
Sort/Merge with
Report Writer
User's Manual

(AOS and AOS/VS)

093-000155-02

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000155
~Data General Corporation, 1978, 1981, 1985
All Rights Reserved
Printed in the United States of America
Revision 02, January, 1985
Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE­
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUIT ABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, SWAT,
CENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DC/l,
DC/CATE, DC/XAP, ECLIPSE MV/l0000, CW/4000, CDC/l000, REV-UP, XODlAC, DEFINE, SLATE,
microECLIPSE, DESKTOP CENERATlON, BusiPEN, BusiCEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Revision History:

Sort/Merge with
Report Writer
User's Manual

(AOS and AOS/VS)
093-000155-02

Effective with:

Original Release - June, 1978

First Revision - January, 1981

Second Revision - January, 1985 (Sort/Merge with Report Writer (AOS)
Rev. 4.10
(Sort/Merge with Report Writer
(AOS/VS) Rev. 3.10

CONTENT UNCHANGED

The content and change indicators in this revision are unchanged from 093-000155-01. This
revision changes only printing and binding details.

Scientific (S series) ECLIPSE® computers require the optional Character Instruction Set to
support any part of the Sort/Merge with Report Writ~r. In addition, certain fu~ctions are not
supported on Scientific ECLIPSE® computers even wIth the Character In~tructlOn. Set. The~e
unsupported functions are: (1) sorting and merging on numeric data fIelds wh~ch contam
signed binary, decimal or floating point numbers and (2) any use of the Report ,,:,nter. (These
unsupported functions use the Commercial Instruction Set and therefore are avaIlable only on
C-, M- or MV - series Commercial ECLIPSE® computers.)

Preface

This manual tells you how to use the AOS Sort/ Merge with Report Writer utility (Sort/ Merge, for
short). It assumes that you are familiar with some of the frequently used CLI commands described in
the Command Line Interpreter User's Manual (093-000122), and with at least one text editor. A few
individual chapters and appendixes assume that you are familiar with other manuals. We tell you
what other manuals you need when we summarize the contents of each chapter later in this preface,

How to Read this Manual
Which chapter(s) you read depends on how you plan to use Sort/Merge. Here, we tell you the
minimum reading you must do.

I f you want just a taste of how Sort/ Merge works, read Chapter 2. To get an overview of
Sort/Merge's capabilities and the structure of command files (which direct the utility), read Chapters
I and 3, respectively.

If you want to write a command file that processes AOS sequential files, read at least Chapters 3,4,
and 5. If you want to write a command file that processes INFOS® II files, read at least Chapters 3, 5,
and 8.

Read Chapter 2 and/or 7 to learn how to execute a command file.

Clauses and Phrases
We give you the format of each statement that you can use in a command file. When we explain the
formats to you, we usually break them down into clauses and phrases. The distinction between the two
is simple. A clause contains either IS or ARE; a phrase does not contain IS or ARE. An example of a
clause is

INPUT FILE IS "name"

An example of a phrase is

DATA SENSITIVE DELIMITED BY "literal" UPTO integer CHARACTERS

Synopsis of Contents
We have arranged this book as follows:

Chapter 1

Chapter 2

Chapter 3

093-000155

gives an overview of Sort/Merge's capabilities and introduces the fundamental
concept of key.

introduces you to the command file and command line, and gives you a feel for
how the utility works. Chapter 2 also elaborates on the concept of key.

gives an overview of command file structure. We urge you to read this chapter
before reading the rest of the manual. It defines terms and explains rules which
are stated nowhere else.

Licensed Material-Property of Data General Corporation iii

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

describes command file declarations, except those you'll need for IN FOS® II files
and Report Writer. The explanation of data types assumes that you are familiar
with COBOL data types. If you aren't, read about them in the COBOL Reference
Manual (AOS) (093-000223).

describes command file imperatives.

describes command file massage statements.

details command lines. I f you write command files, we suggest that you read
"Detecting Syntax Errors" in the section "Noninteractive Mode." The
information there will speed your command file debugging.

describes IN FOS® II input and output file declarations. It assumes that you're
already familiar with the IN FOS® II system. If you aren't, read the INFOSCR) II
System User's Manual (AOS) (093-000152).

explains how to use Report Writer, and describes the interface between Report
Writer and Sort/Merge.

lists all command file statement formats on colored stock.

lists the Sort/Merge error messages with explanations. Sometimes it directs you to
explanations in the AOS Programmer's Manual (093-000120) or the INFOS(R) II
System User's Manual.

lists the Report Writer error messages with explanations.

describes the statistical information Sort/Merge returns after each successful
invocation.

advises how you can improve the utility's performance. Read the term definitions
in Appendix D before reading this appendix.

is the ASC II character code set.

What Do You Think?
At the end of this manual you'll find a Comments Form. This is your direct line to us at Software
Documentation--please use it. We want to know what you like and dislike about the manual. We
welcome your suggestions, and we really listen.

Reader, Please Note:
We usc these conventions for command formats in this manual:

Where

COMMAND

required

iv

COMMAND required (optional]

Means

You must enter the command (or its accepted abbreviation) as shown.

You must enter some argument (such as a filename). Sometimes, we use:

{
requ~red 1 }

reqUlred 2

which means you must enter one of the arguments. Don't enter the braces; they only
set off the choice.

Licensed Material-Property of Data General Corporation 093-000155

[optional} You have the option of entering this argument. Don't enter the brackets; they only set
off what's optional.

You may repeat the preceding entry or entries. The explanation will tell you exactly
what you may repeat.

Additionally, we use certain symbols in special ways:

Symbol Means

D

Press the NEW liNE or carriage return (CR) key on your terminal's keyboard.

Be sure to put a space here. (We use this only when we must; normally, you can see
where to put spaces.)

All numbers are decimal unless we indicate otherwise; e.g., < 012 > represents octal 12.

Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the Cli prompt.

Contacting Data General
• If you have comments on this manual, please use the prepaid Remarks Form that appears

after the Index. We want to know what you like and dislike about this manual.

• If you need additional manuals, please use the enclosed TIPS order form (USA only) or
contact your Data General sales representative.

End of Preface

093-000155 Licensed Material-Property of Data General Corporation v

Contents

Page
Chapter 1 - I ntrod uction

1-1 Records and Files
1-1 Keys
1-2 Sorting
1-2 Merging and Copying
1-2 Massaging Records
1-3 Altering the Collating Sequence
1-3 Report Writer

Chapter 2 - Sort and Merge Examples

2-1 Command Files
2-2 Command Lines
2-2 Examples
2-4 Last Name Sort
2-5 Teacher Sort
2-6 Birthday Sort
2-8 New Student Merge

2-10 Male and Female Student Sort

Chapter 3 - Command File Overview

3-1 Terms You'll Need to Know
3-2 Command File Overview
3-4 Comment Feature
3-4 Statement Formats: General Information
3-4 Location Phrase
3-5 Literals
3-5 Single Character
3-5 Abbreviations

Chapter 4 - Declarations

4-1 AOS INPUT FILE Declaration
4-1 integer CHARACTERS Phrase
4-2 OAT A SENSITIVE Phrase
4-2 VARIABLE UPTO Phrase
4-2 BLOCKS ARE Clause
4-2 Examples
4-3 AOS OUTPUT FILE Declaration
4-3 BLOCKS ARE Clause
4-3 ELEMENTS ARE Clause

093-000155 Licensed Material-Property of Data General Corporation vii

viii

Page
4-4
4-6
4-9
4-9

4-10
4-11
4-12
4-12
4-12
4-13
4-13
4-13
4-15
4-15

5-1
5-2
5-2
5-2
5-4

6-1
6-2
6-4
6-6
6-7
6-7
6-7
6-8
6-9

6-11
6-11
6-12
6-13
6-13
6-14
6-15

7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-4
7-5

T ABLE Declaration
Format One

UNMENTIONED
Format Two
Format Three

KEY Declaration
Format One

COLLATED BY Phrase
Location Phrase

Format Two
TYPE IS Clause
Location Phrase

Changing the Collating Sequence
WORK FILE Declaration

Chapter 5 - Imperatives

SORT and TAG SORT Imperatives
ST ABLE SOR T and ST ABLE TAG SORT Imperatives
MERGE Imperative
DELETING DUPLICATES Imperatives
COPY Imperative

Chapter 6 - Massage Statements

REFORMAT Massage Statement
TRANSLATE Massage Statement
REPLACE Massage Statement
REPLACE TABS Massage Statement

REPLACE TABS IN Phrase
TAB STOPS ARE Clause
Examples

P AD Massage Statement
COMPRESS Massage Statement
INSER T Massage Statement

literal Phrase
RECORDCOUNT Phrase
TAG Phrase

IF Massage Statement
IF Phrase
THEN Phrase

Chapter 7 - Command Lines

Noninteractive Mode
Command Word and Imperative Relationship
Detecting Syntax Errors
Examples

Interactive Mode
Command Word and Imperative Relationship
HELP Messages
Aborting Interactive Input
Examples

Licensed Material-Property of Data General Corporation 093-000155

093-000155

Page
7·5
7-5
7·7
7·7
7-8
7-8

8-1
8-2
8-2
8-6
8-7
8-7
8-7

8 .. 10
8-11
8-12
8-12
8-19
8-21
8-21
8-22

9-2
9 .. 2
9-2
9-2
9 .. 2
9-3
9-3
9-3
9-4
9-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-9
9-9

9-10
9-11

Command Line File Declarations
Command Line without Command File

Examples
Command Line with Command File

Command Word and Imperative Relationship
Examples

Chapter 8 - INFOS II Files

INPUT INFOS Declaration
PATH IS Clause

Key Selectors
Extractor Phrases
IGNORE LOGICAL DELETES

RECORDS ARE Clause
Examples
Ex tracted Information

OUTPUT INFOS Declaration
OUTPUT INFOS IS Clause
RECORD IS and PARTIAL RECORD IS Clauses
Defining the INFOS II Key
TRIM KEYS Phrase
PATH IS Clause
Examples

Chapter 9 - Report Writer

Interface between Sort/Merge and Report Writer
BLOCKS ARE Clause
ELEMENTS ARE Clause

The .QFORMS File
Building the .QFORMS File
Syntax of the .QFORMS File

START_FORMAT Line
Field Descriptor Lines
END_FORMAT Line

Example
Setting Up a .QFORMS File

Selection Procedures
Non-ASCII Formatting

Size and Scope of the .QFORMS File
Error Messages
The .RFORMS File

Building the .RFORMS File
Rformat Definition
ST ART_REPORT Line
Comment Line
QFORMAT Line
Lines Per Page
Columns Per Line
HEADER Lines
DEFINE Lines
DET AIL Lines
PICTURE Lines
BREAK Lines

Licensed Material-Property of Data General Corporation ix

x

Page
9-12
9-13
9-13
9-13
9-13
9-14
9-16

A-I
A-I
A-I
A-I
A-2
A-2
A-3
A-3
A-4
A-5
A-5
A-5
A-5
A-6
A-6
A-7
A-7
A-7
A-7
A-8
A-8
A-8

B-1
B-8
B-8

B-I0
B-I0
B-l1
B-12
B-13

C-l
C-2
C-2
C-2
C-3
C-4
C-4

TOTAL Lines
EN D_REPOR T Line
Users of IN FOS II QUER Y with Report Writer Please Note
Designing Reports
Size and Scope of the .RFORMS File

R WCHECK - The Stand-Alone Compiler
Summary Example

Appendix A - Command Line and Command File
Statement Summary

Command Line
Command File Statements

Declarations
INPUT FILE
OUTPUT FILE
INPUT INFOS
OUTPUT INFOS
OUTPUT REPORT
TABLE
KEY
WORK FILE

Massage Statements
COMPRESS
IF
INSERT
PAD
REFORMAT
REPLACE
REPLACE TABS
TRANSLATE

Imperatives
END Statement

Appendix B - Error Messages

Semantic Error Messages
Abort Error Messages

I/O Failure Error Messages
Skip File Error Messages
Key Comparison and Massaging Error Messages
Execution Phase Error Messages
Initialization Phase Error Messages
Other Error Messages

Appendix C - RWCHECK Error Messages

Qformat Syntax Errors
Report Writer Runtime Errors
Rformat Syntax Errors

General Rformat Syntax Errors
BREAK Statement
COLUMNS PER LINE Statement
DEFINE Statement

Licensed Material-Property of Data General Corporation 093-000155

093-000155

Page

C-4
C-5
C-5
C-5
C-6
C-6
C-6

E-l
E-l
E-2
E-3
E-4
E-5
E-6

Page

3-3

4-5
4-14

5-4

7-9

8-6

9-10

B-1
B-9

B-11

D-2

DETAIL Statement
H EADER Statement
LINES PER PAGE Statement
PICTURE Statement
QFORMAT Statement
SORT Statement
TOT AL Statement

Appendix D -
Statistical Information the Utility Returns

Appendix E - Faster Sorts and Merges:
Fine Tuning the Utility

Optimal Record Length Estimate
Increase Elemen t Size
Optimal File Placement

Three Disk Drives
Two Disk Drives
One Disk Drive

Process Dedication

Appendix F - ASCII Character Set

Tables

Table Caption

3-1 Overview of Command File Structure

4-1 Subset of the ASCII Character Set
4-2 Correspondences between Location Phrases

5-1 Declarations for Copy Processes

7-1 File Declaration Options

8-1 (Generic) Key Selector Examples

9-1 Picture Characters

B-1 Semantic Error Messages
B-2 Sort Error Messages for I/O Failure
B-3 Sort Error Messages for Key Comparison and Massaging Errors

D-1 Statistics Produced for Each Operation Phase

Licensed Material-Property of Data General Corporation xi

III ustrations

Page Figure Caption

2-2 2-1 Record Format for Examples
2-3 2-2 Typical Record Superimposed over Format
2-6 2-3 Birthday Field Divided into Two Subfields
2-7 2-4 Birthday Field Divided into Three Subfields

8-3 8-1 DBAM Index, EXAMPLE
8-13 8-2 INDEX Option Case
8-14 8-3 INVERSION Option Case
8-15 8-4 Record Formed by Concatenation
8-16 8-5 Partial Record and Record from Concatenated Record
8-17 8-6 Information Sent from A to B
8-18 8-7 Database Record Becomes Record and Partial Record
8-19 8-8 Database Record
8-19 8-9 KEY Declaration Defines INFOS II Key
8-20 8-10 Database Record

8-11 Defining Record, Partial Record, and Key from Database
8-20 Record
8-22 8-12 MASTER, Before Command File Executes
8-22 8-13 Format of TEMP's Records
8-24 8-14 MASTER, after Command File Executes
8-24 8-15 EMPLOYEE, before Command File Executes
8-25 8-16 Format of EMPLOYEE's Database Records
8-26 8-17 EMPLOYEE, after Command File Executes
8-26 8-18 VENDORS and PARTS, before First Command File Executes
8-27 8-19 Format of Records Shared by VENDORS and PARTS
8-28 8-20 VENDORS and PARTS, after First Command File Executes
8-29 8-21 VENDORS and PARTS, after Second Command File Executes

9-1 9-1 Sample Report
9-19 9-2 Sample Page Produced by RWCHECK
9-20 9-3 Prolman Institute Report

D-l D-l Runs, Steps, and Merge Passes

E-2 E-l Flow of Data
E-3 E-2 File Placement on Three Disk Drives
E-4 E-3 File Placement on Two Disk Drives
E-5 E-4 File Placement on Two Disk Drives and One Tape Drive
E-5 E-5 File Placement on One Disk and One Tape Drive

xii licensed Material-Property of Data General Corporation 093-000155

Chapter 1

Introduction

Data General's AOS Sort/Merge is a general-purpose utility which manipulates record order and
content. It runs under the Advanced Operating System (AOS) and runs as a 16-bit subsystem under
the Advanced Operating System/Virtual Storage (AOS/VS).

Sort/ Merge gives you the power to

• sort and copy records

• merge multiple files into a single file

• edit record fields

• delete duplicate output records from a sort or merge operation

• delete records according to conditions that you specify. You can also write these deleted records to
other files

• neatly format output records into reports with the report writer feature

To take full advantage of the utility's many features, you use a command file, which contains
statements described in this manual. Since you can save a command file on disk, you need write a
command file only once to perform repetitive tasks.

The rest of this chapter describes Sort/ Merge's features in more detail.

Records and Files
Sort/Merge accepts any AOS-generated fixed-length, variable-length or data-sensitive (text) file for
input or output. It also accepts any INFOS® II-generated indexed sequential (ISAM) or database
(DBAM) file for input or output. Some of the high-level languages that generate these files are
Fortran IV, Fortran 5, PL/I, DG/L TM, RPG II, ANSI'74 COBOL, Extended BASIC, and Idea
software.

File size is limited only by the amount of available disk storage. Record size is limited by your choice
of processing options; in any case, you can always use at least 3,OOO-character records.

Keys
You define one or more keys in a command file. The keys tell Sort/ Merge the criteria by which you
want to order your output records. For example, if you want to sort input records by name, you can
make the records' surname field the primary key, their first name field the secondary key, and their
middle initial field the tertiary key. Sort/Merge will then order the records in this order: first, by last
name; second, by first name; and third, by middle initial. The order in which you define keys is the
order in which the utility sorts or merges records. You can specify either an ascending or a descending
ASCII sequence for the keys. You can even specify an ascending sequence for one key and a
descending sequence for another.

093-000155 Licensed Material-Property of Data General Corporation 1-1

The utility accepts a variety of key types. The default key type is essentially the same as a COBOL
alphanumeric data type; we call it a character key type. You have the option of specifying any of the
COBOL data types as your key type. And if you specify a decimal key type, you can also specify
leading or trailing overpunch and/or leading or trailing signs.

Sorting
There are four basic sort operations you can choose from: sort, stable sort, tag sort, and stable tag sort.
The sort and stable sort both carry the entire record throughout all phases of the utility's operation.
However, the stable sort works differently than the sort. It guarantees that input records whose sort
keys are exact duplicates are written to the output file in exactly the order that the utility encounters
them. The tag sort creates a tag identifying each input record and carries the tags through to the
output phase. During the output phase, the utility retrieves the records and writes them to the output
file. Because the utility isn't carrying the entire record through every tag sort phase, a tag sort
requires less disk space for its execution. The difference between a stable tag sort and a tag sort is the
same as the difference between a sort and a stable sort.

You can request the utility to delete duplicate output records with each of the four sorts.

Merging and Copying
The utility merges files by collating the contents of two or more sorted files into a single output file.

Sort/Merge copies the contents of one or more input files to a single output file, without changing
record order.

Massaging Records
We call the process of editing records massaging. You can massage input and output file records that
are sorted, merged, or copied.

The following is an overview of the utility's varied massaging features. You can

• rearrange, duplicate, and delete fields in a record

• replace a field with a smaller, equally-sized, or larger field

• insert a field and a record number in a record

• convert variable-length records to fixed-length by padding them with an ASCII character

• translate an entire record or selected fields of a record from ASCII to EBCDIC or from EBCDIC
to ASC II. Or, you can define a translation table to perform any desired translation. Also, you can
translate lowercase ASCII letters to uppercase

• exclude certain characters when Sort/Merge determines a record's posItIOn in the output. For
example, your key field may contain a special character, like /. If you don't want the utility to
consider the / when determining a record's output position, you can compress the key field to
remove the / during input and reinsert it during output

• skip a record if a condition is met. Skipping means that you don't want the utility to write certain
records to the output file. You can save skipped records in one or more secondary output files, called
skip files. Thus, you can split an input file into several output files

1-2 Licensed Material-Property of Data General Corporation 093-000155

Altering the Collating Sequence
Normally, the utility collates your output in ascending sequence according to ASCII character values.
However, for each sort or merge key you define, you can specify either an ascending or descending
collating sequence. Optionally, you can define a table in which you assign alternative collating values
to characters, and then tell the utility to order your output using that table.

Report Writer
Sort/ Merge uses a Report Writer to produce reports. Although Sort/ Merge's massage features can
give an output file a neat appearance and useful organization, Report Writer can further improve an
output file's appearance and usefulness. For example, Report Writer can insert column headings and
perform arithmetic calculations of variables. You might, for instance, want the total value of all
inventory items subtotaled and listed under the column heading "Stock Value." Report Writer can
calculate this information.

End of Cha pter

093-000155 Licensed Material-Property of Data General Corporation 1-3

Chapter 2

Sort and Merge Examples

This chapter leads you through examples of sort and merge processing. The first two sections explain
information you will need to understand the examples.

Command Files
A Sortl Merge command file contains statements that tell the utility

• where to find the records to sort or merge
• where to send the sorted or merged records
• how to perform the sort or merge

We pattern command files in this chapter's examples after the following command file structure:

INPUT FILE declaration(s).
OUTPUT FILE declaration.
KEY declaration(s).
SORT or MERGE imperative.
END statement.

You must end each statement with a period.

The examples illustrate the following functions of these command file statements:

Statement Function

INPUT FILE declaration specifies the name of an input file and its record type

OUTPUT FILE declaration specifies the name of the output file

KEY declaration defines the key characters or groups of characters on which the utility
bases the sort or merge

SORT or MERGE imperative tells the utility to perform a sort or merge process

END statement signals the end of the command file

You create a command file as you would any other AOS file: with a text editor or the AOS Cli
CREATE command.

093-000155 Licensed Material-Property of Data General Corporation 2-1

Command Lines
The command line invokes the utility and indicates the name of the command file you want to use.
Chapter 7 describes its other purposes.

The command line format we use for the examples in this chapter is

{ SORT} Ie =filename [IO}
MERGE

/ C = filename is a command line switch identifying the command file's name,
filename.

/0 is a command line switch you must include when using an existing
file as the output file.

For example, if you use a command file named PART_SORT to sort records into an existing output
file, the command line would be

)SORT / C = PART_SORT / OJ

(The utility deletes the existing output file and then recreates it using the sorted records.) After you
type the command line, the utility performs the desired process and returns statistical information
which we discuss in Appendix D.

Examples
All the examples in this chapter use 70-character fixed-length records. Figure 2-1 shows the records'
format; the format shows which character positions each field occupies.

Character
Position

Field

80-02348

2-2

12 14

Last
Name

25 30 31 33 34 36 37 45 55 68 70

First Mo. Day Yr. S Teacher
Name e

x
Birthday

II l I
Figure 2-1. Record Format for Examples

Licensed Material-Property of Data General Corporation 093-000155

A typical record looks like this:

PROLMAN MICHAEL 12/09/70 M CROCKER

Figure 2-2 superimposes the typical record over the record format to further clarify the relationship
bet ween the two.

Character
Position

Typical
Record

Field

Prolman

Last
Name

12 14

Michael

First
Name

25 30 37 45

12/09170 M

Birthday Sex

SD-02349 Figure 2-2. Typical Record Superimposed over Format

If you try these examples at your terminal, type NEW LINE as the 70th character.

Each example discusses

I. the task you want to accomplish
2. the input file(s) before the sort or merge
3. the command file(s) needed to accomplish the task
4. the command line(s) needed with the command file(s)
5. the output file after the sort or merge

093-000155 Licensed Material-Property of Data General Corporation

55 68 70

Crocker

Teacher

2-3

Last Name Sort
You want to sort a sixth grade class register file named REG ISTER_6, based on the last name field.
You need a command file which sorts the records in REG ISTER_6, the input file. You also need a
command line and an output file. REG ISTER_6 already exists and contains these records:

PROLMAN MICHAEL 12/09/70 M CROCKER
POWERS GREGORY 05/19/70 M LEVITT
PUZNIAK KAREN 03/19/70 F LEVITT
PUTNAM GAIL 08/2S/70 F KIRKP A TRICK
PRATT JULIA 10/21170 F CROCKER
PROVENZANI ANTHONY OS/12/70 M CROCKER
PRENDERGAST JOHN 01l0S/71 M LEVITT
PROUT JANET 07/21170 F CROCKER
PRESTON TONY 06/06/70 M LEVITT
PRINSKY SUSAN 12/28/69 F KIRKP A TRICK

Create the command file LAST _NAME __ SORT to contain these statements:

INPUT FILE IS "REGISTER_6", RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "REGISTER_aUT".
KEY 1 / 12.
SORT.
END.

The RECORDS ARE clause of the IN PUT FI LE declaration names an input file with fixed-length
records of 70 characters.

The KEY declaration instructs the utility to base the sort on characters 1 through 12 only. By default,
the KEY declaration instructs the utility to sort the records in ascending order.

After you create the command file, execute the following command line. It invokes the utility and
indicates the name of the command file:

)SORT / C = LAST _NAME_SORT / OJ

You use the /0 switch to indicate that the output file REG ISTER_.OUT already exists.

After you execute the command line, the output file contains the same REG ISTER_6 records, in a
new order:

POWERS GREGORY 05/19/70 M LEVITT

PRATT JULIA 10/21170 F CROCKER

PRENDERGAST JOHN 01105/71 M LEVITT

PRESTON TONY 06/06/70 M LEVITT

PRINSKY SUSAN 12/28/69 F KIRKP A TRICK

PROLMAN MICHAEL 12/09/70 M CROCKER

PROUT JANET 07/21170 F CROCKER
PROVENZANI ANTHONY OS/12/70 M CROCKER

PUTNAM GAIL 08/25/70 F KIRKP A TRICK

PUZNIAK KAREN 03/19/70 F LEVITT

2-4 Licensed Malerial-Properly of Data General Corporation 093-000155

Teacher Sort
You want to sort REG ISTER_6 based on the teacher field. The input file REG ISTER_6 contains

PROLMAN
POWERS
PUZNIAK
PUTNAM
PRATT
PROVENZANI
PRENDERGAST
PROUT
PRESTON
PRINSKY

MICHAEL
GREGORY
KAREN
GAIL
JULIA
ANTHONY
JOHN
JANET
TONY
SUSAN

12/09/70
05/19170
03/19/70
08/25/70
10/21170
05/12/70
01105/71
07/21170
06/06/70
12/28/69

The command file TEACHER __ SORT contains

M
M
F
F
F
M
M
F
M
F

INPUT FILE IS "REGISTER_6", RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "TEACHERS".
KEY 55/68.
SORT.
END.

CROCKER
LEVITT
LEVITT
KIRKP A TRICK
CROCKER
CROCKER
LEVITT
CROCKER
LEVITT
KIRKP A TRICK

The KEY declaration instructs the utility to base the sort on characters 55 through 68 only.

The following command line tells the utility to sort records into output file TEACH ERS, which
already exists:

)SORT / C = TEACHER_SORT / OJ

After you execute the command line, the output file contains

PROUT JANET 07/21170 F CROCKER
PROLMAN MICHAEL 12/09/70 M CROCKER
PROVENZANI ANTHONY 05/12/70 M CROCKER
PRATT JULIA 10/21170 F CROCKER
PRINSKY SUSAN 12/28/69 F KIRKP A TRICK
PUTNAM GAIL 08/25/70 F KIRKP A TRICK
PUZNIAK KAREN 03/19/70 F LEVITT
POWERS GREGORY 05/19/70 M LEVITT
PRESTON TONY 06/06/70 M LEVITT
PRENDERGAST JOHN 01/05/71 M LEVITT

093-000155 Licensed Material-Property of Data General Corporation 2-5

Birthday Sort
You want to sort REGISTER_6 based on the birthday field. The input file REGISTER_6 contains

PROLMAN
POWERS
PUZNIAK
PUTNAM
PRATT
PROVENZANI
PRENDERGAST
PROUT
PRESTON
PRINSKY

MICHAEL
GREGORY
KAREN
GAIL
JULIA
ANTHONY
JOHN
JANET
TONY
SUSAN

12/09/70
05/19/70
03119170
08/25/70
10/21170
05112/70
01105/71
07/21170
06/06/70
12/28/69

M
M
F
F
F
M
M
F
M
F

CROCKER
LEVITT
LEVITT
KIRKPATRICK
CROCKER
CROCKER
LEVITT
CROCKER
LEVITT
KIRKPATRICK

This example raises an important question: how do you resolve key conflicts? For example, consider
the Prinsky, Provenzani, and Powers records. If you make the birthday field the key, then the utility
will put Provenzani (05/12/70) before Prinsky (12/28/69). Obviously, a student born in 1969 belongs
before a student born in 1970, even if the 1970 student was born in May and the 1969 student in
December. How do you resolve this conflict?

You divide the birthday field into two subfields by using two KEY declarations: the first declares the
year subfield and the second declares the month subfield. The utility makes the year key the primary
key and the month key the secondary key.] n this way, the utility sorts the birthdays by year first and
by month second. Figure 2-3 shows the birthday field divided into two subfields.

30 37

(
Mo.lOay/Yr.

Birthday Field

30 31

Mo.
Subfield IOayl

36 37

Yr.
Subfield

t~ ~
~--------~------~-------'

(

Figure 2-3. Birthday Field Divided into Two Subfields

Now compare the Provenzani and Powers records. In our current scheme, Sort/Merge compares both
records' year and month subfields and finds them the same. How do you make the utility resolve this
conflict? You divide the birthday field still further into three subfields; use a third KEY declaration
for the day subfield. The year and month keys remain the primary and secondary keys, but the day
key becomes the tertiary key. This third key makes the utility place Provenzani (05/12/70) before
Powers (05/19/70). Figure 2-4 shows the birthday field divided into three subfields.

2-6 Licensed Material-Property of Data General Corporation 093-000155

30 31 36 37

\ (
Mo. IDayl Yr.
Subfield Subfield

~"'- ~t

30 31 33 34 36 37

\ (
Mo. Day Yr.
Subfield Subfield Subfield

~ ~

Figure 2-4. Birthday Field Divided into Three Subfields

We use multiple keys in the command file BIRTHDA Y _SORT, which contains

INPUT FILE IS "REGISTER_6" I RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "BIRTHDAY".
KEY 36/37.
KEY 30/31.
KEY 33/34.
SORT.
END.

Let's summarize a use of multiple keys in general and in this example. You can include more than one
KEY declaration in a command file. The utility first bases the sort on the KEY declaration appearing
first in the command file. This declaration is the primary key. To resolve conflicts between records,
the utility will use the KEY declaration appearing second in the command file, if you included one.
The second KEY declaration is the secondary key. To resolve further conflicts between records, the
utility can use a third KEY declaration, the tertiary key, and so on. In this example, we sorted the
birthdays by year, then month, and then day, by declaring a KEY declaration for the year subfield, a
second KEY declaration for the month subfield, and a third KEY declaration for the day subfield. Put
another way, we sorted the birthdays by year, then month, then day, by declaring a year key, then a
month key, then a day key.

The command line you need is

)SORT / C = BIRTHDA Y _SORTl

The /0 switch docs not appear in the command line because the output file BI RTH DA Y does not yet
exist. The utility will create it.

After the utility creates the ouput file, it contains

PRINSKY
PUZNIAK
PROVENZANI
POWERS
PRESTON
PROUT
PUTNAM
PRATT
PROLMAN
PRENDERGAST

093-000155

SUSAN
KAREN
ANTHONY
GREGORY
TONY
JANET
GAIL
JULIA
MICHAEL
JOHN

12/28/69
03/19/70
OS/12/70
OS/19/70
06/06/70
07/21170
08/2S/70
10/21/70
12/09/70
01l0S/71

F
F
M
M
M
F
F
F
M
M

Licensed Material-Property of Data General Corporation

KIRKPA TRICK
LEVITT
CROCKER
LEVITT
LEVITT
CROCKER
KIRKPA TRICK
CROCKER
CROCKER
LEVITT

2-7

New Student Merge

You want to merge file NEW_STUDENTS with TEACHERS, based on the teacher field. The input
file TEACHERS contains

PROUT JANET 07/21170 F CROCKER
PROLMAN MICHAEL 12/09/70 M CROCKER
PROVENZANI ANTHONY 05112/70 M CROCKER
PRATT JULIA 10/21170 F CROCKER
PRINSKY SUSAN 12/28/69 F KIRKP A TRICK
PUTNAM GAIL 08/25/70 F KIRKP A TRICK
PUZNIAK KAREN 03/19/70 F LEVITT
POWERS GREGORY 05/19/70 M LEVITT
PRESTON TONY 06/06/70 M LEVITT
PRENDERGAST JOHN 01105171 M LEVITT

The second input file NEW_STU DENTS contains

PATTERSON DAVID 01101170 M KIRKP A TRICK
PARK DONA 11/03/70 F LEVITT
PARASKEVAS WILLIAM 09112/70 M CROCKER

The merge process requires previously sorted input files. The command file TEACHER_SORT
already prepared TEACHERS for merging. TEACHER_SORT.FOR.NEW_STUDENTS, the
command file which prepares NEW_STUDENTS for merging, contains these statements:

INPUT FILE IS "NEW_STUDENTS", RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "NEW_STUDENTS_OUT".
KEY 55/68.
SORT.
END.

After the prepa ra tory sorts, TEACHERS remains the
N E\\'_STU DENTS_OUT contains

same

PARASKEVAS WILLIAM 09112/70 M CROCKER

as

PATTERSON DAVID 01101170 M KIRKP A TRICK
PARK DONA 11/03/70 F LEVITT

2-8 Licensed Material-Property of Data General Corporation

above, and

093-000155

The following command file, NEW _STUDENTS.WITH.TEACHERS, merges the two sorted input
files:

INPUT FILE IS "NEW_STUDENTS_OUT", RECORDS ARE 70 CHARACTERS.
INPUT FILE IS "TEACHERS", RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "MASTER_6".
KEY 55/68.
MERGE.
END.

You need three command lines to perform this merge. In the teacher sort example, you already
prepared TEACHERS for merging by executing this command line:

)SORT 1 C = TEACHER_SORT 1 0)

To sort NEW_STUDENTS and thus prepare NEW_STUDENTS_OUT as an input file for
merging, execute this command line:

)SORT IC=TEACHER_SORT.FOR.NEW_STUDENTS/O)

Finally, to merge the two input files TEACHERS and NEW_STUDENTS_OUT into output file
MASTER_6, execute this command line:

)MERGE/C=NEW_STUDENTS.WITH.TEACHERS/O)

After executing these command lines, the output file MASTER_6 contains

PARASKEVAS WILLIAM 09/12/70 M CROCKER
PROUT JANET 07/21170 F CROCKER

PROLMAN MICHAEL 12/09/70 M CROCKER
PROVENZANI ANTHONY 05/12/70 M CROCKER
PRATT JULIA 10/21170 F CROCKER

PATTERSON DAVID 01101170 M KIRKP A TRICK

PRINSKY SUSAN 12/28/69 F KIRKP A TRICK

PUTNAM GAIL 08/25/70 F KIRKPATRICK

PARK DONA 11103170 F LEVITT

PUZNIAK KAREN 03/19/70 F LEVITT

POWERS GREGORY 05/19/70 M LEVITT

PRESTON TONY 06/06/70 M LEVITT

PRENDERGAST JOHN 01105171 M LEVITT

093-000155 Licensed Material-Property of Data General Corporation 2-9

Male and Female Student Sort
Input file MALES contains records for male students and input file FEMALES contains records for
female students. Merge MALES with FEMALES based first on the teacher field, then on the last
name field, and finally on the first name field. Use the SORT imperative and one command file to
perform the equivalent of both the merge and the preparatory sorts.

