10 The SED Editor 

Aids for using SED 

CS~2JII 

The SED program contains several features that help you edit text. SED aids include: 
special function keys, the SED template, the display function command, cursor and line 
control characters, format settings, the HELP command, the SPELL command, and 
command abbreviations. 

Special Function Keys 
Special function keys are found across the top of your keyboard. Each function key can 
store one or more commands. You can invoke these commands merely by pressing the 
key. Thus, the extra keystrokes used to spell the command are eliminated. 

The SED Template 
The SED template is a cutout card that fits over the special function keys on the 
keyboard. Figure 3 shows the card for the DASHER D200. Predefined functions are 
shown in the labeled boxes. The blank boxes can be used for user-defined functions. 

SED Text Editor 

Figure 3 0200 SED Template 

The Display Function Command 
You can obtain a listing of all the predefined special function keys and their locations by 
issuing the command DISPLAY FUNCTION from the command mode. 

Cursor and Line Control Characters 
Cursor and line control characters are used to issue screen editing commands that 
modify the current line. You execute some screen editing commands by using control 
characters. To generate a control character, press and hold the CTRL key and then 
press another key. A list of control characters is presented in Table A. 



The SED Editor 11 

Table A Cursor and line Control Characters 

Control What It Does 
Character 

CTRL-A Moves the cursor to the end of the line. In command mode, repeats the last command issued. 

CTRL-B Moves cursor backward to the last letter in each word. 

CTRL-E Lets you insert one or more characters before the cursor. Pressing <NL> or CTRL-E terminates the 
insert mode and displays the edited line. 

CTRL-F Moves the cursor forward to the first letter of each word. 

CTRL-H Moves the cursor to the beginning of the line. 

CTRL-K Erases all characters to the right of the cursor. 

CTRL-X ----. Moves the cursor to the right one character. 

CTRL-Y <- Moves the cursor to the left one character. 

CTRL-U Deletes all the characters in the line. 

CTRL T Moves the cursor to the next tab stop; tab stops are in columns 9, 17, 25, 33, 41, 49, 57, 65, 
TAB key and 73. 

DEL Erases the character to the left of the cursor and closes up the line. 

ESC Terminates APPEND, INSERT, MODIFY, or REPLACE modes. If you press <ESC> before you 
press < NL >, you will enter the line with no changes. 

Figure 2 shows the usual or default format settings for a SED editing session. Unless 
otherwise formatted SED will: 

• Make the current line bright and all others dim. 

• Display line numbers before each line of text. 

• Move the cursor up or down one line in the same column when you press the up arrow 
or down arrow keys. 

• Show 21 lines of text on the screen, 10 lines before and 10 lines after the current line. 

• Remove any blanks at the end of a line after you press <NL>. 

You can find out the present settings for your system by issuing the DISPLA Y command 
from the command mode. Your SED manual describes how you can change the format 
settings using the SET and CLEAR commands. 

The HELP command gives you information about all SED commands and vocabulary. 
If you type HELP while in the command mode, SED will display a table of commands 
and keywords. If you type HELP followed by a command or keyword, SED will display 
information about that word. The use of the HELP command is shown in Figure 4. 



12 The SED Editor 

help 
page 1 line 1 

***** COM MAN 0 S ***** 

ESCAPES ADD TEXT CHANGE TEXT DELETE TEXT LISTINGS POSITIONING 

----------- ----------- -----------
EXECUTE APPEND MODIFY DELETE LIST POSITION 
HELP INSERT REPLACE MOVE VIEW FIND 
SAVE DUPLICATE SUBSTITUTE JOIN PRINT 

UNDO SPLIT 
CUT 
PASTE 

EXITING MISC HELP WORDS 
------------------------

ABANDON CLEAR CURSOR-CONTROL ADDRESS 
BYE DIRECTORY RANGE SOURCE 
CLI DISPLAY SEARCH-STRING DESTINATION 
DO SET KEYS SYNTAX 

SPELL SWITCHES 

Type HELP followed by a cORmand or keyword you want to know about. 

Figure 4 The HELP Command 

The SPELL command provides spelling assistance during an editing session. SED lists 
words that begin with a string of letters you specify. Figure 5 shows the use of the 
SPELL command to determine the spelling of liaison when only the first three letters 
are known. 

spell lia 

* 
liab1l1 ties 
liab1l1ty 
liable 
liaise 
liaison 
liaisons 
liana 
liane 
liang 
liangs 
liano1d 
liar 
liars 
lias 
- No More -

Figure 5 The SPELL Command 

page 1 line 1 



The SED Editor 13 

~-- Command Abbreviations 
SED allows you to abbreviate any command if your abbreviation is unique. For example, 
SED will recognize any of the following abbreviations as the APPEND command: 

AP 
APP 
APPE 
APPEN 

APPEND cannot be abbreviated to "A" however, since there is another SED command, 
ABANDON, which begins with A. 

