
AOS/VS Internals
CPU Management­

The Scheduler
, ':I [)ata General

[~~~
053-001JIJ

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART WITHOUT DGC PRIOR WRITTEN AP­
PROVAL.

DGC reserves the right to make changes in specifications and other infor­
mation contained in this document without prior notice, and the reader
should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVER~lNG THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT­
TEN CONTRACTS BETWEEN DGC Al\'D ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CON­
TAINED IN THIS DOCUi\lENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PER­
FORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
INFOS, MANAP, GENAP, microNOVA, NOVA, TRENDVIEW, PRE­
SENT, PROXI, SWAT, ECLIPSE MV/4000, ECLIPSE MV/6000, and
ECLIPSE MV/8000 are U.S. registered trademarks of Data General
Corporation. COMPUCALC, DG/L, DATA GENERAL/One, ECLIPSE
MV/10000, ECLIPSE MV/20000, ECLIPSE MV12000, GW/4000,
GDC/1000, MV/UX, REV-UP, DEFINE, SLATE, microECLIPSE,
BusiPEN, BusiGEN, BusiTEXT, DATA GENERAL/One, DASHER/
One, CEO Connection, CEO Drawing Board, CEO Wordview, CEOwrite,
DG/UX, MV/UX, and XODIAC are U.S. trademarks of Data General
Corporation.

Copyright © Data General Corporation, 1988
All Rights Reserved

I UNDERSTAND THAT INFORMATION AND MATERIAL PRE­
SENTED IN THE VS INTERNALS MANUAL MAY BE SPECIFIC TO
A PARTICULAR REVISION OF THE PRODUCT. CONSEQUENTLY
USER PROGRAMS OR SYSTEMS BASED ON THIS INFORMATION
AND MATERIAL MAY BE REVISION-LOCKED AND MAY NOT
FUNCTION PROPERLY WITH PRIOR OR FUTURE REVISIONS OF
THE PRODUCT. THEREFORE DATA GENERAL MAKES NO REP­
RESENT A TIONS AS TO THE UTILITY OF THIS INFORMATION
AND MATERIAL BEYOND THE CURRENT REVISION LEVEL
WHICH IS THE SUBJECT OF THIS MANUAL. ANY USE
THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM
ANY SUCH SITUATIONS AND I AND MY COi\IPANY HOLD DATA
GENERAL HARMLESS THEREFROM.

AOS/VS Internals
CPU Management­

The Scheduler
t. DataGeneral

[~l
053-001011

Table of Contents

Introduction

Chapter 1 - ELQUE Management
1.1 Objects

1.1.1 The Queue structure
1 • 1. 1. 1 ELQUE
1.1.1.2 ELQUE Ordering

1.1.2 Process Scheduling
1.1.2.1 Priority Numbers
1.1.2.2 Priority Changes
1.1.2.3 Changing Type
1.1.2.4 Priority Mapping
1.1.2.5 Examples of Mapping
1. 1 • 2 . 6 PNQF
1.1.2.7 Bias Factors

1.1.3 HANDQ
1.1.4 PELEMQ
1.1.5 The Globals

1.2 Queueing Operations
1.2.1 PENQ
1.2.2 PENQG
1.2.3 PDEQ
1.2.4 QMOVE
1.2.5 CBDEQ
1.2.6 PENQT

1.3 The Scanner
1.4 Locking

1.4.1 Pend Locks
1.4.2 Element and Queue Locking
1.4.3 Element Locking

1.4.3.1 Element Locks
1.4.3.2 Queue Locks
1.4.3.3 GET_Q_LOCKS
1.4.3.4 RELEASE Q LOCK

1.4.4 ELQUE Locking

Chapter 2 - CB Management
2.1 Introduction
2.2 Objects

2.2.1 The PTBL/CB
2.2.2 PTBL/CB Offset Explanations
2.2.3 CB Unique Offset Explanations
2.2.4 Control Block Pages
2.2.5 Types of CBs

2.2.5.1 G1 and G2/3 CBs
2.2.5.2 Disk Manager
2.2.5.3 Core Manager
2.2.5.4 System Manager
2.2.5.5 Daemons

ix

1-3
1-3
1-4
1-5
1-7
1-8
1-8
1-8
1-9

1-10
1-11
1-13
1-13
1-14
1-14
1-16
1-16
1-19
1-21
1-22
1-24
1-26
1-27
1-35
1-35
1-35
1-36
1-36
1-36
1-36
1-37
1-37

2-1
2-3
2-3
2-7

2-13
2-14
2-16
2-16
2-16
2-17
2-17
2-17

Licensed Material iii Property of Data General

2.2.6 Primary, Secondary, and Temp CBs
2.2.6.1 The Primary CB
2.2.6.2 The Secondary CB
2.2.6.3 The Temp CB

2.2.7 The CB Management G1oba1s
2.3 Operations on CBs

2.3.1 CB Allocation
2.3.2 Pending

2.3.2.1 PEND/MPEND
2.3.2.2 Unpending

2.3.3 FIXCB
2.4 Internal Paths

2.4.1 The CB Dispatcher
2.4.2 TRTN/TGRTN

2.5 Locking

Chapter 3 - Process Scheduling
3.1 Introduction

3.1.1 Relation to Other Parts of Paths and Time
3.2 Time Handling

3.2.1 Accounting and Charging
3.2.2 Timeslicing
3.2.3 Timeslice Exponents (TSE)
3.2.4 Subslice Count (PSLCN)
3.2.5 Process Scheduling Priority (PNFQF)

3.3 System Calls
3.3.1 Initial System Call Handling
3.3.2 Starting or Queueing a System Call
3.3.3 Running the System Call
3.3.4 Concurrency
3.3.5 Page Faults and Daemons

3.4 The Process Databases
3.4.1 Importance/Use in Process Scheduling
3.4.2 States of the PTBL
3.4.3 Blocking and Unblocking
3.4.4 High-Priority Activities

3.5 Process Scheduler Use of CBs
3.5.1 CBs in a Process World
3.5.2 Setting Up and Dispatching CBs
3.5.3 Time and CBs
3.5.4 Concurrency

3.6 User Tasks Scheduling
3.6.1 Overview
3.6.2 Task Scheduling
3.6.3 The TCB
3.6.4 The UST and Ring 3

3.7 Interfaces to the Rest of ,AOS/VS
3.7.1 External Routines Used by Process

Scheduling
3.7.2 Global Data Used by Process Scheduling

2-18
2-18
2-18
2-19
2-19
2-22
2-22
2-24
2-25
2-28
2-32
2-34
2-34
2-38
2-46

3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-8
3-9

3-10
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-16
3-16
3-17

3-17
3-18

Licensed Material iv Property of Data General

3.8 Databases Used by Process Scheduling 3-20
3.8.1 Process Table 3-20
3.8.2 Process Table Extender (PEXTN) 3-23
3.8.3 TCB - Task Control Block 3-25
3.8.4 User Status Table 3-27

3.9 PTBL Scheduling Details 3-29
3.9.1 General Outline 3-29
3.9.2 The Process Scheduling Code Segments 3-31
3.9.3 Detailed Discussion of Code Segments 3-32
3.9.4 Pseudocode 3-44

Chapter 4 - Logical Processor Management
4.1 Introduction 4-1

4.1.1 Purpose 4-1
4.1.2 Overview 4-1

4.2 Logical Processor Management Objects 4-4
4.2.1 The Logical Processor Control Block (LPCB) 4-4

4.2.1.1 LPCB Offset Explanations 4-6
4.2.2 The Globals 4-12

4.2.2.1 Global Definitions 4-12
4.2.3 Basic Operations 4-15

4.2.3.1 Attach 4-15
4.2.3.2 Detach 4-17
4.2.3.3 Update Class Timings 4-18
4.2.3.4 Manage Interval 4-19
4.2.3.5 Reset 4-20
4.2.3.6 Update Totals Counters 4-20
4.2.3.7 Update Scan Mask 4-21

4.2.4 Paths that Affect the LPCB 4-23
4.2.4.1 The Scanner 4-23
4.2.4.2 LP Accounting 4-26

4.2.5 LP Locking 4-33
4.2.5.1 GET LOCK 4-34
4.2.5.2 Release Lock 4-35
4.2.5.3 Lock LPCB 4-36

4.3 User Services 4-38
4.3.1 ?LPCREA 4-38
4.3.2 ?LPDEL 4-42
4.3.3 ?LPSTAT 4-44
4.3.4 ?LPCLASS 4-46

4.4 System Services 4-51

Licensed Material v Property of Data General

Chapter 5 - Class Management
5.1 The Class Matrix 5-3

5.1.1 Basic Operations on the Class Matrix 5-4
5.1.1.1 Get Class Value 5-4
5.1.1.2 Set Class Value 5-5

5.1.2 Class Matrix User Services 5-7
5.2 The Class Control Block (CLCB) 5-12

5.2.1 CLCB Offset Explanations 5-12
5.2.2 The CLCB Globals 5-13
5.2.3 Basic Operations on the CLCB, CL.W,

and CHAP 5-14
5.2.3.1 Create a CLCB 5-14
5.2.3.2 Delete a CLCB 5-15
5.2.3.3 Find a CLCB 5-15
5.2.3.4 Add a CLCB 5-16
5.2.3.5 Remove a Class 5-17

5.3 User Services 5-18
5.3.1 ?CLASS 5-18
5.3.2 ?PCLASS 5-21
5.3.3 ?CLSCHD 5-23
5.3.4 ?CLSTAT 5-29

Chapter 6 - Job Processor Management
6.1 Introduction 6-1

6.1.1 Purpose 6-1
6.1.2 Overview 6-1

6.2 The Real JP 6-3
6.2.1 Introduction 6-3
6.2.2 JP Instructions 6-4
6.2.3 JP Running Operations 6-5

6.2.3.1 Interrupts 6-5
6.2.3.2 Faults 6-6

6.3 The PPCB 6-7
6.3.1 Offset Explanation 6-8
6.3.2 The JP Globals 6-11

6.4 Basic Operations on the PPCB 6-14
6.4.1 Alloc.ppcb 6-14
6.4.2 Dealloc.ppcb 6-15
6.4.3 Attach a PPCB to an LP 6-16
6.4.4 Detach 6-18
6.4.5 Update Time 6-19
6.4.6 Set Mask 6-20
6.4.7 Lock PPCB 6-21
6.4.8 Idle JP 6-21
6.4.9 IDLE 6-23
6.4.10 EVENT 6-23
6.4.11 MATCH/MATCH1 6-27

6.5 Paths that Affect the PPCB 6-28
6'.5.1 The Scanner 6-28
6.5.2 Time Accounting 6-32

Licensed Material vi Property of Data General

6.6 The Idle Loop (Checksum) 6-33
6.6.1 Preparing for the Idle Loop 6-33

6.7 The Checksum Loop 6-35
6.8 Locking 6-38
6.9 User Services 6-39

6.9.1 ?JPINIT 6-40
6.9.2 ?JPMOV 6-46
6.9.3 ?JPREL 6-50
6.9.4 ?JPSTAT 6-53

6.10 System Services 6-55

Chapter 7 - Time Management
7.1 Introduction 7-1

7.1.1 Purpose 7-1
7.1.2 Overview 7-1

7.2 The PIT 7-3
7.2.1 The Objects 7-3
7.2.2 The Globals 7-4
7.2.3 Basic Operations 7-4

7.2.3.1 I.PIT.S 7-4
7.2.3.2 RUN.PIT 7-5
7.2.3.3 STOP. PIT 7-5
7.2.3.4 LOOK. PIT 7-5
7.2.3.5 CHECK. PIT 7-5

7.2.4 Paths in the PIT World 7-6
7.2.4.1 Base Level 7-6
7.2.4.2 Interrupt Level 7-7

7.3 The Real Time Clock (RTC) 7-9
7.3.1 The Objects 7-9
7.3.2 The RTC Globa1s 7-11
7.3.3 Paths that Access the RTC 7-12

7.3.3.1 Base Level 7-12
7.3.3.2 Interrupt Level 7-12

Licensed Material vii Property of Data General

Introduction to the
AOS/VS Schedu1er

Paths and Time is the area of the operating system that
schedules the system and user paths and manages the timing
devices used by the system.

Paths are sequences of code. An example of a Path is part of
a program written to do a matrix multiplication; the path
would be the main program loop. Or a path would be one of
the subroutines that does one traversal through the matrix.
Another example of a path is the Scheduler in AOSjVS.

Time to the operating system is what is defined by the timing
devices. These devices can be compared to a wall clock or
stop watch. These devices are used to make decisions about
resource use by a certain path. Like a wall clock, the
shortest amount of time is called a tick.

There are three major types of paths dealing with Paths and
Time. First there is the user path, which is called a
process and is represented by a Process Table (PTBL). All
user-visible paths are user paths. The second type of path
is a system path, which works in the system on behalf of a
user or is used to manage the system resources. These types
of system paths are called Control Blocks (CBs). User CBs do
work for the user and System CBs do system resource
management. The last type of path is a system path, which is
not part of a CB or a PTBL. The SCHEDULER is such a path.
These paths are used to either dispatch CBs or PTBLs, or they
handle special events such as interrupts that affect a path
on the system, or they provide accounting services for CBs,
and users.

Paths and Time dispatches system paths to allow the other
major components to do system management. This ties all of
AOSjVS together. Thus dispatching and accounting services
are Paths and Time's connection to the other components in
the system.

Licensed Material ix Property of Data General

Below is an illustration of the components of AOS/VS and what
type of path is used in that component. This will be done by
using PTBL to represent a user path. User CB, System CB, and
non-CB system paths will be used to represent the system
paths. Remember that the point of view here is from the
kernel in ring O.

+--+
USER LAND (rings 4 to 7)

PTBL

+--+ +---+------------+ I PROCESS MANAGEMENT I
USER CB

+----------+------------+-----------------+ HOST
PATHS MEMORY I AGENT I/O I MANAGEMENT

AND MANAGEMENT PTBL
TIME +--------+--------+
NON CB
SYS PATH

USER CB

USER AND FILE TERMINAL
SYSTEM SYSTEM SERVICES

CB
USER PTBL
~D

SYSTEM
CB

PTBL
USER CB

AND
SYSTEM CB

+----------+------------+--------+--------+------------+
Figure 1 AOS/VS Components

Licensed Material x Property of Data General

There are seven major components to Paths and Time: Time
Management, Job Processor Managment, Logical Processor
Management, Class Management, ELQUE Management, CB
Management, and PTBL Management. These components are
arranged in the figure below from bottom up. The more
knowledge the component has of the hardware, the lower its
placement in the picture.

+---------------+ +------------------+
PTBL

MANAGEMENT
CB

MANAGEMENT

+---------------+ +------------------+

+---------+
CLASS

MANAGE­
MENT

+---------+

+-------------------+
ELQUE

MANAGEMENT

+-------------------+
+---------------+

LP
MANAGEMENT

+---------------+

+---------------+
JP

MANAGEMENT

+---------------+
Figure 2 Paths and Time Components

+--------------+
TIME

MANAGEMENT

+--------------+

Each component manages its own databases and provides
services for the higher components in the system. Bach
component has distinct differences from the others and
is considered a separate chapter, although the code is
not actually broken down this way.

Licensed Material xi Property of Data General

Each chapter in this book is arranged as follows.

I. Introduction
II. Objects managed

A. Define objects
B. Basic operations on objects
C. Paths that use the basic operations

III. User services
IV. System services

o The system services show how a component of Paths and
Time services other upper-level functions or provide
services for the rest of AOS/VS.

o JP management manages the processors. The main
service it provides to the other components is that it
allows the other components to run code.

o LP management manages the user-visible representation
of a processor. The service it provides is keeping
class scheduling statistics and updating the class
part of the scan mask used by the scheduler.

o Class management manages the class-specific
databases. These databases are used by the PROC code
(see Process Management Volume) to assign a class to a
process. These databases are also accessed by the LP
management code to assure existence of a class.

o Time management manages the time devices that provide
data used by other components to manage or account for
the time they use.

o ELQUE management manages the eligible queue and the
other major scheduling queues. The services this
component provides is dispatching the system paths
(CBs) and the user path (PTBLs). This dispatching
transfers control of the ability to run code to the
different paths.

o Process management interface services provide user
path management such as task scheduling, a system call
interface, and user time usage. This component sets
up the CBs for CB management.

o CB management dispatches the different types of system
paths in the system. These paths are called CBs.
There are two types of CBs: system CBs and user CBs.
User CBs are created when a user makes a system call.
System CBs do functions necessary to manage the system
resources such as memory.

Licensed Material xii Property of Data General

The figure below shows how these components interrelate.

+---------------+ +------------------+
PTBL

MANAGEMENT
-------> CB

MANAGEMENT

+---------------+ +------------------+

+----- --------------+ / -------------------+

+--->

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- -->
MENT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

<--+

+-------+
+---- JP <-----------+ /

MANAGEMENT +-----------------+
------------>/ INTERRUPT LEVEL /

+---------------+ +-----------------+

Figure 3 Paths and Time Component Relationships

Licensed Material xiii Property of Data General

Throughout the Paths and Time section, references will be
made to the PTBL and CB databases. Each section that
works substantially with the databases will describe
sections of the PTBL and CB databases that are relevent
to those sections. They will not, therefore, describe
the whole database.

The table below (Table 1) shows the entire PTBL. Part of
the PTBL is the PTBL/CB common area. This table is also
shown in the PROCESS Management volume.

Process Table Offsets

The following is a field-by-field description of the main
database for each process on the system. It is called a "Process
Table." This database is built when a process is proc'd. It
contains all the information needed by a process to be run by the
operating system.

Each process is linked in priority order to each other when they
are on any given scheduler queue. This link is established
through the first four words of the process table. Process tables
and Control Blocks share the first 24 16-bit words in common.
This is so that they can both reside on the ELQUE and be scanned
and scheduled in the scheduler.

The first column is a code that points to the section of the
Internals manual where the full description of the field can be
found. Codes are as follows:

S - Paths/Time
F - File system
P - Process management
M - Memory management
* - Look at individual bit definitions

Licensed Material xiv Property of Data General

Table 1 The Process Table

======~===

P
S
S
S
S

S

S
S

S
S

S

S

S
S
S

I Variable I offset I
PLNK.W
PBLNK.W
PNQF
PCLASS
PSTAT

PSTATI

PPC.W
PLPCB.W

PGNUM.W
PTIM.W

TTIME.W

CALLN.W

PKEY.W
MAPFLG
PURFLG

o
2
4
5
6

7

10
12

14
16

20

22

24
26
27

Lock and Meaning

T Forward Link
T Backward Link
L Priority eNQue Factor
L Process CLASS
RE Process Status Bits for use

during scheduler scanning
RE Process status bits which are not

needed during scheduler scanning
I Control address when scheduled
L Logical Process Control Block to

charge time used by this process
L (CLASS #)*2 integer used by XWADD
L Current interval of time expended

by a direct/indirect system call
L Accumulated time expended by a

direct/indirect system call
L (SYS CALL NUMBER)*2 used during

SYS CALL time accounting by XWADD
X UNPEND KEY
N MAPCON needs to be done for CP
N Purge ATU needs to be done for CP

==
End of Common area between CB and PTBL

Licensed Material xv Property of Data General

PTBL continued

==

P
S
S
S
S
S
P
P
P

*
*
*
*
P
P
P
P
P
P
P
P
S
P
M
P
S
S
S
P
P
P
P
P
S
S

P
P
P
M
M
P
P
P
P
P

I Variable I offset I
PSELF.W
PULOC
PPLOC
PLLOC
PCLASI
LMAST
PDAD.W
PSONP.W
PSONL.W

PFLAG
PFLG2
PFLG3
PFLG4
PEXTN.W
PIORR.W
PIORB.W
PIPCS.W
PRPRV
PID
PERPC.W
PCMLK.W
PSLEX
PCRMX
PMKEY
PPRI
PDINH.W
PDLNK.W
PDBLK.W
PCONH.W
PCONH
PCONL
PHASH
PTUP.W
PINSU
PSSEL

PKCHR
SWCCB.W
PGCCB.W
PWSET
PWSSH
PERWD
PSWPO
PSWID
PTRGC
PSRNG

30
32
33
34
35
36
37
41
43

45
46
47
50
51
53
55
57
61
62
63
65
67
70
71
72
73
75
77

101
101
102
103
104
106
107

110
111
113
115
116
117
120
121
122
123

Lock and Meaning

I Address of PTBL
L Current User Locality
L Program Locality
L Legal localities
L Copy of PCLASS for restore
RE 'MOTHER-ONLY' status word
I PTBL Address of Father
P Son pointer to son list
P Son Link Word for Father's

Son List
RE Flag word 1
RE Flag word 2
RE Flag word 3
RE Flag word 4
I PTBL Extender address
L Blocked Receive Request chain
L Backward Link
I Spool file
I PRIV bits assigned by Creator
I PID assigned at create time
L PC when RETER called
T Core Manager ENQUE Link
L Time Slice Exponent
I Max # SON procs
L MEM WAIT flag key
L Father assigned pri factor
? Delay current INC word
? Delay chain forward link
? Delay chain backward link
I Console Port Number
I Console Port Number (HI)
I Console Port Number (LO)
I Process name hash value
T TCB signal bit map on SWAPIN
L In scheduler mode flag (0 OR 1)
L # of subslices used since put on

ELQUE
T ?KWAIT char
I SWAP File CCB for this process
I PAGE File CCB for this process
L Working set size (# Phys pages)
L # Shared pages in WS
L Error word
? # Times swapped out
? SWAP unique ID
L Target call counter
L Server Ring Bit map (bits 0-7)

==

Licensed Material xvi Property of Data General

PTBL continued

--
!variable! offset ! Lock and Meaning

P PSFDF.W 124 L Fwd Link Spool File Dir Chain
P PSFDB.W 126 L BKWD Link Spool File Dir Chain
P PSFRC.W 130 L Spool File Entry Count per Ring
S PSIDIR 134 L # Enqueued TCBS W/Indirect calls

* PFLG5 135 RE Flag word 5 (added at end to keep
offsets the same)

P PRNGTP.W 136 T Ring type - New or Old
S PSTATE 140 T VS/MP Process State Word
P PMXPR 141 L Maximum Process Priority
P PSWPSIZE 142 L Usable Swapfile space (WS pages)

[Invariant for life of process]
P PDIPC 143 N # of TCB's pended on ?IREC
P PRCCB.W 144 L Break File CCB address
F PTUNL.W 146 ? Bit Mask of tasks to unlock

(FLOCK)
F PLCNT 150 ? Count of active ?FLOCKS
S PCBLK 151 ? PLOCK fail counter

==

PLN 152 Length of PTBL

Process Table bit parameters for first status word (PSTAT).
Note that this is the status word where bits are defined that
will be looked at during the ELQUE dispatch scan.

Status Bits

Status bits have common meaning for both CBs and PTBLs.

PSRDY
PSRUN
PSEW
PSNCB

100000
040000
020000
010000

Not ready to run
Running
Sched action
Don't look - process can only use a CB

The following status bits are used in SCHED as a dispatch
value. Highest priority function has lowest bit assignment.

PSBRK
PSBAG
PSBLK
PSDP
PSMWT
PSTSU

004000
002000
001000
000400
000200
000100

Licensed Material

OP interrupt
SWAP OUT process
BLOCK process
START UP DAEMON
Wait for memory key to change
Timeslice is up

xvii Property of Data General

The following bits are not used via DSPA:

PMAST
PLCK
PSETR
PSFSY
PTRAN

000040
000020
000010
000004
000002

Mother-only element (l=Mother-only)
Process table lock bit
Don't enter
System page fault
Element transition bit

-- A critical state/counter being viewed/changed

Process table bit parameters for second status word (PSTAT1).
Note that this is the status word where bits are put that will
not be looked at during the ELQUE dispatch scan.

PSYST
PTYP
PNAD
PNFST

000001
040000
020000
010000

System CB bit -- CM,SM,DM
Element type (l=Control Block)
No address space to release(BPLCK)
Sys call did not run 'FAST'

MULTIPLE BIT DEFINITIONS

PFPTA
PFPTB
PFPTC

000000
000002
000003

Licensed Material

Process type A
Process type B
Process type C

xviii Property of Data General

Bits in PFLAG

PFNIN 100000 ACAA interrupts will wait
PFPRE 40000 Preemptive Resident
PFDEB 20000 DEB entry
PFFIR 10000 First execution and load
PFELG 04000 Process is ELIGIBLE (in core)
PFTRP 02000 Trap bit
PFINT 01000 Run ACAA DAEMON
PFBRP 00400 Breakfile (ACAE) requested
PFTRM 00200 Run TERM DAEMON
PFMBL 00100 Proc can only be explicitly UNBLOCKED
PFILT 00040 Prot trap at interrupt level
PFRSH 00020 Resched flag
PFWSC 00010 Page added to WS since last PFF
PFNFR 00004 Narrow process becoming non-resident
PFSWP 00002 Swapping task
PFEBL 00001 Waiting for son termination

Bits in PFLG2

PFSP 100000 SWAP OUT/IN in progress
PFSU 40000 UNPEND someone waiting for SWAP IN/OUT
PFCMQ 20000 Process is enqueued to CM
PFDUP 10000 UNPEND TCB at head of delat chain
PFIEB 04000 PTBL on IEBLK queue
PFUCF 02000 UNPEND waiters when cleanup finishes
PFOIQ 01000 PTBL is on IEQUE
PFBLE 00400 Scheduler can block process
PFWSL 00200 Waiting on .SGNL
PFSWO 00100 Process is being swapped out
PFCIP 00040 Cleanup in progress
PFATL 00020 Process termed by system
PFSUP 00010 Superuser mode
PFNTR 00004 Narrow process becoming resident
PFWSG 00002 Process is waiting for ?SIGNAL
PFQSC 00001 Inhibit scan of backed up TCB request

Licensed Material xix Property of Data General

PFTSE
PFUBD
PFPTM
PFPCN
PFCIE
PFIWC
PFIRS
PFATC
PFSTM
PFDIN
PFATT
PFMBQ
PFARBS
PFPCH
PFMGR
PFOPCH

PFBRK
PFDIS
PFTBS
PFSPR
PFMRL
PFPBS
PFOBQ
PFACL
PFSRV
PFMDP
PFNRO
PFDP1
PFKWB
PFKIB
PFISS

PFENB
PFDWS
PFTDC
PEXTIV
PLWAIT
PTWAIT
POPER
PFREQ

PFXPT
PFHRP

Bits in PFLG3

100000
40000
20000
10000
04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

At least 1 time slice ended
Unblock FATHER on RTN
Processing a TERM
Processing a CHAIN
Has created an IPC type entry
Interrupt (ACAB,ACAE) term of PROC
Int world interrupted task
AGENT term work completed
Process self-termination
Delayed ~CAA waiting
AGENT term task is running
Process on MBLKQ
All ref bits set in working set
Hold on >1 parallel call
SYSMGR mode
Parallel call overwrite(TARGET)

Bits in PFLG4

100000
40000
20000
10000
04000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Process wants breakfi1e on trap
Disconnect of modem occurred
Terminated by superior process
Superprocess mode
MAX CPU limit in use
Block after initial load
Process is on blocked queue
User default ACL enabled
Process is a server
Process wants MDUMP on trap
Process is narrow (16 BIT)
Pass MDUMP flag to AGENT on term
Process has task doing a ?KWAIT
Process has all ~CAX disabled
INT SEQ received

Bits in PFLG5

20000
10000
04000
02000
01000
00400
00200
00100

00002
00001

Process is the target of an ?ENBRK
System default working set limits
TERM if FATHER chains
PTABLE Extender inva1id(SWAPped out)
Address space waiter bit
Waiter bit for target count(PTRGC)=O
Process is a global operator
At least one task of this process has
request block memory of ?OPER database

Extended (POST REV6) program type
High range PID

Licensed Material xx Property of Data General

Chapter 1
ELQUE Management

ELQUE management is the part of Paths and Time that manages the
major scheduling queues. The queues that will be discussed in
this chapter are: ELQUE, PELEMQ and HANDQ.

o ELEMENTs are the items on the scheduling queues. There
are two types of elements: PTBLs and CBs. Within CBs
there are system CBs, user CBs, and DAEMONS.

o A PTBL is the system
path) in the system.
necessary to run the
statistics.

representation of a process (user
The PTBL holds information

user's code paths and keep user

o A CB is used to either run a system call or perform a
system service. The CBs used for system calls are
called user CBs. CBs used to perform system functions
are called system CBs.

o A DAEMON is a special kind of CB that performs a
function for the system on behalf of a user, i.e., such
as process termination. This kind of CB runs at very
high priority.

Licensed Material 1-1 Prop~rty of Data General

Figure 1.1 shows the connections between ELQUE management and
Paths and Time.

+---------------+ +------------------+
PTBL

MANAGEMENT
CB

MANAGEMENT

+---------------+ +------------------+

+----- --------------+
I -------------------+

+--->

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- -->
ME NT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

<--+

+-------+
+---- JP <-----------+ 1

MANAGEMENT +-----------------+
------------>1 INTERRUPT LEVEL 1

+---------------+ +-----------------+
Figure 1.1

ELQUE Management interacts with four other parts of paths and
time: JP, LP, CB, and PTBL management. ELQUE management runs
code on the JP and dispatches elements that it selects to PTBL or
CB management. ELQUE management gets the Class scan mask from LP
management that it uses to select an element.

This chapter is organized as follows:

o The objects
o The operations that work on the objects
o The internal paths of ELQUE Management
o Service provided to the rest of AOS/VS

Licensed Material 1-2 Property of Data General

1.1 Objects

This section describes the queueing structures in ELQUE
Management: ELQUE, PELEMQ, and HANDQ.

1.1.1 The QUEUE structure

AOS/VS manages system resource users by way of the Queue. When a
user is on a certain Queue, then that queue reflects the state of
the user. For example, if a process is on the ELQUE then the
process is in an ELIGIBLE state. Each Queue described in this
chapter is a doubly linked list of elements. The first and last
elements of a queue are pointed to by the header block. The
header block is a structure that has the following offsets.

+------------+-------------------------------------+ o QHEAD Contains the pointer to the head
2 QTAIL Pointer to the tail of the Queue
4 QSTATUS Qstatus word
5 QUSERS Queue users count
6 QSCAN Queue scanners count(ELQUE ONLY)

+------------+-------------------------------------+
Figure 1.2 Queue Header Block

QHEAD holds the pointer to the first element in the queue. For
ELQUE this value will always point to the Disk manager (DMTSK).

QTAIL holds the pointer to the tail of the queue. On ELQUE this
will always contain the pointer to the root process table.

QSTATUS contains the status bits for this queue. Currently there
is one bit defined for this one word entry and that is the Qlock
bit. This bit is used as a spin lock. (See JP management.)
This bit is used to lock the queue in order to allow modification
of the queue or to increment the QSCAN counter.

Licensed Material 1-3 Property of Data General

QUSERS is a l6-bit counter that reflects the number of elements
attached to the queue.

QSCAN is a counter of all the scanners of the queue. This is
only used for ELQUE. This counter is used to arbitrate shared
and exclusive access to a Queue by the queueing routines. The
usage of the scan count is as follows:

When the scanner wishes to scan ELQUE it tries to first get
the QLOCK (a spin lock). If successful, the scan count is
incremented and then the QULCK is released. After the scan
completes, the scanner decrements the scan count without
locking ELQUE.

When a path is trying to modify ELQUE, the path first tries
to get the QLOCK. When the path gets the lock, it then spins
on the scan count. When the count goes to zero the queue can
be modified. After the queue is modified then the QLOCK
is released.

There are four major queues used in ELQUE management. They are
the ELigible QUEue (ELQUE), The HANDler Queue (HANDQ), the Pended
ELEMent Queue (PELEMQ), and the IDle System Control Block
Queue (IDSCBQ).

1.1.1.1 ELQUE

ELQUE is the queue of eligible elements. This queue is used by
the scanner to find an element to dispatch. ELQUE contains PTBLs
and CBs. To access ELQUE one or more of the ELQUE locks must
be held.

Except for a few cases, ELQUE is ordered by element type and
Priority ENQue Factor (PNQF). This ordering allows the scanner
to get the highest ready-to-run element first. Figure 1.3 shows
the ordering of the Eligible queue.

Licensed Material 1-4 Property of Data General

1.1.1.2 ELQUE Ordering

ELQUE: This is the eligible queue of process tables and control
blocks. This is the primary queue used by the scheduler.

* The DISK MANAGER Control Block is always first on this
queue. (This CB is always on ELQUE.)

* The CORE MANAGER Control Block is always second or third
on this queue if not idle.

* The SYSTEM MANAGER Control block is always second or
third if not idle and the Core Manager is on ELQUE.

* The active Group 1 Control Blocks are next. These are
in FIFO order by time.

* The group 1 process tables are next. These are in order
based on a PNQF. These include the PMGR process table
which is permanently on the ELQUE.

* Next comes the Group 2 Control Blocks. These are in
FIFO by time.

* The group 2 process tables are next, ordered by PNQF.

* The group 3 process tables are next, ordered by PNAF.

* Last on queue is a dummy process table, called the Root
Process Table. This never requires time, but is used to
mark the end of the ELQUE. The root process table has a
PID of 0, and is considered the father of the PMGR and
OP:CLI processes.

Licensed Material 1-5 Property of Data General

Figure 1.3 shows the ordering of ELQUE.

+----------+ +----------------------------+
ELQUE 1------------->1 System Control blocks 1

+----------+ +----------------------------+
Header Block V

+----------------------------+
1 First of the group 1 CBs 1

+----------------------------+
Notes:

+----------------------------+
1. All control blocks are 1 Last of the group 1 CBs 1

in FIFO order. +----------------------------+
(by group) V

+----------------------------+
2. All process tables are 1 Highest pri group 1 PTBL 1

in ordered by group +----------------------------+
3. The PMGR is always on

ELQUE

4. The last allocated
resident CB is always
reserved for the PMGR

Figure 1.3

Licensed Material

+----------------------------+
1 Lowest pri group 1 PTBL 1

+----------------------------+
V

+----------------------------+
1 First of the group 2,3 CBs 1

+----------------------------+
+----------------------------+
1 Last of the group 2,3 CBs 1

+----------------------------+
V

+----------------------------+
I Highest pri group 2 PTBL 1

+----------------------------+
+----------------------------+
1 Lowest pri group 2 PTBL 1
+----------------------------+ . .
+----------------------------+
1 Highest pri group 3 PTBL 1

+----------------------------+
+----------------------------+
1 Lowest pri group 3 PTBL 1

+----------------------------+
V

+----------------------------+
1 DUMMY ROOT PTBL 1

+----------------------------+

1-6 Property of Data General

1.1.2 Process Scheduling

AOS/VS schedules eligible processes based on their priority
numbers and scheduling characteristic; the range of process
priority numbers (1 through.511) spans three scheduling groups.

Group 1 ranges from 1 to a number, "G1", which is set during
VSGEN. AOS/VS schedules any process whose priority number places
it in Group 1 on a round-robin basis. Under this scheme, each
process is allocated a uniform slice of time during which it may
execute. Once a process of a specified priority temporarily
stops executing (having used up its time slice), it is not chosen
to execute again until all other processes of that priority have
been chosen to execute.

Group 2 ranges from G1+1 to a number, "G2", which is also set
during VSGEN. AOS/VS schedules any Group 2 process heuristically,
which means that the system takes the process' past behavior into
account when allotting it an interval of time during which it
may execute.

Group 3 ranges from G2+1 to 511. AOS/VS handles processes in
this group on a round-robin basis.

NOTE: If you need to maintain compatibility with AOS, G1 and G2
must be set to 255 and 258, respectively.

Group 1 processes are always more important (that is, more likely
to be chosen for execution) than those in Group 2 or 3, and Group
2 processes are always more important than those in Group 3.
Within each group, the lower the priority number, the greater the
importance of the process.

If an executing process cannot proceed, you can issue the
?RESCHED system call, which allows the calling process to give up
control of the CPU and forces AOS/VS to immediately schedule
another process for execution.

Licensed Material 1-7 Property of Data General

1.1.2.1 Priority Numbers

Eligible processes are placed on ELQUE partly based on their
individual priority numbers. AOS/VS uses priority numbers to
determine each process' priority. When you create a process, you
may assign it a priority number.

Priority numbers range from 1 (the highest priority) through 511
(the lowest). These numbers span three scheduling groups (with
no overlap and no gaps), whose boundaries are determined during
VSGEN.

1.1.2.2 Priority Changes

If a process wants to change its own priority, and it has change
priority privilege, it may issue the ?PRIPR system. call. To
change the priority of another process, however, the calling
process must be in Superprocess mode.

1.1.2.3 Changing Type

The priority of a process may also change when you change its
type with either ?CTYPE or ?PROC. Given that the boundaries of
the 3 scheduling groups are:

Group 1 = 1 - G1
Group 2 = G1+1 - G2
Group 3 = G2+1 - 511

then the following tables summarize the changes in priority that
occur when a process changes type. Notice that a swappab1e
process can never assume a priority of 1, 2, or 3, but it may
APPEAR to do so because of the way priority numbers get mapped.
(See mapping in the next section.)

Licensed Material 1-8 Property of Data General

Priority Changes GOing from a
Resident or Preemptible to Swappable Type

Priority Before Change Priority After Change

1 - 3
4 - G1
G1+1 - G1+3
G1+4 - G2
G2+1 - 511

1 - 3 * **
2 * **
1 - 3 **
G1+4 - G2
G2+1 - 511

* This parallels what happens under AOS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G1+3. See "Mapping" below.

Priority Changes Going from a
Swappable to a Resident or Preemptible Type

I Priority Before Change

1 - 3 **
4 - G1
G1+4 - 511

Priority After Change

1 - 3 *
4 - G1
G1+4 - 511

* This parallels what happens under AOS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G1+3.

1.1.2.4 Priority Mapping

A resident or preemptible process can assume any of the priority
numbers 1 through 511. The system uses this number in gauging
the importance of the process during scheduling and displays this
same number if you request the process' priority.

Licensed Material 1-9 Property of Data General

To maintain compatibility with AOS, however, AOS/VS has to map
priority numbers for swappable processes. As a result, the
actual number the system uses in its scheduling calculations
and the number it displays when you request the process' priority
may differ.

The discrepancy between actual and displayed priority numbers
occurs in three cases:

1) If you assign a swappable process priority of 1, 2, or 3.

2) If you assign a swappable process priority of G1+1 - Gl+3.

3) If a resident/preemptible process with priority 1, 2, or 3
changes its type to swappable.

In all three cases, AOS/VS uses a priority number of G1+1 - G1+3
when scheduling the process because a swappable process cannot
have a priority of 1, 2, or 3. The system cannot, however,
display the numbers G1+1 - G1+3 for a swappable process, and so
displays 1 - 3.

In all other cases (4 - G1 and G1+4 - 511), the actual number is
the same as the displayed number.

Remember, however, that if you do assign a swappable process a
priority of 1 and then it changes type to resident (or
preemptible), the resident process will have an actual priority
of 1, even though the swappable process could not.

1.1.2.5 Examples of Mapping

1) If a resident process with a priority of 2 changes its type
to swappable, the system displays a priority of 2, but it
actually uses G1+2 when scheduling the swappable process.

2) If a resident process with a priority of 3 changes its type
to preemptible, the system displays and uses a priority of 3
for the preemptib1e process.

3) If a preemptible process with a priority of G1+3 changes its
type to swappable, the system displays a priority of 3, but
uses G1+3 in scheduling the swappable process.

Licensed Material 1-10 Property of Data General

4) If a preemptible process with a priority of G2+44 changes its
type to swappable, the system displays and uses a priority of
G2+44 for the swappable process.

5) If a swappable process with a display priority of 3 (meaning
its real priority is G1+3) changes its type to resident, the
system displays and uses a priority of 3 for the resident
process.

6) If a swappable process with a priority of 5 changes its type
to preemptible, the system displays and uses a priority of 5
for the preemptible process.

1.1.2.6 PNQF

The Priority eNQue Factor (PNQF) is the value by which ELQUE is
ordered. For Gl processes the PQNF is equal to the process
priority. For G2 processes it is a calculation. This
calculation allows for subgroups within each priority.

If the process is in Group 1 then:
PNQF = Priority

E = 6

If the process is in Group 2 then:
PNQF = G1 + 1 + (7 *(process priority - gl» + E

If the process is in Group 3 then:
PNQF = G1 + 1 + (7 *(process priority - gl» + E

E = 6
G1 is the genned max value for a G1 type process.

Before the 7 in the PNQF calculation can be described the "E" in
the calculation must be discussed. The E is the time slice
Exponent. This is a value from 1 - 6 and varies based on process
behavior. The lower the E value the more interactive a process
is and, therefore, the process will have a higher priority.
Therefore, AOSjVS favors the more interactive processes over CPU
bound process within Group 2. The E value allows the ELQUE
manager to subdivide each G2 priority group into 6 subqueues.
These subqueues are managed by round-robin. The E value gets set
up based on the amount of time slice residue the process has
left. There are two times when E is touched from the scheduling
point of view: 1) after unblocking a process and 2) after the
process uses up its time slice. The algorithm below shows how E
is calculated.

Licensed Material 1-11 Property of Data General

/* ** */
/* This block of code calculates a new Time Slice */
/* Exponent after a process unblocks. */
/* */
/* */
/* ** */

residue = ptbl.pextn.pscln;
current exponent = ptbl.pslex;
total subslices = 2** current exponent;
remaining subslices = total subslices - residue;
E = lead bit(remaining subslices) /*see LOB instruction*/
if (E »-5) -

E = 5;
if (E « 1)

E = 1;

During time slice end processing, E is merely incremented unless
E is already at the maximum of 6.

The 7 is used to divide each priority grouping into subgroups.
These subgroups are numbered from 0 to 6. (See Figure 1.4.)

ELQUE PNQF SUBGROUPS

G1 slots I G2 CB I G2 1st I G2 2nd I G2 3rd I G3 1stl
+-----------+-------+--------+--------+--------+-------+

PNQF = PRI slot 0 1 6 1 6 1 6 1 -- 6

Figure 1.4

The ELQUE subgroups for G1 are a one-to-one relationship, e.g.,
PNQF = priority. The subgroups for G2 and G3 allow for a
subgroup O. This subgroup allows a spot for a G2-G3 control
block. Since the G2-G3 CBs must go before the G2 processes then
there must be an assigned place on ELQUE for the G2-G3 CBs.
Subgroup 0 is used for that purpose. Because there are 6
possible subgroups allowed by the Exponent subgroup 0 is
accounted for by the 7 in the PNQF calculation. Slot 0 in the
other G2 and G3 subgroups will not be used, but that is not a
problem because no extra space is taken up by the holes.

The difference between the process priority and G1 is the value
of the G2 mapped priority. (See Priority Mapping above.)

Licensed Material 1-12 Property of Data General

1.1.2.7 BIAS Factors

The locations BIAS and HBIAS, in STABLE, define the AOS/VS bias
value. The bias factor is used to manage the size of ELQUE by
setting an upper and lower limit on the number of non-interactive
processes on ELQUE. BIAS contains the minimum number of
non-interactive processes that AOS/VS attempts to keep on ELQUE,
while HBIAS represents the maximum number. A non-interactive
process in the AOS/VS sense is a swappable process having a time
slice exponent of 6. This mechanism is used when trying to
preempt or swap a process on ELQUE. If the number of CPU bound
processes is greater than HBIAS, then some of the processes will
be preempted or swapped.

1.1.3 HANDQ -- unpended queue

There are some problems in working with the Eligible Queue. The
main problem comes from the locking mechanisms used to manage
ELQUE. If ELQUE is locked when trying to put an element on
ELQUE, the code path must do something to avoid spinning on the
QLOCK. Therefore, the system puts the element on another queue
called the HANDler Queue (HANDQ). This way the code does not
have to spin waiting for a lock.

The HANDQ is a queue of elements that have become unpended or
unblocked but could not be put on the ELQUE because ELQUE was
locked. This queue removes the need for a system code path that
is trying to put something on ELQUE to spin on the ELQUE locks.
The code that puts an element onto ELQUE tries to get QULCK,
which is a spin lock. If the lock is held, then the code puts
the element onto HANDQ. (See PENQ.)

Licensed Material 1-13 Property of Data General

1.1.4 PELEMQ -- pended element queue

The PELEMQ is a queue of control blocks that have pended on some
event, system control blocks such as core manager and system
manager, and specific user CBs which are pended on MKEY. The
purpose of this queue is to shorten the length of the ELQUE as
memory size in MV's increases thereby allowing for more processes
to be potentially active. A long ELQUE increases the amount of
time the search instruction takes to find an element.

1.1.5 The Globals

QMIDDLE is used by the ELQUE enqueue routines, which do
pseudo-binary searches. (See PENQ.) To do any kind of binary
search a middle point must be defined. For ELQUE, AOS/VS must
use a PNQF value. The value of QMIDDLE is 417. This is the
location of the priority 256.(400 octal) where E=l. (See
PNQF calculation.)

QMIDCNT is a counter that reflects which side of the ELQUE the
PSEUDO binary search falls on. If the QMIDCNT is positive, then
the majority of the searches were on the low side of the QMIDDLE
(e.g., PNQF < 417). If QMIDDLE is negative, then the search
spends more time on the high side of QMIDDLE (e.g., PNQF > 417).

GIRANGE is two double words used to define the range of groupl.
It is set up at SINIT time to test what group a process is in.
During a proc this range is used to decide what time slice
exponent to give to the blocking caller. If the caller is in
GIRANGE then the callers exponent is set to 6.

Gl is the Genned value of the highest possible Gl process
priority.

G2 is the Genned value of the highest G2 priority.

G4 is the highest priority on the system. The value of G4
is 511 ••

SCMASK is a constant that holds the initial scan mask. The value
of this constant is 160023. For more information on the bits of
this constant see the Process table PSTAT word.

NCBDEQ.W counts the number of times CBDEQ was called.

Licensed Material 1-14 Property of Data General

The next group of counters are used as collision counters.
These counters are updated every time a spin lock collision
occurs. These counters are only used for development and
debugging purposes.

CQMVS.W counts the number of source queue collisions in the
QMOVE routine.

CQMVD.W counts the number of destination queue lock collisions in
the QMOVE routine.

CCBLK.W is used to count the number of times CBDEQ encountered a
lock of ELQUE.

CCBDQ.W counts the number of times CBDEQ had to use HANDQ.

CPDEQ.W counts the number of collisions encountered in the
general dequeueing routine PDEQ.

CPQHL.W counts the collisions in the ENQH routine.

CPQTL.W counts the collisions in the ENQT routine.

Licensed Material 1-15 Property of Data General

1.2 Queueing Operations

There are 7 basic queueing operations that work with the queues
discussed in the previous operations. The general queueing
operations are PENQ, PENQG, PDEQ, QMOVE, CBDEQ, PENQT, and
PENQH. These operations do whatever locking operations are
needed to maintain the integrity of the queues they're working
with. Below is the pseudocode for the queueing routines.

1.2.1 PENQ

PENQ enqueues an element onto the ELQUE only. The element is
positioned on ELQUE by PNQF. The routine searches ELQUE to find
the place to put an element. This is done by a PSEUDO binary
search of the ELQUE. If the location of the position on the
queue is found in the first half of the queue, then the routine
returns: otherwise, the second half is scanned from the end and
returns. The middle of the queue is defined as QMIDDLE.

Ordering by PNQF(p = PNQF)

ELQUE I QMI~DLE

> ~~!~~!::;!~~~~!~~~~!~~~~I~~~~!:<::!~~~~!~~~~!
PNQF <= 417 A A PNQF» 417

DIRECTION OF SEARCH

Figure 1.5 Pseudo-Binary Search of ELQUE

/* $$ */
/* PENQ(element) */
/* This routine enqueues entities onto ELQUE. */
/* */
/* $$ */

penq(element)
{
pnqf = element->PNQF:

Licensed Material 1-16 Property of Data General

/* ** */
/* If the PNQF of the element is in the first half of */
/* the queue then scan the first half of the queue. */
/* */
/* ** */

if (pnqf <= QMIDDLE)
{
pnqf ++; /* put at end of priority group */
qmidcnt ++;
get q 10ck(&ELQUE,qlock,&CPENQ.W);
locatIon_found = NFSLE(ELQUE,pnqf,element->PNQF);

/* ** */
/* If the scan of the ELQUE found the right location */
/* in the queue to put an element then enqueue the */
/* element to that location. */
/* ** */

if (location found->PNQF <= qmiddle);
{ -

/* ** */
/* Wait for the scanner's count to go to zero before */
/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */
/* ** */

if (ELQUE.QSCAN » 0)
while (ELQUE.QSCAN » 0)

{}
ENQH(location found, element);
return(); -
} /* if found location */

else

/* ** */
/* Wait for the scanner's count to go to zero before */
/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */
/* ** */

{
if (ELQUE.QSCAN » 0)

while (ELQUE.QSCAN » 0)
{}

ENQT(location found, element);
return(); -
} /* did not find location */

}/* search first half */

Licensed Material 1-17 Property of Data General

/* ** */
/* Search the second half of the eligible queue. */
/* If the PNQF of the element was not less than or */
/* QMIDDLE value. This section does a backward */
/* search of the second half of ELQUE. */
/* ** */

QMIDCNT --;
pnqf = element->PNQF;
get q lock(queue,qlock,penq.w);
location_found = WBSGE (ELQUE,pnqf,element->PNQF);

/* ** */
/* If the scan of the queue found the right location */
/* in the queue to put an element, then enqueue the */
/* element to that location. */
/* ** */

if (location found->PNQF >= QMIDDLE);
{ -

/* ** */
/* Wait for the scanner's count to go to zero before */
/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */
/* ** */

if (ELQUE.QSCAN » 0)
while (ELQUE.QSCAN » 0)

{}
ENQT(location found, element);
return(); -
} /* if found location */

else

/* ** */
/* Wait for the scanner's count to go to zero before */
/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */
/* ** */

{
if (ELQUE.QSCAN » 0)

while (ELQUE.QSCAN » 0)
{}

ENQH(location found,element);
return(); -
} /* did not find location */

} /* PENQ */

Licensed Material 1-18 Property of Data General

1.2.2 PENQG

PENQG is used as a general queueing routine to enqueue by PNQF.
The routine searches the queue to find the place to put an
element. This is done by a PSEUDO binary search of the queue.
If the location of the position on the queue is found in the
first ha.1f of the queue, then the routine returns; otherwise, the
second half is scanned from the end. This routine uses the same
logic as PENQ but is designed to work with any queue.