Input file MALES contains

PROVENZANI ANTHONY OS/12/70 M CROCKER
POWERS GREGORY OS/19/70 M LEVITT
PRESTON TONY 06/06/70 M LEVITT
PROLMAN MICHAEL 12/09/70 M CROCKER
PROLMAN GERALD 12/09/70 M CROCKER
PRENDERGAST JOHN 01l0S/71 M LEVITT

Input file FEMALES contains

PRINSKY SUSAN 12/28/69 F KIRKP A TRICK
PRATT JULIA 10/21/70 F CROCKER
PROLMAN MAXINE 12/09/70 F CROCKER
PUZNIAK KAREN 03/19/70 F LEVITT
PROUT JANET 07/21170 F CROCKER
PUTNAM GAIL 08/2S/70 F KIRKP A TRICK

You use the command file TEACHER_AND_WHOLE_NAME which contains

INPUT FILE IS "MALES". RECORDS ARE 70 CHARACTERS.
INPUT FILE IS "FEMALES". RECORDS ARE 70 CHARACTERS.
OUTPUT FILE IS "MASTER_6".
KEY 55/68.
KEY 1 / 12.
KEY 14/25.
SORT.
END.

2-10 Licensed Material-Property of Data General Corporation 093-000155

As the command file indicates, you can declare more than one input file for a sort process. The utility
reads each input file in the order that you specify them, in effect creating one large input file for the
sort.

The KEY declarations specify the teacher field as the primary key, the last name field as the
secondary key, and the first name field as the tertiary key. The command line is

)SORT / C = TEACHER_AND_ WHOLE_NAME!

The output file MASTER_6 contains

PRATT
PROLMAN
PROLMAN
PROLMAN
PROUT
PROVENZANI
PRINSKY
PUTNAM
POWERS
PRENDERGAST
PRESTON
PUZNIAK

JULIA
GERALD
MAXINE
MICHAEL
JANET
ANTHONY
SUSAN
GAIL
GREGORY
JOHN
TONY
KAREN

10/21/70
12/09/70
12/09/70
12/09/70
07/21/70
OSI12/70
12/28/69
08/2S/70
OS/19/70
01/0S/71
06/06/70
03/19/70

End of Chapter

F
M
F
M
F
M
F
F
M
M
M
F

CROCKER
CROCKER
CROCKER
CROCKER
CROCKER
CROCKER
KIRKPATRICK
KIRKPATRICK
LEVITT
LEVITT
LEVITT
LEVITT

093-000155 Licensed Material-Property of Data General Corporation 2-11

Chapter 3

Command File Overview

This chapter defines terms and explains rules that we use throughout the rest of the manual. Also, it
presents an overview of command files.

Terms You'll Need to Know
Throughout the rest of this manual you'll find AOS and Sort/Merge terms. We define these terms
here.

Record Types

data-sensitive

fixed-length

variable-length

dynamic

Records delimited by a particular character. We'll refer to data-sensitive
records delimited by anyone of the default delimiters -- NEW LI N E, null,
or form feed -- as standard data-sensitive records, and those delimited by
characters other than the default delimiters as nonstandard data-sensitive
records. Nonstandard also refers to data-sensitive records which exceed 136
characters. In both data-sensitive types, the delimiter is part of the record.

Both types can have constant or varied length.

Records whose lengths are constant.

Records whose lengths vary. The records contain a header that tells you the
record length.

Records whose lengths you specify when you read or write them.

NOTE: Sort/ Merge does not recognize dynamic records. To process these with Sort/ Merge,
define them as one of the other record types in your input or output file declarations.
(See Chapter 4.)

Storage Terms

block size

element size

093-000155

The number of bytes (characters) 111 a physical tape block. AOS default
block size is 2048 bytes.

The number of sectors in each element that AOS allocates for a disk file.
Elements are blocks of sectors (512-byte data blocks).

Licensed Material-Property of Data General Corporation 3-1

Sort/Merge Terms

literal

collating value

collating sequence

location phrase

Sort / Merge process

A string of one or more ASCII characters.

A character's value in a character code set (often ASCII). Sort/Merge
orders characters based on their collating values. Appendix C lists the
ASCII and EBCDIC collating values. For example, < 040 > is the ASCII
collating value of a blank space. Sort/Merge allows you to alter a
character's collating value.

The order of a set of characters based on its collating values. By altering
collating values, you can alter a collating sequence.

The notation used to indicate a single character or range of characters in a
record. For example, 2/2 indicates the second character position in a
record; 2/4 indicates the second through fourth character positions.

The steps that Sort/Merge takes to read, order, edit, and write records.

Command File Overview
A command file is a series of statements. Different types of statements serve different functions:

This type of statement tells the Sort/Merge utility

declaration

massage

imperative

END

the names of the input and output files and their record type

the field(s) on which to base the Sort/Merge process

the collating values of the records' characters

the temporary files used for intermediate storage of records during a
Sort / Merge process

how to edit the input and/or output records

which records to use in the Sort/ Merge process

which Sort/Merge process to use

where the command file ends

Table 3-1 shows you the structure of a command file, the types of command file statements, the
required and optional statements, and the number of each statement allowed in one command file.
The word "many" appears under the column head "Number Allowed." In general, "many" means as
many as you want. Only memory space can limit the number of statements where many are allowed.

3-2 Licensed Material-Property of Data General Corporation 093-000155

Table 3-1. Overview of Command File Structure *

type Statement Requiredl Optional Number
Allowed

Declaration INPUT FILE Required for non-INFOS II input Many
file

INPUT INFOS Required for INFOS II input file Many

OUTPUT FILE Required for non-INFOS II output One
file

OUTPUT INFOS Required for INFOS II output file One

OUTPUT REPORT Optional One

TABLE Optional Many

KEY Optional Many

WORK FILE Optional Many

Massage (for COMPRESS Optional Many of each
input IF
records) INSERT (including INSERT

TAG)
PAD
REFORMAT
REPLACE
REPLACE TABS
TRANSLATE

Imperative SORT Required Only one of one
STABLE SORT
TAG SORT
STABLE TAG SORT
DELETING DUPLICATES
MERGE
COPY

Massage (for Same statements as for input Optional Many of each
output records, except INSERT TAG
records)

END END Required One

This table assumes that you use the non interactive mode command line (discussed in Chapter 7) to invoke the
command file.

093-000155 Licensed Material-Property of Data General Corporation 3-3

Certain rules govern statement order in command files:

• You must place declarations before all other types of statements. Within the declaration section, the
input file declarations come first, followed by (in order): one output file declaration, TABLE
declarations (if any), KEY declarations (if any), and WORK FILE declarations (if any).

OUTPUT FILE, OUTPUT INFOS, and OUTPUT REPORT are all output file declarations. In
any command file, you may specify only one of them.

• You can place massage statements before and/or after the imperative. Massage statements for
input records precede the imperative; massage statements for output records follow the imperative.

• Place the EN D statement last in the command file.

• You must terminate each statement with a period.

See Chapter 8 for information about the IN PUT IN FOS and OUTPUT IN FOS declarations.

You can arrange statements on a page in any way you like, as long as they are syntactically correct. A
declaration or massage statement can span several lines. Also, spaces, tabs, form feeds, and NEW
LI N Es can separate declaration phrases and massage statements.

Comment Feature
You can place comments on any line in the command file; the utility will not try to execute them. The
comment format is very simple:

% comment

You must place ~7r) irt column 1.

For example:

% This command file sorts my address list by zip code.
INPUT FILE IS "ADDRESS_LIST _BY _NAME". RECORDS ARE 87 CHARACTERS.
OUTPUT FILE IS "ADDRESS_LIST _BY _ZIP".
% The zip code field is character positions 83 through 87.
KEY 83/87.
SORT.
END.

Statement Formats: General Information
This section explains the syntax you'll find common to most command file statements.

Location Phrase
The location phrase restricts the character positions that the utility uses in a Sort/ Merge process. For
example, in the teacher sort example of Chapter 2, we restricted the sort key to the character positions
containing the teacher field. The format for the location phrase is

integer / integer
integer / LAST

The integer before the / is the first character of the range; the integer after the / is the last, and must
equal or exceed the integer before the /. LAST is the last character of a given record. Thus, you must
use the integer / LAST form when you refer to the last character of records whose lengths vary.

3-4 Licensed Material-Property of Data General Corporation 093-000155

Every character position in a record matters, even if it contains a TAB, blank, form feed, null, or
NEW LIN E character. The positions are consecutively numbered; the first is numbered one.

Let's take some examples. I f a record is 80 characters long, then the location phrase for a five
character field starting with character position 50 is 50/54. The fiftieth character is 50/50. The
location phrase for the entire record is 1/80 or 1 ILAST. Specify the last 30 characters of the record
as 51/80 or 51 ILAST.

Literals
A literal is a string of characters. Delimit literals with either apostrophes or double quotation marks.
Do not mix delimter characters. For example, the ASCII character A is correctly delimited by '"A" or
'A', but not "A'. Within a literal, you can represent single characters by the character's octal value
enclosed in angle brackets < > . For example, all of the following represent the single-character
literal ASCII A:

'";\" or ';\' or " < 101 > " or ' < 1 01 > '

What if you want to use a literal delimiter (" or ') as a literal? To represent" as a literal, use one of
these:

, " , or " < 042 > "

To represent' as a literal, use one of these:

" ' " or " < 047 > "

Single Character
The format for a single character is

{
integer }
"literal"

The integer represents the character's corresponding ASCII decimal value. For example, the decimal
value of an ASCII $ is 36. Thus, you can specify the ASCII character $ as 36 or "$".

Abbreviations
The Sortl Merge utility accepts one set of abbreviations for five words in command file statements.

For

CHARACTERS
RECORDS
DATA SENSITIVE
ASCENDING
DESCENDING

093-000155

you can use

CHARS
RECS
DATA SENS
ASC
DESC

End of Cha pter

Licensed Material-Property of Data General Corporation 3-5

Chapter 4

Declarations

This chapter describes all command file declarations except the IN PUT IN FOS and OUTPUT
IN FOS declarations (see Chapter 8), and the OUTPUT REPORT declaration (see Chapter 9).

AOS INPUT FILE Declaration
The AOS I N PUT FI LE declaration names an input file and, optionally, describes its record type and
block size.

The format of an AOS INPUT FILE declaration is

INPUT FILE IS "name"

,RECORDS ARE

f integer CHARACTERS ~

) DATA SENSITIVE [DELIMITED BY "literal"} UPTO integer CHARACTERS ('

{ VARIABLE UPTO integer CHARACTERS J

f. BLOCKS ARE integer CHARACTERS}

You may omit the RECORDS ARE clause only if the input file consists of fixed-length or standard
data-sensitive records. If you are not sure of a file's record type, enter FILESTATUSjRECORD
from the appropriate directory. If the records are dynamic or are not a specific record type, you may
treat them as

• data-sensitive if each record ends with a data-sensitive delimiter (default or user defined)

• fixed-length if all the records are the same length

• variable-length if each record contains a header consistent with the AOS variable-length record
format (indicating the record length)

integer CHARACTERS Phrase
You may use the integer CHARACTERS phrase for an input file consisting of fixed-length records.
You're required to use the phrase if the input file contains fixed-length records, but the
FI LESTATUS command doesn't indicate that the file has a fixed-length format. The argument
integer is the record length in characters. For example, if input file records are all 80 characters long,
then use this phrase:

RECORDS ARE 80 CHARACTERS.

093-000155 Licensed Material-Property of Data General Corporation 4-1

DA T A SENSITIVE Phrase

You must use the DATA SENSITIVE phrase for an input file conslstmg of nonstandard
data-sensitive records. The phrase is optional for an input file consisting of standard data-sensitive
records.

The longest record in the input file determines the integer in the UPTO integer phrase. If you know
the length in characters of the longest record, specify that as integer. If you don't know the length of
the longest record, you must determine a length which you think no record will exceed; use that length
as integer. Try for a tight fit. That is, choose a number high enough for, but as close as possible to,
the length of the longest record. For example, if you think that the largest record in a file is about 190
characters, you could let integer equal 250 to be very safe. But 200 is probably a better choice. If you
choose 200, use this phrase:

UPTO 200 CHARACTERS.

The DELI M ITED BY phrase lets you select a delimiter other than the AOS default delimiters
(NEW LINE, null, and form feed). Each character in literal indicates a record delimiter. For
example,

DELIMITED BY " / *;"

tells the utility to delimit a record whenever it finds a slash, asterisk, or a semicolon. Note that the
characters in literal are the only delimiters. Thus, if you want both the AOS default delimiters and
your own, you must explicity list them all. For example, to use NEW LINE and * as delimiters, use
this phrase:

DELIMITED BY "<012> *"

VARIABLE UPTO Phrase
You must use the VARIABLE UPTO phrase if the input file consists of variable-length records. If
you know the length of the longest record, specify that as integer. Otherwise, choose integer so that
you will safely include the longest record in the sort or merge. But also try for a tight fit, the same
way that you would for a file of data-sensitive records whose maximum length is uncertain. For
example, if you think that your longest record is about 75 characters, you could specify 85 characters:

VARIABLE UPTO 85 CHARACTERS

BLOCKS ARE Clause
The BLOCKS ARE clause states the number of characters (bytes) in a physical block of a magnetic
tape file. Use this clause if the tape that you're reading doesn't have the default AOS blocksize of
2,048 characters. If the size of the blocks on the tape varies, you must specify integer to be at least as
long as the longest block in the file. If you don't, blocks longer than the size that you specify are
truncated.

Examples
I nput file FI LE_ON E has fixed-length records 40 characters long. The declaration for this file is
either

INPUT FILE IS "FILE_ONE", RECORDS ARE 40 CHARACTERS.

or

INPUT FILE IS "FILE_ONE".

4-2 Licensed Material-Property of Data General Corporation 093-000155

FILE_TWO has data-sensitive records no longer than 150 characters delimited by *, /, or $. The
declaration for this file is

INPUT FILE IS "FILE_TWO",
RECORDS ARE DATA SENSITIVE
DELIMITED BY ". / $"
UPTO 150 CHARACTERS.

An input tape file has fixed-length records 100 characters long and a block sIze of 2,000. A
declaration for this file is

INPUT FILE IS "@MTA2:3",
RECORDS ARE 1 00 CHARACTERS, BLOCKS ARE 2,000 CHARACTERS.

Notice that we formatted each declaration a different way. You can choose any formatting scheme
you like.

AOS OUTPUT FILE Declaration
The AOS OUTPUT FILE declaration names an output file. Optionally, it describes the file's record
type, block size, and element size.

The format of an AOS OUTPUT FI LE declaration is

OUTPUT FILE IS "name"

(integer CHARA CTERS I
,RECORDS ARE) DATA SENSITIVE [DELIMITED BY "literal''} UPTO Integer CHARACTERS

~ VARIABLE UPTO Integer CHARACTERS I

[{

BLOCKS ARE integer CHARACTERS}l

.t'LEM ENTS ARE integer BLOCKS J

The RECORDS ARE clause works exactly like the one for input files. (See "AOS INPUT FILE
Declaration" in this manual.)

BLOCKS ARE Clause
The BLOCKS ARE clause states the number of characters (bytes) in a physical block of a magnetic
tape file. Use this clause if the file that you're writing to doesn't have the default AOS blocksize of
2,048 characters.

Specifying a large block size reduces I/O time and saves tape.

ELEMENTS ARE Clause
The ELEMENTS ARE clause describes the file's size in physical units on the disk. The default
element size is one (512-bytes). See "Increase Element Size" in Appendix E for an explanation of why
you would want to specify the element size.

093-000155 Licensed Material-Property of Data General Corporation 4-3

TABLE Declaration
The TABLE declaration lets you change the collating values of characters. Since a collating sequence
depends on collating values, changing collating values changes a collating sequence. For example, the
ASCII decimal equivalent of 9 is 57 and A is 65. Consequently, for an ascending sequence, the utility
will output records whose key fields begin with 9 before records whose key fields begin with A.
Suppose that the utility sorts an inventory list in ascending order, based on a five character inventory
code. A section of the output file might look like this:

9A542
9A544
A3217
A3221

desk
desk
pen
pen

2 drawer
4 drawer
felt tip
felt tip

brown
beige
blue
red

Note that the records with inventory codes starting with 9 come before those starting with A. If we
reverse the collating values of 9 and A, then the collating sequence of the inventory records changes:

A3217
A3221
9A542
9A544

pen
pen
desk
desk

felt tip
felt tip
2 drawer
4 drawer

blue
red
brown
beige

You'll need a TABLE declaration when you want to

• change the normal collating sequence of your output

• ignore one or more characters in a record by using the COMPRESS massage statement

• translate data other than EBCDIC to ASCII, or ASCII to EBCDIC, or lowercase ASCII to
uppercase ASC II

You don't need a TABLE declaration when you want to

• change the collating sequence from ascending to descending; instead, use DESCENDING in the
KEY declaration, described in the next section

• translate data written in ASCII to EBCDIC, or vice versa, because the utility provides predefined
tables for you

• translate lowercase ASCII to uppercase ASCII because the utility provides a predefined table for
this purpose

These are the formats for a TABLE declaration:

FORMAT ONE

{
integer} [J integer }]
"literal" 't "literal" ...

TABLE name IS {
integer} {integer} [{integer } _ {integer }]
"literal" - "literal" '''literal'' "literal"'" I,UNMENTIONED! •

{
integer l . {integer} [, {integer .~ • {integer }] ...
"literal",· "literal" "literal" I . "liTeral"

4-4 Licensed Material-Property of Data General Corporation 093-000155

FORMAT TWO

I
ASCII)
ASCII_ TO_EBCDIC (

TABLE name FROM EBCDIC_ TO_ASCII j' IS "literal" = integer [, "literal" = integer] ••••
LOWER_ TO_UPPER
name

FORMAT THREE

TABLE name1 IS FILE "name2".

I n all three formats, the name argument in TABLE name must consist only of uppercase letters, digits,
and the underline character. Also, this name is not a literal, so don't delimit it with • or H.

Notice that format one has three lines between the two main set of braces. We refer to the top line as
option one, the middle line as option two, and the third line as option three.

Table 4-1 is a subset of the ASC II character set (shown fully in Apendix F). You can refer to Table
4-1 for most of the examples in this section. Notice that decimals 65 through 90 represent uppercase
letters. The lowercase letters have different ASCII decimal equivalents. So, for example, don't confuse
the uppercase letter J with the lowercase letter j. Also, don't confuse the digit 0 with the lowercase
letter 0 or the uppercase letter O.

Table 4-1. Subset of the ASCII Character Set

0 48 I 73
I 49 J 74
2 50 K 75
3 51 L 76
4 52 M 77
5 53 N 78
6 54 0 79
7 55 P 80
8 56 Q 81
9 57 R 82
A 65 S 83
B 66 T 84
C 67 U 85
D 68 V 86
E 69 W 87
F 70 X 88
G 71 Y 89
H 72 Z 90

093-000155 licensed Material-Property of Data General Corporation 4-5

Format One

A list of characters follows TAB LE name IS. You can represent a character either as a literal or as a
decimal number.

The TABLE name IS phrase's option one is

TABLE name IS {!'~i~~;:~'} [. { I'~:~:;:f" }] ...
literal is one or more ASCII characters and integer is the decimal equivalent of an ASCII character.
The integer must be between 0 and 255. The utility assigns ascending collating values, starting from
zero, to the literals or integers in the list: the collating value of the first literal or integer is zero, of the
second literal or integer is one, and so on. For example, the following are ways you can assign J the
collating value 0 and 5 the collating value 1:

TABLE NEW_VAL IS "J", "5".
TABLE NEW_VAL IS "J", 53.
TABLE NEW_VAL IS 74,53.
TABLE NEW_VAL IS 74, "5".

Because literal can be more than one ASCI I character, you can assign the same collating value to
more than one character. For example, to assign A, B, and C the collating value 0 and X,Y, and Z the
collating value 1, you could specify

TABLE NEW_VAL IS "ABC", "XYZ".

Options two and three provide you with alternate ways to represent character lists. Both are
convenient to use for long lists. For example, to assign digits 0 through 9 the collating values 0
through 9, you could specify either

TABLE NEW_VAL IS 48,49,50,51,52,53,54,55,56,57

or

TABLE NEW_VAL IS "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"

You can represent this list more easily by using option two:

TABLE name IS {
integer} {integer} [{integer } {integer }]
"literal" - "literal" '. "literal' - "literal" •••

I n option one, literal consists of one or more ASCII character. In option two, however, literal is only
one ASC II character. The dash stands for all the characters between and including the two literals or
integers. I n the example above, you can use either of the following shorthand ways to assign 0 through
9 the collating values 0 through 9:

TABLE NEW_VAL IS 48-57.

or

TABLE NEW_VAL IS "0"-"9".

4-6 Licensed Material-Property of Data General Corporation 093-000155

In summary, option two in the TABLE name IS phrase is shorthand for assigning a list of characters
a range of values. The phrase's option three is another type of shorthand. It assigns a list of characters
a single value. Option three is

The literal in option three, like the literal in option two, can be only one ASCII character. The: stands
for all the characters in between the two integers or the two literals.

Here's an example of the long way to assign A through Z the collating value 0:

TABLE NEW_VAL IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

Use option three to specify the shorthand way:

TABLE NEW_VAL is "A":"Z".

or

TABLE NEW_VAL IS 65:90.

You can combine all three forms of the TABLE name IS clause in one declaration. For example, if
you want to assign

the character(s) the collating value(s)

$ o

o through 9 I through 10

uppercase ASC II letters II

you could specify:

TABLE NEW_VAL IS "$", "0"-"9", "A":"Z".

To see more clearly why the letters A through Z gets the collating value 11, we'll write this example
out the long way:

TABLE NEW_VAL IS "$", "0", "1", "2", "3", "4", "5", "6", "7", "8",
"9", "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

Note that "ABCDEFGHIJKLMNOPQRSTUVWXYZ" is the 12th item in the list. Because the first
item receives the collating value 0, the 12th item gets the collating value 11.

In this example, what collating values do a through z, and special characters besides $ receive? First,
let's answer the question generally. We call these characters the unmentioned characters, since you
did not include them in the list following the TABLE name IS clause. In the ASCII character code
set, each character has a fixed position based on its decimal equivalent. When you explicitly change
the collating values of some of the characters, you implicitly change the collating values of the
unmentioned characters. But you do not change their relative positions. The unmentioned characters'
collating values start from one greater than the highest collating value of the characters in the list. To
repeat, their relative positions do not change. Now we can answer the question specifically.

093-000155 Licensed Material-Property of Data General Corporation 4-7

Again, what collating values do a through z, and special characters besides $ receive? Relative to the
rest of the characters in the ASCII character set, null is the first. Thus, null is the first in the series of
unmentioned characters. Because the greatest collating value of the characters in the list is II, and
the unmentioned series starts from one greater than this number, null receives the collating value 12.
The next character in the unmentioned series, CTRL-A, receives the collating value 13. This
assignment of ascending values continues to # , which receives the collating value 47. We skip $, a
character already explicitly assigned the collating value 0, and continue counting from % to /.
Likewise, we skip ° through 9 and continue counting from: to @ , and skip the uppercase letters and
continue counting from [to the final character, DEL.

Here we summarize the values that the letters a through z, and the special characters besides $
receive in this example.

This character receives the collating value

null 12

CTRL-A 13

47

48

/ 58

: (colon) 59

@ 65

66

a 72

z 97

DEL 102

In general, the collating values of unmentioned characters depend on their relative positions in the
ASC II character set.

4-8 Licensed Material-Property of Data General Corporation 093-000155

UNMENTIONED
The answer to the question about what happens to the unmentioned characters brings us to format
one's UNMENTIONED. You use UNMENTIONED to assign one collating value to all the
characters not mentioned in your declaration. The value assigned depends on the collating values of
the mentioned characters and the position of UN MENTION ED in the declaration. Let's look at some
examples to see how it works.

Say you are concerned only with sorting records beginning with numeric fields. You want to assign 0
through 9 the collating values 0 through 9, respectively, and assign all other ASCII characters the
collating value 10. With these collating values, the utility will output all records beginning with
numeric fields, in sorted order, before all other records, which will be unsorted. The following TABLE
declaration accomplishes this collating:

TABLE NEW_VAL IS "0"-"9", UNMENTIONED.

Changing the declaration to

TABLE NEW_VAL IS "0"-"8", UNMENTIONED.

assigns unmentioned characters the collating value 9.

Changing the position of UN MENTION ED changes the collating value of unmentioned characters.
For example, say you want to asssign 0 through 9 the collating values I through 10, respectively, and
all other ASCII characters the collating value O. You could specify:

TABLE NEW_VAL IS UNMENTIONED, "0"-"9".

Note that UNMENTIONED is especially useful in TABLE declarations you plan to use with the
COMPRESS massage statement (described in Chapter 6). COMPRESS condenses a record by
deleting all characters with collating value zero.

You are not restricted to placing UN MENTION ED at the beginning or the end of the character list;
you can place it anywhere in the list. For example:

TABLE NEW_VAL IS "A"-"Z", UNMENTIONED, "0":"9".

I n this case, you assign the uppercase ASC II letters the collating values 0 through 25 and all the
unmentioned characters the collating value 26. You assign 0 through 9 the collating value 27.

You can specify each ASCII character and UNMENTIONED only once. Therefore, while you can
assign a single collating value to more than one character, you cannot assign more than one value to
any single character.

Format Two
For easy reference, here's format two again:

FORMATTWO

TABLE name FROM

093-000155

J
ASCII)
ASCII .TO_EBCDIC (

~
EBCDIC __ TO_ASCII 1
LOWER __ TO~UPPER
name

IS "literal" = integer /. "literal"= inteReTl

Licensed Material-Property of Data General Corporation 4-9

As in option one of format one, literal can be more than one ASCII character. Argument integer is
the decimal equivalent of an ASCII character.

Format two works differently from format one. In the first, you implicitly alter collating values of
unmentioned characters by explicitly altering collating values of the characters in the list. In the
second format, explicitly altering collating values of mentioned characters does not alter any other
character's collating value.

The utility supplies four collating value tables:

• ASCII, which assigns each ASCII character its standard collating value

• ASCII_ TO_EBCDIC, which assigns each ASCII character the collating value of its corresponding
EBCDIC character

• EBCDIC_ TO_ASCII, which assigns each EBCDIC character the collating value of its
corresponding ASCII character

• LOWER_ TO_U PPER, which assigns each lowercase ASCII character the collating value of its
corresonding uppercase letter

Argument name lets you supply your own collating value table.

The IS clause lets you assign to individual characters single collating values, without changing the
other collating values in one of the predefined tables or a table that you supply. The utility assigns the
collating value you select as integer to the character you select as literal. For example:

TABLE NEW_VAL FROM ASCII IS "A" =48, "B"=49, "C"=50.

I n this case, Sort/ Merge assigns A the collating value 48, B the collating value 49, and C the collating
value 50. Explicitly changing the collating values of A, B, and C does not change the collating values
of 0, 1, and 2. Further, all the other ASCII character's collating values remain the same.

You can let literal be more than one ASCII character. For example, if you want to assign A, B, C,
and ° the collating value 48, and X, Y, Z, and 1 the collating value 49, then you could use this
TABLE declaration:

TABLE NEW_VAL FROM ASCII IS "ABC" =48, "XYZ"=49.

I nstead of using one of the utility's predefined tables, you can supply your own. You defined this table
in an earlier TABLE declaration. For example, if NEW _ VAL defined in the last example is the table
you supply, you might want to adjust it slightly. Let's say you want to assign D, in addition to A, B, C,
and 0, the collating value 48. You could specify

TABLE ADJUST FROM NEW_VAL IS "0"=48.

Format Three
We repeat the format here for your convenience:

TABLE name 1 IS FILE "name2".

This format creates a table, name 1, from the contents of an AOS file whose pathname is name2. The
utility creates the table directly from the first 256 bytes of the file as follows: null translates to the
value of the first byte of the file, CNTL-A translates to the value of the second byte, and so on.

We provide format three principally for those who use Sort/Merge as a building block in a larger
program system. We caution you: this format can lead to command files that are difficult to
understand and maintain.

4-10 Licensed Material-Property of Data General Corporation 093-000155

KEY Declaration
The KEY declaration defines a key field on which the utility bases the sort or merge. You can define
more than one key field by using more than one KEY declaration. I f you do, the utility treats the first
KEY declaration as the primary key, the second as the secondary key, the third as the tertiary key,
and so on. You saw two examples of multiple keys in Chapter two: the birthday sort (third example)
and the male and female student sort (last example).

Those examples showed how multiple KEY declarations can resolve key conflicts. Here is a similar
example. You might want to sort a file containing names by last name first and first name second.
Three records in the file could be

Prolman
Prolman
Prolman

Michael
Gerald
Maxine

;\ KEY declaration for the last name field allows Sort/Merge to distinguish between the PROLMAN
last name and any other last name, but not to distinguish between Michael, Gerald, and Maxine. A
second KEY declaration for the first name field resolves the conflict. The utility sorts the records
based on the primary (last name) key first, and the secondary (first name) key second.

After the utility finishes sorting, you'll find the records ordered

Prolman
Prolman
Prolman

Gerald
Maxine
Michael

There are two KEY declaration formats. You use format one to define keys containing character data
which you want sorted in alphabetical order. You use format two to define keys containing numerical
data which you want sorted in numerical order.

The two formats for the KEY declaration are

FORMAT ONE

KEY

~ integer/integer ~

integer/LAST

l integer1 :integer2 j

FORMAT TWO

KEY

093-000155

{

integer/integer }

. integer1 : integer2

[~ ASCENDING ~l
[COLLA TED BY tab/enamel) (•

(DESCENDING)

TYPE IS

DECIMAL [J~g;l]
)LSS
(TSS

PACKED
BINAR Y
FLOAT

[{
ASCENDING }]

DESCENDING

EXTERNAL FLOAT

Licensed Material-Property of Data General Corporation 4-11

By d~fault, the utility sorts and merges records in ascending order, using the entire record as the key.
The location phrase in both formats restricts a key to a particular character or range of characters,
and thereby defines a key field. In the Prolman record example above, the last name field is
characters 1 through 12, and the first name field is characters 14 through 25. The corresponding
location phrases are 1/12 and 14/25. The KEY declarations which make the last name field the
primary key and the first name field the secondary key are

KEY 1/12.
KEY 14/25.

Format One

COLLATED BY Phrase

The COLLATED BY phrase supplies the utility with a table of collating values defined in a TABLE
declaration. When Sort/Merge compares key fields defined in the KEY declaration, it uses the
collating values defined in tablename. The utility does not permamently translate character values to
those defined in the TABLE declaration. Instead, it temporarily translates character values while
comparing key fields. When the utility finishes comparing the key fields, the character values return
to whatever they were originally.

The tablename can be one of the predefined tables:

• ASCII_ TO_EBCDIC
• EBCDIC_ TO __ ASCII
• LOWER_ TO __ UPPER

For example:

KEY 1 ILAST COLLATED BY LOWER_TO_UPPER.

This KEY declaration causes the utility to compare lowercase and mixed uppercase and lowercase
text as if they were all uppercase. For instance, CAT, Cat, and cat would all compare equally.

Location Phrase

I n addition to the integer 1 integer and integer 1 LAST forms of the location phrase, the KEY
declaration also uses an integer1 :integer2 form. Argument integer1 is the starting byte (or
character) of the key field. Argument integer2 is the field length (not the ending byte or character).
There is no advantage to using this form over the other two, in format one. However, there is an
advantage to using this form in format two.

Here are some examples of correspondences between the integer 1 integer and integer 1 :integer2
forms:

integer 1 integer

20/30

22/25

20/20

integer 1: integer2

20:11

22:4

20:1

There is no correspondence between the integer 1 LAST and integer1 :integer2 forms.

4-12 Licensed Material-Property of Data General Corporation 093-000155

Format Two

TYPE IS Clause

The default key type is character. The TYPE IS clause lets you choose another key type. You can
choose between unsigned and signed numeric characters for the key type. The format word
DECI MAL by itself indicates an unsigned numeric character field. For example:

KEY 1/25 TYPE 18 DECIMAL.

To indicate a signed numeric character field, use DECI MAL with one of the following:

• LOP (Lead Overpunch)
• TOP (Trailing Overpunch)
• LSS (Lead Separate Sign)
• TSS (Trailing Separate Sign)

For example:

KEY 1/25 TYPE 18 DECIMAL, T88.

Your other choices for key types are

• PACKED (Packed Decimal Format)

• BINARY
• FLOAT (Internal Floating Point)
• EXTER N A L FLOAT (External Floating Point)

You must use either the integer / integer or the integer 1 :integer2 form of the location phrase with the
TY PE IS phrase.

For more information on the various representations of numbers, see Chapter five of the COBOL
Reference Manual (AOS)

Location Phrase

The integer1 :integer2 form of the location phrase works exactly as it does in format one: integer1 is
the starting byte; integer2 is the field length. However, in format two, integer2 does not represent a
constant unit of length across all data types. For example, the BINAR Y data type's unit of length is 1
byte. But the PACKED data type's unit of length is 1 digit.

The data types and their corresponding units of length are

Data Type Unit Unit Length

BINARY byte I byte

FLOAT byte I byte

EXTERNAL FLOAT character I byte

DECIMAL digits I digit = I byte

093-000155 Licensed Material-Property of Data General Corporation 4-13

Data Type Unit

DECIMAL, LOP digits

DECIMAL, TOP digits

DECIMAL, LSS digits

DECIMAL, TSS digits

PACKED digits

Unit Length

1 digit = 1 byte

1 digit = 1 byte

1 byte for sign + 1 byte per digit

1 byte for sign + 1 byte per digit

1/2 byte for sign + 1/2 byte per digit + if
needed, extra 1/2 byte to pad to full byte
boundary

The advantage of using the integer1 :integer2 form is that you can specify a PACKED data type for a
packed field with an even number of digits.

Table 4-2 shows some examples of the correspondence between the integer / integer and the
integer1 :integer2 forms of the location phrase for each data type other than CHARACTER.

Table 4-2.Correspondences between Location Phrases

BINARY 1110 1 :10
FLOAT
EXTERNAL FLOAT 15/20 15:6

DECIMAL 23/30 23:8
(LOP, TOP)

DECIMAL 1/10 1:9
(TSS, LSS)

15/20 15:5

23/30 23:7

PACKED 519 5:9

Not possible 6:4

10/11 10:3

Not possible 1:0

4-14 Licensed Material-Property of Data General Corporation 093-000155

Changing the Collating Sequence
There are three ways to change a collating sequence:

I. change collating values

2. explicitly tell the utility to order records in an ascending or descending sequence

3. do I. and 2.