Lab Activity 2 

Directions 
Follow the instructions below to practice using the HELP and SPELL commands and 
command abbreviations. 

1. Execute SED from your working directory. 
) xeq sed tex t 

2. The SED screen will appear with the text you have previously entered in Lab 
Activity 1. Figure 6 shows the screen. 

view 
*append 

1 this- is the text. 
2 

Figure 6 SED Screen 

page 1 line 1 



14 The SED Editor 

3. Enter the HELP command. SED displays a table of commands and keywords about 
which you can get more information. Figure 7 shows the display. 

help 
page 1 line 1 

***** COM MAN 0 S ***** 

ESCAPES ADD TEXT CHANGE TEXT DELETE TEXT LISTINGS POSITIONING 
----------- ----------- -----------

EXECUTE APPEND MODIFY DELETE LIST POSITION 
HELP INSERT REPLACE MOVE VIEW FIND 
SAVE DUPLICATE SUBSTITUTE JOIN PRINT 

UNDO SPLIT 
CUT 
PASTE 

EXITING MISC HELP WORDS 
------------------------

ABANDON CLEAR CURSOR-CONTROL ADDRESS 
BYE DIRECTORY RANGE SOURCE 
CLI DISPLAY SEARCH-STRING DESTINATION 

DO SET KEYS SYNTAX 
SPELL SWITCHES 

Type HELP followed by a command or keyword you want to know about. 

Figure 7 The HELP Display 

4. Type help spell. SED displays information on the use of the SPELL command. 
Figure 8 shows the use of the HELP command to get information on the command, 
SPELL. 

help spell 
page 1 line 1 

SPELL <STRING> 

THE SPELL COtftfAND WILL TRY TO OPEN SED. DICTIONARY . 
THIS MUST BE A LIST OF WORDS, EACH WORD IN LOWER CASE 
FOLLOWED BY A NEW LINE. THIS LIST SHOULD BE SORTED 
IN ALPHABETICAL ORDER. SED. DICTIONARY COULD BE A 
LINK TO A FILE CONTAINING THE WORD LIST. 

GIVEN THIS LIST, THE SPELL COt&tAND WILL SEARCH THE 
WORD LIST FOR WORDS BEGINNING WITH 'STRING'. 'STRING' 
MAY BE UPPER OR LOWER CASE. 

Figure 8 HELP SPELL 

,,,--..., 



The SED Editor 15 

5. Determine the spelling of the word abbreviation using only the first three letters of 
the word by typing spell abb. Figure 9 shows SED's response. 

spell abb 

abbacy 
abbasid 
abbatial 
abbe 
abberations 
abbess 
abbevillian 
abbey 
abbot 
abbott 
abbreviate 
abbreviated 
abbreviates 
abbreviating 
abbreviation 
abbreviations 
abbreviator 
abby 
- No More -

Figure 9 SPELL Abb 

page 1 line 1 

6. Demonstrate that SED will allow the use of command abbreviations by typing he 
instead of help. SED will recognize he as help and display the HELP screen as in 
Figure 7. 

7. Try to type in the abbreviation sp for spell. SED will respond with the message: 

Command not unique, correct the command: 

SED will not accept sp, because it is not a unique abbreviation. There are two 
commands SPLIT and SPELL that begin with SP. 

8. Terminate the SED session by typing bye. You will return to the ell. 

Directions 
After you have successfully completed lab Activity 2, continue to the next page. 



16 The SED Editor 

Arguments to SED Commands 

Address 

Range 

SED commands tell the computer what actions to take. Arguments to SED commands 
tell the computer what to act on. You can specify page numbers, line numbers, 
searchstrings, or pathnames as arguments to certain SED commands. Five categories of 
arguments: address, range, source, destination, and searchstring are described below. 

Address specifies a particular line or page. It consists of an optional word, PAGE or 
LINE, followed by a modifier. If you omit the word PAGE, SED searches for the LINE 
within the current page. The modifier can be a number without a plus or minus sign, or 
one of the following keywords: CURRENT, PREVIOUS, NEXT, or LAST. If you omit 
the number or keyword modifier, SED assumes the current line (or page). Example 4 
shows several uses of the address argument with the SED command, POSITION, which 
sets the current line according to the specified address. 

Example 4 

POSITION PAGE 3 Set current line to line 1 of page 3. 