/* $$ */
/* PENQG(queue,e1ement) */
/* This routine works with queues other than ELQUE. */
/* It is assumed that the queue is modified by PNQF. */
/* */
/* $$ */

penqg(queue,e1ement);
pnqf = e1ement->PNQF;

/* ** */
/* If the PNQF of the element is in the first half of */
/* the queue, then scan the first half of the queue. */
/* */
/* ** */

if (pnqf <= QMIDDLE)
{
pnqf ++;
qrnidcnt ++;
location found = WFSLE(queue,pnqf,element->PNQF);

/* ** */
/* If the scan of the queue found the right location */
/* in the queue to put an element, then enqueue the */
/* element to that location. */
/* ** */

if (location found->PNQF <= qmidd1e);
{ -
ENQH(location found, element);
return(); -
} /* if found location */

else
ENQT(location found, element);
return(); -
} /* did not find location */

}/* search first half */

Licensed Material 1-19 . Property of Data General

/* ** */
/* Search the second half of the QUEUE. */
/* If the PNQF of the element was not less than or */
/* QMIDDLE value. This section does a backward */
/* search of the second half. */
/* ** */

QMIDCNT --;
pnqf = element->PNQF;
location found = WBSGE (queue,pnqf,element->PNQF);

/* ** */
/* If the scan of the queue found the right location */
/* in the queue to put an element, then enqueue the */
/* element to that location. */
/* ** */

if (location found->PNQF >= qmiddle);
{ -
ENQT(location found, element);
return(); -
} /* if found location */

else
{
ENQH(location found,element);
return(); -
} /* did not find location */

} /* routine */

Licensed Material 1-20 Property of Data General

1.2.3 PDEQ

PDEQ is the routine that removes a PTBL from a QUEUE. The
routine has two arguments passed to it: the queue address and the
PTBL address.

/* ** */
/* PDEQ(queue,ptb1) */
/* This routine removes an element from a queue */
/* supplied to the routine. */
/* */
/* ** */

pdeq(queue,ptb1)
{
get_q_10ck(queue,qlock,cpdeq.w);

/* ** */
/* Are we working with ELQUE? If so, check for */
/* validity of the element to be dequeued. */
/* */
/* ** */

if (queue == ELQUE)
{

/* ** */
/* Are we trying to dequeue the root process table? */
/* If so, panic with a 14627. */
/* */
/* ** */

if (ptbl->plink.w == -1)
panic(14627);

/* *** */
/* Wait for any scanners to finish before dequeueing */
/* the element from ELQUE. */
/* */
/* *** */

if (ELQUE.qscan » 0)
while(ELQUE.qscan » 0)

{}
}

DEQUE(queue,ptbl)
release_q_lock(queue)
queue.qusers --;
return();
}/* PDEQ */

Licensed Material 1-21 Property of Data General

1.2.4 QMOVE

QMOVE is the operation that moves an element from one queue to
another. The routine does any locking that is necessary to work
with the queues, but the caller must set any element transition
locks. If necessary, the caller must turn off interrupts.

/* ** */
/* QMOVE(sque,e1ement,dque) */
/* This routine moves the element from the source */
/* queue(sque) to the destination queue(dque). */
/* both queues get locked for the move. */
/* */
/* ** */

qrnove(sque, element, dque)
{
get_q_10ck(sque,qlock,CQMVS.W);

/* ** */
/* Are we working with ELQUE? If so, check for */
/* validity of the element to be dequeued. */
/* */
/* ** */

if (sque == ELQUE)
{

/* ** */
/* Are we trying to dequeue an element that is not on */
/* a queue? If so, panic with a 14630. */
/* */
/* ** */

if (ptb1->plink.w == -1)
panic(14627);

Licensed Material 1-22 Property of Data General

/* ** */
/* Wait for any scanners to finish before dequeueing */
/* the element from ELQUE. */
/* */
/* ** */

if (ELQUE.qscan » 0)
while(ELQUE.qscan » 0)

{}
}

DEQUE(sque,ptbl)
release_q_lock(sque)

/* ** */
/* Is the destination Queue ELQUE? If so, then */
/* check for scanners of the queue. */
/* ** */

if (dque == ELQUE)

{

}

PENQ(element);
Return ();

get q 10ck(dque,qlock,CQMVD.W)
ENQT(dque,element);
release q lock(dque);
return();-
}/* Qmove */

Licensed Material 1-23 Property of Data General

1. 2. 5 CBDEQ

This routine is called by UNPEND and UNPNDN to remove an element
from PELEMQ and put it on the right queue.

/* ** */
/* CBDEQ */
/* This routine dequeues elements from PELEMQ and */
/* enqueues them onto the ELQUE or HANDQ. */
/* The argument is the address of the element to be */
/* dequeued. */
/* ** */

cbdeq(cb)
{
NCBDEQ.W++;

/* ** */
/* If the element is not pended, then panic with a */
/* 14572. */
/* */
/* ** */

if (bit (cb->pstat,psrdy) == 0)
panic(14572);

c1ear_bit(cb->pstat,psrdy)

/* ** */
/* */
/* Clear the pend key and "not ready to run bit" in */
/* the CB. */
/* */
/* ** */

cb->ckey = 0;
DEQ(pe1emq,cb);

Licensed Material 1-24 Property of Data General

/* ** */
/* If ELQUE is locked, then use the HANDQ. */
/* ENQUEUE the element to HANDQ and return. */
/* Otherwise lock ELQUE. */
/* ** */

if (elque is locked)
{ --

else

CCBDQ.W ++;
ENQT(handq,cb);
set bit(MPPCB->ppstat,prsch);
return();
} /* if */

{
get_q_lock(elque);

/* ** */
/* If there are other paths scanning ELQUE, wait for */
/* the count to go to zero. We do not want to touch */
/* ELQUE while there are scanners because we may */
/* corrupt the queue. */
/* After we're done, return. */
/* ** */

if (elque scanners » 0)
while (elque scanners » 0)
{} -

ENQ(elque,cb,pnqf);
event(); /* See JP management. */
return(); .
} /* else */

}/* end of cbdeq */

Licensed Material 1-25 Property of Data General

1.2.6 PENQT

When a path wishes to enqueue an element to the tail of a queue
the routine PENQT is called. PENQT stands for Ptbl ENQue to
Tail. This routine does all the necessary locking to work with
the QUEUE.

/* *** */
/* PENQT(queue,ptbl) */
/* This routine enqueues a PTBL to the tail of a queue.*/
/* *** */

penqt(queue,ptbl)
{
get_~lock(queue,qlock,CPQTL.W);
ENQT(queue,ptbl);
release_~lock(queue);
return();
}/* PENQT */

PENQH

When a path wishes to enqueue an element to the head of a queue,
the routine PENQH is called. PENQH stands for Ptbl ENQue to
Head. This routine does all the necessary locking to work with
the QUEUE.

/* *** */
/* PENQH(queue,ptbl) */
/* This routine enqueues a PTBL to the head of a queue.*/
/* *** */

penqt(queue,ptbl)
{
get_~lock(queue,qlock,CPQHL.W);
ENQH(queue,ptbl);
release q lock(queue);
return();-
}/* PENQT */

Licensed Material 1-26 Property of Data General

1.3 The Scanner

The scanner is the path, in the module SCHED, that scans ELQUE to
find a CB or PTBL to run. This path is not called "scanner" in
the code, it has several entry points. (See below.) The scanner
cleans up HANDQ by removing elements from it and putting the
elements onto ELQUE. The scanner then builds a scan mask for
its scan, scans ELQUE and dispatches the element found. If no
element is found then class scheduling is reset. (See LP
Management) or the scanner will go to the Checksum loop.
(See JP Management.)

The major entry points to the scanner are used for optimization
of locking and uncontrollable changes of state in the system.
The entry points are listed as follows:

RESCH is the entry point for the top of the scanner. It
is the place that paths go to when they find the need
for a reschedule.

SMOND is at the same location as RESCH. Most of the
system paths that go to the scanner go to SMOND. This
is different than RESCH only in name. A branch to SMOND
implies that this is just a normal reschedule; e.g., a
CB pended.

M6 is the entry point of the element dispatch. This
entry is used by TRTN (see CB management) to allow a
PTBL that made a "fast" call to continue running.

Licensed Material 1-27 Property of Data General

In this chapter the scanner is presented from the ELQUE
management point of view. The reason for this, is that the
scanner in the system imbeds three logically separate pOints
of view in line. For example, consider the following lines of
C code.

A: if (bit(myppcb.w.cpstat,cpmast) 1=1) /*daughter?*/
setbit(mask,process_mother_bit);

B: element = SCAN(*ELQUE,mask);

C: if (mask == mylpcb.lpciu.w)
{}

"A:" is supplied by JP management because the if statement uses
the global MYPPCB.W to find out if this is a daughter processor.
(See JP Management.)

"B:" is supplied by ELQUE management because the scan function
uses ELQUE, which is managed in ELQUE management.

"C:" is supplied by LP management because the initial scan mask
comes from the LPCB.

In the above example, three major areas of Paths and Time are
used in three nearly consecutive commands. This is the way
the code is really presented in the system, but to modularize
the scanner for each section the scanner is presented with
different emphasis.

There are three possible things that happen from the scan
of ELQUE.

1) The scan could find a PTBL. In this case, the PTBL is
sent to the PTBL dispatcher. (See PTBL scheduling.)

2) The scan could find a CB. In this case, the CB is
sent to the CB dispatcher (TACT or TACT1). (See
CB management.)

3) The scan could not find anything. In this case, if
class scheduling is on (see LP management) the scanner
could do a reset or go to secondary classes. If class
scheduling is not on or there is nothing more to be done
even with class scheduling on, then the scanner will go
into the Checksum loop (see JP management).

Licensed Material 1-28 Property of Data General

The pseudocode below shows the scanner from the LP point
of view.

/* $$ */
/* */
/* The Scanner */
/* The scanner will loop forever unless it is told */
/* to gO_idle. (See JP management.) */
/* */
/* $$ */

#define loop forever
scanner() -

true

{
int model_tier; /* variable used for call to

set_mask*/
SMONO:
RESCH:

/* ** */
/* */
/* This is the top of the scanner. Show that this */
/* JP is not running a user. */
/* */
/* ** */

CC.w = 0;
MYPPCB.W->cpelm.w = -1;

/* ** */
/* */
/* Clean out the Handler Queue. Take from HANDQ and */
/* put onto ELQUE. First check if there is anything */
/* on the queue and try to lock it. If either */
/* fails then don't work with the HANDQ. Let */
/* another JP work with it. If HANDQ is locked */
/* then someone else is working with it and therefore*j
/* it will get cleaned out eventually so continue */
/* onto the scan. */
/* ** */

interrupts (on);
if (HANDQ.head != -1)

if (bit(HANDQ.qlock,O) != 1)
{

Licensed Material 1-29 Property of Data General

/* ** */
/* */
/* This is the loop to clean off of HANDQ. If there */
/* is more than one JP in the system, then see if the */
/* JPs reschedule flag can be set. This allows any */
/* JP that is in the checksum loop to do a reschedule.*/
/* */
/* ** */

while (HANDQ.head != -1)
{

}

element = DEQ(HANDQ);
interrupts(off);
PENQ(element);
interrupts(on);
if (MAXCP > 1)

EVENT(); /* see JP management */
}

/* ** */
/* Lock ELQUE */
/* ** */

model tier = 0; /* initialize value passed to */
- /* get_mask routine LP management*/

while(loop forever)
{ -

/* ** */
/* */
/* Get the current mask. If child processor then */
/* mask out the mother bit and scan ELQUE. */
/* MYPPCB.W is the PPCB for that JP. */
/* mylpcb.w is the address of this lpcb. */
/* setmask is a function in JP management. */
/* */
/* The Scan mask used by the scanner is broken into*/
/* two parts. The first part(I call classmask) */
/* comes from the LPCB. (See LP management.) The */
/* second part (I call regmask) comes from */
/* SCMASK.W. These two masks are concatenated to */
/* be used in the scan. If both the bit in the */
/* PTBL/CB and the corresponding bit in the mask */
/* are set then that element will not be selected. */
/* ** */

regrnask = SCMASK.W;
if (bit(MYPPCB.W->cpstat,cpmast) !=1) /*daughter?*/

setbit(regrnask,pmast);

Licensed Material 1-30 Property of Data General

/* ** */
/* */
/* If there are no more stacks (see CB */
/* management) and no more free memory that can be */
/* used to get more stacks, then set the */
/* "run only CBs" bit in the mask. This is done */
/* to prevent selection of an element that we can't */
/* run. */
/* */
/* ** */

if «SSTKCT <= 0) && (SSTUSE == 0) &&
«(FBLKC.W+UNMODCN.W) <= 5) II (SSTMAX == 0»)

setbit(regmask,psncb);
classmask = set_mask(mode,mylpcb,ppcb->cpmode);

/* Build the scan mask by putting the class */
/* mask in the high part of the double word */
/* and the regular mask in to low part. */

mask = concat(classmask,regmask);
/* *** */
/* RESCN */
/* This is an entry point used when the rescan bit */
/* is set. The rescan does not change the mask, it */
/* just locks ELQUE and rescans it for an element. */
/* The check for rescan is made when the scanner is */
/* about to go into the Checksum loop. */
/* The Rescan Bit is set when an event occurs which */
/* causes a reschedule. When reschedule is set */
/* Rescan is also set. See EVENT in JP management. */
/* *** */

RESCN:
get_q_lock(ELQUE);
ELQUE.QSCAN++;
element = SCAN(*ELQUE,mask);

Licensed Material 1-31 Property of Data General

/* ** */
/* If the scan was successful the element will get */
/* dispatched. In the code the dispatch is a JMP */
/* @PPC.W. This means that the element knows the */
/* dispatcher it will use. For user CBs the */
/* dispatcher is TACT. (See CB management.) */
/* For PTBLs the dispatcher is PCALL. (See PTBL */
/* management.) For system CBs coming from IDSCBQ */
/* the dispatchers are the startup sections of the */
/* code. For system CBs that pended, the dispatcher */
/* is TACT1. */
/* ** */

ELQUE.QSCAN --; /* one less scanner */

if (successful scan)
switch(element type)

{ -
case ptbl:

goto PCALL;
break;

case CB:
go to TACT;
break;

case sys cb:
if (Just woke up) && (cormanager)

goto CMINT;
else

if «just woke up) && (sysmanager»
goto-SMINT;

else
goto TACT1;
break;

}
} /* if

/* switch
*/

*/

Licensed Material 1-32 Property of Data General

/* ** */
/* */
/* If not successful then check to see if */
/* class scheduling in on. If not then go idle. */
/* If class scheduling is on then check if a mode */
/* change is necessary. If the current */
/* mask is the same as the initial scan mask, */
/* RESET and change mode. This is considered a */
/* sufficient check because the scan failed with */
/* the initial mask meaning there are no more */
/* primary classes ready to run. To avoid a second */
/* unnecessary scan, RESET to run the secondary */
/* classes. */
/* ** */

if (bit(MYLPCB.W->lpstat,lpoff) == 1)
{

/* Before going idle check to see if a */
/* Rescan is necessary. if so then goto*/
/* RESCN in this routine. */

if (bit(MYPPCB.W->cpstat,crescn) == 1)
{
c1earbit(MYPPCB.W->cpstat,crescn);
goto RESCN;
}

goto SMONDD; /* see JP management */
if (c1assmask == my1pcb.1pciu.w)

{
reset(my1pcb.w);

} /* if */
else

/* ** */
/* */
/* If not changing the mode, then check it to see */
/* what mode we're in. If mode 0, then reset the */
/* 1p databases and get a new mask. If not, get the */
/* next tier if possible. */
/* ** */

if (MYPPCB.W.cpmode == 0)

else

reset (MYLPCB.W); /* LP management */
mode1=tier = 0;

/* check if we're at the last tier. */
if «MYPPCB.W->cptmk.w+2 >
MYPPCB.W->cphmk.w+32) !!
(MYPPCB.W->cphmk.w+2 == -1»

Licensed Material 1-33 Property of Data General

else

} /* while loop */
} /* scanner /*

Licensed Material

{
reset();
MYPPCB.W->cpmode = 0;
model tier = 0;
}

{
MYPPCB.W->cptmk.w += 2;/*next tier */
model tier = MYPPCB.W->cptmk.w;
}/* else */

1-34 Property of Data General

1.4 Locking

There are two types of locking discussed in paths and time. The
first is "spin" locking. (See JP management.) The second is
pend locking.

1.4.1 Pend Locks

Pend locking is only used by pendable paths (CBs). A pend lock
causes a CB trying to get the lock to pend if the lock is held.
The reason for using pend locks is that the particular lock is a
long term lock. This means that the lock may be held for an
indeterminate amount of time. For a path to spin the lock must
be a short term lock.

Example:

A CB is trying to get a change lock on the global lock
JPLPLOCK.W. (See LP management.) The CB finds the lock is
held, so the CB will pend waiting for the lock. When the lock
is released the unlocking routine unpends all the CBs pended on
the lock.

To get a pend lock there is a two-level locking scheme used. The
first part is getting the transition lock and the second is
getting the pend lock.

The first part of the locking scheme is getting the transition
lock. The transition lock allows the Code Path to set up for a
long term action, such as get a long term lock or do some quick
operation with an element. If the path tries to get the long
term lock and cannot then the path will pend, but before pending
the path must release the transition lock. The routine that this
manual has designated to do this type of locking is get lock.
(See LP management.) -

1.4.2 Element and Queue Locking

In this section two groups of locking routines will be
discussed. The first group of locking routines used in ELQUE
management are the queue locks. The second group of locking
routines discussed are the pend locks that deal with JP and
LP databases.

Licensed Material 1-35 Property of Data General

1.4.3 Element Locking

In ELQUE management it is necessary to lock elements and queues
to maintain their integrity for specific operations. For
example, when the element is accessed for modification, the queue
lock (q10ck) must be held on that queue before the queue can be
touched. E1que has a special extra lock, which will be discussed
later.

1.4.3.1 Element Locks

An element gets locked when it has some system call working with
it, such as a system call (CB) doing an operation to a PTBL; or
when a PTBL is being dispatched to run. The PTBL long term lock,
PLOCK, is a form of a pend lock. The difference between the PTBL
lock and the normal pend lock is, if the PTBL lock is set, the
dispatchers, which are nonpendable paths, simply do not use the
PTBL and return to the scanner for another element.

1.4.3.2 Queue Locks

There are two routines used by this manual to lock queues. They
are: get q lock and release q lock. The locking scheme used for
queues is spin locking. These locking routines are not real
locking routines, they are implemented in1ine. The reason these
functions are implemented in1ine is because of the speed of not
having to go to a subroutine. The routines are shown in the
pseudocode below.

Get q lock tries to get a lock for the caller. When the locking
succeeds then the routine returns. If the locking fails the
routine increments the collision counter supplied to the routine
and spins until it gets the lock.

/* $$ */
/* get q 10ck(queue,counter) */
/* This routine-gets a lock for the queue */
/* supplied as an argument. */
/* */
/* $$ */

Licensed Material 1-36 Property of Data General

get.q lock(queue,counter)
-{-

/* ** */
/* if there lock is locked then increment the */
/* counter and spin. */
/* After the lock is released then set the */
/* lock. */
/* ** */

if (bit(queue.qstat,QLOCK) == 1)
counter ++;
while (bit(queue.qstat,QLOCK) -- 1)

{}
setbit(queue.qstat,QLOCK);
return();
}

Release q lock releases the qlock for the queue passed as an
argument.-

/* ** */
/* release q lock(queue) */
/* This roiutine releases the queue lock for */
/* queue passed to the routine. */
/* */
/* ** */

release q lock(queue)
{ --
clearbit(queue.qstat,QLOCK);
return;
}

1.4.4 ELQUE Locking

ELQUE has a special extra locking scheme, which is used for
readers of the queue. This lock is called the scan count. The
scan count is used to keep track of scanners. This prevents a
path from modifying ELQUE while other paths are reading it.
After a path gets the QLOCK on ELQUE it must also wait for the
scan count to go to zero before enqueueing or dequeueing from
ELQUE. The scan counter is useful because scans of ELQUE occur
more frequently than do modifications. The scan count for ELQUE
is called QSCAN. QSCAN is a part of the ELQUE 'structure so it is
accessed by ELQUE.QSCAN.

Licensed Material 1-37 Property of Data General

2.1 Introduction

Chapter 2
CB Management

Control Block or CB management is the part of Paths and Time that
manages the databases and paths used by CBs. CBs are system
paths that run on behalf of a user request or are used to manage
the system resources. There are three types of CBs: user CBs,
system CBs, and daemons.

Control blocks are used for cases in which the system needs a
stack to handle a code path or there is a possibility that the
path will pend. These stacks may be allocated when a user makes a
system call that requires a stack, or they may be allocated for
system use (daemons).

Both the control block and process table share some common header
area information so the scheduler can accommodate them on the
scheduler queues. This eliminates the need for separate queues
for process tables and CBs when scanning for eligible elements to
run. Elements are members of a queue; in this case these
elements are PTBLs and CBs.

o User CBs are used whenever a user makes a system call that
goes into ring O. The CB runs until some event occurs to
cause the CB to Wait for some condition to be met. This
"waiting" is called pending. An example of pending is CB
waiting for a disk request to return.

o System CBs do system resource management services such as
manage memory.

o A Daemon is a special kind of CB that performs a function for
the system on behalf of a user, such as termination.

o CB Management is the highest-level of the object management
components of Paths and Time. CB management gets services
from Process scheduling, ELQUE management, and Time
management. From process scheduling, CB management gets the
CB that will be run. CB management gets the CBs to dispatch
from ELQUE management. CB management gets timing data (in
PIT ticks) for the CBs from time management.

Licensed Material 2-1 Property of Data General

Figure 2.1 below shows the connections between CB management and
Paths and Time. The connections are services provided to CB
management by the other components of Paths and Time.

+---------------+ +------------------+
PTBL

MANAGEMENT
-------> CB

MANAGEMENT

+---------------+ +------------------+

+----~ --------------+
I -------------------+

+--->

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- -->
MENT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

<--+

+-------+ +---- JP <-----------+ 1
MANAGEMENT +-----------------+

------------>1 INTERRUPT LEVEL 1
+---------------+ +-----------------+

Figure 2.1

Licensed Material 2-2 Property of Data General

This chapter is organized as follows:

The objects
The operations that work on the objects
The internal paths of CB management
Service provided to the rest of AOS/VS

2.2 Objects

This section describes the objects in CB management: the PTBL,
CB, CB management Queues, and the globals.

2.2.1 The PTBL/CB

The process table (PTBL) is used by AOS/VS to manage a process.
The first 24 words, however, are used as a common area between
the CB and the PTBL. To access a common area, certain locking
conventions may need to be used. These locks are defined below.
The letter representing the type of lock is shown in the PTBL/CB
database offsets section.

Licensed Material 2-3 Property of Data General

*** PTBL LOCKING CODES ***
For each PTBL/PEXTN definition there is a one-letter code that
indicates what lock, if any, is needed to access the value. A
more detailed explanation is supplied in the section on locking.
The one-letter codes are listed below:

T = The PTRAN lock controls this value.

L = The PLOCK lock controls this value.

N = NONE No lock is needed to access this value.

I = INVARIANT the value does not change for the life of the
process and no lock is needed to access the value. [Note,
however, that the caller may need to ensure the continued
existence of the process (via counter PTGRC, for example).]

x = NOT APPLICABLE the corresponding value is not applicable to
PTBLs and, thus, does not fall within the realm of the PTBL
locking scheme (e.g., a value's definition is for CB only).

LA = PLOCK/ATOMIC to access this value you must either acquire
PLOCK or use an atomic instruction.

RE = REFER refer to another definition to get this value's
locking code. (For example, bit definition words do not
have a locking code, you must refer to the individual bits.)

P = PID LOCK the PTBL pointer values to sons and fathers
(PSONP.W, PSONL.W) fall under pids lock PIDSLK.W.

U = UNUSED the value is not used and should be removed from
PTBL.

S = SPECIAL locks one or more different locks not previously
mentioned. For example, an offset may require some sort of
interrupt mask as well as a normal locking code.

Licensed Material 2-4 Property of Data General

The following is a field-by-field description of the main
database for each process on the system. It is called a "Process
Table." This database is built when a process is at ?proc time.
The fields described below are only the fields used by Paths and
Time.

PTBL OFFSETS COMMON TO BOTH CBs And PROCESSES

WORD OFFSET LOCK USAGE SUMMARY
---------------+---+--------------------------------------+
o
2
4
5
6
7
10
12
14
16

17

20

22

PLNK.W
PBLNK.W
PNQF
PCLASS
PSTAT
PSTAT1
PPC.W
PLPCB.W
PGNUM.W
PTIM

TTIME

CALLN.W

PKEY.W

T
T
L
L

RE
RE

I
L
L
L

L

L

x

Forward Link
Backward Link
Priority eNQue Factor
Process CLASS
Process Status Bits for SCAN
Process Status Bits not FOR SCAN
Control address when scheduled
LPC Block to charge run time
(CLASS #)*2 integer used by XWADD
Current interval of time expended

by a system call
Accumulated time expended by a

system call
(SYS CALL NUMBER)*2 used during

SYS CALL time accounting by XWADD
UNPEND KEY

---------------+---+--------------------------------------+
End of common area between CB and PTBL

Figure 2.2 Process Table Offsets

The CB Unique Offsets

WORD OFFSET SUMMARY DESCRIPTION
------------------+--------------------------------------+
22 CKEY.W CB UNPEND key
26 CATCB.W User TCB address
30 CSTK.W Frame Pointer
32 CBFEH.W CB fatal error handler address
36 CSTKC.W Stack base
40 CPTAD.W A(PTBL which made system call)
42 CTEMP Utility
43 CERWD System call error word
44 CBDLS.W Dynamic Logical Slot for CB
46 CBULA.W Logical address for DLS
54 CERPC.W PC when RETER called
56 CLKPT.W A(PTBL CB holds PLOCK on)
------------------+--------------------------------------+

CBLEN = 60 Length of Control Block

Licensed Material 2-5 Property of Data General

The PSTAT and PSTATI bits are defined in the tables below, with
an extra column used to show whether a PTBL(P), a CB(C), or
both(B) use a particular bit.

PSTAT BITS USED FOR SCANNING

USE BIT OFFSET SUMMARY DESCRIPTION
----+-----------+---------------------------------------+

P 0 PSRDY Not ready to run
B 1 PSRUN Running
P 2 PSEW Sched action
P 3 PSNCB Don't look - process can only use a CB
B 11 PLCK Process table lock bit
B 14 PTRAN Element transition bit
P 15 PNTCB Run only CBs

----+-----------+---------------------------------------+
PSTAT BITS KNOWN AS "PRIORITY BITS"

USE BIT OFFSET SUMMARY DESCRIPTION
----+-----------+---------------------------------------+

P 4 PSBRK OP interrupt
P 5 PSBAG SWAP OUT process
P 6 PSBLK BLOCK process
P 7 PSDP START UP DAEMON
P 8 PSMWT Wait for memory key to change
P 9 PSTSU Time slice is up

----+-----------+---------------------------------------+
PSTAT BITS NOT USED BY SCANNER

USE BIT OFFSET SUMMARY DESCRIPTION
----+-----------+---------------------------------------+

B 10 PMAST Mother-only element (l=Mother-only)
P 12 PSETR Don't enter
P 13 PSFSY System page fault

----+-----------+---------------------------------------+
PSTAT1 BIT DEFINITIONS

Process table bit parameters for second status word.
Note that this is the status word where bits that will not
be looked at during the ELQUE dispatch scan are put.

USE BIT OFFSET SUMMARY DESCRIPTION
-----+----------+--+

C 15 PSYST System CB bit -- CM,SM,DM
B 1 PTYP Element type (1=Control Block)
C 2 PNAD No address space to release(BPLCK)
C 3 PNFST Sys call did not run 'FAST'

-----+----------+--+

Licensed Material 2-6 Property of Data General

2.2.2 PTBL/CB Offset Explanations

PLINK.W - This offset is the forward link word for the proce$s
table. When this value is not -1, then the PTBL is on
a queue. If the value is -1, then the PTBL is at the
end of a queue. Typically if the value is -1 and the
PTBL is on the ELQUE, then the PTBL is the root process
table. In order to modify this offset, the PTBL
transition lock must be set. This value is most often
modified by queueing instructions.

PBLINK.W- This offset is the backward link word for the process
table. When this value is not -1, then the PTBL is on
a queue. If the value is -1, then the PTBL is at the
beginning of a queue. In order to modify this offset,
the PTBL transition lock must be set. This value is
most often modified by queueing instructions~

PNQF This is the Priority Enque Factor word. This word is
used for placement on ELQUE. See ELQUE section for
calculation. In order to modify this value, the PTBL
lock must be held. This value is set at process
creation time and is recalculated at time slice end.

The next two words are used during the scan. When doing a scan
for a PTBL, the scanner searches ELQUE with a scan mask. The
scan mask is tested against the concatination of PCLASS and
PSTAT. If a bit in those two words matches the corresponding bit
in the scan mask, the PTBL will not be selected.

o Word 1 is a class mask word. If a bit is set, the
class canNOT be selected by the scanner (initialize
to 0).

o Word 2 is a mask for the PTBL's PSTAT word. If a bit
is set, the LP will NOT select the process.

PCLASS - This is the process class word.
associated bit set for the class
during the scan if that class is
will not be selected. To modify
must be held.

The PTBL will have the
it belongs to, so
masked out this PTBL
this entry the Plock

Licensed Material 2-7 Property of Data General

PSTAT This is the process status word. It is used during
scanning to find out whether to choose this PTBL or
not. Not all of the status word is used for scanning.
The status bits used are defined as follows:

PSRDY is the "Not Ready To Run" bit. If this bit is
set, the process will not be picked by the scanner.
The way a process becomes "not ready to run" is if
there are no system TCBs to run and there are no user
TCBs to run. During a dispatch if the PTBL is found to
meet the above conditions then PSRDY is set. Typically
a process will have PSRDY set if the process is single
threaded and is doing a system call or the process is
multitasked and all the tasks are suspended (see
process management interface services). The PSRDY bit
is cleared after a system call finishes or a task wakes
up from a delay.

PSRUN is the running bit. If a process is running on a
JP, this bit will be set. This bit is set in the
dispatcher immediately after a CB has been found by the
scanner. The reason for this is to prevent other JPs
from getting the same CB. The bit is cleared if the CB
is not able to run. For example: If process is
selected to run and one of the priority bits is set
then PSRUN is cleared. If a CB is set up on behalf of
the caller before the CB runs, the PSRUN bit will be
cleared on the PTBL. PSRUN will be cleared if an event
occurs such as Subslice End.

PSEW is the scheduler action bit. This bit is set when
the system is doing something to the process. For
example: If the process is chaining, the PSEW bit will
be set to ensure that the process will not be scheduled
on another JP while it is chaining. This bit gets
cleared when the operation on the process finishes.

Licensed Material 2-8 Property of Data General

PSNCB - 'Don't Look' - This bit is set in a group 2/3
process' PTBL whenever it needs a CB before it can do
anything else. The scheduler includes this flag in its
SCAN MASK whenever there are no group 2/3 CBs
available. Therefore, the system WON'T LOOK at
processes that can't proceed because no group 2/3 CBs
are available.

Specificaly, there are three instances that cause
this bit to be set in a group 2/3 process' PTBL:

1) Attempt to start up a daemon failed for lack
of CB.

2) Attempt to get a CB for a TCB waiting to start
a call failed and nothing else can be done for
the process because its 'Don't Enter' (PSETR,
BPSEN) bit is set.

3) Task scheduler finds no ready TeBs, but there
are TCBs waiting to start system calls. In
this case, 'Don't Enter' (PSETR, BPSEN) is
always set, and, if the process is group 2 or
3, PSNCB is also set.

PLCK is the PTBL lock bit. This bit gets set to
prevent another processor from accessing this
particular CB. This lock is considered a long term
lock.

PTRAN is the CB transition lock. When locking a PTBL
or CB, PTRAN gets set for the short term then the PLOCK
can be obtained. If PTRAN is already set, the JP will
spin on the lock (see LOCKING) as soon a PLOCK is
obtained and PTRAN is released. This is a short term
lock.

PNTCB is the Run only CB bit. When set, this bit will
not schedule a process until some CB has Run. This
bit is set when trying to dispatch a CB running on
behalf of a PTBL. The dispatcher tried to get the
PLOCK on the PTBL and couldn't. After setting the
bit, the dispatcher goes back to the scanner. The bit
gets cleared when the CB dispatcher gets the PLOCK on
the PTBL.

Licensed Material 2-9 Property of Data General

The next group of bit offsets do not affect scanning.
These are considered the PRBITS (priority bits). If
one of these bits is set, the system must do some other
action before running this PTBL. After a PRBIT
function is performed a reschedule is done.

PSBRK is the operator interrupt flag. This means that
the user has done a ACAB and the process must abort.

PSBAG is the process swap flag. If this bit is set the
core manager needs to be woken up to allow the process
to be swapped.

If PSBLK is set then process management interface
services must be called to put this PTBL on the BLKQ.

If PSDP is set then a daemon must be set up on behalf
of this process. Control will go to CB creation when
this occurs.

PTSTSU is the Time Slice Up bit. This bit gets set
when a system call charge is made and the time slice
ends. Control will go to time slice end processing.

The following bit offsets are other status bits not
used by the scanner.

PMAST is the "Mother Only" bit. If this bit is set a
CB can only run on the mother. If the CB element is a
PTBL then the bit in LMAST is also set signifying that
there is an outstanding IDEF. If the CB element is a
CB, then the CB is performing some task that falls
into the mother-only category. (See mother-only
calls table.)

PSETR is the "Don't Enter" bit. This bit is set when
there are no outstanding system TCBs enqueued in the
PTBL extender. This bit gets cleared when a TCB is put
on the PSWD.W chain.

PSFSY is the system page fault flag. This bit is
not used.

Licensed Material 2-10 Property of Data General

PSTAT1-

PPC.W

This offset is not used for scanning. These bits are
used to find a characteristic of a CB.

PSYST is used to show that a CB is a system CB. If the
CB is a system CB then this bit is set.

PTYP is used to show the type of element we are
currently working with. If this bit is set the element
we are working with is a CB. Otherwise the element is
a PTBL.

PNAD is used to show that the CB is working with a
target PTBL. This bit is used by the dispatcher to
allow locking of the target PTBL so the CB can work
with the target process. This is used when a system
call such as ?ISEND is used on a target PTBL. To
do the call the caller must get the PLOCK on the
target process.

PNFST is used to show whether or not a CB ran "fast."
A "fast" running CB is a CB that does not pend.

The control address is the address of the type of
dispatcher this element will go to. If the element is
a CB, this offset will contain the address of TACT. If
this is a PTBL, then the offset will contain the
address of PCALL.

PLPCB.W - This offset contains the address of the LPCB to charge
time used to. The LPCB that this process is running on
has statistics for class scheduling that must be
updated after the process runs. The process, however,
can run on more than one LP. Therefore, before a
process is allowed to run, PLPCB.W is compared to
MYLPCB.W, which is the LPCB that the current JP is
attached to. If they are different, PLPCB.W is changed
to ensure that time used is charged to the correct
LPCB. To touch this field the PLOCK must be held.

PGNUM.W - This offset contains the number of the class that this
process belongs to multiplied by two. This value is
used as an offset into the LPCB class statistics
table. The reason that the class is multiplied by two
is the table consists of double- word entries. To
touch this field the PLOCK must be held.

Licensed Material 2-11 Property of Data General

PTIM.W - This counter contains the current amount of time used
in a system call. This value starts at zero when a CB
runs. When the PIT interrupts while processing the
system call, PTIM.W is incremented by the amount of
time used in the current run. To update this field the
PLOCK must be held.

TTIM - This counter measures the total amount of time expended
on a system call. This value is updated after a CB
runs for a period of time (not necessarily to
completion). To update this field the system takes the
current total and adds it to the contents of PTIM.W.
This value is zeroed at CB creation. To update this
field the PLOCK must be held.

CALLN.W - This offset is only used if the element is a CB. This
value holds the system call number * 2. The reason for
this is to help in keeping time accounting for the
table of system calls. The reason the contents of
CALLN.W is multiplied by 2 is the system call table is
a group of double-word entries. ,

PKEY.W - This offset holds the position for the unpend key for a
CB when it is on PELEMQ. This offset is not touched if
this is a PTBL. See the CB section for the
redefinition of this offset.

This ends the description of the common area between PTBLs
and CBs.

Licensed Material 2-12 Property of Data General

2.2.3 CB Unique Offset Explanations

CKEY.W holds the unpend key for a CB. This key, when used, has
the value that will be used to unpend the CB. When a CB is not
pended, PKEY should be zero. When pend is called, one of the
keys will be used as the unpend condition. When unpend is
called, all the CBs with matching pend keys will be unpended.
For more information on pending, see "Pending" in this chapter.

CATCB.W contains the address of the user TCB. This offset is
used to get the address of the packet for a system call. The
users TCB contains the necessary state information to get the
packet information.

CSTK.W is the frame pointer for this CB. When this CB gets
rescheduled this offset will be used to reset the stack. This is
considered part of the CB's state information. This is used to
reset the frame pointer when the CB is ready to run. This offset
is set up when the CB pends.

CBFEH.W holds the address of the trap handler. When used, this
contains the starting address of the system call trap handler.
If a trap occurs the system will try to go to the trap handler.
This prevents the system from panicking on errors that are
considered recoverable.

CSTKC.W holds the address of the stack base. This is part of
the CB state area. This value is used to reset the stack base
when a CB is scheduled to run. This value is set when a CB is
going to pend.

Licensed Material 2-13 Property of Data General

CPTAD.W contains the address of the PTBL that made the system
call. This offset is used when dispatching a CB to map the
associated PTBL so the CB can work with the PTBL. This offset is
also used after the CB finishes running to allow the PTBL to
either run immediately or allow the PTBL to be scheduled.

CTEMP is a double word used as a utility location. Currently it
is used to temporarily store error codes.

CERWD is used to hold the error word if the system call takes an
error. This word is used after the system call runs to tell the
user that the system call took an error. The error word is put
into the ACI of the process. (See TRTN)

CBDLS contains the address of the Dynamic Logical Slot that
will be, or is, currently being used by the CB. (See Memory
Management.)

CBULA is not used.

CERPC.W contains the address of the routine that took an error
while the CB was running. This is not used.

LKPT.W contains the address of the target PTBL of a call. When a
system call, such as ?ISEND, is made the receiver or target of
the system call must be held so the information the system call
is sending can be sent to the target.

2.2.4 Control Block Pages

The Control Block is a whole page. The reason for this is that
the control block needs a page to hold its components.

Each control block page is divided into:
1) Stack prefix area
2) Stack itself
3) Space reserved for stack overflow fault blocks
4) A context block
5) The control block itself

Licensed Material 2-14 Property of Data General

CB stacks have data words relative to the stack base. The offsets
and definitions are:

OFFSET DESCRIPTION
+--+

o CBSL.W Stack limit for CB
2 CBCB.W This CBs address
4 CBCX.W Fault context block for this CB

6 Stack base
1156 Overflow area
1206 Context block for this CB

1715 The CB

+--+

Figure 2.3 The Control Block in Memory

While CB pages are not being used they are on a chain called
SSTKQ (System STacK Queue). The pages are attached to the list
at the forward and backward link in the CB.

CB CB CB
SSTKQ---+ +-----+ +-----+ +-----+

I
+---------) -----) ----) --+

+-- <----- <----
I +-----+ +-----+ +-----+

Figure 2.4 CB Pages on SSTKQ

Licensed Material 2-15 Property of Data General

Each control block has associated with it a fault context block,
a stack, and a dynamic logical slot. When the control block is
selected as the CB to run, the MV's hardware registers are set up
to point to the appropriate corresponding values for the control
block. The memory needed for a CB is allocated from GSMEM except
for the first group 1 control block (CBOOO), the CMTSK CB, and
the system manager task CB.

Unallocated CBs (those not on ELQUE) are enqueued to SSTKQ. (see
SSTKQ or CB allocation)

There are four types of control blocks and of these the first two
are user CBs: G1; G2/3 or system CBs; and DAEMONs. Each control
block has its own stack. There are three system CBs: the disk
manager, core manager, and system manager.

2.2.5 Types of CBs

There are five CBs discussed in this section: user CBs (G1 and
G2), disk manager, core manager, system manager, and daemons.

2.2.5.1 G1 and G2/3 CBs

G1 and G2/3 control blocks are used when a G1 or G2/3 process
makes a system call. For example, a G2/3 CB is used when a G2
process makes a system call.

2.2.5.2 Disk Manager

The disk manager runs as the highest priority control block on
the ELQUE. The disk manager runs all IOCBs when they are ready to
run. When N T RUN.W is set, the scheduler branches to RUNLC in
DSKlO to schedule IOCBs. All active IOCBs are run. As long as
there are ready IOCBs, they are run. When there are no more ready
IOCBs, the disk manager control block is changed by setting the
'not ready to run' bit and resetting the running bit. The disk
manager is readied by a call to the routine DWAKE.

Licensed Material 2-16 Property of Data General

2.2.5.3 Core Manager

The core manager runs as the second-highest priority control
block on ELQUE. The core manager manages memory. It remains
dormant until a code path calls the routine CWAKE, which sets the
'ready to run bit' in the status word for the CB. In addition,
it sets the words or bits needed to indicate which action the
core manager should process when it gets control of the CPU.
Requests to the core manager are indicated by SMFLG.

2.2.5.4 System Manager

The system manager is currently used for five purposes. The
first is to report device errors, the second is to report
over-subscribed memory, the third is to enable look-ahead
faulting, the fourth is to enable look-ahead flushing, and the
fifth is to handle SCP error reporting. The unit errors are
detected by the controllers, which set up error status words in
the appropriate UDB (unit device block). The error routine then
calls SWAKE, which will cause the system manager to wake up the
next time a scan is made of the eligible queue (much as CWAKE
does for the core manager). The over-subscribed memory condition
(no memory available, no pre-emption possible) is detected by the
pre-emption code, which then calls SWAKE. The system manager
reports the error to error-log.

The requests to the system manager are indicated in CMFLG. (The
core manager equivalent is SMFLG)

2.2.5.5 Daemons

A daemon can be considered an AOS/VS initiated system call (as
opposed to the user oriented or standard call). When AOS/VS
needs something done, and the code path required might pend,
AOS/VS will use a daemon for the processing.

Daemons are currently used for the following:

1. Process terminations (Four types: normal, trap, fatal error,
and -C-B)

2. Process initial load. (The path can pend waiting for
the disk)

Licensed Material 2-17 Property of Data General

3. Process a 16-bit process changing to/from resident (we will
wire in the pages of a resident 16-bit process)

4. Process keyboard interrupts (other than ~C~A)

Daemons are started by setting the request daemon bit in PSTAT
and running off control blocks. They can be identified by
examining offset CATCB.W (12) of the CB. It will contain a O.

2.2.6 Primary, Secondary and Temp CBs

This section describes the use of these CB Pointers. These point
to currently used CBs in the system.

2.2.6.1 The Primary CB

The Primary CB (PCB) is the stack that each JP always uses while
it is running system code. System code can be either a control
block or the Scheduler. The Primary CB is pointed to by PCB.W.
When a CB pends, the Primary CB is put onto the Pended element
queue (see Pending). The primary CB is allocated during system
initialization. The only time a primary CB gets released is when
a JP is released from the system.

2.2.6.2 The Secondary CB

When a path pends the Primary CB is put onto PELEMQ and the code
goes to the Scheduler. The problem is that if the Primary CB is
on PELEMQ then the system needs a new primary CB to be able to
run the scheduler. This new primary comes from the secondary CB
(SCB.W). The secondary CB is the backup stack. The secondary CB
is pointed to by SCB.W. When a system call is made the secondary
CB must be allocated (see CB allocation). If the allocation
attempt fails for any reason, then the system call will not run
until the system can allow allocation of a CB. This mechanism,
although it may sometimes penalize the user, allows the system to
efficiently go from a pended code path to the Scheduler to get
another element. The figure below shows the exchange from
secondary to primary.

Licensed Material 2-18 Property of Data General

PCB.W
\

\

--->

\
--->

PCB to PELEMQ
pcb = scb
scb = 0

PCB.W ----->
\

\
--->

pendable
path

path
pends

To
Scheduler

Figure 2.5 PCB/SCB Exchange

2.2.6.3 The Temp CB

When the system dispatches a CB, it must somehow make that CB
the Primary. This is done by assigning the CB to PCB.W. But
what happens to the Primary CB? The primary cannot be lost!
Therefore, what the system does is assign PCB.W to SCB.W. But
what if SCB.W is already defined? The solution is the Temporary
CB (TMPCB). This CB is pointed to by TMPCB.W. This is a
temporary holder for the CB if SCB is already defined. It is
the first choice for becoming the primary CB. Therefore, in
the previous figure the part that shows PCB.W = SCB.W actually
looks like.

if (TMPCB.W != 0)
PCB.W = TMPCB.W;

else
PCB.W = SCB.W;

The temp CB is the only CB that gets deallocated when a system
call completes.

2.2.7 The CB Management Globals

The CB management Globals are used to either work with CBs or are
used as counters. The Globals in this section are broken into
three groups: the general purpose globals, the event count
globals, and the collision counters.

The general globals work with CBs. They are: IDSCBQ, SSTKQ,
SSTKCT, RSTKCT, SSTUSE, RSTUSE, SSTMAX, RSTMAX, SSTMIN, RSTMIN,
PCB.W, SCB.W, and TMPCB.W.

Licensed Material 2-19 Property of Data General

IDSCBQ -- Idle System Control Block Queue

When a system CB puts itself to "sleep," it puts itself on the
IDSCBQ. Putting as system CB to "sleep" is effectively the same
as pending, with a major difference. That difference is that a
system CB puts itself to sleep only if it has nothing more to
do. For more information on system CBs, see Memory Management
and the File System volumes of this manual.

The System STacK Queue (SSTKQ) is a minor Queue of CBs. SSTKQ
Queue is called the free control block Queue and is also referred
to as the nCB pOOl." This Queue contains a linked list of all
the allocated but unused CBs in the system. When the system
needs a CB, it is provided from this queue. This Queue is
created at SINIT time when the system allocates the CBs. This
queue contains all unused CBs irrelevant of type. This queue is
managed by two counters. Those counters are SSTKCT (Swappable
STacK CounT) and RSTKCT (Resident StacK CounT). The combined
values of these counters add up to the total number of CBs that
are in SSTKQ.

SSTKCT (Swappable STacK CounT) is the counter used to manage the
G2/3 CBs in the CB pool. During system initialization, the
system allocates CBs until SSTKCT is equal to the minimum number
of G2/3 CBs. This number is currently 15 (octal). This number
can increase to a maximum of 200 (octal).

RSTKCT (Resident STacK CounT) is the counter used to manage the
Gl CBs in the CB pool. During system initialization, the system
allocates CBs until RSTKCT is equal to the minimum number of Gl
CBs. This number is currently 5. This number can increase to a
maximum of 100 (octal). There must always be at least one free
Gl CB in the free pool for PMGR.

SSTUSE is a counter of all the currently allocated Group 2/3
CBs. It is used to keep track of the CBs that have been
allocated but are not in use.

RSTUSE is a counter of all the Group 1 CBs that have been
allocated.

SSTMAX is the maximum number of Group 2/3 CBs that can be
allocated. This constant is set to 200. (decimal). When
allocating CBs the allocation code will check whether another CB
should be allocated or the requestor should wait for a CB.

Licensed Material 2-20 Property of Data General

RSTMAX is the maximum number of Group 1 CBs that can be
allocated. This constant is set to 100. (decimal). When
allocating CBs the allocation code will check whether another CB
should be allocated or the requestor should wait for a CB.

SSTMIN is the minimum number of Group 2/3 CBs that must be
allocated. This constant is 10. When the de-allocation routine
DALCB1 is called to de-allocate CBs, the CBs are de-allocated
to SSTMIN.

RSTMIN is the minimum number of Group 1 CBs that must be
allocated. RSTMIN is a constant with the value 5. During
de-alloction, DALCB1 de-allocates to RSTMIN.

PCB.W contains the pointer to the Primary CB.

SCB.W contains the pointer to the Secondary CB.

TMPCB.W contains a pointer to a Temporary CB.

The next group of globa1s are event counters. An event counter
is used to count the number of significant events that happen
to a CB. For example, if a CB pends the appropriate counter
is updated.

NUNPDN.W counts the number of times UNPNDN is called.

NUNPD.W counts the number of times UNPEND is called.

NPEND.W counts the number of times a CB pends.

NCBDEQ.W counts the number of times CBDEQ was called.

RSTDAL.W counts the number of Gl CBs that get de-allocated.

SSTDAL.W is the counter for the total number of G2/3 CB
de-allocations.

CTRTN.W counts the ELQUE collisions in the CB return
routine TRTN.

Licensed Material 2-21 Property of Data General

2.3 Operations on CBs

There are three basic types of operations that work with the
objects in CB management: CB allocation/de-allocation,
pending/unpending, and FIXCB.

2.3.1 CB Allocation

When a user does a system call the system must allocate a CB to
do the system call. Most of the time there are enough CBs in the
CB pool so there is no need to allocate the CB. If there are no
"known" CBs in the CB pool and memory management cannot allocate
more memory for CBs, then a TCB is attached to the PTBL of the
caller to wait for a CB to become available.

The system has two types of allocation routines used to manage
the free pool. The first one manages the counters and the second
manages the queue. ALSTKI and ALSTK2 are used to get a CB from
the free pool and update the counters. The routine called
differs depending upon the group of the caller. If the CB is
allocated on behalf of a GROUP 1 process, then ALSTKI will be
called. If the caller is a group 2 or 3 process, then ALSTK2 is
called. If the counters go below the minimum amount of free CBs,
then these routines call a routine to add to the queue.

The system has two routines that add CBs to the free chain. They
are called ALCBl and ALCB2. The routine called differs depending
upon the group of the caller. If the CB is allocated on behalf
of a Group 1 process, then ALCBl will be called. If the caller
is a Group 2 or 3 process, then ALCB2 is called.

ALCB1/ALCB2 allocates a CB and stack space for the CB. To do
this the routines call memory management to get the memory for
the CB. If there is no memory available to allocate a CB, then
the CB allocation routines will take an error.

The CB allocation routines are called from three places in the
system. Two of the routines are called at system
initialization. The first one calls ALCB2 to set up an extra CB
for the JP in the system. The second allocates CB up to the
minimum number of CBs allowed. The third time the allocation
routine is called is when the Secondary CB is needed to run a
CB. The allocation routine will be called if the number of free
blocks in the pool is less than the minimum number of allowable
blocks in the pool.

Licensed Material 2-22 Property of Data General

The main reason for two separate allocation routines is
accounting. AOS/VS updates different counters depending upon the
Group the caller is from.