Use the COllA TED BY phrase to change collating values. To order records In a descending
sequence, use DESCENDING in the KEY declaration. For example:

KEY 50/ LAST COLLATED BY TABLE_ 1 DESCENDING.

The utility orders records in ascending sequence by default. You can explicity tell the utility to do this
by using ASCENDING in the KEY declaration. For example:

KEY 50/ LAST COLLATED BY TABLE_ 1 ASCENDING.

WORK FILE Declaration
Sort/Merge uses work files for intermediate scratch storage. If you do not declare a work file, the
utility builds two default work files in your current working directory and deletes them when
processing is done. The WOR K FI lE declaration lets you define a work file that either the utility
crea tes or you crea teo

Why would you want to define your own work files'? AOS by default creates work files with a small
clement size. However, AOS works most efficiently with files of a large element size. Thus, it's to your
advantage to create work files with a large element size. To control the element size, create the work
file(s) with the ClI CREATE command before you invoke Sort/ Merge. The Command Line
Interpreter User's Manual describes the CREATE command; Appendix E further discusses the
advantages of creating your own work files.

The format of a WOR K FI lE declaration is

WORK FILE IS "filename".

The filename argument must be an AOS pathname. For example:

WORK FILE IS ":UDD:MONSTER:WINGED:RODAN".

or equivalently,

WORK FILE IS "RODAN".

(The pathname need not be complete.)

If you declare a work file and that work file does not exist, then Sort/Merge creates it. If you declare
more than one work file, the utility will try to use them alternately in a "round-robin" fashion. The
utility will not delete any work files named in WORK FI lE declarations.

End of Chapter

093-000155 Licensed Material-Property of Data General Corporation 4-15

Chapter 5

Imperatives

An imperative tells the utility how to order input records for the output file. Each command file must
contain exactly one imperative.

This chapter explains how each imperative orders input records and some of the reasons for using one
over another.

SORT and TAG SORT Imperatives
Both the SORT and TAG SORT imperatives direct the utility to collate input records based on one or
more key fields. Remember, if you don't define a key field, the utility uses the entire record as the
default key. Also, Sort/Merge collates the records in ascending order, unless you state otherwise in a
KEY declaration.

These two imperatives differ in how they use the input records in the sorting process. SORT directs
the utility to carry the entire input record through all its process phases. TAG SORT directs the
utility to carry a 6-character binary tag and the key fields, instead of the entire record, through all its
process phases (except output). Sort/Merge then outputs the entire record as it does for a SORT.

There are two more points to note about TAG SORT. First, the input file for a TAG SORT cannot be
a tape or IN FOS II file. Second, input file massage statements generally have no impact on the
output file if TAG SORT is the imperative. (Chapter 6 describes massage statements.) However,
there are two cases when you'll see changes made to input file records by input file massage
statements:

• you massage a key field on which the utility bases the TAG SORT. In that case, the massage
affects the order of output records, but not their contents.

• you use the I F massage statement to send the massaged records to a skip file (separate file). In this
case, the records sent to the skip file show the effects of massaging, while those sent to the main
output file do not.

How do you decide whether to use SORT or TAG SORT? For most sort applications, you'll want to
use SORT instead of TAG SORT. You might consider TAG SORT if one or both of the following
conditions are true:

• the length of each record exceeds 512 characters

• available disk space is less than two times the size of the input file (space needed for the work files)
plus the output file. (Of course you don't need any disk space for a tape output file.)

We restate this condition as a formula:

Available Disk Space < 2 (Input File Size) + Output File Size

This formula is only a rough rule of thumb.

093-000155 Licensed Material-Properly of Data General Corporation 5-1

STABLE SORT and STABLE TAG SORT Imperatives
The STABLE SORT and STABLE TAG SORT imperatives work like SORT and TAG SORT with
one exception. When the utility encounters one or more sort keys exactly equal in value, it writes the
records containing the duplicate keys to the output file in the same order in which it encountered the
duplicate keys. Contrast this with how the SORT and TAG SORT work: when the utility encounters
duplicate keys, it mayor may not write the records containing the duplicate keys in the same order in
which it encounters them.

The same two points which apply to TAG SORT (described in the previous section) also apply to
STABLE TAG SORT. First, the input file for a TAG SORT cannot be a tape or INFOS II file.
Second, input file massage statements have no impact on the output file unless

• you massage a key field

• you use the I F massage statement to send massaged records to a skip file

STABLE SORT and STABLE TAG SORT usually are slower than SORT and TAG SORT.

MERGE Imperative
The M ERG E imperative combines a minimum of two input files into a single output file. The utility
bases the merge process on the key field(s) that you define in your command file. You must already
have sorted the input files by the same key field(s) before you merge them. See "New Student
Merge" in Chapter 2 for an example.

DELETING DUPLICATES Imperatives
The DELETING DUPLICATES imperative directs the utility first to look at all the records' keys.
Then the utility discards all but one of a set of records with identical keys.

The format for the DELETING DUPLICATES imperative is

(SORT)
) TAG SORT (

STABLE SORT [DELETING DUPLICATES J •
) STABLE TAG SORT (
~ MERGE J

Let's take an example. Suppose two census takers visit the same family. As a result, part of the
unsorted master file at the census bureau might look like this:

BOURKE ROBERT 45 NEUROSURGEON 33 MAIN
BOURKE MARLENE 37 STATIONER 33 MAIN
BOURKE JARON 13 STUDENT 33 MAIN
BOURKE ANDREW 11 STUDENT 33 MAIN
BOURKE JARON 13 STUDENT 33 MAIN
BOURKE ANDREW 11 STUDENT 33 MAIN
BOURKE MARLENE 37 HOUSEWIFE 33 MAIN
BOURKE ROBERT 45 DOCTOR 33 MAIN

5-2 Licensed Material-Property of Data General Corporation 093-000155

Duplicate records need not be identical character for character. As long as the key fields of two
records are identical, the two records are identical from Sort/Merge's point of view. The utility groups
families together in the sorted master file if the last name field is the primary key, the address field is
the secondary key, and the first name field is the tertiary key. (This assumes that a family lives
together at the same address.) Because the two sets of Bourke records differ only in the profession
field (and not the key fields), there are four duplicate Bourke records.

Fortunately, the bureau knows that sometimes census takers duplicate their routes. And they know
that a different person might be home each time a different census taker comes to the same address.
Therefore, they want to delete all possible duplicate records from the master file.

To delete all the duplicate records, use one of the DELETING DUPLICATES imperatives for sorts.

If the utility uses SORT DELETING DUPLICATES or TAG SORT DELETING DUPLICATES,
then the Bourke names might appear in the output file as follows:

BOURKE
BOURKE
BOURKE
BOURKE

ANDREW
JARON
MARLENE
ROBERT

11
13
37
45

STUDENT
STUDENT
HOUSEWIFE
DOCTOR

33 MAIN
33 MAIN
33 MAIN
33 MAIN

We say "might appear" because the utility does not discard duplicate records in a consistent way
when you use these imperatives. The utility might have chosen the records that identify Marlene as a
a stationer and Robert as a neurosurgeon.

STABLE SORT DELETING DUPLICATES and STABLE TAG SORT DELETING
DUPLICATES give the utility a consistent way to discard duplicate records. The utility retains the
first duplicate record it encounters. In this case, the Bourke family will appear in the output file as
follows:

BOURKE
BOURKE
BOURKE
BOURKE

093-000155

ANDREW
JARON
MARLENE
ROBERT

11
13
37
45

STUDENT
STUDENT
STATIONER
NEUROSURGEON

Licensed Material-Property of Data General Corporation

33 MAIN
33 MAIN
33 MAIN
33 MAIN

5-3

COpy Imperative
The COpy imperative writes the records in one or more input files to a single output file, and it does
this in the order in which Sort/Merge encounters them. If you're copying AOS input files into an
AOS output file, you need not specify a KEY declaration, since the utility neither sorts nor merges the
records. When used this way, the COpy imperative conveniently lets you massage records without
sorting or merging them.

You can also copy AOS files into an INFOS II file, INFOS II files into an INFOS II file, and an
IN FOS II file into an AOS file. Chapter 8 describes in detail how to do this. Table 5-1 briefly tells
you what declarations you'll need for each copy process.

5-4

Table 5-1. Declarations for Copy Processes

AOS into AOS AOS INPUT FILE
AOS OUTPUT fI LE

AOS into INFOS II exactly one KEY
AOS INPUT FILE
OUTPUT INFOS INDEX

INFOS II into INFOS II exactly one KEY
INPUT INFOS INDEX
OUTPUT IN FOS IN DEX or OUTPUT IN FOS INVERSION

INFOS II into AOS INPUT INFOS INDEX
AOS OUTPUT FI LE

End of Chapter

Licensed Material-Property of Data General Corporation 093-000155

Chapter 6

. Massage Statements

Massage statements edit records in two ways. They either manipulate a record's characters or exclude
certain records from a Sort/ Merge process. We call the massage statements' actions massaging. All
massage statements (except INSERT TAG) can edit both input and output records. Massage
statements for input records go before the imperative, and those for output records go after the
imperative. I nput massage statements do not affect records in the input file; throughout a Sort/ Merge
process the input file remains the same. Instead, the utility massages copies of the input file records.

When you massage input records, be certain that keys defined in KEY declarations are in the correct
locations after the massage. In other words, be sure you know what the input records will look like
after the input massaging, and check to see if key fields defined in KEY declarations are still correct.

Sort/ Merge executes massage statements and the imperative in the order in which they appear in the
command file. Also, the utility executes all the input file massage statements for one input file record
before it executes them all for the next. It does not execute one input file massage statement for all the
records in the input file and then execute the next input file massage statement for all the input file
records, and so on. Sort/Merge follows the same procedure for output file massage statements.

REFORMAT Massage Statement
The REFORMAT statement moves, repeats, or deletes specific fields within a record. The
REFOR MAT statement's format is

REFORMAT {
integer/integer} I { integer/integer}
integer/LAST integer/LAST [, .. .J •

The location phrase identifies the field you want to massage. LAST represents a record's last
character; thus, you must use the integer / LAST form for a file of records whose last-character
positions vary because the records' lengths vary.

The examples illustrating the REFORMAT statement massage this record:

5 9 20 24 31 35 55 60
I I I I I I I I

1 A357oooCLOVEROHONEYoooFOODMARToo037 4[JSOUTHoSTnNEEDHAMOO[JcJO

093-000155 Licensed Material-Property of Data General Corporation 6-1

To move a field, simply rearrange its position in the REFORMAT statement. For example, to move
the field 1 A357 to the end of the record, you specify

REFORMAT 6 I LAST, 1 IS.

or

REFORMAT 6 I 60, 1 IS.

To move the field CLOVER HON EY to the end of the record, you could specify

REFORMAT 1/8,21 ILAST, 9/20.

To delete a field, exclude it from the REFORMAT statement. For example, to delete the field 1 A357,
you could specify

REFORMAT 6 I LAST.

To delete the field CLOVER HONEY, you could specify

REFORMAT 1/8,21 ILAST.

To repeat a field, list it more than once in the REFORMAT statment. For example, to repeat the
field 1 A357, you could specify

REFORMAT 1 IS, 1 IS, 6/LAST.

Note that you normally would not want to move a field after the delimiter (AOS default or
user-defined) of a data-sensitive record. For example, if the last character of the record were NEW
LINE, you wouldn't move field IA357 after NEW LINE. To move a field after a delimiter, you
should

I. replace the delimiter with a nondelimiter character by using a REPLACE statement (described in
this chapter)

2. reformat the record as you had intended by using a REFORMAT statement

I f you wish, you can reinsert any delimiter by using the INSERT statement (described In this
chapter).

TRANSLATE Massage Statement
The TRA NSLATE statement converts records from one character set to another, or from lowercase
ASCII characters to their uppercase equivalents. The character set may be ASCII, EBCDIC, or any
other collating sequence you define in a TABLE declaration.

The format of the TRANSLATE statement is

TRANSLATE

6-2

{
~nteger/integer} USING
Integer/LAST

(ASCILTO_EBCDIC)
) EBCDIC_TO~SCII (
) LOWER_ TO_UPPER (
~ tablename ,

licensed Material-Property of Data General Corporation 093-000155

The location phrasc dctermines which characters of each record that the utility translates. The
integer / LAST location phrase is particularly useful when you're translating variable-length records.

The utility supplies three predefined translation tables:

• ASCII_ TO_EBCDIC, which translates each ASCII character to its corresponding EBCDIC
character

• EBCDIC_ TO_ASCII, which translates each EBCDIC character to its corresponding ASCII
character

• LOWER_ TO_U PPER, which translates each lowercase ASCII letter to its corresponding
uppercase letter

The argument tablename lets you supply your own translation table, which you previously must have
defined in a TABLE declaration. All the table names must consist only of uppercase letters, digits,
and/or the underline.

The TRA NSLATE statement uses the same predefined tables as the COLLATED BY phrase of the
KEY declaration. However, Sort/Merge uses the tables differently for each statement. For the KEY
declaration, the utility temporarily translates character values while comparing key fields. This
translation does not physically change characters; the output file records are the same as the input file
records. For the TRANSLATE statement, the utility permanently translates characters; thus, the
output file records will not be the same as the input file records.

Let's use the LOWER_ TO_UPPER table in an example. Suppose a zoo has an input file of the lions'
behavior records, which in part contains

Clarence
Elsa
Limpy
de LEO

Very sedate. Clumsily pursues moving objects due to eye problem.
Spends most of time sleeping due to illness.
Normal behavior.
Tempermental. Attacked, killed, and ate head feeder.

The zoo's animal psychologist decides to translate all the lions' names to uppercase. Because the name
field is character positions I through 8, the translate statement she'll need is

TRANSLATE 1/8 USING LOWER __ TO_UPPER.

After the command file which includes this TRANSLATE statement executes, the output file
contains

CLARENCE Very sedate. Clumsily pursues moving objects due to eye problem.
DE LEO Tempermental. Attacked, killed, and ate head feeder.
ELSA Spends most of time sleeping due to illness.
LI MPY Normal behavior.

If the zoo's psychologist had used the LOWER_ TO_UPPER table in a KEY declaration, then the
lions' names would not appear in all uppercase letters. Remember that in a KEY declaration,
LOWER_ TO_UPPER (a predefined table) makes the utility temporarily translate collating values
while it compares key fields.

Note that if you sort the pretranslated file in ascending order, de Leo will be the last record because d
has a higher collating value than L . However, if you sort the translated file in ascending order, DE
LEO will be the second record because D has a higher collating value than C but a lower collating
value than E .

In most cases, you will want to perform your translation for input file records. For example, if you sort
a file of EBCDIC records and intend to output them in ASCII, you'll probably want to place the
TRANSLATE statement before the SORT imperative. The utility will sort the records based on
ASCII collating values. If you place the TRANSLATE statement after the SORT imperative, the
utility first sorts the records based on EBCDIC collating values, then translates them. As a result, the
output will be ASCII, but it may not be in the proper ASCII sequence.

093-000155 Licensed Material-Property of Data General Corporation 6-3

If you arc not carefuL ASCII to EBCDIC or EBCDIC to ASCII translations can lead to other sorting
problems. For example, the ASCII NEW LINE character's octal value is 12. When you translate
NE\V LINE into EBCDIC, its octal value changes to 25. AOS does not recognize 25 octal as a default
delimiter.

REPLACE Massage Statement
The REPLACE statement replaces one or more ASCII characters in a record with one or more
ASC II characters. For instance, this statement can replace

• one character with another
• two or more characters with a single character
• one character with two or more characters

Its format is

[{ ALL}] ". ,,{. integer/integer}
REPLACE ANY Ilteral_1 IN integer/LAST WITH "literal_2" •

We base most of the examples which illustrate this statement on the following record:

5
I

10

I
15

I
20

I
25
I

30
I

35
I

40

I
45

I
50 55

I I
60
I

1 A9c] 280 198600DDEPAFUENTERPRISESD INCJ]u[JDMAINoST.UU.S.A.lJO[JlJDLJ

If you omit ANY and ALL, then Sort/Merge

• scans each record's characters specified in the location phrase from left to right
• replaces the first occurrence literal_1 with literal_2
• stops scanning

For example, suppose that you want to replace the blank spaces in the field 1 A 90280 19B6 with /
(slash). You could use these two REPLACE statements:

REPLACE" <040>" IN 1 / 11 WITH" /".
REPLACE "<040>" IN 1 / 11 WITH" /".

The first R EPLAC E sta tement replaces the first space in the record with a / and the second replaces
the second space with a /.

After the massage, the record is

1 A9/28/ 19B60 0 ODEPAFCIENTERPRISESOINC.Cl 0 OMAINOST.DU.S.A.D 0 0 0 0 0

I n the preceding example, you replaced a single character with another single character. In the next
example, you replace a single character with more than one character. I I' you want to replace each
blank space in the field IA9D280 19B6 with ***, then you could specify

REPLACE "<040>" IN 1/11 WITH " ••• ".
REPLACE "<040>" IN 1 / 11 WITH " ••• ".

After the massage, the record is

1 A9***28*** 19B60 0 ODEPAFDENTERPRISESDINC.D 0 [J MAINDST.DU.S.A.D 0 0 0 0 0

6-4 Licensed Material-Property of Data General Corporation 093-000155

The examples shown so far replace one character with one other character or replace one character
with many characters. The next example replaces a number of characters with a fewer number of
characters. To replace the field IA9028019B6 with lA9281986, which in effect removes the
blanks, you could specify

REPLACE "1A0280 1986" IN 1 / 11 WITH "1A9281986".

After the massage, the record is

lA92819B60 0 ODEPAFOENTERPRISESOINC.O 0 OMAINOST.OU.S.A.O 0 0 0 0 0

A REPLACE statement that includes the ANY phrase can do the work of many REPLACE
statements that do not include the ANY phrase. The REPLACE ANY phrase tells the utility to scan
the entire field specified in the location phrase once, from left to right, and to replace each occurrence
of literal_ 1 with literal_2 . For example:

REPLACE ANY" <040>" IN 1 I 11 WITH" I".

accomplishes in one statement the task performed by these two statements:

REPLACE "<040>" IN 1 I 11 WITH" I".
REPLACE "<040>" IN 1 I 11 WITH" I".

Likewise,

REPLACE ANY "<040>" IN 1 I 11 WITH " ••• ".

accomplishes in one statement the task performed by

REPLACE "<040>" IN 1 I 11 WITH " ••• ".
REPLACE "<040>" IN 1 I 11 WITH " ••• ".

The ALL phrase works differently than the ANY phrase. The ALL phrase tells the utility to scan the
field defined in the location phrase from left to right, and replace literal_ 1 with literal_2. The utility
then rescans the field from the beginning, replacing literal_ 1 with Iiteral_2. The utility continues to
rescan the field until there are no more occurrences of literal_ 1.

Let's look at two examples. Suppose that you have this record:

ABBCABBC

and this REPLACE statement:

REPLACE ALL "A8" IN 1 ILAST WITH "A".

When you execute this statement, the utility scans the entire record from left to right, replacing any
occurrence of the literal AB with the literal A. The first scan produces

ABCABC

The utility then rescans the entire record, again replacing any occurrence of the literal AB with the
literal A. The second scan produces

ACAC

After the second scan, there are no more occurrences of the literal AB. The utility rescans the record a
third time and of course finds no occurrence of the literal AB. So the scanning stops.

093-000155 Licensed Material-Property of Data General Corporation 6-5

The next example's REPLACE statement reduces every occurrence of two or more consecutive blank
spaces in the ENTERPRISES INC. record to just one blank space. The statement is

REPLACE ALL" <040> <040>" IN 1 / LAST WITH" <040>".

After the massage, the record is

IA90280 19B60DEPAFOENTERPRISESOINC.OMAINOST.OU.S.A.O

In contrast, if you choose ANY instead of ALL in the above statement

REPLACE ANY" <040> <040>" IN 1 / LAST WITH" <040>".

the resulting massaged record is

IA90280 19B60 ODEPAFOENTERPRISESOINC.O OMAIN ST.OU.S.A.O 0 0

You can use the REPLACE statement to remove a literal without replacing it with another literal.
Because literal_2 can be "", the null literal, you can replace literaL_1 with null. This in effect
removes literal_1. For example, to remove the field INC.O 0 0 from the ENTERPRISES record,
you could specify

REPLACE "INC.O 0 0" IN 33/39 WITH "".

After the massage, the record is

IA90280 19B60 0 ODEPAFOENTERPRISESO OMAINOST.OU.S.A.O 0 0 0 0 0

REPLACE T ADS Massage Statement
The REPLACE TABS statement replaces tab stops in a record with one or more ASCII characters.
This statement is especially useful when you want to enter records with many columns from your
terminal. Instead of spacing over to each column when you enter records, you use tab stops, and then
later replace the tab stops with characters.

It's easy to forget that TAB is only one character. You might therefore have incorrect location phrases
in your KEY declarations. For example, you could type the following record with column starting
positions of I, 17, 33, and 49:

9A542 desk 2 drawer brown

If you use tab stops to separate the columns, then the 9A542 field begins in character position 1, the
desk field begins in character position 7 (not 17), the 2 drawer field begins in character position 12
(not 33), and the brown field begins in character position 21 (not 49). If you use the KEY declaration

KEY 49/55.

to sort the above record (and others like it) by color, you'll be wrong. Not only does the color field
begin in another character position (21), but also there is no field starting at character position 49.

To remedy the problem, simply use REPLACE TABS to substitute characters for the TABs. The
space character is often appropriate. The utility automatically inserts the correct number of
characters to align the columns in the desired character positions.

6-6 Licensed Material-Property of Data General Corporation 093-000155

The format of the REPLACE TABS statement is

REPLACE TABS IN {integer/integer} {"literal" } ..
integer/LAST WITH integer [, TAB STOPS ARE Integer!. Ifltegerj ... j •

REPLACE TABS IN Phrase

The REPLACE TABS IN phrase replaces tab stops occurring in the range specified by the location
phrase with one or more ASCII characters. These replacement characters are either integer, the
decimal equivalent of an ASCII character, or literal. Both literal and its decimal equivalent must be
only one character. The integer must be in the range of 0 through 255, inclusive.

TAB STOPS ARE Clause

The TAB STOPS ARE clause lets you define your own tab stops. You cannot define more than
twenty; the utility ignores TABs occuring beyond the last defined tab stop. If you don't use this clause,
Sort/Merge uses default tab stops at columns 9, 17,25,33, ... , and 129.

Examples
All the examples massage this record:

THE < 011 > COW JUMPED < 011 > OVER THE < 011 > MOON.

< 011 > is the octal equivalent of the TAB character.

If you want to replace all TABs with dashes (-), then you could use the following statement:

REPLACE TABS IN 1 ILAST WITH "_".

After the massage, the record is

9 25 41

I I I I
THE-----COW JUMPED------ OVER THE--------MOON.

The utility automatically aligned the fields on the default tab stops: 9, 25, and 41.

Suppose again that you want to replace all the TABs with a character. But this time you want to fill
the tab stops with asterisks and define your own tab stops. You could specify:

REPLACE TABS IN 1 I LAST WITH 42, TAB STOPS ARE 12, 24.

(The asterisk's ASCII decimal equivalent is 42.)

After the massage, the record is

12

I
24

I
THE********COW JUMPED**OVER THE<011 >MOON.

Note that the massage did not replace the last TAB. That's because the TAB between "TH E" and
"MOON" is in a character position beyond the tab stops you defined.

093-000155 Licensed Material-Property of Data General Corporation 6-7

Let's say that you want to replace alI TABs located only in character positions 10 through 25 with
ampersands (&). You also want to defi:1e tab stops at character positions 15 and 20. You could use
the following statement:

REPLACE TABS IN 10/25 WITH "&", TAB STOPS ARE 15,20.

After the massage, the record is

20

I
THE<011 >COW JUMPED&&&&&OVER THE<011 >MOON.

Note that "OVER" starts on character position 20, a defined tab stop, and not 25, a default tab stop.

P AD Massage Statement
The PAD statement converts a variable-length or data-sensitive record to a record of fixed length by
padding it with any character you select. Don't confuse a record of fixed length with a fixed-length
record. Variable-length records retain their type's characteristics but become alI the same length;
data-sensitive records retain their type's characteristics but become all the same length.

PAD's format is

PAD TO integer CHARACTERS WITH {:'Iiteral" t
Integer f

The length that you specify as integer in integer CHARACTERS must be at least as long as the
longest record in the input file. The padding character is either literal, an ASCII character or its octal
equivalent, or integer, the decimal character code of an ASCII character. The literal can be only one
character, and the integer must be in the range of 0 and 255, inclusive. For example, suppose that you
have the following data-sensitive records which you want to pad with asterisks to character position
75:

SHARK LOAN CO.
QUICK CASH CO.
CASH-IN-A-PINCH

$400.00
$750.00
$250.00

25 0ft)
30%
35%

JAY'S FRUIT STAND
TOWN BOWLING
LIQUER AND WINES IMPORT

There arc three ways to construct the PAD statement. Each way depends on which argument you
choose in

WITH {
:'Iiteral"}
Integer

If you let literal equal *, then the PAD statement is

PAD TO 75 CHARACTERS WITH ".".

If you let literal equal < 052 > , the octal value of the asterisk, then the PAD statement is

PAD TO 75 CHARACTERS WITH "<052>".

If you let integer equal 42, the character code of the asterisk character, then the PAD statement is

PAD TO 75 CHARACTERS WITH 42.

6-8 Licensed Material-Property of Data General Corporation 093-000155

The utility begins padding after the last character in the record. Because the last character of a
data-sensitive record is the delimiter, the utility will pad the first record after the delimiter. But then
the record will no longer be data-sensitive since the delimiter will not be the iast character of the
record. Thus, to pad data-sensitive records and keep them data-sensitive, do the following for each
record:

1. replace the delimiter using the REPLACE statement
2. pad the record using the PAD statement
3. insert a "new" delimiter after the last character using the INSERT statement

For our example, we could use these massage statements to pad the data-sensitive records:

REPLACE" <0 12>" IN 1 / LAST WITH"".
PAD TO 75 CHARS WITH ".".
INSERT "<012>" AFTER LAST.

After you execute a command file which contains these statements, the output file contains

SHARK LOAN CO.
QUICK CASH CO.
CASH-IN-A-PINCH

$400.00
$750.00
$250.00

25(Yo
30(Yrl
35%

JAY'S FRUIT STAND ************
TOWN BOWLING ***************
LIQUOR AND WINES IMPORT ***

Note that padding variable-length records to a fixed length does not alter the record format
characteristic of the output file. The utility automatically creates the output file with the correct AOS
record characteristic, unless you use the appropriate RECORDS ARE clause. In this example, the
utility creates the output file with variable-length records.

COMPRESS Massage Statement
The CO M PR ESS statement removes characters whose collating value is zero. You assign characters
the collating value zero in a TABLE declaration (described in Chapter 4).

The format of the COMPRESS statement is

COMPRESS
{

integer/integer l
integer/LAST ~

LEFT [f:~:i~;,e;I"} FILLED I
RIGHT !{',I!texer .. } FILLED I /"era/
VARIABLE

USING tablename •

The location phrase indicates the field (range of characters) you want to compress. You can compress
the entire record by specifying 1/ LAST.

The tablename is the name of the table defined in a TABLE declaration. For example, to assign
apostrophe C) the collating value zero, you could specify

TABLE IRISH FROM ASCII IS " , " = o.

093-000155 Licensed Material-Property of Data General Corporation 6-9

The LEFT and RIG HT options justify compressed fields to the left or right, respectively, and fill
excess character positions with nulls (0 octal). For example, say that you want to compress all names
with an apostrophe, such as O'Leary, and left justify the name field. Removing the' is desirable
because otherwise, all the names starting with 0' would appear together instead of in a reasonable
alphabetical order. (For example: O'Brien, O'Leary, Ofner instead of O'Brien, Ofner, O'Leary.) You
first need to assign' the collating value zero so that a COMPRESS statement can eliminate • from the
name field. Table I RISH does this. Assume that part of one record is

11
I

21
I

O'LEARY < 040> < 040> < 040> < 040 >

COMPRESS 11 /21 LEFT USING IRISH.

then the record becomes

11

I
21

I
OLEARY <040> <040> <040> <040> <000>

If you want to right justify the name field, specify

COMPRESS 11 /21 RIGHT USING IRISH.

Then the record becomes

11 21

I I
<000>OLEARY<040> <040> <040> <040>

In sum, LEFT pads compressed fields with nulls at the end of the field to left justify. RIGHT pads
compressed fields with nulls at the beginning of the field to right justify.

NOTE: Null insertion in data-sensitive records is dangerous because null IS one of the AOS
default delimiters for data-sensitive records.

I f you want to avoid the problem of null insertion in a data-sensitive record, or if you simply want a
pad character other than null, then use the form

[[{ integer }] FILLED]
"literal"

Select literal, a single character, or integer, its decimal equivalent, as the pad character.

In our O'LEARY record example, if you specify

COMPRESS 11 /21 LEFT"·" FILLED USING IRISH.

6-10 Licensed Material-Property of Data General Corporation 093-000155

then the resulting record is

11 21

I I
OLEARY <040 > <040> <040> <040> *

If you don't want the field padded after the compression, use VARIABLE. This option left justifies
and truncates (rather than pads) the field. Thus, the record's next noncompressed field begins in the
character position immediately following the last character of the compressed field. For example, if
you specify:

COMPRESS 11/21 VARIABLE USING IRISH.

then the O'LEAR Y field becomes

11 20

I I
OLEARY <040> <040> <040> <040>

INSERT Massage Statement
The INSERT statement adds information anywhere in a record. Its format is

INSERT

("literal")

I
RECORDCOUNT (

TAG)

Literal Phrase

BEFORE integer

IN {
integer/integer}
integer /LAST

AFTER LAST

The literal phrase inserts the characters you choose as literal at the location you indicate. Use the IN,
BEFORE integer, or AFTER LAST phrase to indicate where you want to insert the characters. If you
use the IN phrase, then the utility

• deletes the characters in the range specified in the location phrase

• inserts literal in the range formerly occupied by the deleted characters

• expands or contracts the record, if necessary, to fit literal

093-000155 Licensed Material-Property of Data General Corporation 6-11

For example, say you have this simple record:

123456

The INSERT statement

INSERT" *" IN 3/3.

produces the record

12*456

The INSERT statement

INSERT "*,, IN 2/5.

produces the record

1 * 6

The INSERT statement

INSERT ,,* * *" IN 3/3.

produces the record

12***456

I f you use the BEFORE integer or A FTER LAST phrase, then the utility inserts the literal before
character position integer or after the last character, respectively. No characters are deleted. For
example, if we use the last example's input record, then the INSERT statement

INSERT" *" BEFORE 1.

produces the record

*123456

The INSERT statement

INSERT" *" AFTER LAST.

produces the record

123456*

RECORDCOUNT Phrase
If you specify RECORDCOUNT, the utility generates an 8-byte ASCII decimal number that
represents each input file record's ordinal position. The utility numbers the records sequentially,
beginning with one for the first record in the first input file. It gives the first record in the second
input file a record number one greater than the last record in the first input file. Sort/Merge attaches
these numbers to the output file records.

As with the literal phrase, you can insert the RECORDCOUNT numbers anywhere in the record.

6-12 Licensed Material-Property of Data General Corporation 093-000155

TAG Phrase
The TAG option tells the utility to attach a 6-character binary tag to each record. The tag's first two
characters are the number of the file which contains the record; the last four characters are the
record's logical disk address. The TAG SORT imperative inserts these tags for you automatically.
Therefore, do not use INSERT TAG to prepare a record for tag sorting. If you use INSERT TAG,
then be sure that the input files are on disk and are not data-sensitive. Unlike all the other massage
statements, you may use INSERT TAG only as an input file massage statement.

IF Massage Statement
Recall that massage statements either manipulate a record's characters or exclude certain records
from a Sort/ Merge process. The I F statement establishes conditions which can cause the utility to
perform either of these functions. If the condition is true, then the utility performs a specific massage
sta tement, excludes certain records, or stops processing.

The I F statement's format is

STOP
SKIP {','filename',!

IF condition [(~~D} condlfion J ... THEN

REFORMAT massage statement
REPLACE massage statement
REPLACE TABS massage statement
INSERT massage statement
PAD massage statement
TRANSLATE massage statement
COMPRESS massage statement

The format of the condilion phrase is:

{

"literal" }
integer/integer
integer/LAST

RECORDCOUNT

093-000155

<
>
<=
=<
>=
=>
<>

:<>:

<
>
<=
=<
=>
>=
<>

{

"literal" ,
integer/integer {
integer/LAST ,

integer

Licensed Material-Property of Data General Corporation 6-13

IF Phrase

The I F phrase, which establishes a condition, is like the I F phrase of many programming languages. If
the condition is true, then the utility executes the THEN phrase; if the condition if false, then the
utility does not execute the THEN phrase. The I F phrase uses the following operators:

Operator

<
>
= < or < =

= > or >
<>

:<>:

Means

is equal to
is less than
is greater than
is less than or equal to
is greater than or equal to
is not equal to
appears In

does not appear in

The literal on either side of an operator can be a number.

In general, specify the same length literal or range (defined by the location phrase) on each side of the
operator. If the lengths differ, Sortl Merge pads the shorter literal or range to the length of the longer
one, using the blank character. The two operators: =: and: < > : allow you to perform floating
compares, operations which check for the presence or absence of a literal in a range. If you use either
of these operators, the utility doesn't pad the length of the shorter literal or range.