POS LINE 47 Set current line to line 47 of current page. 

POS PAGE LAST Set current line to line 1 of last page. 

POS PAGE NEXT 

POS 2 

Set current line to line 1 of next page. 

Set current line to two lines previous. 

POS 5 Set current line to line 5 on current page. 

Range specifies a contiguous group of lines or pages. You can enter a range in numbers 
or with the keywords ALL, REMAINING, TO or FOR. The range argument may be 
formatted in the following ways: 

ALL [pages] 
REMAINING [pages] 
address 
address [TO] address 
address [FOR] address 

Example 5 shows several uses of the range argument with the SED command, DELETE, 
which removes text from the file. 

Example 5 

DELETE ALL Delete all lines on the current page. 

DELETE REMAINING Delete all lines from the current line to the last line on the 
current page. 

DELETE 3 Delete line 3. 



·-

Source 

Destination 

DELETE 3 7 

DELETE 4 FOR 3 

Delete lines 3 through 7 in current page. 

Delete lines 4, 5, and 6. 

The SED Editor 17 

Source specifies a particular place from which to get text. If you specify a pathname, it 
must already exist and you must precede it with FROM. If you omit a pathname, SED 
uses your keyboard as a default source for text. Example 6 shows uses of the source 
argument with the APPEND command. 

Example 6 

APPEND FROM OTHERFILE Append the entire contents of file OTHERFILE to 
the end of the current page. 

APPEND Append text typed from the keyboard source to the 
end of the current page. 

Destination specifies a new location for a block of text. It has two forms: 

1. Command range ONTO pathname 

Places a block of text onto the file specified by the pathname. If the file does not 
exist, SED will create it. 

2. Command range (BEFORE or AFTER) address 

Places a block of text before or after the specified address. 

Example 7 shows the use of the destination argument with the command MOVE, which 
moves text within or between files. 

Example 7 

MOVE 3 10 ONTO FILEA 

. MOVE 9 BEFORE 5 

Move lines 3 through 10 into the file, FILEA, creating 
the file if it does not exist. 

Move line 9 before line 5 in the current page . 



18 The SED Editor 

Searchstring 

Searchstring specifies a particular word or phrase in the text. You must enclose the 
searchstring in quotations marks if it contains blank spaces, symbols other than a dollar 
sign or underscore, or if you want to distinguish between uppercase and lowercase in 
your search. You can enclose the searchstring in either quotation marks or apostrophes. 
Use apostrophes if the searchstring contains quotations marks, and vice versa. Example 
8 shows the use of the searchstring argument with the commands FIND and BACKFIND, 
which find a text string after and before the current line, respectively. 

Example 8 

FIND EDITOR 

BACK FIND "this is it" 

Locate the searchstring EDITOR after the current page. 

Locate the searchstring "this is it" before the current line. 



Exercise 2 

The SED Editor 19 

1. Match each argument with its use. 

1. Address a. Specifies a new location for a block of text. 

2. Range b. Specifies a particular line or page. 

3. Source c. Specifies a particular word or phrase. 

4. Destination d. Specifies a particular place to get text from. 

5. Searchstring e. Specifies a contiguous group of lines or pages. 

2. What SED command do you issue to get information on the SPELL command 
displayed on your terminal? 

3. Write the SED command to find the correct spelling of aardvark if you only know 
that it begins with AA. 

Directions 
Check your answers with those on the next page. 



20 The SED Editor 

Exercise 2 
Answers 

1. I.b 
2.e 
3.d 
4.a 
S.c 

2. help spell 

3. spell aa 

Directions 
If you answered all the questions correctly, continue to the next page. Otherwise, review 
the material and do this exercise again before you continue. 

,r-. 



The SED Editor 21 

SED Commands 

SED contains many commands that allow you to easily create and edit text. Table B lists 
several SED commands by category. Lab Activity 3 will then take you step-by-step 
through an example illustrating the use of each command. Review the table and then try 
the lab. Do not try to understand all the commands in the table your first time through. 
The lab will give you practice with each command. For further information on SED 
commands use the HELP utility or the SED manual. 