After a CB completes, the CB must get de-allocated. To
de-allocate a CB, the routines DALSTKl and DALSTK2 are called by
TRTN depending on the caller. TRTN will only de-allocate the CB
in TMPCB.W. Otherwise, the CB will not get de-allocated but
instead is returned to the SSTKQ pool.

During memory contention, memory management will take CBs from
the free pool. To do this the core manager will call DALCBl and
DALCB2 to de-allocate pages until the minimums are reached.
Calling the de-allocation routines frees up a few pages of memory
for use by the users.

The figure below shows the stages of a CB from being free memory
through the different allocation schemes and back to free memory.

Free memory

ALCB I A DALCB

ALSTK

v
SSTKQ

1
ACTIVE

CB

DALSTK

Figure 2.6 CB Allocation

Licensed Material 2-23 Property of Data General

2.3.2 Pending

Pending is a way to stop a CB that has to wait for some condition
so the system can run other paths. An example of a pendable CB
is an I/O operation, where the code has to wait for the device to
respond to the I/O request.

When a CB pends the PEND routine is called. PEND is given a key
word that represents the reason this CB pended. This pend key
must be satisfied before the CB can be unpended. PEND takes the
currently running CB and puts it onto the Pended ELeMent Queue
(PELEMQ) to wait for the pend condition to be satisfied.

Below is a table of all the predefined pend keys used when a
CB pends.

+-------------+---------------------------------------+
SKTRM -- 1 Wait for son to term
SKTRG -- 2 Wait for target call completion
SKOOM -- 4 Task waiting for memory
SKSWP -- 5 Waiting for swap to finish
SKSIO -- 6 Wait for shared read (not used)
SKBUF -- 7 Base level waiting for a system buffer
SKDED -- 10 Wait for special unpend (not used)
SKNWU -- -1 Never wake up key (not used)
CPLCK.W *** JP lock word (see JP management)

+-------------+---------------------------------------+
Figure 2.7 System Pend Keys

When a CB pends the CB is put onto PELEMQ. This means, if
necessary, taking the CB off of ELQUE and putting it onto
PELEMQ. There are four routines that perform the
pending/unpending operation. These operations do all the
necessary locking for enqueueing and dequeueing the queues. The
operations are: PEND, MPEND, UNPEND, and UNPNDN. PEND and MPEND
put CBs onto PELEMQ. UNPEND and UNPNDN take CBs off of PELEMQ
and put them onto ELQUE or HANDQ (see ELQUE management for
information on ELQUE and HANDQ).

Licensed Material 2-24 Property of Data General

The pseudocode below shows how these operations work.

2.3.2.1 PEND/MPEND

This operation pends the current CB. It puts the CB onto the
PELEMQ. The routine also sets the pend condition into CB->
CKEY. If the CB is on ELQUE, move the CB from ELQUE to PELEMQ.
This routine goes to a routine called PENDO. PENDO is an entry
point that is used by PEND and MEPEND.

/* $$ */
/* PEND/MPEND */
/* This routine puts a CB onto the PELEMQ to wait for */
/* whatever unpend condition passed to the routine. */
/* */
/* MPEND gets called when a lock is held and the CB */
/* is pending. MPEND will release the lock before */
/* pending. */
/* $$ */

pend(unpend key)/mpend(xtran,unpend key,xtran address);
{ - --
cb=CC.W; /* get the current CB */
NPEND.W ++; /* one more pend */

/* ** */
/* If this is a CB that never pended then set the */
/* CB up so it can pend. To do this operation the */
/* FIXCB routine is called. If plnk.w is not -1 then*/
/* the CB has been on some queue before and therefore*/
/* has pended. */
/* ** */

if (cb->p1nk.w == -1)
fixcb(cb);

interrupts(disab1e);

/* ** */
/* If there is not a valid pend key in the CB then */
/* panic with a 14434. A valid pend key is either 0 */
/* or the same as the value passed as an argument to */
/* this routine. */
/* ** */

if (cb->ckey.w !=O) && (cb->ckey != pend_key)
panic(14434);

cb->ckey.w = pend key;
set_bit(cb->pstat~psrdy);

Licensed Material 2-25 Property of Data General

/* ** */
/* If the CB was on ELQUE then move it from ELQUE to */
/* PELEMQ. If not then ENQUE to PELEMQ at the tail. */
/* */
/* ** */

if (cb->plnk.w != -1)
qmov(elque,cb,pelemq);/* see ELQUE Management */

else
enqt(pelemq,cb);

/* ** */
/* If the routine MPEND was called then clear the */
/* xtran bit in the lockword. xtran is a transition */
/* lock of any kind. It is called "x"tran because */
/* the routine cannot define which tran lock is used.*/
/* ** */

if (mpend)
c1ear_bit(xtran_Iockword,xtran);

/* Falls through to next page */

/* ** */
/* pendO */
/* This is an entry for CBs being "handed off" to the */
/* mother processor. This routine releases the ptbl */
/* locks, makes the secondary CB a primary CB, and */
/* returns to the top of the scheduler. */
/* */
/* ** */

pendO:

interrupts(enable);
cb = cc.w;

/* ** */
/* If this CB is not a system CB then check to see if */
/* we need to release the process table locks. */
/* If we need to release the PTBL locks call relptbl; */
/* */
/* ** */

Licensed Material 2-26 Property of Data General

/*
/*
/*
/*
/*
/*

if (bit(cb->pstatl,plock) ==0)
{
if (bit(cb->pstatl,pnad) != 0)

cb->clkpt.w = cmap.w;
else

ptbl = cb->cptad.w;
if (ptbl != 0)

relptbl(ptbl);
}

tcsys();/* go from CB timing to system timing */
clear_bit(ptbl->ptbl,psrun);

**
If there is a temporary CB then make that CB
the primary CB. If there is no temporary CB then
make the secondary CB the primary.

**

if (TMPCB.W != 0)
{
PCB.W = TMPCB.W;
TMPCB.W = 0;
}/* tmpcb.w */

else
{
pcb.w = scb.w;
scb.w = 0;
}/* else */

*/
*/
*/

*/
*/
*/

/* ** */
/* Set up the fault block for the primary CB and */
/* go to the top of the scanner. */
/* */
/* ** */

FLTBLK.W = SYSTEM FLTBLK.W
SET UP STACK();
GOTO scanner();
} /* pend */

Licensed Material 2-27 Property of Data General

2.3.2.2 Unpending

Unpending a CB allows the path to be scheduled. A CB can be
unpended only if the pend condition is satisfied. There can be
multiple CBs pended on the same type of condition. Unpend does
not check indiviual conditions, it just unpends every CB with a
particular condition. The CB that is unpended has the
responsibility of checking whether it is the right CB to unpend.

For example: a CB is doing an I/O operation that causes it to
pend. There are other CBs pended on some I/O operation. An I/O
operation completes, which causes the related CBs to unpend. The
operation completing only satisfied one CB. Therefore, the other
CBs must pend again.

There are two unpend routines. These routines are called UNPEND
and UNPNDN. UNPEND unpends all the CBs that match the pend
conditions. UNPNDN unpends a certain number of CBs.

Below is the pseudocode for UNPEND and UNPNDN.

/* $$ */
/* UNPEND(unpend_key)/UNPNDN(unpend_key,max_unpend) */
/* */
/* These routines unpend the elements that satisfy */
/* the unpend condition(unpend key). UNPNDN unpends */
/* CBs up to the max number allowed(max_unpend). */
/* */
/* $$ */

unpend(unpend key)/unpndn(unpend key,max unpend);
{- --

Licensed Material 2-28 Property of Data General

/* ** */
/* The local vars */
/* ints test is used to reflect whether interrupts are*/
/* onT<> 0) of off (== -1). */
/* count bef int is used to count the number of */
/* elements to work with before interrupting. */
/* count test is used to check if the above count */
/* should be used.«> 0 == use the count) */
/* (= 0 == don't use the count) */
/* temp is a general purpose variable. */
/* ** */

#define loopcnt = 5; /* loop counter for max number */
/* of iterations through this */
/* code with interrupts off. */

int ints test,
count bef int,
count-test,
temp;-

/* ** */
/* If we came in through unpend or unpndn then */
/* different initialization is done. */
/* Check if interrupts were off when we came in so we */
/* can leave with the same interrupt state as we came */
/* in. */
/* ** */

if (unpndn)
{
count bef int = max unpend;
if (interupt == off);

ints test = -1;
else

ints test = max_unpend;
NUMPDN.W ++;

else
{
count test = 0;
ints test = loopcnt;/* non zero */
if (Interrupt == off)

ints test = -1;
NUMPD.W ++;
}

interrupts(disable);
get_q_Iock(pelemq);

Licensed Material 2-29 Property of Data General

/* **~*** */
/* top of the loop */
/* This is the top of the unpending loop. This */
/* section of code will unpend all CBs that match the */
/* unpend ,condition passed to the routine. */
/* ** */

top of loop:
- if (PELEMQ != -1) /* is PELEMQ empty? */

{
temp = pelemq;
for (i=O;i<=count bef int;i++)

{ -

/* ** */
/* If there are no more elements then break out of */
/* the unpend loop. */
/* */
/* ** */

if (temp = -1)
break;

cb = 0;
cb = searchq(pelemq,unpend_key)

/* ** */
/* If we found a CB then call CBDEQ to dequeue the */
/* element from the PELEMQ and enqueue it to ELQUE. */
/* This is done in a routine called CBDEQ. If no CB */
/* was found break out of the unpend loop. */
/* ** */

if (cb != 0)
{
temp = cb->plink;
cbdeq(cb);
}

else
temp = -1;

count test --;
} /* for loop */

Licensed Material 2-30 Property of Data General

/* ** */
/* If we aren't ingoring the interrupt limit and */
/* we have more elements to hunt for then enable */
/* interrupts for a short while and come back to */
/* unpend more elements. */
/* ** */

if «count test == 0) && (temp != -1»
{ -
release q lock(pelemq);
interrupts (enable);
interrupts (disable);
goto top of loop;
}/* if *7 -

} /* if not pelemq empty */
release q lock(pelemq);
if (ints test != -1)

interrupts(enable);
return();
}/* end of unpend */

Licensed Material 2-31 Property of Data General

2.3.3 FIXCB

FIXCB is a routine that sets up a CB to go onto the Eligble
queue. The reason this routine is needed is that a CB does not
need to go onto ELQUE unless it pends. FIXCB is an entry point
in SCHED. There is another part of FIXCB that is not an entry
point, but is called from other parts of SCHED. This entry is
called FIXCB1. The difference between FIXCB and FIXCB1 is that
FIXCB actually enqueues the CB onto ELQUE and FIXCB1 does not.
FIXCB is called from the PTBL dispatcher (see process management
interface services) in the routine NODCL to enqueue a new CB that
cannot run immediately onto ELQUE. FIXCBl is called from pend.
(See Pend code.) Very little of the CB is changed by Fix CB.
Most of the CB is set up by the code that creates the CB. The
code that sets up the CB is in the PMIS chapter.

/* $$ */
/* FIXCB/FIXCB1(CB) */
/* This routine sets up a CB to go onto ELQUE. If */
/* FIXCB is called then put the CB onto ELQUE. */
/* $$ */

FIXCB/FIXCB1(cb)
{

/* ** */
/* Is the CB a DAEMON? If it is then set the "mother */
/* only" bit in the pstat word and clear PCLASS in */
/* the CB. */
/* ** */

if (cb->calln.w = -1)
}
setbit(cb->pstat,pmast);
cb->pclass = 0;
}

setbit (cb->pstat1,pnfst);

/* ** */
/* If we came in through FIXCB1 then we do not want */
/* the CB put onto ELQUE. SO just return. */
/* */
/* ** */

if (FIXCBl)
return;

Licensed Material 2-32 Property of Data General

/* ** */
/* We have to be sure that interrupts are turned off */
/* before enqueuing to ELQUE. Therefore, if interrupts*/
/* are on, turn them off before calling PENQ and turn */
/* them back on afterward. */
/* */
/* ** */

if (interrupts == off)
PENQ(ELQUE,cb);

else
{
interrupts(off);
PENQ(ELQUE,cb);
interrupts(on);
} /* else */

return;
}/* FIXCB/FIXCBI */

Licensed Material 2-33 Property of Data General

2.4 Internal Paths

There are three general internal paths that CB management uses:
the scanner, the dispatcher, and the idle loop.

2.4.1 The CB Dispatcher

When a CB is selected to run by the scanner, the CB dispatcher
routine sets up and runs the CB. This dispatcher is divided into
two different entry points, one for the system CBs(TACT1) and the
other for user CBs(tact). The only time this dispatcher is used
is if a CB has pended or put itself to sleep (see system CBs).

This dispatcher restores the state of a CB and runs it. The
pseudocode below shows how TACT and TACT1 work.

/* $$$ */
/* TACT(PPCB,CB) / TACT1(PPCB,CB) */
/* This routine restores the state of a CB, maps its */
/* PTBLs memory, and runs the CB. The arguments */
/* supplied to this routine are the PPCB (see JP */
/* Management) and the CB address. */
/* $$$ */

tact(ppcb,cb)/tact1(ppcb,cb)
{

/* *** */
/* Test and set the running bit for the CB. */
/* If the CB is already running then go get another.*/
/* Leave this routine and go to RUNEX1. */
/* */
/* *** */

if (bit(cb->pstat,psrn)
runex1();

else
set_bit(cb->pstat,psrn);

/* *** */
/* */
/* Came in through TACT1. */
/* */
/* *** */

if (tact1)
{
ptbl = cb->cptad.w;
}

Licensed Material 2-34 Property of Data General

/* *** */
/* */
/* Came in through TACT. */
/* */
/* *** */

else
{

/* *** */
/* Is the CB dealing with a target PTBL? If so, */
/* the PTBL to be locked is in CLKPT.W in the CB. */
/* If not, then use the PTBL in CPTAD.W in the CB. */
/* *** */

if (bit(cb->pstat1,pnad) == 0)
ptbl = cb->cptad.w;

else
ptbl = cb->clkpt.w;

/* *** */
/* Is there a PTBL defined? If not then the CB deals*/
/* with the system and there is no need to try to */
/* lock it. If there is a PTBL defined then lock it.*/
/* *** */

if (ptbl 1= 0)
{

/* *** */
/* Is the target PTBL locked? If so, then decrement*/
/* the "tried to get the lock counter" and return to */
/* the scanner. */
/* *** */

if (bit(ptbl->pstat,plck) == 1)
{
clear bit(cb->pstat,psrun);
ptbl->pcblk --;

/* *** */
/* If we have tried to lock this PTBL more than 500 */
/* times, then set the "run only CB" bit in the PTBL.*/
/* This will allow the CB to run on the target PTBL. */
/* This happens when the PTBL is locked and we can't */
/* get the lock. */
/* *** */

Licensed Material 2-35 Property of Data General

if (ptbl->pcblk != 0)
{
set_bit(ptbl->pstat,pntcb);
tcblck.w ++;
}/* if count is zero */

runex1();
} /* if ptbl locked */

else
{

ptbl->pcblk = 500;
clear bit(ptbl->pstat,pntcb);

}/* not locked */
}/* there is a ptbl address */

}/* came in through tact. */
cc.w = cb;
elque.qscan --;
tcscl(cb);/* change to cb timings */
interrupts(enable);

/* *** */
/* If the current LP is not the same as the LP in */
/* the CB, then do some work to set up the correct */
/* LPCB in the CB. */
/* *** */

if (mylpcb.w != cb->plpcb.w)
{

/* *** */
/* Is this a mother-only process? If it is, then the*/
/* scanner took care of mother only by adjusting */
/* the scan mask. Therefore, if this is a mother-only*/
/* process and we have the CB, then we must be the */
/* mother. If not, call CBUPDT and put the MYLPCB.W */
/* into the CB. */
/* *** */

if (bit(cb->plpcb->lpstat,pmst) != 1)
{
cbupdt(cb);
cb->plpcb = mylpcb;
}

}

Licensed Material 2-36 Property of Data General

/* *** */
/* Is there a secondary CB? If there is no secondary */
/* CB defined, then define the primary to be the */
/* secondary and the primary will be the current CB. */
/* If it is defined, use temp CB to hold the Primary */
/* CB so we don't destroy the secondary. */
/* The CB in tmpcb.w will run before the CB in SCB.W.*/
/* *** */

if (scb.w 1= 0)
tmpcb.w = pcb.w;

else
scb.w = pcb.w;

pcb.w = cb;
mapcon(ptbl);

/* *** */
/* Now set up the user stack and run the CB. */
/* */
/* *** */

interrupts(disable);
stack ptr = cb->cstk.w;
frame-ptr = cb->cstk.w;
stack-base = cb->cstkc.w;
stack-limit = cb->cstl.w;
fbk.w-= cb->cbcx;
interrupts(enable);
return(); /* returns to call to pend */
}/* tact/tactl */

Licensed Material 2-37 Property of Data General

2.4.2 TRTN/TGRTN

When a CB finishes running it does a WRTN, either TRTN (for error
returns) or TGRTN (for good returns). The routine cleans up the
CB and either returns to the PTBL that made the call or returns
to the scanner.

/* ** */
/* TRTN/TGRTN() */
/* This routine is used when returning from running */
/* a CB or DAEMON. This routine cleans up the CB */
/* and returns to either the appropriate PTBL or */
/* to the scanner. */
/* ** */

trtn/tgrtn()
{

/* ** */
/* If we entered through TRTN, do the error rtn */
/* processing. Check to see if the TCB is a */
/* DAEMON; if not, check for a restart. */
/* ** */

cb = CC.W;
tcb = cb-)catcb;
if (trtn)

{
error = cb-)cerwd;
if (tcb != 0)

{

/* ** */
/* The CB is not a daemon. If the TCB needs to do a */
/* restart to get memory, the daemon must enqueue */
/* the TCB onto the tcb chain in the process table. */
/* Set the MKEY priority bit in the PTBL and set the */
/* global memkey so the PTBL will not get scheduled */
/* until some memory gets freed. Once the memory */
/* gets released the global key will be reset to */
/* allow the PTBL to be rescheduled. */
/* ** */

Licensed Material 2-38 Property of Data General

if (error == ERRST)
{
ptbl = cb->cptad.w
setbit(ptbl->pstat,psmwt);
clearbit(ptbl->pstat,psncb);
PMKEY = MKEY;
IRSTRT ++;
ptbl->psidir ++;
setbit(cb->pstatl,pnfst);
NQTCB(cb);
}

/* ** */
/* */
/* The CB is not a daemon and not doing a restart. */
/* The CB is taking an error. Set up the error */
/* return and go to TGRTN to complete the cleanup for */
/* the CB. */
/* ** */

}

else

}

{
tcb->tacO.w = error;
tcb->tpc.w --;
goto tgrtn();
}

/* ** */
/* If we came in through TGRTN, then the CB completed */
/* its work and now we must set up to try to return */
/* to the calling PTBL or the SCANNER. */
/* ** */

if (tgrtn)
{

/* ** */
/* */
/* If we are working with a daemon, clear the pend */
/* bit in the TCB. (For explanation of TCBs, see */
/* Process Management Interface Services.) */
/* */
/* ** */

if (tcb == 0)
clearbit(cb->tstat,tspn);

}

Licensed Material 2-39 Property of Data General

/* ** */
/* Is the CB on ELQUE? If so, remove the element */
/* from the queue. */
/* ** */

if (cb->plink != -1)
pdeq(ELQUE,cb,CTRTN.W);

cb->cbtpl.w = 0;
cb->cbtp2.w = 0;
TCSYS();
CBUPDT(cb);/* see LP management */

/* ** */
/* Update the CPU time used during the system call. */
/* Do this in the routine called CBSTAT. CBSTAT takes*/
/* the time used and adds the cputime used to the */
/* corresponding offset in the system call counter */
/* table. This table is a Global table whose address */
/* is in SSTBL. SSTBL.w is a pointer to a table of */
/* system call timing counters.
/* */
/* ** */

If (STTBL.W != 0)
CBSTAT (cb);

/* ** */
/* If we used a temporary CB, release the CB to the */
/* free queue. This frees up TMPCB.w cleanup so when */
/* another call is made the tepm Is available for use.*/
/* *****************************.:******************** */

if (TMPCB.W != 0)
enqt(SSTKQ,cb);

/* ** */
/* Update the counters for G1 or G2 CB usage. This */
/* allows the system to keep track of what kind of */
/* CBs use system resources. */
/* ** */

if (PCB.W->pnqf == 0)
RSTKCT ++;

else
SSTKCT ++;

ptb1 = cb->cptad.w;

Licensed Material 2-40 Property of Data General

/* ** */
/* When the term daemon runs, the high-order bit of */
/* the PTBL address in the CB is set. So to work */
/* with the PTBL databases we must fix the address */
/* which is invalid by clearing the high-order bit. */
/* */
/* ** */

if (ptbl <= 0)
{
clearbit (cb->pstatl,pnfs);
FBK.W = FLTBK.W;
ptbl &= '177777777777';
clearbit (ptbl->pstat,psrun);

/* ** */
/* Does the CB hold an address space lock? If so, */
/* call RELPTBL (see Memory Management) to release the*/
/* PTBL address space lock. If not, just clear the */
/* "no address lock" bit and go to the top of the */
/* SCANNER which is at SMONO. */
/* ** */

if (bit(ptbl->pstatl,pnad) == 1)
clearbit(ptbl->pstat1,pnad);

else
RELPTBL(ptbl);

goto SCANNER; /* SMONO */
}

/* ** */
/* The CB is not a DAEMON. Did the user do a Parallel*/
/* Call? If so, clear the bit and check for waiters. */
/* ** */

if (bit (ptbl->pflag3,pfpch) == 1)
{
clearbit(ptbl->pflag3,pfpch);

/* ** */
/* Are there any waiters on the Parallel call that */
/* PTBL did? If so, unpend the waiters and continue */
/* CB cleanup. */
/* ** */

Licensed Material 2-41 Property of Data General

if (bit(ptbl->pflag5,pfpchw);

}

{
clearbit(ptbl->pflag5,pfpchw)
unpend (ptbl,cb);
}

/* ** */
/* Did the CB run "FAST"? Running "fast" means the CB*/
/* did not pend. If so, check the TCB to see if it */
/* ran fast. */
/* ** */

if (bit(cb->pstatl,pnfst) == 0)
{
tcb = cb->catcb;

/* ** */
/* We have a TCB address from the CB. Is there */
/* an address? */
/* ** */

if (tcb 1= 0)
{

/* ** */
/* There is a TCB address. Did the TCB run "fast"? */
/* A TCB runs "fast" if it does not have to wait for */
/* memory. If the TCB did not run "fast" clear the */
/* bit and continue cleanup to go to the Scanner. */
/* */
/* ** */

if (bit(tcb->tcbfl,?scfast) == 1)
{
clearbit(tcb->tcbfl,?scfast);
} /* if tcb ran "FAST" */

else
{

/* ** */
/* Both the CB and the TCB ran "fast", so start */
/* setting up to run the user. Check if the user did */
/* not use up their time slice. If not, run the user.*/
/* ** */

if (bit(ptbl->pstat,pstsu) == 0)
go to run user;

}/* else */-
} /* have a TCB */

else
{

Licensed Material 2-42 Property of Data General

/* ** */
/* We weren't running a TCB. Then is this TCB a */
/* DAEMON? If so, continue and check the reschedule */
/* flag. If not, drop out to do the cleanup before */
/* going to the scanner. */
/* */
/* ** */

if (cb->calln.w == -1)
{
ppcb = myppcb;

/* ** */
/* Did something else on the system request a */
/* reschedule? If not, go RERUN the daemon. */
/* ** */

if (bit(myppcb->cpstat,resch) == 0)
{
setbit(ptbl->pstat,psrun);
CC.W = ptbl;
ptbl->pextn.w->psqct --;
goto RERUN;
}

}
}/* no TCB */

}/* if not fast */
clearbit(cb->pstat1,pnfst);

/* ** */
/* This label is jumped to from the run user routine */
/* to go to the top of the scanner if there are any */
/* conditions that keep the PTBL from being run. */
/* ** */

to scanner:
ptbl->pextn.w->psqct --;
clearbit(ptbl->pstat,psetr);
clearbit(ptbl->pstat,psncb);
clearbit(ptbl->pstat,psrdy);
clearbit(ptbl->pstat,psrun);
setbit(ptbl->psflag,pfrsh);
FBK.W = FLTBK.W;

/* ** */
/* Did the user use up its time slice? If so, ~et up */
/* to go to TSUP (time slice end processing). */
/* ** */

if (bit(ptbl->pstat,pstsu) == 1)
{

Licensed Material 2-43 Property of Data General

/* ** */
/* Is there an address space lock? If not, check for */
/* PLOCK. */
/* ** */

if (bit (cb->pstatl,pnad) == 0)

/* ** */
/* Time slice has expired. Test for PLOCK. If held, */
/* clear the lock bits and the time slice up bit. */
/* Go to TSUP. */
/* ** */

if (bit(ptbl->pstat,plock) -- 0)
{
setbit(ptbl->pstat,plock);
clearbit (cb->pstatl,pnad);
}

clearbit(cb->pstat,pstsu);
go to TSUP(ptbl);
}

/* ** */
/* If the Address space lock is being held on this */
/* PTBL then go unlock it. */
/* ** */

if (bit(cb->pstatl,pnad) == 0)
RELPTBL(cb,ptbl);

clearbit(cb->pstatl,pnad);

/* ** */
/* If the PTBL is swapping then go do a reschedule */
/* after locking ELQUE. */
/* ** */

if (bit(ptbl->pstat,psbag) = 0)
goto SCANNER; /* SMONO */

get q 10ck(ELQUE,QLOCK);
goto SCANNER; /* M6 */

/* ** */
/* We hit the situation where we can run the user. */
/* Check if the reschedule flag was set. */
/* ** */

run user:

if (bit(myppcb->cpstat,presch)
goto to_scanner;

Licensed Material 2-44 Property of Data General

/* ** */
/* If there is no address space, lock on the PTBL we */
/* want to run and go to the SCANNER. */
/* ** */

if (bit(cb->pstatl,pnad) == 1)
goto to_scanner;

/* ** */
/* Is there some BIT set in the PSTAT word except */
/* those masked out in the process table. */
/* Go to the scanner. */
/* ** */

if «cb->pstat & CSBIT) != 0)
goto to scanner;

setbit(ptbl->pstat,psrun);
CC.W = ptbl;
ptbl->pextn.w->psqct --;

/* ** */
/* Was the task in the PTBL faulting? If not, call */
/* the task scheduler. If so, run the user. */
/* ** */

if (bit (tcb->tstat,?tswp) == 0)
{
FSYSCL.W ++;
goto PSCHD(ptbl);
}

else
{
mytcb = ptbl->ctsk.w;
RSTPR1(ptbl,mytcb);
FPGFLT.W ++;
clearbit(mytcb->tstat,?tswp);
interupts (on);
goto USER; /* start the user via WDPOP */
} /* else */

} /* TRTN/TGRTN */

Licensed Material 2-45 Property of Data General

2.5 Locking

There are two types of locking discussed in paths and time. The
first is "spin" locking (see JP management). The second is pend
locking.

Pend Locks

Pend locking is only used by pendable paths (CBs). A pend lock
causes a CB trying to get the lock to pend, if the lock is held.
The reason for using pend locks is the particular lock is a
long-term lock. This means that the lock may be held for an
indeterminate amount of time. For a path to spin the lock must
be a short-term lock.

Example:

A CB is trying to get a change lock on the global lock
JPLPLOCK.W. (see LP management). The CB finds the lock is held,
so the CB will pend waiting for the lock. When the lock is
released, the unlocking routine unpends all the CBs pended on the
lock.

To get a pend lock there is a two-level locking scheme used. The
first part is getting the transition lock and the second is
getting the pend lock.

The first part of the locking scheme is getting the transition
lock. The transition lock allows the lock to set up for a
long-term action, such as to get a long-term lock or do some
quick operation with an element. If the path tries to get the
long-term lock and cannot, then the path will pend, but before
pending the path must release the transition lock. The routine
that does this type of locking is get_lock (see LP management).

Element and Queue Locking

In this section two groups of locking routines will be
discussed. The first group of locking routines used in ELQUE
management are the queue locks. The second group of locking
routines discussed are the pend locks that deal with JP and LP
databases.

Element Locking

In ELQUE management it is necessary to lock elements and queues
to maintain their integrity for specific operations. For
example, when the element is accessed for modification the queue
lock(qlock) must be held on that queue before the queue can be
touched. Elque has a special extra lock which will be discussed
later.

Licensed Material 2-46 Property of Data General

Element Locks

An element gets locked when it has some system call working with
it, such as a system call (CB) doing an operation to a PTBL; or
when a PTBL is being dispatched to run. The PTBL long-term lock,
PLOCK, is a form of a pend lock. The difference between the PTBL
lock and the normal pend lock is if the PTBL lock is set the
dispatchers, which are nonpendable paths, simply do not use the
PTBL and return to the scanner for another element.

Queue Locks

There are two routines used to lock queues: get q lock and
release q lock. The locking scheme used for queues is spin
locking~ -These locking routines are not real locking routines,
they are implemented inline. The reason these functions are
implemented inline is because of the speed of not having to go to
a subroutine. The routines are shown in the pseudocode below.

Get q lock tries to get a lock for the caller. When the locking
succeeds, then the routine returns. If the locking fails, the
routine increments the collision counter supplied to the routine
and spins until it gets the lock.

/* $$ */
/* get q lock(queue,counter) */
/* This routine-gets a lock for the queue */
/* supplied as an argument. */
/* */
/* $$ */

get q lock(queue,counter)
-{-

/* ** */
/* If there lock is locked then increment the */
/* counter and spin. */
/* After the lock is released then set the */
/* lock. */
/* ** */

if (bit(queue.qstat,QLOCK) == 1)
counter ++;
while (bit(queue.qstat,QLOCK) -- 1)

{}
setbit(queue.qstat,QLOCK);
return();
}

Licensed Material 2-47 Property of Data General

Release q lock releases the qlock for the queue passed as an
argument.-

/* ** */
/* release_q_lock(queue) */
/* This routine releases the queue lock for */
/* queue passed to the routine. */
/* */
/* ** */

release q lock(queue)
{ --
clearbit(queue.qstat,QLOCK);
return;
}

ELQUE LOCKING

ELQUE has a special extra locking scheme that is used for readers
of the queue. This lock is called the scan count. The scan
count is used to keep track of scanners. This prevents a path
from modifying ELQUE while other paths are reading it. After a
path gets the QLOCK on ELQUE, it must also wait for the scan
count to go to zero before enqueuing or dequeuing from ELQUE.
The scan counter is useful because scans of ELQUE occur more
frequently than do modifications. The scan count for ELQUE is
called QSCAN. QSCAN is a part of the ELQUE structure so it is
accessed by ELQUE.QSCAN.

Licensed Material 2-48 Property of Data General

3.1 Introduction

Chapter 3
Process Schedu1ing

The Process Scheduling chapter of Paths and Time, documents
the activities within the system that are controlled by the
process table and its state. The structure of the chapter
progresses from high-level discussion of the topics to
detailed information about the databases and the system
paths.

3.1.1 Relation to Other Parts of Paths and Time

The overall view of Paths and Time is shown below. Process
Scheduling has close connections to both the system scheduler
(ELQUE management) and CB management. It also takes input
from time management.

+--------------+ +--------------+
I :i:iGEMENT I~=;I ~:NAGEMENT 1
+--------------+ +--------------+

+--------- ---------+
System

+-----------------+ +------------+
DRIVERS
IDEF <-+ +------> 1

ELQUE 1
MANAGEMENT

+-----------------+ FILE SYSTEM
+------------+

+------------+ +------------+ +------------+
1 CLASS 1<--1 LP 1 1 TIME 1

MANAGEMENT --> MANAGEMENT <-+-- MANAGEMENT
+------------+ +------------+ +------------+

+--------------+ I
+-------1 ~iNAGEMENT I~==========~->i-~~~;;;~;~-~;~;~-i

+--------------+ +-----------------+
Process Scheduling is closely associated with ELQUE
management for scheduling of activity on, and for a process.
The ELQUE scanner depends on Process Scheduling to do a
detailed check of the PTBL after it is picked to run.
Process Scheduling will either run the process, run a CB on
behalf of the process, or return control back to the ELQUE
scanner. If it returns to the scanner then the scanner may
restart or continue the scan.

Licensed Material 3-1 Property of Data General

CB management is tied to Process Scheduling to handle the
allocation and scheduling of CBs started on behalf of the
process. This is done to start system calls and daemons.

Time management interfaces to Process Scheduling when a
subs lice or a timeslice has occurred by setting flags in the
PTBL. It also provides the handlers, and switches CPU timing
from general system overhead to either a specific CB or to
the user.

3.2 Time Handling

Process Scheduling takes notice of time, primarily at the end
of subslices and timeslices. It makes use of routines
provided by Time Management to charge and reallocate time and
to handle the PIT.

3.2.1 Accounting and Charging

Time is counted by the system in several different ways.
CPU time is tracked by the PIT in CBs, PTBLs, and global
counters. System calls are charged to the PTBL at a standard
rate in the interest of fairness and repeatability.
Histograms sample the program counters at interrupts and
count the samples in buckets according to the PC value.

Actual CPU time (PIT ticks) are
and system call timing tables.
accurate and will usually match
reasonable periods.

accumulated in the LPCBs
These numbers are quite
histogram information over

User CPU time however is the sum of PIT ticks spent on PTBLs
plus the standard system call charges. This is what is
reported by the ?RUNTM system call. Since the standard
system call charge doesn't necessarily match the actual time
spent in the system call, the sum of user time, system time
and idle time will not usually equal 1 CPU-second per
second. It is this composite user CPU time that has the most
effect within Process Scheduling.

3.2.2 Timeslicing

CPU time is allocated to PTBLs according to a timeslicing
algorithm. A timeslice is the amount of time that a process
is allowed to use before the process' timeslice and priority
is re-evaluated. CPU time is tracked and charged in units of
PIT ticks. Each tick is 1/10,000 of a second. It is
allocated in multiples of ticks called subslices. The
default size of a subslice is 320 ticks or 32 milliseconds.

Licensed Material 3-2 Property of Data General

Timeslicing is in effect only when a PTBL has control of a
JP. If the process loses control, then its remaining PIT
count, the residue, is saved for later use, and timing
against the subslice is suspended. Each time a user task is
started by Process Scheduling the PIT is loaded with the
current subslice residue from the process table extender. If
a PTBL is not in control (i.e., a CB or system path is
running) the PIT is used to accumulate timing data but there
is no timeslicing.

A subslice end is detected either by a PIT interrupt or when
a system call charge overruns a subslice. When this happens,
subslice end processing is performed. This stops the
process, updates the running total CPU time in the PTBL
extender, and makes several checks on the PTBL. Process
rescheduling is also signaled at subslice end.

If the process has a CPU time limit and exceeds it, then the
process is marked for termination. If round-robin task
scheduling is not disabled, then the PTBL is marked for task
rescheduling. If this subslice was the last one in a
timeslice then the PTBL is marked for timeslice end
processing.

Timeslice end processing involves reassigning a timeslice
exponent (TSE), subslice count (PSLCN), and scheduling
priority (PNQF) for the process. Memory management also is
run, and a process' working set may be trimmed if the system
is in a memory contention state.

3.2.3 Timeslice Exponents (TSE)

A group I process is always assigned a TSE of six. The TSE
of a group 2 or 3 process depends on its prior behavior and
this results in heuristic scheduling.

When a group 2 or 3 process uses its entire timeslice without
blocking significantly its TSE will increase by one unless it
is already at the maximum TSE of six. If it blocks
significantly before using up its entire timeslice then its
TSE will be recalculated.

A blocking event is significant if it blocked the process for
at least 2 tenths of a second and if the event is one that is
not masked out by global location TUNPBLK. The blocking
events that can be masked out are: ?PMGR write request,
?SIGNL, ?SIGWT, ?WTSIG, ?IREC, and ?WDELAY. By default all
of these events are significant except ?PMGR writes.

Licensed Material 3-3 Property of Data General

The recalculation of a group 2 or 3 timeslice exponent is
done according to the following rules. If the process used
less than one whole subslice before blocking its TSE is set
to 1. If the process used 32 or more subs1ices then its TSE
is set to 5. Otherwise its TSE is set to the smallest value
such that 2 raised to the TSE power is greater than or equal
to the number of whole subslices used. For example if a
process used 5.00 subslices before blocking then its next TSE
would be 3, «2 A 3)=8 which is >= 5); if a process ran for
4.99 subs1ices its next TSE would be 2. Fractions of
subs1ices are not actually used in the calculation but they
do occur in the real world.

3.2.4 Subslice Count (PSLCN)

The calculation of the subslice count is done using the
formula PSLCN = 2 A TSE with one exception. If the process
is "Swappable priority 1" (the highest group 2 priority) and
its TSE is 6 then the number of subslices is PSLCN =
2 A (TSE+1). In other words it is given twice the normal
number of subs1ices.

The resulting timeslices (assuming 32 msec subslices) range
from 64 milliseconds to 2.048 seconds (or 4.096 seconds for
the exceptional case).

3.2.5 Process Scheduling Priority (PNQF)

The scheduling priority of a PTBL on the ELQUE called the
PNQF or Priority Enqueue Factor. For a group 1 or group 3
process the PNQF is a function of the process group and
process priority. For a group 2 process the PNQF calculation
also takes into account the process' timeslice exponent
(TSE). In the formulas below PPRI is a process' assigned
priority, TSE is its timeslice exponent, G1 is the largest
priority value assignable to a group 1 process and G2 is the
largest priority value assignable to a group 2 process. G1
and G2 are constant for any given system.

The PNQF of a group 1 process is equal to its priority. The
calculation is simply PNQF = PPRI.

The PNQF of a group 2 ("swappable") process is a function of
both its priority and its timeslice exponent. The
calculation is PNQF = G1 + (7*(PPRI-G1» + TSE + 1. This
formula gives each group 2 priority a range of values. For
any given priority the specific PNQF value is determined by a
process' TSE. Thus, for a given priority, processes with
lower TSEs will have greater effective priority.

Licensed Material 3-4 Property of Data General

The PNQF of a group 3 process is calculated according to the
formula PNQF = 7 * (G2-G1+1) + PPRI.

The overall allocation of PNQFs reserves PNQF=O for system
and group 1 process' CBs, fOllowed by a contiguous range of
group 1 PNQF's, PNQF=(G1+1) reserved for CBs of group 2 and 3
processes, a spread out range of values for heuristic
scheduling of group 2 processes, and lastly a contiguous
range for group 3 processes.

3.3 System Calls

A system call originates as a request from a user task, but
to run in the system it must convert to a system task so it
can use system resources. It is this transition that enables
system calls to run in parallel with other tasks in the user
program. The transition also makes it complicated to start
a call.

3.3.1 Initial System Call Handling

System call requests enter the system through a gate via an
LCALL. The very first thing the system does is make the
transition from the user world to the system world. This
means switching the PIT timing from the user to the system,
establishing the system stack and saving the user's task
state and pending the task. If the user has made a system
call from interrupt level or has exceeded his CPU time limit
then the process will be marked for termination.

Next the user is charged for the call. There are two
different charges. The standard charge is 10 PIT ticks,
expensive calls are charged 100 PIT ticks. Illegal calls are
not charged.

3.3.2 Starting or Queueing a System Call

When a system call first enters the system it may not start
if conditions prevent it from running or if resources are not
available. These calls become queued TCB requests. They are
queued off of the PTBL extender through the TCBs.

A system call that has already started may also queue itself
to be restarted if it finds that required resources are not
available. This is usually because a system call needs memory
but cannot get it.

Licensed Material 3-5 Property of Data General

Every call requires that a system CB be available. The CB
mayor may not be used but one must be available and it must
be available from the proper allocation pool. There are two
CB pools, one for group I processes and one for all others.
If the process already has used its maximum number of CBs or
if none are available then the call will be queued. Those
calls that are known as "parallel calls" will be queued if
any other calls are already running or if the process is the
target of another process' call. A call will be queued if
there is already a parallel call running.

Queued system calls starting takes precedence over user tasks
when a process is run by the scheduler. A queued call may
be unable to start when the process is scheduled for the same
reasons that it was queued in the first place. In some cases
(such as a call pends and the user is multitasked) the user
code may then be allowed to run even if the system call
could not.

3.3.3 Running the System Call

Once the system has decided to run a system call it can take
two paths. The least expensive in terms of CPU time is to
simply point the system to the CB and jump right into the
handler. The other path requires that the CB be filled in
and placed on the system ELQUE for later scheduled
execution. The particular path taken depends on the call and
the current JP identity and state. Only if the JP is
eligible to run the particular call and it does not need to
reschedule can the fast path be taken.

If a call does "run fast" (a technical term) and it never
pends during execution then the process will regain control
of the CPU without rescheduling. Otherwise, the process
loses control to be scheduled again later.

3.3.4 Concurrency

Because each system call runs as a separate system task with
its own CB there can be more than one call active in the
system at the same time. And because the PTBL represents
another system task it can be active at the same time as the
system call(s).

If there are multiple JPs in the system then it is possible
to have multiple paths being executed for the user
simultaneously. Note that while multiple system elements
(CBs and PTBLs) can be running on different JPs at the same
time, it is not possible to have multiple user tasks of the
same process running at the same time because each user
process is represented in the system by only one PTBL.

Licensed Material 3-6 Property of Data General

3.3.5 Page Faults and Daemons

The mechanism used by system calls for running concurrently
on a CB is a general purpose mechanism. User page faults and
daemons are handled like system calls except that they are
not initiated by the user directly.

Page faults join the system call path just after the initial
user to system transition. Page faults are very similar to
system calls in that they can be queued off of the process
table extender and their start can be delayed.

Daemons are started only when a process
active and join the system call path at
system call will definitely be started.
discussed below.

3.4 The Process Databases

has no other calls
the point where a

Daemons are also

The activities of Process Scheduling are centered around
the two databases that describe a process to the system,
the process table (PTBL) and the process table extender
(PEXTN). Together they provide the driving force for
Process Scheduling.

The other major data structures that Process Scheduling is
concerned with are the CB, task control blocks (TCBs) and
user status tables (USTs). These are described later.

3.4.1 Importance/Use in Process Scheduling

The process table (PTBL) remains in memory as long as the
process exists but the process table extender (PEXTN) swaps
with the process. By the design of these two databases and
the placement of the status information Process Scheduling
will attempt actions that require information from the
extender only when a process is eligible (swapped in).
Thus it can ignore the possibility that an extender might
be unavailable.

The PTBL holds the data with which the system schedules and
maintains process unique information. It also holds
information about operations done to or capable of being done
to a process while it is swapped out. Of course it also
hOlds pointers to the other process related data structures.

Licensed Material 3-7 Property of Data General

The PEXTN holds data that describes the state of the process
and its activities in greater detail. Information needed
only when the process is running or eligible to run can be
kept here.

Process Scheduling is concerned primarily with data used
for scheduling the process. Most of this driving data are
various status and flag bits. The flags used by Process
Scheduling fall functionally into three groups plus a few
miscellaneous ones. The first group is the show stoppers.
They are checked at the beginning of process scheduling and
if any are set the process is skipped. This group includes
the locking flags and the running flag. The second group
contains the "high-priority" bits that cause certain actions
to be taken before any actual scheduling can occur. The
flags of the first two groups are in word PSTAT. The final
major group of flags is known as the daemon request flags.
These flags are scattered throughout PSTATl and the
PFLAG words.

There are many other data items in the PTBL and PEXTN used
by Process Scheduling, they are defined in Section 3.8 and
their use is discussed in the code walkthroughs and shown in
the pseudocode.

3.4.2 States of the PTBL

A process can be in many different states. Within the system
the process is represented by its PTBL for the entire life of
the process. The states of the process are determined by the
queue the PTBL is found on and by status information in the
PTBL. The queue the PTBL is on reflects the major state of
the process.

When a process is eligible its process table extender and
current working set are actually in memory although not
necessarily mapped. The PTBL of an eligible process will be
on either the ELQUE, BLKQ or MBLKQ. The MBLKQ links PTBLs of
processes that are explicitly blocked by the ?BLOCK or ?PROC
system call. The BLKQ holds PTBLs of processes that are
blocked because they are waiting for something to complete.
The ELQUE is the queue of PTBLs of processes ready to run or
needing some action by the scheduler. Only if the PTBL is on
the ELQUE and is selected to run by the system scheduler will
the process scheduler be called for the process.

Licensed Material 3-8 Property of Data General

When a process is swapped out the PTBL is moved to one of the
swap queues IEBLK, IERES, IEQUE, or IESWP depending on the
process type and its state before being swapped. Even while
the process is swapped out to disk the PTBL remains in memory
to represent the processes. The process extender is swapped
to disk as part of the ring 1 to 7 context of the process.
Other subsystems will still keep information referring to the
process in their data structures. For instance, the
connection management subsystem will still have references to
the process in its connection database.

The process management volume of the internals manual has a
more detailed description of the various queues that the PTBL
can be on and the process states that each represents.

3.4.3 Blocking and Unblocking

During the life of a process it is quite normal for it to
block and unblock. It will be blocked when the process
scheduler finds no TCBs ready to run, while it is waiting to
terminate, or if it is explicitly blocked by a system call.
When a process is blocked its PTBL is put onto one of the
blocked queues. If the process is explicitly blocked it is
placed on queue MBLKQ, otherwise it is placed on queue BLKQ.
A process unblocks if a TCB is unpended by the occurrence of
some event, or if the system needs to start a daemon for the
process, or if the process is explicitly unblocked.

The process of blocking and unblocking a heuristically
scheduled (group 2) process affects the process' ELQUE
priority. In theory if a process blocks before using its
full timeslice then it is displaying interactive behavior
and the system should give the process a higher ELQUE
priority (but shorter timeslices) to enhance interactive
response times. See the discussion of timeslicing above for
more information.

The problem with the theory is that a non-interactive process
can display similar blocking behavior. One example is a
program that continuously writes data to a terminal. The
process will block when the output buffer fills and unblock
when the buffer empties. This behavior looks interactive
if the only factor taken into account is the blocking
and unblocking.

Licensed Material 3-9 Property of Data General

To counter this AOS/VS allows the system manager to prevent
certain specific blocking events from affecting process ELQUE
priority if the event didn't block the process for very
long. Global location TUNPBLK is a mask of those events to
be discriminated against. The blocking events that can be
specified are PMGR reads and writes, ?SIGNL, ?SIGWT, ?WTSIG,
and ?DELAY system calls, and IPC messages. The value of
TUNPBLK can be set for the needs of a specific environment
by patching the system .PR file or by using the SYSTUNE
utility. See PARSA.SR or STABLE.SR for specific bit
assignments.

When a process on the BLKQ is unblocked a check is made to
see if it was blocked for one of the events in TUNPBLK. This
is done by logically AND'ing global TUNPBLK with the contents
of TBLKFLG in the PTBL. If the result is zero then the
blocking event was not one being discriminated against and
the process is deemed interactive.

If it was blocked for an event whose bit is set in TUNPBLK
then a check is made for how long the process was blocked.
If the process was blocked for more than two tenths (0.2)
seconds then the process will also be considered interactive.

If a process appears interactive during an unblocking then
it may have its timeslice exponent lowered. This lowers
its PNQF and improves interactive response. This also
shortens the timeslice allocated to the process when it is
next scheduled.

If the process was blocked less than the 0.2 second time
limit on an event type marked in TUNPBLK then the blocking is
not considered significant and the process' timeslice
exponent will be left unaltered. The process may eventually
use up its full timeslice without encountering a significant
blocking event. At that time its timeslice exponent (and
PNQF) may be raised, thus limiting the process' ability to
compete for CPU time. This is the appropriate action for
non-interactive programs.

3.4.4 High-Priority Activities

After the scheduler has determined that the PTBL is not
locked or already running it must check certain high-priority
status flags. These flags indicate that the process or PTBL
is in a state that requires attention before the system can
consider scheduling the user code. The flags are "all in word
PSTAT of the PTBL. In the source and in the discussions and
pseudocode below the bits are collectively known as PRBITS.

Licensed Material 3-10 Property of Data General

The processing of these conditions is handled during the
scheduling of the process since each is specific to the
process and, as far as the system is concerned, the priority
of the actions are the same as the priority of the process.
It does not make sense for these actions to be completed at
higher or lower priorities.

In order of decreasing priority the flags are:

PSEW
PSBRK
PSBAG
PSBLK

PSDP
PSMWT
PSTSU

scheduler activity is in progress
a ACAX interrupt is pending
process should be swapped out
the process is blocked and the PTBL needs
to be moved to a blocked queue
a daemon needs to be run
the process needs memory
timeslice end processing needs to be done
before running the user.

By this ordering you can tell that, for instance, swapping a
process out has higher-priority than checking if it should
try to get memory again.

PSEW is set if the PTBL is in a state where it should not be
checked in any greater detail or if a system task or daemon
is active for the process. This does not include active
system calls however. If PSEW is set the scheduler
immediately skips the PTBL and continues the ELQUE scan.

If PSBAG or PSBLK are true then the scheduler hands the PTBL
off to another part of the system to be processed. For PSBAG
the PTBL is moved to the core manager queue. This may fail
if the process state changed since the flag was set. For
PSBLK the scheduler attempts to move the PTBL to a blocked
queue. It may fail if the appropriate queue is locked. For
both PSBAG and PSBLK if the PTBL was removed from the ELQUE
the scheduler is restarted otherwise the scheduler continues
the ELQUE scan with the next element on the ELQUE.

Both PSBRK and PSDP signal that a daemon needs to run before
the user regains control. Even though AC interrupts are
handled by a daemon they are given their own priority flag
because the interrupts are more important than process
blocking or swapping. If the interrupt was a ACAB it would
not make sense to hold up the process termination. The
scheduler takes the same path for both priority flags,
possibly after resetting PSBRK. Daemons are handled in the
system as a special case of system call processing. They
differ in that they are not initiated by the user program and
do not return to the user. When a daemon is started bit PSEW
is set indicating that system activity is taking place for

Licensed Material 3-11 Property of Data General

the process and no user code or system calls will be
scheduled to run for the process. When a daemon finishes it
is the daemon's responsibility to update the PTBL status
flags to allow it to run later.

When PSMWT is true there is at least one system call
waiting. The flag is set if a system call cannot continue
for lack of free memory. When this happens the call copies
system global MKEY into PTBL word PMKEY, backs out to its
starting point and puts its TCB onto the chain of waiting
system calls. The high-priority action taken is to compare
the current value of global MKEY with the stored PMKEY.
Since MKEY is changed when the release of memory adds a block
to a previously empty chain, if PMKEY differs from MKEY then
memory may be available and the system call can be
re-attempted. It is quite possible that not enough memory
was freed or a higher-priority process has taken the memory
and the system call may fail again. But this mechanism does
ensure that the processes compete for memory in a manner that
takes into account their relative priority and available
CPU time.