Let's look at a few examples. Suppose that you want to perform some process on all records of males
in REG ISTER_6, the register of sixth grade students we used in the examples of Chapter 2. One of
the records from that file is

Prolman Michael 12/09/70

45
I
M Crocker

The record's sex field is character position 45. Thus, you need an I F phrase which establishes the
following condition: if the 45th character is M, then execute the THEN phrase. The IF phrase which
accomplishes this is

IF 45/45 = "M"

What if you don't know exactly where in a record a character appears? How do you establish a
condition for a character which might or might not appear anywhere in a field? The two operators :=:
and: < > : allow you to establish a condition for floating characters to do floating comparisons. For
example, say that you want to process a record only if the letter A appears in any character position
from 10 through LAST. To establish this condition, you specify

IF "A" :=: 10/LAST

I f A appears in any character position from 10 to LAST, then the condition is true and the utility
executes the THEN phrase. If you want the utility to process a record only if A does not appear in any
character postion from 10 through LAST, use this I F phrase:

IF "A" :<>: 10/LAST

6-14 Licensed Material-Property of Data General Corporation 093-000155

Sometimes your condition won't depend on the contents of a record, but rather on just the number of
records the utility processes. For example, you might want to process only the first 500 records of a
file. The RECORDCOUNT phrase lets you do this. In this case, the phrase is

IF RECORDCOUNT > 500

Sometimes you might want to combine conditions. For example, you might want to process a record
only if the first character is A and the 10th character is +. You can use AN D or OR to logically
combine more than one condition phrase. As a general rule, AND takes precedence over OR. Also,
parentheses tell the utility to test for the truth of whatever appears inside the parentheses before
testing for the truth of whatever appears outside them. For example, in the condition

IF "A"=5/5 OR "8"=6/6 AND "C"=7 17

the utility tests the AND condition before the OR condition. Thus implicitly, this last condition is the
same as

IF "A"=5/5 OR ("8"=6/6 AND "C"=7 17)

If you want the OR condition to take precedence over the AND condition, you must place the
parentheses as follows:

IF ("A"=5/5 OR "8"=616) AND "C"=7 17

These two different conditions can lead to two different truth values. For example, if the seventh
character of a record does not equal C, then

• in the first case, though ("8"=6/6 AND "C"=7/7) must be false, the whole condition may still
be true

• in the second case, because "C" =, 7/7 is false, the whole condition must be false

THEN Phrase
If the condition that the I F phrase establishes is true, the utility executes the THEN phrase. Note
that you cannot use an I F phrase as a THEN phrase; that is, you cannot nest I F statements. The
THEN phrase has several options:

• STOP

• SKIP [filename]

• Massage Statements

The STOP option tells the utility to stop processing records. I f STOP precedes the imperative, then
the utility stops reading input records. If STOP follows the imperative, then the utility stops writing
output records.

For example, if your I F statement which appears before the imperative is

IF RECORDCOUNT > 500 THEN STOP.

then the utility looks at only the first 500 records in the input file.

I nstead of truncating the input file to a fixed number of records, you might want a particular record,
whose position is unknown in the file, to signal the end of the input file. For example, suppose you
want to copy all records that contain 1969 or 1970 birthdays. (Assume that the year subfield is
character positions 36 and 37, and that the records are already soned in ascending order by birthday.)
To do this, you need the following I F statement:

IF 36/37 > = "71" THEN STOP.

093-000155 Licensed Material-Property of Data General Corporation 6-15

The utility looks at the first record with a 71 year field, but does not include it in the output file. In
addition, the utility will not include any subsequent record in the output file.

The SKIP option tells the utility to ignore certain input file records either before it processes the
whole file, or before it writes processed records to the output file. The action it takes depends on
whether the I F statement comes before or after the imperative. For example, suppose you want to sort
a transaction file by department number (character positions 1 through 4). If you don't want to
include the transactions for department A I 0 I in the sort process, then you can specify:

IF 114 = "A101" THEN SKIP.
SORT.

Instead of simply ignoring certain records, you can send them to a separate file, called a skip file. In
the last example, if you wanted to sort all the input records and then send all records beginning with
A I 0 I to a skip file named REJECTS, you could specify:

SORT.
IF 1 14 = "A101" THEN SKIP "REJECTS".

Because the utility sorts all the input file records before it sends A I 0 I records to REJECTS, all the
records in REJECTS will be sorted. If you reverse the order of the imperative and the massage
statement, so that the I F statement precedes the SORT imperative, the utility will send the A I 0 I
records to REJ ECTS unsorted.

There are some rules to know about using a skip file:

• do not declare a skip file in input or output file declarations

• it is not a substitute for the output file; if you use a skip file, you must also declare an output file

• it must not exist prior to command file execution; the utility creates it

• its name must be an AOS pathname

• you can name the same skip file in more than one I F statement (even though the utility creates only
one skip file with that name), or you can name different skip files in different I F statements. (The
number of possible skip files depends on the number of available I/O channels)

• it must be a sequential, disk file. The skip file cannot be an IN FOS II file or be on a device (for
example, tape).

There is one more option which you may choose. Instead of STOP or SKIP, you can choose any
massage statement other than I F. For example, say that some records in a transaction file begin with
the department number and some do not. Perhaps this is because the departments' data procedures
were not coordinated at one time. In some records, for example, the department number might occur
at the end of the record. If you receive these differently formatted records at one central location, you
probably will want them all to have the same format before you process them.

The transaction file consists of 66 character data-sensitive records. Some of the records are

I 4
I I
AIOI
AlOI
DRAPES
DRAPES
CLOCK
CLOCK
AIOI
PAPER

6-·16

SHOES BLACK
SHOES BLACK
GREEN WINDOW
YELLOW WINDOW
BLUE ELECTRIC
TAN WIND
SHOES BLACK
CREAM 8.5 x 11

Licensed Material-ProperlY of Data General Corporation

IOEE
9D
12
5
14
18
9E
55

62 65
I I

4
7

AI02
AI02
AI03
AI03

6
AI04

093-000155

To move all department numbers appearing in the last four character positions (not including the
delimiter) to the first four character positions, you could specify:

IF 62/65 = "A102" OR 62/65 = "A103" OR 62/65 = "A104"
THEN REFORMAT 62/65, 1 /61, 66/66.

IF 1/4 = "A102" OR 1/4 = "A103" OR 1/4 = "A104"
THEN INSERT" "BEFORE 5.

The first I F statement checks to sec whether a department number appears in character positions 62
through 65. It doesn't check for the A 101 department number because A 101 always appears in the
first four character positions. If the condition is true, then Sort/Merge executes the REFORMAT
massage statement. The second I F statement inserts blanks to align all the columns under the A I 0 I
record columns.

After you execute the command file that contains these IF statements, all the records have the A 101
record format:

AIOI SHOES BLACK IOEE 4
AJOI SHOES BLACK 9E 6
AIOI SHOES BLACK 90 7
AI02 DRAPES GREEN WINDOW 12
AI02 DRAPES YELLOW WINDOW 5
AI03 CLOCK BLUE ELECTRIC 14
AI03 CLOCK TAN WIND IS
AI04 PAPER CREAM 8.5 x II 55

End of Chapter

093-000155 Licensed Material-Property of Data General Corporation 6-17

Chapter 7

Command Lines

The Sort/ Merge command line invokes the utility and controls some of its actions. For example, the
command line can direct the utility to send statistical output to the line printer or to suppress it
a I toget her.

The command line must have a command word and may have switches and/or an INTO FROM
phrase. For example, in Chapter 2 we used the command line:

)SORT I C = LAST _NAME_SORT I Ol

SORT is the command word; /C=LAST_NAME_SORT and /0 are switches.

You can use the switches and the INTO FROM phrase in many different combinations, which fall
into three main categories. The categories are

• non interactive mode
• interactive mode
• command line file declarations

Noninteractive Mode
In noninteractive mode, you use a command file which exists before you invoke the utility. The
/C = filename switch names the command file in a command line. Also, the functions of the command
line and command file are separate.

We used this mode for the examples in Chapter 2. Most of the time you'll use the noninteractive
mode.

The format for a non interactive mode command line is

{
SORT} .
MERGE Ie =fllename

IC=filename

/L

/L= filename

/N

/0

/S

093-000155

directs the utility to use an existing command file, filename.

sends statistical output and any error messages to the current listfile.

sends statistical output and any error messages to filename (e.g., an AOS disk file,
@ LPT, @ OUTPUT, or @ MTAO). The utility creates an AOS file if it doesn't
already exist.

suspends execution of the imperative. The utility still checks the syntax of the
command file statements. Thus, you can use /N to speed debugging a command
file.

tells the utility that the output file already exists. The utility deletes and then
recreates it with the results of the Sort/ Merge process.

suppresses the statistical output.

Licensed Material-Property of Data General Corporation 7 -1

Command Word and Imperative Relationship
I n the noninteractive mode, the command word invokes the utility. But it does not act as a command
file imperative. The Sort/Merge process depends solely on the command file imperative.

For example, if the command line is

)SORT / C = RECORD_MERGE)

and M ERG E is the command file imperative, then the utility merges the input files.

Let's take another example. I f the command line is

)MERGE / C = RECORD_COPY)

and COpy is the command file imperative, then the utility copies the input file(s).

Detecting Syntax Errors
Sort/Merge detects syntax errors in the command file. After detecting an error, the utility prints an
error message on the terminal. For example, the command file TEACHER_SORT contains

INPUT FILE IS "REGISTER_6" I RECORDS ARE 70 CHARACTERS.
OUPUT FILE IS "TEACHERS".
KEY 55/68.
SORT.
END.

I f you type the command line

)SORT / C = TEACHER_SORT / 0)

then the utility detects an error and displays this message on your terminal:

** SYNTAX ERROR:
EXECUTION INHIBITED - ONE ERROR WAS DETECTED

By itself, this information is not very helpful. The error message would not readily lead you to find
that "OUPUT" is misspelled. Because "OUPUT" is misspelled, there is no OUTPUT FILE
declaration, which in turn causes the command file to be incomplete.

To receive morc detailed information about an error, use

• the / L = filename switch in the command line, or

• the / L switch in the command line and set the current listfile to the desired file. Note: use @
CONSOLE in place of @ OUTPUT.

If you use one of these switches, Sort/Merge gives you the following additional information in the
error message:

• the line in which the error occurs

• a caret C") under the probable word causing the error

7-2 Licensed Material-Property of Data General Corporation 093-000155

For example, if you type

)SORT IC=TEACHER_SORT 10/L=@CONSOLE)

then the utility prints the following on your terminal:

Command line: SORTIC= TEACHER_SORTIOIL =@OUTPUT)
i. iNPUT FiLE IS "REGISTER __ 6 ", RECORDS ARE 70 CHARACTERS.
2. OUTPUT FILE IS "TEACHERS".

**SYNTAX ERROR: [LINE 2}

3. KEY 55168.
4. SORT.
5. END.
EXECUTION INHIBITED - ONE ERROR WAS DETECTED

Examples
Suppose that you want to execute a command file named REORDER and want to suppress the
statistical output. (This time the output file already exists.) To accomplish this, you need the following
command line:

)SORT I C = REORDER I 0 I S)

In this next example, instead of suppressing statistical output, you want to send it to the line printer.
You already created the output file. You need the following command line:

)SORT IC=REORDER/L=@LPT 10)

Interactive Mode
I n interactive mode, you enter the command file from your terminal. Therefore, you don't name a
command file in the command line. After you type an interactive mode command line, the utility
returns a * prompt. Type your command file statements next to this prompt.

Sort/Merge informs you about command file syntax errors in the interactive mode the same way that
it does in the noninteractive mode. See "Detecting Syntax Errors" in the previous section.

The format for an interactive mode command line is

IC

jT= filename

093-000155

indicates that you intend to enter a command file at your terminal.

directs the utility to save the command file you type in filename. If filename
already exists, then the utility preserves it and appends the new command file
statements.

Licensed Material-Property of Data General Corporation 7-3

/L

/L=filename

/N

/0

/S

sends statistical output and any error messages to the current listfile.

sends statistical output and any error messages to filename (e.g., an AOS disk file,
@ lPT, @ OUTPUT, or @ MTAO). The utility creates an AOS file if it doesn't
already exist.

suspends execution of the imperative. The utility still checks the syntax of the
command file statements. Thus, you can use /N to speed debugging a command
file.

I f you include /N without /T = filename, the utility will ask if you want to save
your input. Type Y (for yes) or N (for no) in response. If you respond Y, then the
utility asks for the name of a file in which to save your command file.

tells the utility that the output file already exists. The utility deletes and then
recreates it using the results of the Sort/ Merge process.

If you don't include the /0 switch and the output file already exists, Sort/Merge
asks if you want to overwrite the existing file. Type Y (for yes) or N (for no) in
response.

suppresses the statistical output.

Command Word and Imperative Relationship
As in the noninteractive mode, the command file imperative determines which Sort/ Merge process
the utility performs. The command word only invokes the utility.

HELP Messages
While typing the command file, you can request HELP messages. Displaying HELP messages won't
interfere with the Sort/Merge process. Type HELP (in uppercase only) to get a list of HELP message
topics. After you select a topic, type HELP followed by a space and the desired topic:

)HELP topic

You then receive a brief explanation. For example, if you want a HELP message about KEY
declarations after typing

• OUTPUT FILE IS "REGISTER __ 6".J

type

• HELP KEY _DECLARATIONJ

Aborting Interactive Input
If you want to immediately escape from interactive input to the utility, type CTRl-D. The utility will
then abort interactive input and you'll return to the Cll.

7-4 Licensed Material-Property of Data General Corporation 093-000155

Examples

This example shows a command line which invokes the interactive mode and a command file typed
next to the interactive mode prompt. There is no 10 switch in the command line because output file
M ASTER does not yet exist. The command line is

)SORT IC)

The command file that you type next to the prompt is

-INPUT FILE IS "REGISTER_6", RECORDS ARE 70 CHARACTERS.
- OUTPUT FILE IS "MASTER".
- KEY 1 I 12.
-SORT.
-END.

In this example, you want to save the statements that you type on your terminal in file SAVE. You're
debugging a command file and you don't want to execute the imperative. This time the output file
already exists. The command line is

)SORT IC/T=SAVE/N/O)

Command Line File Declarations
You must let the utility know what the input and output files are by declaring them. In the
noninteractive and interactive modes (the first two categories we looked at), you declare input and
output files in the command file. In the third category, you can also declare input and output files in
the command line by naming them in the INTO FROM phrase. This phrase leads to many options.
The two main options are using a command line with a command file, or without a command file.
We'll describe each option in detail and then summarize them in Table 7-1.

Command Line without Command File
I t's possible to use the Sortl Merge utility without a command file; the command line can be
sufficient. I f you don't declare the input and output files in a command file, you must declare them in
the command line. You do this by naming the files in an INTO FROM phrase.

The following are the command line formats which allow you to use the Sort I Merge utility without a
command file:

SORT [{ IL t] [IN} [IO} [IS} INTO outfile FROM infile ...
IL =.filename f

MERGE [{ jz ~filename }] liN} I/O} [IS} INTO outfile FROM infile, infile, ...

093-000155 Licensed Material-Property of Data General Corporation 7-5

/L sends statistical output and any error messages to the current listfile.

/ L =./ilcl1{[l1lc sends statistical output and any error messages to filename (e.g., an AOS disk file,
@ LPT, @ OUTPUT or @ MT AO). The utility creates an AOS file if it doesn't
already exist.

/N suspends execution of the imperative. The utility still checks the syntax of the
command file statements.

/0 tells the utility that the output file already exists. The utility deletes and then
recreates it using the results of the Sort/Merge process.

/S suppresses the statistical output.

outfile is the output file.

infile is an input file.

The INTO outfile replaces the command file's OUTPUT FILE declaration; the FROM infile replaces
an I N PUT FI LE declaration. For example, the command line

)SORT INTO TEACHERS FROM REGISTER_6)

causes the utility to perform the same actions as this command file:

INPUT FILE IS "REGISTER __ 6".
OUTPUT FILE IS "TEACHERS".
KEY 1 / LAST.
SORT.
END.

Invoking the utility without a command file imposes many limitations:

• You cannot control the range of characters on which the utility bases the sort or merge.
Sort/ Merge automatically selects 1/ LAST as the location phrase.

• You cannot specify the record type of either the input or the output file in the command line. Their
record type must be data-sensitive or fixed-length, or else you'll get an error message telling you
that the records are not one of these two types.

Because text editors change a file to, or create a file with, dynamic records, you cannot create or
modify an input file with LINEDIT.

• The command words used with the INTO FROM phrase function differently than the
noninteractive and interactive mode command words. Noninteractive and interactive mode
command words only invoke the utility. The command words used with the INTO FROM phrase
not only invoke the utility, but also function as the imperative. Because the command words
function as the imperative, and SORT and MERGE are the only command words allowed in this
format, you can perform only a SORT or M ERG E. You cannot, for example, perform a COpy or a
STABLE TAG SORT

• You cannot use any of the utility's massage features.

• The utility sorts or merges records only in ascending order, based on the records' ASCII collating
values.

7-6 Licensed Material-Property of Data General Corporation 093-000155

Examples

You want to merge the transactions of October and November, which are stored in files OCT and
NOV, into output file NEW_MASTER. Because you also want OLD_MASTER's records included
in the merge process, you want to include OLD_MASTER as an input file. NEW_MASTER
already exists and you don't want any statistical output. The command line you need is

)MERGE/OI S INTO NEW_MASTER FROM OLD_MASTER OCT NOV)

In this next example, you want to sort input file NAMES into output file SORTED_NAMES, which
already exists. I nstead of suppressing the statistical output, you want to send it to the line printer. The
command line you need is

)SORT I L =@LPT I 0 INTO SORTED_NAMES FROM NAMES)

Command Line with Command File
You can operate Sort/Merge with only a command line by using the INTO FROM phrase. You can
also use both the INTO FROM phrase and a command file together. This combination allows you to
name a command file in the command line and to declare

• the output file and all the input files in the command line

• the output file and at least one input file in the command line, and the other input files in the
command file

• the output file in the command line and all the input files in the command file

If you declare some input files in the command line and some in the command file, then the utility
processes the ones in the command line first.

The formats which allow you this flexibility in declaring input and output files are

SORT IC =filename I ~ IL (t] I/N! I/O! I/S! INTO outfile FROM infile ...
. ' IL =./ilename

[{ ~ ~ ~JiI""a me ~ J (/ N / (/0/ (/S / INTO outfi Ie

MERGE IC =filename
I
) IL } 1 [IN} [IO} (IS) INTO outfile FROM infile1 infile2 ...
{ IL =.Ii1ename

[{ IL }j (IN) [IO} [IS} INTO outfile
IL =./ilename

093-000155 Licensed Material-Property of Data General Corporation 7-7

/ C = filename

/L

/L=jilename

/N

/0

/S

outfile

infile

directs the utility to use an existing command file, filename.

sends statistical output and any error messages to the current listfile.

sends statistical output and any error messages to filename (e.g., an AOS disk file,
@ LPT, @ OUTPUT, or @ MT AO). The utility creates an AOS file if it doesn't
already exist.

suspends execution of the imperative. The utility still checks the syntax of the
command file statements. Thus, you can use /N to speed debugging a command
file.

tells the utility that the output file already exists. The utility deletes and then
recreates it using the results of the Sort/ Merge process.

suppresses the statistical output.

is the ou tput file.

is an input file.

Command Word and Imperative Relationship

The command file imperative determines which Sort/Merge process the utility performs. The
invoking word only invokes the utility.

Examples

You want to repeatedly use the same command file, but you want the utility to write the sorted
records to a different output file for each execution. The output file for the first execution is
EM PLOYEES and the output file for the second execution is WORKERS. The command file you'll
use each time is NA ME_SORT which contains these statements:

INPUT FILE IS "DEPT _ 1", RECORDS ARE 70 CHARACTERS.
INPUT FILE IS "DEPT _2", RECORDS ARE 70 CHARACTERS.
KEY 1 / 12.
SORT.
END.

To sort the records in DEPT_I and DEPT _2 into EMPLOYEES, you need this command line:

)SORT / C = NAME_SORT INTO EMPLOYEES)

The utility creates output file EMPLOYEES because it did not exist before. To sort the records into
WORKERS, you need this command line:

)SORT / C = NAME_SORT INTO WORKERS)

I n the prior example, you sorted the same input files into a different output file each execution. In this
examp\c, you want to merge different input files into a different output file. For the first execution,
the input files are TRANS_I and TRANS_2, and the output file is MASTER_I. For the second
execution, the input files are TRANS_5 and TRANS_6, and the output file is MASTER_2. The
command file you'll use each time is TRANS_ WITH_TRANS which contains these statements:

KEY 1/1.
KEY 50/ LAST.
MERGE.
END.

7-8 Licensed Material-Property of Data General Corporation 093-000155

To merge TRANS_I with TRANS_2 into MASTER_I, you need this command line:

)MERGE/C=TRANS_WITH_TRANS INTO MASTER_1 FROM TRANS_1 TRANS_2J

To merge TRANS_5 with TRANS_6 into MASTER_2, you need this command line:

)MERGE/C=TRANS_WITH_TRANS INTO MASTER_2 FROM TRANS_5 TRANS_6J

Table 7-1 summarizes all the input and output file declaration options. You use one or more of them if
you want to declare some or all of the above files in a command line. The first column of the table
divides the options into the two main categories: using the command line with a command file or
without. The other two columns tell you what file declaration options are possible in each of the main
categories.

yes

yes

yes

yes

no

093-000155

Table 7-1. File Declaration Options

none

output and all
input

output only

output and at
least one input

output and all
input

End of Chapter

ihdar.in
Commaudfile

output and all input

none

all input

other input

Licensed Material-Property of Data General Corporation 7-9

Chapter 8

INFOS II Files

You must use the declarations described in this chapter to define IN FOS II files. In a command file
declaring INFOS II files, you may use any imperative (described in Chapter 5) and any massage
statement (described in Chapter 6).

You can use a command line and no command file to perform limited sorts and merges of non-INFOS
II files. With IN FOS II files, however, you must use a command file.

INPUT INFOS Declaration
The format of the IN PUT IN FOS declaration is

INPUT INFOS INDEX IS "name"

"literal"
,PATH IS "litera/": "litera/" !.IGNORE LOGICAL DELETES] !.RECORD] f./TRIMMED] PAR TlAL RECORD]

1

DpWN }

"litera/"-
- "litera/"
Generic Key Selectors * *

[[{
Integer }]] ,KEY PADDED TO integer CHARACTERS WITH "literal" !.HEADER]

,RECORDS ARE
j integer CHARACTERS f
t VARIABLE UPTO integer CHARACTERS f .

**Generic Key Selectors

"Iiteral"+ I
"literal" +:' 'literal"
"literal":' 'literal" +
"lite. ral"+:"literal"+
"literal"+­
-"Iileral"+

!]

093-000155 Licensed Material-Property of Data General Corporation 8-1

You need to visit specific IN FOS I I keys and extract specific information from each key. The utility
uses this information in a Sort/Merge process. If you don't include a PATH IS clause in the INPUT
IN FOS declaration, then by default the utility visits all the main subindex keys and extracts the
records associated with them. To gain more control over which keys the utility visits and what
information it extracts from each key, you need a PATH IS clause.

PATH IS Clause
A PATH IS clause consists of at least one key selector usually followed by an extractor phrase. The
key selectors determine which keys in an IN FOS II index the utility visits. I n other words, the key
selectors indicate the path that the utility traverses through an IN FOS I I index. (A key selector has
nothing to do with the key field defined in a KEY declaration.) To tell the utility what information to
extract from a given key or set of keys, you must pair a key selector with an extractor phrase. This
forms a key selector/extractor pair. The paired extractor phrase selects the key, record, and/or partial
record that the utility extracts from the visited keys.

We'll now explain all the key selector and extractor phrases. After that, we'll take you through a few
examples which show you some ways to combine key selectors and extractor phrases. Both the
explanations and the examples refer to Figure 8-1, which shows IN FOS II index EXAMPLE. The
figure appears twice for your convenience: once near the explanations and once near the examples.

Key Selectors

There are two kinds of key selectors: those referring to an entire subindex level (DOWN and *), and
those referring to a key or range of keys in a particular subindex (all the other key selectors).

The level to which a key selector refers depends on where the key selector appears in the IN PUT
IN FOS declaration. We'll have to give you a "sneak preview" of the key selector *, to help you
understand the following examples. In these examples, the * tells the utility to visit all the keys at a
given subindex level.

I f the clause is

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS *,

then the * refers to all the keys in the main subindex, or level O.

I f the clause is

PATH IS·, ., .,

then the first * refers to all the keys in the main subindex, or level O. The second * refers to all the
keys in all the subindexes directly under the main subindex, level I. The third * refers to all the keys
in all the level 2 subindexes.

The clause

PATH IS *,

is also syntactically correct. And it's easier to see which key selector matches which level. We'll use
this format for all subsequent examples.

The explanations of the key selectors refer to Figure 8-1. Figure 8-1 represents a simple DBAM index,
named EXAMPLE.

8-2 Licensed Material-Property of Data General Corporation 093-000155

f 100f 200130014001500 I
I I
T L

1 1

1101 1102 11 03 11 04 11 05 1 , 301 1 3021303130413051 1501 15021503150415051

1331 13321333133413351

50-02373 Figure 8-1. DBAM Index. EXAMPLE

The key selector phrases and their meanings are

Key Selector

DOWN

093-000155

Meaning

The utility visits only the first key in the first subindex in a given level. However,
Sort/Merge visits this key only for the purpose of finding its linked subindex,
which is the first subindex of the next lower level. The utility then travels to that
subindex. Therefore, you can think of DOWN in this way: the utility passes
through a subindex level without visiting any of its keys.

You can link any key to a subindex below it with the IN FOS I I system. However,
because DOWN causes the utility to find the subindex linked to the first key in
the first subindex in the level you want to pass through, that key must be linked to
a lower level subindex. For example, you can specify

PATH IS DOWN,

to pass through the main subindex of EXAMPLE, because key 100 is linked to a
subindex. But you cannot specify

PATH IS DOWN,
DOWN,

to pass through level 1 because key 101 is not linked to a subindex.

It makes no sense to pair DOWN with an extractor phrase since DOWN causes
the utility to skip keys rather than visit them. Thus, you use DOWN by itself, and
not in a key selector / extractor pair.

Licensed Material-Property of Data General Corporation 8-3

* (asterisk)

"literal"

The utility visits all IN FOS II keys in the subindexes that are linked to previously
visited keys in the immediately higher subindex level. For example, in the clause

PATH IS *,
*

the first * tells the utility to visit every key in the main subindex. (Sort/ Merge
always vists the root node, to which the main subindex is attached.) Because it
visits every key in level 0, the utility visits keys 100, 300, and 500. Since each of
the level 1 subindexes is linked to one of these three keys, the second * tells the
utility to visit every key in each subindex in level 1.

Any other key selector which immediately precedes * will limit *'s scope in a given
subindex level. We'll precede * with DOWN in this next example. You already
saw that DOWN limits the utility to visiting the first key in the first subindex in a
given level (only for the purpose of finding out the location of its linked subindex).
Thus if you specify

PATH IS DOWN,

the utility will not visit keys 300 and 500. Because the utility only visits key 100,
*'s scope is limited to the level 1 subindex linked to key 100. In this case, * tells
the utility to visit all keys in the subindex linked to key 100.

Within a particular subindex, the utility visits only IN FOS II key literal. For
example, the main subindex has these keys: 100,200,300,400,500. If the clause
IS

PATH IS "300",

then the utility visits only key 300.

"literal":"literal" The utility visits each INFOS II key in the inclusive range between the two
literals. That is, it visits both literal keys and the keys between them in a
particular subindex. The first literal must have a lower ASCII value than the
second. For example, the main subindex has these keys: 100,200,300,400,500.
If the clause is

"Iiteral"-

8-4

PATH IS "200":"400",

then the utility visits keys 200, 300, and 400.

The utility visits IN FOS II key literal and each higher (ASCII) value key in a
particular subindex. For example, the main subindex has these keys: 100, 200,
300, 400, 500. If the clause is

PATH IS "300"-,

then the utility visits keys 300, 400, and 500.

Licensed Material-Property of Data General Corporation 093-000155

-"literal"

"literal" +

093-000155

The utility VISitS the lowest (ASCII) value IN FOS II key and each higher
(ASCII) value key up to and including key literal in a particular subindex. For
example, the main subindex has these keys: 100, 200, 300, 400, 500. If the clause
IS

PATH IS -"300",

then the utility vists keys 100, 200 and 300.

This is a generic key selector. It is useful if you know what records you want to
extract, but you don't know their precise keys. A generic key selector tells the
utility to locate the first key in a particular subindex that exactly matches literal,
up to the length of literal. For example, "AB" + is two characters long and
exactly matches the leading portion (here, the first two characters) of IN FOS II
key ABC. Because generic key selectors are just a subset of key selectors, we won't
make this distinction any more (except where appropriate).

The literal must exactly match the leading portion of at least one key in each
subindex the utility visits. If you don't meet this condition, you'll get an error
message.

For example, suppose you want to visit the first key that begins with the digits 30
in the first level I subindex. If you specify this PATH IS clause

PATH IS *,
"30"+,

you'll get an error message. This is because no leading portion of keys in the level
1 subindex linked to key 100 exactly matches the key selector "30" +.

To correct the error, you need to exclude the subindex linked to key 100. You do
this by changing the PATH IS clause to

PATH IS "300",
"30"+,

Key 30 I is the first key whose leading portion exactly matches "30" +; thus the
utility visits key 301.

You can substitute "literal" + wherever you use "literal". Thus, by simple
substitution we get five more key selectors:

• "literal" + :"Iiteral"

• "literal":"literal" +

• "literal" + :"Iiteral" +

• "literal" +-

• -"literal" +

Table 8-1 shows an example for each of these key selectors.

Licensed Material-Property of Data General Corporation 8-5

Table 8-1. (Generic) Key Selector Examples

"literal" + :"literal"

"Iiteral":"literal" +

"literal" + :"Iiteral" +

"literal" +-

·"Iiteral" +

"2" + :"400" keys 200,300, and 400

"200":"4" + keys 200,300, and 400

"2" + :"4" + keys 200, 300, and 400

"2" +. keys 200, 300, 400,
and 500

-"4" + keys 100, 200, 300,
and 400

Extractor Phrases

The extractors tell the utility what information to extract when it visits a key. Any combination of
extractors forms an extractor phrase. You may pair an extractor phrase with each unique key selector
except DOWN. You aren't required to use an extractor phrase with a key selector; you can use a key
selector by itself. In that case, the utility visits a key without extracting any information associated
with that key. The extractors and the action they take are

Extractor

RECORD

Action

extracts the record associated with each key that RECORD's paired key selector
tells the utility to visit. For example, the PATH IS clause

PATH IS ., RECORD,

tells the utility to extract the record associated with each key in the maIn
subindex.

PARTIAL RECORD extracts the partial record asociated with each key that PARTIAL RECORD's
paired key selector tells the utility to visit. For example, the PATH IS clause

KEY

8-6

PATH IS ., PARTIAL RECORD,

tells the utility to extract the partial record associated with each key in the main
subindex.

If you specify PARTIAL RECORD TRIMMED, then the utility strips all
trailing nulls from the partial records it extracts.

extracts the INFOS II keyes) that KEY's paired key selector tells the utility to
visit. If you include the PADDED TO option, the utility pads each key it extracts
to integer characters. The pad character is literal or integer, the decimal
equivalent of an ASCII character.

For example, the PATH IS clause

PATH IS ., KEY PADDED TO 6 CHARACTERS WITH "-",

extracts all the keys in the main subindex. And it pads al} the keys to 6 characters
with - (dash). For instance, the utility pads key 100 with - (dash) until the key is 6
characters long: 100---.

Licensed Material-Property of Data General Corporation 093-000155

Extractor Action

HEADER generates a two-word, nonprinting binary header. It does this for each INFOS II
key that HEADER's paired key selector tells the utility to visit. The first word of
the header contains the length of the record associated with the IN FOS II key.
The first byte of the second word contains the partial record length for that key;
the second byte of the second word contains the length of the key.

IGNORE LOGICAL DELETES

IG NORE lOG ICAl DELETES further qualifies what information the utility extracts. It causes the
utility to ignore extractors paired with a key selector whenever that key selector tells the utility to visit
a logically deleted key. In these cases, the utility visits logically deleted keys but doesn't extract any
information. (Sort/Merge considers a key logically deleted if either IN FOS KEY ("LOCAL") or
INFOS RECORD ("GLOBAL") lOGICAL DELETE is in effect.)

If you use this phrase, you must place it immediately after a key selector. Thus, if you want to use this
phrase with a key selector/extractor pair, you must place IGNORE LOG ICAL DELETES between
the key selector and extractor phrase. For example:

PATH IS ., RECORD,
• , IGNORE LOGICAL DELETES, RECORD,

RECORD is the extractor phrase. In this case, the utility visits all level 1 keys but doesn't extract the
records associated with logically deleted keys.

RECORDS ARE Clause
The INPUT INFOS declaration always requires the RECORDS ARE clause. If the database
associated with the index you named contains fixed-length records, use the integer CHARACTERS
phrase. For example:

RECORDS ARE 70 CHARACTERS

If the database contains variable-length records, use the VARIABLE UPTO phrase. For example:

RECORDS ARE VARIABLE UPTO 100 CHARACTERS

Examples
All the examples in this section refer to Figure 8-1, repeated here for your convenience.

1100 1 200 1300 1400 I 500 1
I ...l
I

1
I

l l

110111021103110411051 13011302130313041305 J 1501 15021503150415051
I

1

1331 13321333133413351

093-000155 Licensed Material-Property of Data General Corporation 8-7

Each example shows you the complete INPUT INFOS declaration you need to accomplish various
tasks. We'll carefully dissect each example's PATH IS clause. Assume that EXA MPLE's database
contains variable records not longer than 100 characters each.

If you want to perform a preordered traversal of index EXAMPLE, extracting the record associated
with each key visited, specify

INPUT INFOS INDEX IS "EXAMPLE".
PATH IS *, RECORD,

*, RECORD,
*, RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

I n the PATH IS clause, the first key selector (*) tells the utility to visit each key in the main
subindex. The first extractor (RECORD) tells the utility to extract the record associated with each
key in the main subindex. The next key selector/extractor pair (*, RECORD) tells the utility to visit
every key in every subindex at level I, and extract the records associated with those keys. The last key
selector/extractor pair indicates the same procedure for all level 2 subindexes (there is only one).

In a preordered traversal of this index, the utility visits the keys in the following order (an arrow
indicates a change in subindex level):

\ 00 ~ \ 0 I, \ 02, \ 03, \ 04, \ 05 ~ 200, 300 ------> 30 \, 302, 303
~ 331, 332, 333, 334, 335 ~ 304, 305 ------> 400, 500
~ 50 \, 502, 503, 504, 505

Suppose that you logically deleted key 303's record. Because we didn't qualify the key selector * with
IGNORE LOGICAL DELETES, the utility will still visit key 303 and its associated keys in the lower
level subindex.

I f you don't want to extract information from logically deleted key 303, then specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS *, RECORD,

*, IGNORE LOGICAL DELETES, RECORD,
*, RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

The third key selector / extractor pair tells the utility to visit all the keys in the level 2 subindex and to
extract the associated records.