Table B SED Commands 

Command 

Adding Text 

APPEND [FROM pathname] [range] 

INSEIH [address] [FROM path name] [range] 

Modifying text 

MODIFY [range] 

REPLACE [range] 

SUBSTITUTE "searchstring" [FOR] 
"se'archstring" [[IN] range] 

CUT address column 

PASTE range [OR] address 

SPLIT [address] 

JOI N [address] 

Displaying information 

HELP [word] 

DISPLAY_STATUS 

LIST [range] 

VIEW [number] 

Locating text 

POSITION address 

FIND "searchstring" [[IN] range] 

BACKFIND "searchstring" 

Moving and duplicating text 

MOVE [BEFORE address] 
[AFTER address] 
[ONTO pathname] 

DUPLICATE [BEFORE address] 
[AFTER address] 
[ONTO pathname] 

Deleting and restoring text 

DELETE [range] 

UNDO 

Using ClJ commands 

DO CLI-command 

CLI 

Closing 4lr updating files 

SAVE 

BYE 
~---------------------------------------------

Directions 

Description 

Opens a file for editing. 

Inserts text before a location in the page. Text comes from the terminal or 
another file. 

Revises a line or range of text that you retype. 

Deletes text and replaces it with new text that you type at the terminal. 

Substitutes a word or phrase for another word or phrase throughout a range of 
text. 

Splits a line into two lines. 

Merges a range of lines into a single line. 

Sets a page break in the file. 

Removes a page break in the file. 

Displays information about commands and keywords on the terminal screen. 

Displays file status information. 

Lists a range of text on the terminal screen. 

Lists a range of text surrounding the current line of the terminal screen. 

Moves the current line position to an address in the file. 

Finds a word or phrase in a range of text beginning at any line on the page and 
working forwards. 

Finds a word or phrase in a page of text beginning at the line before the current 
line and working backwards. 

Moves text from one location in the page to another, or onto another file. 

Copies text from one location in the page to another, or onto another file. 

Removes a range of text from the file. 

Restores the most recently deleted text to the file. 

Executes a CLI command and then returns to the editing session. 

Temporarily suspends editing session, creates a new process, SON OF SED, 
and allows you to execute CLI commands. 

Updates a copy of the file, including changes, without concluding the session. 

Concludes the editing session and updates the file with the new changes. 

This concludes the text of this addendum. Now try Lab Activity 3 on the next page. 



22 The SED Editor 

Lab Activity 3 

Follow the directions below to create and modify a text file using SED commands. The 
figures show the effect of the instructions. 

1. Invoke SED from the eLI and create a file called sampleflle. 
)xeq sed samplefile 
and then respond y to the SED prompt. 

SED Rev 1.65.00.00; Input flle - SAMPLEFILE 
Do you want SAMPLEFILE to be created? Y 

Figure 10 Create Samplefile 

2. Use the APPEND command to open the file for adding text. 
*append 

3. SED will display the line number 1. Enter the text as shown in Figure 11. 

view 
*append 
1 this is line 1. 
2 this is line 2. 
3 this is line 3. 
4 this is line 4. 
5 this is line 5. 

Figure 11 Enter Text 

4. Press <NL> following the last line of text. 

page 1 line 1 

S. End the APPEND session by pressing <ESC>. Do not press <ESC> however, 
until you have pressed <NL> following the last line of text; otherwise, you will 
lose the last line of text. If you make a typing mistake before you press <ESC> 
you may use the cursor, line control characters and the arrow keys to move the 
cursor to the mistake. Then you may type over the mistake, use the DEL key, or 
insert text using CTRL-E. If you see a mistake after pressing <ESC>, reenter the 
keyboard input mode by using the APPEND command and then exit again using 
the <ESC> key. 
<ESC> 



The SED Editor 23 

6. Add a new line between lines 2 and 3 by using the INSERT command. You must 
specify the address where the new text is to be placed. SED will displace the text 
from that line until you have finished the insert. Insert the text this is the new line 3. 
and then end the insert session by pressing <ESC>. (Do not forget the <NL> 
following the text.) 

insert 3 
page 1 line 4 

1 this is line 1. 
2 this is line 2. 
3 this is the new line 3. 
4 this is line 3. 
5 this is line 4. 
6 this is line 5. 

Figure 12 INSERT Command 

7. The INSERT command can also be used to add a specified range of text from 
another file. Between lines 3 and 4 add the text from the file, text, which you 
crea ted earlier. 

insert 4 from text 
page 1 line 5 

this is line 1. 
2 this is line 2. 
3 this is the new line 3. 
4 this is the text. 
5 this is line 3. 
6 this is line 4. 
7 this is line 5. 

Figure 13 INSERT Text 



24 The SED Editor 

8. If you want to change text, you may use the MODIFY command followed by the 
address of the line to be modified. Use the MODIFY command to change the "4" 
in line 6 to a "6." Note that the MODIFY command places the cursor at the 
beginning of the line. To change the 4 you must move the cursor to it and type 6. To 
move to the 4 you may use the arrow key or press CTRL-F three times. 

insert 4 from text 
*lIod1fy 6 
1 this is line 1. 
2 this is line 2. 
3 this is the new line 3. 
4 this is the text. 
5 this is line 3. 
6 this is line 6. 
7 this is line 5. 