PSTSU indicates that a process' timeslice expired because of
a system call charge and that timeslice end processing is
waiting. The possible effects are to change (lower) the
processes priority, or to terminate the process for using up
its CPU time allocation. After timeslice end processing the
system scheduler is restarted from the top.

3.5 Process Scheduler Use of CBs

3.5.1 CBs in a Process World

Despite its emphasis on PTBLs, the process scheduler is also
responsible for spawning the vast majority of CBs within the
system. This responsibility is given to the process
scheduler because the coordination and priority of these
system activities are based on the PTBL.

CBs are allocated, initialized and started by the process
scheduler to handle user system calls and daemons. System
calls and daemons are similar in that they both execute code
paths within the system (ring 0) address space and are
managed via CBs. System calls are started at the request of
the user or his Agent. They represent a continuation of a
user task within the system and they return control to the
task when they finish (unless the call terminates the
process). Daemons on the other hand are started to perform
process activity independently of any user task.

Licensed Material 3-12 Property of Data General

When looking at a CB in a system dump a daemon can be
identified by the contents of fields CALL.N and CATCB.W.
CALL.N will contain a -1 indicating no valid system call
number. CATCB.W will contain a 0 indicating no associated
user TCB.

3.5.2 Setting Up and Dispatching CBs

The process scheduler always allocates and initializes the CB
but it may either dispatch the CB directly or link it onto
the ELQUE for later execution. CBs are dispatched directly
by the process scheduler only if there are no higher-priority
ready CBs or PTBLs, no reschedule flags set, and if the CB
can run on the current job processor.

When allocating CBs, the Process Scheduler maintains (or
calls routines that maintain) several system globals.
Locations PCB.W, SCB.W and TMPCB.W defined in SZERO.SR hold
the address of the current, backup, and possibly temporary
backup CBs for a specific job processor. Locations RSTCKT
and SSTCKT defined in STABLE.SR count the number of CBs
available within the entire system for group 1 or group 2/3
process requests.

Before dispatching a CB or putting it onto the ELQUE to be
scheduled later the process scheduler must initialize the
CB. Entries that are set to initial values include its
status, the timing and error entries, the pointers to the
CB's stack and the address of the associated PTBL. Data that
define the execution path of the CB include its priority
enqueue factor (PNQF), system call number and associated TCB
address for system calls and class code for class scheduling.

If the process scheduler is going to transfer control
directly to the CB then it must put the addresses of the
logical processor and job processor control blocks into the
CB. In this case the process scheduler must also duplicate
the action of the ELQUE scanner in setting up the system
global databases and the processor states. (See CB
management elsewhere in this volume.)

3.5.3 Time and CBs

AOS/VS keeps track of the actual CPU time spent while running
on CBs and PTBLs. The CPU times accumulated are totalled in
the data bases of each logical and physical processor and in
the table of system call timings. These actual times are not
the times charged to a user process. The user process is
assessed the total of the actual time spent on the PTBL (in
user space) and system call charges which are determined by
the system call number.

Licensed Material 3-13 Property of Data General

When a CB completes a system call or daemon, CBUPDT is called
to update the appropriate time counters in the processor data
bases (LPCB and PPCB). If class scheduling is on or class
timings are being accumulated then the appropriate counters
and allocations are updated. After system calls CBSTAT is
called to accumulate the CB time into the table of system
call times pointed to by STTBL.W. CBSTAT, CBUPDT and the
related PTUPDT routines are discussed in detail in the LP
management chapter.

3.5.4 Concurrency

Activity for a process can be represented in the system by
both its PTBL and CBs. This makes it possible to have
multiple threads of execution eligible at the same time for a
process if the program is multitasking with one or more
outstanding system calls. If the hardware configuration
includes more than one job processor it is possible to have
more than one code path running simultaneously. However
since the user code is represented by only a single control
block, the PTBL, it is not possible to have more than one
user task running at the same time. This greatly simplifies
the job of the task scheduler in the Agent.

Several situations can prevent concurrency. For instance,
daemons require that there be only one active execution
thread. If user code, or a system call CB, or another
daemon is running then a daemon will not start, and user
code and other system calls will not be started once a daemon
is running.

Even after starting concurrent paths, the various locks in
the PTBL and system limit simultaneity. So long as a lock
is held, any other code paths needing the same lock will
not run.

3.6 User Task Scheduling

3.6.1 Overview

Part of the function of the AOSjVS process scheduler is to
dispatch user tasks. This includes handling task state
switching and round-robin rotation of tasks with the same
priority. Most of the actual management of tasks however is
handled by the Agent in ring 3. This section will not delve
into services provided by the Agent.

Licensed Material 3-14 Property of Data General

Task scheduling is performed as the final phase in the
scheduling of a specific process. The priorities of ready
tasks plays no part in the selection of a process to run.
One result of this is that for processes of equal priority a
task of lower priority on one process can run before a
higher-priority task of another process if the process with
the lower-priority task was nearer the head of the ELQUE.

This emphasis on scheduling of processes is a major
difference between AOS/VS and AOS/RT32. Where AOS/VS keeps
PTBLs on its eligible queue, AOS/RT32 keeps tasks on its
queue. This allows AOS/RT32 to interleave priorities of
tasks on its eligible queue across processes.

3.6.2 Task Scheduling

When the task scheduler scans the active TCB queue it selects
the first TCB with no pend bits set. Since the queue is in
priority order this is the TCB of the highest-priority ready
task. If no ready TCB is found the process is marked "not
ready to run" and if the process can be blocked the PTBL will
be moved to queue BLKQ.

The next step in task scheduling is implementing the
round-robin scheduling policy. This means putting the TCB of
the selected task behind other TCBs with the same priority in
the queue. This is done before starting the task so that no
matter how the task loses control the round-robin policy is
enforced. The check is simple: if there is another TCB in
the queue behind the selected TCB and it is at the same
priority then the shuffle must be done.

A task context switch is also needed if the selected task is
different than the last task that ran. Each task has several
global state variables that must be saved and restored during
the switch. These include stack pointers, fixed and floating
point registers and status, trap handlers, and the extended
save area. See the code descriptions or pseudocode below
for implementation.

A task loses control when it makes a system call that must
pend, when it makes a task call with rescheduling enabled, at
the end of a CPU subslice (32 milliseconds), if a higher
priority task in the same process becomes ready, or if a
higher priority process becomes ready.

Licensed Material 3-15 Property of Data General

3.6.3 The TeB

The TeB is the repository of the scheduling state of each
task in a process. The TeB plus the task's stacks in rings 3
to 7 and possibly an extended save area in ring 7 contain all
the information needed to run a task.

Unlike process PTBLs, all TeBs for a process' active tasks
are on a single queue no matter what their state. The head
of the queue is in the UST.

Each task has a priority from 0 to 255 with 0 being the
highest-priority. This priority is kept in entry TPR of the
TeB. The initial task of a process is given priority 0 by
the LINK utility. The priority of all other tasks is
determined by the user code that creates the new tasks. The
TeBS in the active queue are linked in task priority order.

In addition to being linked onto the UST for task scheduling,
the TeB may also be linked onto one of two chains off of the
process table extender. If one or more tasks are waiting on
the completion of a ?WDELAY then location PDFR.W in the
extender points to the TeB of the task with the shortest wait
and offset TSYS.W in the TeB points to the next one, if any.
If one or more tasks have issued system calls that were
unable to start then location PSWD.W in the extender points
to the first TeB and if there are any other TeBs they are
linked through TSLK.W.

The scheduling state of an active task is determined by the
pend flags in entry TSTAT. Bit ?TSPN indicates that the task
is pended in the system. The other pend bits in TSTAT are
managed by the Agent and honored by the scheduler. By having
all the pend conditions in a single word the MV queue
instructions can be used to scan the queue. See the TeB
data structure in Section 3.8 for descriptions of the pend
flag bits.

See Section 3.8 for a short description of the other TeB
entries used by process scheduling. For a complete
description of the entire TeB see the Process Management
volume.

3.6.4 The UST and Ring 3

The UST is the central database for managing all of a
process' TeBs. The UST is shared by the Agent and the AOS/VS
kernel to schedule and keep track of user tasks and global
process state. Each TeB is on either the active chain (queue
header USTAQDl and USTAQD2) or on the free chain (USTFQDl
and USTFQD2).

Licensed Material 3-16 Property of Data General

Process scheduling is concerned only with the entries in the
UST that deal with the scheduling of tasks. These are the
extended task state area address, the active task and, of
course, the active TCB chain. For a short description of
the entries used by the process scheduler see Section 2.8.
For a complete description of the UST see the Process
Mangagement volume.

When the Agent needs to change the task scheduling queues or
databases it sets word ?TSMA in ring 3. When this flag word
is non-zero the task scheduler in the kernel returns control
directly to the place in the user program that it was
executing when it lost control. This will always be in the
Agent who will continue to process the task database changes
and clear ?TSMA when done.

3.7 Interfaces to the Rest of AOS/VS

Of course Process Scheduling does not stand alone in the
system. It relies on many other parts of the system and it
provides specific services to them.

Services that Process Scheduling provides to ELQUE are the
final check of the PTBL for runnability and the dispatching
of code to be run. The service provided to CB management is
the restarting of a process after a CB has completed its task
but before a subslice has expired. This same service is used
within Process Scheduling to continue a process in the middle
of a subslice after a task rescheduling.

The service required of ELQUE management is the insertion of
CBs onto the ELQUE for later execution.

3.7.1 External Routines Used by Process Scheduling

Process Scheduling depends on many other areas of the system
to implement the daemons and the individual system calls.
They are too numerous to mention individually. The system
call dispatch table MCCT.W is the link to the system calls.
Table BTBL in the scheduler contains the links to the daemon
routines. Do not confuse table BTBL in the scheduler with
global BTBL, which is the interrupt vector table.

Licensed Material 3-17 Property of Data General

Routines Called by Process Scheduling

Symbol
ALSTK
CTBLK
FIXCB
MAP CON
MEVENT
PRBAG
RELPTBL

RESCH
RUNEXl

RUNEXP

RUNPTP

RSTPRC

SMONO
TCBAD
TDSCL
TSKRST
TSKSAV
TSUP
XLOCK

Module
SCHED
CORM2
SCHED
SCHED
SCHED
CORM2
MPUTIL

SCHED
SCHED

SCHED

SCHED

SCHED

SCHED
SCPRC
SCHED
SCHED
SCHED
CORM2
MPUTIL

Action or Service
Allocate CB/Stack according to PTBL group
Move PTBL from ELQUE
Puts CB onto ELQUE w/proper MP status
Set ATU map for process address space
Resched mother if event is higher priority
Start process swap-out
Release PTBL

Unlocks the PTBL, releases its address
space and unpends any CB/PTBL pending on
it.

Start ELQUE scan (same as SCHED:SMONO)
Resume ELQUE scanning

The PTBL is not locked, the scan mask is
still on the stack, the scanner count is
still incremented.

Resume ELQUE scanning
PTBL is locked, address space is not
mapped.

Resume ELQUE scanning
PTBL is locked, address space is mapped

Restore task state from TCB + PTBL
sets up FPU and fault handler, checks for
subslice up and restarts PIT on process

Same as SCHED:RESCH
Abort process for of bad TCB chain in AGENT
Start PIT timing on CB
Restore task stack state from TCB
Save task stack state in TCB
End of timeslice processing
Standard spin lock

3.7.2 Global Data Used by Process Scheduling

Like any system function, Process Scheduling relies on global
system data and storage. Some of the data controls the decisions
made, while others reflect the results of those decisions.

The scheduling functions depend especially on globals defined in
module SZERO. Each JP has its own copy of the data in SZERO.
This is the data describing and controlling the scheduling state
of each processor.

Those items from module STABLE are system-wide and affect all job
processors. Many of these data items are protected by locks and
others must be updated using indivisible instructions. Most of
the monitoring and statistical data generated by the system is
located in this module.

Licensed Material 3-18 Property of Data General

The table below lists the external data locations used by Process
Scheduling.

Symbol
CC.W
CHTBL
CTSK.W
CWTB
ELQUE

FBK.W

G1
MAXSYS
MKEY
MYLPCB.W
MYPPCB.W
NMONLY

NNODCL.W

NNORQ1.W

NPSCDR.W

NPSLP.W

PCB.W
PTMP1.W

PTMP2.W

PTMP3.W

RSTCKT
SCB.W
SCTBL.W

SSTCKT
TINDST.W

TMPCB.W
UST

Module
SZERO
SCPRC
SZERO
SCPRC
STABLE

PARS

STABLE
SCPRC
STABLE
SZERO
SZERO
STABLE

STABLE

STABLE

STABLE

STABLE

SZERO
SZERO

SZERO

SZERO

STABLE
SZERO
STABLE

STABLE
STABLE

SZERO
PARSA,PARU.32

Licensed Material

Description
current control block (CB or PTBL) address
bit map of calls legal for child JP
addr of current TCB in current process
bit map of parallel system calls
offset QSCAN in queue descriptor

decremented if PTBL not locked
hardware defined location (32 octal)

addr of context fault block
lowest group 1 priority
highest legal system call number
times memory page(s) released (mod 64K)
addr of LP for current JP
addr of Physical Processor Ctr1 B1k for JP
metering location

number of times child JP couldn't process
a system call because it was mother-only

metering location
number of times a TCB request was started
(system calls)

metering location
number of times only the current TCB in a
process could be scheduled

metering location
number of times task rescheduling is
found disabled

metering location
number of times TCB chain scanned

addr of CB currently running
process scheduling temp

holds system call number (or 0 if daemon)
across the transition from PTBL to CB

process scheduling temp
holds TCB address of task making a system
call, or 0 if daemon

process scheduling temp
holds entry point address of system call
or daemon code

number of group 1 CBs available
addr of CB to replace PCB.W
metering location

address of system call count table
number of group 2/3 CBs available
metering location

number of times activity started on CB,
includes system calls, daemons and page
faults

addr of CB to replace PCB.W or SCB.W
ring 3

User Status Table

3-19 Property of Data General

3.8 Databases Used by Process Scheduling

Process Scheduling maintains or references several databases to
perform its services. The most important of these are the
process table (PTBL) in ring 0 and its extender (PEXTN) in ring
1, and the task control blocks (TCBs) and the user status table
(UST) in ring 3. Those parts of the databases used by Process
Scheduling are described below.

3.8.1 Process Table

The following is a description of the parts of the PTBL used
during process scheduling. See the table in the Process
Management chapter or PARS for a more complete listing and for
the locking rules for modifying each item.

Symbol/Value
PCLASS 5

PSTAT 6
PSTAT1 7
CALLN.W 22

PFLAG 45
PFLG2 46
PFLG3 47
PFLG4 50
PEXTN.W 51

PID 62
PMKEY 71

PINSU 106
PTRGC 122
PSIDI 134
PFLG5 135

~eaning
Process class

Contains a bit indicating the class of the PTBL
or CB, or zero if the PTBL is mother-only or if
class scheduling is not enabled. Set in PTBL at
?PROC. Set in CB when initialized or cleared if
a system call needs to become mother-only.

Process status bits (see below)
Process status bits, word 2 (see below)
SYS CALL number times 2

Used to index into system call handler address
table and into system call count and timing
table. Also used as an indication of whether a
CB is running a system call or a daemon (CALLN.W
= -1).

Flag word 1 (see below)
Flag word 2 (see below)
Flag word 3 (see below)
Flag word 4 (see below)
PTBL Extender address

Physical address of the process table extender.
Set when process is initially loaded or whenever
process is swapped into memory. Contains a zero
if the extender is not in memory.

PID assigned at create time
MEM WAIT flag and key

Set to the current value of MKEY when the process
pends for memory. See also PSTAT bit PSMWT.

In scheduler mode flag (0 OR 1)
Target call counter
Enqueued TCBS W/lndirect calls
Flag word 5 (see below)

Licensed Material 3-20 Property of Data General

Below are descriptions of the various flags and bits in the PTBL
used by process scheduling. Those bits that have special meaning
for Process Scheduling have more detailed descriptions.

PSTAT

Flag bits that will be checked during the ELQUE scan must be in
this word. It is adjacent to word PCLASS and together they hold
the status used by the scan. The ELQUE scan bits have common
meaning for both CBs and PTBLs. These bits are:

PSRDY 00001
PSRUN 40000

PSEW 20000

PSNCB 10000

PMAST 00040

PLCK 00020
PSETR 00010

PSFSY 00004

PTRAN 00002

Not ready to run
Running

This bit indicates that a PTBL or CB is running
and is also used to prevent a CB from being
selected after it is put onto the ELQUE but
before it is fully initialized. This is done
when a CB to run a system call is being put onto
the ELQUE.

Sched action
Usually means that a DAEMON is running or is on
the ELQUE.

Don't look - process can only use a CB
Set if there are system calls waiting to run and
either there is no CB available for the call or
there is no user task ready. Never set for group
1 processes.

Mother-only element (l=Mother-only)
Set in PTBLs of processes that are mother-only,
or in CBs of daemons, or in CBs of mother-only
system call paths.

Process table lock bit
Don't enter

Indicates that the user code should not be run
for some reason.

System page fault
Used to determine what type of return to the user
ring should be used. If set then a WDPOP must be
used to restore the context and possibly restart
an instruction.

Element transition bit

The following PSTAT bits are used in PRBITS as a dispatch value.
The highest-priority function has the leftmost (lowest bit number)
assignment.

PSBRK 04000

PSBAG 02000

OP interrupt
Even though ACAX interrupts are handled by
daemons they have their own priority bit because
they are higher priority than swapping or
blocking.

SWAP OUT process

Licensed Material 3-21 Property of Data General

PSBLK 01000

PSDP 00400

PSMWT 00200

PSTSU 00100

PSTAT1
PNFST 10000

PFLAG
PFFIR 10000

PFINT 01000

PFTRM 00200

PFRSH 00020
PFNFR 00004

PFLG2
PFBLE 00400

PFATL 00020

BLOCK process
If a PTBL couldn't be put onto the blocked queue
because of a lock then this bit will be set. The
scheduler will try again to move the PTBL if this
bit is set.

START UP DAEMON
If this bit is set then other bits in the PTBL
are checked to determine what daemon to run. The
individual daemon bits are indicated in the flag
words below. See table BTBL for the relative
priority of the bits.

Wait for memory key to change
Global MKEY is copied into the PTBL and this bit
is set if the process must wait for memory. When
the PTBL is selected the global MKEY is checked
against the stored value. If there is no change
then the process cannot get memory and will not
be started.

Time slice is up

Sys call did not run 'FAST'
Set if a system call or daemon had to pend or was
put onto the ELQUE to be run on another JP. If
this bit is clear then a system call path can
return to the process via RERUN without going
through a full reschedule.

Initial Load
Used in daemon dispatch table BTBL. If PSTAT bit
PSEW is not set then the initial load daemon
should be started.

Run -C-A DAEMON
Used in daemon dispatch table BTBL.

Run TERM DAEMON
Used in daemon dispatch table BTBL.

Resched flag
Narrow process becoming non-resident

Used in daemon dispatch table BTBL.

Scheduler can block process
Clear if the process is resident or cannot be
blocked. Checked when the PTBL scheduler finds
that there are no user tasks to run and no system
activity running or waiting to run for the
process. If set then the scheduler will try to
move the PTBL to the blocked queue.

Process termed by system
Used in daemon dispatch table BTBL.

Licensed Material 3-22 Property of Data General

PFNTR 00004

PFQSC 00001

PFLG3
PFIWC 02000

PFIRS 01000
PFPCH 00004

PFLG4
PFNRO 00020

PFISS 00001

PFLG5
PFUTC 100000

PLWAIT 01000

Narrow process becoming resident
Used in daemon dispatch table BTBL.

Inhibit scan of backed up TCB request
Checked before looking to start or restart system
calls waiting on TCBs. Set just before major
housecleaning is done to the process as is done
for swapping it out.

Interrupt (-C-B,-C-E) term of PROC
Used in daemon dispatch table BTBL.

Int world interrupted task
Hold on >1 parallel call

Set if a parallel system call is started for a
process. Checked before a system call is
started.

Process is narrow (16 BIT)
Set at ?PROC. Used to determine whether to
restore a wide or narrow stack when restoring a
task's state.

Interrupt sequence (-C-x) received
Used in daemon dispatch table BTBL.

Run user context trap daemon.
Used in daemon dispatch table BTBL.

Address space waiter bit
If set then RELPTB will call UNPEND with the PTBL
address as the key to wake up anyone waiting on
this PTBL's address space.

3.8.2 Process Table Extender (PEXTN)

The process table extender holds information not critical to the
management of AOS/VS when the process is swapped out. It is
allocated in ring 1 address space and is swapped out with the
process. The table below defines the offsets used by Process
Scheduling.

Symbol/Value
PSQCT 0

PSQMX 1

Meaning
Active system path count

Indicated the number of CBs running on behalf of
the process including system calls and daemons.

Maximum active system calls
Set at ?PROC to limit the number of system calls
that the process can have active at the same time
within the system. It is compared to PSQCT to
determine whether to start a system call or link
the TCB making the request on the chain pointed
to by PSWD.W.

Licensed Material 3-23 Property of Data General

PSWD.W

PSL
PSBRS.W

PSIOC

PCEXV.W

PMARG.W

PMACO.W
PMAC1.W
PMAC2.W
PMAC3.W
PMPC.W

PUGFH.W

12

17
22

44

162

206

210
212
214
216
220

464

Link of TCBs waiting to start system calls
Contains the address of the first TCB whose
system call couldn't start immediately. The TCBs
are linked through TCB offset TSLK.W. Set to
zero if no TCBs have calls waiting.

Sub-slice residue
start of array of Segment Base Registers (SBRs)

The SBRs of rings 1 to 7 are kept here for MAPCON
and REMAPCON. The SBR of ring N is at offset
PSBRS+2*(N-1).

Count of outstanding MCA and LPB I/Os
Used to see if a process can be swapped out.

Addr of TCB whose extended state is current
When a program uses the extended task state save
area the scheduler keeps the address of the TCB
of the last task that had its variables moved
into the global area. If the same task is the
next to run with a save area then no save/restore
is needed even if other tasks without the save
area have run.

First Dblword of stack return block
When the user enters the system via an LCALL the
return block from the stack in the user's ring is
copied into words PMARG.W to PMPC.W in the
extender. Used to construct a return block on
the ring 0 stack to return to the user. Copied
into the TCB also.

ACO from return block
AC1 from return block
AC2 from return block
AC3 from return block
PC + Carry from return block (see also PMARG.W)

Used to determine the ring of the caller by
extracting it from the PC. The length of the
return block is PMPC.W-PMARG.W+2.

Address of ring 3 GIS fault handler
Restored during RSTPRC.

Licensed Material 3-24 Property of Data General

3.8.3 TCB - Task Control Block

Each task in the user process has a TCB. There is at least one
task and one TCB for each process. The TCB holds the state of
one execution path of the process across all of the non-system
rings. state data saved for each task includes the stack
pointers, the PC and register contents, the arithmetic
overflow/underflow detection flag, extended save area and other
task specific data.

TCBs are created and managed in ring 3 by the Agent for the
process. They are scheduled by the PTBL scheduler in ring O.
The offsets used by Process Scheduling are described below.

Symbol

TLNK.W

TLNKB.W
TSTAT
TCBFL
TSTACKS.W

TOVF.W

TACO.W
TAC1.W
TAC2.W
TAC3.W
TPC.W

TUSPS.W

TFPA

Value Meaning

o Forward link among TCBs
Used (with TLNKB.W) to maintain the queue of TCBs
in ring 3. Modified by the process scheduler to
implement round-robin scheduling of equal
priority tasks.

2 Backward link among TCBs (see TLNK.W)
4 Task status word (see individual bits below)
5 Task flag word (see individual bits below)
6 Start of per ring stack save areas

For rings 1 to 7 each task has its own stack.
The information saved for each ring is the stack
overflow handler address, frame pointer, stack
pointer, stack limit, and stack base. The start
of each ring's stack save area is at
TSTACKS.W+10.*(ring-1). Used in TSKSAV and
TSKRST when a task's stack state is saved and
restored.

114 Overflow mask for task

116
120
122
124
116

130

146

Saved each time the task enters the Agent or the
system. Copied from the PTBL extender if the
task directly entered a ring 0 gate.

ACO save area for task (see TOVF.W)
AC1 save area for task (see TOVF.W)
AC2 save area for task (see TOVF.W)
AC3 save area for task (see TOVF.W)
PC save area for task (see TOVF.W)

Used to determine the ring of the PC of the task.
USP save area for rings 1 to 7

The USP for ring N is at offset TUSPS.W+2*(N-1).
Floating point save area

The task's floating point status registers and
accumulators are kept here. RSTPRC mangles the
stack pointers to make a WFPOP instruction load
the FPU state from this part of the TCB.

Licensed Material 3-25 Property of Data General

TELN.W

TUCD.W
TSYS.W

TID
TPR

TSLK.W

TFSYS.W

TSTAT

172

174
176

200
201

202

204

Addr of extended save area for task.
If this task allocates a save area for itself
then the scheduler will ensure that the task's
data is in the global extended state area when
the task is running. Set to zero if no save area
exists.

Current descriptor
System call word

Set when a task makes a system call. Used by
Process Scheduling when it starts a system call
that had been waiting to start.

Task ID
Task priority

Used for round robin scheduling of tasks.
System call link

Used to link TCBs who have system calls waiting
to start. PSWD.W in the PTBL extender points to
the first TCB in the chain.

Saved TSYS.W used during fault

Most of the bits in this word indicate that the task is not ready to
run. Mask CRUMS (175674 octal) defines those bits and is used for the
queue search instruction to find a TCB to run. The bits that are
included in the CRUMS mask are marked with an asterisk in the table.

Symbol

* ?TSPN

* ?TSSG
* ?TSSP
* ?TSRC
* ?TSOV

?TSWP

* ?TSGS
* ?TSAB
* ?TSTL

?TSYG
* ?TSDR

Value

lbO

lbl
lb2
lb3
lb4
lb5

Ib6
Ib7
Ib8
Ib9
IblO

Meaning

Task is pended
This general status bit is set when conditions
other than those defined in TSTAT prevent the
task from running. While several pend bits in
TSTAT could be set simultaneously, only one bit
elsewhere in the TCB can be the reason for this
bit being set.

Waiting on .XMTW or .REC
Task is suspended
Waiting for TRCON
Waiting for overlay
Task is faulting

The scheduler checks this bit to see if it should
restart the task via a WDPOP or a WPOPB. A WDPOP
must be used to restore microcode state if the
task had faulted.

Pended due to agent synchronization
Pended awaiting ?GABORT
Pended awaiting ?TUNLOCK by another task
Task has been signaled
Pended by ?DRSCH

Licensed Material 3-26 Property of Data General

* ?TSLK 1b11 Pended on ?FLOCK request
* ?TSXR 1b12 Pended on XMT or REC
* ?TWSG 1b13 Pended on ?WTSIGNAL

?TSUT 1b14 Awaiting return from user ?UTSK code
?TSUK 1b1S Awaiting return from user ?UKIL code

TCBFL
TCB flag word. Contains status flags that couldn't fit into TSTAT

and also some task data. status bits that indicate the task is pended
are reflected in TSTAT bit ?TSPN.

Symbol

?NREMSK
?TCBFLAL
?TCBGIF
?SCFAST
?TCBSEND
?TCBOPER
?UTIDMSK

Value

7b2
1b3
1b4
1bS
1b6
1b7
377

Meaning

Ring to return to after fault
Agent can skip ?ALLOCATE on ?SPAGE
Task is resolving a GIS fault
System call didn't execute fast
Pended on ?OPER send
Pended on ?OPER receive
Mask for unique task ID (1 •• 32)

3.8.4 User Status Table

This ring 3 database contains the state of the user process. It
is created by the system after mapping the Agent code for this
process. Part of the UST is initialized from the preamble of the
ring 7 program file. It is always located at location 400 octal
in ring 3. The structure of the UST is defined in parameter
files PARU.32.SR and PARSA.SR.

The UST is maintained by the Agent and the process scheduler.
Process Scheduling uses it to find the process' status and locate
the task control blocks. Process Scheduling updates it with the
address of the task selected to run and the task whose extended
save area is current.

Licensed Material 3-27 Property of Data General

Symbol

UST
USTEZ
USTES

USTSS
USTSE
USTDA
USTRV
USTTC
USTBL
USTOD
USTST
USTIT
USTSZ
USTPR
USTKL
USTBM
USTSH
USTCT

USTAC

USTAQD2
USTFC
USTFQD2
USTFL

Value

400
o
1

2
4
6
10
12
13
14
16
20
22
24
25
27
31
33

35

37
41
43
45

Meaning

Location of UST in ring
Size of per-task extended variable save area
Address of global extended variable save area

This is a 16 bit address so the location is
limited to the first 64K of the process address
space.

Start of symbol table
End of symbol table
Address of Debugger (or -1)
PR file revision
Number of tasks created
Number of impure blocks
Address of overlay table
Shared starting block number
Interrupt address
Shared size in blocks
PR file type
Address of .KILL table
Address of BOMB routine
Physical starting page of shared area
Address of currently active TCB

Used by the process scheduler to determine if
task state needs changing when a TCB is selected
to run. Updated if a different TCB is run.

Start of active TCB chain (aka USTAQD1)
Used as the input to the queue search instruction
that locates the highest-priority task to run.
Modified if the first TCB on the chain is
selected to run and there are other TCBs with the
same priority (round robin).

End of active TCB chain (see USTAC)
Start of free TCB chain (aka USTFQD1)
End of free TCB chain
UST flag word (see below)

User Status Table Flags - USTFL

?UFDR
?UFDB
?UFPH

1b2
1b3
1b5

Inhibit scheduling
Process is being debugged
Scheduling disabled by Agent

Licensed Material 3-28 Property of Data General

3.9 PTBL Scheduling Details

Scheduling a process' activity is a complex problem. The
remainder of this chapter is devoted to the details. This
section presents some reasons and background for the actions
taken by various paths in the code. It may be helpful to skim
this section before trying to read the pseudocode later or the
system sources themselves. This section does not stand alone,
but is intended to be a companion to the system sources and
pseudocode.

3.9.1 General Outline

When a process table (PTBL) is selected from the ELQUE to run,
the process scheduler goes through three major steps. First the
PTBL status is checked in more detail to see if it is truly
eligible and able to run. Then the PTBL is checked for ring 0
actions that need to take place. Lastly, the user task world is
scheduled and dispatched if all the other checks allow.

There are three basic ways that the process gives up its
control. If the PTBL cannot run or spawn activity it will
usually transfer control back to the ELQUE scanner so it can
continue. Daemons and system calls return to TRTN, which will
check to see if the CB ever pended. If it did pend, then the
ELQUE scan will resume from the top. If the call or daemon never
pended, then the PTBL will be restarted at RERUN. If user code
is interrupted for a subslice end then the system will be
rescheduled at RESCH (SMONO).

This overall flow is shown in the figure.

Licensed Material 3-29 Property of Data General

t""
1-'­
Q
(1)

::l
en
(1)
c.
:s:
III
rt
(1)
1"'\
1-'­
III
I-'

W
I

W
o

'tl
1"'\
o
'0
(1)
1"'\
rt
I<l
o
HI

t:I
III
rt
III

(j)
(1)
::l
(1)
1"'\
III
I-'

PTBL Scheduling Flow

ELQUE
RESCH:

-- --------- ----- - -,
no

yes TRTN;
I ~~

(,----/j

RERUN: DAEjMON SYSj CALL ... 1
~ yes yes ~sy call)

PCAU.: ~ no QCALLS: no NOREQ: yes

~ Select PTBL .Run Daemon? .Run SysColI? .. Run TCB? ~~85~
can't I no (t-) Ime up

RUNEX:

3.9.2 The Process Scheduling Code Segments

Both the detail code discussion and the pseudocode are divided
into sections that roughly correspond to major activity or
decision points in the code. What follows is an overview of how
they fit together.

PCALL is the first entry point for scheduling a PTBL. It is
called from the system scheduler or sometimes if the PTBL
scheduling must be restarted. This section may abandon the
PTBL scheduling and go back to the scheduler or continue at
PCALI below.

RERUN is the entry point used to reschedule a PTBL if its time is
not up. Since the PTBL is the currently active entity in the
system, the processing here only needs to check for exceptional
conditions. RERUN also continues at PCALI.

PCALI is the main path of scheduling PTBL activity from either
PCALL or RERUN. PCAL1 is not an external entry point. Depending
on PTBL status, the code may go to PRBITS, QCALLS, or NOREQ.

PRBITS is the path that evaluates and dispatches high-priority
activity for a PTBL and also executes some of these actions.
These actions are high-priority because they must be taken care
of before system calls or user code can even be considered. This
section may vector off to PBLOCK, PDMPR, or QCALLS within Process
Scheduling, or it may call external routines which do not return.

PBLOCK implements the high-priority action of moving a blocked
PTBL off of the ELQUE. This code section will jump back to PCAL1
if the process is terminating, since it makes no sense to block
it. Otherwise PBLOCK exits Process Scheduling. On exit the PTBL
will either have been moved to a blocked queue or it will still
be marked blocked on the ELQUE.

PDMPR handles the high-priority activity of invoking daemons.
Depending on the state of the PTBL and the individual daemon,
request flags PDMPR may transfer control to RERUN or STKCT, or it
may leave Process Scheduling entirely.

QCALLS checks for waiting system calls. If one or more are
waiting and can be started, QCALLS will transfer to STKCT which
is the main path for starting up a CB. If an illegal system call
is found waiting QCALLS will handle it and resume PTBL processing
at RERUN. If system calls can't or won't be run, then QCALLS
transfers to NOREQ or REQ (within the NOREQ section).

Licensed Material 3-31 Property of Data General

STKCK is the common path for spawning a CB on behalf of a
process. Both daemons and system calls take this path. STKCK is
an entry point used by the system call entry point from the user
or his Agent. After reserving and setting up a CB the system can
go in several possible directions. The code may exit Process
Scheduling and proceed on the CB just set up. It may have to
delay starting the CB and exit Process Scheduling back to the
system scheduler. Lastly it may put the CB on the ELQUE to be
run on another JP and jump back to RERUN to look for something
new to do.

NOREQ is encountered if no other action is possible or necessary
and the user code can be considered. If the process is in a
state where the user cannot be run then NOREQ leaves Process
Scheduling for the system scheduler. If the process is in a
state that requires that it be restarted exactly where it left
off then NOREQ will exit to the user. Otherwise it will transfer
to PSCHD to schedule or reschedule a user task.

PSCHD is the user task scheduler. It will transfer either to
PTFNI if a task is selected to run or to PNTRY if no task can
be selected.

PTFNl is the last Process Scheduling segment executed during the
scheduling or rescheduling of user code. It will exit Process
Scheduling either by starting a user task or by going back to the
system scheduler if something forces rescheduling.

PNTRY handles the situation of finding no user task ready to
run. It may continue in Process Scheduling at SYST3 or exit
Process Scheduling to the system scheduler.

SYST3 decides if a process should be blocked when no user tasks
are found ready to run. It will exit Process Scheduling to
the system scheduler either to continue the ELQUE scan or to
restart it.

3.9.3 Detailed Discussion of Code Segments

PCALL - Start running a process

This is the entry from the system scheduler (ELQUE management)
when a PTBL is selected from the ELQUE to be run.

A PTBL is selected when it is the highest-priority element that
satisfies the scheduler's queue search mask of PSTAT flags and
PCLASS bits. All process tables contain the address of
SCHED:PCALL in offset PPC.W. The code that vectors through PPC.W
is at SCHED:M6.

Licensed Material 3-32 Property of Data General

While it only takes a few instruction cycles to start running
a process table, the logic and the reasoning behind it takes
some explaining.

To run a PTBL it must be marked "running." To do that the
scheduler must lock the PTBL by setting flag PSTAT.PLOCK. This
in turn requires transition lock PSTAT.PTRAN. This is a single
bit, which if set indicates that the PTBL is unstable for a short
period of time. Each of these locking requirements is shown
in PARS. SR.

Normally the transition lock is acquired through the "spin-lock"
mechanism. With interrupts off the code attempts to get the lock
using an indivisible bit test and set instruction. If it fails
then the code spins in a tight loop with interrupts on waiting
for the lock bit to clear before trying allover again. Only in
a multi-processor system will a spin-lock actually spin. In
single CPU systems the test and set will always succeed.

The scheduler however will not go into a tight spin here. It
will instead abandon the PTBL and continue the ELQUE scan if it
finds the PTBL already in transition.

After putting the process table in transition the scheduler uses
the same test and set instruction to mark the PTBL locked (set
PSTAT.PLOCK true). If it is already locked then again the
scheduler will skip the PTBL and continue the ELQUE scan, after
clearing the transition lock of course.

Once the PTBL has been locked by setting flag PSTAT.PLOCK then
SCHED abandons its quick return to the ELQUE scan by popping the
queue search mask off of the stack and decrementing ELQUE's
scanner count. The scheduler may later resume the ELQUE scan but
it will have to re-establish the search mask and increment the
scanner count.

With the PTBL locked, SCHED sets the current system context in
CC.W to the PTBL address, marks the PTBL running (sets
PSTAT.PSRUN), and finally clears the transition lock bit
PSTAT.PTRAN to release other spinning waiters.

Now that the critical testing is done and the PTBL is locked the
scheduler re-enahles interrupts and goes to SCHED:PCALl. PCALl is
the common path for either running a process (this path) or
re-running a process (at SCHED:RERUN).

Licensed Material 3-33 Property of Data General

RERUN - Continue running a process

RERUN is called to continue a process after some ring 0 activity
if it didn't pend and didn't use up its subslice. The PTBL must
be running and locked and it must be the current context in
CC.W. Other code paths in SCHED return to this location after
changing the PTBL status or spawning a CB to run on another
processor. It is called from SCMOD if a user task pends but
another task might be able to run during the process' subslice.
SCPRC comes here if it was unable to start a user's system call
but another task might run.

The only action taken at RERUN is to check the status of the
physical processor's reschedule flag. If the flag is found off
(=0) then the code jumps to PCALI to join the PCALL code. If the
reschedule flag is found set then the PTBL is released, which
unpends any waiters, and its running flag is reset. Note that
resetting the running flag (PSTAT.PSRUN) does not require that
the PTBL be locked nor that it be put in the transition state
(PSTAT.PTRAN set). The code then jumps to SCHED:RESCH which
scans the ELQUE from the beginning.

PCALI - Common path to schedule activity for a PTBL

The first step in scheduling a process is to see if there are any
high-priority actions that need to be taken. These actions are
flagged by bits in the PSTAT word of the PTBL. If any of these
bits are true then the code continues at PRBITS.

Then bit PFQSC in PFLG2 (bit offset BPFQS) is checked to see if
the chain of waiting system calls should be checked. If this bit
is set then the code goes directly to NOREQ to try to run user
code. This flag is set when the process is about to be swapped
out.

PRBITS - Evaluate high-priority actions

One or more of the high-priority action bits in PSTAT are set.
The relative priority of each action is determined by the
location of the bit in PSTAT. Lower number bits are used for
higher priority actions. The flag bits and their meaning are
shown below in decreasing order of priority.

Name
PSEW
PSBRK
PSBAG
PSBLK
PSDP
PSMWT
PSTSU

Bit
Mask
IB2
IB4
IB5
IB6
IB7
IB8
IB9

Bit
Offset
BPSEW
BPSBR
BPSBG
BPSBL
BPSDP
BPSMW
BPSTU

Licensed Material

High-Priority Action indicated
skip PTBL, scheduling activity in progress
handle operator interrupt (console abort)
swap process out
block the process
start a daemon
waiting for memory, check global MKEY
timeslice is up

3-34 Property of Data General

Bit PSEW indicates that the process cannot be run because there
is a CB in the system performing some action to the process,
either a daemon or a system call. This check is necessary even
though PSEW is in the ELQUE scan mask, because an interrupt or
another processor may have set the bit in the interval between
selection and locking of the PTBL. If this bit it set then
the scheduler resumes the ELQUE scan with the element after
this PTBL.

PSBRK is a separate high-priority item, even though it is handled
by a daemon, because the action of aborting a process is a higher
priority than swapping or blocking. Before running the daemon
the PTBL status must be adjusted. PSTAT flag PSNCB ("needs CB")
is forced to zero so that the PTLB can more effectively compete
for CBs to finish the termination. Flag PSBRK is reset and flag
PSDP ("start a daemon") is set to have the daemon path taken.
Then the code jumps to PDMPR to actually run the daemon.

PSBAG, swap out the process, invokes routine PRBAG in core
manager module CORM2. This routine does not return.

PSBLK set indicates that the process is currently blocked but is
still on the ELQUE for some reason. The code jumps to PBLOCK to
attempt to clear this up.

PSDP indicates that one or more daemons is waiting to run. Go to
PDMPR to try to start the highest-priority one.

PSMWT is set if a system call started earlier had to give up
because it couldn't get all the memory it needed to complete.
When it set itself up to be restarted, it copied global MKEY
into PMKEY. If MKEY still matches PMKEY then no memory has been
released and there is no sense in trying to start the system call
now, so the code returns to the ELQUE scan where it left off.
Otherwise, the PSMWT flag is reset and the code jumps to QCALLS
to try to restart the waiting system call which may complete
this time.

If PSTSU is set then the process' full timeslice has expired
since the last time the process was scheduled. When this is
detected the flag is reset, the process' address space is mapped
in to make it available to the core manager, and the scheduler
transfers control to TSUP to handle timeslice end in CORM2. This
routine does not return.

If none of the bits mentioned above are found set then the
scheduler panics with code 14003. The only PSTAT flag that can
cause this is PSRDY ("not ready to run"). Since entry at PCALL
from the ELQUE scanner only occurs when this flag is clear, the
scheduler must have been entered at RERUN or improperly at PCALL.

Licensed Material 3-35 Property of Data General

PBLOCK - PTBL is blocked but still on ELQUE

The reasons this can happen include finding the blocked element
queue in use (locked) when the process is blocked. The scheduler
will try to move it off the ELQUE and onto the blocked queue now.

Several
blocked
PSTAT).
routine

types of status that might prevent the PTBL from being
are locked by the element transition bit (PTRAN in

So this lock is aquired via standard spin lock
XLOCK.

Next the PTBL is rechecked to see if it is still blocked. If
another JP or interrupt level has changed its status, then the
scheduler skips the PTBL and continues the ELQUE scan.

Since is makes no sense to block a process that is terminating
(and could cause a deadlock) the PFTRM bit is checked also. If
set then the block is aborted, the transition lock released, and
the code jumps back to PCALI to resume PTBL activity which should
process or enable the termination.

If everything looks okay to allow the process to be blocked,
release the transition lock and call CTBLK to move the PTBL to
the blocked queue. If CTBLK fails then continue with the ELQUE
scan. If the PTBL is moved to the blocked queue then other
system paths that might be waiting for the PTBL to free up are
unpended and the ELQUE scan is restarted at RESCH (SMONO).

PDMPR - Select and run a daemon

Before actually running a daemon, conditions must be verified. A
daemon is like a parallel system call in that it cannot run if
other actions are going on. If the PTBL is the target of another
path's actions (PTRGC > 0) or if the process has system calls
running (PSQCT in the extender> 0) then the PTBL is skipped and
the ELQUE scan resumed.

If a daemon is started, then use the CB pointed to by global
PCB.W and make sure that another is available to replace it in
SCB.W. ALSTK is called to make sure that SCB.W does point to a
replacement and that the replacement can come from the pool
allocated to the PTBL's group (Gl or G2/3). If no suitable CB is
available, the scheduler will skip this PTBL and continue the
ELQUE scan after one more check. If this is a group 2/3 PTBL,
then status bit PSNCB ("needs CB") is set so that the PTBL will
be selected later only when group 2/3 CBs are available.

Licensed Material 3-36 Property of Data General

Conditions are now right to start a daemon. Set up the globals
to indicate that a daemon is to be run. The system call number
(CALL.W) in the CB pointed to by PCB.W is set to -1 and PTMPl, 2
and 3.W are set to zero. PTMP3.W will also be used below in the
search for daemons needing to be run. Map the PTBL's address
space for later use. Clear the daemon request bit under the
assumption that only one daemon request will be found and it will
be spawned.

The code segment at BSRI goes through the daemon request table
(SCHED:BTBL, not be confused with global BTBL) looking for one or
more daemon request bits. BTBL contains bit offset - daemon
routine address pairs. The end of the table is marked by a bit
offset of -1. For each bit offset the loop tests the indicated
flag and if the bit is set then a daemon request has been found.
If PTMP3.W is zero then this is the first daemon request found
and its handler address is stored in PTMP3.W and the loop
continues. If PTMP3.W is non-zero then this is the second daemon
request found and status bit PSDP ("run daemon") is set in PSTAT
to be found later. The loop is also exited, since there is no
sense looking further.

If PTMP3.W is still zero after the loop, then no specific daemon
request bit was found. This fact is simply shrugged off and the
PTBL scheduler restarts itself at RERUN assuming that this
happened because of some race condition.

If PTMP3.W is non-zero then everything has already been set up to
spawn a daemon on a CB. PTMP2.W is zero indicating no TCB is
involved in the system task, PTMP3.W is the address of the code
path, and CALLN.W in the CB (pointed to by PCB.W) contains -1
indicating a daemon. PTMPl.W isn't used. The daemon startup
joins system call startup at STKCT in the NODCL segment.

QCALLS - Check for waiting system calls

After finding no high-priority actions and before trying to run
the user the scheduler tries to start any system calls that were
held up. A system call can be held up if it is a parallel type
call requiring complete control of the PTBL but a call is already
running, or if the PTBL is the target of another call. It can
also be held up if the user already is running his limit of
active system calls (PSQMX in the extender). A system call can
restart itself if it fails to get the memory it needs to complete
and goes to TRTN with error ERRST ("memory restart"). When this
happens the system call error path will set high-priority bit
PSMWT (bit offset BPSMW) and copy the global MKEY into PTBL
location PMKEY. When the global memory key changes, then the
PRBITS path will come here.

Licensed Material 3-37 Property of Data General

To spawn a system call a CB must be available in global SCB.W to
replace the one in PCB.W which will be used for the call. The
system limits the system paths (CBs) that can be active for group
1 processes independently of group 2 and 3 processes. Routine
ALSTK handles this complication by checking the appropriate CB
pool counter and assigning a CB to SCB.W according to the group
of the PTBL. ALSTK does not actually take a CB from the pool
since the call might not start for other reasons.

If no CB is available then a check is made to see if the user
code can be entered. If so then the path jumps to REQ to
schedule a user task. If not then the PTBL is skipped and the
ELQUE scan continued.

The process of spawning a system call can now proceed in
earnest. The user's full address space is mapped into the ATU so
that the system call data can be read from the TCB. The system
call number is checked to see if it is in the range of legal
numbers. This check must be made because the call number will
later be used to index into various tables. If the system call
number is illegal then the task is set up to take the error
return with error ERICM "Illegal system call" and process
scheduling is started over at RERUN.

Next the scheduler checks to see if the call can continue under
current conditions. If there is already a parallel call running
or if the new call is a parallel call and other activity is in
progress or if the user is already running his quota of active
system calls, then the new call must wait and the scheduler
proceeds to NOREQ as if this had never happened.

At this point it is almost certain that the waiting call will be
spawned off on a CB so the TCB is unlinked from the chain of
waiting calls and PTMP2.W is set to the TCB address. In an
attempt to avoid doing a lot of checks later only to find the
process unable to run, make a couple of checks now. If no other
TCBs are waiting to start system calls or if the PSTAT bit PSETR
("don't enter user") is set then the PSTAT bit PSRDY ("not ready
to run") will be set. At the same time, PSETR and PSNCB ("needs
CB") are reset, since they will no longer be needed to prevent
selection of this PTBL. In theory, this will save time later.

At SCHED:NODCL the code verifies that the call is indeed valid by
indexing into table MCCT.W to get the system call handler
address. If the handler address is -1 then the call will be
aborted. The abort is handled at CMER2 where the TCB is set up
to take the error return with error ERICM and the PTBL is
conditioned to allow the user task to resume. The scheduler
restarts at RERUN to continue scheduling the process.

Licensed Material 3-38 Property of Data General

If the call is valid then the call number is put into CALLN.W of
the CB that will be used (pointed to by PCB.W). If the system
call count table was allocated then the call will be counted.

STKCK - Spawning a CB for system call or daemon processing

At this point running a system call and running a daemon are
almost identical. Global variables PTMPl, 2, & 3.W contain the
system call number, TCB address of user task, and code path
address respectively for a system call. For a daemon PTMPI & 2.W
are zero. The CALLN.W of the primary CB (PCB.W) also contains
the system call number or a -1 for a daemon.

The active system path count for the process is incremented to
show that a CB is active for the process.

If a daemon is to be started then status bit PSEW ("scheduler
action") is set in PSTAT to prevent the PTBL from being scheduled
again until the daemon is finished.

Either RSTKCT (for group 1) or SSTKCT (for group 2/3) is
decremented to indicate that the CB allocated earlier by ALSTK in
SCB.W is really being used as the backup to the CB in PCB.W.

Next the CB is initialized. Errors and times are zeroed since
nothing has happened to the CB yet. The fatal error handler
address is set to -1 so the system will panic if a fatal error
occurs while running this CB unless some other arrangements are
made. Globals are used to identify the associated TCB, PTBL, and
logical processor. Data is copied from the PTBL to identify the
class the CB should run under. Mother-only system calls or
daemons are assigned no class mask bits so they can run
independent of class.

The stack pointers in the CB and the stack registers in the
hardware are initialized for an empty stack in the CB. At this
point the system is really running off of the CB, only CC.W
points to the PTBL to indicate that the switch is not complete.

The scheduler must check if the code path can be run on the JP
that is setting all this up. If the current JP is not the mother
processor and either the path is a daemon or the call is a
mother-only call then the CB cannot run on the current JP and
must be switched to the mother JP. This is done at MONLY! below.

Licensed Material 3-39 Property of Data General

The final check is to see if something has happened to require
the JP to reschedule while the CB was being set up. If the
reschedule flag for the JP is set then both the CB and PTBL must
be released onto the ELQUE to be scheduled later. The CB is
moved to the ELQUE with the required status by FIXCB. SETUP is
called to put a return block into the CBs stack and replenish
PCB.W from SCB.W. Both the CB and PTBL running flags (PSRUN in
PSTAT) are cleared, and the PTBL is released. Finally the
scheduler restarts the ELQUE scan at RESCH (SMONO).