Now the utility visits the keys in the following order:

\ 00 ~ \ 0 \, \ 02, \ 03, \ 04, \ 05 ~ 200, 300 ------> 30 I, 302
~ 33\, 332, 333, 334, 335 ~ 304, 305 ------> 400, 500
~ 50 \, 502, 503, 504, 505

Suppose that there are logically deleted keys in index EXAMPLE you don't want to vist, but you
don't know which keys they arc. You could specify the following in order to avoid keys associated with
logically deleted records, wherever they may occur:

INPUT INFOS INDEX IS "EXAMPLE",

8-8

PATH IS *, IGNORE LOGICAL DELETES, RECORD,
*, IGNORE LOGICAL DELETES, RECORD,
*, IGNORE LOGICAL DELETES, RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

Licensed Material-Property of Data General Corporation 093-000155

If you want to extract the keys in the subindex linked to key 500, and pad them to 10 characters with
the plus sign (+), specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS "500",

*, KEY PADDED TO 10 CHARACTERS WITH "+",
RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

The first key selector ("500") is not paired with an extractor. This tells the utility to visit key 500 but
not to extract any information associated with it. The second key selector (*) tells the utility to visit
every key in the subindex linked to key 500. Sort/ Merge doesn't visit the other level 1 subindexes
because a "literal" key selector ("500") immediately precedes this *, restricting its scope. The *'s
paired extractor phrase (KEY PADDED TO 10 CHARACTERS WITH "+") tells the utility to
extract each key in the subindex, and pad them with + to a fixed-length of 1 0 characters. For
example, key 505 is extracted as 505 + + + + + + +.

I f you want to extract the keys, partial records, and records from all keys in the level 1 subindexes,
specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS *,

*, KEY, PARTIAL RECORD, RECORD,
RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

In order for the utility to visit all the level 1 subindexes, it must first visit all the keys at the
immediately higher level to which these indexes are linked. The first * tells the utility to visit all keys
in the main subindex; thus, the utility visits the keys to which the level I indexes are attached. Also,
the first key selector (*) is not paired with an extractor phrase. This tells the utility not to extract any
information from the main subindex keys.

The second key selector (*) tells the utility to visit every key in every level 1 subindex. Its paired
extractor phrase (KEY, PARTIAL RECORD, RECORD) tells the utility to extract the key, partial
record, and associated record, from each key it visits.

I f you want to extract the records from only the level 2 subindex keys, specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS "300",

"303",
*, RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS

The first key selector ("300"), a literal, tells the utility to visit only key 300 in the main subindex. The
utility doesn't extract any information associated with key 300, since this key selector isn't paired with
an extractor phrase. The next key selector ("303"), another literal, tells the utility to visit key 303.
Because this key selector also is not paired with an extractor phrase, the utility doesn't extract any
information associated with key 303. The key selector/extractor phrase pair *, RECORD tells the
utility to visit every key in the subindex linked to key 303 and to extract their records.

If you want to extract the records for the first three keys in the subindex linked to key 100, specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS DOWN,

-"103", RECORD,
RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

093-000155 Licensed Material-Property of Data General Corporation 8-9

The key selector DOWN tells the utility to pass through the main subindex without visiting any of its
keys (except the first). The utility then travels to the subindex linked to key 100 because 100 is the
lowest (ASCII) value key in the main subindex. (Thus in this case, DOWN is equivalent to "100"
without a paired extractor phrase). The key selector -" 1 03" tells the utility to visit key 1 03 and all the
keys in this subindex whose value is less than 1 03. RECORD, the paired extractor phrase, tells the
utility to extract the records associated with the keys it visits.

If you want to extract the records from the last three keys in the subindex linked to key SOD, specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS "500",

"503"-, RECORD,
RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

The key selector "500" tells the utility to visit key 500. The utility extracts no information from this
key because it isn't paired with an extractor phrase. The key selector "503"- tells the utility to visit
key 503 and all higher (ASCII) value keys in the subindex linked to key 500. The paired extractor
phrase, RECORD, tells the utility to extract the records associated with the keys it visits.

I f you want to extract the partial records from the keys 332, 333, and 334, specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS "300",

"303",
"332":"334", PARTIAL RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

The key selectors "300" and "303" define a path through the index to the level 2 subindex. The key
selector "332":"334" tells·the utility to visit the keys in the inclusive range of 332 to 334. PARTIAL
RECORD, the paired extractor phrase, tells the utility to extract the partial record associated with
the keys it visits.

I f you want to use generic key selectors to extract all the records from keys whose first digit is 3, you
could specify

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS "3"+, RECORD,

"3" +-, RECORD,
"3" + -, RECORD,

RECORDS ARE VARIABLE UPTO 100 CHARACTERS.

The utility extracts the record from each key it visits. The key selector "3"+ tells the utility to visit
key 300. The subindex level 1 key selector "3" + - tells the utility to visit keys 301 through 305. The
subindex level 2 key selector "3"+- tells the utility to visit keys 331 through 335.

Extracted Information
In all these examples, you extracted one or more types of information (record, partial record, and/or
key) from an IN FOS II file. What happens to this information after you extract it? The answer to this
question is relevant now, and will be important when we discuss the OUTPUT IN FOS declaration.

After each visit, the utility extracts the desired information, strings it altogether, and treats it as one
record. For example, suppose key IOO's record is abcdefg, and its partial record is abc. If we extract
the key, record, and partial record from key 100, in that order, then the utility strings together 100,
abcdefg, and abc, producing the record IOOabcdefgabc.

8-10 Licensed Material-Property of Data General Corporation 093-000155

You can send this record directly to an AOS file. Let's return to IN FOS II index file EXAMPLE for
an example of how you could do this. Suppose that key 200's record is hijklmn, and its partial record
is hij. The record the utility creates when it extracts the key, record, and partial record after it visits
key 200 is 200hijklmnhij. The other records formed by concatenation are similar to this record (for
example, 300opqrstuopq, and so on).

By declaring AOS file TEMP in an AOS OUTPUT FILE declaration, you can sort the records from
IN FOS II file EXAMPLE into AOS file TEMP. You could base the sort on the first three character
positions of the records (the IN FOS II key), and arrange them in descending order. The command file
you need to accomplish this is

INPUT INFOS INDEX IS "EXAMPLE",
PATH IS *, KEY, RECORD, PARTIAL RECORD,

*, KEY, RECORD, PARTIAL RECORD,
*, KEY, RECORD, PARTIAL RECORD,

RECORDS ARE VARIABLE UPTO 50 CHARACTERS.
OUTPUT FILE IS "TEMP", RECORDS ARE VARIABLE UPTO 50 CHARACTERS.
KEY 1/3 DESCENDING.
SORT.
END.

You can also send the records formed by concatenation to an INFOS II output file. Whether you send
the entire record or only part of the record to an IN FOS II file depends on the OUTPUT INFOS
declaration. The utility can treat all or part of each record as a key, partial record, or record, again
depending on the OUTPUT IN FOS declaration. The next section discusses these possibilities and the
OUTPUT IN FOS declaration in detail.

OUTPUT INFOS Declaration
Sort/ Merge cannot create IN FOS I I files. Therefore, any INFOS II output file that you name must
exist before you invoke the utility.

The format of the OUTPUT IN FOS declaration is

OUTPUT INFOS {:~e~~SION } IS "name"

[
[{

integer/integer }J [, { inTeger/inTeger }]
, RECORD IS integer/LAST ,PARTIAL RECORD IS inTeger/LAST

[[{ integer } J] , TRIM "literal" FROM KEYS

[. PATH IS [{ ~~~~~~::J . [.. J] .J] ·

093-000155 Licensed Material-Property of Data General Corporation 8-11

OUTPUT INFOS IS Clause
The OUTPUT IN FOS clause requires that you choose between one of two options, INDEX or
INVERSION. Inversion occurs when two different INFOS II keys are linked to the same database
record. In general, if you don't plan to invert keys, use the INDEX option; if you plan to invert keys,
use the INVERSION option.

Figure 8-2 shows a case where you use the INDEX option because you don't invert keys. The first half
of the figure shows an IN FOS II file before you execute a command file. The subindex linked to
KEY2 exists, but has no IN FOS keys in it. The second half of the figure shows the IN FOS II file
after you execute a command file. The INFOS II file now has a new key, NEW, in its previously
empty subindex. And it has a new record, NEW RECORD, in its database. The blue line represents
the linkage made between NEW and NEW RECORD. Note that keys NEW and OLD an:: linked to
different records; they arc not inverted.

Figure 8-3 shows a case where you use the INVERSION option because you do invert keys. The first
half of the figure shows an INFOS II file before you execute a command file. The subindex linked to
KEY2 exists, but has no INFOS II keys in it. The second half of the figure shows the INFOS II file
after you execute a command file. The INFOS II file now has a new key, NEW, in its previously
empty subindex. But it doesn't have a new record in its database; instead, you linked NEW to SAME
RECORD, the record to which key OLD is already linked. The blue line represents the linkage made
between NEW and SAME RECORD. Because keys NEW and OLD are linked to the same record,
they are inverted.

RECORD IS and PARTIAL RECORD IS Clauses

Recall that in the section "Extracted Information," we discussed how Sort/Merge creates a record
from extracted information. For example, say that the utility extracts the record and partial record
from a given key of an INFOS II input file. The utility then creates a record which is the
concatenation of the record and the partial record.

The RECORD IS cbuse determines which portion of this record will become a database record
associated with an INFOS II key in an INFOS II output file. The PARTIAL RECORD IS clause
determines which portion of this record will become a partial record associated with an IN FOS II key
in an IN FOS II output file. Each clause's location phrase defines the range of characters that will
become a record or partial record. Let's go through an example slowly. The example refers to Figures
8-4 to 8-6.

Figure 8-4 shows IN FOS II index A, whose first key is 100. Key 100's partial record is 123. Key 100
is linked to database record ABCDEFG. You want the utility to visit key 100 and extract its record
and partial record. Afterwards, the utility concatenates 123 and ABCDEFG to form the concatenated
record ABCDEFG 123 (also shown in Figure 8-4). The utility uses this record in a Sort/ Merge
process. I n this example, you want the utility to copy portions of the concatenated record to another
IN FOS II index, named B.

You want to define character positions 1 through 3 of the concatenated record to be the partial record
copied to B. And you want to define character positions 4 to 10 of this same record to be the record
copied to B. Figure 8-5 shows the concatenated record divided into a partial record and a record. To
accomplish this, you need the following clauses:

RECORD IS 4/10, PARTIAL RECORD IS 1/3

8-12 Licensed Material-Property of Data General Corporation 093-000155

Before Command File Executes

INFOS II Index

1 KEY 1 1 KEY 21
/ \

I \

OLD ... I I

INFOS II Database

OLD RECORD

Aftet Command File Executes

INFOS II Index

1 KEY 1 1 KEY 21
/ \

/ \

I OLD I ... I I NEW I ... I

INFOS II Database

~ If

OLD RECORD NEW RECORD

SD-02353

Figure 8-2. INDEX Option Case

093-000155 Licensed Material-Property of Data General Corporation 8-13

Before Command File Executes

INFOS nlndex

I KEY 1 1 KEY 21
/ ,

I \

I OLD ••• I I

INFOS II Database

SAME RECORD

After Command Fife Executes
INFOS II Index

1 KEY 1 I KEY 21
/ \

I \

OLD I ••• NEW . ..
/

/

/ INFOS II Database

/

SAME RECORD

8D-02352

Figure 8-3. INVERSION Option Case

8-14 Licensed Material-Property of Data General Corporation 093-000155

Key 1 OO's Partial Record

KEY INFOS II Index A

r "

100 123 200 456

INFOS II Database A

r Record

ABCDEFG

Extracted Extracted Concantenated
Record Partial Record

Record

-I ABCDEFG + G ABCDEFG123

SD-02354
Figure 8-4. Record Formed by Concatenation

093-000155 Licensed Material-Property of Data General Corporation 8-15

Concatentated Record

3 4 10

DEFG123 I

Partial ~ Record
Record

G DEFG123

Figure 8-5. Partial Record and Record from Concatenated Record

Figure 8-6 shows where the partial record and the record end up after the utility sends them to
IN FOS II index B (and its associated database). How did the utility know where to put them? We'll
answer this question later.

The last example shows how the utility can divide a record created from the concatenation of
information extracted from an INFOS II file. The utility divides records from AOS files in exactly
the same way. If ABCDEFG 123 were a record in an AOS file, you would use the same clause:

RECORD IS 41 10, PARTIAL RECORD IS 1/3

to divide the record the way you want. It doesn't matter whether the record that the utility "dissects"
comes from an INFOS II or AOS file.

The ranges for the record and the partial record, defined in the concatenated record, can overlap. For
example, the entire concatenated record can become the record copied to IN FOS II index B's
database, and character positions 4 to 6 can become a key's partial record in INFOS II index B To
accomplish this, you specify the following clauses:

RECORD IS 1 ILAST, PARTIAL RECORD IS 4/6

These clauses make ABCDEFG 123 the record and DEF the partial record.

So far we've discussed dividing a concatenation of information into partial records and records.
However, if the utility extracts only a record, only a partial record, or only a key from an INFOS II
key in an IN FOS II input file, the utility doesn't concatenate information. For example, suppose that
the utility extracts only database records. These database records, which are not formed by
concatenation, become the records that Sort/Merge processes. And in these records, the RECORD IS
and PARTIAL RECORD IS clauses define ranges. Figure 8-7 first shows a record which the utility
extracts from IN FOS II index A's database (after visiting the A LPHA CO. key). It then shows the
database record divided into a record and a partial record. Finally, it shows where this information
ends up in IN FOS II index B and its database.

8-16 Licensed Material-Property of Data General Corporation 093-000155

80-02356

093-000155

INFOS II Index A
,

I I 100 123 200 456
I I

INfO! 11 DaCatJaseA
,

A BCDEiFG

Partial
Record

I ABC I

Concatenated Record

ABCDEFG123

Record

DEFG123

fNfOS II Index B

DEFG123

Figure 8-6. Information Sent from A to B

Licensed Material-Property of Data General Corporation 8-17

8-18

ALPHA CO. A1

,

Oil Filter PN3003

Partial
Record

1
3003

1

Oil Filter

KEY

INFOS II Index A

BETA CO. B2

INFOS II Database A

Extracted
Database
Record

PN3003

Record

Oil Filter PN3003

INFOS II Index 8

Oil Filter PN3003

Figure R-7. Database Record Becomes Record and Partial Record

Licensed Material-Property of Data General Corporation 093-000155

Defining the INFOS II Key
We now discuss a potentially confusing point, and therefore ask the reader to pay special attention.
You saw how the utility portions a record into a record and partial record, and then how it sends this
information to an INFOS II output file. How do you define an INFOS II key from a record?

The syntax of the OUTPUT IN FOS declaration does not allow you to define a key in an input file
record. You must instead use the KEY declaration to define an IN FOS II key. Thus, we're using the
KEY declaration to define the output INFOS II key location as well as the field the utlity uses for
sorting or merging.

You can define an IN FOS II key without defining a partial record or record. In other words, you can
use a KEY declaration to define an INFOS II key without including a RECORD IS or PARTIAL
RECORD IS clause in the IN FOS OUTPUT declaration. This is essentially the same as performing
an IN FOS II Write operation in which you specify the Suppress Database Access option. (The
INFOS II System User's Manual describes this option.)

You don't have to worry about sorting keys into an INFOS II output file, since INFOS II
automatically sorts keys (in ascending order) for you. Thus, you would only copy or merge keys (and
records and partial records) from one or more IN FOS II files to another.

You define an INFOS II key from the same record that you define a record and/or partial record. For
example, assume that the utility extracts the database record shown in Figure 8-8.

You want to make character positions 15 to 18 (3003) an INFOS II key, as shown in Figure 8-9. This
requires the following KEY declaration:

KEY 15/18.

15 18

Oil Filter PN 3003
Database Record

15 18

Figure 8-8. Database Record
Oil Filter PN 3003

INFOS II Key t2
B

Figure 8-9. KEY Declaration Defines INFOS II Key

093-000155 Licensed Material-Property of Data General Corporation 8-19

Just as the character positions of the record and partial record can overlap, the character positions of
the IN FOS II key, the record, and/or the partial record can overlap. For example, suppose that the
utility extracts the database record shown in Figure 8-10.

You want to make character postions 1 through 25 (the entire record) the record, positions 14 to 15
(A 1) the partial record, and positions 22 to 25 (3003) the key. Figure 8-11 shows the database record
divided in this way.

The RECORD IS and PARTIAL RECORD IS clauses, and KEY declaration that you need to
accomplish this are

RECORD JS 1 ILAST, PARTIAL RECORD IS 14/15

KEY 22/25.

You define an INFOS II key from an AOS record the same way that you define an INFOS II key
from a record originating from an INFOS II file. As we noted before, it doesn't matter whether the
record that the utility dissects comes from an IN FOS II or AOS file.

1 14 15 22 25

Oil Filter A 1 PH 3003

Figure 8-/0. Database Record

Database Record

1 14 15 22 25

OUFilter A1 PH 3003

Record Partial Key
Record

Oil Filter A 1 PN3003 [JB
Figure 8-//. Defining Record, Partial Record, and Key from Database Record

8-20 licensed Material-Property of Data General Corporation 093-000155

TRIM KEYS Phrase
The TRI M KEYS phrase deletes a specific character from the end of each INFOS II key before the
utility sends the keys to an INFOS II output file. The default literal for this phrase is the null
character. Thus, specifying

TRIM KEYS

is the same as specifying

TRIM" <000>" FROM KEYS

The utility will then trim all trailing nulls from the INFOS II keys.

Since the IN FOS II utility does not allow zero length keys, Sort/ Merge will never trim a key to less
than one character.

PATH IS Clause
The RECORD IS and PARTIAL RECORD IS clauses, and the KEY declaration, define what the
utility will send to the IN FOS II output file. The PATH IS clause determines where this information
goes in the file.

The key selectors DOWN, *, "literal" and "Iiteral"+ have the same meanings as in the INPUT
IN FOS declaration's PATH IS clause. However, there is one difference in how you list these key
selectors. I n the IN PUT IN FOS declaration, you can list these key selectors in any order (given that
the IN FOS II index file is appropriately structured). In the OUTPUT IN FOS declaration, you must
specify * as the last key selector in the list. And you may not specify * anywhere else. Because * must
be last, the utility can write data to only one subindex each time that you execute a command file.

You would never pair an OUTPUT IN FOS declaration key selector with an extractor; the
information that you want is already extracted. Again, an OUTPUT INFOS declaration's key
selectors determine where the the partial records and IN FOS II keys will go in an IN FOS II index.

The PATH IS clause is optional. By default, not including the PATH IS clause is the same as
specifying

PATH IS •.

If you omit both the PATH IS and RECORD IS clauses, the utility assumes that you want

RECORD IS 1 ILAST, PATH IS •.

However, if you use the PATH IS clause and want to write records, you must also explicitly use the
RECORD IS clause; the utility will not automatically take the default RECORD IS clause.

093-000155 Licensed Material-Property of Data General Corporation 8-21

Examples
Figure 8-12 shows DBAM file MASTER, on which we base the next example. MASTER's main
index contains three keys: a part number key (PN), a purchase order key (PO), and a vendor name
key (VENDOR). The subindexes to which PN and PO are linked both exist and have keys. The
subindex to which VENDOR is linked exists (Sort/Merge can't create a subindex), but has no keys.

Let's say that you have a previously sorted AOS sequential file named TEMP containing vendor
records. Figure 8-\3 shows the records' format.

I PN I PO I VENDOR I

, 1
I ... I PN3001 ••• 1 I ... I PO 112 I ... I I I

Database

if

... Information . . . Information . ..

Figure 8-/2. MASTER, before Command File Executes

15 18 21 25 45

Vendor Name Vendor Number Vendor Address

Figure 8-/3. Format of TEMP's Records

8-22 Licensed Material-Property of Data General Corporation 093-000155

You want to

• copy the records to MASTER'S database

• make the Vendor Name field the IN FOS I I key, and copy it to MASTER's VENDOR subindex

• make the Vendor Number field the partial record, and copy it to MASTER's VENDOR subindex

To accomplish this, here's the command file you'll need:

INPUT FILE IS "TEMP", RECORDS ARE 45 CHARACTERS.
OUTPUT INFOS INDEX IS "MASTER",

RECORD IS 1/LAST,

KEY 1/15.
COPY.
END.

PARTIAL RECORD IS 18/21,
PATH IS "VENDOR",

*

Now we'll carefully analyze the command file. We declare TEMP, the input file, in an AOS INPUT
FILE declaration. The OUTPUT INFOS declaration uses the INDEX option because you don't want
to link keys in the VENDOR subindex to records already existing in MASTER's database. Instead,
you want to link keys in the VENDOR subindex to new database records. The RECORD IS clause
determines which portion of each of file TEMP's records will be a new record for MASTER's
database. Because the RECORD IS clauses's location phrase is 1 ILAST, each entire record in TEMP
becomes a new record for the database.

Let's leave the OUTPUT IN FOS declaration for a moment and look at the KEY declaration. The
KEY declaration determines which portion of each of TEMP's records will be an INFOS II key for
the VENDORS subindex. You want the Vendor Name field in each record as the INFOS II keys in
this subindex. Thus, you define the location phrase of the KEY declaration as 1/15, the character
positions of the Vendor Name field.

Now let's return to the OUTPUT IN FOS declaration. The PARTIAL RECORD IS clause
determines which portion of each of TEMP's records will become a partial record associated with a an
INFOS II key in the VENDOR subindex. You want the Vendor Number field (character positions 18
to 21) to be the IN FOS II keys' partial records. Thus, the location phrase of the PARTIAL
RECORD IS clause is 18/21.

Let's summarize the major points we made about this command file. The RECORD IS and
PARTIAL RECORD IS clauses, and the KEY declaration apportion TEMP's records. The PATH IS
clause determines where in MASTER the IN FOS I I keys go. To these keys, the partial records are
attached and the database records are linked. Here, the PATH IS clause tells the utility to place the
INFOS II keys in the subindex linked to VENDOR.

Figure 8-14 shows what MASTER and its associated database file look like after you execute the
command file.

The next example works with a DBAM file of employee records, named EMPLOYEE, shown in
Figure 8-15. As it stands, EMPLOYEE has two subindexes: one for employee name keys, and one for
employee number keys. The NAME subindex exists but has no keys. The database records linked to
the N UMBER keys contain both employee names and numbers. Your goal is to extract the employee
last names from the database records, turn them into keys for the N A M E subindex, and link those
keys to the existing database records.

093-000155 Licensed Material-Property of Data General Corporation 8-23

I PN I PO r VENDOR 1

!
I ••• I PN300 I ••• I I ••• I PO 11 21 ... 1 IALPHA Col 034 ••

... Information . .. Information . . . Alpha Co. 034 22 South St . ..

Figure 8-/4. MASTER, after Command File Executes

I NAME I NUMBER 1

f

I I [101 0111101 .. ~ 9090999901

~
~

~
~

Michael Brolman Jonathan Roses ...
1 01 -01 -111 0 909-09-9990

Figure 8-/5. EMPLOYEE, before Command File Executes

8-24 Licensed Material-Property of Data General Corporation

OMEGA CO·I 0161

OmegaCo.01657Main

093-000155

<D
(")
N
o
6
(fJ

Figure 8-16 shows the database records' format.

1 9 11 20 25 35

I Last Name II First Name I Number

Figure 8-/6. Format of EMPLOYEE's Database Records

The command file you need is

INPUT INFOS INDEX IS "EMPLOYEE",
PATH IS "NUMBER",

*, RECORD,
RECORDS ARE 35 CHARACTERS.

OUTPUT INFOS INVERSION IS "EMPLOYEE",
PATH IS "NAME",

KEY 1/9.
COPY.
END.

Now we'll analyze the command file. You want to visit all the keys in the NUMBER subindex so that
you can extract all the database records. The PATH IS clause in the INPUT INFOS declaration
accomplishes this. The OUTPUT INFOS declaration uses the INVERSION option because you
eventually want keys in the NAME subindex linked to the same database records to which the keys in
the N UMBER subindex are linked. The PATH IS clause tells the utility to put the keys in the
NAME subindex. The KEY declaration defines character positions 1 to 9 of each database record as
an IN FOS II key. Because the first nine character positions are the Last Name field of the database
records, the last names in each record become IN FOS II keys.

Figure 8-17 shows what EMPLOYEE and the database linked to it look like after you execute the
command file. Now you can find an employee's database record either by knowing his/her last name
or his/her employee number.

The prior examples worked with one IN FOS II index file. The next example works with two:
VENDORS and PARTS, shown in Figure 8-18.

093-000155 Licensed Material-Property of Data General Corporation 8-25

1 NAME 1 NUMBER 1

l
1 Bmlman I· · ·1 Rose. 1 l' 01 01 111 0 ~ • ~ 909 09 9990 1

~ ~ ..
"><

~ ~
~ ~

Michael Brotman Jonathan Roses
101~01-1110 909-09-9990

Figure !?-17. EMPLOYEE. after Command File Executes

<7l

'" <7l
N
o
o
CIl

INFOS II Index VENDORS INFOS II Index PARTS

I NAME I NUMBER I I NAME I NUMBER I
/ ." / ~

Vendor Name / ~ Vendor Number Part Name / ~ Part Number

BOND CO·1 SMERSH I I VNOC7 I VNOCS I I I I I

Bond Co. VNOO7 fuse PN6969

Figure 8-/!? VENDORS and PARTS. before First Command File Executes

8-26 Licensed Material-Property of Data General Corporation 093-000155

The main subindex of VENDORS has two keys: NAME and NUMBER. NAME refers to a vendor's
name and NUMBER refers to a vendor's number. The subindex linked to NAME is the NAME
subindex; the subindex linked to NUMBER is the NUMBER subindex. NAME and NUMBER
subindexes' keys are linked to the same database records. Figure 8-19 shows the database records'
format.

15 20 25 30 40 45 50

Vendor Name Vendor Number Part Name Part Number

Figure 8-/9. Format of Records Shared by VENDORS and PARTS

PARTS's main subindex also has two keys: NAME and NUMBER. In this subindex, however,
NAME refers to a part's name and NUMBER to a part's number. Though the subindexes linked to
NAME and NUMBER exist, they are empty.

You want to make each database record's Part Name field an INFOS II key for the NAME subindex
of PA RTS. Also, you want to make each database record's Part N umber field an IN FOS II key for
the NUMBER subindex of PARTS. You'll need a separate command file to accomplish this second
task. In both cases, you'll link all these keys to the same database records to which VENDORS is
linked.

Here is the command file which makes the Part Name field into keys, and links them to the database:

INPUT INFOS INDEX IS "VENDORS",
PATH IS "NAME",

*, RECORD,
RECORDS ARE 50 CHARACTERS.

OUTPUT INFOS INVERSION IS "PARTS",
PATH IS "NAME",

KEY 30/40.
COPY.
END.

The IN PUT IN FOS declaration lets you gain access to the database records through the NAME
subindex keys. You could just as easily gain access to these records through the NUMBER subindex.
In the OUTPUT IN FOS declaration, you specify the INVERSION option because you'll link keys in
PARTS's NAME subindex to the same database records to which VENDORS is linked" The PATH
IS clause tells the utility to put the INFOS II keys in the NAME subindex. The KEY declaration
defines which range of characters in the database records will become the IN FOS II keys. Because
character positions 30 to 40 are the Part Name field, this field becomes the INFOS II key.

Figure 8-20 shows how the NAME subindex of PARTS is linked to the database after you execute
the command file.

093-000155 Licensed Material-Property of Data General Corporation 8-27

INFOS II Index VENDORS INFOS II Index PARTS

I NAME I NUMBER I I NAME I NUMBER I
/ '" / ~

Vendor Name / ~ Vendor Number Part Name / ~
BONO co. I SMERSH I I VN007 I VN008 I I FUSE I TIMER I I

/
L

/
V

Sondeo. VNOO7 fuse PN6969

Figure 8-20. VENDORS and PARTS. after First Command File Executes

Here is the command file which makes the Part Number field into keys, and links them to the
database:

INPUT INFOS INDEX IS "VENDORS",
PATH IS "NAME",

*, RECORD,
RECORDS ARE 50 CHARACTERS.

OUTPUT INFOS INVERSION IS "PARTS",
PATH IS "NUMBER",

KEY 45/50.
COPY.
END.

8-28 Licensed Material-Property of Data General Corporation 093-000155

Part Number

I

This command file is very similar to the previous one. The IN PUT IN FOS declaration is the same.
The OUTPUT IN FOS declaration specifies the INVERSION option because the IN FOS II keys will
bc linked to the same database to which VENDORS's keys are linked. The PATH IS clause tells the
utility to put the INFOS II keys in the NUMBER subindex of PARTS. The KEY declaration defines
the range of characters in the database records which will become the IN FOS II keys. Because
character positions 45 to 50 are the Part N umber field, this field becomes the IN FOS II h~y.

Figure S-21 shows you how the NAME and NUMBER subindexes are linked to the database after
you execute both command files.

INFOS II Index VENDORS INFOS II Index PARTS

I NAME I NUMBER I I NAME I NUMBER I
7 " 7 '" Vendor Name / ~ Vendor Number Part Name / ~ Part Number

BONO Co·1 SMERSH I I VN007 I VNOOa I I FUSE I TIMER I I PN6969I PNS421 I

L V--
/ ~

/ --------
Bond eo. VNOO7 fuse PN6969 ~

Figure R-21. VENDORS and PARTS, after Second Command File Executes

End of Chapter

093-000155 Licensed Material-Property of Data General Corporation 8-29

Chapter 9

Report Writer

Th is cha pter descri bes

• the interface between Sort/Merge and Report Writer

• the .QFORMS and .RFORMS files that Report Writer uses

• RWCHECK, a Stand-Alone Compiler

If you know the Report Writer of INFOS II QUERY with Report Writer, you already know the
Report Writer of Sort/Merge. They both work the same way.

Report Writer takes data and puts it into a report. Figure 9-\ shows a sample report made from
IN FOS II database records. Two files control how Report Writer makes a report: .QFORMS and
.RFORMS. The .QFORMS file contains a qformat and the .RFORMS file contains an r.format.
Basically, a qformat defines fields in records; an rformat defines a report's layout by selecting how
and where to use those fields.

CAUCUS CAR PARTS

Dollar Value of Warehouse Inventory 12/09/80

Description Part Number Stock Cost Dollar Value

eM 056793 0 39.50 $0.00
Value ofCM Stock = $0.00

BRA PO 057211 3 13.12 $39.36
057217 5 13.26 $66.30
057219 7 13.21 $92.47

Value of BRA PO Stock = $198.13

HTRBX 061523 36.00 $36.00
Value of HTR BX Stock = $36.00

BRALN 062251 4 4.11 $16.44
Value of BRA LN Stock = $16.44

WHLCY 066234 2 10.11 $20.22
Value ofWHL CY Stock = $20.22

Total Value of Warehouse Stock $270.79

Figure 9-1. Sample Report

093-000155 Licensed Material-Property of Data General Corporation 9-1

Interface between Sort/Merge and Report Writer
The Sort/ Merge OUTPUT REPORT declaration lets you interface with Report Writer. The
OUTPUT REPORT declaration's format is

OUTPUT REPORT IS "name 1",

[BLOCKS ARE integer CHARS,]

[ELEMENTS ARE integer BLOCKS,]

RFORMAT IS "name2" FROM FILE "name3"

[, QFORMS FILE IS "name4"] .

name1 is the output file. I t accepts records from either IN FOS II or AOS files, and it
contains the report.

name2

name3

name4

is the name of the rformat contained in the .RFORMS file. The rformat is a
group of statements which governs report layout.

is the name of the .RFORMS file, without the .RFORMS extension.

is the name of the .QFORMS file. You don't have to include the clause containing
name4 if the .RFORMS and the .QFORMS files have the same name before the.
(period).

BLOCKS ARE Clause
The BLOCKS ARE clause states the number of characters (bytes) in a physical block of a magnetic
tape file. Use this clause if the file that you're writing to doesn't have the default AOS blocksize of
2,04g characters.

Specifying a large block size reduces I/O time and saves tape.

ELEMENTS ARE Clause
The ELEMENTS ARE clause describes the file's size in physical units on the disk. The default
clement size is one (512 bytes). See "Increase Element Size" in Appendix E for an explanation of why
you would want to specify the element size.

The .QFORMS File
Report Writer uses qformats, contained in a .QFORMS file, to define the structure of records. In this
section, we give you the information you need to build a .QFORMS file.

Building the. QFORMS File
You store the data definitions for your file as text in the < name> .QFORMS file, where < name>
is name4 in the OUTPUT REPORT declaration format. For example, CAUCUS.QFORMS
contains the data definitions for the file CAUCUS. You can build this text file from the Cli with a
text editor.

9-2 Licensed Material-Property of Data General Corporation 093-000155

Syntax of the. QFORMS File
The .QFORMS file consists of one or more qformats. You may define many different qformats in the
.QFORMS file. These qformats can represent unique record types or different views of the same
record type. I n either case, each qformat includes a list of field descriptions that contain the following
information:

TITLE A name for the field, up to 30 characters in length.

START BYTE The byte on which the field starts.

END BYTE The byte on which the field ends.

TYPE The data type within the field (an optional entry).

NOTE: The system assumes that the field is in ASCII characters unless you specify otherwise.

A qformat consists of three types of lines: one START _FORM AT line, one or more field descriptor
lines, and one END_FORMAT line.

Although you do not have to position these lines in specific columns, you must use TAB to delimit the
fields, and you must use NEW LINE () to delimit lines. We represent the TAB character as
< tab> .

START_FORMAT Line

The first line of each qformat is the START_FORMAT line. This line contains two fields: the
keyword START_FORMAT, followed by a tab, and the qformat name that contains up to 32
characters, including blanks, (without tabs) and followed by aNEW LIN E. For example:

START_FORMAT<tab>THIS IS A NAME)

Field Descriptor Lines

Each qformat contains from one to 30 field descriptor lines after the START_FORMAT line. The
field descriptor lines contain either three or four fields, depending on whether you include the "type"
field for non-ASC II formatting.

The first field is a title of up to 30 characters (not including a tab), followed by one or more tabs. The
second field contains the start-byte integer, followed by a tab. The third field contains the end-byte
integer followed by either a tab if you include an optional data type, or a NEW LINE if you do not
include an optional data type.

Both start- and end-byte fields may contain leading blanks or tabs so that you can set up the integers
in columns.

093-000155 Licensed Material-Property of Data General Corporation 9-3

The fourth, optional field is the data type field containing one of the following data types:

DECIMAL TSO
DECIMAL LSO
DECIMAL LSS
DECIMAL TSS
DECIMAL
BIN INTEGER
BIN FLOAT
PACKED
ASCII

Where

TSO is Trailing Sign Overpunch.
LSO is Leading Sign Overpunch.
LSS is Leading Sign Separate.
TSS is Trailing Sign Separate.

The data type you specify must be followed by a NEW LINE.