Figure 14 MODIFY Command 

page 1 line 5 

9. Delete line 5 and replace it with the line, this is replacement line S. using the 
REPLACE command. 

replace 5 
page 1 line 6 

1 this is line 1. 
2 this is line 2. 
3 this is the new line 3. 
4 this is the text. 
5 this is replacement line 5. 
6 this is line 6. 
7 this is line 5. 

Figure 15 REPLACE Command 



The SED Editor 25 

10. Capitalize the first letter of each instance of the word, "this," using the SUBSTI
TUTE command. The first argument, the replacement searchstring, must be in 
quotation marks, since you want to distinguish between uppercase and lowercase. 
The second argument, the searchstring, which is searched for does not have to be in 
quotation marks, since you are not concerned with which case it is in before 
replacement. 

substi tute . This' for this all 
page 1 line 7 

This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 16 REPLACE Command 



26 The SED Editor 

11. Line 4 may be cut into two lines using the CUT command. You may cut the line 
using the CUT command followed by the line number and column number as an 
argument or, in the keyboard input mode, move the cursor to the point where you 
want to cut the line and press the CUT function key. To cut line 4 into two lines 
between "this" and "is" requires the arguments 4 and 5. The argument "4" refers 
to line 4. The argument "5" refers to the location of the cut, column 5. 

cut 4 5 
• page 1 line 4 
1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This 
5 is the text. 
6 This is replacement line 5. 
7 This is line 6. 
8 This is line 5. 

Figure 17 CUT Command 



The SED Editor 27 

12. Lines 4 and 5 can be merged into one line using the PASTE command. You can 
paste lines in two ways: you can type PASTE followed by the number of the first of 
two lines you want to paste or the range of lines you want to paste; or you can make 
the first of two lines to be pasted the current line and press the PASTE function 
key. 

paste 4 5 
page 1 line 4 

1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 18 PASTE Command 

13. Page breaks can be created using the SPLIT command. To cause a page break 
between lines 3 and 4 use the SPLIT command with an address argument. The 
page break occurs at the line before the address. The address then becomes the first 
line of the new page. 

split 4 
page 2 line 1 

1 This is the text. 
2 This is replacement line 5. 
3 This is line 6. 
4 This is line 5. 

Figure 19 SPLIT Command 



28 The SED Editor 

14. Create a third page beginning with line 3. 

split 3 
• 
1 
2 

This is line 6. 
This is line 5. 

Figure 20 Third Page 

page 3 line 1 

15. Page breaks may be removed by the JOIN command. JOIN requires that the 
current line position be at line 1 of the page you wish to join to the preceding page. 
You can set this position by moving to it with cursor control characters or by using 
"1" as an argument to JOIN. Merge pages 2 and 3 by issuing the JOIN command 
from line 1 of page 3. 

Join 
page 2 line 3 

1 This is the text. 
2 This is replacement line 5. 
3 This is line 6. 
4 This is line 5. 

Figure 21 JOIN Command 

16. You can change the current line to any line or page in the file using the POSITION 
command. If you give a line location as an argument, that line becomes the current 
line. If you give a page location, the first line of that page becomes the current line. 
Move to page 1 by issuing the POSITION command with page 1 as the argument. 

pos1 t10n page 1 
• 
1 
2 
3 

This is line 1. 
This is line 2. 
This is the new line 3. 

Figure 22 POSITION Command 

page 1 line 1 



The SED Editor 29 

17. Move to page 2 with the POSITION command. 

po page 2 
page 2 line 1 

1 This is the text. 
2 This is replacement line 5. 
3 This is line 6. 
4 This is line 5. 

Figure 23 Move to Page 2 



30 The SED Editor 

18. Merge pages 1 and 2 with the JOIN command. 

join 
page 1 line 4 

1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 24 Merge Pages 1 and 2 

19. SED file status information can be shown using the DISPLAY _STATUS 
command. For details on the displayed items consult the SED manual. 

d1splay-status 
• 
Ed1t File Name - : UDD: SARAH. S209: SAMPLEFILE 

Current Page: 1 Last Page: 
Current Line: 4 Last Une: 

View range: 10 
Display lode: 0 

Typer lode: ON 
Blank lode: OFF 
Preload old line: ON 
Skip white space: ON 

Upper lode: OFF 
Escape lode: OFF 

New--11ne is view: ON 
Escape is view: ON 

Une numbers being displayed 

Figure 25 DISPLAY_STATUS Command 

1 
7 

page 1 line 4 



The SED Editor 31 

20. Portions of a file may be displayed on the screen using either the LIST or VIEW 
commands. The LIST command displays a range of text on your terminal screen. 
The range must be within a page. Issue the LIST command to display lines 3, 4, 
and 5. 