If the reschedule flag is clear then the CB will be started. The
JP's fault block (FBLK.W at harware location 32 octal) is set to
the block in the CB. The PTBL is released by clearing bit PSRUN
("running") in its status word. CC.W, the address of the current
context block (PTBL or CB) is set to the address of the CB.
Timing is switched from the PTBL to the CB. The count of CBs
started (TINDST.W) is incremented. And finally the code path is
started by jumping through PTMP3.W.

At MONLYI the code must put the CB onto the ELQUE for the mother
processor to schedule. Again FIXUP and SETUP are called and the
CB released by clearing its running flag. MEVENT is called to
request the mother to reschedule if the new CB is a higher
priority than what she is doing. Global metering location NMONLY
is bumped to count the number of times that a CB was transferred
to the mother JP. Finally the scheduler either restarts the PTBL
if it is still ready and the JP hasn't been told to reschedule,
or the scheduler skips this PTBL and continues the ELQUE scan.

NOREQ - Not starting ring 0 activity, run user?

If PSTAT bit PSETR ("don't enter user") is set then the scheduler
just resumes the ELQUE scan after the PTBL. PSETR (bit offset
BPSEN) is set when the task scheduler below finds no user task
ready to go but there is at least one system call waiting to
start. If there were no system calls waiting then it would have
set PSRDY ("not ready to run").

At SCHED:REQ the scheduler expects to start some user code path
so it calls MAP CON to map the process' address space into the ATU
and establish it as the current context. If flag word PINSU in
the PTBL is zero then the code goes to PSCHD below to schedule a
task. Otherwise, the process was interrupted during some system
activity and must be restarted.

Licensed Material 3-40 Property of Data General

To clear the PTBL and restart where it left off, the scheduler
clears flag bit PFIRS ("Interrupted by system," bit offset BPFIR)
in PFLG3 and fills in the global current task pointer CTSK.W from
the current task pointer USTCT.W in the process' UST. It also
bumps counter NNORQ1.W to monitor how many times this happens.
Routine RSTPRC is called to restore the process' state and start
charging the user before transferring control.

Bit ?TSWP in TCB status word ?TSTAT is true if the task was
interrupted by a page fault. In this case, the scheduler returns
via a WDPOP instruction which uses the fault context block whose
address is in FBLK.W (hardware location 32 octal). Otherwise,
the return block in PTBL extender locations PMARG.W to PMPC.W
is copied onto the ring 0 stack and a WPOPB returns control to
the process.

PSCHD - The process task scheduler

Because the process is being scheduled or rescheduled, bit PFRSH
("please reschedule process") in flag word PFLAG is cleared
before any other processing continues.

The first check is whether or not task rescheduling should be
done. If flag bit ?UPPH in USTFL of the UST is set then there
is no multitasking and hence no rescheduling is needed. If bit
?UFDR is set then tasking is disabled and no rescheduling should
be done. If location ?TSMA is non-zero in ring 3 then the Agent
has the UST or TCBs in transition and they cannot be trusted to
do a reschedule. If any of these tests are true, then the
scheduler jumps to PSCDR to restart the process where it
left off.

At PSCDR the scheduler checks to see if the current task can be
started or if the process cannot continue. If none of the pend
bits in TCB status word TSTAT are set or the task is returning
from a page fault then the task should be restarted and the
scheduler jumps to PTFN1 below to do so. It is returning from a
page fault if flag bit ?TSWP ("faulting") is set and ?TSPN
("pended on fault") is clear in TCB status word TSTAT. If the
task is pended but not returning from a page fault, then it
cannot be restarted and the code goes to PNTRY (below) to figure
out what to do next.

If task scheduling is found enabled, then monitoring location
NPLSP.W is incremented to count the number of times that this was
found true.

The scheduler next scans the TCB queue in ring 3 for the
highest-priority ready task. The search criteria is that no
pend bits be set in TCB status word TSTAT. The mask of pend
bits is called CRUMS and is defined above. If the scan finds no
ready tasks, then the scheduler jumps to PNTRY to determine how
to proceed.

Licensed Material 3-41 Property of Data General

Once a TCB has been selected it is made the current TCB in UST
location USTCT. Next the scheduler checks to see if the TCB
should be moved back in the TCB queue to implement a
round-robin. Only if there are other TCBs of the same priority
behind the selected TCB will the TCB have to be moved. It
doesn't matter if other TCBs with the same priority are ahead of
the selected TCB.

If a round-robin needs to be done, the location in the queue for
the TCB is found by searching backwards in the queue for the last
TCB with a priority equal to the selected TCB. Once the location
is found, then the selected TCB is dequeued from its original
position and enqueued in its new place in the queue.

PTFNI - A task has been selected to run

First point the JP's current task address to the selected TCB the
code decides how the task's stack should be established. If this
is the same task as was last run, then its stack is already
okay. If this is the first task run (PEXTN item PCTSK.W = 0)
then its stack needs to be set up by TSKRST but nothing else is
required. If this is a different task from the last one, then
the earlier task's stack must be saved by TSKSAV before TSKRST
sets up the new task's stack. Stacks are set up in every user
ring that has a valid page zero in the map.

Next the extended variable save area must be set up for the
selected task. If this is not a new task then this is skipped.
If the last task to use the extended save feature was this task
then this is skipped. Otherwise the extended variable area must
be changed. If the extended variable area was never used (PEXTN
location PCEXV = 0) then nothing needs to be saved. If it was
used, then the data in the process' common area must be saved
into the area set aside by the prior task. After the WBLM then
PCEXV is set to zero to indicate that no save is yet required.
If the selected task does use the extended variable feature then
its data is copied from its save area into the common area and
PCEXV is set to its TCB address. This procedure protects a
task's extended variables even if a task is run that doesn't use
the feature.

The final state restored (other than the PC and accumulators)
is the FPU. This is done by RSTPRC which also does a final check
for JP rescheduling requests and starts charging CPU time to the
user. If RSTPRC finds the JP's reschedule flag set it will not
return but will abort this entire operation and go to RESCH
(SMONO).

Licensed Material 3-42 Property of Data General

At this point the user will definitely be started, only the
method of transferring needs to be determined. If the user
entered the system for a fault, the return is via the fault block
on the stack. Otherwise, the system forces flag PFIRS in PFLG3
to zero for use later and builds a return block on the ring 0
stack for the WPOPB.

Voila! The user process is running.

PNTRY - Cannot run user task

What happens next is dependent on what happened while the
scheduler was going through the PTBL and TCBs. If an interrupt
occurred and set flag PFIRS, then a task may have become ready
and the scheduler will try again from PSCHD (after resetting
PFIRS) •

Now that it is certain that the user process cannot be run, the
system will try to set up the PTBL so it doesn't waste time going
all the way through this again. If the process has no TCBs
waiting to start system calls (PEXTN location PSWD = 0) and no
system calls active (PSQCT = 0) and no outstanding LPB or MTA
requests (PSIOC = 0) then it is a candidate for blocking at
SYST3 below.

If it cannot be blocked, then something can still be set. If
there are no TCBs waiting to start system calls, then setting
PSRDY ("not ready to run") will prevent this PTBL from being
selected from the ELQUE. If there are TCBs waiting, then setting
PSETR ("don't enter user") will mean that the scheduler won't try
to run user code.

If this is a group 2 or 3 process and there are waiting system
calls then setting PSNCB ("needs CB") will mean that the PTBL
won't be selected unless group 2/3 CBs are available.

Finally the scheduler unlocks the PTBL, unpends any waiters, and
resumes ELQUE scanning at RUNPTP.

SYST3 - Process is a candidate for being blocked

Since the process is idle, set PSRDY ("not ready to run") so it
won't be selected to run until that changes. If the process
cannot be blocked (bit PFBLE, "process can be blocked", in PFLG2
is zero), then jump to RUNPTP to release the PTBL and waiters and
continue the ELQUE scan.

Block the process by setting bit PSBLK ("process is blocked") and
clearing bit PSRUN ("running") in PSTAT. Also clear PSNCB
("needs CB") so that the PTBL won't later have to wait.

Licensed Material 3-43 Property of Data General

Call CTBLK to move the PTBL from the ELQUE to the blocked queue.
If CTBLK fails then resume ELQUE scanning at RUNEXP. If CTBLK
succeeds then the ELQUE has been changed and the scheduler must
start allover again at RESCH (SMONO). In either case process
scheduling has come to an end.

3.9.4 Pseudocode

/* === */
/* SCHED:PCALL */
/* --- */
/* Run a process. Called from SCHED:M6 when a PTBL is dispatched */
/* (through PPC.W in the PTBL) by the scheduler from the ELQUE. */
/* --- */

PCALL("ppcb,ptbl):

PPCB *ppcb;
PTBL *ptbl;

/* Phys Processor Control Blk addr in AC2 */
/* PTBL address in AC3 */

/* To mark PTBL running we must acquire the lock bit. To get */
/* the lock bit we must acquire the transition bit. If either */
/* of these bits is already set then we simply skip this PTBL */
/* instead of "spinning" in the scheduler. */

interrupts_off;

/* Mark the PTBL "in transition" or skip it */
if (ptbl->PSTAT.PTRAN)

goto SCHED:RUNEXl(",ptbl);
ptbl->PSTAT.PTRAN = 1;

/* Lock the PTBL or skip it */
if (ptbl->PSTAT.PLCK)

{
ptbl->PSTAT.PTRAN = 0; /* clear transition flag */
goto SCHED:RUNEXl(",ptbl);
}

ptbl->PSTAT.PLCK = 1;

/* At this point we won't continue the ELQUE scan so take the */
/* queue search mask from the stack and decrement the ELQUE */
/* scanner count. */

(void) WPOP();
ELQUE.QSCAN--;

/* We now have this PTBL. Set it up as the current context and */
/* mark it running and not in transition. */

Licensed Material 3-44 Property of Data General

CC.W = ptbl;
ptbl->PSTAT.PSRUN = 1;
ptbl->PSTAT.PTRAN = 0;

interrupts_on;

goto PCAL1; /* continues below RERUN */

/* === */
/* SCHED:RERUN */
/* --- */
/* Called from other locations in SCHED when conditions prevent a */
/* previously selected action to start but other actions might be */
/* possible. */
/* Called from SCMOD if a task pends on a signal but the process */
/* timeslice is not up and the process might be able to continue. */
/* Called from SCPRC when a system call cannot be started */
/* immediately but other tasks in the process might be able to */
/* continue. */
/* In all cases the process is already running and is the current */
/* context (in CC.W). */
/* --- */

RERUN(",):

PTBL *ptbl;

/* If the reschedule bit is set in our JP's control block then */
/* stop the current process and reschedule the JP. Otherwise */
/* continue running the same process. */

ptbl = CC.W;
if (MYPPCB.W->CPSTAT.PRESCH)

{
RELPTBL(ptbl);
ptbl->PSTAT.PSRUN = 0;
go to SCHED:RESCH(",);
}

go to PCAL1;

/* == */
/* SCHED:PCALl */
/* -- */
/* Common path from PCALL and RERUN. */
/* -- */

Licensed Material 3-45 Property of Data General

PCAL1:
/* pseudocode variables */

short int hi_pri; /* subset of PTBL.PSTAT bits */
short int PSBIT = /* mask of high-priority PSTAT bits */

- (PSRUN I I PSETR I I PSFSY I I PSNCB
I I PMAST I PLCK I PTRAN I PNTCB);
/* (Note: Mask is built by excluding don't care bits. */
/* PSRDY ("not ready to run") is NOT excluded. */

/* --- */
/* Before looking for tasks check for any high-priority things */
/* to do on/for/to the process. */

hi pri = ptbl->PSTAT & PSBIT;
if-(hi pri)

{ -

/* SCHED:PRBITS -- */
/* This pseudocode is written using in-line if statements */
/* to show that machine instructions LOB fOllowed by (ZEX */
/* and) LDSP result in an ordered test for flag bits. */
/* The priority of each flag is determined by its location */
/* in the word, lower number bits are higher priority. */
/* The code below reflects this priority ordering. */

if (hi pri.PSEW) /* Scheduler action pending */
gote SCHED:RUNEXP(",ptb1); /* skip this PTBL */

else if (hi_pri.PSBRK) /* ~C~B pending */

/* SCHED:PRTRM -- */
/* Even though console abort is handled by a daemon it is */
/* a higher priority than swap or block processing and so */
/* has its own high-priority bit. Set up PTBL.PSTAT like */
/* other daemon requests and clear the "needs CB" flag */
/* (PSTAT.PSNCB) so the abort won't get hung up on it and */
/* join common daemon start-up path. */
{
ptbl->PSTAT.PSBRK
ptbl->PSTAT.PSDP
ptbl->PSTAT.PSNCB
goto PDMPR;
}

= 0;
= 1;
= 0;

else if (hi pri.PSBAG) /* Start swap-out */
goto CORM2:PRBAG(",ptbl);

else if (hi_pri.PSBLK) /* Process was blocked */
go to PBLOCK; /* move PTBL off the ELQUE */

else if (hi_pri.PSDP) /* Run a Daemon */
goto PDMPR;

else if (hi_pri.PSMWT) /* Process waiting for memory */

Licensed Material 3-46 Property of Data General

/* SCHED:PMWT -- */
/* Check global MKEY against PTBL.PMKEY which was the */
/* MKEY value when the process tried last time. If MKEY */
/* is the same then process still cannot get memory */
/* so just skip it. */
{
if (ptb1->PMKEY == MKEY) go to SCHED:RUNEXP();
ptb1->PSTAT.PSMWT = 0;
goto QCALLS;
}

else if (hi_pri.PSTSU) /* TimeS1ice is Up */

/* SCHED:PTUP -- */
/* Times1ice expired because of activity on a CB. Map in */
/* process context for times1ice end routine. */
{
ptb1->PSTAT.PSTSU = 0;
MAPCON(ptb1);
go to CORM2:TSUP(",ptb1);
}

/* Because of the construction of mask PSBIT we can only */
/* get here if bit ptb1.PSTAT.PSRDY ("not ready to run") is */
/* true. But since this path should only be taken if the */
/* PTBL is ready then we panic. The scheduler ELQUE scan */
/* mask always checks for PSRDY so only the RERUN path can */
/* cause this panic. */

else PANIC (PNICE+P14AC); /* 14003 */
}

/* --- */
/* There are no high-priority tasks to do for this PTBL so */
/* now check to start system calls that couldn't be started */
/* before. If flag PFLG2.PFSQC is set then the calls weren't */
/* able to get a CB/stack allocated and still cannot be started*/
/* until a suitable CB is available and the flag is reset. */

if (ptb1->PFLG2.PFQSC) goto NOREQ;

goto QCALLS; /* jump around daemon processing */
/* (source just falls through) */

/* SCHED:PBLOCK -- */
/* The PTBL is marked as being blocked but found on the ELQUE, */
/* called from the check of high-priority PSTAT bits above. */
/* This code will verify that it should indeed be blocked and */
/* if so then try to move the PTBL from the ELQUE to the */
/* blocked queue. */

Licensed Material 3-47 Property of Data General

PBLOCK:
/* Moving from the ELQUE to the blocked queue is protected by */
/* the transition lock. */

XLOCK(BPTRAN, ptbl);

/* If process isn't still blocked then lets skip it */

if (ptbl->PSTAT.PSBLK == 0)
go to SCHED:RUNPTP(,BPTRAN"ptbl);

/* Before blocking it make sure it doesn't need to terminate */

if (ptbl->PFLAG.PFTRM == 1)

/* Process is about to terminate. Zap the blocked bit, */
/* release the PTBL, and let PCAL1 select term daemon. */
{
ptbl->PSTAT.PSBLK = 0;
ptbl->PSTAT.PTRAN = 0; /* releases PTBL */
goto PCAL1;
}

/* Process can be blocked. Reset the PTBL running bit, call */
/* CTBLK to move it to the blocked queue, release the PTBL and */
/* anyone waiting on its resources and finally reschedule from */
/* the top. If there is a problem moving the PTBL to the */
/* blocked queue then just skip over the PTBL in the ELQUE. */

ptbl->PSTAT.PSRUN = 0;

if (OK == CTBLK(ptbl»
{
RELPTBL(ptb1);
goto RESCH(",); /* source uses SMONO but RESCH is same */
}

else
go to RUNEXP(",ptbl);

/* SCHED:BTBL -- */
/* Daemon request list used by the PDMPR code below to select a */
/* specific daemon to run. */
/* Each entry in the list consists of the bit offset to a flag */
/* somewhere in the PTBL that signals a daemon action and the */
/* address of the routine to execute the daemon. The end of the */
/* list is indicated by an entry with its bit offset set to -1. */

typedef struct
{
short int
extern void
};

Daemon_Request_List

dmon bit loc;
*dmon=code_addr();

Licensed Material 3-48 Property of Data General

/* For each bit offset in the list the comment shows the name */
/* of the status bit and the PTBL entry containing the bit. */

static Daemon Request List
BTBL [] = - -

{BPFTM, RET. P},
{BPFTL, PRNCI.P},
{BPFIR, IPRLD.P},
{BPFIW, PRNCI.P},
{BPUCT, UCTD. P},
{BPFNT, NTRES.P},
{BPFNF, NFRES.P},
{BPFIN, PROIN.P},
{BPISS, PRKIN.P},
-1;

/* PFLAG.PFTRM
/* PFLG2.PFATL
/* PFLAG.PFFIL
/* PFLG3.PFIWC
/* PFLG5.PFUTC
/* PFLG2.PFNTR
/* PFLAG.PFNFR
/* PFLAG.PFINT
/* PFLG4.PFISS
/* end of list

termination */
fatal error */
initial load */
ACAB console abort */
process trap */
l6bit become resident */
l6bit become nonresident */
ACAA console interrupt */
user console interrupts */
*/

/* SCHED:PDMPR -- */
/* Run a DAEMON. */

PDMPR:

/* pseudocode variables --- */
Daemon_Request_List *btbl_ptr;

/* -- */
/* A daemon can only run for a process that is not the target of */
/* another process' action and has no system calls in progress. */
/* If the associated counters in the PTBL and extender are not */
/* zero then skip this PTBL. */

if « ptbl->PTRGC 1= 0) I I (ptbl->PEXTN.W->PSQCT 1= 0 »
goto SCHED:RUNEXP(",ptbl);

/* Before we start a call and use the primary CB (*PCB.W) we must */
/* allocate a secondary CB (*SCB.W). ALSTK does this and checks */
/* that we aren't exceeding the allocation of active CBs for the */
/* process' group (G1 or G2/3). */

if (NOT_OK == ALSTK(ptbl »

/* No CB available to start daemon so we will skip the PTBL on */
/* this ELQUE pass. To save scheduler time later we first set */
/* the "needs CB" flag (PSTAT.PSNCB) if the process is not a */
/* group 1 (G1) process. */
{
if (ptbl->PPRI > Gl)

ptbl->PSTAT.PSNCB = 1;
goto SCHED:RUNEXP(",ptbl);
}

Licensed Material 3-49 Property of Data General

/* OK to run a daemon. Set up CB *PCB.W and the global process */
/* temps in case we actually do run one (SCHED:STKCK uses global */
/* PTMP2.W to indicate a daemon or system call). Map in the */
/* process' context and clear the "run daemon" flag under the */
/* assumption that there is only one daemon request flag set. */

PCB.W->CALLN.W = -1; /* no system call word */
PTMP1.W = 0; /*?? */
PTMP2.w = 0; /* usually TCB address, 0 = daemon (not TCB) */
PTMP3.W = 0; /* daemon code address, 0 = no daemon found */

MAPCON(ptbl);

/* SCHED:BSR1 --- */
/* Figure what daemon, if any, we are going to run. */
/* We have to scan the table past the first one found to see if */
/* more than one daemon needs to run. If so we will have to make */
/* flag PSTAT.PSDPR true for later. */

for (btbl ptr = &BTBL[O];
btbl-ptr->dmon bit loc != -1;
btb1=ptr++) - -

{
/* Test PTBL bit pointed to by this dmon_bit_lOc. */

}

/* Found a daemon request flag set.
if (PTMP3.W == 0)

/* Found first daemon request. Save addr and continue. */
PTMP3.W = btbl_ptr->dmon_code_addr;

else
/* More than one daemon requested. Set "run daemon" */
/* flag and clear "needs CB" in PTBL so other daemon(s) */
/* can go as soon as possible. Then jump into the */
/* daemon/system call dispatcher STKCK. */
{
ptb1->PSTAT.PSDP = 1;
ptbl->PSTAT.PSNCB = 0;
go to STKCK(",ptbl);
}

/* BTBL scan complete and there weren't multiple requests. If */
/* PTMP3.W is still zero then no daemon request was found and */
/* we will assume there is some race condition in the system */
/* and just restart this PTBL. */

Licensed Material 3-50 Property of Data General

if (PTMP3.W == 0)
goto RERUN(",);

else
goto STKCK(",ptbl);

/* SCHED:QCALLS -- */
/* We've decided to start (or restart) a waiting system call. */
/* Of course we must check that there really is one waiting. */
/* The high-priority path above that found MKEY changed enters */
/* here to continue a waiting system call. */

/* pseudocode variables -------------------------------------- */
TCB *tcb,*next tcb /* address of TCBs */
long int syscall_nbr; /* system call number from TCB */

QCALLS:

/* get TCB address and verify there is one waiting */
tcb = ptbl->PEXTN.W->PSWD.W;
if (tcb == 0) goto NOREQ;

/* The system call/daemon dispatcher (SCHED:STKCK) expects
/* globaL PTMP2.W to contain either a TCB address indicating
/* system call or zero indicating a daemon. PTMP2.W also

*/
a */

*/
*/
*/

/* saves the TCB address across the call to ALSTK as mentioned
/* in the source.

PTMP2.W = tcb;

/* There is at least one system call waiting to start. Before */
/* starting it and using up the primary CB (*PCB.W) we must */
/* check that the CB allocation for the process' group (G1 or */
/* G2/3) hasn't been used up and that a secondary CB (*SCB.W) */
/* can be allocated. */

if (NOT_OK == ALSTK(ptbl »

/* No CB available but we might still be able to run a task */
/* in the user ring. Only when the "don't enter user ring" */
/* flag (PSTAT.PSETR) is set do we give up on the process. */
/* In that case we mark low-priority (G2/3) processes as */
/* "needs CB" (PSTAT:PSNCB) so the scheduler won't pick */
/* them again until CBs are available. */
{
if (ptbl->PSTAT.PSETR == 0) goto REQ; /* run user task */

Licensed Material 3-51 Property of Data General

if (ptbl->PPRI > G1)
ptbl->PSTAT.PSNCB = 1;

go to SCHED:RUNEXP(",ptbl); /* skip this PTBL */
}

/* SCHED:TCBCL --- */
/* We now have a TCB and CB and can think about starting a */
/* waiting system call. Based on the system call number we */
/* may 1) bag it because the system call number is invalid, or */
/* 2) be unable to run it because it conflicts with other */
/* system calls in progress, or 3) start the call. In cases */
/* I and 2 we will rerun the PTBL from the start just in case */
/* the process can do· something else. */

/* restore PTBL and TCB address and map PTBL extensions */
ptbl = CC.W;
MAPCON(ptbl);
tcb = PTMP2.W;

/* Verify that the system call number is in range. Otherwise */
/* the other checks that use the call number as an index into */
/* a table won't work correctly. If the system call is not */
/* valid then get rid of it and rerun this PTBL. The process */
/* will definitely have something to do even if it is only to */
/* have the system call return with error. */

syscall nbr = tcb->TSYS.W & (?PCMSK-SYSTRT);
if «0 > syscall_nbr) I I (syscall_nbr > MAXSYS»

/* SCHED:CMER1 --- */
/* The system call number is out of range. Remove this */
/* call from the queue, set up TCB and PTBL for error */
/* return ERICM ("Illegal system call"), and restart the */
/* PTBL from the top. */
{
ptbl->PSIDIR--; /* one less indirect call queued */
ptbl->PEXTN.W->PSWD.W = tcb->TSLK.W;
run invalid syscall(ptbl, tcb); /* SCHED:CMER3 */
gota RERUN (-;-, ,) ;
}

/* Verify that we can start another call. First check that */
/* there isn't a parallel call already running and then see */
/* that the process hasn't reached the limit on the number of */
/* calls it can have active concurrently. */

if (ptbl->PFLG3.PFPCH)
go to NOREQ;

if (ptbl->PEXTN.W->PSQCT >= ptbl->PEXTN.W->PSQMX)
goto NOREQ;

Licensed Material 3-52 Property of Data General

/* Finally check table CWTB to see if the call is a parallel */
/* type call. Parallel calls are like a daemons in that they */
/* require exclusive "use" of the process. They can only run */
/* if there are no other calls active and if the process is */
/* not the target of another process' actions. The target */
/* call count is in the PTBL and the active call count is in */
/* the extender. If we cannot start the parallel call then */
/* go check for other things to do. Otherwise, indicate that */
/* a parallel call is running so no other action can start. */

if (CWTB[syscall nbr])
{ -
if «ptbl->PEXTN->PSQCT !=O) I I (ptbl->PTRGC != 0»

goto NOREQ;
ptbl->PFLG3.PFPCH = 1; /* mark parallel call running */
}

/* SCHED:DEQIT --- */
/* At this point we have the address of a TCB waiting to start */
/* or restart an indirect system call. Take this TCB off of */
/* the front of the chain of waiting TCBs and decrement the */
/* count of waiting indirect calls. */

next tcb = tcb->TSLK.W;
ptbl~>PEXTN.W->PSWD.W = next_tcb;
ptbl->PSIDIR--;

/* To save unnecessary scheduling in the future we next check */
/* if the process would be able to do anything after the */
/* waiting system call is started. If there are no more TCBs */
/* waiting to start a system call and if the process is marked */
/* "don't enter user" then the process will be set so it won't */
/* be selected to run again until something changes. */

if «next_tcb == 0) && (ptbl->PSTAT.PSETR»

/* The PTBL doesn't have anything else to do immediately so */
/* so set flag PSTAT.PSRDY. Also clear PSTAT.PSNCB ("needs */
/* CB") and PSTAT.PSETR ("don't enter") to be set as needed */
/* later. */
/* Because these status bits are protected by the PTBL */
/* transition lock we must get that lock first and clear it */
/* when we are done. */
{
XLOCK(ptbl->PSTAT.PTRAN); /* returns with interrupts off */
ptbl->PSTAT.PSETR = 0;
ptbl->PSTAT.PSNCB = 0;
ptbl->PSTAT.PSRDY = 1;
ptbl->PSTAT.PTRAN = 0; /* unlocks transition state */
interrupts on;
} -

Licensed Material 3-53 Property of Data General

goto SCHED:NODCL(,syscall nbr"ptbl);

/* SCHED:NOREQ --- */
/* There are either no system calls waiting or they cannot be */
/* started. User code finally gets a chance to run if flag */
/* PSTAT:PSETR ("don't enter user") is clear. */

NOREQ:
if (ptbl->PSTAT.PSETR)

goto SCHED:RUNEXP(",ptbl); /* skip this PTBL */

/* SCHED:REQ -- */
/* All is clear to run a user task, if one is there. Map in */
/* the user context, and check to see if the user task world */
/* should be rescheduled by PSCHD (if PTBL.PINSU = 0) or if */
/* it must be restarted where it left off. */

REQ:
MAP CON (ptbl);
if (ptbl->PINSU == 0)

goto SCHED:PSCHD(",); /* assumes PTBL address in CC.W */

/* SCHED:NORQl --- */
/* The process lost control to the interrupt world. We must */
/* restart the task where if left off. Clear the interrupted */
/* flag, bump the global count of how many times this occurred */
/* and re-establish the global task pointer. */

ptbl->PFLG3.PFIRS = 0;
NNORQl.W++;
CTSK.W = ring3.UST.USTCT;

/* Restore the task's machine state before returning. Routine */
/* RSTPRC will also handle PIT timing and rescheduling of JPs. */
/* It will only return here if the process can indeed continue.*/

RSTPRC(tcb);

/* We can return to the task two different ways depending on */
/* how it was interrupted. If a page fault occurred then bit */
/* ?TSTAT.?TSWP in the TCB will be set and a fault block will */
/* exist for returning to the process. Otherwise, we must copy*/
/* the stack return block from the extender. Because one */
/* instruction following an INTEN is executed with interrupts */
/* off, the WDPOP or WPOPB will return all the way out to the */
/* task code before another interrupt will be recognized. */

Licensed Material 3-54 Property of Data General

if (CTSK.W->?TSTAT.?TSWP)
{
interrupts on;
WDPOP(); - /* exits to process »»»»»»»»»»»»> */
}

else
/* Build a context block on the stack so we can return to */
/* the task via a WPOPB. The data in the PTBL extender */
/* from PMARG.W to PMPC.W is in the same format as the */
/* context block.
/* Pseudocode variable "stack pointer" refers to the stack */
/* pointer in the MV/Eclipse hardware. */
/* (Note: RSTPRC returns the PTBL extender address in AC2.) */
{
WBLM(&ptbl->PEXTN.W->PMARG.W, stack pointer, -OARG.W);
stack pointer = stack pointer +(-OARG.W) -2;
interrupts on; -
WPOPB(); - /* good-bye scheduler »»»»»»»»»»»> */
}

/* == */
/* SCHED:NODCL */
/* -- */
/* setup and try to run a system callan a CB. Called by SCPRC */
/* to process a user system call and from SCHED when starting */
/* a system call that was queued up on a PTBL. */
/* -- */

/* pseudocode declarations */
long int syscall nbr;
PTBL *ptbl;-
entry bag_invalid_syscall();

/* GLOBALS assumed */

/* system call number */
/* address of PTBL */
/* quick bad syscall handler */

entry (*MCCT.W)[];
long int (*SCTBL.W)[];

/* table of system call handlers */
/* table of system call counters */

NODCL(,syscall_nbr"ptbl):

/* The system call number must at this point be in the range */
/* of legal system calls. Here we check that the system */
/* is actually implemented. */

PTMP3.W = MCCT.W[syscall nbr];
if (PTMP3.W == -1) -

Licensed Material 3-55 Property of Data General

/*
/*
/*
{

The call has no handler and is thus not implemented. */
Prepare the TCB and PTBL to take the "illegal system */
command" error return and rerun the PTBL from the top. */

bag invalid syscall(
goto RERUN(~,,);
}

ptbl, tcb); /* SCHED:CERM2 */
/* SCHED:CERM3 */

/* General accounting. Bump the count of the times this path */
/* was taken. If system call counting is enabled then count */
/* the times each specific system call was made. */

NNODCL ++;
if (SCTBL.W != 0)

(*SCTBL.W)[syscall_nbr] ++;

/* SCHED:STKCK --- */
/* This is where daemon processing (from SCHED:PDMPR) joins */
/* system call processing. They are similar in that they */
/* both must prepare a CB for running a code path that was */
/* initiated while running on a PTBL. */

/* GLOBALS assumed */
PTBL *CC.W; /* address of our PTBL */
CB *PCB.W; /* address of CB for call or daemon */
long int PTMPl.W; /* system call number (0 if daemon) */
TCB *PTMP2.W; /* TCB address for call (0 if daemon) */
void *PTMP3.W();/* address of syscall or daemon handler */
LPCB *MYLPCB.W; /* addr of current Logical proc ctl blk */
PPCB *MYPPCB.W; /* addr of current Physical proc ctl blk */
bit (*CHTBL.W)[]; /* map of calls that can run on child CPU */
void FIXCB(); /* puts CB onto ELQUE & set proper status */
void RESCH(); /* SCHED:RESCH to rescan ELQUE */
void TDSCL(); /* Initiate system call timing on CB */
void MEVENT(); /* Let mother know she has work to do */
void RUNEXP(); /* skip to next item on ELQUE */
void RERUN(); /* start PTBL check from the top */
short int RSTCKT; /* size of allocation of resident CBs */
short int SSTCKT; /* size of allocation of swappable CBs */
short int Gl; /* lowest Group 1 process priority */
long int NMONLY; /* count of times CB moved to mother */

/* pseudocode declarations */

CB
PTBL

*cb;
*ptbl;

/* address of CB being worked on */
/* address of our PTBL */

Hardware FP hw frame pointer /* hardware registers */
Hardware-SP hw_stack-pointer /* hardware registers */

Licensed Material 3-56 Property of Data General

SCHED:STKCK(",ptbl):

/* The pseudocode below will use pseudo-variable "cb" to */
/* address the CB being manipulated. The source uses PCB.W */
/* as the source of the address in most cases but sometimes */
/* depends on the CB address returning from subroutines. */

cb = PCB.W;

/* Bump the count of active system paths for the process. */

ptbl->PEXTN.W->PSQCT ++;

/* If this is a daemon then signal "scheduler action" on the */
/* PTBL so it won't be run again until the daemon is done. */

if (PTMP2.W == 0)
ptbl->PSTAT.PSEW

/* TCB address test, 0 = daemon */
= 1;

/* We only get here if we are definitely going to use the CB */
/* pointed to by PCB.W. We will either start a system call */
/* or daemon with the CB as the current context or put the */
/* CB onto the ELQUE for later scheduling. */
/* Charge the CB against the appropriate pool (G1 vs G2/3) */
/* and determine what its PNQF will be. We can check the */
/* MYPPCB flag because it was set by ALSTK when it allocated */
/* a backup CB appropriate to the process in SCB.W. */

if (MYPPCB.W->CPSTAT.LSTACK == 1)

/* Group 1 process (G1) CBs come from the resident stack */
/* (pool) count and run with a PNQF of O. */
{
RSTKCT --;
cb->PNQF = 0;
}

else
/* Group 2 & 3 process CBs come from the swappable stack */
/* allocation and run with a PNQF just lower than group 1 */
/* (G1) processes. */
{
SSTKCT --;
cb->PNQF = G1+1;
}

Licensed Material 3-57 Property of Data General

/* Set up the CB based on the PTBL and the specific call. */

cb->CERWD
cb->CERPC.W
cb->PTIM.W
cb->CBFEH.W
cb->CATCB.W
cb->CPTAD.W
cb->PGNUM.W
cb->PLPCB

= 0;
= 0;
= 0;
= -1;
= PTMP2.W;
= CC.W;
= CC.W->PGNUM.W;
= MYLPCB.W;

cb->PSTAT = 0;
cb->PSTAT.PSRUN = 1;

/* no errors yet */
/* so no error PC either */
/* no time used yet */
/* no fatal error handler */
/* associated TCB if any */
/* PTBL address */
/* same class nbr as PTBL */
/* curr logical processor */

/* no status bits yet */
/* CB will be running */

/* Set CB data dependent on call's "mother only" requirement */

if (CHTB[PTMPl.W])
{

/* CHild executable TaBle */

can only run on mother processor */ /* Call or daemon
cb->PCLASS = 0;
cb->PSTAT.PMAST = 1;
}

else

/* no class bit if "MO" */
/* indicate "mother-only" */

/* Call can run on any processor */
cb->PCLASS = ptbl->PCLASS; /* class bit same as PTBL */

/* Reset the stack. At this point we abandon the past history */
/* of the PTBL and must go forward. Pseudocode variables */
/* "hw stack pointer" and "hw frame pointer" below are the */
/* hardware stack registers. -Since-we are still using the same*/
/* actual stack area we don't need to change the stack base or */
/* the stack limit. */

interrupts off;
cb->CSTK.W-= cb->CSTKC.W;
hw frame pointer = cb->CSTKC.W;
hw-stack-pointer = cb->CSTKC.W;
interrupts_on;

/* reset FP within stack */
/* and HW frame pointer */
/* and HW stack pointer */

/* What we do now depends on whether our JP (MYPPCB) is the */
/* mother processor and whether the CB path is a "mother-only" */
/* call or a daemon. If path cannot run on our JP then go to */
/* MONLY1 to move the CB onto the ELQUE for the mother JP to */
/* schedule later. */

if ((MYPPCB->CPSTAT.CPMAST
&& ((PTMP2.W == 0)

I I (CHTB[syscall_nbr
goto MONLY1;

Licensed Material

== 0) /* MYPPCB is not mother */
/* CB is for daemon */

] == 0») /* call is mother-only */

3-58 Property of Data General

/* We could possibly run on our JP. But first to see if our */
/* JP has been told to reschedule. This is the last thing */
/* that might prevent the CB from running the call now. */

if (MYPPCB->CPSTAT.PRESCH -- 1)

/* SCHED:MONLY -- */
/* Our JP has been told to reschedule. Before we can, we */
/* must put the CB onto the ELQUE and finish setting it up. */
/* Until now the CB hasn't been on any queue in hopes of */
/* avoiding the overhead. Since we set the "CB running" */
/* status bit above, the CB won't be selected to run by any */
/* other JP after we put it onto the ELQUE but before we */
/* are done with it (and turn off PSTAT.PSRUN). */
/* We also must give up the PTBL for the reschedule. */
{
FIXCB(cb); /* put CB on ELQUE */
SETUP () ; /* swap to new PCB. W * /
cb->PSTAT.PSRUN = 0; /* the CB is fair game now */
ptbl->PSTAT.PSRUN = 0; /* so is the PTBL */
RELPTBL(ptbl); /* release others waiting for PTBL */
goto SCHED:RESCH(",);
}

/* We are going to start the call/daemon. To switch context */
/* we must change the JP's global TCB context block FBK.W and */
/* global CB/PTBL context pointer CC.W. We must also mark */
/* the PTBL as no longer running. */

interrupts off;
FBK.W = cb~>CSTKC.W->CBCX.W;
ptbl->PSTAT.PSRUN = 0;
CC.W = cb;

/* Initiate system call timing on the CB. */

TDSCL(cb);
interrupts_on;

/* Finally, count the number of calls started on CBs and jump */
/* to the code for the call or daemon. */

TINDST.W ++;
goto (PTMP3.W); /* vamoose »»»»»»»»»»»»»»»»» */

/* SCHED:MONLY1 --- */
/* The system call or daemon must run on the mother processor */
/* but our JP (MYPPCB) is not the mother. Put the CB onto */
/* the ELQUE for later scheduling by the mother processor and */
/* complete its initialization. The CB won't be available to */
/* the mother until we reset its running bit (PSTAT.PSRUN). */

Licensed Material 3-59 Property of Data General

FIXCB(cb); /* moves CB to ELQUE w/proper status */
SETUP(); /* setup CB for TACT & fix PCB.W,SCB.W */
cb->PSTAT.PSRUN = 0; /* the CB is fair game now */

/* Tickle the mother processor so that she will reschedule */
/* (if needed) and run the mother-only CB we just readied to */
/* run. Also count the number of times this path was taken. */

MEVENT{ cb);
NMONLY ++;

/* Next see if it's useful to try to do anything else for the */
/* PTBL. If the mother processor actually woke up or if this */
/* PTBL is no longer able to run, then let RUNEXP skip to the */
/* next ELQUE element. Otherwise rerun the PTBL from the top */
/* to look for other actions we could take on it. */

if «MPPCB.W->CPSTAT.PRSCH == 1) I I (ptbl->PSTAT.PSRDY == 1»
go to RUNEXP(",ptbl);

else
goto RERUN(",);

/* === */
/* SCHED:SETUP */
/* --- */
/* Used in system call CB startup paths to set up the stack of */
/* the primary CB (*PCB.W) so TACT will properly dispatch the CB */
/* from the ELQUE. SETUP also assigns a new primary CB (PCB.W). */
/* --- */

/* pseudocode declarations */
CB or PTBL
Hardware FP
Hardware-SP
Hardware-SL
Hardware-SB
InstructIon

*cb;
hw frame pointer;
hw-stack-pointer;
hw-stack-limit ;
hw-stack-base ;
wssvr() ~ {WSSVR};

/* hardware registers */

/* MV instruction */

/* GLOBALS assumed */
CB or PTBL *PCB.W;
CB-or-PTBL *SCB.W;
CB-or-PTBL *TMPCB.W;
sys code() *PTMP3.W;
external TRTN();

/* addr of CB to be set up */

Licensed Material

/* candidate for next primary CB */
/* candidate for next primary CB */
/* address of system path for CB */
/* error return for system call */

3-60 Property of Data General

SETUP (, , ,) :
/* --- */
/* Set up the CB stack contents for dispatch by TACT, TACT */
/* expects the stack to be set up so a WRTN will go to the '*/
/* code with the proper ACs and stack/frame pointerc The */
/* system call code will need the CB address in AC2 and the */
/* WRTN will expect the code address in AC3. The sys call */
/* path will also expect to have its return address (OFP) */
/* to be the system call error return handler TRTN. */

cb = PCB.W;
wssvr("cb,PTMP3.W);
cb->CSTK.W = hw frame_pointer;
cb->OFP.W = &TRTN();

/* Now assign a new primary CB (PCB.W). If there is a temp */
/* CB in TMPCB.W then use it, otherwise use the secondary CB */
/* from SCB.W. One or the other was allocated by ALSTK. */

if (TMPCB.W 1= 0)
{
PCB.W = TMPCB.W;
TMPCB.W = 0;
}

else
{
PCB.W = SCB.W;
SCB.W = 0;
};

/* Finally switch hardware stack to new primary CB. The */
/* source calls routine STKST1 for this but it is shown */
/* here in-line for clarity. */

hw stack limit = PCB.W->CBSL.W;
hw-stack-base = PCB.W->CSTKC.W;
hw-stack-pointer = PCB.W->CSTKC.W;
hw=frame=pointer = PCB.W->CSTKC.W;

return(cb",);

/* == */
/* SCHED:CERM2,3 */
/* -- */
/* This code is referred to as "bag invalid syscall" in the call*/
/* processing code of SCHED. It cuts short-the standard system */
/* call path by running on the PTBL while updating the user TCB */
/* to take the error return with error ERICM "illegal system */
/* command." This avoids the overhead of switching to a CB to */
/* run something. In the source the TCB address is obtained */
/* from either the input AC2 or from PTMP2.W. But for clarity, */
/* this code shows both the TCB and PTBL address coming from */
/* the caller. */

Licensed Material 3-61 Property of Data General

bag_invalid_syscall(tcb, ptbl):

TCB
PTBL

*tcb;
*ptbl;

/* TCB address of task making call */
/* PTBL address of process making call */

/* Set up the TCB to take the error return with error ERICM */
/* in ACO. On entry to the system the task's return address */
/* (TPC.W) was set for a normal return so we must decrement */
/* it for the error return. */

tcb->TPC.W --;
tcb->TACO.W = ERICM; /* "illegal system call" */

/* Set up the PTBL to indicate that it has something to do */
/* by resetting flags PSENT ("don't enter user", BPSEN) and */
/* PSNCB ("needs CB", BPSNC) and PSTAT.PSRDY ("not ready to */
/* run", BPSRY) in PSTAT. */

ptbl->PSTAT.PSENT = 0;
ptbl->PSTAT.PSNCB = 0;
ptbl->PSTAT.PSRDY = 0;

/* can now enter user code */
/* no longer has to have CB to run */
/* now is ready to run */

/* Return to pseudocode. The source actually jumps to RERUN */
/* but for clarity the pseudocode is written so that this */
/* routine returns and the caller does a "goto RERUN". */

return;

/* === */
/* SCHED:PSCHD */
/* --- */
/* AOS/VS task scheduler. */

/* GLOBALS */

void XLOCK(); /* master lock, interrupts off at return
void RELPTBL(); /* release PTBL and others waiting on it
void RSTPRC(); /* restore FPU, PTBL state & timing */
Boolean CTBLK(); /* move PTBL to blocked queue */

label RUNPTP(); /* release then skip PTBL on ELQUE */
label RUNEXP(); /* skip over this PTBL on ELQUE */
label TCBAD(); /* aborts process for bad TCB chain */
label SMONO(); /* SCHED:RESCH rescan ELQUE */

UST ?ARING.UST; /* User status table in agent ring */
PTBL *CC.W; /* address of our PTBL */
TCB *CTSK.W; /* address of current TCB in process */
short int Gl; /* lowest priority for group 1 processes
long int NPSLP; /* count: times TCB chain is scanned */

*/
*/

*/

long int NPSCDR.W; /* count: task rescheduling found disabled */

Licensed Material 3-62 Property of Data General

/* pseudocode declarations */

PTBL *ptbl; /* address of our PTBL */
PTBL EXTENDER *pextn; /* address of our PTBL's extender */
TCB *tcb; /* address of TCB selected to run */
TCB *other_tcb; /* address of some other TCB */
TCB.TSTAT CRUMS; /* mask of TSTAT pended flags */

/* These next two pseudo-routines represent the NFSAC and NBSE */
/* queue search instructions used to scan the TCB chain. They */
/* take as arguments the accumulators and search mask needed. */
/* They return OK if a matching TCB is found and NOT OK if the */
/* search failed. Since the source simply resumes interrupted */
/* searches, the pseudocode also ignores interrupts. */

Boolean
Boolean

tcb fscan(); /* Fwd search of TCB chain (SCHED:PSLP) */
tcb-bscan(); /* Bkwd search of TCB chain (SCHED:PRLP) */

Hardware FP hw frame pointer;
Hardware-SP hw-stack-pointer;
Hardware-SB hw=stack_base;

/* hardware registers */

Instruction wpsh() = {WPSH O,2}; /* MV instrs in pseudocode */
Instruction wblm() = {WBLM};
Instruction wpopb()= {WPOPB};
Instruction wdpop()= {WDPOP};
Instruction deque()= {DEQUE};
Instruction enqt() = {ENQT};
Instruction interrupts off() = {INTDS};
Instruction interrupts=on() = {INTEN};

PSCHD(",):
/* CRUMS is a mask of the bits in TCB.TSTAT that indicate */
/* that the TCB is pended on something. It is used for the */
/* queue search instruction scan of the TCB chain and to */
/* quickly isolate the flags that would prevent a TCB from */
/* being run. The source builds the mask at assembly time */
/* but it is pseudocoded here to clearly show which bits are */
/* included in the mask. */

CRUMS.?TSPN = 1; /* general purpose pended flag */
CRUMS.?TSSG = 1; /* waiting for ?XMTW or ?REC */
CRUMS.?TSSP = 1; /* suspended */
CRUMS.?TSRC = 1; /* waiting for TRCON */
CRUMS.?TSOV = 1; /* waiting for overlay */
CRUMS.?TSGS = 1; /* pended for agent synchronization */
CRUMS.?TSAB = 1; /* awaiting ?GABORT */

Licensed Material 3-63 Property of Data General

CRUMS.?TSTL = 1; /* awaiting ?TUNLOCK by another task */
CRUMS.?TSDR = 1; /* pended by ?DRSCH */
CRUMS.?TSLK = 1; /* pended on an ?FLOCK */
CRUMS.?TSXR = 1; /* pended on XMT or REC */
CRUMS.?TWSG = 1; /* pended on ?WTSIGNAL */
/* bits NOT set in the CRUMS mask */
CRUMS.?TSUT = 0; /* expecting return from ?UTSK */
CRUMS.?TSUK = 0; /* expecting return from ?UKIL */
CRUMS.?TSYG = 0; /* task has beeb ?SIGNALed */
CRUMS.?TSWP = 0; /* task is faulting */

/* Pseudocode will use these variables to address the PTBL */
/* and its extender but the source will often use global */
/* CC.W to find them. */

ptb1 = CC.W; /* PTBL address */
pextn = ptb1->PEXTN.W; /* PTBL extender address */

/* REAL start of PSCHD ------------------------------------- */
/* Clear the process' reschedule flag. */

ptb1->PFLG.PFRSH = 0;

/* First check to see if rescheduling is off or disabled. */
/* If the user disabled it then USTFL.?UFDR will be set or */
/* if the process is just getting started and scheduling is */
/* not yet in effect then USTFL.?UPPH will be set. If the */
/* AGENT doesn't want rescheduling then it sets word ?TSMA */
/* non-zero. */

if ((?ARING.UST.USTFL.?UFDR = 1)

I I (?ARING.UST.USTFL.?UFPH = 1)
(?ARING.?TSMA != 0))

/* SCHED:PSCDR -- */
/* Rescheduling is off or disabled, check to restart the */
/* current task. We should if all its pend flags are clear */
/* or if it's continuing after a fault. */
/* If we cannot rerun the current TCB then let PNTRY figure */
/* out how to relinquish control or if we should try again. */
{
tcb = ?ARING.UST.USTCT;
NPSCDR.W ++;

Licensed Material 3-64 Property of Data General

if (/* task didn't just complete a page fault */
!((tcb->TSTAT.?TSWP == 1) /* faulting? */

&&(tcb->TSTAT.?TSPN == 0» /* not pended for fault? */
&& /* and task has any pend flags set */

«tcb->TSTAT & CRUMS) 1= 0))
/* then cannot restart current task */
goto PNTRY;

else; /* Restart current task (fall through to PTFN1). */
}

else
/* Rescheduling is enabled, count the times this was true. */
{
NPSLP.W ++;

/* Search forward through the TCB chain for the first TCB */
/* having no pended bits set in the TSTAT word. If no TCB */
/* is ready to run then let PNTRY decide whether to retry */
/* or give up control of the JP. If a ready TCB is found */
/* its address will be returned in TCB (through AC1). */

tcb = ?ARING.UST.USTAC;
if (NOT OK == tcb fscan((&?ARING.UST.USTAC), /* acO */

- tcb,,(TSTAT), (CRUMS) » /* ac1,2,3 & mask */
/* no ready TCB found. */
go to PNTRY;

/* We have found the next TCB to run.
/* active TCB.