Remember, if you do not specify an optional data type (see "Non-ASCII Formatting," below), then
the field will be ASCII by default. For example:

FIRST FIELD<tab> 1 <tab> 15)

SECON [) FI ELD < tab.tab > 22 < tab> 28 < tab> ASCII)

LAST ON E < tab tab > 51 < tab> 56 < tab> DECI MAL LSS)

Even though only the second field is specifically designated, both the first and second fields are ASCII
data types. The last field is a DECI MAL LSS data type.

END_FORMAT Line

After specifying all the desired field descriptor lines, you must include a last line that says
END_FORMAT, followed by a NEW LINE (). For example:

Example
Let's look at a student record format and a qformat which defines and labels fields in the records that
the format represents.

The records' format is

10 17 27 33 41 49 52 57 62

Last Name First Name Teacher Balance Due

Qformat RECORD is

START_FORMAT
LAST NAME
FIRST NAME
TEACHER
GPA
BALANCE DUE
END_FORMAT

9-4

RECORD
1 10
17 27
33 41
49 52
57 62

Licensed Material-Property of Data General Corporation 093-000155

In this qformat, the first field descriptor line defines bytes I through 10 as a field, and labels it lAST
NAME. Thus, the start-byte of lAST NAME is I, and its end-byte is 10. Qformat RECORD
similarly defines and labels the other fields: FIRST NAME, TEACHER, GPA, and BALANCE
DUE. We'll use qformat RECORD again in the summary example which concludes this chapter.

Setting Up a . QFORMS File

Selection Procedures

Keep in mind that you may arrange field descriptor lines in any order. This is useful when you want
fields printed in a different order than they appear in the original record.

Non-ASCII Formatting

It is easiest to use qformats when all the data records are ASCII values. Because ASCII is the default
display mode, you name only the different byte ranges that you need to access.

Many files, however, especially those created and maintained by COBOL programs, contain
non-ASCII data. If you were to display these records directly on a display terminal without changing
the data type, they would be visually incomprehensible. By using the appropriate field description
types, Report Writer converts the values into readable form (numbers).

To use this Report Writer feature for converting non-ASCII data, you will have to know how many
bytes are in the internal representation of each data type. Then, you can correctly position the start­
and end-bytes of the respective fields.

Size and Scope of the. QFORMS File
Your .QFORMS file may contain up to ten separate qformats. If you need more space for qformats
(without deleting any you have already defined), you can create another .QFORMS file using the
Cll.

Error Messages
R WCH EC K, a Stand-Alone Compiler, checks qformat syntax for errors. I f it detects an error,
RWCHECK sends one of the messages listed in Appendix C. We'll discuss RWCHECK after we
explain how to construct a .RFORMS file.

The .RFORMS File
Report Writer takes IN FOS II database or AOS records and rearranges them into a formatted
report, along with whatever headings, page breaks, and computations you want the file to contain.

An rformat, contained in a .RFORMS file, defines the eventual report that Report Writer produces.
I n this section, we describe the creation of rformats in detail, and give you the reference material
you'll need to build the .RFORMS file.

As you read this section, consider how Report Writer uses the rformat. When invoked, Report Writer
reads through the rformat, making note of each different descriptor line and the action each requires.
It then reads one record at a time and performs the actions the rformat has requested.

You should understand qformats before reading this section. If you are not familiar with the qformats
designed for your system, or with the .QFORMS file and how to build it, see the section, "The
.QFORMS File."

Building the. RFORMS File
You create rformats in a Cli text file called < name> .RFORMS, where < name> is name3 in
the OUTPUT REPORT declaration format. You can build this text file from the Cli with a text
editor.

093-000155 Licensed Material-Property of Data General Corporation 9-5

Rformat Definition
An rformat consists of a number of different format descriptor lines. Each line has a limited number
of fields, separated by tabs. As we describe each line, you'll see how flexible rformat definition is. You
must follow certain simple rules when creating rformats; however, the resulting reports can be as
complex or simple as you want.

Rformats must begin with a START_REPORT line and end with an END_REPORT line. As we
shall see, between these first and last lines, the other types of format descriptor lines may appear.
Blank lines may appear anywhere within the rformat. In fact, you should feel free to use blank lines
often as a means of grouping statements.

As we explain the individual format descriptor lines, remember that these lines tell Report Writer
what actions to take, the types of information to display, and the size and shape of the report.

The command line description and terminology used in defining rformats are

UPPERCASE LETTERS Keywords

lowercase letters Variables

< tab> TAB: delimiter between arguments

NEW LINE: end-of-line delimiter

A data field described in the qformat file

A data field described by a DEFIN Eline

We will introduce son1e basic rules about creating rformats here, and then explain them in further
detail later on.

Although there are various Report Writer format descriptor lines that you must include in the
rformats, the order of these lines is highly flexible. Just follow the basic rules, and Report Writer will
check for syntax errors.

• The rformat always begins with a START_REPORT command and ends with an END __ REPORT
command.

• The QFORMAT command line must precede any command line that makes reference to a
data_item.

• You must define a field in a DEFINE line before using it in any other line.

• You can define a given def_item only once per rformat.

• Any item (def or data) can only have one PICTURE per rformat.

• COL/LIN and LIN/PAGE command lines each appear only once in an rformat.

• A DETAIL command line for an item must precede any BREAK command line calling for
underlining that item.

START_REPORT Line
The first line of each rformat is the START_REPORT line. It signals the beginning of an rformat by
naming it.

9-6 Licensed Material-Property of Data General Corporation 093-000155

This line contains two fields: the keyword START_REPORT, followed by a tab, and the name of the
report which contains up to 32 characters followed by a NEW LINE. For example:

START_REPORT <tab> report_nameJ

Sort/Merge cannot handle rformat names that have blanks (for example, Caucus Car Parts). If an
rformat name contains blanks, abbreviate name2 (in the OUTPUT REPORT declaration) by
eliminating the blanks.

Keeping the rformat name unique is a good idea. Let's say you have one rformat called
STOCK_VALUE and one called STOCK_INVENTORY. If you try to refer to either rformat by
STOCK, the Report Writer will interpret it as the first one defined in the .RFORMS file. Therefore,
either use one word names for rformats or make sure the first word of the name is unique.

Comment Line
I f you want to make notes when building an rformat, use the comment line. The comment line gives
no instructions to Report Writer; it's for documentation only.

The comment line consists of an exclamation point (!) in the first column followed by your comment.
You can include any number of comment lines in a rformat. For instance, the person at Caucus Car
Parts who built the STOCK VALUE rformat included the following comments:

! This produces a report with the total value of the current
! warehouse stock

These comments will not show up on the report produced by this rformat. However, anyone who looks
at the .RFORMS file will be able to read them.

QFORMA T Line
The QFORMAT command line specifics which qformat in the .QFORMS file you want the Report
'Nriter to use when it accesses the records. Each qformat defines different data items. The
QFORMAT line allows you to refer to the various data items by the names used in one of these
qformats.

This line consists of two fields: the keyword QFORMAT, followed by a tab, and the qformat name,
followed by aNEW LIN E.

For example:

QFORMAT <tab> QNAMEJ

Lines Per Page
You can specify how many lines per page you wish the report to contain. The default is 60 lines per
page; the minimum allowed is 30. Remember that your system's line printers may have different top
and bottom margins. For instance, if a line printer is automatically set to leave a three line margin at
top of the page, given a 66 line page, only 63 lines are available for printing. Check with your system
manager when and if you need to adjust these margins, or see The AOS Command Line Interpreter
User's Manual (093-000122) for more details about the Forms Control Utility.

The line consists of two fields: the keyword LIN/PG, followed by a tab, and the number you wish to
specify, followed by a NEW LINE. The LIN/PG line takes the following form:

LIN / PG <tab> nJ

where n is the number of lines per page.

093-000155 Licensed Material-Property of Data General Corporation 9-7

Columns Per Line
You can specify the width of the printed report page, In number of characters. The default is 80
characters.

This line also has two fields: the keyword COL/LIN, followed by a tab, and the number you wish to
specify, followed by a NEW LINE. The COL/LIN line takes the following form:

COL/LIN <tab> n!

HEADER Lines
You use HEADER lines to define report and column headers. HEADER lines tell Report Writer to
display header information at the top of each page of the report. In other words, if the printed report
runs more than one page, the header information appears on each page.

You can define up to ten lines of header information in an rformat. You don't have to define them in
any particular order, or all together. Report Writer will check that items on the same HEADER line
do not overlap.

The HEADER line consists of four fields: the keyword HEADER, the line number on which the
header information is to appear, the location on the line where the header information is to appear,
and what header information is to print there. A tab follows the first three fields, a NE\V LINE
follows the last field. A HEADER line would look like the following:

HEADER <tab> line # <tab> loc <tab> item!

line # is

loc is

item is

number of the H EADER line 1 through 10

C centered
n start at byte n
-n start n bytes from the end

"literal"
'literal'
data~item

DATE (today's date)
PAGE (the current page number)

The P AG E field is nine characters long. The DATE field is eight characters long.

You can have more than one H EADER line for the same line number; Report Writer combines these
specifications to determine the final line. For instance, if you want to define five column heads on the
same line, your HEADER lines might look like the following:

HEADER 6 5 "Description"
HEADER 6 20 "Part Number"
HEADER 6 35 "Stock"
HEADER 6 45 "Cost"
HEADER 6 60 "Dollar Value"

Although you have used five H EADER lines, you have told the Report Writer to actually display only
one line of HEADER information.

These five HEADER lines do not need to appear in this order or even contiguously. In fact, in the
rformat called STOCK_VALUE, these lines are scattered throughout the file.

If you have more than one line of header information in your report, you do not have to specify all the
line numbers. If you skip a line number, Report Writer will interpret it as a blank line in your printed
report. For instance, if you have three lines of header information defined to appear on lines 1, 3, and
5, Report Writer will interpret lines 2 and 4 as blanks. After all the lines of header information have

9-8 Licensed Material-Property of Data General Corporation 093-000155

been displayed, Report Writer skips one more line before displaying the detail information. You do
not have to specify a blank line between the header information and the detail information; Report
Writer automatically does it for you.

If you specify a data_item as part of your header information, the value of that specified item will be
the same as its value on the first detail line for that page. In other words, Report Writer finds that
item's value from the same record it uses for the first line of detail information in the report.

DEFINE Lines

You use DEFINE lines to define temporary variables which are considered part of the record for the
duration of the Report Writer process. In effect, you're asking Report Writer to temporarily extend
the record to include new items. The Report Writer performs calculations to derive these temporary
items.

This line consists of three fields: the keyword DEFINE, followed by a tab, a name for the defined
item, a tab, a simple arithmetic expression, and a NEW LINE. The DEFINE line takes the following
form:

DEFINE <tab> def_item <tab> expression)

An expression involves exactly one operator (+, - /' * %) and any two of the following:
da ta_items, def_items, and numeric constants.

The temporary variable defined in the DEFINE line is called a def_item. The results of the
calculations resulting from a DEFINE line are not retained from record to record; they are calculated
anew for every record. You may define up to ten temporary variables.

For instance, if an input record has the fields, PART _N BR, QUANTITY, and PRICE, you might
use the following DEFINE lines:

DEFINE COST
DEFINE PROFIT

PRICE • QUANTITY
2 % COST

In this case, you can ask Report Writer to display any of the six items, including COST and PROFIT,
at some point in the report.

DEl AIL Lines
You use DETAIL lines to specify which items to print from each record. A DETAIL line tells Report
Writer what to include as detail information. You may define up to 5 lines of DETAI L information
per report. As with the HEADER line, you may specify more than 5 DETAIL lines in order to create
5 lines of detail information. Report Writer checks for overlapping fields on every detail line.

The DETAIL line consists of four fields: the keyword DETAIL, the number of the DETAIL line (\
through 5), where on the page the detail information will appear, and the item you are specifying. The
first three fields are followed by a tab; the item itself is followed by a NEW LINE. The DETAIL line
takes the following form:

DETAIL <tab> line # <tab> loc <tab> item)

line #

loc is

item is

093-000155

is number of the DETAIL line \ through 5

C centered
n start at byte n
-n start n bytes from the end

"literal"
'literal'
data_item
def_item

Licensed Material-Property of Data General Corporation 9-9

In the rformat called STOCK_VALUE, five different items from the same record were needed for
the report. A different DETAIL line is used for each item, even though all five items will appear on
the same line in the report. The same number, 1, appears in each DETAI L line, indicating it is detail
line I. This rformat could have defined up to four more lines of detail information.

PICTURE Lines
You use the PICTURE line to specify the way you want a particular item to appear in the printed
report. If you do not define a PICTURE line, Report Writer outputs any numeric data in a 14
character field with 10 signficant digits and two digits to the right of the decimal. By numeric data we
mean all data_items described as numbers in the qformat, and all def_items.

The PICTURE line consists of three fields: the keyword PICTURE, followed by a tab, an item name
followed by a tab, and the picture clause, followed by NEW LINE. The PICTURE line takes the
following form:

PICTURE <tab> item <tab> pic)

item is

pic is

a data_item
a def_item

a picture clause

PICTURE allows you to specify a field format using a subset of the PL/l and COBOL picture
facilites. Report Writer recognizes seven symbols, as explained in Table 9-1.

A $, if present, must always precede 9s and Vs. Only one V is legal per picture. An S may only be at
either end of a picture, while floating Ss are always at the beginning. Floating signs (S) imply no legal
$s and floating dollar signs ($) imply one S at most. Commas (,), periods (.), and slash(:s (/) are
simply cosmetic characters and may go anywhere in the picture.

For example, here are five different picture clauses for the signed number -43.20:

SSSS9.V99 would result in -43.20
S999.V99 would result in - 43.20
99V.99S would result in 43.20-
S99V99 would result in -4320
S9999 would result in - 43

Table 9-1. Picture Characters

Picture
Character

Symbol
Definition

Numeric digit

Usage

Indicates a numeric digit, Olhrough 9. 9.

$

V

S

DoUarsign . Indicates a currency symbol or a numeric digit.

Floating decimal point Indicates decimal point location.

Signed number Indicates a sign or a digit.

I Slash Indicates a slash character.

Period Indicates a period character.

Comma Indicates a comma character:

9-10 Licensed Material-Property of Data General Corporation 093-000155

BREAK Lines

A BREAK line tells Report Writer to suspend all other actions long enough to take a specified action.
There are several actions which you may optionally specify

• print a line of summary information.

• suppress repeated fields in DETAI L lines (NO_REP).

• skip to a new page, or to a new line (POST_BREAK_SPACE, PRE_BREAK_SPACE,
PAGE_EJECT).

• underline specific columns (UNDERLINE).

Report Writer performs the break action when it encounters a change in the value of a specified data
item. Any summary information printed by a break action can take only one physical line on the
report. However, you can specify BREAK actions on up to five different data items. In other words,
you can tell Report Writer to take a break action when up to five data values change.

A BREAK line can take one of two different syntactic forms: in one form it tells Report Writer to
print summary information at the time of the break action; the other form tells Report Writer about
optional printing or spacing features.

I n either case, the first two fields consist of the keyword BREAK, followed by a tab, and the name of
the data item whose changing value will cause the break action to occur, also followed by a tab.

The BR EA K line takes either of the following forms:

BREAK <tab> data_item <tab> loc <tab> itemJ

or

BREAK <tab> data_item <tab> print_opJ

loc is

item is

093-000155

C centered
n start at byte n
-n start n bytes from the end

"literal"
'literal'
data_item
COUNT
TOTAL (data_item)
AVG (data_item)
MIN (data_item)
MAX (data_item)
def_item
TOTAL (def_item)
AVG (def_item)
MIN (def_item)
MAX (def_item)

NO_REP
POST_BREAK_SPACE
PRE_BREAK_SPACE
PAGE_EJECT
UNDERLINE (data_item)
UNDERLINE (def_item)

Licensed Material-Property of Data General Corporation

The keyword PRE_BREAK_SPACE tells Report Writer that you want a blank line before any
summary information. The keyword POST _BREAK_SPACE directs Report Writer to put a blank
line after printing summary information. PAGE_EJECT tells Report Writer to eject a page after all
break actions have been taken. And, UNDERLINE tells Report Writer to underline the specified
item.

Note that there IS not a tab between the keyword and its argument (for instance UNDERLINE
(data_item)).

The data_item specified in a BREAK line does not have to appear in a DETAIL line. Note, however,
to make sense, the records should be sorted somehow on this key. In other words, if the records are not
naturally sorted by the specifed data_item, any computed subtotals would be meaningless.

I f multiple break actions occur after the same DET A I L line, the lines of break information are
printed in the order in which they appear in the rformat. All break actions are triggered'after the last
detail and before any total lines.

In addition to printing data_items, def_items, and constants, however, Report Writer also allows you
to print summary items (total, average, minimum, maximum, and count) of data_items and
def_items as break information. The summary item calculations are done by Report Writer; you can
not maintain these calculations. Report Writer will check that no fields overlap on any line of break
information.

I f the BR EA K line describes optional printing or spacing features, a keyword will generally suffice to
tell Report Writer what is desired. However, UNDERLINE requires a reference to a DETAIL line
field as well, so Report Writer knows what to underline.

TOTAL Lines
TOT A L lines tell Report Writer to print summary information at the end of the report. Total
information can occupy up to 10 lines on the report and can include calculations performed by Report
Writer.

TOTAL lines consist of four fields: the keyword TOTAL, the TOTAL line number, the locations at
which the information appears, and the information you want in the TOTAL line. The first three
fields are each followed by a tab; the last field is followed by aNEW LI N E.

The TOT A L line takes the following form:

TOTAL <tab> line # <tab> loc <tab> item)

line # is

loc is

item is

9-12

the TOTAL line number

C centered
n start at byte n
-n start n bytes from the end

"literal"
'literal'
data_item
COUNT
TOTAL (data_item)
AVG (data_item)
MIN (data_item)
MAX (data_item)
def_item
TOTAL (def_item)
AVG (def_item)
MIN (def_item)
MAX (def_item)

Licensed Material-Property of Data General Corporation m13-000155

Total information can include data_items, def_items, summary information for these items, and
constants. Report Writer does any necessary calculations required by summary items, and checks that
data fields don't overlap on the report's total information lines.

Although total information appears on the report only once, at the end of the report, you can use
multiple TOTAL lines if the total information includes multiple fields. Total information can occupy
up to 10 lines on the report.

END_REPORT Line
The last line of an rformat is always an EN D_REPORT line. It signals the end of the rformat.

This line consists of one field, the keyword, END_REPORT, followed by a NEW liNE.

For example:

Users of INFOS II QUERY with Report Writer Please Note
Sort/Merge's report writer neither supports the INFOS II QUERY with Report Writer SORT lines
nor accepts them in an rformat. Sort your data by using Sort/Merge command file statements.

Designing Reports
The various format descriptor lines we've just described make up an rformat. Some of these lines may
appear once per rformat, others may appear many times, and some you may not need at all. In fact,
you can define an rformat with as little as a START_REPORT line, an END_REPORT line, and
one DETAI l W1e,..~ or just one BREAK line or just one TOTAL line. As long as you have the starting
line and the ending line, and at least one of these other lines, you'll have a legal rformat.

As we've said before, you use a text editor to define an rformat. Once you've entered the various
format descriptor lines, making sure to follow the simple rules associated with each, you can verify the
rformat's syntax using RWCHECK, the Stand-Alone Compiler.

Before using your newly designed rformat to produce a report, it's a good idea to produce a sample
page. I n addition to verifying the syntax of any rformat you've created, RWCHECK can also provide
a sample report. You can see what the report will look like; if you're not satisfied with the results, you
simply edit the rformat. You can repeat these steps as many times as necessary to produce a
satisfactory report format.

Size and Scope of the. RFORMS File
Your .RFORMS file may contain up to ten different rformats. If you try to define more than ten
rformats in one .RFORMS file, the Report Writer won't recognize them. If you need more space for
your rformats, (without deleting any you've already defined), you can create another .RFORMS file
using the Cll.

093-000155 Licensed Material-Property of Data General Corporation 9-13

RWCHECK - The Stand-Alone Compiler
R WC H EC K is an interactive utility that verifies the syntax of qformats and rformats. It also provides
a sample page of your report.

You can use R WCH ECK in batch mode, as well as interactively, depending on the switch used when
invoking it. You invoke RWCHECK from the Cll, using the following syntax:

I R = rformat name
IS = filename
IE= filename

RWCHECK IL= listfile
IQ=name.QFORMS
IA

< name> (.RFORMSJ

IN

< name> .RFORMS

I R = rformat name

IS= filename

IE= filename

I L = listfile

IQ=name.QFORMS

IA

IN

is the name of the file containing defined rformats.

allows you to specify the particular rformat name within the
.RFORMS file you want verified.

allows you to designate the filename to which you want a sample
page sent.

sends any errors and the lines on which these errors occur to
filename.

sends the entire rformat and any errors to a named /istfiJe.

allows you to specify a .QFORMS file that is not < name>
.QFORMS.

specifies that all rformats in the named .RFORMS file are to be
validated.

specifies no interaction. No questions will appear on the screen
during the RWCHECK session.

Keep in mind the following rules when you use the switches:

• You can not use a I A switch with a I R switch.

• The IN switch also requires that you use a IR or a I A switch and that you specify the .RFORMS
file as an argument.

• I f you do not use the I l switch, all errors are sent to @ OUTPUT.

• The IS switch tells the R WCH ECK to create a sample page and send it to the named file. If you
don't use this switch, you must indicate whether you want a sample page and where you want it sent
during the RWCHECK session.

When you invoke the RWCHECK, an interactive dialog begins (except when you use the IN switch).
During this dialog, R WCH ECK asks various questions and displays the default answer in brackets
([]).

9-14 Licensed Material-Property of Data General Corporation 093-000155

The only argument used with the RWCHECK command is the .RFORMS filename. If you do not
include the argument, R WCH ECK asks you for the name of a file. For example:

) X RWCHECK!
RFORM5; Filename:

When you type the .R FOR MS filename, R WCH ECK session continues

RFORMS Filename: CAUCUS!
Would you like to see a list of report format names? f N; Y!
STOCK_VALUE
OLDIES
Report Formal Name: STOCK_VALUE!

If there arc any errors, a message appears telling you on which line the error exists. For example, let's
say you defined the following rformat, called BOG US.

START_REPORT BOGUS
BREAK PRE_BREAK_SPACE
END_REPORT

On first glance it looks right. You've got the starting and ending lines and at least one BREAK
command line. However, when you verify it with R WCH ECK, the following information appears on
your terminal:

START _REPORT BOGUS
BREAK PRt'_BREAK_SPACE
*** Wrong numher of arguments for this command: BREAK LINE: 2
END_REPORT
*** There MUST he a detail. total. or hreak line somewhere.
*** TOTAL ERRORS: 2

RWCHECK indicates an error in the BREAK line. In addition, since this is the only format
descriptor line in the rformat (other than the starting and ending lines) and it's erroneous, it doesn't
register as a legal format descriptor line. Therefore, you receive the second error message.

If you've defined an error-free rformat, RWCHECK responds with

No errors detected. Want a sample page? fY;

(Note that you get this question only if you omitted the /S switch when invoking the RWCHECK.)

If you answer Y, the RWCHECK then asks

Name a file ... an)·file: f @ OUTPUT;

You can then indicate the name of a text file to which you want the sample page sent, or you can take
the default and let the RWCHECK send the sample page to@ OUTPUT.

Whether you want a sample page or not, R WC HECK next asks if you want to validate another
rforma t:

Do you wish to validate anot her report format? f N;

If you do, RWCHECK repeats the entire dialog. If you don't, the session ends, and you're back in the
CLI.

093-000155 Licensed Material-Property of Data General Corporation 9-15

Summary Example
The Prolman Institute for Gifted Children (a small private school) wants a report of its tenth grade
class. We show you what's needed to produce this report. We start first with the unsorted file of
student records, and then explain the command file, qformat, and rformat you need. After that, we
show a sample report page proquced by R WCH ECK, and end with the finished report.

Each student record states a student's name, teacher, Grade Point Average (G.P.A), and balance of
tuition owed. The format of the 62-character fixed-length records is

10 17 27 33 41 49 52 57 62

Last Name First Name Teacher Balance Due

I nput file G RA DE_10, which contains these records, is

BOURKE JARON KATZ 3.87 000.00
GREEN PAMELA BERGERON 3.33 250.00
JERNSTEDT KAREN MCCARTHY 3.65 175.00
CLARK ROBERT MCCARTHY 3.29 750.00
HUMPHREYS PATRICIA BERGERON 3.10 500.00
BOURKE ANDREW KATZ 3.90 000.00
MARTIN LARRY BERGERON 3.75 600.00
NORTON PAMELA MCCARTHY 4.00 000.00
HARRIS LINDA KATZ 3.75 375.00
LOPEZ ANNA-MARIE BERGERON 3.00 500.00
ROSE SUSAN BERGERON 3.50 250.00

From these records, the Institute wants to create a report containing

• records sorted first by teacher and second by G.P.A.

• titles over each column

• average G.P.A for each class

• average student G.P.A.

• total balance due

The following command file tells the utility how to sort the records and directs it to the appropriate
qformat and rformat.

INPUT FILE IS "GRADE_10", RECORDS ARE 63 CHARACTERS.
OUTPUT REPORT IS "G10_REP",

RFORMAT IS "FORMATTER" FROM FILE "G 1 0".
KEY 33/41.
KEY 49/52 DESCENDING.
SORT.
END.

Let's analyze this command file. The KEY declarations make the Teacher field (character positions
33 through 41) the primary key, and make the G.P.A. field (character positions 49 through 52) the
secondary key. The OUTPUT REPORT declaration tells the utility to send the report to output file
G 10_REP, and to use rformat FORMATTER, contained in .RFORMS file G 1 0. Because we also
named the .QFORMS file G 10, the utility by default uses the qformat RECORD of G 10.QFORMS.

9-16 Licensed Material-Property 01 Data General Corporation 093-000155

We saw qformat RECORD earlier in this chapter when we discussed qformats. Again, qformat
RECORD is

START_FORMAT
LAST NAME
FIRST NAME
TEACHER
GPA
BALANCE DUE
END_FORMAT

RECORD
1 10
17 27
33 41
49 52
57 62

This qformat's field descriptor lines amount to a statement of the character positions of each field in
the student records.

Rformat FORMATTER, which uses qformat RECORD, is

ST AR T _REPORT FORMATTER
QFORMAT RECORD

HEADER 4 C "Prolman Institute for Gifted Children"
HEADER 6 C "Grade Ten Report"

HEADER 9 "Teacher"
HEADER 10 "*******,,
DETAIL 1 1 TEACHER
BREAK TEACHER PRE_BREAK_SP ACE
BREAK TEACHER POST _BREAK_SP ACE
BREAK TEACHER POST _BREAK_SP ACE
BREAK TEACHER 3 "CLASS A VERAG E = "
BREAK TEACHER 36 AVG (GPA)

HEADER 9 19 "Last Name"
HEADER 10 19 "*********,,
DETAIL 1 19 LAST NAME

HEADER 9 30 "First Name"
HEADER 10 30 "**********,,
DETAIL 1 30 FIRST NAME

HEADER 9 45 "G .P.A."
HEADER 10 45 "******,,
DETAIL 1 46 GPA

HEADER 9 55 "Balance Due"
HEADER 10 55 •. ***********"
DETAIL 1 57 BALANCE DUE

TOTAL 1 "Average Student G.P.A. = "
TOTAL 36 AVG (GPA)

TOTAL 2 1 "Total Balance Due = "
TOTAL 2 49 TOT AL (BALANCE DUE)

END_REPORT

093-000155 licensed Material-Property of Data General Corporation 9-17

Now let's analyze this rformat. Notice that we grouped lines of the rformat together and separated
these groups by a blank line. This makes the rformat easier to read. It also lets us refer to the: rformat
by groups of lines, for example, the first group, the next group, etc. You might want to skip over the
following explanation of the groups and procede to compare FORMATTER directly with the sample
page produced by RWCHECK (Figure 9-2) and with the final report (Figure 9-3).

The first group names the rformat in the START_REPORT line and names the qformat In the
QFORMAT line.

The next group tells Report Writer to center the report's title ("Prolman Institute ... Report").

The teacher group performs the greatest number of functions of all the groups. First, it starts the
column title "Teacher" in column 1 of the line printer page, 9 lines down. Second, it underscores
"Teacher" with asterisks (*). Third, it places the teachers (already sorted by Sort/Merge) in the
"Teacher" column. Report Writer knows where to find the teachers because the data_item
TEACHER in the DETAIL line was defined in the qformat RECORD. Compare where Report
Writer places the teachers in the report (column numbers 1 through 7) with where the teachers
appear in input file GRADE_IO (character positions 33 through 41). Remember that you can take a
field from a record and put it anywhere you want in the report. And fourth, this group's BREAK lines
tell Report Writer that you want some action taken before the teacher changes in the "Teacher"
column. For example, one teacher change is from Bergeron to Katz. The action is to print "Class
Average = " followed by the average for one teacher's class. Report Writer calculates the class
average for you by using A VG, one of many functions listed earlier in the section "BREAK Lines."
The BREAK line which contains the PRE_BREAK_SPACE print option tells Report Writer to skip
a line before it prints a class average. The two BREAK lines which contain the
POST _BREAK_SPACE print option tell Report Writer to skip two lines after it prints a class
average.

The next four groups place the "Last Name," "First Name," "G.P.A.," and "Balance Due'" column
titles on the same line number as "Teacher." Then they underscore the titles with asterisks (*) and
place the appropriate field under each title.

The next to last and last groups tell Report Writer to print summary information about all the
records. The next to last group tells Report Writer to print "Average Student G.P.A." and then print
the average. Notice that we use the same A VG function which the last BREAK line of the Teacher
group uses. We get the average of all student G .P.A.s instead of the average of only all students in one
class, because this time A VG appears in a TOTAL line. The last group tells Report Writer to print
"Total Balance Due" and then the total.

The END_REPORT line signals the end of FORMATTER.

Before you execute the command file (and after you've corrected any errors spotted by RWCHECK),
you can use R WCHECK to get an approximate idea of what the final report will look like. The
RWCHECK command line:

RWCHECK / S = SAMPLE)

sends the sample page shown in Figure 9-2 to file SAMPLE.

9-18 Licensed Material-Property of Data General Corporation 093-000155

Prolman Institute for Gifted Children

Grade Ten Report

Teacher Last Name First Name G.P.A. Balance Due
******* **** ***** ********** ****** ***********
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxxx XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxx x XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxx x xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxxx xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxxx XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX xxx x xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX xxx XXX

Class Average = 9999.99

Average Student G.P.A. = 9999.99
Total Balance Due = 9999.99

Figure 9-2. Sample Page Produced by RWCHECK

093-000155 Licensed Material-Property of Data General Corporation 9-19

Finally, after you execute the Sort/Merge command file, you'll find the report shown in Figure 9-3 in
output file G 10_REP.

Prolman Institute for Gifted Children

Grade Ten Report

Teacher Last Name First Name G.P.A Balance Due

BERGERON MARTIN LARRY 3.75 600.00
BERGERON ROSE SUSAN 3.50 250.00
BERGERON GREEN PAMELA 3.33 250.00
BERGERON HUMPHREYS PATRICIA 3.10 500.00
BERGERON LOPEZ ANNA-MARIE 3.00 500.00

Class Average = 3.33

KATZ BOURKE ANDREW 3.90 000.00
KATZ BOURKE JARON 3.87 000.00
KATZ HARRIS LINDA 3.75 375.00

Class Average = 3.84

MCCARTHY NORTON PAMELA 4.00 000.00
MCCARTHY JERNSTEDT KAREN 3.65 175.00
MCCARTHY CLARK ROBERT 3.29 750.00

Class Average = 3.64

Average Student G.P.A. = 3.55
Total Balance Due = 3400.00

Figure 9-3. Pro/man Institute Report

End of Chapter

9-20 Licensed Material-Property of Data General Corporation 093-000155

Appendix A

Command Line and Command File
Statement Summary

This appendix summarizes the utility's command lines and command file statements. We order
statements by type:

• declarations

• imperatives

• massage statements

• EN D statement

Command Line

{

SORT } tie [IT=./ilename}} [{ IL }]

ERGE
j . . /INj //0; /IS; [INTO ou(/ile [FROM if~/ile ... }}

M { Ie = filename IL =./ilename

Command File Statements

Declarations

INPUT FILE

INPUT FILE IS "name"

I
integer CHARACTERS ~

,RECORDS ARE DATA SENSITIVE [DELIMITED BY "literal"} UPTO integer CHARACTERS (

VARIABLE UPTO integer CHARACTERS J

[, BLOCKS ARE integer CHAR A CTERS J I
093-000155 Licensed Material-Property of Data General Corporation A.-1

OUTPUT FILE

OUTPUT FILE IS II name"

(integer CHARA CTERS)

,RECORDS ARE ~ DA TA SENSITIVE £DELIMITED BY "'itera'''} UPTO integer CHARACTERS (

~ VARIABLE UPTO integer CHARACTERS j

[
,{BLOCKS ARE integer CHARACTERS}]

ELEMENTS ARE integer BLOCKS

INPUT INFOS

INPUT INFOS INDEX IS "name"

1
~~:2.. I

,PATH IS "literal": "literal" !.IGNORE LOGICAL DELETES} [,RECORD} [.fTRIMMED}
"literal"- PARTIAL RECORD}
- "literal"

[[

Generic Key Selectors * * {inreger }l] -I
,KEY PADDED TO inreger CHARACTERS WITH "literal" f.HEADER} [.... }

,RECORDS ARE
j integer CHARACTERS }

t VARIABLE UPTO integer CHARACTERS •

**Generic Key Selectors

1

"literal"+ I "literal" +:' 'literal"
"litera"':' 'literal" +
"literal" +: "literal" +
"literal"+­
-"literal"+

A-2 Licensed Material-Property of Data General Corporation 093-000155

OUTPUT INFOS

OUTPUT INFOS {:~e~~SION } IS u name"

[
[RECORD IS { ~nteger/integer }J [PAR TIAL RECORD IS { ~nteger/integer }]

, Integer/LAST' Integer/LAST

[[{ integer } J] , TRIM "literal" FROM KEYS

[- PATH IS [{ ~f;:~:;::J ' [""J]']] ·

OUTPUT REPORT

OUTPUT REPORT IS "name 1",

[BLOCKS ARE integer CHARS,]

[ELEMENTS ARE integer BLOCKS,]

RFORMAT IS "name2" FROM FILE "name3"

[, QFORMS FILE IS "name4"] .

093-000155 Licensed Material-Properly of Data General Corporation A-3

TABLE

FORMATONE

{
integer} [J integer }]
"literal" 't "literal" ...

TABLE name IS {
integer} {integer} [{integer } {integer }]
"literal" - "literal" ' "literal" - "literal" ... [, UNMENTIONED}

{
integer} • {integer} [{integer \ • {integer }]
"literal" • "literal" ' "literal" J • "literal" ...