list 3 5 
page 1 line 4 

3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 

Figure 26 LIST Command 

21. The VIEW command displays a screen of lines around the current line. Issue the 
VIEW command to display the entire text. 

view 
page 1 line 4 

This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 27 VIEW Command 



32 The SED Editor 

22. A given word or phrase in text may be located by the FIND or BACKFIND 
commands. Text after the current line may be located using the FIND command. 
Text before the current line may be located using the BACKFIND command. Use 
the FIND command to locate the word replacement. 

find replacement 
page 1 line 5 

1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 28 FIND Command 

23. Use BACKFIND to locate the phrase new line. Remember that a phrase 
searchstring must be enclosed in quotation marks. 

back find "new line" 

* page 1 line 3 
1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is the text. 
5 This is replacement line 5. 
6 This is line 6. 
7 This is line 5. 

Figure 29 BACKFIND Command 



-. 
The SED Editor 33 

24. The MOVE command lets you move blocks of text. The lines specified are deleted 
from their original location and inserted at the destination. The destination can be 
within the current page or another file altogether. To move the text from one page 
to another, you must move the text onto a new file and then insert that text into the 
new destination using the INSERT command. Move lines 6 and 7 before line 4. 

move 6 7 before 4 
page 1 line 6 

This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is line 6. 
5 This is line 5. 
6 This is the text. 
7 This is replacement line 5. 

Figure 30 MOVE Command 

25. To copy text to the same page or to the end of another file without deleting the 
original text use the DUPLICATE command. Duplicate lines 2 and 3 following 
line 6. 

duplicate 2 3 after 6 
page 1 line 3 

1 This is line 1. 
2 This is line 2. 
3 This is the new line 3. 

4 This is line 6. 
5 This is line 5. 
6 This is the text. 
7 This is line 2. 
8 This is the new line 3. 
9 This is replacement line 5. 

Figure 31 DUPLICATE Command 



34 The SED Editor 

26. Text may be removed with the DELETE command. Delete lines 7 through 9. 

delete 7 9 

* 
1 
2 
3 
4 
5 
6 

Th1s 1s line 1. 
Th1s 1s line 2. 
Th1s 1s the new line 3. 
Th1s 1s line 6. 
Th1s 1s line 5. 
Th1s 1s the text. 

Figure 32 DELETE Command 

27. Delete line 5. 

delete 5 

* 
1 
2 
3 
4 
5 

Th1s 1s line 1; 
Th1s 1s line 2. 
Th1s 1s the new line 3. 
Th1s 1s line 6. 
Th1s 1s the text. 

Figure 33 Delete line 5 

page 1 line 6 

page 1 line 5 

28. The last block of text deleted may be restored with the UNDO command. Undo the 
last DELETE command. 

undo 

* page 1 line 5 
1 Th1s 1s line 1. 
2 Th1s 1s line 2. 
3 Th1s 1s the new line 3. 
4 Th1s 1s line 6. 
5 Th1s 1s line 5. 
6 Th1s 1s the text. 

Figure 34 UNDO Command 

r-". 
! 



,-
The SED Editor 35 

29. UNDO restores only the last DELETE command. Entering UNDO twice in a row 
results in an error message. 

No deleted text to • UNDO'. correct the cOIMIIand: 
·undo 

This is line 1. 
2 This is line 2. 
3 This is the new line 3. 
4 This is line 6. 
5 This is line 5. 
6 This is the text. 

Figure 35 UNDO Error 

page 1 line 5 

30. The DO and eLI commands allow you to execute eLI commands leaving SED. 
The DO command invokes a subordinate eLI process to execute the command, 
then terminates this eLI process and returns the SED prompt. Use the DO 
command to execute the eLI FILEST A TUS command. 

do fllestatus 
page 1 line 5 

DIRECTORY : UDD: SARAH. S209 

SAMPLEFILE. S2 
TEXT.ED 

TEXT 
SAMPLEFILE. ED 

SAMPLEFILE SAMPLEFILE . SC 

Figure 36 DO Command 

31. The eLI command temporarily suspends the editing session and creates a ell 
process called SON OF SED. Issue the eLI command. 

cli 

AOS/VS CLI REV 01.64.255.255 11-APR-83 
Son of Sed) 