?ARING.UST.USTCT = tcb;

Make it the new */
*/

/* To implement round-robin scheduling we must make sure */
/* that the TCB just selected is in the TCB chain behind */
/* all other TCBs with the same priority. First see if */
/* that is already true. The TCB is okay if it is at the*/
/* end of the chain (TLNK = -1), or if the next TCB in */
/* the chain has a different priority. */

other tcb = tcb->TLNK;
if «other_tcb 1= -1) && (other_tcb->TPRI 1= tcb->TPRI»

/* Looks like the TCB needs to be moved behind other */
/* TCBs with the same priority. Use a backward queue */
/* search through the TCB chain to find the last TCB */
/* with the same priority as the one we selected to */
/* run. USTAQD2 in the UST points to the last TCB in */
/* the active chain. */
{
other tcb = ?ARING.UST.USTAQD2;
if (NOT OK == tcb bscan((&?ARING.UST.USTAC),

- other_tcb,,(TPR),(tcb->TPR»)

Licensed Material 3-65 Property of Data General

/* The backward scan didn't find a match. This could */
/* only happen if the TCB chain is corrupted. Abort */
/* the PTBL before anything gets worse. */

goto TCBAD(",ptbl);

/* Now we must take the TCB being started out of the */
/* .chain and put it back in following the one we just */
/* found. */

if (tcb != other_tcb) /* how can this happen? */
{
deque((&?ARING.UST.USTAC), tcb,,);
enqt ((&?ARING.UST.USTAC), other tcb, tcb,);
} -

} /* end of round-robin path */
} /* end of reschedule path */

/* SCHED:PTFNl --- */
/* A task has been selected to run. It was selected either by */
/* the reschedule algorithm or because it was the previously */
/* running task and must be restarted. Set the system global */
/* task pointer and reset the system stack to prepare to start */
/* a new task. */

CTSK.W = tcb;
hw stack pointer = hw stack base;
hw=frame=pointer = hw=stack=base;

/* Restore the user stack state from the TCB. The action to */
/* take depends on whether this task was the last task to run. */
/* The pseudocode checks the prior TCB address (other tcb) in */
/* a different order than the source to simplify the nesting */
/* of the if statements. */

other_tcb = pextn->PCTSK.W;

if (other_tcb != tcb)

/* This task isn't the previous task so we must update */
/* the task and stack states of the process. Save the */
/* state of the previous task if there was one. */
{
if (other tcb != 0)

TSKSAV(,other_tcb,,);

Licensed Material 3-66 Property of Data General

/* Now set up the stacks for the new task to run and */
/* update the PTBL entry pointing to the last task. */

TSKRST("tcb,);
pextn->PCTSK.W = tcb;
}

/* SCHED:SAMTSK */
/* Now handle the extended variable save area(s) if the */
/* task selected to run is not the same as the last task */
/* run that used the extended variable save area. */

other tcb = pextn->PCEXV.W;

if (tcb 1= other_tcb)

/*
/*
/*
{
if

This task wasn't the last one run with an extended */
variable area. If another task with such an area */
has run then we must save its variable area. */

(other tcb 1= 0)
{ -
wblm(,(?ARING.UST.USTEZ),

(?ARING.UST.USTES),
(other_tcb->TELN.W»;

/* nbr of words to save */
/* addr of user variable area */
/* addr of save area for task */

pextn->PCEXV = 0;
}

/* save is complete */

/* Now we see if this task has an extended variable */
/* area defined. If so then we need to put its saved */
/* data into the process' variable area. */

if (tcb->TELN.W 1= 0)
{
wb1m(,(?ARING.UST.USTEZ),

(tcb->TELN.W),
(?ARING.UST.USTES»;

/* size of variable area in wds */
/* where task's vars were saved */
/* process variable area addr */

pextn->PCEXV.W = tcb; /* this task vars are active */
}

} /* end of extended task variable handling */

/* SCHED:NOEXV */
/* The final task-specific state to restore is the FPU state. */
/* RSTPRC will restore it and then make last minute checks of */
/* the process' timea1ice and the JP's reschedule flag. It */
/* may abandon the process startup and go to RESCH. */

Licensed Material 3-67 Property of Data General

RSTPRC("tcb,);

/* We are committed now to running the selected task in the */
/* selected process. Interrupts were turned off by RSTPRC so */
/* that we can get all the way into the user before interrupts */
/* can occur. Finally determine whether to return to the */
/* user via a WPOPB after a fault or to use a WDPOP. */

if (tcb->TSTAT.TSWP == 1)

/*
/*
/*
{

Task had faulted so we return to the user thrqugh the */
fault block on his stack. Clear the faulting bit before */
going back since we just finished handling it. */

tcb->TSTAT.TSWP = 0;
interrupts on();
wpopb(); /* enter user
)

world »»»»»»»»»»»»»»> */

else
/*
/*
/*
{

Task was stopped for something other than a fault. We
must build an LCALL return block on the stack to get
back to him.

wpsh(tcb->TOVF.W,
tcb->TACO.W,
tcb->TAC2.W,
tcb->TPC. W);

/* PSR and arg count */
/* ac's 0 and 1 */

wpsh(
tcb- >TAC1. W) ;
tcb->TAC3.W, /* ac's 2 and 3 */

/* carry & PC */

*/
*/

/* Clear the "processes stopped by interrupt" flag since it */
/* no longer matters how it stopped. */

ptbl->PFLG3.PSIRS = 0;

/* Transfer control to the user process. This location is */
/* given the entry point UTRAP.1 so that it can be easily */
/* found by the debugger. */

interrupts on();
UTRAP.1: -

wpopb(); /* jumps to the user »»»»»»»»»»»»> */

/* SCHED:PNTRY --- */
/* PSCHD found no active TeBs ready to run. */
/* However it is possible that an interrupt during the TeB */
/* scan has readied a TeB. If so then PTBL.PFLG3.PFIRS will */
/* have been set and we should try PSCHD again. */

Licensed Material 3-68 Property of Data General

PNTRY:
XLOCK(ptbl->PSTAT.PTRAN); /* lock PTBL, turn intrpts off */

if (ptbl->PFLG3.PFIRS == 1)

/* The interrupt world did interrupt us and could have */
/* made a task ready. Clear the flag, unlock the PTBL */
/* and start PSCHD over again to check it out. */
{
ptbl->PFLG3.PFIRS = 0;
ptbl->PSTAT.PTRAN = 0; /* releases PTBL */
interrupts on;
goto PSCHD;
}

/* SCHED:SYST1 - User tasks are definitely not ready to run. */
/* Check if there is any system activity or if the process */
/* is totally idle and should be blocked. System activity is */
/* determined by checking the list of TCBs waiting to start */
/* syscalls (PSWD) and the total of the number of outstanding */
/* MTA/LPB requests (PSIOC) and the number of active system */
/* calls the process has running in the system (PSQCT). */

if «pextn->PSWD != 0) I I «pextn->PSIOC + pextn->PSQCT) != 0»)

/* Process cannot be blocked but we still want to minimize */
/* the time spent on the PTBL later. */
/* Depending on whether or not the PTBL has system calls */
/* waiting to start we will set either flag PSTAT.PSETR */
/* ("don't enter user") or PSTAT.PSRDY ("not ready to run"). */
{
if (pextn->PSWD == 0)

ptbl->PSTAT.PSRDY = 1;
else

ptbl->PSTAT.PSETR = 1;

/* See if we can also set the "needs CB" flag. This flag is */
/* legal for group 2 and 3 PTBLs with indirect system calls */
/* waiting to start. (Who knows why we would actually want */
/* to set it in this case, but that's VS for you.) */

if ((ptbl->PPRI > G1) && (ptbl->PSIDIR != 0»
ptbl->PSTAT.PSNCB = 1;

/* Done with the PTBL although it is still on the ELQUE. */

go to RUNPTP(,BPTRAN"ptbl);
}

Licensed Material 3-69 Property of Data General

else
/* SCHED:SYST3 - Process really is idle so set PSTAT.PSRDY */
/* ("not ready to run"). */
{
ptbl->PSTAT.PSRDY = 1;

/* See if we should or can block the process, PFLG2.PFBLE */
/* is on if the process can be blocked. Swappable and */
/* preemptible processes can but resident processes cannot. */
/* If the process cannot be blocked, just skip over its PTBL */
/* in the ELQUE. */

if (ptbl->PFLG2.PFBLE == 0)
goto RUNPTP(,BPTRAN"ptbl);

/* Set up the flags that indicate the process is blocked. */

ptbl->PSTAT.PSRUN = 0;
ptbl->PSTAT.PSBLK = 1;
ptbl->PSTAT.PSNCB = 0;

/* not running */
/* is blocked */
/* not waiting for G2/3 CB */

/* Try to move it to the blocked queue. If successful then */
/* release the PTBL and anyone waiting on it and reschedule */
/* from the start of the ELQUE. Otherwise just skip over */
/* the PTBL in the ELQUE. */

if (OK == CTBLK("ptb1,»
{
RELPTP("ptb1,);
goto SCHED:SMONO(",); /* (same as SCHED:RESCH) */
)

else
goto RUNEXP("ptb1,);

)

Licensed Material 3-70 Property of Data General

Chapter 4
Logica1 Processor Management

4.1 Introduction

4.1.1 Purpose

The purpose of this chapter is to describe the Logical
Processor (LP), how it is managed, and how it relates to the
other parts of Paths and Time.

4.1.2 Overview

This chapter will describe the internals of LP management.
An LP is an abstract entity or resource used in class
scheduling and CPU accounting. An LP represents the
aggregate CPU power of 0 or more JPs. An LP is the way the
user perceives the CPU. The state of the LP is kept in the
LPCB.

An LP can be compared with a LDU in the file system. Where
an LDU consists of one or more physical units. The LDU is
an environment where a file structure is self-contained.
The LP is a self-contained environment of classes of
processes. The LP is more flexible than an LDU, because a
user can dynamically add phyiscal units to an LP where that
is not possible with an LDU.

Figure 4.1 below shows how LP management relates to the
other components of Paths and Time.

Licensed Material 4-1 Property of Data General

+---------------+ +------------------+
PTBL

MANAGEMENT
-------> CB

MANAGEMENT

+---------------+ +------------------+

+----- --------------+
1 -------------------+ +-------------------+

+--->
ELQUE

MANAGEMENT <-------+

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- -->
MENT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

<--+

+-------+ +---- JP <-----------+ I
MANAGEMENT +-----------------+

------------>1 INTERRUPT LEVEL 1
+---------------+ +-----------------+

Figure 4.1

The LP provides and receives services from the other components
of Paths and Time. The LP provides scan mask management for
ELQUE management and provides statistics for class management.
LP management gets time information from the time management
component and gets class time definitions from class management.
(See Figure 4.1.)

Licensed Material 4-2 Property of Data General

This chapter is divided into three major parts: the LPCB, user
services, and system services.

The LPCB is the Logical Processor Control Block. It is the major
database of LP management. The structure and fields will be
defined. The basic operations and main paths that affect the
LPCB will be shown in a who, how, and why fashion. This chapter
will show reasons, as well as, who and how the LPCB is affected.
Database locking to maintain the integrity of the LPCB also will
be defined.

The user interfaces section describes the system calls that the
user makes that affect the LP. For example, the ?LPCREA sets up
the LPCB - this would be a user service.

The system services are services provided for the rest of paths
and time. An example of a system service is providing a scan
mask to ELQUE management to scan for a CB or PTBL to run.

Licensed Material 4-3 Property of Data General

4.2 Logical Processor Management Objects

Logical processor and Class management manage
the objects with LP or CL at the beginning of
This section is divided into two subsections:
LP globals.

and manipulate ALL
the object name.
the LPCB and the

4.2.1 The Logical Processor Control Block (LPCB)

The LPCB is used to keep track of the scheduler mode and keep
class scheduling statistics. All LPCBs are created dynamically
except the first LP(LPO). LPO is created at system
initialization. The LPCB is divided into five sub-databases: the
general information section, the scan mode 0 section, the scan
mode 1 section, the user summary section, and the user supplied
class percentages.

The general information summary is as follows:

WORD OFFSET USAGE SUMMARY
---------------+---------------------------------------+
LPSTAT 0 Status word (see next page)
LPID 1 LPID for this LP
LPJPCNT 2 # of JPs attached to this LP
LPJPCNT.W 3 Bit map of attached JPs
LPMVCNT 5 "Move in progress" count
LPMODE 6 Scheduler Mode #
LPDUM 7 Even word align the following
---------------+---------------------------------------+

Scan mode 0 information:

---------------+---------------------------------------+
LPCSM.W 10 Current Scan Mask
LPCTM.W 12 Current Time - Class #1

LPCIU.W
LPISM.W
LPITM.W

LPIIU.W

52
54
56

** 16 classes (16 double words) **
Current Interval Usage
Initial Scan Mask
Initial Time - Class #1
** 16 classes (16 double words) **

116 Initial Interval Usage
---------------+---------------------------------------+

Scan Mode 1 information:
---------------+---------------------------------------+
LPTIM 120 Time Interval
LPTMK.W 121 Current Tier Mask Address
LPHMK.W 123 Hierarchical Mask - Class #1

** 16 classes (16 double words) **
---------------+---------------------------------------+
Figure 4.2

Licensed Material 4-4 Property of Data General

General Usage Information

WORD OFFSET USAGE SUMMARY
---------------+---------------------------------------+
LPSUM.4 163 Summary Class time Class #1

LPTUSE.4
LPTPT.4
LPTMPT.4
LPTSYS.4
LPTMSY.4
LPTDAE.4
LPTINT.W

263
267
273
277
303
307
313

** 16 classes (16 Quad words) **
Total interval time usage
Total Run-Anywhere Ring 1-7 proc usage
Total Mother-Only Ring 1-7 proc usage
Total Non-Daemon 'R-A' Sys Call usage
Total Non-Daemon 'M-O' Sys Call usage
Total Daemon Sys Call usage
Total # Time Intervals

---------------+---------------------------------------+
User-supplied class percentage values (for mode 0)

---------------+---------------------------------------+
LPPCT 315 User-specified percentage values

** 16 Classes (16 words) **
LPCBLN 335 LPCB length = 335 words.
---------------+---------------------------------------+

LPSTAT BIT DEFINITIONS

BIT OFFSET STATUS SUMMARY
--------------+--+
LPLCK (0) LPCB Lock bit
LPOFF (1) Class Scheduling is off for this LPCB
LPACC (2) This LP is not Accumulating stats
LPMOM (3) The "Mother" JP is attached to this LP
--------------+--+
Figure 4.2 (Continued)

Licensed Material 4-5 Property of Data General

4.2.1.1 LPCB Offset Explanations

General Information summary:

This section contains the information used to manage the LP, the
JPs attached to this processor, and the mode of scheduling used
on this LP.

LPSTAT - Contains the status word for this LP.

LPLCK - This is the lock bit for this LPCB. This is a
spin lock, which means that the requestor must spin
while waiting for the lock. LPLCK is used to keep other
JPs from touching some of the LP databases while this JP
is working on the LPCB. For example: JP 0 uses this
lock while changing the scan mask in the LPCB. The lock
guarantees that only one JP at a time can change the
scan mask.

LPOFF - If this bit is set then this LP is not running
class scheduling, which means that classes are not being
enforced. This bit is set when class scheduling is
disabled. If this bit is 0 then the LPACC must be O.

LPACC - If this bit is set then this LP is not in
Accumulate mode. If LPOFF is not set then this bit will
also be cleared, because in order to enforce class
scheduling accumulation of statistics must be done.
This bit can be 0 with the LPOFF bit being set(= 1).
This means that the LP is in ACCUMULATE mode. This bit
will be checked in the scheduler to see if it is
necessary to keep statistics. This bit is set or
cleared by ?CLSCHD.

LPMOM - This bit will be set whenever the mother
processor is attached to this LP. LPMOM is set during a
?JPMOV. This bit is checked when the user is getting
charged for time. If this bit is clear, then a
mother-only process could not have run on this LP.
Therefore, no charge could be assessed to the
mother-only counters in this LPCB.

LPID - This is the Logical Processor ID for this LP. It is
assigned at SINIT time for LP 0 and at ?LPCREA time for the
other LPs. The LPID is used by the system manager to
identify the logical processor being worked with and by JP
management to identify which LP a JP is attached to.

LPJPCNT - Is the number of JPs attached to this LP. This
counter is affected when a JP is attached to or detached from
the LP.

Licensed Material 4-6 Property of Data General

LPJPMP.W - This 32-bit integer is used as a bit map of JPs
attached to this LP. If a bit in this field is set then the
corresponding JP is attached to this LP. For example if bit
4 is set then JP four is attached to this LP. This field is
modified when a JP is moved to or from this LP. See ?JPMOV.

LPMVCNT - This 16-bit integer is used to show how many JPs
are currently being moved to this LP. This field is used to
ensure that an LP cannot be deleted while a JPMOV is in
progress. To delete this LP, LPMVCNT must be O.

LPMODE - Is the scheduler mode for this LP. The mode of the
LP dictates which part of the LPCB is used for scheduling.
The normal scheduling mode is mode O. This means that LP
will run Primary classes defined by the user. If class
scheduling is not being used, the scheduler will stay in mode
O. If the scheduler is in mode 1, it is is running secondary
classes. This value changes from mode 0 to mode 1 when the
scheduler is about to go idle but still may have secondary
classes defined. If none are defined, the mode gets RESET
and the LP (JP attached to it) will go idle.

LPDUM - This field even word aligns the rest of the LPCB.

Scan Mode 0 Information:

Scan Mode 0 is the mode where only the Primary Classes are run.
This means that all secondary and stranded classes are masked
out. The following section describes the offsets for Scan
Mode 0:

LPCSM - This is the current mode 0 scan mask. This mask is
used by the Scanner to find a process that can run. Anything
that is not a primary class (if defined) or has used up its
percentage will be masked out. If class scheduling is not
used, the mask will not mask out any class.

LPCTM.W - These 16 double words hold the amount of time that
has been used in this particular interval for each possible
class. When a RESET is done during scheduling these fields
are cleared and timing restarts. When one of these fields
matches the contents of the (LPITM + class offset) then the
scan mask is updated for that class masking it out.

LPCIU.W - This double word holds the amount of the interval
that has been used. When the amount of LPCIU exceeds the
amount in LPIIU, a RESET occurs.

Licensed Material 4-7 Property of Data General

LPISM.W - This contains the initial scan mask. This scan mask
reflects what the user has defined as the primary classes.
When a RESET occurs this value is put into LPCSM.

LPITM.W - These 16 double words contain the maximum number of
ticks each class is allowed during a specific time interval.
These values are calculated at ?LPCLASS time. The
calculation is (LPITM.W+offset) = interval ticks*c1ass
percentage/100. If the number contained in (LPCTM.W + class
offset) exceeds the corresponding value in LPITM.W then the
current scan mask is updated to deny that class of process
CPU time.

The following example shows an interval broken into ticks for
a 10 second interval. The example then breaks up the
interval into the number of ticks per interval that the
corresponding class will get.

INTERVAL = 10 SECONDS * USER VIEW *
TICKS = (SECONDS * 1000) * MILLISECONDS *

INTERVAL = 10000 PIT TICKS * SYSTEM VIEW *

CLASS O(A) = 20 % * USER VIEW *
CLASS O(A) = 2000 PIT TICKS * SYSTEM VEIW *

CLASS l(B) = 10 % * USER VIEW *
CLASS l(B) = 1000 PIT TICKS * SYSTEM VEIW *

CLASS 2(C) = 50 % * USER VIEW *
CLASS 2(C) = 5000 PIT TICKS * SYSTEM VEIW *

CLASS 3(D) = 20 % * USER VIEW *
CLASS 3(D) = 2000 PIT TICKS * SYSTEM VEIW *

LPIIU.W - This double word contains the number of ticks in
the time interval for this LP. When this value is exceeded
by the value contained in LPCIU, the RESET occurs. This
number is set during the ?LPCLASS system call.

The following example shows an interval broken into ticks.
The result of this calculation is put into LPIIU.W.

INTERVAL = 10 SECONDS * USER VIEW *
TICKS = (SECONDS * 1000) * MILLISECONDS *

INTERVAL = 10000 PIT TICKS * SYSTEM VIEW *

Licensed Material 4-8 Property of Data General

SCAN MODE 1 INFORMATION:

Scan Mode 1 is the mode where the scanner only schedules
secondary classes. All primary and stranded classes are
masked out. In this mode LP management supplies the scan
mask for a tier of secondary class. A secondary class tier
is a level of secondary classes. (See CLASP manual.) The
following section describes the offsets of scan mode 1:

LPTIM - This word is supposed to contain the time interval
but it is not used.

LPTMK.W - This double word contains the address of the
current scan mask within secondary class level. The
secondary class level is one of the 16 possible secondary
class levels that can be defined in class scheduling. (See
CLASP manual.) These 16 class levels are in LPHMK.W.

LPHMK.W - These 16 double words contain the scan masks for
the secondary class hierarchy. When class scheduling is in
mode 1 the LPTMK.W points to an offset in this table so the
correct scan mask may be used by the scanner. This table is
defined at ?LPCREA time. If the bit for a certain class is 0
in this mask, then that class is a valid secondary class for
this tier. If the bit in LPHMK.W is set, then the class is
not on this tier. If LPHMK.W is -1, then there are no
secondary classes on this tier and no secondary classes in
any more secondary class tiers.

The next group of LPCB offsets are used for gathering
statistics. These counters are 64-bit integers. Because the
offsets are 64 bits or four words long, they have a "4" as part
of the offset name. These offsets are used to hold the total pit
ticks a path uses when it runs on this LP. For example: after a
path such as a ?LPCREA (which is a mother-only operation) runs on
this LP, the time used (in pit ticks) is added to offset LPTMPT.4
in the LPCB. These offsets accumulate from the time the LP is
created.

LPSUM.4 - This a group of 16 quadruple words used to hold
cumulative data on the amount of time used by each class on
this LP. These databases are updated at each subslice end
and at process termination.

Licensed Material 4-9 Property of Data General

LPTUSE.4 - These four words are used to count the total
interval time used. An interval is a system manager defined
period of time from which the class scheduling percentages
are converted into pit ticks. This counter is updated each
time a user runs if class scheduling (LPACC is 0) is in
Accumulate mode. This counter is zero when the LP is
created.

LPTPT.4 - These four words are used to count the total number
of nonsystem ticks. Nonsystem ticks are defined as non-ring
o ticks. This includes time used by AGENT EXEC and PMGR.
This counter holds the total for all JPs attached to this LP.
This field is updated at each subslice end and at process
termination.

LPTMPT.4 - These four words count the total "mother only"
user time ticks. This field is updated at each subslice end
and at termination.

LPTSYS.4 - These four words count the total number of ticks
used by system calls that can run on any JP. This database
is updated after a CB for this type of system call run.

LPTMSYS.4 - These four words contain the total number of
ticks used by "mother only" system calls. This
updated after a "mother only" system call runs.
system call that is considered "mother only" is
uses the file system.

database is
One type of

?OPEN, which

LPTDAE.4 - These four words contain the total number of ticks
used by Daemons on the LP. After a CB runs, the LP
accounting path checks if the CB that ran was a daemon. If
so, this database gets updated.

LPTINT.W - This double word contains the total number of
intervals used on this LP. An interval is a system-manager
defined period of time from which the class scheduling
percentages are converted into pit ticks. When an interval
is used up, then the system clears the time used parts of
class scheduling. This database is only updated when an
interval ends. This is significant because this value only
reflects the Total number of FULL intervals used, not RESETs
of intervals based on ELQUE behavior. (See RESET.)

Licensed Material 4-10 Property of Data General

User Supplied Class Percentage Values:

The last part of the LPCB is the user-defined area. This area is
affected by the ?LPCLASS system call.

LPPCT.W - These 16 words contain the user defined Class
percentages. These percentages are defined at ?LPCLASS
time. These values are used to set up LPITM.W.

LPCBLN - This value is the length of the LPCB, which is 335
words.

** LPBLM is not a global and is not an offset in the LPCB; it is
the number of words that get BLMed (Block moved) into the LPCB at
RESET time. The BLM will start from offset LPCSM.W and move
LPBLM words of zeros into this area. The value of LPBLM is 44
(octal). This value is only useful when looking through the
RESET code.

Licensed Material 4-11 Property of Data General

4.2.2 The Globals

In AOS/VS there are Global symbols that are needed so multiple
areas of the system can get at data. These symbols are defined
in the modules called SZERO.LS and STABLE.LS.

Table 4.1 shows all the globals associated with LP Management.

Table 4.1 The LP Management Globals

NAME DESCRIPTION

+-------------+-------------------------------------+
LP.W THE TABLE OF LPCBs
MYLPCB.W POINTER TO THE CURRENT LPCB

LPCNT
LPMAP.W
LPCBMAP.W
LPCB.TMP
JPLPLK.W
MLPCB.W
MXLPCB
CLSCHD.W

CLACC.W

ONE FOR EACH JP
TOTAL NUMBER OF LPS ON THE SYSTEM
BITMAP OF USER-VISIBLE LPCBs
BITMAP OF ALL EXISTING LPCBs
A PREDEFINED LPCB
THE GLOBAL LP JP LOCK WORDS
POINTER TO MOTHER LPCB
MAXIMUM NUMBER OF LPS ON THE SYSTEM
BIT MAP OF LPs THAT HAVE CLASS

SCHEDULING ENABLED
BIT MAP OF LPs THAT HAVE CLASS

ACCOUNTING ENABLED
+---+

4.2.2.1 Global Definitions

The following section provides more detail on the globals defined
in Table 4.1.

LP.W is a table of double-word pointers to LPCBs. This table
is indexed by LPID and is used by the function findlp().
The table is also touched by the user service ?LPCREA.
Figure 4.3 below shows the LP.W table:

LP.W[LPID]

LP.W[O]->

LP.W[15]->

Figure 4.3

+---+
1-~-1------+->---------> +1~;Co-~-+1

+-----+
1---1 ILi~B I +-----+

+-----+ +-----+
14 -----+ j> ILi~B I
15 ----------------------+ +-----+ +---+

Licensed Material 4-12 Property of Data General

MYLPCB.W is a pointer to the LP that this JP is attached to.
This field is used by each processor when it is trying to quickly
find the address of the LP and is much faster than constantly
looking at the table of LPs(LP.W) to find the LP the JP is
attached to. There is a separate copy of this field for each JP
on the system. (See JP Management.) This field is initialized
at SINIT for the mother processor and by ?JPINIT for daughter
processors. The field is modified by ?JPMOV. The reason for
this pointer's existence is speed. This field is used at
interrupt level, during scheduling, and during statistic
gathering operations.

LPCNT is a one-word integer used for counting the number of LPCBs
in the system. This field is set to 1 at assembly time because
LPO exists when the system comes up. LPCNT is incremented when
an LP is ?LPCREAted and decremented when an LP is ?LPDELeted.
During ?LPCREA this field is also compared to MXLPCB to prevent
the user from creating more than the maximum number of allowable
LPCBs.

LPMAP.W is a 32-bit field used as a bit map of all user visible
LPs in the system. A user visible LP is an LP that the user can
query by system call. LPMAP.W is initialized with the zero bit
set to show that LPO exists. This field is indexed by LPID.
During ?LPCREA this field is modified to reflect the new LP added
to the system. This field is also queried during ?LPCLASS to
check for the existence of an LP. LPMAP is also copied into the
user's packet in the ?LPSTAT call. During ?LPDEL the bit for the
corresponding LP being deleted is cleared. The reason for this
is ?LPDEL does not de-allocate the LPCBs, it merely makes them
invisible to the user. When the LP is deleted, there still may
be some time charges to the LP so it cannot be deleted.

LPCBMAP.W is a 32-bit field used as a bitmap of all existing
LPCBs in the system. LPCBMAP.W is initialized with the zero bit
set to show that LPO exists. The bits in this field are indexed
by LPID. During ?LPCREA This field is checked to see if the LPCB
for this LPID already exists. (See Section 4.3.2 ?LPDEL for why
this field is used.) If the LPCB does exist, there is no need to
get memory for the LPCB; the routine merely reuses the memory.
This field is not affected by ?LPDEL.

LPCB.TMP is the address of an internal blank copy of an LPCB.
The internal copy contains all the field definitions and some
initial settings so the new LPCB can be created in one
instruction (WBLM) with LPCB.TMP as a template instead of
clearing individual fields. This block has the initial settings
of the LPCB. This field is used at ?LPCREA time as a template
for initialization of the LPCB.

Licensed Material 4-13 Property of Data General

JPLPLK.W is a 32-bit lock field used as a global lock for the
entire JP and LP environment. This field is used as a pend and a
spin lock. This lock is used to prevent all other JPs on the
system' from modifying any LPs or affecting attachments of JPs to
LPs. For more information on how this field is used, see Section
4.2.5 LP Locking; for more on the concepts of global locking, see
ELQUE Management.

MLPCB.W 1s a 32-bit pointer to the MOTHER LPCB. This field
contains the address of the LPCB that contains the MOTHER JP.
This field gets changed during ?JPMOV if the mother JP is being
moved to another LP. MLPCB.W is also set during system
initialization when the initial LP(LPO) is initialized.

MXLPCB is a one-word integer constant containing the maximum
number of LPs that can exist on the system. The value of MXLPCB
is 020(16.).

CLSCHD.W is a 32-bit field that contains a bit map of LPs that
have class scheduling enabled. This field is indexed by LPID.
If the bit corresponding to an LP is set, then the LP has Class
scheduling enabled. This field is initially O. CLSCHD.W is
modified during the ?CLSCHD system call if the user requests that
class scheduling be enabled or disabled.

CLACC.W is a 32-bit field that contains a bit map of LPs that
have class scheduling ACCUMULATE mode enabled. This field is
indexed by LPID. If the bit corresponding to the LPID is set
then that LP has ACCUMULATE mode enabled. CLACC.W is modified
during the ?CLSCHD system call if the caller requests ACCUMULATE
mode to be enabled or disabled.

Licensed Material 4-14 Property of Data General

4.2.3 Basic Operations

There are seven basic operations that affect the LPCB: attach,
detach, update class times, manage interval, reset, update total
time counters, and update scan mask. The seven operations are
explained and pseudocoded in the sections below.

4.2.3.1 Attach

Attach is an operation that affects both the JP and LP. It is
the operation that attaches a JP to an LP. This operation
increments the LP's JP count, puts the JP in the LP's JP bit map
and puts the LPCB address in the PPCB. To use this function the
LPJPLOCK must be held.

/* $$$ */
/* */
/* ATTACH */
/* */
/* This routine attaches a JP to an LP. */
/* */
/* */
/* $$$ */

attach(lpcb,ppcb)
{

/* *** */
*/

If the PPCB is already attached to an LP then */
panic with a 14615. This is the attach panic.*/

/*
/*
/*
/*
/* ***

if (ppcb.1pcb.w!= 0)
panic(14615);

else
ppcb.1pcb.w = 1pcb;

jpid = ppcb.jpid;
1pcb.1pjpcnt++;

*/
*/

/* *** */
/* */
/* If the LP already shows that the JP is */
/* attached to it then panic with a 14615. */
/* Otherwise, set the bit in the bit map for */
/* that JPID. */
/* */
/* *** */

if (bit(lpcb.1pjpmp.w,jpid)!= 0)
panic(14615);

else
setbit(lpcb.1pjpmp.w,jpid);

Licensed Material 4-15 Property of Data General

/* *** */
/* */
/* If this is the mother JP we're attaching then */
/* set the "mother is attached to this 1p" LPMOM */
/* bit in the LPCB. */
/* */
/* *** */

if (bit(ppcb.cpstat,cpmast) == 1)
{
lock 1pcb(lpcb); /* this turns off interrupts*/
setbIt(lpcb.1pstat,lpmom);
unlock 1pcb(lpcb); /* interrupts enabled */
} -

return();
}/* attach operation */

Licensed Material 4-16 Property of Data General

4.2.3.2 Detach

This operation detaches a JP from an LP. This is called
when doing a JPMOV, a JPREL, or if a JPINIT fails. This
operation affects the LPCB by decrementing the JP count and
removing the JP from the LP's JP bit map. To use this
function the LPJPLOCK must be held.

/* $$$ */
/* */
/* DETACH */
/* */
/* This routine detaches a JP from an LP. */
/* */
/* */
/* $$$ */

detach(lpcb,ppcb)
{

/* *** */
*/

If there is no LPCB attached to the PPCB then */
panic with a 14616. This is the detach panic.*/

/*
/*
/*
/*
/* ***

if (ppcb.lpcb.w == 0)
panic(14616);

else
ppcb.lpcb.w = 0;

jpid = ppcb.jpid;
lpcb.1pjpcnt--;

*/
*/

/* *** */
/* */
/* If the JP to be detached from the LP is not */
/* there then panic with a 14615. */
/* Otherwise, clear the bit in the bit map for */
/* that JPID. */
/* */
/* *** */

if (bit(lpcb.lpjpmp.w,jpid) == 0)
panic(14615);

else
c1earbit(lpcb.1pjpmp.w1 jpid);

Licensed Material 4-17 Property of Data General

/* *** */
/* */
/* If this is the mother JP we're detaching then */
/* clear the "mother is attached to this lp" LPMOM*/
/* bit in the LPCB. */
/* */
/* *** */

if (bit(ppcb.cpstat,cpmast) == 1)
{

lock lpcb(lpcb);
clearbit(lpcb.lpstat,lpmom);
unlock lpcb(lpcb);

} /* If */
return();

} /* detach operation */

4.2.3.3 Update Class Timings

This function updates the timing variables for class
scheduling. To make decisions in class scheduling, class
statistics must be kept current. After a PTBL runs, this
operation is called if class scheduling is "on" or in
"accumulate" mode. This function is not explicitly
implemented as a function in the code, it is inline code.

/* $$$ */
/* update_class_timings */
/* */
/* This routine updates a class time in the LPCB. */
/* It is assumed that class scheduling is on or */
/* accumulating. Element addr is the address of */
/* the PTBL or CB being charged. */
/* $$$ */

update class timings(lpcb,element addr,time used);
{- - --

lock lpcb(lpcb);
/* *** */
/* Subtract from the total allowable time for that*/
/* class. If there is no time left then call */
/* update the class mask. */
/* */
/* *** */

class offset = element addr.pgnum.w;
lpcb.lpctm.w[class offset] -= time used;
if (lpcb.lpctm.w[class offset] <= 0)

update class mask(class offset,lpcb);
return();- - -

} /* operation */

Licensed Material 4-18 Property of Data General

4.2.3.4 Manage Interval

This function manages the class scheduling time interval.
Each time a process stops running the time it used is
subtracted from the interval. If time ran out then restart
the interval. This function is part of inline code, it is
not actually a separate routine.

/* $$$ */
/* manage_interval */
/* */
/* This routine updates and restarts the time */
/* interval (if needed). Assume class scheduling */
/* is on. */
/* $$$ */

manage interval(lpcb,time used)
{ - -

lpcb.lpciu.w -= time used;
/* *** */
/* */
/* If the time interval ran out, then we must */
/* restart it. First update the total interval */
/* counter. */
/* *** */

if (lpcb.lpciu.w <= 0)
{
lpcb.lptint ++;
reset(lpcb);

} /* if */
unlock lpcb(lpcb);
return();

} /* manage interval operation */

Licensed Material 4-19 Property of Data General

4.2.3.5 Reset

This operation is similar to restarting the time interval.
It resets the class mask and class counters. This function
is a routine in the module SCHED but is not always called.
There are some places in1ine that do this functionality but
do not make the call to RESET.

/* $$$ */
/* reset */
/* This function resets the Class scheduling */
/* values. It does this by BLMing part of the */
/* fixed values of the LPCB into the fields that */
/* can change during the interval. */
/* $$$ */

reset(lpcb)
{

lock lpcb(lpcb);
BLM(&lPcb.1pcSm,&lpcb.1pism,lpb1m);
unlock 1pcb(lpcb);
return();

} /* reset operation */

4.2.3.6 Update Totals Counters

This function updates the time totals in the LPCB. The
routine will be called with the offset into the LPCB to
update. This function is implemented in1ine and, therefore,
does not explicitly exist as a function. This does not
reflect collision counters that are updated when a lock
collision is encountered. A lock collision is an attempt to
lock a locked lock.

/* $$$ */
/* update totals counters */
/* This routine updates the total of the counter */
/* supplied in the offset with the amount of time */
/* used. If there is a collision the global */
/* counter CLPDE.W is updated. (Collision counting*/
/* is not in pseudocode.) A collision occurs when*/
/* the calling routine fails to get a lock on a */
/* database (in this case a contrOl block). */
/* */
/* $$$ */

update_tota1s_counters(lpcb,offset,time_used)

lock 1pcb(lpcb);
(long)lpcb.offset += time_used;
unlock 1pcb(lpcb);
return();

Licensed Material 4-20 Property of Data General

4.2.3.7 Update Scan Mask

This operation modifies the scan mask because a class has
used up its interval. Each time a class uses its portion of
an interval, all members of that class must be masked out
for the rest of the interval. This operation is only called
if class scheduling is ENABLED or "on." For more
information on how this function is used see Section 4.2.4
Scanner. This function does not explicitly implement as a
function in the source, but is implemented inline.

/* $$$ */
/* update scan mask */
/* This routine updates the scan mask using */
/* the class offset supplied to the routine. */
/* Also supplied is the LPCB address. */
/* $$$ */

update scan mask(lpcb,class offset)
{- - -

setbit(lpcb.lpcsm[class offset]);
return(); -

} /* update scan mask operation */

FINDLP:

Findlp is a function that tries to find an LPCB address.
This function uses the LPID to find an LPCB in LP.W. If the
routine does not find the LP it takes the error return.

/* $$$ */
/* findlp(lpid) */
/* This routine tries to find an LPCB in LP.W. */
/* If successful then the routine returns an LPCB */
/* address. If not successful then the routine */
/* takes an error return. */
/* */
/* $$$ */

findlp(lpid)
{

Licensed Material 4-21 Property of Data General

/*
/*
/*
/*
/*
/*
/*

First check in the
if the LP exists.
return. If the LP
LPCB address.

LP bit map (LPMAP.W) to see
If not take the error
exists then return the

if (bit (lpmap.w,lpid) 1= 1)
return(error_return);

else
return(lp.w[lpid]);

} /* findlp() */

*/
*/
*/
*/
*/
*/
*/

Licensed Material 4-22 Property of Data General

4.2.4 Paths that Affect the LPCB

There are three main paths that affect the LPCB: the
Scanner, LPCB accounting, and user service routines (defined
in the User services section).

4.2.4.1 The Scanner

The scanner is the path, in the module SCHED, that scans
ELQUE to find a CB or PTBL to run. This path is not called
"scanner" in the code, it has several entry points. For an
explanation of the entry points into the scanner, see ELQUE
Management. The scanner affects the LPCB when there is a
RESET of the LPCB databases after a scan of ELQUE fails.
The scanner also affects the LPCB when there is a mode
change.

The scanner is presented from the LP point of view. The
reason for this is that the scanner in the system imbeds
three logically separate points of view in1ine. For
example, consider the following lines of C code.

A: if (bit(myppcb.w.cpstat,cpmast) !=l)/*daughter?*/
setbit(mask,process_mother_bit);

B: element = SCAN(*ELQUE,mask);

C: if (mask == my1pcb.lpciu.w)
{}

"A:" is supplied by JP management because the if statement
uses the global MYPPCB.W to find out if this is a daughter
processor (see JP management).

"B:" is supplied by ELQUE management because the scan
function uses ELQUE, which is managed in ELQUE management.

"C:" is supplied by LP management because the initial scan
mask comes from the LPCB.

In the above example, three major areas of Paths and Time
are used in three nearly consecutive commands. This is the
way the code is really presented in the system, but to
modu1arize the Scanner for each section the scanner is
presented with different emphasis.

Licensed Material 4-23 Property of Data General

The pseudocode below shows the scanner from the LP point of
view.

/* $$ */
/* */
/* The Scanner */
/* The scanner will loop forever unless left */
/* to gO_idle. (See ELQUE management.) */
/* */
/* $$ */

#define loop forever true
scanner() -
{
int model_tier; /* variable used for call to set_mask*/

model tier = 0;
while(loop forever)

{ -
/* ** */
/* */
/* Get the current mask. If child processor then */
/* mask out the mother bit and scan ELQUE. */
/* MYPPCB.W is the PPCB for that JP. */
/* mylpcb.w is the address of this LPCB. */
/* Setmask is a function in JP management. */
/* ** */

mask = set mask(mode,mylpcb,model tier);
if (bit(myppcb.w.cpstat,cpmast) !~l)/*daughter?*/

setbit(mask,process mother bit);
element = SCAN(*ELQUE,mask); -

/* ** */
/* If the scan was successful the element will get */
/* dispatched. (See ELQUE management.) */
/* */
/* ** */

if (successful scan)
dispatch element(element);

else -

Licensed Material 4-24 Property of Data General

/* ** */
/* */
/* If not successful then check to see if a mode */
/* change is necessary. If the current */
/* mask is the same as the initial scan mask */
/* RESET and change mode. This is considered a */
/* sufficient check because the scan failed with */
/* the initial mask meaning there are no more */
/* primary classes ready to run. To avoid a second */
/* unnecessary scan, RESET to run the secondary */
/* classes. */
/* ** */

if (mask == mylpcb.lpciu.w)
{
reset(mylpcb.w);

} /* if */
else

/* ** */
/* */
/* If not changing the mode then check to see */
/* what mode we're in. If mode 0 then reset the */
/* LP databases and get a new mask. If not, get the */
/* next tier if possible. */
/* ** */

}
}

/*
/*

if (myppcb.current mode == 0)
reset (mylpcb.w);
model=tier = 0;

else
if (myppcb.cptmk.w+2 > myppcb.cphmk.w+32)

{

else

myppcb.current mode = 0;
model tier = 0;
}

{
myppcb.cptmk.w += 2; /* JP */
model tier = myppcb.cptmk.w;
}/* else */

while loop */
scanner /*

Licensed Material 4-25 Property of Data General

4.2 •. 4.2 LP Accounting

The second path that affects the LPCB is the LP accounting
path. After an element runs the correct LPCB databases must
be updated. For example, if class scheduling is enabled and
the element running was a PTBL (see ELQUE management) then
update the timings for the class that element belongs to and
decrement the amount of time left in the interval. If the
interval runs out then RESET the interval and mode.

The pseudocode below shows how the LP accounting path works.
There are two separate paths to do the statistic updates:
one is for PTBLs (entry point is PTUPDT) and the second is
for CBs (entry point CBUPDT). For more information on the
PTBL and CB see ELQUE management.

/* $$ */
/* update user run stats ptupdt */
/* This routine is called each time a PTBL stops */
/* running. */
/* The argument to this routine is the PTBL address. */
/* (See ELQUE management.) */
/* A global counter is incremented to count the */
/* number of times this is done. The global is */
/* NPTUPDT.W. (See ELQUE management.) */
/* $$ */

Licensed Material 4-26 Property of Data General

ptupdt(ptbl)
{

nptupdt.w ++;
pextn = ptbl.pextn.w;

/* *** */
/* If the current subslice residue (PSL) and the */
/* old subslice residue are equal, then the process */
/* ran for zero time and we do not need to update */
/* the statistics. */
/* */
/* *** */

time used = pextn.psI - pextn.opsl;
if (time used == 0) /* see ELQUE mgnt */

return();
/* *** */
/* If the JP count for the LPCB is zero, then we cannot*/
/* charge time to that LPCB because without a JP we */
/* couldn't have run. JPs run code, not LPs. What */
/* must have happened was the JP was somehow moved */
/* while the PTBL was running and it was on the mother */
/* JP and it was the caller of the ?JPMOV. This */
/* means that the timing for this run would be lost. */
/* */
/* *** */

lpcb = pextn.plpcb.w;
if (lpcb.jpcnt == 0)

return();

Licensed Material 4-27 Property of Data General

/* ** */
/* */
/* If we are a "mother only" call and the LPCB status*/
/* says the mother is attached to this LPCB, then */
/* update the mother-only stats, or else update the */
/* "run anywhere" stats. These stats are generalized*/
/* (not class specific). If the PTBL and */
/* the LPCB mom bits disagree then this process must */
/* have JPMOVed the mother processor while it ran. */
/* ** */

if «bit(ptbl.pstat,pmast) == 1)&
(bit(lpcb.lpstat,lpmom) == 1»

update_totals_counters(lpcb,lptmpt.4,time_used);
else

update_totals_counters(lpcb,lptpt.4,time_used);

/* ** */
/* If we are not accumulating satistics then */
/* return. */
/* ** */

if (bit(lpcb.lpstat,lpacc) == 0)
return();

/* ** */
/* Otherwise add the time used to the total */
/* time used and to the total time used by that class.*/
/* Call the general accounting routine to charge */
/* general statistics and deal with the time interval.*/
/* Charge user is called COMN3 which is not an entry */
/* point into SCHED. */
/* ** */

charge user(lpcb,ptbl,time used);
return(); -

}

Licensed Material 4-28 Property of Data General

The second update path that affects the LPCB deals with CBs
(see ELQUE management). The entry point for this section is
CBUPDT (CB UPDaTe). This routine updates the LPCB general
total counters.

/* $$ */
/* CBUPDT */
/* After a CB runs the time it ran needs to be */
/* accounted for in the LPCB. Depending on the type */
/* of CB, different counters will be updated. */
/* The argument passed to the routine is the CB */
/* address. */
/* A global counter is incremented to count the */
/* number of times this is done. The global is */
/* NCBUPDT.W. */
/* $$ */

cbupdt(cb)
{

ncbupdt.w++;
/* ** */
/* Get the time used. If the time is zero then no */
/* time was used so return. Otherwise add time to */
/* total system call time in the CB and clear PTIME. */
/* */
/* ** */

time used = cb.ptim;
if (time used == 0);

return();
cb.ttime += time used;
cb.ptime = 0; -

Licensed Material 4-29 Property of Data General

/* ** */
/* Get the system call number out of the CB. If the */
/* call number is -1 then the CB is a daemon. Update*/
/* the daemon counter in the LPCB. */
/* ** */

call number = cb.calln;
if (call number == -1)

{ -
Ipcb = mylpcb.w;
update totals counters (lpcb,lptdae.4,time_used);

} - -
else

/* ** */
/* If the "mother only" bit is set in the CB then */
/* the mother-only counter is updated on the LP. */
/* */
/* ** */

if (bit(cb.pstat,pmst) == 1)
{
Ipcb = mylpcb.w;
update totals counters (lpcb,lptmsy.4,time_used);

} - -
else

/* ** */
/* The CB is not a daemon or a "mother only" then it */
/* is a "run anywhere" system call. Update the "run */
/* anywhere" system call counter. */
/* ** */

}

{
Ipcb = cb.plcb.w;
update totals counters (lpcb,lptsys.4,time_used);
} - -

Licensed Material 4-30 Property of Data General

/* ** */
/* If the LP is not in accumulate mode then return. */
/* */
/* ** */

if (bit(lpcb.lpstat,lpacc) == 0)
return();

/* ** */
/* If the LPCB in the CB is different from the LPCB */
/* we're currently charging against, then make the */
/* LPCB from the CB the charged LPCB. */
/* This check is done to ensure that the LPCB has not*/
/* changed since the CB ran. */
/* ** */

if (cb.plpcb.w != lpcb)
{
lpcb = cb.plpcb.w;

/* ** */
/* If the JP count in the LPCB is 0 then we cannot */
/* charge for time if we have no processor to run on, */
/* so return. This will happen if the CB ran on the */
/* mother and the CB did a ?JPMOV of the mother. */
/* ** */

if (cb.plpcb.jplpcnt == 0)
return();

/* ** */
/* Call the general accounting routine to charge */
/* general statistics and deal with the time interval.*/
/* */
/* ** */

charge user(lpcb,ptbl,time used);
return{); -

}

Licensed Material 4-31 Property of Data General

/* $$ */
/* Charge User */
/* */
/* This is the general routine called from both */
/* CBUPDT and PTUPDT to do general statistics and */
/* work with the time interval. */
/* This common function charges the LPCB for total */
/* time used in the LP and charges a particular */
/* class for the time used by an element. */
/* Charge user is a routine called COMN3 in SCHED. */
/* COMN3 Is not an entry point, therefore, it has been*/
/* renamed. */
/* $$ */

charge user(lpcb,ptbl,time used)
{ - -

update totals counters (lpcb,lptuse.4,time used);
class offset ~ ptbl.pgnum; -
update_totals_counters (lpcb,lptsum.4,t!me_used);

/* ** */
/* */
/* If class scheduling is on, then manage the time */
/* interval. ** NOTE if LPOFF = 1 then class */
/* scheduling is off. ** */
/* */
/* ** */

}

If (bit(lpcb.lpstat,lpoff) == 0)
{
update class timings(lpcb,ptbl,time used);
manage-interval(lpcb,time used); -

} - -
return();

Licensed Material 4-32 Property of Data General

4.2.5 LP Locking

When doing work with the LPCB, locks must be held to prevent
other JPs from touching a database while this JP is trying
to work with it. There are two levels of locking used for
working with the LPCB: the first is the Global JP LP lock,
and the second is the local lock.

The main JP LP lock used is called JPLPLCK.W. JPLPLCK.W is
a global lock used when doing something that could affect
more than one LP or JP in the system. While this lock is
held, all other LPJP requests must spin or pend depending on
the type of JPLPLCK it held. For more information on the
JPLPLCK.W lock words, see ELQUE management.

JPLPLCK is only used by the MP system calls (except ?PROC).
These are paths that can pend on the lock because they run
as control blocks (see ELQUE management). These paths can
also spin on a lock. For example: The system call ?LPDEL
makes a call to the JPLPLCK routine to keep all other JPs
away from this LPCB. Keeping the other JPs away means no
other LP or JP system calls (MP system calls) will be
allowed to work on any LPCB or PPCB. All LP system calls
use this mechanism when working on the MP environment.

JPLPLCK is currently an unnecessary lock because all MP
system calls run "MOTHER ONLY". This lock was designated
for the future when more than one JP will be allowed to
service MP system calls. The only non-MP call that uses
this lock is ?PROC and that call is also a "MOTHER ONLY"
call.

Below is the pseudocode for the general locking and
unlocking routines used in LP management.

Licensed Material 4-33 Property of Data General

4.2.5.1 GET LOCK

This routine locks JPLPLCK.W for "read" or "change"
depending upon the call type.

/* $$ */
/* get lock (change or read) */
/* In reality this is two routines called */
/* GCLOCK and GRLOCK, respectively. */
/* This routine is the general locking routine.*/
/* It gets a transition lock from the lock, */
/* word, locks it, locks the change lock, */
/* and clears the transition lock. */
/* This routine will also pend if the change */
/* lock is held. */
/* $$ */

get lock(type,lock)
{ -

begin:

/* ** */
/* This part spins waiting for the transition */
/* lock to be released. */
/* */
/* ** */

while (bit(lock.ptran) = 1)
{}

setbit(lock.ptran); /* set transition lock*/

/* ** */
/* Now we have the transition lock, so we can */
/* try to see if the change lock is held. If */
/* it is, pend and show there are waiters on */
/* the lock. */
/* ** */

if (bit(lock.pdchng)
{
setbit(lock.pdwait);
clearbit(lock.pdtran);
pend(jplplock.w);
goto begin;

}

/* ** */
/* If the requestor wants the change lock, */
/* then set the change lock. */
/* */
/* ** */

if (type == change)
setbit(lock.pdchng);

Licensed Material 4-34 Property of Data General

/* ** */
/* We have the locks we want now, so clear */
/* pdtran, increment the lock user count, and */
/* return. */
/* ** */

lOck.pdusers +=;
setbit(lock.pdtran);
return();

4.2.5.2 Release Lock

This routine releases the global (JPLPLCK.W) and unpends the
waiters if there are any.