FORMAT TWO

TABLE name FROM EBCDIC_ TO_ASCII l
~~g::-TO_EBCDIC 1
LOWER_ TO_UPPER (
name ,

IS "literal" = integer [, "literal "=integer}

FORMAT THREE

TABLE name1 IS FILE "name2 ".

A-4 Licensed Material-Property of Data General Corporation 093-000155

KEY

FORMAT ONE

(integer/integer l
integer/LAST

l integerl :integer2)

KEY [~ ASCENDING)]
[COLLATED BY tablenamej) (

(DESCENDING ~

FORMAT TWO

DECIMAL)LSS
{ TSS

{

integer/integer }
KEY TYPE IS

[)~g;l]
. integer1 :integer2

WORK FILE

WORK FILE IS "filename".

Massage Statements

COMPRESS

{

integer/integer}
COMPRESS

integer/LAST

PACKED
BINARY
FLOAT
EXTERNAL FLOAT

LEFT [{integer } FILLED
"literal"

RIGHT [{il1feger } f-ILLED
"literal"

VARIABLE

093-000155 Licensed Material-Property of Data General Corporation

[{
ASCENDING l]
DESCENDING f

USING tablename •

A-5

IF

STOP
SKIP {','filename "1

IF condition [{'6'//} cOl/dlllO/I J ... THEN

REFORMAT massage statement
REPLACE massage statement
REPLACE TABS massage statement
INSERT massage statement
PAD massage statement
TRANSLATE massage statement
COMPRESS massage statement

The format of the condition phrase is:

{

"literal" }
integer/integer
integer/LAST

RECORDCOUNT

INSERT

<
>
<=
=<
>=
=>
<>

:<>:

<
>
<=
=<
=>
>=
<>

INSERT

~ "literal" 1
) RECORDCOUNT ('

~ TAG J

{

"literal" }
integer/integer {
integer/LAST ,

integer

BEFORE integer

IN {
integer/integer}
integer/LAST

AFTER LAST

A-6 licensed Material-Property of Data General Corporation 093-000155

PAD

PAD TO integer CHARACTERS WITH {:'Iiteral"}.
Integer

REFORMAT

REFORMAT {
~nteger/integer} , {~nteger/integer} f. j

~ Integer/LAST Integer/LAST

REPLACE

RE PLACE [{ AALNLy}] IN {. integer/integer \ WITH 2 "literaL 1" integer/LAST ("literaL ".

REPLACE TABS

{
integer/integer} {"literal" \ .

REPLACE TABS IN integer/LAST WITH integer,f. TABSTOPSAREllllegerf.llllegerj ... ;·

093-000155 Licensed Material-Property of Data General Corporation A-7

TRANSLATE

TRANSLATE {
integer/integer}

,integer/LAST USING

(ASCILTO_EBCDIC l
) EBCDIC_ TO--.ASCII
) LOWER_TO_UPPER {
{ tablename ,

Imperatives
[STABLE] [TAG] SORT [DELETING DUPLICATES].

MERGE [DELETING DUPLICATES].

COPY.

END Statement
END.

A-8

End of Appendix

Licensed Material-Property of Data General Corporation 093-000155

Appendix B

Error Messages

This appendix lists error messages you can receive if you make a mistake. There are two major classes
of error messages: semantic and abort. We'll start with the semantic class.

Semantic Error Messages
Semantic error messages have the following format:

Semantic error message
EXECUTION INHIBITED - integer ERROR(S) WAS(WERE) DETECTED

This part of the message tells you

semantic error message the error. These errors are listed separately in Table B-1. I f you use
the jL or jL=filename switch in the command line, the message
appears (in the list file) under the statement containing the error.
(We explain these switches in Chapter 7)

integer number of errors detected

Table B-1 lists alphabetically most of the semantic error messages you can receive. In the "Cause"
column of Table B-1, we sometimes tell you to inspect a statement. We do this if the message is
almost self-explanatory. Taken together, the message and the statement to inspect will lead you to
find your error.

Table 8-1. Semantic Error Messages

ALL REPLACE WILL NEVER TERMINATE

ATTEMPT TO REFERENCE UNDEFINED
TABLE

CANNOT DEFAULT FILE DESCRIPTION FOR
FILES NOT OF FIXED OR OAT A SENSITIVE
TYPE

CANNOT REWRITE A PERMANENT FILE

CHARACTER char WAS PREVIOUSLY
MENTIONED IN THIS TABLE

COULD NOTRENAMETOTHATALENAME

The string you want replaced is part (or all) of the
string which will replace it

Inspect TRANSLATE ~nd/or COMPRESS
statement

The records in the input file(s) aren't of the
fixed-length or data-sensitive type

You tried to overwrite an output file that has the
permanent attribute

You tried to define the collating or translate value
of char twice in the same TABLE declaration

You cannot use the file you named in response to:
FILE NAME TO USE FOR COMMAND FILE:
The utility will repeat this question

(\..',)11 I 1111' ,:~)

093-000155 Licensed Material-Property of Data General Corporation 8-1

Table 8-1. Semantic Error Messages

OAT A SENSITIVE FORMAT NOT ALLOWED
FOR INFOS FILES

DOWN MAY NOT BE QU ALIFIED

ERROR IN ACCESSING OUTPUT FILE

You included a RECORDS ARE DATA
SENSITIVE clause in an INPUT INFOS
declaration

You paired an extractor phrase with the key
selector DOWN

There's a problem with one or more files in
pathname to the output file:

• file (s) do not exist

• you don't have proper access to file(s) because of
a wrong directory or searchlist, or wrong Access
Control List. For example, you need Write access
to the output file.

ERROR IN ACCESSING WORK FILE There's a problem with path name to work file. See
ERROR IN ACCESSING OUTPUT FILE

FIELD OUT OF RANGE A location phrase specifies character positions
beyond the limits of a record. For example, you
specify 1/555 when the longest record is 100
characters.

FILE IS A DIRECTORY The last file in a pathname is a directory

FILE NAME TO USE FOR COMMAND FILE: The utility's response if you answer yes to the
question: SAVE INPUT FOR EDITING AND
RESUBMISSION? (Y or N)

FIRST ELEMENT IN A : OR - GROUP MUST BE Inspect TABLE declaration
LESS THAN SECOND

"FROM" TABLE NAME IS UNDECLARED You didn't declare a table name in the FROM
phrase of a TABLE declaration. For example, in
the declaration:

HEADER MAY ONLY APPEAR ONCE PER
LEVEL

IF YOU DO NOT SPECIFY SORT OR MERGE
YOU MUST PROVIDE A COMMAND FILE

TABLE EX FROM ERROR IS "A" == 1.

ERROR is not declared.

You paired more than one HEADER (an
extractor) with one key selector. For example:

., HEADER, HEADER

Inspect the command line

(continued)

8-2 Licensed Material-Property of Data General Corporation 093-000155

Table B-1. Semantic Error Messages

IMPROPER COMMAND LINE SYNT AX

INFOS KEYS ARE LIMITED TO 255
CHARACTERS

INFOS KEYS MUST BE OF CHARACTER TYPE

INFOS OUTPUT ALLOWS ONL Y A SINGLE
KEY

INSUFFICIENT ACCESS TO OUTPUT FILE'S
PARENT DIRECTORY

INSUFFICIENT MEMORY TO START THE
SPECIFIED MERGE

INTEGER MUST BE IN RANGE 0 TO 255

INV ALID KEY SPECIFICATION FOR OUTPUT
FILE

INVALID RANGE SPECIFICATION

INV ALID TYPE FOR WORK FILE

INVERSION REQUIRES ALL INPUT FILES TO
BE INFOS FILES

In the command line, you either

• omitted INTO or FROM, or

• didn't place INTO or FROM correctly

Inspect KEY declaration used to define INFOS
keys

The command file has a KEY declaration
containing a TYPE IS clause, and an OUTPUT
INFOS declaration. For example:

OUTPUT INFOS INDEX IS "OOPS". KEY
1 ILAST TYPE IS PACKED

Your command file contains an INFOS output file
and more than one KEY declaration

You need Write or Append access to the output
file's parent directory

One or more of these is true:

• there are too many skip files

• your records and set of tape buffers are too large

• T AG SORT requires more memory

The ASCII decimal equivalent of a single-character
literal must be from 0 through 255, inclusive

You used a non-unique key selector in an
OUTPUT INFOS declaration. For example: *
(above the lowest subindex level), -"Z", "A" -, or
""A"-"Z".

In a location phrase, the integer before the slash is
greater than the integer after the slash. For
example: 9/5.

Work files must be on disk

(continued)

093-000155 Licensed Material-Property of Data General Corporation 8-3

Table 8-1. Semantic Error Messages

Message

KEY MAY ONL Y APPEAR ONCE PER LEVEL

LAST ELEMENT IN OUTPUT PATH MUST BE
AN*

LITERAL MUST BE A SINGLE CHARACTER

MAXIMUM NUMBER OF USER TAB STOPS
(20) EXCEEDED

MERGE REQUIRES TWO OR MORE INPUT
FILES

MISSING COMMAND FILE

MULTIPLE OUTPUT FILES

MULTIPLE PARTIAL RECORD RANGE
DEFINITION

MULTIPLE RECORD RANGE
SPECIFICA TIONS

MULTIPLE TRIMMED KEY SPECIFICATIONS

MUST DEfINE INPUT FILE NAME

NO DEFAULT FILENAME FOR IT SWITCH

You paired more than one KEY (an extractor) with
one key selector. For example:

*, KEY, KEY

The last key selector in the PATH IS clause of the
OUTPUT INFOS declaration must be an *

Inspect REPLACE TABS massage statement

You invoked Sort/Merge in noninteractive mode
(without /C) and didn't name a command file in
the command line

You can have only one output file

• in a command file

• in a command line not used with a command file

• between a command line and a command file

For example, if your command line is

SORT Ie = DO_IT INTO FILE_OUT FROM
FILE_IN

you cannot declare an output file in the command
file DO_IT

You included more than one PARTIAL RECORD
IS clause in the OUTPUT INFOS declaration

You included more than one RECORD IS clause in
an OUTPUT INFOS declaration

You included more than one TRIM KEYS phrase
in the OUTPUT INFOS declaration

Sort/Merge received no input files from either the
command line or the command file

You didn't set IT equal to a filename

(continued)

8-4 Licensed Material-Property of Data General Corporation 093-000155

Table 8-1. Semantic Error Messages

NON CHARACTER KEYS MUST HAVE
CONSTANT RANGE BOUNDS

/0 IS REQUIRED TO ALLOW OVER-WRITE OF
AN EXISTING FILE

ONLY CHARACTER KEYS MAY SPECIFY AN
ALTERNATE COLLATING SEQUENCE

OUTPUT FILE UNSPECIFIED

PADDED KEY MAY ONLY APPEAR ONCE
PER LEVEL

PARTIAL RECORD MAY ONL Y APPEAR
ONCE PER LEVEL

PARTIAL RECORDS ARE LIMITED TO 255
BYTES

PREMATURE END OF INPUT

READ ACCESS REQUIRED FOR INPUT FILES

RECORD MAY ONL Y APPEAR ONCE PER
LEVEL

RECORD SPECIFICATION IS INCOMPATIBLE
WITH INVERSION

Cause

You used LAST in the location phrase of a KEY
declaration and the keys are not of the character
type. For example:

KEY 1/LAST TYPE IS DECIMAL.

The output file exists before you execute the
command file, and you didn't include /0 in the
command line

You used a COLLATED BY phrase and a TYPE IS
phrase in the same KEY declaration

Sort/Merge did not receive an output file from
either the command line or the command file;
there was neither an output file declaration in the
command file, nor INTO outfile in the command
line

You paired more than one KEY PADDED TO (an
extractor) with one key selector. For example:

., KEY PADDED TO 3 CHARS WITH "-",
KEY PADDED TO 5 CHARS WITH "+"

You paired more than one PARTIAL RECORD
(an extractor) with one key selector. For example:

., PARTIAL RECORD, PARTIAL RECORD

The range specified in the location phrase of an
OUTPUT INFOS declaration's PARTIAL
RECORD IS clause exceeds 255 bytes

You either

• forgot the END statement in the command file,
or

• typed CTRL-D to escape entering the command
file from the console

Inspect the Access Control List for each input file

You paired more than one RECORD (an
extractor) with one key selector. For example:

., RECORD, RECORD

You can't use the RECORD IS clause in an
OUTPUT INFOS declaration when you invert keys

(continued)

093-000155 Licensed Material-Property of Data General Corporation 8-5

Table 8-1. Semantic Error Messages

Me$Sale

REPORT FORMAT WAS NOT VALIDATED

SAVE INPUT FOR EDITING AND
RESUBMISSION? (Y OR N)

SKIP FILE ALREADY EXISTS

SYNT AX ERROR:
[[LINE INTEGER)]

TABLE FILE COULD NOT BE OPENED

T ABLE FILE MUST CONT AIN AT LEAST 255
BYTES

TABLE NAME MULTIPLY DEFINED

TAG SORT DOES NOT ALLOW KEY
OVERLAPS

TAG SORT REQUIRES NON-INFOS DISK
FILES

THE EXPRESSION IS TOO COMPLEX

Report format checker did not approve format. A
message from the checker accompanies this
message

You receive this message if you're entering the
command file at the console, and the statements
you typed would be lost. You're most likely to
receive this message if you type NEW LINE before
correcting an error

The skip file must not exist before you execute the
command file

The integer is the line number containing the error.
You receive the optional

[LINE integer]

when you use the IL or IL::= filename switch in the
command line. (This is explained in Chapter 7.)
Hint: sometimes a trivial spelling error can raise
this error

The table declared in aT ABLE declaration either

• doesn't exist, or

• is not accessible because of a wrong directory or
search list, or a wrong Access Control List

The file named in the T ABLE declaration must
contain at least 255 bytes

You named the same file in more than one TABLE
declaration

There's more than one KEY declaration of the
form

KEY integer/LAST

And, in the same command file, TAG SORT is the
imperative.

You tried to tag sort with an INFOS input, tape, or
character device

There are too many operators (::=, <, >, etc.) in
an IF massage statement

(continues)

8-6 licensed Material-Property of Data General Corporation 093-000155

Table 8-1. Semantic Error Messages

TRIMMED PARTIAL RECORD MAY ONLY
APPEAR ONCE PER LEVEL

UN ABLE TO ACCESS INPUT FILE

UNABLE TO CREATE SCRATCH FILE

UNABLE TO OPEN THE COMMAND FILE

UNABLE TO RESOLVE INPUT PATHNAME

UN ABLE TO RESOLVE OUTPUT FILE
PATHNAME

'UNMENTIONED' MAY ONLY APPEAR ONCE

WORK FILES REQUIRE BOTH READ AND
WRITE ACCESS

WRITE ACCESS TO OUTPUT FILE IS
REQUIRED

You paired more than one TRIMMED PARTIAL
RECORD (an extractor) with one key selector. For
example:

*, TRIMMED PARTIAL RECORD, TRIMMED
PARTIAL RECORD

There's a problem with one or more files in the
path name to the input file:

• file (s) do not exist

• you don't have proper access to file(s) because of
a wrong directory or searchlist, or wrong Access
Control List

There's a problem with the pathname to scratch
file. See the previous error message. Thus, the
utility could not ?CREA TE a default work file

There "s a problem in the pathname to command
file. See UNABLE TO ACCESS INPUT FILE

There's a problem in the path name to input file.
See UNABLE TO ACCESS INPUT FILE

There's a problem in the path name to output file.
See UNABLE TO ACCESS INPUT FILE

You used UNMENTIONED in a TABLE
declaration more than once

(cuncluded)

093-000155 Licensed Material-Property 01 Data General Corporation 8-7

Abort Error Messages
There are different subclasses of abort error messages:

• I/O failure
• skip file
• key comparisons and massaging
• execution phase
• initialization phase

• other

I/O Failure Error Messages
All I/O failure error messages have a pathname in them. This feature distinguishes them from the
other subclasses of abort error messages.

The format of the I/O failure error message is:

ABORT
Phase identifier
Sort error message
Pathname
AOS or IN FOS II error

This part of the message

Phase identifier

Sort error message

Pathname

AOS or IN FOS II error
message

8-8

tells you

which phase of the utility found the error. The phases arc

• replacement selection
• intermediate merge
• final-user merge
• copy-filter

which error the utility found. These errors are listed separately in
table B-2

the pathname of file causing the error

which error AOS or IN FOS II found.
For an explanation of the AOS or IN FOS II errors, see the AOS
Programmer' Manual or the INFOS /I System User's Manual
(AOS), respectively

Licensed Material-Property of Data General Corporation 093-000155

Table B-2. Sort Error Messages for 1/0 Failure

?CLOSE OF RECORD 110 FILE In general, record I/O files are

?OPEN OF RECORD I/O FILE • labeled magnetic tape

?READ FROM RECORD I/O FILE • generic files (@OUTPUT)

?WRITE TO RECORD 110 FILE • queue files (@LPT)

• character devices (@CRA)

CLOSE OF INFOS FILE Messages with INFOS FILE in them may occur
while processing an INFOS file

INFOS RETRIEVE SUBINDEX DEFINITION
CALL

OPEN OF INFOS FILE

READ FROM INFOS FILE

RETRIEVE KEY FROM INFOS FILE

WHILE TRAVERSING SUBINDEXES OF INFOS
FILE

WRITE TO INFOS FILE

FLUSHING PARTIAL BUFFER TO BLOCK 110 Block I/O files are disk and unlabeled tape files
FILE

?GCLOSE OF BLOCK I/O FILE

?GCLOSE OF WORK FILE

?GOPEN OF BLOCK I/O FILE

?GOPEN OF WORK FILE

?RDB FROM B'LOCK I/O FILE

READING RECORD FROM BLOCK 110
BUFFER

?WRB TO BLOCK 110 FILE

WRITING RECORD INTO BLOCK I/O BUFFER

093-000155 Licensed Material-Property of Data General Corporation 8-9

Skip File Error Messages
The format of the skip file error message is

ABORT
Phase identifier
Sort error message
AOS error message

This part of the message

Phase identifier

Sort error message

AOS error message

tells you

which phase of the utility found the error. The phases are

• replacement selection
• final-user merge
• filter-copy

which error the utility found. These messages are

?CLOSE OF SKIP FILE

?OPEN OF SKIP FILE

?WRITE TO SKIP FILE

which error AOS found. For an explanation of these errors, see the
AOS Programmer's Manual.

Key Comparison and Massaging Error Messages
The format of key comparison or massaging error messages is

ABORT
Phase identifier
Sort error message
Record locator

This part of the message

Phase identifier

Sort error message

Record locator

8-10

tells you

which phase of the utility found the error. The phases are

• replacement selection
• intermediate merge
• final-user merge
• copy-filter

which error the utility found. These errors are listed separately in
Table B-3

at or near which input record the error occurred. The record locator
has its own format:

ERROR OCCURRED AT OR NEAR INPUT RECORD nnn

where nnn is an integer. For key comparison messages, nnn is always
approximate.

Licensed Material-Property of Data General Corporation 093-000155

Table 8-3. Sort Error Messages for Key Comparison and Massaging Errors

COMMERCIAL OR FLOATING POINT TRAP
IN KEY COMPARE

One of these is true:

• a DECIMAL or PACKED field contained an
invalid character.

• an EXTERNAL FLOAT number could not be
represented in internal form

• a FLOAT number was not in correct format

INSERT BEFORE LOCATION NOT IN RECORD A record is not the correct length for the requested
massaging action

INVALID CHARACTER IN EXTERNAL
FLOAT FIELD

OVERFLOW IN EXTERN AL FLOAT FIELD
CONVERSION

RANGE SPECIFICATION TOO LONG FOR
RECORD

RECORD LONGER THAN PAD LENGTH

RECORD TOO SHORT FOR KEY

Execution Phase Error Messages
The format of the execution phase error message is

ABORT
Phase identifier
CANNOT ST ART EXECUTION OF PHASE

EXTERNAL FLOAT numbers are converted to
internal numbers in order to be compared

A record is shorter than it is specified in the
massage statement

A field specified in a KEY declaration is not in the
record

[

INSUFFICIENT MEMORY A V AILABLE]
NOT ENOUGH CHANNELS FOR ALL FILES
BUFFER REQUIREMENTS FOR FILE(S) EXCESSIVE

093-000155 Licensed Material-Property of Data General Corporation 8-11

The phase identifier tells you which phase of the utility found the error. The phases are

• replacement selection
• intermediate merge
• final-user merge
• copy-filter

Usually, attempts to execute very complex command files cause these errors. Here are two actions you
can take to reduce command file complexity:

• use fewer skip files

• restructure the command file into two smaller files; accomplish in two executions what you tried to
accomplish in one

Initialization Phase Error Messages

The format of the initialization phase error message is

ABORT
FROM INITIALIZATION PHASE:
Sort error message
[Message]

This part of the message tells you

Sort error message which error the utility found. These errors are listed separately below

Message about another error. It could be an AOS error message, for example.
This message is optional

Some of the sort error messages for initialization phase errors are

ABANDONING COMMAND FILE SCAN DUE TO:

[

UNRECOVERABLESYNTAXERROR 1
PARSE ST ACK OVERFLOW - ST ATEMENT TOO COMPLEX
INPUT BUFFER OVERFLOW: CHECK FOR UNTERMINATED LITERAL
UNTERMINATED LITERAL AT END OF FILE
SYMBOL TABLE OVERFLOW: USE FEWER TABLES

?CREA TE OF SKIP FILE FAILED

I/O ERROR ON HELP FILE

UNABLE TO OPEN IL FILE

UNABLE TO OPEN @OUTPUT

8-12 Licensed Material-Property of Data General Corporation 093-000155

Other Error Messages
You very rarely raise the error messages in this section. They usually indicate

• tampering with directories and files the utility uses while sorting, or

• improper installation of the product

The format of these error messages is

ABORT
Phase identifier
Sort error message
[AOS error message]

This part of the message

Phase identi fier

tells you

which phase of the utility found the error. The phases are

• replacement selection
• intermediate merge
• final-user merge
• copy-filter

Sort error message which error the utility found. These errors are listed separately below.

AOS error message which error AOS found. For an explanation of the AOS error, see the
AOS Programmer's Manual

The sort error messages for these errors are

?CHAIN TO NEXT PHASE FAILED
?CLOSE OF DIRECTORY
?CREATE OF OUTPUT FI LE
?DELETE OF OLD VERSION OF OUTPUT FILE
ERROR IN I/O TO A SORT INTERNAL DATA FILE
?FSTAT BEFORE RE-CREATION OF OUTPUT FILE
?GNFN ERROR
?GOPEN OF INPUT FILE FOR TAG RECORD RECOVERY
?GTMES FOR /PID SWITCH
INEXPLICABLE ?GNAME ERROR
INEXPLICABLE ?PSTAT ERROR
INEXPLICABLE ?RUNTM ERROR
INVALID /PID SWITCH ARGUMENT
?OPEN OF DIRECTORY
?PROC OF RWCHECK FAILED
?RENAME OF TEMP OUTPUT FILE TO FINAL NAME

The following message should not occur:

SORT INTERNAL LOGIC ERROR

If it does occur, call you local systems engineer.

End of Appendix

093-000155 Licensed Material-Property of Data General Corporation 8-13

Appendix C

RWCHECK Error Messages

This Appcndix includcs cxplanations of the error messages you might receive while using Report
Writcr. Wc also suggest ways to correct these errors.

The error messages are arranged as follows:

• Qformat syntax

• Rcport Writcr runtime

• Rformat syntax

Qformat Syntax Errors
RWCHECK checks thc syntax of all qformats. If there is a syntax error in a qformat, you'll receive
any of the following messages.

Error Message

Bad EN D BYTE on line --x--

Bad KEY TYPE on line --x--

Bad STAR T BYTE on linc --x--

Looking for a
START~FORMAT on line --x--

START BYTE is grcatcr than
EN D bytc on linc --x--

START~FORMAT must havc
a qformat name - on line --x--

Too many Field Descriptor Lines
in qformat.

Too many qformats in
. QFORMS file

--x-- is not a valid format

Cause

Query docsn't like thc ending byte you specified on the named
line. Bc sure to use a valid number (a positive integer) greater
than or equal to the start byte.

You specified an invalid key type on the named link.

Query doesn't like the starting byte you specified on the named
line. Be sure to use a valid number (a positive integer).

The Query can't find a valid START~FORMAT line. Check
your syntax.

The first byte on the,named line is larger than the last byte.

Thcrc's an error in the START ~FORMAT line. Have you
specified a valid qformat name?

You've used "too many field dcscriptor lines in the qformat. The
maximum allowed is 30.

You'vc defined too many qformats for onc .QFORMS file. Onc
.QFOR MS file can hold only 10 qformats .

This message follows all other syntax error messages as a
rcminder that the named qformat is not valid.

093-000155 Licensed Material-Property of Data General Corporation C-1

Report Writer Runtime Errors
When the utility detects a runtime error, it inserts one of the following error messages into the Report
Writer's output file. The utility also inserts:

THERE WERE n RUNTIME ERRORS DURING REPORT GENERATION

into the statistical output if any runtime errors were generated.

Error Message

CIS fault

Divide by zero error. Zero result
assigned:

I nvalid numeric value:

Significant digits truncated:

The input record IS not long
enough

Cause

You defined a field in your qformat as a non-ASCII data type.
The data the Report Writer found in that field is not consistent
with the non-ASCII data type. Check your data and qforrnat.

Your DEFINE line included a division operation and on this input
record the divisor for the DEFINE is a zero. Division by zero is
undefined. The Report Writer uses this message to let you know
that this has happened and that it set the def_item to zero.

You've used a Picture clause for a non-numeric field or else there
is non-numeric data in what should be a numeric field. Check
your data.

Your number won't fit in the defined or default Picture clause.
The Report Writer truncated the extra digits. Check your picture
clause.

The Report Writer is trying to find data in fields which would be
beyond the end of the record. Check your qformat and data.

Rformat Syntax Errors
You'll get rformat syntax errors when you run RWCHECK or when you attempt to activate the
rformat. The errors must be fixed before Report Writer will let you activate the rformat.

General Rformat Syntax Errors
You'll receive on of the following messages if a syntax error occurs in any of the format descriptor
lines that make up an rformat.

Error Message

Ambiguous RFORMAT
command: -----

Command line item is too large,
line ignored

Invalid RFORMAT
com ma nd: ------

Not a valid command line

Cause

The Report Writer doesn't recognize the command; the
abbreviation is not unique.

You specified an argument longer than 5U characters. Only
comments may have items which are longer than 50 characters.

The format descriptor line you entered isn't acceptable. Check the
spelling and make sure that a tab delimits each field.

The Report Writer doesn't recognize a format descriptor line.
Check the syntax. All commands must be delimited by a tab.

C-2 Licensed Material-Property of Data General Corporation OH3-000155

Error Message

There MUST be a detail, total,
or break line somewhere.

Too many arguments on one
report command line

Cause

You tried to define an rformat without at least one DET A I L line,
one BREAK line, or one TOTAL line. The Report Writer won't
accept it.

You used more arguments than allowed. Check the syntax.

Field starting location IS before You'll get this error message or one of the two below it if the
beginning of line ----- item(s) on the named line do not fit properly. Check the syntax.

For instance, remember that an unpictured number requires a 14
A field spreads across the right character field.
end of -----

Overlapping items on -----

Total Errors:

Wrong number of arguments for
this command: -----

BREAK Statement

Error Mess~ge

Item does not exist:-----

You've got the displayed number of errors

Check what you typed. You may have used blanks instead of tabs
or the wrong number of arguments in your rformat. Fix them.

Cause

The operand you specified is not a data item, a defined item, or a
literal. These are your only choices.

Invalid BREAK or TOTAL The Report Writer doesn't understand what BREAK or TOTAL
expression: ----- actions you want performed. Check the syntax and/or for typos.

Invalid PRINT _OP
ex pression :-----

Line location is invalid: -----

Not a Data_item: -----

This field not yet used in a
DETAIL line: -----

Too many unique BREAK items
requested

The Report Writer can't understand the expression. If you want to
underline, parentheses must surround the named item. Note, also,
that in a PRINT _OP expression, a blank separates the keyword
from the argument.

You specified an invalid location for the BREAK information.
You can use either a positive or negative number, or C, for
centered.

The Report Writer did not recognize the specified item. Check for
typos, missing or misplaced tabs, and make sure that your qformat
command worked. If you intended the item to be a literal, did you
put quotation marks around it?

You wanted an item underlined, but you haven't named that item
on a DET AI L line yet. Be sure the DETAI L statement for that
item precedes the BREAK statement for it.

You tried to define too many BREAK actions. You can define
BREAK actions for up to 5 data items in the rformat.

093-000155 Licensed Material-Property of Data General Corporation C-3

COLUMNS PER LINE Statement

Error Message

Invalid number: ----

Multiple CPL (characters per
line) defi nitions

Number too large: -----

DEFINE Statement

Error Message

I tem already exists:-----

Item does not exist:-----

The expression IS missing an
operator

Cause

You've used something other than a number as an argument; the
COL/LIN statement requires a number as an argument.

You tried to use more than one COL/LIN statement In the
rformat. Only one is allowed.

You used a number as an argument, but it was too large. You can
indicate up to 132 characters to a line in the COL/LIN
statement.

Cause

You tried to redefine an item that has already been defined. Use a
different variable name.

The operand you specified is not a data item, a defined item, or a
literal. These are your only choices.

The Report Writer is looking for an operator separated from the
two operands by spaces. Tabs will not work here.

Too many DEFINE items You tried to DEFINE too many items. You're limited to 10
specified

DEI AIL Statement

Error Message

Invalid number: -----

Line # is too great: -----

I tem does not exist: -----

Line location is invalid:-----

C-4

DEFINE variables per rformat.

Cause

You'll get this message or the one below it if you specify an invalid
DETAIL line number. Try an integer between 1 and 5.

The Report Writer doesn't recognize the named item. It is not a
known item or a literal.

You specified an invalid location for the starting position of some
DET AI L information. You can use a positive or negative number,
or C, for centered.

Licensed Material-Property of Data General Corporation 093-000155

HEADER Statement

Error Message

Invalid number: -----

Line ++ is too great: -----

Line location is invalid

Not a Data_item: -----

Cause

You'll get this error message or the one below it if you specify an
invalid H EADER line number. Try an integer between I and 10.

You specified an invalid locatIOn for the starting position of some
HEADER information. You can use a positive or negative
number, or C, for centered.

You specified a data item that has not yet been defined in a
qformat. Try a different data item, or define this one in a qformat.

LINES PER PAGE Statement

Error Message

Invalid number: ----- Too few
lines per page specified.

Multiple LPP (lines per page)
definitions

PICTURE Statement

Error Message

I nvalid characters in expression

Invalid PICTU R E format:-----

I tem does not exist: -----

Multiple PICTURE definitions
for one item: -----

PICTURE definition is too long

Too many digits to the left of the
decimal

Too many digits to the right of
the decimal

Cause

Either of these messages means you specified an invalid number of
lines. The minimum allowed is 30.

You tried to use more than one L1N/PG statement in the rformat.
Only one is allowed.

Cause

You used non picture characters in your Picture clause.

You used invalid syntax in your Picture clause. Check the syntax.

You specified a picture clause for an item that doesn't exist. The
named item must be a data or defined item. Try again.

You can specify only one PI CTU R E per item. Choose the
PICTURE which best fits. If necessary, DEFINE another item in
terms of the first and then specify the PICTURE it needs.

You tried to use more than 30 characters.

You'll get this error message or the one below it if you use too
large a Picture clause. You are allowed 12 characters to the left of
the decimal point and 4 to the right.

093-000155 Licensed Material-Property of Data General Corporation C-5

QFORMAT Statement

Error Message

Multiple qformat definitions

---x--- is not a defined format

SORT Statement

Error Message

You may not have SORT lines in
the rformat

TOTAL Statement

Cause

You specified more than one qformat in the rformat. Only one is
allowed.

You've specified a qformat that is not in the .QFORMS file, has
syntax errors, or you've misspelled the name.

Cause

Sort/Merge's Report Writer doesn't accept INFOS II QUERY
with Report Writer SORT lines. Sort your data by using
Sort/Merge command file statements.

Either of these messages means you specified an invalid TOTAL line number. Try an integer between
I and 10.

Error Message

Invalid number: -----

Line # is too great: -----

I nvalid TOT;\ L expression:-----

I tem does not exist: -----

Line location is invalid:-----

C-6

Cause

You'll get this error message or the one below it if you specify an
invalid TOTAL line number. Try an integer between I and 10.

The Report Writer assumes that you want total information
displayed from the first three fields of the TOT A L statement, but
can't interpret the fourth field. Check it out and try again.

The Report Writer doesn't recognize the named item. Try either a
data or defined item.

You specified an invalid location for the TOTAL information.
You can use either a positive or negative number, or C, for
centered.

End of Appendix

Licensed Material-Property of Data General Corporation 093-000155

Appendix D

Statistical Information the Utility Returns

By default, the utility displays statistics for each command file execution. If you don't want to see the
statistics, include the IS switch in the command line (see Chapter 7).

In the statistics, you'll find terms which we briefly define here.

Term

Replacement
selection

Run

Merge Step

Definition

Algorithm which sorts

Sequence of records in sorted order

The combining of many runs into one run

Merge pass A sequence of one or more merge steps which results in one or more runs

Figure D-J shows an example of conceptually how the utility merges runs (in the process of sorting).
I n the first merge pass, the utility combines runs from its replacement selection phase. Here, the
utility combines the runs in three merge steps. These three steps leave three intermediate runs. In the
second (and final) merge pass, the utility combines the intermediate runs in one merge step. This
merge step produces the final output file.

Runsfrom ,
Replacement {

Selectlon (
Phase ,

SD-02367

093-000155

Intermediate }
Runs

i
One

Merge
Step

1
Output

file

i
One

Merge

T

Figure D-I. Runs. Steps. and Merge Passes

Licensed Material-Property of Data General Corporation

T T
One One

Merge Merge

f Pf
One One(FinaJ)

Merge Merge

T rs

D-1

Setup and
Validation

Input

Replacement
Selection

0-2

Table D-1. Statistics Produced for Each Operation Phase

Verifies that there are no syntactical errors in the command line
and/or command file. Sets up the modules it needs to execute
the requested actions.

Reads the input records and massages them as specified. The
utility may skip certain input records, depending on any input
IF statements.

Sorts the input records passed to this phase, which produces
runs. The utility passes runs to the merge phase as input.