Figure 37 CLI Command 

page 1 line 5 

15:25:28 

----------_._------



36 The SED Editor 

32. From SON OF SED issue the FILESTATUS command. 

e11 

AOS/VS CLI REV 01.64.255.255 11-APR-83 
Son of Sed) fllestatus 

DIRECTORY : UDD: SARAH. S209 

15:25:28 

SAMPLEFILE. S2 
TEXT.ED 

TEXT 
SAMPLEFILE. ED 

SAMPLEFILE 

Son of Sed) 

Figure 38 Filestatus 

33. To leave SON OF SED and return to SED, enter bye. 

e11 

AOS/VS CLI REV 01.64.255.255 11-APR-83 
Son of Sed) fllestatus 

DIRECTORY : UDD: SARAH. S209 

15:25:28 

SAMPLEFILE. S2 
TEXT.ED 

TEXT 
SAMPLEFILE. ED 

SAMPLEFILE 

Son of Sed) bye 

page 1 11ne 5 

SAMPLEFILE. SC 

page 1 11ne 5 

SAMPLEFILE. SC 

AOS/VS CLI TERMINATING 11-APR-83 15:27:22 

Figure 39 Terminating SON OF SED 



,-
The SED Editor 37 

34. Changes to files may be lost if the system fails during an editing session. To prevent 
loss it is good practice to update your files from time to time. The SA VE command 
makes a copy of the file, including all changes in the current editing session. The 
copy is saved with the same filename and the extension .SV. Issue the SAVE 
command. 

save 

page 1 line 5 

1 This is line 1. 

2 This is line 2. 

3 This is the new line 3. 
4 This 1s line 6. 

5 This 1s line 5. 

6 This 1s the text. 

Figure 40 The SAVE Command 

35. Use the DO command to do a filestatus. Note the file, samplefile.sv. This is the file 
created by the SAVE command. The file samplefile.ed is created by SED and stores 
display settings. Since you did not specify any display settings, the settings are 
default values. The files with the extensions .S2 and .SC are deleted when SED is 
terminated. 

do fUestatus 

DIRECTORY : UOO: SARAH. S209 

SAMPLEFILE. S2 
SAMPLEFILE. SC 

Figure 41 DO Command 

SAMPLEFILE.SV 

TEXT .ED 

36. Terminate SED with the bye command. 

bye 

TEXT 
SAMPLEFILE. ED 

Output fUe - : UoD: SARAH. S209: SAMPLEFILE 

Figure 42 BYE Command 

page 1 line 5 

SAMPLEFILE 

page 1 line 5 



38 The SED Editor 

37. Use the CLI filestatus command to determine the filestatus. The temporary files r-' 
with the .S2 and .SC extensions are gone. The file created by the SAVE command 
is still present. It does not contain any editing changes made since the last SAVE 
command. 

) fllestatus 

DIRECTORY : UDO: SARAH. S209 

SAMPLEFILE. SV TEXT SAMPLEFILE TEXT.ED 
SAMPLEFILE.ED 

) 

Figure 43 Filestatus 

Directions 
After you have successfully completed Lab Activity 3 turn to the Addendum Quiz. 



SED Addendum 
Quiz 

The SED Editor 39 

1. List the four steps in a typical SED editing session. 

a. 

h. 

c. 

d. 

2. Use SED to create a file called practice. Input the text in Figure 44 exactly as 
shown. 

append 
page 1 line 11 

1 Data General's SED is a screen-oriented test editor that allows 
2 you to modify existing test files or to create new ones. The 
3 test may be as varied as reports, computer programs, business 
4 correspondence, and novels. Wi th SED cOlllllands you can: display 
5 existing test, add new test, change existing test, delete old 
6 test, move pieces of test, copy pieces of test. 
7 SED allows you to choose among several ways of displaying your test. 
8 Congratulations! 
9 You can define function keys to execute cOlllllands that meet your 
10 edi ting needs and copy test in your current file onto other files. 
11 

Figure 44 PRACTICE Text 

3. Use SED to create a second file called finis. Input the text in Figure 45 exactly as 
shown. 

view 
*append 
1 You have completed the SED addendum. 
2 

Figure 45 FINIS Text 

page 1 line 1 



40 The SED Editor 

4. Use SED to make the following changes to the file practice. Refer to Figure 46 as 
you make your changes. 

append 
* 
1 
2 
3 

4 
5 

6 
7 
8 
9 
10 
11 

page 1 line 11 
Data General's SED is a screen-oriented test editor that allows 
you to lodi fy existing test files or to create new ones. The A 
test lay be as varied as reports co uter programs, busines 
correspondence, and novels. With SED coamands you can:1display 
existing test ,2add new test ,3 change existing test:4 delete old 
estPlove pieces of test,6copy pieces of test. 