/* $$ */
/* release lock (change or read) */
/* In reality this is two routines called */
/* GCUNLOCK and GRUNLOCK, respectively. */
/* This routine is the general unlocking */
/* routine. It gets a transition lock from the */
/* lock word, locks it, unlocks the change */
/* lock, and clears the transition lock. */
/* This routine will also unpend anyone waiting*/
/* for the change lock. */
/* $$ */

release lock(type,lock)
{ -

/* ** */
/* This part spins waiting for the transition */
/* lock to be released. */
/* */
/* ** */

while (bit(lock.ptran) == 1)
{}

setbit(lock.ptran); /* set transition lock*/
/* ** */
/* Now we have the transition lock, so we can */
/* clear the change lock. */
/* */
/* ******~************************************ */

clearbit(lock.pdchng);

Licensed Material 4-35 Property of Data General

/* ** */
/* The change lock is now released, unpend the */
/* waiters if any, release ptran, and return. */
/* */
/* ** */

setbit(lock.pdtran);
if (bit(lock.pdwait) == 1)

upend(jplplock.w);
return();

4.2.5.3 Lock LPCB

This operation is the local locking mechanism for access to
the LPCB. The local lock refers to the lock in the LPCB
status word. There is a lock bit in the status word that
allows locking called LPLCK. To modify the LPCB this lock
must be held. This lock is a spin lock. This function sets
the lock bit and turns off interrupts. This is a
lower-level function than the JP LP locking function. Lower
level means the use of this lock does not affect any other
LP in the system. The pseudocode below shows how this
operation works.

/* $$$ */
/* lock lpcb */
/* This function locks the LPCB that will be */
/* changed. It sets the bit in the status word */
/* that locks the LPCB. If it is locked then the */
/* routine will spin on the lock. */
/* LPCB is the address of the LPCB to be locked. */
/* $$$ */

lock lpcb(lpcb)
{-

while(bit(lpcb.lpstat[lplck]) == 1)
{}

interrupts(off); /* turn off interrupts */
setbit(lpcb.lpstat.[lplck]);

} /* lock LPCB operation */

Unlock LPCB

This operation unlocks the LPCB. Since the lock function
spins on a lock, it spins on the assumption that it won't
spin for long, therefore, after performing an operation on
the LPCB the unlock function must be called. This operation
clears the lock bit in the status word of the LPCB whose
address is supplied to the routine. The pseudocode below
shows how this routine works.

Licensed Material 4-36 Property of Data General

/* $$$ */
/* unlock lpcb */
/* This routine clears the LPCB lock bit. The LPCB*/
/* address is supplied to this routine. */
/* $$$ */

unlock lpcb(lpcb)
{ -

clearbit(lpcb.lpstat[lplck]):
interrupts(on): /* turn on interrups */
return();

} /* unlock lpcb operation */

Licensed Material 4-37 Property of Data General

4.3 User Services

LP and CLASS management provide the user with different user
services. These services can be accessed by system calls.
The system calls that LP management services are ?LPCREA,
?LPDEL, ?LPSTAT, and ?LPCLASS. The sections below will show
how the system call works and why it is used.

4.3.1 ?LPCREA

?LPCREA is the call used to create the Logical Processor.
This call creates an LPCB. The entry point for this call is
LPCREA.P. When an LP is created, class 0 (or A in CLASP
terms) is the only class that is defined. The default
interval is 4 seconds. Figure 4.4 shows the default LP or
LPO. (For more information see the CLASP manual.)

DEFAULT.LP
+========================+

PRIMARY CLASSES

A(O)
B(l)

-->
\

-- \ --
== /

P(15) /

100%

not defined

--
SECONDARY CLASSES

tier 1 --> none

tier 16 --> none
--

INTERVAL

4 Seconds
+------------------------+

Figure 4.4

Licensed Material 4-38 Property of Data General

/* $$$ */
/* lpcrea.p */
/* This service creates the LP so it can be used */
/* in the MP environment. */
/* */
/* $$$ */

lpcrea.p()
{

/* ** */
*/

If the user does not have the MP privilege(sysprv) */
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

then exit with the "not privileged for this */
action" error. */
This function calls a routine called mp priv check.*/
The mp priv check routine checks to see-if the */
user has "SYSTEM MANAGER" privilege "on" and logs */
the attempt. If "SYSTEM MANAGER" is not on for */
the caller thenmp priv check will return an */
error. - - */
** */

if (!(mp priv check(»
return(not-priv_for_action);

/* *** */
/* There are two locks used to work with the LPCB. */
/* The reason for this is that some other JPs may be */
/* running on this LPCB, so we do not want the LPCB */
/* to be invalid while we are trying to read it (read */
/* lock) and we do not want updates to occur while we */
/* are changing the database.(change lock) */
/* *** */

get_lock(change);

/* *** */
/* */
/* If we are at the max number of LPs (16) then */
/* exit with "too many LPs" error. */
/* lpcnt is the LP count global. mxlpcb is the global*/
/* for the maximum number of LPs allowed in the */
/* system. */
/* *** */

if (lpcnt <= mxlpcb)
{
release lock();
return(exceded max lp count);
} - --

Licensed Material 4-39 Property of Data General

/* *** */
/* */
/* If the LP map of allocated lpcbs (lpcbmap.w) and */
/* the map of user visible LPs (lpmap.w) are */
/* different, then the LPCB does not need to be */
/* allocated. There is an lpcb already allocated. The*/
/* reason for this ?LPDEL does not de-allocate the */
/* LPCBs, it merely makes them invisible to the user.*/
/* When the LP is deleted there still may be some */
/* time charges to the LP so it cannot be deleted. */
/* *** */

if (lpmap.w 1= lpcbmap.w)
{

/* *** */
/* Now loop and find the bit in the maps that are */
/* different. Once found break out of the */
/* loop. Then get the LPCB address from the global*/
/* table of lpcb addresses called lp.w. */
/* *** */

}

for (i=O;i<32;i++)
if (bit(lpmap.w[i]) 1= bit(lpcbmap.w[i]»

break;
lpcb = lp.w[i];

else
/* *** */
/* */
/* If lpmap.w and lpcbmap.w are the same then we */
/* must call memory management to allocate the memory */
/* for the LPCB. lpcbln is the length of the lpcb. */
/* GSMNW is the memory management function to get */
/* memory with no wait. */
/* If there is no memory to be had, then the call will*/
/* take an error return. If the memory call does, */
/* then exit with a memory error. */
/* *** */

{
lpcb = gsmnw(lpcbln);
if(error return)

{ -
release lock();
return(memory error);
} -

Licensed Material 4-40 Property of Data General

/* *** */
/* Now that we have the memory for the lpcb and the */
/* address in variable lpcb, we must find a place in */
/* the lp.w table to put the lpcb address. */
/* */
/* *** */

for (i=0:i<16:i++)
if (lp.w[i] == 0)

break:
} /* for loop */

/* *** */
/* Now that we have an LPCB, we have to set it up with*/
/* initial values. We will BLM a skeleton LPCB */
/* which is a global call lpcb.tmp. This global */
/* can be found in the STKS module in the sources. */
/* Add the new lpcb to the LP global databases and */
/* return to the caller. */
/* *** */

BLM(lpcb,*lpcb.tmp,lpcbln):
lpcb.lpid = i: /* i is used in the for loops above*/
lpcb.1ptmk.w = 1pcb.lphmk.w:
lpcnt ++: /* increment total # of LPs in system */
lp.w[lpcb.lpid*2] = lpcb: /* double word table */
setbit(lpmap.w[lpcb.lpid]):
setbit(lpcbmap.w[lpcb.lpid]):
release lock():
Set up trap handler():
packet-address = CC.W->CATCB.W->TAC2.W:
packet-address.lpid = lpcb.lpid:
clear trap hand1er():
return(): -

Licensed Material 4-41 Property of Data General

4.3.2 ?LPDEL

To complement the ?LPCREA system call there is a ?LPDEL
system call. One unique thing that the LPDEL does is to
delete the LP but keep its memory around. The reason for not
deleting the memory is for the scheduler. During the course
of scheduling, various values are taken from the CB/PTBL and
added to the LPCB database. This addition is only done when
"necessary" (not on every reschedule). The problem is that
if the LPCB were deleted, the scheduler could very well add
the statistics to the LPCB memory (which is now used for
something else) and the system will likely die a humorous
and non-reproducible death. The scheduler cannot check for
the LPCB existence because it would take too long for the
heavily traveled routine. So keep it around and let the
scheduler update it with meaningless statistics.

LPs can have JPs attached to it or not. Since the user can
change the number of JPs attached to LPs or even delete LPs
outright, the system has no way to guaranty that an LP will
always be there for accounting. Thus, to avoid PANICing the
system keeps deleted LPCB memory around.

/* $$$ */
/* lpdel.p */
/* This routine deletes an LP from the system. */
/* It deletes the LP as far as the user is concerned, */
/* but leaves the LPCB still allocated and on the */
/* user invisible LP map. */
/* */
/* $$$ */

lpdel.p()
{

if (!(mp priv check(»)
return(not~priv for action);

set up trap handler();­
packet-= cc~w->catcb->tac2;
lpid = packet->lpid;
clear_trap_handler();

/* *** */
/* Validate the user supplied LP ID. It must be */
/* >= 0 and <= 15. */
/* */
/* *** */

if (!«lpid >= 0) & (lpid <= 15.»)
return(invalid_lpid);

Licensed Material 4-42 Property of Data General

/*
/*
/*
/*
/*
/*
/*

Make sure the supplied LP ID is not zero. The
user is not allowed to delete LPO.
If ok then lock the JPLP lock and find the LP
based on the LP ID.

if (lpid = 0)
return(can not del lpO);

get lock(change);
lpcb = find lp(lpid);
if (error rtn)

return(lp_not_found);

*/
*/
*/
*/
*/

*/
*/

/* *** */
/* */
/* The user is not allowed to delete any LP that has */
/* a JP attached to it. */
/* */
/* *** */

if (lpcb.jpcnt > 0)
return(jps_attached);

/* *** */
/* */
/* The user is not allowed to delete any LP that */
/* has a JP move in progress. */
/* */
/* *** */

if (lpcb.lpmovcnt > 0)
return(jps_attached);

/* *** */
/* */
/* Remove the LP from the user visible databases */
/* and return to the caller. */
/* */
/* *** */

}

clearbit(lpmap.w[lpid]);
lpcnt --; /* decrement total # of LPs */
release lock();
return();

Licensed Material 4-43 Property of Data General

4.3.3 ?LPSTAT

Just as with JPs, we can inquire as to the status of LPs.
This call has the capability to be a general type call or a
specific call. The general call will tell you how many LPs
there are and pass back a bitmap of the numbers of the LPs
(LPIDs) .• The specific call will give back information on a
specific LP. Let us now look at the code path fOllowed.

/* $$$ */
/* lPstat.p */
/* This routine supplies the user with either */
/* a general status of the LPs on the system or */
/* status of a specific LP on the system. */
/* */
/* */
/* $$$ */

Ipstat.p();

if (!(mp system»
return(not an mp sys);

set up trap handler();
packet-= cc:w->catcb.w->tac2.w;
sub packet = packet->subpacket addr;

/* *** */
/* If the function code in the packet is a 0 then */
/* the user wants a general LP status. The general */
/* LP stat returns the total number of LPs and the */
/* user-visible LP bitmap. */
/* */
/* */
/* *** */

switch (subpacket->function)
{
case 0: /* general function */

get lock(read);
subpacket->lp count = lpcnt;
subpacket->lp-map = lpmp.w;
release lock();
clear trap handler();
return(); -

case 1: /* specific function */
lpid = packet.lpid;
clear_trap_handler();

Licensed Material 4-44 Property of Data General

/* *** */
/* Validate the LP ID supplied by the user. */
/* 0 <= lpid =< 15 */
/* after validation find the LP from the LP LPCB */
/* table based on the LPID supplied. */
/* *** */

if (!«lpid >= 0) & (lpid <= 15»)
return(invalid 1pid);

get lock(read); -
find lp(lpid);
if (error return)

{ -
release lock();
return(lp not inited);

} --
/* *** */
/* Put the total number of JPs attached to the LP */
/* into the packet. Put the JP bit map in the */
/* packet. */
/* Return to the caller. */
/* *** */

set up trap handler();
subpacket.jp count = lpcb.lpjpcount;
subpacket.jp-map = Ipcb.1pjpmp.w;
release lock();
clear trap handler();
return(); -

default:
return(invalid function);

} /* switch */-
} /* ?LPSTAT */

Licensed Material 4-45 Property of Data General

4.3.4 ?LPCLASS

Classes (see class environment) are applied to LPs in the
system and there is a system call designed for that purpose,
?LPCLASS. This call defines the class environment on the
particular LP. The ?LPCLASS defines what classes run on the
LP and the percentage of CPU they get, as well as whether
they are primary or secondary.

The strict definition of primary vs. secondary is controlled
in the way specified. Primary classes are executed first,
followed by secondary. If there is extra CPU time, then the
secondary classes get what is left. If there is no extra
time, then the secondary processes do not get to run.

The ?LPCLASS system call sets or gets the logical processor
class assignments. The pseudocode below shows how this call
works.

/* $$$ */
/* lpclass.p */
/* This routine gets (or sets) the class scheduling */
/* from (or to) a specified LP. */
/* */
/* $$$ */

Ipclass.p()
{

set up trap handler();
Ipid =-packet.lpid;
switch (packet.get set code)

{ - -
/* *** */
/* */
/* If the function code is zero then the user wants */
/* the get function. */
/* */
/* *** */

case 0:

clear trap handler();
/* *** */
/* */
/* validate the LP ID that the user suplied. */
/* 0 <= Ipid <= 15 */
/* Find the LP from the Ipcb table. */
/* *** */

Licensed Material 4-46 Property of Data General

if (!«lpid>=O) & (lpid <= 15»)
return(invalid lpid);

get lock(read); -
lpcb = findlp(lpid);
if (error rtn)

return(lp_not_inited);

/* *** */
/* */
/* Get the total amount of interval time left in */
/* tenths of seconds. Put the class times used into */
/* the packet. */
/* */
/* *** */

/*
/*
/*
/*
/*
/*
/*
/*

set up trap handler();
packet~time-= 1000. / *lpcb.lpiiu.w;
BLM(&packet.base,&lpcb.lppct.w,class count);
release lock(); -
clear trap handler();
return(); -

The user wishes to use the set function.
So get the packet information that the user wants
put in the LPCB and store it on the stack (called
temp) so it can be validated and used.

case 1:

*/
*/
*/
*/
*/

*/
*/
*/

interval = packet. interval;
BLM(&stack area.percentages,
&packet.base,class count);
clear trap handler();

/* *** */
/* If the user does not have the privilege to do this */
/* return an error. Validate the interval: */
/* 1 <= interval <= l44.(in tenths of a second) */
/* */
/* *** */

if (!(mp-priv_check(»)
return(not priv);

if (!«intervaI >= 1) & (interval <= 144.»)
return(invalid interval);

if (!«lpid >= 0) & (lpid <= 15»)
return(illegal lp);

get_lock(read); -

Licensed Material 4-47 Property of Data General

/* *** */
/* */
/* If the LP does not exist then return an error. */
/* */
/* *** */

if (bit(lpmap.w[lpid] != 1»
{
release lock();
return(LP not inited);

} --
re1ease_1ock();

/* *** */
/* Set up the initial scan mask by using the global */
/* initial scan mask scmask.w. The upper word is set */
/* later in this code. This global can be found in */
/* PARS. Move zeros to the class counters. Move -1 to*/
/* the secondary class tiers. If a bit is cleared in a*/
/* tier then that class is in this tier. */
/* class count is equal to the number of classes (max) */
/* in the system. The value of class count is, */
/* therefore, 16.(020) */
/* *** */

stack area. standard mask = scmask.w;
stack-area.1citm.w ~ 0;

BLM (stack area.1citm.w,stack area.1citm.w,
class count); -

stack area.1chmk.w = -1;
BLM(stack area.1chmk.w,
stack_area. 1chmk.w+l, c1ass_count-l);

/* *** */
/* Loop through the class assignments to see if they */
/* are primary or secondary class assignments. */
/* */
/* *** */

for (i=0;i<16;i++)
{

/* *** */
/* If the class assignment is zero, then the class */
/* has not been assigned to this LP. If it is */
/* non-zero, then split up the word into the right */
/* byte and the left byte to see if the class */
/* assignment is for a secondary class tier (left */
/* byte) or a primary class percentage (right byte). */
/* *** */

Licensed Material 4-48 Property of Data General

if (stack area.percentages[i] != 0)
{ -
left =
left byte(stack area.percentages[i]);
right = right byte
(stack_area.percentages[i]);

/* *** */
/* If the left byte is non-zero then the class */
/* assignment is a secondary class. Validate */
/* the tier of the secondary class. 1 <= tier <= 16. */
/* If valid, clear the bit in the tier for that class, */
/* for example, if class 3(class D) were in tier 1 */
/* then the table would look like: */
/* lpcb.lphmk.w (1) 0167777 <--reflects the change */
/* lpcb.lphmk.w (2) 0177777 */
/* */
/* */
/* Ipcb.lphmk.w (16) 0177777 */
/* The above table shows the final result in the LPCB.*/
/* In the code we're modifying the stack temporary. */
/* *** */

if (left != 0)

else

if (!«left>=l)&(left<= 16.»)
clearbit
(stack_area.lchmk.w[left],i);

/* *** */
/* If the left byte is zero then the right byte is */
/* validated. 1 <= percentage <= 0144(in tenths of a */
/* second) If valid then assign it to the class */
/* offset on the stack. */
/* */
/* */
/* *** */

Licensed Material

if(!«right>=1)&(right<=0144»)
{

clearbit (stack area.lcism[i]);
stack area.lcitm.w[i] =
(lciiu*right)/lOO;

} /* if */
else

return(illegal percentage value);
} /* if percentages-!= 0 */ -

} /* for loop */

4-49 Property of Data General

/* *** */
/* Validate the secondary class tiers. This means that*/
/* a tier that does not a have a negative one(-l) in it*/
/* cannot be below a tier that does. */
/* tier (1) 0167777 */
/* tier (2) 0177777 <-- { this is an illegal */
/* tier (3) 0176777 <-- { secondary class assignment.*/
/* *** */

neg1.flag = 0;
for(i=0;1<16;i++)

{
if (stack area.lchmk[i] -- -1)

neg1.flag=1;
else

{
if (neg1.flag == 1)

return(invalid_hierarchy);
}

get lock(change);
lpcb = find lp(lpid);
if (error rtn)

{ -
release lock();
return(lp does not exist);
} - - -

lock lpcb(lpcb);
/* *** */
/* Put the stack temps into the LPCB and return. */
/* */
/* *** */

lpcb.lpiiu.w = stack area.liiu.w;
lpcb.lpism.w = stack-area.lcism.w;
BLM(lpcb.lpitm.w,stack area.lcitm.w,lp blm-2);
BLM(lpcb.lpcsm.w,lpcb.lpism,lp blm); -
BLM(lpcb.lphmk.w,stack area.lchmk.w,
class count*2); -
BLM(lpcb.lppct,stack area.lchlpv.w,class count);
unlock lpcb(lpcb); - -
release lock(lpid);
return();

default:

return(invalid_code);
} /* switch */

} /* LPCLASS.P */

Licensed Material 4-50 Property of Data General

4.4 System Serv~ces

LP management performs two ma~n system serv~ces. The f~rst
~s manag~ng the class part of the scan mask. The second
serv~ce ~s account~ng for class and total t~me used on that
LP.

The class part of the scan mask ~s the f~rst word of the
two-word scan mask. It ~s altered by us~ng the
UPDATE SCAN MASK elementary operat~on (see bas~c
operatIons): Th~s serv~ce ~s only performed if class
scheduling ~s being enforced. Class scheduling ~s being
enforced if the LPOFF bit ~n the LPCB status word is clear
(zero) •

The class mask service is performed when the t~me charging
for the run of a process is complete. The LPCB offset for
the class the process belongs to is decreased by the amount
of PIT t~cks the process ran. When the class offset reaches
zero, or in some cases less than zero, the associated bit in
the scan mask is set(bit = 1). Once this is set the scanner
w~ll not hit any PTBL of that class.

Another part of the mask management is the management of the
time interval. The time interval ~s the amount of USER time
the user defines. This amount of time is calculated to PIT
ticks and then subdivided by the percentage for each class.

The following example shows an interval broken into ticks
and those ticks divided into four classes.

INTERVAL = 10 SECONDS * USER VIEW *
TICKS = (SECONDS * 1000) * MILLI SECONDS *

INTERVAL = 10000 PIT TICKS * SYSTEM VIEW *
CLASS O(A) = 20 % * USER VIEW *
CLASS O(A) = 2000 PIT TICKS * SYSTEM VEIW *
CLASS l(B) = 10 % * USER VIEW *
CLASS l(B) = 1000 PIT TICKS * SYSTEM VEIW *
CLASS 2(C) = 50 % * USER VIEW *
CLASS 2(C) = 5000 PIT TICKS * SYSTEM VEIW *
CLASS 3(D) = 20 % * USER VIEW *
CLASS 3(D) = 2000 PIT TICKS * SYSTEM VEIW *

Licensed Material 4-51 Property of Data General

Each time a user or CB runs, the time used gets subtracted
from the total number of ticks in the interval. When the
interval counter reaches zero OR less than zero, the LPCB
class scheduling area gets RESET with a new counter and
class time limits for the LP. After a RESET occurs, then
class scheduling is in a new interval.

The second system service performed by LP management is
totals updating. This updating keeps an accounting of the
amount of time used by certain entities on the LP. For
example, after a ?OPEN call is made by a user the system
creates a CB for the ?READ and it runs. After the CB runs
the time used by this CB would be totaled into the
mother-only counter, which is called LPTMPT.4. The reason
for this is that the ?OPEN is a file system call, which
forces the system call to be a mother-only call. Therefore,
if this is the LP that has JPO attached to it, this LP gets
credit for the time used.

Licensed Material 4-52 Property of Data General

Chapter 5
C1ass Management

Class Management is the part of Paths and Time that manages the
major databases used to put new processes onto the proper LP.
Class Management supports the LP by providing the management
information needed. For example, without the class matrix (see
below) the ?PROC code would not be able to decide which class a
process was in and, therefore, would not be able to enforce class
scheduling on that particular process. Class Management uses two
types of objects: the Class Matrix (see CLASP Manual) and the
CLass Control Block (CLCB).

This chapter is divided into two main sections, which deal with
each major object in Class Management. The sections are Section
5.1, the Class Matrix and Section 5.2, the CLass Control Block
(CLCB).

Licensed Material 5-1 Property of Data General

+---------------+ +------------------+
PTBL

MANAGEMENT
-------> CB

MANAGEMENT

+---------------+ +------------------+
1 +----- --------------+
1 -------------------+

+--->

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS (--

MANAGE- --)
MENT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+------------_._+

<--+

+-------+ +---- JP <-----------+ 1
MANAGEMENT +-----------------+

------------>1 INTERRUPT LEVEL 1
+---------------+ +-----------------+

Class management only interracts with LP management to
show existence of a class. This prevents time charges
from going to a nonexistent class.

Licensed Material 5-2 Property of Data General

5.1 The Class Matrix

The class matrix is a l6-by-16 matrix that is accessed by the
User Locality (y axis) and the Program Locality (x axis). In
AOS/VS, the matrix is implemented as a one dimensional array of
400 (octal) consecutive words. There is one class matrix for the
entire system. The class matrix exists at boot time. A class is
defined in the matrix by having the class ID in a cell.
Initially, the matrix contains all zeros, which is class zero
(class A). The global CLMATRIX is the location at the beginning
of the matrix.

Figure 5.1 shows a class matrix for a system. Note that this
matrix is in the same format as shown in CLASP. Each letter in
the matrix represents a class. The matrix normally has numeric
representations of the classes instead of letters, but for this
example letters are easier to read.

Program Locality
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+--
0 A B C D E F A A A A A A A A A A
1 G G G G G G G G G G G G G G G G

U 2 A B C D E F A A A A A A A A A A
s 3 A B C D E F A A A A A A A A A A
e 4 A B C D E F A A A A A A A A A A
r 5 A B C D E F A A A A A A A A A A

6 A B C D E F A A A A A A A A A A
L 7 A B C D E F A A A A A A A A A A
0 8 A B C D E F A A A A A A A A A A
c 9 A B C D E F A A A A A A A A A A
a 10 A B C D E F A A A A A A A A A A
1 11 A B C D E F A A A A A A A A A A
i 12 A B C D E F A A A A A A A A A A
t 13 A B C D E F A A A A A A A A A A
Y 14 A B C D E F A A A A A A A A A A

15 A B C D E F A A A A A A A A A A

Figure 5.1 The Class Matrix

To get a process class, the system must find the cell in the
matrix. The system does this by getting the offset in the
matrix. To calculate the offset into the matrix, multiply the
program locality max and the program locality then add the user
locality. (See the formula below.)

process_class = CLMATRIX + Offset;
Where:

Offset = (prog_locality * prog_locality_max) +
user_locality

Licensed Material 5-3 Property of Data General

5.1.1 Basic Operations on the Class Matrix

There are two basic operations performed on the class matrix:
Get Class Value and Set Class Value. These operations are
represented in pseudocode below.

5.1.1.1 Get Class Value

This operation gets a value contained in a cell of the matrix.
The inputs to this operation are the user and program
localities. This function assumes that the JPLPLOCK is held.
(See ELQUE management.) In the code this routine is called
GCMATRIX.

/* $$ */
/* get class value */
/* This routine gets the class value from a cell */
/* in the class matrix. User loc and prog loc are */
/* the locality arguments passed to this routine. */
/* This function returns the class in the cell. */
/* $$ */

get class va1ue(user 10c,prog loc) {- - - -

max_loc = 020; /* max 10c is a local variable */
/* used as a multiplier into */
/* the class matrix */

/* ** */
/* */
/* Calculate the offset into the matrix. */
/* */
/* ** */

}

offset = (prog loc * max loc) + user_loc;
return(clmatrix[offset];-

Licensed Material 5-4 Property of Data General

5.1.1.2 Set Class Value

This operation sets an offset in the matrix with the value passed
as an argument. The function assumes that the JPLPLOCK is held
and that the arguments passed are valid. In the code, the name
of this routine is SCMATRIX.

/* $$ */
/* set class value */
/* This routine puts the value of the class passed */
/* into the Class Matrix at the location calculated by*/
/* using the localities passed. The arguments */
/* are user_10c, prog_loc and c1ass_id. */
/* */
/* To change, the value of a cell in the matrix */
/* we must remove the old class from the matrix. */
/* This entails dealing with the CLCB. The CLCB is */
/* defined in the CLCB section. */
/* */
/* $$ */

set class va1ue(user 10c,prog 10c,c1ass id)
{- - - - -

max = 020; /* max is a local variable
/* used as a multiplier into
/* the class matrix

*/
*/
*/

class = get class va1ue(user 10c,prog 10c);
/* ** */
/* If we come back on the error return from the */
/* find CLCB routine, then the system will panic with*/
/* a 14617. Taking the error return means the CLCB */
/* was not found. This means that we are trying */
/* to get a class from the matrix that is not defined*/
/* even though the class is in the matrix. */
/* ** */

c1cb ptr = findc1(c1ass); /* see CLCB section */
if (error return)

panic(14617);
c1cb_ptr.c1matn --; /* one less user */

Licensed Material 5-5 Property of Data General

/* ** */
/* If we come back on the error return from the */
/* find CLCB routine, then panic the system with */
/* a 14617. Taking the error return means the CLCB */
/* was not found. This means that we are trying */
/* to put a class into the matrix that is not */
/* defined, which would corrupt the matrix. */
/* ** */

clcb-ptr = findcl(class_id)
if (error return)

. panic(14617);
clcb~ptr.clmatn ++; /* one more user */

/* see CLCB section */
offset = (prog loc * max) + user_loc;
clmatrix[offset] = classid;
return();
} /* set class value */

Licensed Material 5-6 Property of Data General

5.1.2 Class Matrix User Services

The user service that works with the Class Matrix is the ?CMATRIX
system call (internally called CMATR.P). This system call
redefines the contents of the class matrix. The pseudocode below
shows how this function works.

/* $$ */
/* cmatrix.p */
/* This user service allows the user to get values */
/* from or redefine class matrix. If the get option */
/* is used, then the matrix is not touched. If the */
/* set option is used, then the call changes all the */
/* cells the user specifies. */
/* */
/* $$ */

cmatrix.p()
{

set up trap handler(cb)i
packet-= CC~W->catcb->tac2i

/* get packet from tasks AC 2*/
num_of_cells = packet->counti

/* ** */
/* The user matrix is an array of double words. */
/* This will be treated as a high-level array instead */
/* of offsetting into the array by twos. */
/* */
/* ** */

user matrix ptr = packet->matrixi
get_set_code = packet->getseti

Licensed Material 5-7 Property of Data General

/* ** */
/* Test to see which operation is to be done. */
/* The get/set code in the packet should be a 0 for */
/* get or a 1 for set. * /
/* */
/* ** */

switch (get set code)
{ --

case 0: /* get operation */

/* ** */
/* Loop through the user packet to validate the user */
/* matrix information. */
/* ** */

for (i=O;i<=num of cells;i++)
{ - -

/* ** */
/* */
/* Since the matrix supplied by the user is a group */
/* of double words, the function left_word gets the */
/* left word of the double-word entry. */
/* */
/* If the user locality is invalid then return. */
/* A valid locality must be an integer between */
/* 0 and 15. Therefore, "locality_valid" is as */
/* follows: */
/* */
/* 0 <= locality <= 15 */
/* */
/* ** */

localities = left word(matrix ptr+i);
user locality = left byte(localities);
if (1 (user locality >=0) & (user locality

<= 15») -
return(illegal locality);

/* ** */
/* */
/* If the program locality is invalid then return. */
/* A valid locality must be an integer between */
/* 0 and 15. Therefore, "locality_valid" is as */
/* follows: */
/* */
/* 0 <= locality <= 15 */
/* */
/* ** */

prog locality = right byte(localities);
if (1 (prog localIty >=0) & (prog locality

<= 15») -
return(illegal locality);

} /* FOR LOOP */

Licensed Material 5-8 Property of Data General

/* ** */
/* Loop through the user matrix and get the */
/* associated values out of the class matrix. */
/* */
/* ** */

get lock(read); /* get global lock */
for-(i=O;i<=num_of~cells;i++)

{
localities = left word(matrix ptr+i);
user locality = left byte(localities);
prog-locality = right byte(localities);
user-matrix ptr[i].right word =

- get matrix value(user,prog);
} /* FOR LOOP -*/ -

release lock();
clear trap handler(cb);
return(); -

/* ** */
/* */
/* Now we are doing the set operation. */
/* */
/* If the user does not have SYSPRV (system manager */
/* privilege) then return to the caller. */
/* */
/* ** */

case 1:

if (!(syspriv»
return(caller_not privileged

/* ** */
/* Loop through the user packet to validate the user */
/* matrix information, including the class info. */
/* ** */

for (i=O;i<=num of cells;i++)
{ - -

/* ** */
/* */
/* Since the matrix supplied by the user is a group */
/* of double words, the function left word gets the */
/* left word of the double-word entry~ The function */
/* right word gets the right word of the entry. */
/* ** */

localities = left word(matrix ptr+i);
class = right_word(matrix_ptr+i);

Licensed Material 5-9 Property of Data General

/* ** */
/* */
/* If the user locality is invalid then return. */
/* A valid locality must be an integer between */
/* 0 and 15. Therefore, "locality_valid" is as */
/* follows: */
/* */
/* 0 <= locality <= 15 */
/* */
/* ** */

user locality = left byte(localities);
if (T (user locality >=0) & (user locality

<= 15» -
return(illegal locality);

/* ** */
/* */
/* If the program locality is invalid then return. */
/* A valid locality must be an integer between */
/* 0 and 15. Therefore, "locality_valid" is as */
/* follows: */
/* */
/* 0 <= locality <= 15 */
/* */
/* ** */

prog locality = right byte(localities);
if (T (prog localIty >=0) & (prog locality

<= 15» -
return(illegal locality);

/* ** */
/* */
/* If the class value is invalid then return. */
/* A valid class must be an integer between */
/* 0 and 15. Therefore, "class valid" is as */
/* follows: */
/* */
/* 0 <= class <= 15 */
/* */
/* ** */

if (! (class >=0) & (class <= 15»
return(illegal class id);

} /* for Loop */ - -

Licensed Material 5-10 Property of Data General

/* ** */
/* Get the JPLP lock for change. */
/* */
/* ** */

get_lock(change);

/* ** */
/* Now loop to validate the existence of the class. */
/* */
/* ** */

for (i=O;i<=num_of_cells;i++)
{

class = right word(matrix ptr+i);
if(!(bit(clmap,class) == I»

return (invalid locality);
}/* for Loop */ -

/* ** */
/* Now loop through the array and change the class */
/* matrix. */
/* */
/* ** */

for (i=O;i<=num of cells;i++)
{ - -

localities = left word(matrix ptr+i);
class = right word(matrix ptr+i);
user = left byte(localities);
prog = right byte(localities);
set matrix value(user,prog,class);

}/* for Loop -*/
release lock();
clear trap handler();
return(); -

} I*switch statement */
}/* function */

Licensed Material 5-11 Property of Data General

5.2 The Class Control Block (CLCB)

The second major object used in Class Management is the CLCB.
The CLCB contains information useful in managing the classes in
the system. There is one CLCB for each defined class on the
system. Figure 5.2 below contains the CLCB offsets.

THE CLCB

OFFSET SUMMARY EXPLANATION
+------------+---+

CLLPN -> 0 Number of LPs using this class
CLPION -> 1 The number of pids with this class
CLMATN -> 2 The number of matrix cell wi this class
CLNAME -> 3 The name of the class

+------------+---+
CLLEN = 24 (octal) ** length of CLCB

Figure 5.2 The CLCB

5.2.1 CLCB Offset Explanations

Offset CLLPN is the number of LPs attached to this class. This
offset is not currently used.

Offset CLPION is the total number of PIOs currently using this
class. This offset is not currently used.

CLMATN is the number of cells this class has in the class
matrix. This offset is incremented when putting this class into
the class matrix and is decremented when removed. This offset is
also used when deciding to delete a class from Class Management.
If this offset is greater than zero, then the class cannot be
deleted from Class Management.

CLNAME uses 20 (octal) words for the name of the class. This
offset is not currently used because AOS/VS does not want user
supplied names in ring zero.

Licensed Material 5-12 Property of Data General

5.2.2 The CLCB Globals

There are two Globals used in class management: CL.W and CLAP.
There is one copy of these databases on the system.

CL.W is a block of 16. double words containing the pointers to
the CLCBs. When a class is created the pointer to its CLCB is
placed in CL.W. When a class is removed from the system, the
corresponding address is set to zero. CLO.W, which is the
address of class 0 (class A), is put on the table at assembly
time. CLO.W is always in CL.W. This table of CLCBs is used
because the CLCBs can be anywhere in memory. This method of
managing the CLCBs saves on system memory use because the system
releases the memory for the CLCB when it is deleted. Figure 5.3
shows the relationship between CL.W and the CLCBs.

CL.W

CLASS
OFFSET

o

2

4

· ·
· ·

36

+------+
+----------+ 1 CLCB 1<---+ 1 CLASS 0 1----+ +-------+ 15.
i-~~~~~-~--i---++->I C~CB 1 +------+
i-~~~~~-;--i-+ I +-------+ +------+
+----------+ 1 +-------------------->1 CLCB 1
- - \ 1
+----------+ \ +------+ +------+
+----------+ +---->1 C~CB 1
1 CLASS 15·1--+ +------+
+----------+ 1 +--------------------------------+

Figure 5.3

The other global database used with CLCBs is CLMAP. This is a
one-word bit map of the classes that exist in the system. This
field is used to show existence of a class on the system. If the
CLCB exists, then the corresponding bit in this word will be
set. This field is updated when a class is added to or removed
from the system. At assembly time this field has the zero bit
set for class 0 (class A). The reason for this is that class
zero always exists.

Licensed Material 5-13 Property of Data General

5.2.3 Basic Operations on the CLCB, CL.W, and CMAP.

There are five basic operations that work on the CLCB, CL.W and
CMAP. The operations are create a CLCB, delete a CLCB, find a
CLCB, add a CLCa, and remove a CLCB from CL.W.

5.2.3.1 Create a CLCa

This operation calls memory management to get memory for the
CLCB. If the memory request is successful, then the routine
returns the address of the new CLCB.

/* $$ */
/* create clcb */
/* This routine calls the memory manager to allocate */
/* memory for the CLCB to be created. If the memory */
/* request fails then return the error. If no errors */
/* then return the address of the new CLCB. */
/* */
/* $$ */

create clcb()
{ -

clcb address = GSMEM(cllen,nowait); /* see memory */
/* management */

if (error return)
return(no mem);

return(clcb address);
} /* create a-CLCB */

Licensed Material

/*cllen= 024 */

5-14 Property of Data General

5.2.3.2 Delete a CLCB

This operation first checks if it is legal to delete the class.
If it is legal to delete the class then return. If not, take the
error return.

/* $$ */
/* delete a clcb */
/* This routine checks if it-is legal to delete a */
/* class by looking at the offset in the CLCB called */
/* CLMATN. If the value is greater than zero, then */
/* the class cannot be deleted. The caller is also */
/* not allowed to delete class zero. The argument */
/* passed to this routine is the class id. */
/* $$ */

delete a clcb(class id)
{ - - -
if (class id = 0)

return(can not del class zero);
if (clcb.cmatn-> 0) -

return(class in matrix);
return(); -/*-it is ok to delete the class */

} /* delete a class */

5.2.3.3 Find a CLCB

This operation tries to find an entry in CL.W offset by the class
id to see if the class exists. A class exists if the table entry
is non-zero. The entry point for this operation is called
FINDCL.

/* $$ */
/* findcl */
/* This routine looks at the array CL.W to see if the */
/* entry in the array is non-zero. If so then the */
/* class exists. The argument passed to this routine */
/* is the class id. */
/* $$ */

findcl(class id)
{ -

}

if (cl.w[class id*2] = 0)
return(not=found);

else
return();

Licensed Material 5-15 Property of Data General

5.2.3.4 Add a CLCB

This operation puts the address of the CLCB into the CL.W table
and is an entry point called ADDCLASS.

/* $$ */
/* addclass */
/* This operation adds a CLCB to CL.W. The table */
/* is a double-word table. This routine also sets */
/* the bit in the class bitmap called CLMAP. */
/* The arguments passed to this routine are the class */
/* id and the address of the new CLCB. */
/* $$ */

addclass(class id,clcb)
{ -
setbit(clmap,class_id);

/* ** */
/* */
/* If there is an entry for this offset in CL.W then */
/* we're trying to add an already existing class. If */
/* this is true then panic with a 14614. If the entry*/
/* is 0 then put the CLCB address in the table. */
/* */
/* ** */

if (cl.w[class id*2] == 0)
Cl.w[class-id*2] = clcb;

else -
panic(146l4);

return();
} /* addclass */

Licensed Material 5-16 Property of Data General

5.2.3.5 Remove a Class

This operation removes a class from CL.W and CLMAP. The routine
first removes the class from the bit map (CLMAP). The routine
then tries to find the class. If the class does not exist, then
the routine returns an error. If found, remove the CLCB from
CL.W, release the memory and return. In AOS/VS this routine has
an entry point called DELCLASS.

/* $$ */
/* delclass */
/* This routine deletes an existing CLCB from the */
/* CL.W array! The argument passed to this function */
/* is the class ide */
/* */
/* $$ */

delclass{class id)
{ -

clearbit(clmap,class);
findcl(class id);
if (error return)

return();
else

{
cl.w[class id*2] = 0;
rsmem(cllen); /* see memory management */

}

}
return();

Licensed Material 5-17 Property of Data General

5.3 User Services

The paths that use the elementary functions in Class Management
are the class system call routines. These user services are
?CLASS, ?PCLASS, ?CLSCHD, and ?CLSTAT. The user services are
explained in the pseudocode below.

5.3.1 ?CLASS

This system call gets or sets up the classes for Class
Management. (See System Call Dictionary.) The entry point for
this function is called CLASS.P.

/* $$ */
/* c1ass.p */
/* This function gets or sets the classes in the */
/* class environment. */
/* */
/* $$ */

c1ass.p()
{
set up trap hand1er(mptrap);
packet-= cc:w->catcb.w->*tac2.w;

/* get packet address */
user 01 map = packet.c1map;
user_getset = packet.getset;

/* ** */
/* */
/* If "get" then store the system class bitmap into */
/* the user packet and return. */
/* */
/* ** */

switch (user getset)
{ -
case 0:

set up trap hand1er(mptrap.r)/*read lock */
get-1ock(read);
packet.c1map = c1map;
release lock{);
clear trap hand1er();
return(); -

Licensed Material 5-18 Property of Data General

/* ** */
/* */
/* The user wishes to set up some classes. Check */
/* the system privilege. If the user has the */
/* privilege then continue with the call. If not then*/
/* return the "user not privileged for this action" */
/* error. */
/* ** */

case 1:
clear trap handler();
if (!(sysprv(»)

return(caller_not_priveliged);

/* ** */
/* */
/* Clear the stack called new clcb. */
/* */
/* ** */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

for (i=0;i<16;i++)
new clcb[i] = 0;

get_lock(change);

**

Now loop through the users supplied classes for
validity. This loop compares the user bitmap
to the system class bitmap to see what should be
done. "i" is the offset into the bitmap.

clmap[i] user_clmap[i] action

o
o
1
1

o
1
o
1

no action
add a class
delete a class
no action

**

for (i=0;i<16;i++)
{

}

user bit = bit(user clmap,i);
sys bit = bit(clmap,i);
if «user bit == 1) & (sys bit -- 0»

else

{ - -
new clcb[i] = create clcb(i);
if (error rtn) -

return(cannot_get_memory);
}

if «user bit == 0) & (sys bit == 1)
if (!(delete class (i»)

return(class_can_not_be_deleted);

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Licensed Material 5-19 Property of Data General

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

**
Now that the requests are valid and the memory for
new classes have been allocated, attach or remove
the classes from the class globals.
Now loop again through the user-supplied classes
to do the class work. This loop compares the user
bitmap to the system class bitmap to see what
should be done. "i" is the offset in the bitmap.

clmap[i] user_clmap[i] action

o
o
1
1

o
1
o
1

no action
add a class
delete a class
no action

**

for (i=0;i<16;i++)
{

}

user bit = bit(user clmap,i);
sys bit = bit(clmap,i);
if «user bit == 1) & (sys bit -- 0»

addclass(i,new_clcb[i]);
else

if «user bit == 0) & (sys_bit -- 1)
delclass(i);

release lock();
return();

} /* ?CLASS */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Licensed Material 5-20 Property of Data General

5.3.2 ?PCLASS

This system call is used to find a process' user and program
locality and the class to which a process belongs. (See the
System Call Dictionary.) The entry point for this user service
is called PCALL.P.

/* $$ */
/* pclass.p */
/* This routine returns the locality and class */
/* information for a process to the caller. */
/* */
/* $$ */

pclass.p()
{
set up trap handler(mptrap);
packet-= cc:w->*catcb.tac2;
pid pname code = packet.pin pname code;
stack pid-= packet.pid; - -
pname-len = packet.pname len;
bp pname = packet.bp pname;
clear_the_trap_handler();

/* ** */
/* If the user supplied a process name, then save */
/* the name. */
/* */
/* ** */

if (bp pname 1= 0)
BLM(pname,packet.pname,pname len);

clear_trap_handler(); -

Licensed Material 5-21 Property of Data General

/* ** */
/* If pid code = 0 then the user is called by pid. */
/* If the caller supplied a pid check to see if */
/* the pid is a -1 (refer to own pid), get the PTBL */
/* for callers pid. If its a real pid get the PTBL for*/
/* that pid. If the user called with a process name, */
/* resolve the process name to a pid and get the */
/* PTBL address. */
/* ** */

if(pid pname code == 0)
if-(stack pid == -1)

{ -

else

ptbl = cc.w->cptad.w;
stack pid = ptbl.pid;
{ -

else
{}

{
stack_pid = nmtid.p(pname); /* convert a process */

if (error rtn)
return(name_not found);

}

/* to a pid */

/* ** */
/* */
/* A "pid_valid" is a pid that is between 1 and */
/* genpid and bit corresponding to the pid in pidbt.w */
/* (See Process Management) is set. If not valid then*/
/* return the error not in hierarchy. */
/* */
/* ** */

get plock(ptran,pidslk.w);/* lock word for pidtb.w */
- /* and pidbt.w */

if (!(stack pid >= 0) & (stack pid <= GENPID) &
(bit(pidbt.w,stack pid) ==1»
return(process not-in hierarchy);

ptbl = pidtb.w(stack pId);
release plock(pidslk:w);
get plock(ptran,ptbl);
packet.u locality = ptbl.ulocal;
packet.p-locality = ptbl.plocal;
packet. class id = ptbl.class id;
release plock(); -
return();

} /* ?pclass */

Licensed Material 5-22 Property of Data General

5.3.3 ?CLSCHD

The ?CLSCHED system call allows the user to either query (get) or
change (set) the mode of class scheduling for a specified LP.
There are three modes to class scheduling:
1) Disabled-class scheduling is not being used;
2) Enabled-class scheduling is being enforced;
3) Accumulate-class scheduling is not being enforced but class
statistics are being kept.

The LPCB
service:
LPSTAT.
function

status word is used to make decisions in this user
specifically, the two class scheduling bits LPOFF

When these bits are set, then the class scheduling
is not being done.

The following truth table shows how the decisions are made.

LPOFF LPACC Class Mode
------- -------- ---------------------

1 1 Disable mode
1 0 Accumulating stats
0 0 Enable mode
0 1 Illegal condition

and

The user service uses the entry point CLSCHD.P. The pseudocode
below shows how this operation works.

/* ** */
/* clschd.p */
/* This operation gets or sets the class scheduling */
/* mode for a specified LP. * /
/* */
/* ** */

Clschd.p()
{
set up trap handler(mptrap);
packet-= cc:w->catcb.w->tac2.w;
lp map = packet.lp map;
class code = packet. class code;
getset = packet.getset; -
clear_trap_handler;

Licensed Material 5-23 Property of Data General

/* ** */
/* */
/* If the getset code is 0 then the caller wishes to */
/* get information about class scheduling. */
/* */
/* ** */

switch (getset)
{

case 0:

/* ** */
/* */
/* We must find out what information the caller wants.*/
/* If the caller wants to'find all the LPs in */
/* accumulate mode, then the class code will equal 2. */
/* Otherwise, the caller wants to know all the LPs */
/* that are in enable mode. */
/* */
/* ** */

if (class code == 2)
sched=bit_map = clacc.w; /* see LP management*/

else
sched bit map = clschd.w;/* see LP management*/

release lock();
set up trap handler(mptrap);
packet:sched bit map = sched bit map;
clear trap handler(); --
return(); -

/* ** */
/* */
/* The caller wants to set the class scheduling mode. */
/* */
/* ** */

case 1:

if (!(syspriv(»)
return(not priv this action);

get_lock(change); - -

Licensed Material 5-24 Property of Data General

/* ** */
/* If the user wants to set class scheduling to enable*/
/* or disable mode, then set the mode for the LPs */
/* specified by the user. ?LPID MAX is a global. */
/* Its value is 17 (octal). - */
/* ** */

if (class code == 1)
{ -

for (i=O;i<=?lpid max;i++)
{ -

/* ** */
/* */
/* If the LP exists then continue. Existence is */
/* defined as the corresponding bit to the LP in the */
/* global LPMAP is set. */
/* */
/* ** */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

if (bit(lpmap,i) == 1)
{

user bit = bit(lp map, i);
sys_bit = bit(Clschd.w,i);

**
The following truth table shows what decisions
are to be made. "i" is used to represent the
current class being worked with.

lp map[i]
-1

1
o
o

CLSCHD.W[i]
1
o
1
o

Action
do nothing
set enable
set disable
do nothing

**

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Licensed Material 5-25 Property of Data General

/* ** */
/* */
/* This situation causes the class scheduling to be */
/* enabled. This automatically turns on accumu1ation*/
/* mode. */
/* ** */

if «user bit = 1) & (sys bit = 0»
{- -

1pcb = find_lp(i):
if (error return)

panic(14612):
10ck_1pcb(lpcb):
reset(1pcb);
bit(lpcb.1pstat,lpoff) = 0;
bit(lpcb.1pstat,lpacc) = 0:
un10ck_1pcb(lpcb):
bit(c1schd.w,i) = 1:
bit(c1acc.w,i) = 1:

} /* if */

/* ** */
/* */
/* If the user bit is 0 and the system bit is 1 then */
/* the user wishes to disable scheduling for that LP. */
/* This also turns off the accumulate mode. */
/* ** */

else
{

if «user bit = 0) & (sys bit = 1»
{- -

lpcb = find lp(i):
if (error return)

panic(14612):
lock 1pcb(lpcb):
reset(lpcb):
bit(lpcb.1pstat,lpoff) = 1:
bit(lpcb.1pstat,lpacc) = 1:
unlock 1pcb(lpcb):
bit(c1schd.w,i) = 0:
bit(clacc.w,i) = 0:

} /* if /*
} /* if bit (lpmap,i) == 1) */

} /* for loop */
release lock():
return('):
} /* if class code -- 1 */

Licensed Material 5-26 Property of Data General

/* ** */
/* */
/* If not enable or disable mode then set accumulate */
/* mode. Loop through the user's bitmap and set the */
/* requested LPs in accumulate mode. */
/* ** */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

for(i=O;i<?lp max;i++)
{ -

if (bit(lpmap,i) = 1)
{

**

The caller can request accumulate mode be turned
on or off. CLSMAP.W is a global accumulate mode
bitmap.

lp_map [i] CLSMAP.W Action

1
1
o
o

1
o
1
o

none
set accumulate
clear accumulate
none

**

user bit = bit(lp map, i);
sys bit = bit(clsmap.w,i);

**

This is the case where accumulate mode is turned
on.

**

if «user bit == 1) & (sys bit == 0»
{- -

lpcb = find lp(i);
if (error rtn)

panic(14612);
reset();
bit(lpcb.lpstat,lpacc) = 0;

} /* if */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

Licensed Material 5-27 Property of Data General

/* ** */
/* */
/* This is the case where accumulate mode is turned */
/* off. */
/* */
/* ** */

if «user bit == 0) & (sys bit == 1»
{- -

lpcb = find lp(i);
if (error rtn)

panic(146l2);
reset();
bit(lpcb.lpstat,lpacc) = 1;

} /* if */
} /* if */

} /* for loop */
}/* else */
release locke);
return();

}/* ?CLSCHD */

Licensed Material 5-28 Property of Data General

5.3.4 ?CLSTAT

?CLSTAT is used to find information about a specific LP in the
system. (See System Call Dictionary.) The user has the option of
getting just LP information or getting the JP information. The
entry point for this user service is called CLSTAT.P.