Licensed Material-Property of Data General Corporation

SETUP AND
VALIDATION
PHASE TIME

OUTPUT FILE
RECORD
FORMAT

TOTAL
NUMBER OF
INPUT
RECORDS

MINIMUM
INPUT RECORD
LENGTH

MAXIMUM
INPUT RECORD
LENGTH

TOTAL
NUMBER OF
SKIPPED
RECORDS

REPLACEMENT
SELECTION
PHASE TIME

TOTAL
NUMBER OF
OUTPUT RUNS

RECORDS
PASSED TO THE
MERGE

SIZE OF
SELECTION
TREE

BIAS FACTOR

(. .:ontinucs)

093-000155

Merge

Output

093-000155

Table D-1. Statistics Produced for Each Operation Phase

Merges the contents of the runs produced in the replacement
selection phase. Massages records as specified. The utility may
skip records depending on the presence of any output IF
massage statements or a DELETING DUPLICATES
imperative.

Writes the records to the output file

Licensed Material-Property 01 Data General Corporation

MAXIMUM
INTERMEDIATE
ORDER OF
MERGE

MERGE WILL
REQUIRE
MULTIPLE
PASSES

NUMBER OF
STEPS IN FIRST
PASS

PER PASS
MERGE TIME

RECORDS
WITH
DUPLICATE
KEYS

TOTAL
SKIPPED
RECORDS
(MERGE
PHASE)

USER (FINAL)
MERGE ORDER

(FINAL)
NUMBER OF
RECORDS
OUTPUT

MIMINUM
OUTPUT
RECORD
LENGTH

MAXIMUM
OUTPUT
RECORD
LENGTH

PAGES
WRITTEN TO
REPORT FILE

TOTAL
ELAPSED TIME

(concluded)

0-3

The statistical output is in decimal integers. The utility rounds fractions to the next higher integer.
The statistics and their meanings are

SETUP AND VALIDATION PHASE TIME

The number of seconds it takes the utility to

• verify that there are no syntactical errors in the command line and/or command file
• set up its modules to execute the functions you've requested

OUTPUT FILE RECORD FORMAT

The record type of the output file. I f the output file does not exist before the utility executes the
command file, the utility creates the output file.

(TOTAL) NUMBER OF INPUT RECORDS

The sum of all records that the utility encounters in all input files.

MINIMUM INPUT RECORD LENGTH

The length in characters of the shortest input record the utility encounters.

MAXIMUM INPUT RECORD LENGTH

The length in characters of the longest input record the utility encounters.

(TOTAL) NUMBER OF SKIPPED RECORDS

The number of records the utility does not write to the output file, due to IF statements in which you
specify the SKIP option.

REPLACEMENT SELECTION PHASE TIME

The number of seconds it takes the utility to make the first sorting pass over the input records.

TOTAL NUMBER OF OUTPUT RUNS

The total number of runs that the replacement selection phase produces.

RECORDS PASSED TO THE MERGE

The total number of records in all runs that the replacement selection phase produces.

SIZE OF SELECTION TREE

The number of records held in memory at one time during the initial sorting pass.

BIAS FACTOR

A measure of how well input file records are sorted before you use the utility. It takes a large number
of records to produce this statistic.

A bias factor of means input file records are

in reverse order from the order that you want

approximately 2 randomly ordered

greater than 2 nearly sorted

D-4 Licensed Material-Property of Data General Corporation 093-000155

MAXIMUM INTERMEDIATE ORDER OF MERGE

The largest number of runs that the utility merges to form a single run.

MERGE WILL REQUIRE MULTIPLE PASSES

You declared so many input files for merging that the utility requires multiple merge passes.

NUMBER OF STEPS IN FIRST PASS

Unless the intermediate merge is for a stable sort, the utility attempts to economize the work it does
on the first pass. If the number of steps is small, this statistic reflects the success of the utility's
attempt.

PER PASS MERGE TIME

The time the utility takes to complete one merge pass over the runs in the work file.

RECORDS WITH DUPLICATE KEYS

The number of records discarded from output because they have duplicate keys. You receive this
statistic if you use the DELETING DUPLICATES imperative.

TOTAL SKIPPED RECORDS (MERGE PHASE)

The number of records the utility does not place into an output run due to I F massage statements in
which you included the SKIP option for output file massaging.

USER (FINAL) MERGE ORDER

This statistic is either

• the number of runs that the utility combines in the final merging pass of a sort process, or

• the number of files which the utility combines in one merge step of a merge process

(FINAL) NUMBER OF RECORDS OUTPUT

The actual number of records the utility writes to the output file.

MINIMUM OUPUT RECORD LENGTH

The length in bytes of the shortest record the utility writes to the output file.

MAXIMUM OUTPUT RECORD LENGTH

The length in bytes of the longest record the utility writes to the output file.

PAGES WRITTEN TO REPORT FILE

The number of line-printer pages created by printing a report file.

TOTAL ELAPSED TIME

The actual amount of time (real time) that elapses from when you invoke the utility to when the
utility writes the last output record.

THERE WERE n RUNTIME ERRORS DURING REPORT GENERATION

The number (n) of runtime errors encountered during report generation. This statistic won't appear if
n=O.

End of Appendix

093-000155 Licensed Material-Property of Data General Corporation 0-5

Appendix E

Faster Sorts an Merges:
Fine Tuning the Utility

There are a few procedures that you can follow to improve the utility's performance. These procedures
range in difficulty from those that are easy, to those that only a very sophisticated AOS user would
perform. We'll discuss the procedures in this ascending order of difficulty.

Optimal Record Length Estimate
You can use t he following procedure when your input files have variable-length or data-sensitve
records. I f you know the length of the longest record, specify that as integer in the

• VARIABLE UPTO phrase of the AOS INPUT FILE, and/or INPUT INFOS declarations, or

• DATA SENSITIVE phrase of the AOS INPUT FILE

You may not know the exact length of the longest record. I n that case, determine a length which you
think no record will exceed and use that length as integer. The more closely you estimate the length of
the longest record, the more you'll improve the utility's performance. For example, if you think that
the longest data-sensitive record in a file is about 190 characters, you could let integer equal 200.

Increase Element Size
You'll probably improve the utility's performance if you create a work file with a large element size.
The larger the element size, the fewer the elements AOS needs for a given file. Fewer elements is
better because the more elements a file has, the more index blocks AOS needs to keep track of and
access the clements in the file. This of course slows down AOS, which in turn slows down Sort/ Merge.

The best work file is a contiguous file. I f you create the work file's element size large enough so that
the file requires only one element, then you guarantee that the file will be contiguous. Note, however,
that the largest contiguous file AOS can create is 65,534 blocks. A file of this size can serve as a work
file for a sort of no more than 25 million bytes of data. Also, due to disk fragmentation, it's almost
impossible to find very large elements unless the disk is freshly formatted or contains very few files.

You must create the work file in order to select its element size. You create a work file with this eLI
command:

CREATE / ELEMENTSIZE = integer filename

Argument integer is the decimal number of disk blocks (512 bytes each) per element.

I f you cannot sort with contiguous work files, a file structure with a single index level is almost as
efficient. As a rule of thumb, determine the element size necessary for a single-level index work file by
dividing the number of bytes in the input file by 50,000. We restate this rule of thumb as a formula:

Element Size = (Number of Bytes in Input File)/50,000

If you create your own work file, you'll specify its name in a WORK FILE declaration. When you do
so, the utility uses that work file instead of creating its own. Also, the utility will not delete the work
file that you create when execution finishes.

093-000155 Licensed Material-Property of Data General Corporation E-1

You can also increase the element size (from the default value of 1) of a large AOS output file to
improve the utility's performance. The AOS OUTPUT FILE declaration's ELEMENTS ARE clause
lets you select the element size. Even a modest increase in element size (4, 8, or 16) will improve
performance. For best results, apply the rule of thumb formula and write to a single-level index output
file.

Optimal File Placement
This section explains how to optimize the utility's performance based on your system's configuration
of peripherals. Before you continue reading this section, you should know that

• we assume you know about AOS disk structures

• we use some terms defined in the introduction to Appendix D

All the procedures point toward one goal. You want to reserve each device only for reading or only for
writing operations during a pass of the utility. This allows I/O to proceed more quickly because an
individual disk will not have to do time-consuming seek operations to alternately access input and
output files. (You lose this advantage to some extent if another process is accessing another file on the
same device.) To reserve the devices, you must have access to directories on more than one Logical
Disk Unit (LDU). In general, you want to place different files on separate LDUs.

I n the discussion below, we consider three basic system configurations. The first system has three disk
drives, the second has two disk drives, and the third has one. We also consider the effects of adding a
tape drive to the two and one disk configurations. All cases assume that that you have created the
work files with an appropriately large element size (discussed in the previous section). The discussions
about the different configurations sometimes refer to Figure E-J .

E-2

Input
file

Work
File

First Merge Pass
(Reptacement Selection Phase)

'ntermed'iate
Merge
Passes

Final Merge Pass

Output
File

Figure E-l. Flow of Data

Work
Fite

Licensed Material-Property of Data General Corporation

N
I'­
'<t
N
o
6
(/)

093-000155

Figure E-2. File Placement on Three Disk Drives

Let's follow the flow of data during the execution of this sort. By doing this, you'll see that each device is reserved only for
reading or only for writing operations during one pass of the utility. On the first pass (replacement selection), SortlMerge reads
input me records on :UDD and writes those records to the work me on :AUXDISK. During the intennediate merge passes,
SortlMerge reads records from the :AUXDISK work me and writes records to the : (master logical system disk) work me, or
vice versa. On the fmal pass, SortlMerge reads records from both the : and :AUXDISK work meso Then it writes those records
to the output me on :UDD.

Two Disk Drives

Figure E-3 shows me placement on two disk drives. Notice that we placed the work mes on different disks. Also note that
work me WORKl is not on the same disk as the input me.

Figure E-3. File Placement on Two Disk Drives

The optimal command me which uses this arrangement looks like this:

INPUT FILE IS ':UDD:USERMAILLIST_BY_NAME".
OUTPUT FILE IS ":USERMAILLlST_BY_ZIP",

ELEMENTS ARE 32 BLOCKS.
KEY 1021106.
WORK FILE IS ":USERWORKl".
WORK FILE IS ":UDD:USERWORK2".
SORT.
END.

Figure E-J shows the flow of data in the sorting process. The first merge pass (during the replacement
selection phase) moves data from the input file(s) to a work file. Intermediate merge passes move data
from from one work file to another. The final merge pass moves data from the work files to the output
file.

We use one example for the three configurations. In this example, you want to sort a mailing list by
zip code. The input file is MAILLIST_BY _NAME and the output file is MAILLIST_BY _ZIP.
The two work files are WORK J AND WORK2.

Three Disk Drives
Figure E-2 shows file placement on three disks drives. Notice that we placed the two work files on
different disks. The optimal command file which uses this arrangement looks like this:

INPUT FILE IS ":UDD:USER:MAILLIST _BY _NAME".
OUTPUT FILE IS ":UDD:USER:MAILLIST _BY _ZIP" I

ELEMENTS ARE 32 BLOCKS.
KEY 102/106.
WORK FILE IS ":AUXDISK:USER:WORK1".
WORK FILE IS ":USER:WORK2".
SORT.
END.

O·PFO

WORK 2

lOU Path name

OPF18

MAILLIST _BY -NAME

MAILLIST -8'1' ...zIP

lDU Pathname

:UDO
(Mae. logical System Disk)

Figure E-2. File Placement on Three Disk Drives

OPFll

WORK 1

LDU Pathname

:AUXOISK

I

Let's follow the flow of data during the execution of this sort. By doing this, you'll see that each device
is reserved only for reading or only for writing operations during one pass of the utility. On the first
pass (replacement selection), Sort/Merge reads input file records on :UDD and writes those records to
the work file on :AUXDISK. During the intermediate merge passes, Sort/Merge reads records from
the :AUXDISK work file and writes records to the: (master logical system disk) work file, or vice
versa. On the final pass, Sort/Merge reads records from both the: and :AUXDISK work files. Then it
writes those records to the output file on :UDD.

093-000155 Licensed Material-Property of Data General Corporation E-3

C') ,....
"<t
N
0

6
(f)

Two Disk Drives
Figure E-3 shows file placement on two disk drives. Notice that we placed the work files on different
disks. Also note that work file WORK 1 is not on the same disk as the input file.

DPFO

WORK1

MAILLIST _BY -ZIP

LOU Patnname

(Master Logical System Disk)

DPF10

MAILLIST _BY _NAME

WORK2

LOU Path name

:UDD

Figure E-3. File Placement on Two Disk Drives

The optimal command file which uses this arrangement looks like this:

INPUT FILE IS ":UDD:USER:MAILLlST_BY _NAME".
OUPUT FILE IS ":USER:MAILLIST _BY _ZIP",

ELEMENTS ARE 32 BLOCKS.
KEY 102/106.
WORK FILE IS ":USER:WORK1".
WORK FILE IS ":UDD:USER:WORK2".
SORT.
END.

Let's follow the flow of data during the execution of this sort. On the first pass, data moves from
:UDD to : (master logical system disk). During the intermediate merges, data moves back and forth
between the two disks. On the final pass, the optimal situation no longer holds; reading and writing
occur on the same disk, :UDD, during the same pass.

You can make a sort which uses two disks more efficient. I n most cases, you can write the final output
to a tape file. Figure E-4 shows this configuration. Thi~ usually has two advantages:

I. on the final pass, Sort/ Merge only reads from the work file disks and only writes to the tape file

2. you avoid the operating system overhead in allocating disk elements

E-4 Licensed Material-Property of Data General Corporation 093-000155

LOU Pathname

:UOO
(Master Logical System Disk)

Figure £'-4. File Placement on Two Disk Drives and One Tape Drive

One Disk Drive
You obviously must place all files on one disk if you have only one disk. Thus, t>tere's no point in
discussing optimal file placement on one disk, unless you include a tape drive with the disk. Figure E-5
shows file placement on one disk and a tape drive. The figure shows both the input and output files on
the tape drive. You could put just the input or just the output file on the tape drive.

093-000155

@MTAO

I @MTAO I

I @MTAO:l I

DPFO

WORK1

WORK2

LOU Pathname

(Master Logical System Disk)

Figure £-5. File Placement on One Disk and One Tape Drive

licensed Material-Property of Data General Corporation

III
t-­
~
N
o
6
(fJ

E-5

The optimal command file using this arangement looks like this:

INPUT FILE IS "@MTBO:O", RECORDS ARE 200 CHARACTERS.
OUTPUT FILE IS "@MTBO: 1, BLOCKS ARE 4096 CHARACTERS.
KEY 102/106.
WORK FILE IS ":UDD:USER:WORK 1".
WORK FILE IS ":UDD:USER:WORK2".
SORT.
END.

Process Dedication
Competing disk traffic slows Sort/ Merge considerably. This is because the processing of several files
scattered around a disk pack also causes seeking. If you can, dedicate the disks the utility needs to the
utility. Try not to let other jobs make frequent competing accesses to these disks.

End of Appendix

E-6 Licensed Material-Property of Data General Corporation 093-000155

Appendix F

ASCII Character Set

LEGEND:
~ 10_

To find the II('/al value of a character, locate the character, and Character code in decimal I ~
combine the first two digits at the top of the character's column EBCDIC equivalent hexadecimal code 0 7C 1/
with the third diQit in the far left column

Character .~ ~

OCT Al 00_ 01_ 02_ 03_ 04_ 05_ 06_ 07_
0 8 BS 16 OLE 24 CAN 32 40 48 56

0 "00 NUL - (BACK-
~ lP - IX - SPACE ~ (r-- 0 ~ 8

16 SPACE) 18 40 40 FO

1
1 SOH 9 HT 17 DCl 25 EM 33 41

)
49 57

"01 lA 0& (TAB) r;;- Ia 19 lY - I ~ ~ 1 r-- 9
5A 50 F1 F9

2 STX 10 NL 18 DC2 26 SUB 34 " 42 50 58 2 - lB "1i' (NEW - lR 7 lZ 7F rsc * r-- 2 ~
02 LINE) 12 (QUOTE) F2 7A

3 3 ETX 11 VT 19 DC3 27 ESC 35 43 51 59

~ lC Oi" (VERT
~ IS 27 (ESCAPE) -rB # r-- + ~ 3 r--

TAB) 4E 5E

.. EOT 12 FF 20 DC4 28 FS 36 44 52 60
4 ~ 10 OC (FORM - IT 1C 1 \ - $ ~ (COMMA) ~ 4 I-- <

FEED) 3C 59 6B F4 4C

5
5 ENo 13 RT 21 NAK 29 GS 37 45 53 61

-;;- IE -aD (RETURN) ~ lU - 11 i-- % - - r-- 5 I-- =
10 6C 60 F5 7E

6 ACK 14 SO 22 SYN 30 RS 38 46 54 62
6 ~. IF "OE IN

I--
IV

l""""-
II
~ & - (PERIOD) I-- 6 I-- >

32 lE 50 48 F6 6E

7
7 BEL 15 SI 23 ETB 31 US 39 47 55 63

7F lG 7 10 I-- lW I---
1~ 70' (APOS) - / ~ 7 r-- ?

26 IF 61 F7 6F

OCT Al lO_ ll_ 12_ 13_ 14_ 15_ 16_ 17_

64 12 80 88 96 \ 104 112 120
0 ~ 1"(; ei' H ~ P ~ x ~ (GRAVE) Sa h ~ P I-- x

97 A7

~ 73 81 89 97 105 113 121
1 A -- I Di Q I--- Y ~ a - I I-- q I--- Y Gl C9 E8 81 89 98 AS

2 e6 74
J

82 90 98 106 114 122

~ B i-- - R I--- Z ~ b - J ~ r I-- z
01 09 E9 82 91 99 A9

.,1 75 83 91
[

99 107 115 123 { 3 ~ C ~ K ~ S - ~ c - k r-- s I---
02 80 92 A2 CO

4
.. 76 &4 92 100 108 116 124

~. D ~ L 73 T - \ - d - I r-- t I--
03 EO 84 93 A3 4F

5
:. 1'1 85 93

1
101 109 117 125

f ~. E
~

M ~ U - - e ~ m - u -90 85 94 A4 DO

·Ifd 78 86 94
1

102 110 118 126
6 ~ F - N - V ~ or ~ - f ~ n - v -

.~ 05 E5 SF 86 95 AS Al (TILDE)

11 4 ..!L. ~ 103 111 119 127 DEL 7 ~ G 0 W - or - 87 9 ~ 0 - w 07 OS E8 60 98 A6 (RUBOUTI

SO-00217 Character code in octal at top and left of charts. 1 means CONTROL

End of Appendix

093-000155 Licensed Material-Property of Data General Corporation F-1

Index

* (asterisk key selector) 8-4
* prompt 7-3
: (colon), in TABLE declaration 4-7

/ A 9-14
abbreviations 3-5
abort (error messages)

A

execution phase B-1 If
I/O failure B-8f
initialization phase B-12
key comparison and massaging B-1 Of
other B-13
skip file B-1 0

angle brackets (< >) 3-5
AOS INPUT FILE declaration, see INPUT FILE

declara tion
AOS OUTPUT FILE declaration, see OUTPUT FILE

declaration
apostrophes 3-5
ascending collating sequence 4-15, 1-1, 1-3, 2-4
ASCII character set F-l

subset of 4-5
ASCII collating values F-I
ASCII_ TO_EBCDIC 4-10, 4-12

character key type 1-2
character position 3-5
characters

decimal value 3-5
excluding \-2, see COMPRESS
octal value 3-5
signed numeric 4-\3
unsigned numeric 4-\3

clause iii
COBOL

alphanumeric data type 1-2
picture facilities 9-10

collating sequence
altering 4-\5, 1-3
ascending 4-15, \-\, \-3
default 4-12
defined 3-2
descending 4-\5,1-1, \-3
relationship to collating value 4-4, 3-2

collating value
ASCII F-I
changing 3-2, \-3
defined 3-2
EBCDIC F-I
relationship to collating sequence 4-4, 3-2
tables

user defined 4-\ 0
B utility supplied in TABLE declaration 4-10

BINARY 4-13
block size

default 4-2
defined 3-1
why increase 4-3

break actions, limit 9-11
BREAK lines 9-11

/C 7-4
/C=filename 2-2, 7-1
cautions

c

EBCDIC to ASCII translation 6-4
key 6-1
null insertion 6-10
TABLE declaration's format three 4-10

command file
contents 1-1
defined 2-1
statements

abbreviations 3-5
arrangement 3-4
functions 3-2
order 3-4
summary A-\ ff

structure 3-2, Table 3-\
command line 7-\ ff

command word 7-\
file declarations 7-5ff

limitations 7-6
function 2-2
interactive mode 7-3ff
non interactive mode 7-1 ff
summary A-I

093-000155 Licensed Material-Property of Data General Corporation I ndex-1

switches
IC 7-4
IC = filename 7-1, 2-2
Il7-1
Il=filename 7-1
IN, see IN
10, see 10
IS 7-1, D-l
IT= filename 7-4

command word 7-1
comment line

Report Writer 9-7
Sortl Merge 3-4

compares, floating 6-14
COMPRESS massage statement 6-9

special use with TABLE declaration 4-9
concatenation of data 8-1 Off
@ CONSOLE 7-2
COPY imperative 5-4
copy, how it works 1-2
copying

AOS into AOS 5-4 (Table 5-1)
AOS into IN FOS II 5-4 (Table 5-1)

example 8-22f
IN FOS II into AOS 5-4 (Table 5-1)
INFOS II into INFOS II 5-4 (Table 5-1)

examples 8-23ff
CREATE (Cli command) D-l, 4-15
CTRl-D 7-4

D

dash, in TABLE declaration 4-6
data-sensitive records

defined 3-1
delimiters 4-2
nonstandard 3-1

using with DATA SENSITIVE phrase 4-2
null insertion caution 6-10
padding 6-9
standard 3-1

data_item 9-6, 9-12
DATE field 9-8
decimal

key type 1-2
value (of character) 3-5

declarations 4-1 ff
function 3-2
order 3-4

dedicating process E-6
defaults

block size 3-1, 4-2
collating sequence 4-15, 2-4
display mode 9-5
element size 4-3
key 4-12
key type 4-13,1-2
literal in TR I M KEY phrase 8-21

PATH IS clause 8-21,8-2
record delimiter 4-2
report's columns per line 9-8
report's lines per page 9-7
sort and merge collating sequence 4-12
statistics D-l
tab stops 6-7
work files 4-15

DEFINE lines 9-9
def_item 9-12

defined 9-6
DELETING DUPLICATES imperatives 5-1 f
delimiters

literal 3-5
apostrophes 3-5
quotation marks 3-5

moving fields after 6-2
record

default 4-2
user defined 4-2

descending collating sequence 4-15, 1-1, 1-3
detail information, limit 9-9
DETAil lines 9-9f
display mode 9-5
double quotation marks 3-5
DOWN (key selector) 8-3
duplicate records 5-3
dynamic records

defined 3-\
handling 4-1

IE = filename 9-14
EBCDIC

E

character set F-l
collating values F-l
translation to ASC II 6-3f

caution 6-4
EBCD I C_TO_ASC I I 4-10
element size E-\

default 4-3
defined 3-\
formula E-l

END_FORMAT line 9-4
end-of-file conditions 6-\5
END_REPORT line 9-13
EN D statement 3-2, 2-\, 3-4
error messages

Report Writer 9-5
RWCHECK

qformat syntax C-l
Report Writer runtime C-2
rformat syntax, see rformat syntax errors

Sort 1M erge,
abort B-8ff, see also abort
semantic B-1 ff

errors, detecting syntax 7-2f

Index-2 Licensed Material-Property of Data General Corporation 093-000155

examples, by name
birthday sort 2-6
Bourke family 5-2f
census bureau 5-2f
last name sort 2-4
male and female student sort 2-10
new student merge 2-8
Prolman Institute 9-16
teacher sort 2-5

excluding
characters 1-2
records 6- I 6

EXTERNAL FLOAT (External Floating Point) 4-13
extractor 8-6

phrase 8-6, 8-2

F

field descriptor lines 9-3f
fields

files

deleting, see REFORMAT massage statement
duplicating, see REFORMAT massage statement
inserting new, see INSERT and REPLACE

massage statements
key 4-12
moving after delimiter 6-2
padding, see PAD massage statement
rearranging, see REFORMAT massage statement
replacing, see REPLACE massage statement

command, see command file
@ CONSOLE 7-2
@ LPT 7-4
master, example 7-7
@ MTA 7-4
@ OUTPUT 7-2, 7-4
skip, see skip file

fine tuning Sort I Merge E-I ff
fixed-length records

confusion 6-8
converting variable-length records to 1-2
defined 3-1

FLOAT (Internal Floating Point) 4-13
floating

characters 6-14
compares 6-14

generic keys 8-5f

G

generic key selector, example 8-10

H

HEADER (extractor) 8-7
header information, limit 9-8
HEADER lines 9-8
HELP messages 7-4

I F massage statement 6-13ff
creating end-of-file conditions 6-15
nesting 6-15

IGNORE LOGICAL DELETES 8-7
imperatives 5-1 ff, 3-2

why use one over another 5-1
IN FOS II

key 8-19f
key inversion 8-12
QUERY with Report Writer 9-1

note to users 9- I 3
Suppress Database Access 8-19
Write operation 8-19

IN PUT FI LE declaration 8- Iff
examples 8-8ff
format 4-1
function 4-1, 2-1

input records, massaging 6-1, 5-1 f
INSERT massage statement 6-11
interactive input (aborting) 7-4
interactive mode 7-3ff

prompt 7-3
inversion 8-12ff

key

K

ascending collating sequence 4-15, I-I, 1-3
caution 6-1
character type 1-2
conflicts 2-6
decimal type 1-2
default 4-12
default key type 1-2
descending collating sequence 4-15, I-I, 1-3
function I-I
generic 8-5f
IN FOS II inversion 8-12
logically deleted 8-7
primary, see primary key
secondary, see secondary key
tertiary key, see tertiary key

KEY declaration
defining IN FOS II key 8-19ff
formats 4-11
function 4-1 I, 2-1
not confused with key selector 8-2

KEY (extractor) 8-6
key field, defining 4-12
key selector 8-2

generic, example 8-10
not confused with KEY declaration 8-2
two kinds 8-2

key selector I extractor pair 8-2
key type

character 4-13
decimal 1-2

keys, multiple 2-7, 4-11

093-000155 Licensed Material-Property of Data General Corporation Index-3

L

/L 7-1
detecting syntax errors 7-2f

/L=filename 7-1
detecting syntax errors 7-2f

/L=listfile (RWCHECK switch) 9-14
LAST 3-4

in REFORMAT massage statement 6-1
LOU (Logical Disk Unit) E-2
Lead Overpunch 4-13
Lead Separate Sign 4-13
leading

overpunch 1-2
portion 8-5
signs 1-2

limits
break actions 9-11
contiguous AOS file, E-I
detail information 9-9
file size I-I
header information 9-8
qformats 9-5
record size I-I
rformats 9-13

"literal" (key selector) 8-4
"Iiteral"+ (key selector) 8-5, see also generic keys
"Iiteral"- (key selector) 8-4
"literal":"literal" (key selector) 8-4
-"literal" (key selector) 8-5
literals

defined 3-2
delimiting 3-5

location phrase 3-4,4-12
correspondence between forms 4-12, 4-14 (Table

4-2)
defined 3-2
integer I :integer2 form 4-12ff
when use integer/LAST 6-1

logical deletes, see IGNORE LOGICAL DELETES
logically deleted keys 8-7

examples 8-8
LOP (Lead Overpunch) 4-13
lowercase

comparing as if uppercase 4-12
converting to uppercase 4-10

LOWER_TO_UPPER 4-10
example in KEY declaration 4-12
example in TRANSLATE massage statement 6-3

@ LPT 7-4
LSS (Lead Separate Sign) 4-13

massage statements 6-1 ff
execution order 6-1
function 3-2
input 6-1, 5-If
order 3-4
output 6-1

M

massaging 6-1
feature overview 1-2

merge 1-2, 2-8
pass 0-1
step 0-1

MERG E imperative
function 5-2, 2-1
how it works 5-2

mixed case, comparing as if uppercase 4-12
@ MTA 7-4
multiple keys 4-11

N

/N
interactive mode 7-4
noninteractive mode 7-1
(RWCHECK switch) 9-14

noninteractive mode 7-1 ff
nonstandard data-sensitive records, using with DATA

SENSITIVE phrase 4-2
null insertion, caution 6-10

o

/0
interactive mode 7-4
non interactive mode 7-1,2-2

octal value (of character) 3-5
operators, in I F massage statement 6-14
optimizing Sort/Merge, see fine tuning Sort/Merge
@ OUTPUT 7-4, 7-2
OUTPUT FI LE declaration

format 4-3
function 4-3, 2-1

OUTPUT IN FOS declaration 8-1 Iff
output records

controlling 6-16, 1-2
massaging 6-1

OUTPUT REPORT declaration 9-2

p

PACKED (Packed Decimal Format) 4-13
PAD massage statement 6-8
PAG E field 9-8
partial record 8-12

defining from database record 8-20
PARTIAL RECORD (extractor) 8-6
period (.) 3-4
phrase iii
PICTURE lines 9-10
PL/ I picture facilites 9-10
precedence rules 6-15
preordered traversal 8-8
primary key 2-6, I-I, 4-11
process dedication E-6

Index-4 Licensed Material-Property of Data General Corporation 093-000155

Q

/Q=name.QFORMS 9-\4
qformat 9-\
QFORMAT line 9-7
qformats, limit 9-5
.QFORMS file 9-2ff, 9-1,9-5
quotation marks 3-5

/R = rformat name 9-\4
record delimiters

AOS default 4-2

R

user defi ned 4- 2
RECORD (extractor) 8-6
records

concatenation 8-\ Off
data-sensitive, defined 3-\
defining from database record 8-\6, 8-20
delimiters

default 4-2
user defi ned 4-2

duplicate 5-3
dynamic

defined 3-\
handling 4-\

fixed-length
converting variable-length records to 1-2
defined 3-1

not specific type 4-\
skipping \-2, 6-\6
variable-length

defined 3-\
using with VARIABLE UPTO phrase 4-2

REFORMAT massage statement 6- If
REPLACE massage statement 6-4
REPLACE TABS massage statement 6-6f
replacement selection D-\ f
Report Writer 9-1 ff, \-3

error messages 9-5
interface with Sort/ Merge 9-2
summary example 9-\6ff

rformat 9-1, 9-6ff
descriptor line 9-6
limit 9-13
rules for creating 9-6
syntax errors

BREAK statement C-3
COLUMNS PER LINE statement C-4
DEFINE statement C-4
DET AI L statement C-4
general rformat syntax C-2f
HEADER statement C-5
LINES PER PAGE statement C-5
PICTURE statement C-5
QFORMAT statement C-6
TOTAL statement C-6

.RFORMS file 9-5ff, 9-\
root node 8-4
run

defined D-\
how utility merges D-I

RWCHECK 9-5, 9-14f
switches

/ A 9-\4
/E = filename 9-\4
/ L = listfile 9-\4
/N 9-\4
/Q=name.QFORMS 9-14
/R=rformat name 9-\4
rules 9-\4
/S = filename 9-\4

s
/S 7-\, D-I
/S= filename (RWCHECK switch) 9-\4
secondary key 2-7, \-\, 2-6, 4-\ \
sector 3-\
shorthand (in TABLE declaration) 4-6f
signed numeric characters 4-\3
skip file 6-\6, 1-2, 5-\

rules 6-\6
skipping records \-2, 6-\6
SORT imperative 5-\,2-\
sort, how it works 1-2
Sort/Merge

feature overview I-I ff
general use 1-\
interface with Report Writer 9-2
process 3-2

STABLE SORT imperative 5-2
stable sort, how it works \-2
STABLE TAG SORT imperative 5-2
stable tag sort, how it works 1-2
START_FORMAT line 9-3
START_REPORT line 9-6f
statistics

default D-\
meanings of D-4f
suppress, see /S
terms D-\

subfields 2-6
subindex levels 8-2
summary items 9-\2
Suppress Database Access 8-\9
syntax errors, detecting 7-2f

/T= filename 7-4
TAB (character) 6-6
tab stops, default 6-7

T

093-000155 licensed Material-Property of Data General Corporation Index-5

TABLE declaration
format one 4-4
format three 4-5
format three, caution 4-10
format two 4-5
function 4-4
UNMENTIONED's special use with COMPRESS

4-9
w hen don't need 4-4
when need 4-4

table, collating value
user defined 4-10
utility supplied 4-10

tables, utility supplied
in KEY declaration 4-12
in TRANSLATE massage statement 6-3

tag 1-2
TAG SORT imperative 5-1
tag sort, how it works 1-2
tertiary key 2-7, 1-1, 2-6, 4-11
tight fit 4-2
TOP (Trailing Overpunch) 4-13
TOTAL lines 9-12
trailing

overpunch 4-13, 1-2
signs 1-2

Trailing Separate Sign 4-13
TRANSLATE massage statement

caution 6-4
format 6-2
function 6-2
how it works 6-3
when to use 6-3

traversal, preordered 8-8
TSS (Trailing Separate Sign) 4-13

u

unmentioned characters 4-7ff
unsigned numeric characters 4-13
utility name iii

variable-length records
defined 3-1

v

using with VARIABLE UPTO phrase 4-2

w

WORK FI LE declaration 4-15
work files

creating 4-15
default 4-15
defi ned 4- 1 5
why define 4-15

writing operations E-2

Index-6 Licensed Material-Property of Data General Corporation 093-000155

t. Data General TP ___ ~_~_

TIPS ORDER FORM
Technical Information & Publications Service

BILL TO: SHIP TO: (if different)

COMPANY NAME COMPANY NAME

ADDRESS ADDRESS

CITY CITY

STATE ZIP STATE ZIP

ATTN: ATTN:

QTY MODEL 1/ DESCRIPTION UNIT LINE
PRICE DISC

(Additional items ca'1 be included on second order form) [Minimum order is $50.00] TOTAL

Tax Exempt # Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (U.P.S or Postal)

For orders less than $100.00
o Other:

o Visa 0 MasterCard
Expiration Date ___ _

o U.P.S. Blue Label
o Air Freight
o Other

o Charge my
Acc't No. ___ _

o Purchase Order Number: ________ _

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Person to contact about this order

Mail Orders to:

Data General Corporation
Attn: Educational Services/TIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366-8911 ext. 4032

______________________ Phone ____________ __ Extension

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

TOTAL
PRICE

Date

DGC Sales Representative (If Known) Badge #

DISCOt:NTS APPLY TO
MAIL ORDERS OSLY 012-1780

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof. Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT­
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC­
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con­
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi­
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

t. DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service's Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal"
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P .S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS
Educational Services - M.S. F019
Data General Corporation
4400 Computer Drive
Westboro, MA 01580

8. We'll take care of the rest!