SED allows you to choose among severa ways of displaying your test. 
Congratulations I 
You can deftne function keys to execute coamands that leet your 
edi ting needs and copy test in your current file onto other files. 

B 

Figure 46 Changes to Text 

a. Use SED commands or function keys to split the sentence labeled A at points 1, 
2, 3, 4, 5, and 6 in Figure 46. Continue only after your screen matches Figure 47. 

view 
* 
1 
2 
3 

4 
5 

6 
7 
8 
9 
10 
11 
12 
13 

14 
15 

page 1 line 6 

Data General's SED is a screen-oriented test editor that allows 
you to lodi fy existing test files or to create new ones. The 
test lay be as varied as reports, computer programs, business 
correspondence, and novels. With SED connands you can: 
display existing test, 
add new test, 
change existing test, 
delete old test, 
move pieces of test, 
copy pieces of test. 
SED allows you to choose among several ways of displaying your test. 
Congratulations I 
You can deftne function keys to execute coamands that leet your 
editing needs and copy test in your current file onto other files. 

Figure 47 PRACTICE Screen 

1-



-. 
The SED Editor 41 

b. Delete the last sentence (labeled B). 

c. Use the SUBSTITUTE command to locate each instance of the word test and 
change it to the correct word text. 

d. Add the text from the file finis to the end of the file practice. 

Directions 
Check your answers with those on the next page. 



42 The SED Editor 

SED Addendum 
Quiz Answers 

1. a. Invoke SED 
b. Create a new file or bring in an old file for editing 
c. Add or modify the file 
d. Terminate the session 

4. b. One method is to use the command, delete 13 14. 
c. One method is to enter substitute "text" for test all. 
d. One method is to enter insert 12 from finis. Your screen should now be similar to 
Figure 48. 

insert 12 from finis 
page 1 line 14 

1 Data General's SED is a screen-oriented text editor that allows 
2 you to lIodi fy existing text files or to create new ones. The 
3 text Dlay be as varied as reports, computer programs, business 
4 correspondence, and novels. Wi th SED cODll1ands you can: 
5 display existing text, 
6 add new text, 
7 change existing text, 
8 delete old text, 
9 
10 
11 
12 
13 

love pieces of text, 
copy pieces of text, 
SED allows you to choose among several ways of displaying your text. 
Congratulations I 
You have completed the SED addendum. 

Figure 48 The End 

Congratulations! If you have answered all the questions correctly, you have completed 
this addendum. Otherwise, review the material and try the questions again. 

~, 

( 



Please complete this questionnaire and return it to us after finishing the course. We will then send you an Official Certificate of 

Course Completion! Fill in the charts below to rate the course on the items listed. (Check one box for each item.) 

Items Excel- Good Fair Poor 
lent 

1. Organization and Style 

2. Technical Content: Level of Detail 

3. Ease of Listening to the Audio 

4. Pace of the Audio 

5. Quality of the Audio 

6. Pace of the Student Guide 

7. Usefulness of Quizzes 

8. Effectiveness of Exercises 

9. Effectiveness of Illustrations 

10. Technical Reference Materials 

Items Too Too Unclear Other 
Little Much 
Detail Detail 

11. If you said that technical content was fair or poor, what did you mean? 

12. If you said the pace of the audio was fair or poor, what did you mean? 

13. If you said the pace of the Student Guide was fair or poor, what did 
you mean? 

Items Always Almost Rarely Never 
Always 

14. Was the information in the course interesting? 

15. Was the manner of presenting the information interesting? 

16. Did you understand what you were supposed to learn? 

1 7. Were the materials directly related to the objectives? 

18. Were there enough practice exercises? 

19. Were the practice exercises appropriate? 

20. Was there enough information explaining the answers to the practice 
exercises? 

21. Did the module quizzes really measure your performance of the objectives? 

22. Was the information in the audio consistent with the information in the 
Student Guide? 

23. Have you any comments on specific modules? 

24. What did you like best about the course? 

25. What did you like least about the course? 

26. Would you use another self study on other Data General products? 
__ Yes __ No If No, why? __________________________ _ 

27. Suggestions for improvement: (Write your comments here and on the back of this page.) 

Name _____________________ ___ Address __________________________________________________ _ 



----------------------------------------------------------------------------------------~---------

IIIIII 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MASS. 01772 

Postage will be paid by addressee: 

t. Data General 
Educational Services Department 
Mail Stop F019 
4400 Computer Drive 
Westboro, Massachusetts 01581-9973 

ATTENTION: Quality Assurance 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

---------------------------------------------------------------------------------------~----------