/* $$ */
/* clstat.p */
/* This routine provides the user with LP statistical */
/* information. */
/* */
/* $$ */

clstat.p()
{

/* ** */
/* */
/* Zero out the temporary areas that will be used */
/* in this routine. The temporaries are called: */
/* stack lpcb - looks like the LPCB stats area. */
/* stack-ppcb - looks like the PPCB stats area. */
/* stack-sub pkt - looks like the sub packet. */
/* Do thIs by BLMing 203 words of zeros. In this */
/* routine a routine called fill mem will put zeros */
/* onto the stack. - */
/* ** */

Licensed Material 5-29 Property of Data General

/* ** */
/* */
/* Get the necessary information from the packet to */
/* make decisions and to find the LP the user wishes */
/* tq look at. */
/* */
/* ** */

set up trap handler(mptrap);
packet-= cc:w->catcb->tac2;
function code = packet->function code;
sub address = packet->sub packet-address;
lp id = packet->lp id; - -
clear trap handler;

/* ** */
/* */
/* If the LP id is invalid then return an error. */
/* lp_valid is defined as follows: */
/* */
/* 0 <= lp_id <= 15. */
/* */
/* ** */

if (!(lp valid >= 0) & (lpid <= 15.»
return(invalid lp id);

get lock(read); -­
lpcb = find lp(lp id);
if (error return)-

return(lp does not exist);
num of jps = Ipcb->lpjpcnt;
jps_bit_map = lpcb->lpjpmp.w;

/* ** */
/* */
/* Blam the sums area from the LPCB to a temporary */
/* area called temp. This area is 132(octal) words.*/
/* */
/* ** */

lock lpcb(lpcb);
BLM(lpcb->lpsum.4,stack lpcb->lpsum,0132);
unlock_lpcb(lpcb); -

Licensed Material 5-30 Property of Data General

/* ** */
/* */
/* If the user wishes to get JP information, the */
/* "function code" will be a 2. If not the code will*/
/* be a 1. If neither, then take the error "illegal */
/* function code". */
/* */
/* */
/* ** */

switch (function_code)
{

case 1:
break;

/* ** */
/* */
/* If there are JPs attached to this LP, then loop */
/* through the JP list and accumulate the JP */
/* statistics for that LP and add them to an */
/* internal version of the subpacket called */
/* stack sub pkt. The PPCB stats are blam'ed into a */
/* temporary-structure that looks like the PPCB stats */
/* area called stack_ppcb. */
/* */
/* ** */

case 2:
if (num of jps != 0)

{ --
for (i=0;i<16;i++)

{

}
} /*

break;

jp bit = bit(jp bit map,i);
if(jp bit == 1)- -

{ -
ppcb = findjp(i);
if(error return)

panic(14621);
BLM(ppcb->cpsys.4,stack ppcb->sys,34);
stack sub pkt->sys += stack ppcb->sys;
stack-sub-pkt->cmt += stack-ppcb->cmt;
stack-sub-pkt->smt += jptemt.smt;
stack-sub-pkt->dmt += stack ppcb->dmt;
stack=sub~kt->idl += stack=ppcb->idl;
stack sub pkt->int += stack ppcb->int;
stack sub=pkt->resi += stack-ppcb->resi;

}/* if */
/* for */
if */

Licensed Material 5-31 Property of Data Genera]

default:
return(illegal function code);

/* ** */
/* */
/* Put the information into the user packet. */
/* */
/* */
/* ** */

}

release lock();
set up trap handler(mptrap);
packet=>intervals = stack lpcb->tint;
packet->total = stack lpcb->use;
packet->user = stack-lpcb->tpt;
packet->user mom = stack lpcb->stmpt;
BLM(stack lpcb->stsum,packet->class,lOO);
if(sub address != 0)

BLM(stack sub pkt,&sub address, 50);
clear trap handler(); -
return(); -

Licensed Material 5-32 Property of Data General

Chapter 6
Job Processor Management

6.1 Introduction

6.1.1 Purpose

The purpose of this chapter is to describe the Job Processor (JP)
and its databases.

6.1.2 Overview

This chapter is divided into four main sections: "Real JP," the
PPCB, user services, and system services.

o "Real JP" is the physical entity known as a CPU in the
system. There may be more than one JP in the system. In
fact, the scheduler is designed to handle more than one CPU
as the default case.

o PPCB is the internal database that represents the JP. Since
there can be more than one JP in the system, there must be
one PPCB for each JP. There are different code paths that
access this database and, therefore, there must be some
synchronization to allow the system to modify the PPCB
safely.

o User Services are the JP system calls such as ?JPINIT,
?JPREL, and ?JPMOV. These system calls allow the user (if
they have the privilege) to manage the physical processors on
the system.

o System Services are the services that JP management provides
to the rest of the Paths and Time environment. An example of
a system service is keeping a count of the amount of time the
system spends at interrupt level.

Licensed Material 6-1 Property of Data General

'+---------------+ +------------------+
PTBL

MANAGEMENT
-------> CB

MANAGEMENT

+---------------+ +---------~--------+

I
+----- --------------+
I -------------------+

+--->

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- -->
MENT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

(--+

+-------+
+---- JP (-----------+ 1

MANAGEMENT +-----------------+
------------>1 INTERRUPT LEVEL 1

+---------------+ +-----------------+

Figure 6.1

JP management supplies services to both time and ELQUE management
in the form of code. The JP allows ELQUE and Time management to
run code. JP management receives the timing data from time
management, which it uses for its counters in the JPs PPCB.

Licensed Material 6-2 Property of Data General

6.2 The "REAL JP"

6.2.1 Introduction

This section discusses the physical entity known as the JP (the
CPU). This section will describe the major state of a processor,
the JP instructions used for JP management, and running
operations on this processor.

The two major states of a JP are Halted or Running:

o When a job processor is halted, it does not exist as far
a AOS/VS is concerned.

o A JP is considered Running when the microcode has been
loaded, the PPCB is created, and a starting address is
given to the processor and the processor is started.

The microcode loaded for a new JP can be either loaded from a
user specified file, the file of the CPU type being started, or
the existing microcode. The user can specify a microcode file
for the JP to use, but the file must be a compatible microcode
file for that JP. The user can specify to use existing microcode
and the current microcode will be used. This option implies that
the JP was previously initialized and released. The last option
will force the system to find a microcode file for that type of
processor. After these options are satisfied the microcode gets
loaded for that processor (JPLCS instruction).

To manage a JP, AOS/VS must initialize and update some databases
before a JP can exist. The database that must be created is the
PPCB for this JP. Databases that must be updated for the LPCB
are the JP count (LPJPCNT) and the JP bit map (LPJPCNT.W) for the
system and the CP.W table of JPs.

The JP is given a starting address of JPSWART.P. Memory
management is called from here to set up the JPs memory
environment.

Licensed Material 6-3 Property of Data General

6.2.2 JP Instructions

In JP management, several privileged JP instructions are used:
JPSTATUS, JPLCS, JPSTART, JPID, CINTR, IMODE, and JPSTOP. These
instructions can only be called from ring O. In fact, on many
machines (e.g., ECLIPSE MV/BOOO), the instructions are not even
defined.

The JPSTATUS instruction is used to find the current status of a
processor. For example, when initializing a CPU a JPSTATUS
instruction is used to find if the processor, a) exists and b)
has returned a correct status. The instruction can take an error
(or not skip) if the processor does not respond. If the
instruction does skip the next instruction, then the JP did
respond. The status bit "CPU IS OK" is returned in the status
word if the CPU is running properly.

The JP Load Control Store (JPLCS) is used when loading microcode
into the "control store" of the machine. This instruction is
used at microcode load time only.

The JPSTART instruction is used to start a processor executing
code at a specific address. At JP start time the JPSTART is
issued with the address of JPSWART.P.

The JPID instruction is used to identify the JP a path is
currently running on. This instruction is used during
histogramming updates to keep the caller from cross interrupting
itself.

The CINTR instruction is used to cross interrupt another
processor. For example, this instruction is used during the RTC
interrupt when histogramming to tell other processors to do
histogramming. Currently this is the only cross interrupt
defined in AOS/VS.

IMODE is the instruction that defines which processor will get
interrupted. There are two modes to this instruction: 0-
dedicated mode and 1 - device dedicated mode. Mode 0 allows only
one processor to be interrupted by the IOCs. Mode 1 allows the
devices to interrupt a particular processor. AOS/VS only uses
mode 0, therefore only the mother processor can receive
interrupts. This instruction is used at Device Control Table
(DCT) initialization.

Licensed Material 6-4 Property of Data General

The JPSTOP instruction requests the processor to stop running.
The JPSTAT instruction can be used to find out when the processor
actually stops running. This is used at JP release time.

6.2.3 JP Running Operations

The JP basically runs code. The JP does not care what the code
is because it allows ELQUE management to either run or allow an
element's code to run. The JP continues running code at what is
called base level until one of two events occurs: 1 - an
interrupt occurs or 2 - a fault occurs.

6.2.3.1 Interrupts

When an interrupt occurs the JP saves the state of the entity it
was running and services the interrupt. Saving the state of the
entity at interrupt time is done to the wide system interrupt
stack. In AOS/VS this stack is called SS. To service the
interrupt the processor jumps to the contents of location 1.
Location 1 contains the address of the interrupt service
routine. The interrupt service routine does a state save and
dispatches control through the interrupt vector table in page one
of that processor. This is done in one instruction, the XVCT
instruction. (See the "32-Bit Principles of Operation" manual.)

While the interrupt is running it is keeping track of the time
(PIT time) it is using. It does this by calling time management
to read the pit. When the interrupt is dismissed, time
management is again called to read the PIT again so that the
CPINT.4 can be updated.

Licensed Material 6-5 Property of Data General

When returning from an interrupt the DISMISS routine checks the
pre-interrupt state. This check is made to decide whether or not
to restore the state of the interrupted path. The checks made
are as follows:

If the interrupted path was in the system and in the idle
loop, then the dismiss routine transfers control to the top
of the schedule. If the interrupted path was in the system
but not in the idle loop, then the dismiss routine returns
control back to the system path. If the interrupt path was a
user path, then the DISMISS routine checks if the interrupt
was on behalf of a higher priority process than the currently
mapped user. This will cause a reschedule to occur.
Otherwise, control is returned to the interrupted path.

For more information on how interrupts are handled, see the
"32-Bit Principles of Operation" manual.

6.2.3.2 Faults

The JP code path could be diverted do to a fault. Faults are
hardware violations that must be resolved before returning to a
code path. Some faults cannot be resolved, so the JP may never
return to that code path.

The following table shows the different types of protection
faults that a code path could encounter and what component will
process the fault.

FAULT
CODE FAULT TYPE

+-------+------------------------------------+ o Read Violation
1 Write Violation
2 Execute Violation
3 Validity Violation
4 Inward Address Reference
5 Defer Violation
6 Illegal Gate Violation
7 Inward Call

10 Outward Call
11 Privileged Instruction Violation
12 I/O Protection Violation
15 Unimplemented Instruction

+-------+------------------------------------+
Figure 6.2 The Protection Fault Code Table

NOTE: For more information on the fault codes, please see the
"Protection Fault Codes" table in Chapter 5 of the "32-Bit
Principles of Operations" manual (014-000704-04).

Licensed Material 6-6 Property of Data General

6.3 The PPCB

The physical processor control block (PPCB) is a database that is
used to represent each Job Processor (JP) in the system. The
PPCB is used to hold status information used at schedule time for
a processor and to maintain statistical information for a JP.

WORD OFFSET USAGE SUMMARY
--------------+---+
CPSTAT
CPJPIDT
CPLCK.W
CPMODE
CPPADD
CPELM.W
CPMSK.W
CPRMK.W
CPLPCB.W
CPSADDR.W
CPSYS.4
CPCMT.4
CPSMT.4
CPDMT.4
CPIDL.4
CPINT.4
CPESI.4
CPRESI
CPTMK.W
CPREQ.W

Figure 6.3

o Status word
1 JPID of this processor
2 PPCB lock words
4 LP Mode on ELQUE scan start
5 Padd to even word align
6 Current Element Address

10 Current/Last scan mask (Mode 0/1)
12 Current reschedule mask (Mode 0 only)
14 PPCB is attached to this LPCB
16 Address of jp state block
20 # Ticks used by Operating System
24 # Ticks used by Core Manager
30 # Ticks used by System Manager
34 # Ticks used by Disk Manager
40 # Ticks used in Idle loop
44 # Ticks used at Interrupt Level
50 This CP's system sub-slice residue
53 (Lo-order 16-bits)
54 Current CP Tier Mask Address
56 Cross-interrupt request word

+---+
CPLEN = 60 Length of PPCB

The PPCB Offsets

BIT OFFSET USAGE SUMMARY
--------------+---~-------------------------------------+
PRESCH (0) Processor reschedule bit
CPMAST (1) Mother Processor bit
CPSYS (2) JP running system task
CPIDLE (3) "Go idle" bit
LSTACK (4) Last stack used by G1 process
CPSTOP (5) JP in process of being stopped
CPMOV (6) JP in process of being moved
CRESCN (7) If entering Idle loop, rescan ELQUE
CPEQL (8) Equal PNQF element was woken up

+---+
Figure 6.4 CPSTAT Status Word Bit Definitions

Licensed Material 6-7 Property of Data General

6.3.1 Offset Explanation

The following section describes the PPCB offsets and their uses
in detail.

The PPCB status word CPSTAT reflects the state of this JP. The
bits are described as follows:

PRESCH - This bit is checked in the idle loop and before
starting up a process to see if a significant event has
occurred to force a reschedule. In the case of the idle
loop, the reschedule bit is the only way the idle loop
can know that an event occurred. To preempt a process
setup, a more significant event had to occur to force a
reschedule.

CPMAST - This bit is set if the PPCB belongs to the
mother processor on the system. CPMAST is set at SINIT
time and is used when a system call is made to decide
whether or not to run the call. If the call is mother
only and this is the mother (e.g., CPMAST is set) then
run the call. If not, set up the call to be run on the
mother.

CPSYS - This bit is set if the JP is running a system
function (task). This bit is used to check if the
processor being checked is running in the system.

CPIDLE - This bit is set when the JP is changing state.
This bit is checked at the top of the scheduler. If the
bit is set, the JP will go to a routine and stays in a
tight loop waiting for this bit to be cleared. The path
that sets this bit will pend itself waiting for the
Target JP to go idle. When a ?JPMOV system call is
issued to assign the JP to another LP, the "mother" sets
CPIDLE to force that processor to go idle while the
JPMOV is being done.

LSTACK - The last stack used by this processor was used
by a Gl process. This offset is used to decide whether
the CB will be a G1 or G2/3 call. Typically, when a
process does a system call, the CB is allocated during
that subs1ice. If the CB used for the last system call
was a Gl CB, then the CB must be changed to a G2/3 CB.

Licensed Material 6-8 Property of Data General

CPSTOP - This bit is set when a processor is being
?JPRELeased. This will allow the JP to finish what it
is doing and reschedule to find that it must go idle and
get released. This bit is checked at ?JPREL time to
assure that the JP is not already being released.

CPMOV - This bit is set if the processor is being
assigned to another logical processor.

CRESCN - This bit is set when a rescan is necessary for
this PPCB. The bit is cleared at reschedule time. This
bit is checked before going to the Checksum Loop. If
the bit is set, the path gets its current scan mask and
goes to a point just before the scan. This bit differs
from PRESCH because PRESCH causes the path to go to the
top of the scheduler, which works with queues and
rebuilds the scan mask.

CPEQL - An element of equal PNQF was woken up. This bit
is used to show that an event has occurred and the PNQF
of the process the interrupt was for was the same as the
PNQF of the currently mapped process.

The Job Processor ID (JPIDT) is the number assigned to the
processor. If the processor is the mother, the JPIDT will be O.
This value is only touched at ?JPCREA time and SINIT.

The JP lock words are used for locking other processors out when
touching databases relating to this processor. This is used most
when an event occurs and the event handler is trying to set the
reschedule flag on the PPCB. If the lock is held, the PPCB
cannot be modified until the lock is released.

The CPMODE reflects what scheduler mode this JP is in currently.
This is used when deciding which type (or mode) of scan mask will
be used at scan time. (See LP Management.)

The CPADD just-even word aligns the rest of the databases in this
database.

The Current Element address CPELM.W contains the address of the
element that is currently mapped in the system. This field
should have the same value as CC.W for that processor. If this
field is zero, then the JP is in the scheduler.

Licensed Material 6-9 Property of Data General

The Current/last scan mask (mode 0/1) CPMSK.W contains the
current or last scan mask used by this processor. The mode of
scheduling may have changed since the last scan, so the mask is
irrelevant of mode. When a rescan is needed, then the scanner
gets the mask from CPMSK.W.

The Current reschedule mask (mode 0 only) CPRMK.W is the mask to
be used if a reschedule should occur. This offset is set up in
the scan section and tested against during EVENT to see if the
element to run on that JP can run. For example, if the class
that the element belongs to is masked out on this JP, then we
should try to run the element on another JP.

CPLPCB.W contains the address of the Current LPCB that this JP is
attached to. This offset is changed by attach and detach. (See
Sections 6.4.3 and 6.4.4.)

CPSADDR.W contains the address of the JP state block. This is
used and supplied by the JP instructions JPSTOP and JPSTART,
respectively.

The following values are used to keep accounting statistics.
These statistics are kept in clock ticks. A tick is defined as
the amount of time the PIT takes to increment one of its counters
by one. The way these timings are done is by a call to time
management when the operation starts running and another call to
time management when the operation finishes. The difference
between these timings is the amount of time the operation took to
run.

The CPSYS.4 four words are used to maintain statistics of how
many ticks this JP spent in the system. This time is measured
from the time the scheduler is entered to the time an element
runs and includes the Idle loop timing.

The CPCMT.4 four words are used as a counter to maintain
statistics of how many ticks this JP used by the core manager
task. This offset is updated by the core manager task.

The CPSMT.4 four words are used to maintain statistics of how
many ticks this JP used by the system manager task.

The CPDMT.4 four words are used to maintain statistics of how
many ticks this JP used by the disk manager task. This offset is
updated by the disk manager task.

Licensed Material 6-10 Property of Data General

The CPIDL.4 four words are used to maintain statistics of how
many ticks this JP spent in the idle loop. This offset is only
updated by the idle loop.

The CPINT.4 four words are used to maintain statistics of how
many ticks this JP used at interrupt level. Each interrupt
handler does the initial time management call and the DISMISS
routine call for the database update.

The CPESI.4 four words are used to hold the system subslice
residue. CPRESI is the low-order word of CPESI.4. This is
currently not used in AOS/VS.

CPTMK.W is used to hold the mask address of the tier currently in
use. This gets incremented when the scanner changes tiers to get
the scan mask for the next tier. If the mode is 0 this value is
not used. (See mode management in the ELQUE Management chapter.)

The CPREQ.W contains the JP cross interrupt word. This word
holds the interrupts currently defined as cross interrupts for
this JP. The only cross interrupt defined in AOS/VS is for MP
Histogramming during the RTC interrupt.

CPLEN is the length of the PPCB. This is currently 60 words.

6.3.2 The JP Globals

In the multiprocessor environment all processors share the system
resources such as memory. Therefore, all processors can access
anything in memory. To maintain the integrity of a JP state
however, there must be some memory that must be JP unique. This
memory is the JP's pages zero and one. Page zero contains all
the information needed to maintain the state of that JP.
Information such as CC.W (current element running on that JP) and
INTLV (interrupt level) are kept in the JP's page zero. In the
JP's page one is the interrupt vector table for that JP. In the
sources these variables are referenced in "SZERO.LS".

There are some globals that are not defined as JP unique.
Examples of these are ELQUE (the ELigible QUEue) and LRUCH.W (the
Least Recently Used Chain - see Memory Management). In the
sources these globals are found in "STABLE.LS".

Licensed Material 6-11 Property of Data General

There are 12 global variables used by JP management: JPUMBASE,
JPUMSIZE.W, MAXCP, MAXJP, JPCNT, JPUBUFF.W, MYPPCB.W, MYJPID,
CP.W, PP.W, CKSUM, and INCHK.

JPUMBASE.W is the pointer to the table of JP unique pages. This
pointer is used to find the pages of a specific JP. The
calculation used to find a JP's page zero (using FED notation) is
as follows:

JP1(page zero) = JPUMBASE.W\(address of table)\
(JPOs page zero)

.+(the contents of JPUMSIZE.W)*JPID\

JPUMSIZE.W contains the number of words that are JP unique. In
revision 7.50, this number is 4000 (octal). This is used in the
above calculation to find the JP unique pages.

MAXCP is a count of the maximum number of Command Processors
(CPs) allowed in the system. The CP is the same as the JP to
AOS/VS. For rev 7.50 the maximum number of JPs allowed in the
system is two.

MAXJPID is the highest JPID allowed in the system. Since there
are only two processors allowed in the system, and we count from
0, the max JPID is 1.

JPUBUFF.W contains a pointer to the microcode buffer used at
?JPINIT time if the current microcode is used to start the newly
inited processor.

MYPPCB.W contains a pointer to the PPCB for that processor. This
is a quick way for the JP to find its PPCB. This is unique to
each processor.

MYJPID contains an integer value, which is the JPID for that
processor. This is used to find the JPID for a processor when
doing cross interrupts or when mapping a process. In the Cross
interrupt code a check is made to see if the JP is cross
interrupting itself. In the map user code a check is made to see
if the ATU for that JP needs to be purged before mapping a user.

PP.W is the starting point for an array of pointers to the PPCBs
of all the inited JPs in the system. This list is ordered by
JPID. There is one copy of this array for the entire system.

Licensed Material 6-12 Property of Data General

CP.W is the starting point for an array of pointers to the PPCBs
of all the active JPs in the system. There is no ordering to
this array, although location 0 of this array is likely to be
the address of the PPCB for JPO.

MYTIME.W is a pOinter to the offset in the table of CPU times.
Each time this JP goes through the scheduler, the time of day (in
seconds) is stored through MYTIME.W into the table offset for
this JP. There is one copy of MYTIME.W for each JP.

CPUTIM.W is the table of watch dog timers for all the active JPs
in the system. The contents of this table are updated each time
the JP goes through the scheduler. Before the JP goes idle, this
table is scanned to see if any of the processors have not updated
their respective entry in the table in the last 15 seconds. If
the limit is reached, then the JP send a message to the OP
console: "WARNING: Processor #(JPID) has not rescheduled for
(table entry) seconds. May be hung." Then the processor
continues checking and eventually goes into the Checksum loop.

CKSUM is the checksum value used in the Checksum loop. This is
an integer that contains the XORed values of that JP's static
locations. This value is built during system initialization.
During JPINIT, CKSUM for the new JP is copied from the JPO CKSUM.

INCHK is the word that shows if a JP is in the Checksum loop.
This global is JP specific. If the value of INCHK is zero, then
the JP is not in the Checksum loop. If INCHK is 1, then the JP
is in the Checksum loop.

Licensed Material 6-13 Property of Data General

6.4 Basic Operations on the PPCB

The PPCB is changed by using certain basic operations. These
operations mayor may not be explicitly referenced in the code as
routines. The basic functions that affect the PPCB are:
Alloc.ppcb, Dealloc.ppcb, attach.ppcb, dettach.ppcb, update. time,
get_ma~k, update mode, Lock.ppcb, Idle_jp, and EVENT.

6.4.1 Alloc.ppcb

This operation allocates memory for the PPCB and the JP state
block. The pseudocode below shows how this operation is done.
This operation is only used when starting a JP and at system
initialization.

/* $$$ */
/* */
/* ALLOC PPCB */
/* */
/* This routine allocates space for a PPCB and */
/* its jpstate block. The memory management */
/* function used is GSMEMNW (get memory no wait) */
/* */
/* $$$ */

ALLOC.PPCB()
{

/* *** */
/* */
/* If we are not an MP system then there is no */
/* need for a JP state block. */
/* */
/* *** */

}

if (mp system)
ppcb.saddress = GSMEMNW
(getmem no wait(ppcb state blklen»;

return(ppcb_address); - -

Licensed Material 6-14 Property of Data General

6.4.2 Dealloc.ppcb

This operation deal locates memory that the
block held. This operation is used if the
if the JPINIT loading of microcode fails.
is called FREE.PPCB. The pseudocode below
operation works:

PPCB and the JPstate
user does a JPREL or
In AOS/VS this routine
shows how this

/* $$$ */
/* */
/* DEALLOC PPCB */
/* */
/* This routine frees the memory allocated to the*/
/* PPCB" and the JPstate block. */
/* */
/* $$$ */

dealloc.ppcb(ppcb address)
{ -

ppcb=ppcb_address;

/* *** */
/* */
/* If we are not an MP system, then there is no */
/* JPstate block to deallocate. */
/* */
/* *** */

if (mp system)
mem manage (release mem,ppcb.saddress,jp state len);

RSMEM(ppcb,ppcb len); - - -
return(); -

}

Licensed Material 6-15 Property of Data General

6.4.3 Attach a PPCB to an LP

This operation attaches a PPCB to an LP so that it can get a mask
from somewhere to do class scheduling if class scheduling is
enabled. This function is called each time a JP is inited into
the system, when a JPMOV is done, and during system
initialization. The pseudocode below shows how this operation
works.

/* $$$ */
/* */
/* ATTACH */
/* */
/* This routine attaches a JP to an LP. */
/* */
/* */
/* $$$ */

ATTACH(lpcb,ppcb)
{

/* *** */
/* */
/* If the LPCB field in the ppcb is not zero then */
/* panic with a 14615. If this happens then the */
/* JP is already attached to an LP. This is the */
/* attach panic. */
/* */
/* *** */

if (!(ppcb.1pcb.w == 0»
panic(14615);

else
ppcb.1pcb.w = 1pcb;

jpid = ppcb.jpid;
1pcb.1pjpcnt++;

/* *** */
/* */
/* LPJPMP.W is a bit map. If the bit for the */
/* JPID is 1 then panic with a 14615. */
/* Otherwise, set the bit in the bit map for */
/* that JPID. If the bit is already set, then */
/* the JP is already assigned to the LP. */
/* *** */

if (!(bit(lpcb.1pjpmp.w,jpid) == 0»
panic(14615);

else
bit(lpcb.1pjpmp.w,jpid) = 1; /* set bit */

Licensed Material 6-16 Property of Data General

/* *** */
/* */
/* If this is the mother JP we're attaching, then */
/* set the "mother is attached to this LP" LPMOM */
/* bit in the LPCB. */
/* */
/* *** */

}

if (bit(ppcb.cpstat,cpmast) == 1)
{

lock(lpcb); /* this turns off interrupts*/
bit(lpcb.1pstat,lpmom) = 1;
un1ock(1pcb);
interrupts(enab1e);

}
return();

Licensed Material 6-17 Property of Data General

6.4.4 Detach

This operation detaches a JP from an LP. This is called when
doing a JPMOV, a JPREL, or if a JPINIT fails. The pseudocode
below shows how this operation works.

/* $$$ */
/* */
/* DETACH */
/* */
/* This routine detaches a JP from an LP. */
/* */
/* */
/* $$$ */

detach(lpcb,ppcb)
{

/* *** */
*/

If the LPCB field in the ppcb is zero, then */
panic with a 14616. This is the detach panic.*/
This error means that we're trying to detach */
something that is not attached to any LP. */

/*
/*
/*
/*
/*
/* *** */

if (ppcb.lpcb.w == 0)
panic(14616);

else
ppcb.lpcb.w = 0;

jpid = ppcb.jpid;
lpcb.lpjpcnt--;

/* *** */
/* */
/* LPJPMP.W is a bit map. If the bit for the */
/* JPID is 0, then panic with a 14615. */
/* Otherwise, clear the bit in the bit map for */
/* that JPID. This error means that the JP is */
/* not attached to this LP. */
/* *** */

if (!(bit(lpcb.lpjpmp.w,jpid) == 1»
panic(14615);

else
bit(lpcb.lpjpmp.w,jpid) = 0; /*clear bit */

Licensed Material 6-18 Property of Data General

/* *** */
/* */
/* If this is the mother JP we're detaching, then */
/* clear the "mother is attached to this 1p" LPMOM*/
/* bit in the LPCB. */
/* */
/* *** */

}

if (bit(ppcb.cpstat,cpmast) == 1)
{

lock(lpcb); /* this turns off interrupts*/
bit(lpcb.1pstat,lpmom) = 0;
un1ock(1pcb);
interrupts(enab1e);

}
return();

6.4.5 Update Time

This operation updates the time counters in the PPCB. This
routine does not really exist, but it functionally does. To see
the paths that access this operation, refer to the paths section
below. The pseudocode below shows how this function works.

/* $$$ */
/* */
/* UPDATE TIME */
/* */
/* This function updates the time that a time */
/* counter in the ppcb. */

* */
/* */
/* $$$ */

update_time(start_time,end_time,function)

ppcb.[function] += end time - start_time;

Licensed Material 6-19 Property of Data General

6.4.6 Set Mask

This function stores the current scan mask into the PPCB. The
mask will be used when a rescan is needed. Otherwise, the mask
is not used.

/* *** */
/* */
/* SET MASK */
/* This routine gets the current scan mask to */
/* be used from the LPCB and stores it in the */
/* PPCB. If the mode is 1, then we offset into */
/* tiers table. */
/* *** */

set mask(mode,lpcb,mask offset)
{ -
if (mode == 1)

ppcb.cpmsk.w = Ipcb.lphmk.w[mask_offset];
else

ppcb.cpmsk.w = Ipcb.lpcsm.w;
}

Licensed Material 6-20 Property of Data General

6.4.7 Lock PPCB

This operation tries to lock the PPCB to do some work on it.
This operation can spin on the lock. In the code this operation
is called XLOCK (See Process Management Interface Services for a
general explanation.)

/* *** */
/* XLOCK */
/* This routine sets the lock on a lock word */
/* passed to this routine. This is a short-term */
/* lock. This routine will spin waiting for lock.*/
/* *** */

xlock(bit offset, word address)
{- -

/* *** */
/* Initially do an atomic test and set operation. */
/* An atomic test and set is necessary to maintain*/
/* the integrity of the lock. In the assembly, */
/* the instruction is a WSZBO instruction. While */
/* this instruction is running no other operation */
/* that works with memory can run. In the inner */
/* loop a non-atomic test operation loops (SPINS) */
/* until false. Once false the routine must again*/
/* try the atomic test before leaving the routine,*/
/* because the lock may have been set during the */
/* transition from the inner to the outer loop. */
/* *** */

while (test n set(bit(word address, bit offset) == 1»
while-(bit(word address, bit offset) == 1)

{} - -
}

6.4.8 Idle JP

This operation sets the bit in the
JP to go idle. The operation then
idle. This idling is not the idle
allows the JP to effectively pend.
how this operation works.

PPCB status word to tell that
pends waiting for the JP to go
loop; it is a place that

The pseudocode below shows

/* ** */
/* IDLE JP */
/* This routine sets the "go idle" bit in the PPCB */
/* and pends waiting for the JP to go idle. */
/* */
/* ** */

idle jp(ppcb)
{ -

Licensed Material 6-21 Property of Data General

/* ** */
/* */
/* If the caller tries to idle the mother, a panic */
/* 14622 will result. */
/* */
/* ** */

if (bit(ppcb.status.cpmast) == 1)
panic(14622);

/* ** */
/* */
/* Get the ptran lock and set the cpidle and waiters */
/* bits. Release the ptran lock and pend. When */
/* the JP is "idle" this routine gets unpended. */
/* We get the global jplp lock and return. */
/* ** */

}

xlock(ptran,ppcb.status);
bit(ppcb.cpstatus.cpidle) = 1;
bit(ppcb.cpstatus.wait) = 1;
bit(ppcb.cpstatus.ptran) = 0;
pend(idle) ;
get jplp lock(change);
return();

Licensed Material 6-22 Property of Data General

6.4.9 IDLE

This routine is the spin routine that is forced because the
CPIDLE bit in the PPCB status word has been set. This bit is
only set when the PPCB for this JP is going to have something
happen to it that cannot allow this JP to be doing anything that
may affect the LPCB or the PPCB. In other words, the JP must
somehow PEND. The JPIDLE bit is tested at the top of the
scheduler so there is nothing happening on this JP. It is in a
state that allows the JP to go into the "IDLE" state.

/* $$$ */
/* IDLE(PPCB) */
/* This routine spins on the CPIDLE bit in the */
/* PPCB status word. */
/* */
/* $$$ */

idle(ppcb)

{
MYTIME.W = 0;
unpend(ppcb->cplck.w);/* Unpend the code that set */

/* the lock so we don't stay*/
/* idle forever. */

wh1le(b1t(ppcb->cpstat,cpidle) == 1)
{}

}

6.4.10 EVENT

EVENT is called when something happens in the system that causes
the reschedule flag to be set. This event that causes a
reschedule usually is an interrupt. In an MP environment, the
routine will check all the processors to see which one is running
the lowest priority path. The priority of a path is defined by
PNQF (see ELQUE Management) if it is a user path or CB. If the
path is a system path, then the check is made in the JP in the
Checksum Loop. Periodically in the system there are checks made
for the reschedule flag being set on that JP. If the reschedule
flag is set, then that JP will go to the Scanner.

In the code there are two entry points related to EVENT: EVENT
and MEVENT. MEVENT is only used when the JP that needs to be
rescheduled can only run on the mother.

Licensed Material 6-23 Property of Data General

/* $$ */
/* EVENT/MEVENT */
/* Set the reschedule flag on the JP running the */
/* lowest priority path. MEVENT sets the reschedule*/
/* flag on the Mother. */
/* $$ */

EVENT(element)/MEVENT(element)

{
int ppcb,epnqf,epclass,i;

/* ** */
/* If MEVENT was called, then do the "mother only" */
/* work. Increment the "MEVENT called" global counter*/
/* NMEVENT.W. The label mother only is used if EVENT */
/* finds that the element that caused the event is */
/* "mother only". */
/* ** */

if (MEVENT)
{
NMEVENT.W++; /* ONE MORE MEVENT */

mother_only:

/* ** */
/* Is the reschule flag already set? If so, then */
/* return. If the flag is not set then go see if */
/* we should set the reschedule flag. To do the */
/* checking call the routine MATCH1. See Section */
/* 6.4.11 MATCH. */
/* ** */

if (bit(MPPCB.W->cpstat,presch) != 1)
if (MATCH1
(element->pclass,element->pnqf,&ppcb»

setbit(ppcb->cpstat,presch);
}/* MEVENT */

/* ** */
/* If MEVENT was not called, then EVENT was called. */
/* Check if the element that interrupted is already */
/* running. If so, return. */
/* ** */

else
{

if «bit(element->pstat,psrun) != 1)
{

Licensed Material 6-24 Property of Data General

/* ** */
/* Are we a single processor system? If so, then */
/* check our reschedule flag and check if the element */
/* can cause a reschedule to occur without doing */
/* other work. This is a short cut for nonMP systems */
/* */
/* ** */

if (MAXCP == 1)
{
if (bit (MYPPCB.W->cpstat,presch 1= 1)

if (MATCH
(element->pclass,element->pnqf,&ppcb)

setbit(ppcb->cpstat,presch);
}/* 1 JP */

else
{

/* ** */
/* If the interrupting element is "mother only", go to*/
/* the mother only label in the MEVENT section. */
/* ** */

if (bit(element->pstat,pmast) == 1)
goto mother_only;

/* ** */
/* start looping through the processors to find the */
/* processor that is able to be rescheduled. A */
/* JP can get the reschedule flag set if the element */
/* running on it is of lower priority or if the JP */
/* is in the Checksum Loop. */
/* ** */

for (i=O;i<=MAXCP;i++;)
{
epnqf = element->pnqf;
epclass = element->pclass;

Licensed Material 6-25 Property of Data General

/* ** */
/* Is this JP in the JP's table CP.W defined? If so, */
/* go to the next JP in the table (e.g., loop). If */
/* not, then continue checking. */
/* ** */

if « CP • W [i] I = -1)
{
ppcb = CP.W[i];

/* ** */
/* If this JP is not "IDLE" and the reschedule flag */
/* is not set for that JP, then continue. "IDLE" is */
/* the state the processor can be in if the JP is */
/* being moved or released. */
/* */
/* ** */

if «bit(ppcb->cpstat,cpid1e) I= 1)
II (bit(ppcb->cpstat,presch) I=l»

/* ** */
/* Can the element set the reschedule flag for this */
/* JP? If so, set it and break out of the loop. */
/* ** */

if (MATCH(epc1ass,epnqf,&ppcb»
{
setbit(ppcb->cpstat,presch);
break;
}/* if there is a match */

}/* if defined */
} /* for loop */

} /* not 1 JP */
}/* element not running */

}/* not MEVENT */
return() ;
} /* EVENT/MEVENT */

Licensed Material 6-26 Property of Data General

6.4.11 MATCH/MATCH1

MATCH and MATCH1 are Boolean functions that check if a processor
can have its reschedule flag set. Match first checks if the
class the element is in is defined on the LP that this JP is
attached to. If the class is not defined, then the function
returns FALSE without setting the rescan flag (see below).
MATCH1 is the beginning of the common code for both functions.

There are two cases where these functions will return TRUE: 1)
The JP is in the checksum loop; 2) The JP is running an element
of lower priority than the one that these functions are called
with.

If the functions return FALSE, they will also set the Rescan flag
(rescn) in the PPCB. The functions will return FALSE if: 1) The
JP is running system code other than the checksum loop; 2) The
PNQF of the element running on the processor is of higher or
equal priority than the one supplied by the caller. If the
priority is equal to the element supplied by the caller, then set
the BCPEQL flag; 3) The disk manager task is running. This CB
(see CB management) is the highest priority element in the
system; 4) The element is in a class that is not defined or is
masked out on the LP that this JP is attached to. This is a
special case and will not set the rescan flag.

Licensed Material 6-27 Property of Data General

6.5 Paths that Affect the PPCB

There are two main paths that access the PPCB: the scanner and
the time accounting path. There is a third path that reflects
the state of the JP, but does not affect the PPCB; that path is
called the Checksum loop.

6.5.1 The Scanner

The scanner is the path, in the module SCHED, that scans ELQUE to
find a CB or ptbl to run. This path is not called "scanner" in
the code, it has several entry points. For an explanation of the
entry points into the scanner, see ELQUE Management. The scanner
affects the LPCB when there is a RESET of the lpcb databases
after a scan of ELQUE fails. The scanner also affects the LPCB
when there is a mode change.

The scanner is presented from the JP point of view. The reason
for this is the scanner in the system imbeds three logically
separate points of view in line. For example, consider the
following lines of C code.

A: if (bit(myppcb.w.cpstat,cpmast) != 1)
/*daughter?*/

setbit(mask,process_mother_bit);

B: element = SCAN(*ELQUE,mask);

C: if (mask == mylpcb.lpciu.w)
{}

"A:" is supplied by JP management because the if statement uses
the global MYPPCB.W to find out if this is a daughter processor
(see JP management).

"B:" is supplied by ELQUE management because the scan function
uses ELQUE, which is managed in ELQUE management.

"C:" is supplied by LP management, because the initial scan mask
comes from the LPCB.

In the above example, three major areas of Paths and Time are
used in three nearly consecutive commands. This is the way the
code is really presented in the system, but to modularize the
scanner for each section the scanner is presented with different
emphasis.

Licensed Material 6-28 Property of Data General

The pseudocode below shows the scanner from the ELQUE management
point of view.

/* $$ */
/* */
/* The Scanner */
/* The scanner will loop forever unless left */
/* to gO_idle. (See ELQUE Management.) */
/* */
/* $$ */

#define loop forever true
scanner() -
{
int model_tier; /* variable used for call to set_mask*/

model_tier = 0;

/* ** */
/* */
/* Put the current time stamp in seconds into our */
/* offset in the Watchdog timer array. This will */
/* keep the other processors from thinking that */
/* this JP is hung. */
/* */
/* Check to see if the "go idle" bit is set. If */
/* it is then stay idle on this bit while another */
/* processor does work on this one. */
/* */
/* ** */

CPUTIME [MYPPCB.W->jpid] = TODH.W;
if (bit(MYPPCB.W,cpidle) == 1)

IDLE (MYPPCB.W);
while(loop forever)

{ -
/* ** */
/* */
/* Get the current mask. If child processor then */
/* mask out the mother bit and scan ELQUE. */
/* MYPPCB.W is the PPCB for that JP. */
/* mylpcb.w is the address of this lpcb. */
/* setmask is a function in JP management. */
/* ** */

mask = set mask(mode,mylpcb,mode1 tier);
if (bit(myppcb.w.cpstat,cpmast) !~l)/*daughter?*/

setbit(mask,process mother bit);
element = SCAN(*ELQUE,mask); -

Licensed Material 6-29 Property of Data General

/* ** */
/* If the scan was successful the element will get */
/* dispatched. Below is a representation of the */
/* GOTO dispatcher logic. It will show the different*/
/* dispatchers the scanner can send an element to. */
/* There are four dispatchers the scanner can send */
/* an element to: PCALL for PTBLs, TACT for user */
/* CBs, Tact1 for system CBs, and CMINT for the Core */
/* Manager CB (a special case). In the code the */
/* scanner merely jumps indirect through location */
/* PPC.W in the PTBL/CB common area. */
/* ** */

if (successful scan)
{ -

dispatch(element); /* see elque management */
} /* successful scan */
else

/* ** */
/* */
/* If not successful, then check if class scheduling */
/* is on. If not, go to the checksum loop. If class*/
/* scheduling is on then check to see if a mode */
/* change is necessary. If the current mask is */
/* the same as the initial scan mask, RESET and */
/* change mode. This is considered a sufficient */
/* check because the scan failed with the initial */
/* mask, meaning there are no more primary classes */
/* ready to run. To avoid a second unnecessary scan,*/
/* RESET to run the secondary classes. (See LP */
/* Management for mode information). .*/
/* ** */

If (bit(MYLPCB.W->lpstat,lpoff) == 1)
goto SMONDD;

if (mask == mylpcb.w->lpciu.w)
{
reset(mylpcb.w);

} /* if */
else

Licensed Material 6-30 Property of Data General

/*
/*
/*
/*
/*
/*
/*

**

If not changing the mode, then check if to see
what mode we're in. If mode 0 then reset the
LP databases and get a new mask; if not, get the
next tier if possible.

**
if (myppcb.current mode == 0)

reset (mylpcb.w);
model-tier = 0;

else

*/
*/
*/
*/

*/
*/
*/

if (myppcb.cptmk.w+2 > myppcb.cphmk.w+32)
{
myppcb.current mode = 0;
model tier = 0;
}
else
{
myppcb.cptmk.w += 2; /* JP */
model tier = myppcb.cptmk.w;
}/* else */

} /* while loop */
} /* scanner /*

Licensed Material 6-31 Property of Data General

6.5.2 Time Accounting

Whenever the system is entered the time used by the system must
be 'accounted for. This is done by the JP that the system is
running on. (See Time Management.) The timings done by the
system are saved in the PPCB in the following manner:

/* ** */
/* */
/* Take a reading of the PIT and save it in */
/* the function base. Do the function... */
/* Take a reading, subtract base from the reading, */
/* and store in ppcb for that function type. */
/* ** */

enter sys function:
function base = LOOK. PIT;

DO_FUNCTION_WORK;

temp = LOOK. PIT;
update time(function base, temp);
exit; - -

The types of functions that these timings are saved for are
as follows.

FUNCTION BASE NAME PPCB ENTRY
+-----------------+--------------+----------+
Operating System SBASE CPSYS.4
Core Manager CBTIME * CPCMT.4
System Manager CBTIME * CPSMT.4
Disk Manager CBTIME * CPDMT.4
Idle loop CBTIME ** CPIDL.4
Interrupt Level IBASE CPINT.4

+-----------------+--------------+----------+
Figure 6.5

*
**

Offset in the CB. (See CB Management)
Offset in the CB. (See CB Management) Uses
whatever CB is addressed by PCB.W as a temporary
storage CB.

For more information on the databases relating to these
functions, see the PPCB definitions.

Licensed Material 6-32 Property of Data General

6.6 The Idle Loop (Checksum)

AOS/VS will go into an "IDLE" mode if it can find nothing on the
ELQUE to run. This means that no PTBLs or CBs are eligible to
run. Since a JP cannot be doing "nothing" the JP will go into a
loop that checksums the system page zero. This is called the
checksum loop (idle loop). Before going into the checksum loop,
JP management must prepare to go into the "IDLE" state.

There are three entry points into the idle loop from the rest of
the system: SMONDD, SMOND, and COK. SMONDD is the beginning of
the idle loop preparation routine. (See below.) SMOND is the
beginning of the actual idle loop. COK is the beginning of the
"leave the idle loop" routine.

6.6.1 Preparing for the Idle Loop

Before entering the idle loop, some system sanity checks must be
made. These checks deal with the watch dog timer and system
deadlock checking. The entry point for this section is SMONDD.

The watch dog timer is used to see if the other JP in the MP
environment is HUNG. The timer is a double-word time stamp used
to hold the current time of day. This field is changed each time
the JP goes through the scheduling code. The time stamp is
compared with the current time of day. If the time stamp is
greater than 15 seconds, then the checking JP assumes the other
JP is hung. If this conclusion is reached, then the JP will send
a message to the operator console telling the user that the other
JP is hung.

JP management does some deadlock checking before going into the
idle loop. This checking is done to prevent the'swap waiter (see
Memory Management) from deadlocking the system. If a process is
being swapped and has not finished yet, and if another process is
trying to do some move operation into the memory of the waiter,
then the process will wait for the memory and possibly wait
forever. The pseudocode below shows how the deadlock checking
is done.

Licensed Material 6-33 Property of Data General

/* *** */
/* Dead lock checking */
/* This code shows how the swapwaiters deadlock */
/* check is done. */
/* */
/* If we're in ESD then ignore this checking. */
/* */
/* *** */

if (ESDSW != -1)
{

/* *** */
/* */
/* If there are swap waiters on the system then ••• */
/* */
/* *** */

if (SWAP WAITERS != -1)
{ -

/* *** */
/* */
/* check to see if there were any swap waiters the */
/* last time we checked. If not set up the timer */
/* for the length of time there is a waiter. */
/* If so, check if the waiter we set the timer for */
/* is the same as the current waiter. */
/* */
/* *** */

if (SWAP TIMER.W == 0)
SWAP TIMER = time of_day;

else
/* *** */
/* */
/* If we have a different waiter then reset the */
/* waiter timer. Otherwise, check for how long we */
/* waited. */
/* *** */

if (last swap event == current swap)
SWAP_TIMER-= time_of_day; -

else
/* *** */
/* */
/* If the waiters have been here for more than three */
/* seconds, then unpend the waiter. */
/* */
/* *** */

if (SWAP TIMER> 3)
unpend(SWAP WAITER);

} /* waiters */ -
} /* not ESD */

Licensed Material 6-34 Property of Data General

6.7 The Checksum Loop

After doing all the preparation the system finally enters the
"idle" state and goes into the Checksum Loop. The checksum loop
is a loop that checksums the JPs page zero. The checksum loop
does its memory work with the lights (interrupts) on, so it will
not miss a necessary event such as a device interrupt. Before
entering this loop the JP sets the global INCHK to 1. This word
lets the system know that the system is idle.

Knowing the system is idle is important because if something
significant happens, such as an interrupt that sets an entity
ready to run, the system should go immediately to schedule the
entity. Therefore, when dismiss finds out that INCHK == 1;
instead of restoring state back to the checksum loop, dismiss
will go to the top of the scheduler (scanner). Checking the
system idle word avoids unnecessary waiting by the user while the
system is "idle".

The checksum loop compares a memory location against itself. If
the memory location contains a different value, then panic
because the hardware is probably broken (BROKE!). This testing
is done for all of the JP's page zero. After going through the
JP's page zero, a comparison is made to see if the page zero
checksums. After one iteration through the checksum loop,
control will go to the top of the scanner.

The pseudocode below shows how the checksum loop works.

Licensed Material 6-35 Property of Data General

/* *** */
/* The Check Sum Loop. */
/* */
/* The entry point for this routine is SMOND. */
/* This loop checks for valid memory comparing the */
/* contents of the location against the same */
/* location. If they are different, then panic. */
/* *** */

SMOND()
{

int check va1ue,i,temp;
check value = 0;
INCHK-= 1;
interrupts(enab1e);
for (i=o;i==ZCKST;i++)

{

/* *** */
/* */
/* If the system reschedule flag is set, then go out */
/* of the checksum loop. */
/* */
/* *** */

if (bit(myppcb.w->cpstat,presch) == 1)
goto leave_idle;

/* *** */
/* */
/* If the memory location is not the same as itself, */
/* then the hardware must be broken. So panic with */
/* an 11002. */
/* *** */

if (page zero[i] != page zero[i])
panic(11002); -

check value A= page zero[i];
} - -

/* *** */
/* */
/* If the check value does not match the system */
/* checksum value, then panic. */
/* */
/* *** */

if (cksum != 0)
if (check value != cksum)

panic(I1001);

Licensed Material 6-36 Property of Data General

/* *** */
/* */
/* "leaving idle" is an entry point called "eOK" in */
/* the code~ This section transfers control back to */
/* the top of the scheduler. (scanner) */
/* *** */

leave idle: /* eOK */
Interrupts(disable);
inchk = 0;
temporary = pcb.w;
tcsys();
myppcb.w->cpidl.4 += time used;
goto scanner;

}/* smond */

Licensed Material 6-37 Property of Data General

6.8 Locking

There are three basic types of locks at the JP level: interrupt
disable, interrupt masking, and the spin lock.

The interrupt disable lock is used when a JP is doing something
that puts it into an unstable state. For example, the JP should
have interrupts off when modifying its stack because if the stack
is in an unstable state when the interrupt comes in, the stack
could be declared "INVALID" by the microcode when restoring the
state. This is also used to lock out interrupt code that could
also modify a data base.

Unfortunately, disabling interrupts is not good if what you want
to do is drive devices as much as possible. Therefore, disabling
interrupts should be done for as little time as possible.

The second type of locking scheme is masking interrupts. This
method modifies the interrupt mask (CMSK). This scheme allows
you to modify a critical area that a particular device will
affect. For example, when putting a process on the delay chain
(see process management interface services) the Real Time Clock
(RTC) (see time management) must be masked out because there may
be a RTC interrupt putting some PTBL on the delay chain.

The third type of locking scheme is spin locking. This scheme
spins while waiting to get access to a lock bit. Access to a
lock bit is allowed when the bit is off(O). The problem with
this method of locking is that the JP is not doing anything else
while waiting for this lock. Spinning is shown below in an
assembly routine:

AC1 -> Bit Displacement of lock.
AC2 -> Word Address of lock.

XLOCK: INTDS
WSZBO
WBR
WPOPJ

; TURN INTERRUPTS OFF

SPIN: INTEN
WSZB
WBR
WBR

2,1
SPIN

; ATOMIC TEST AND SET
; SPIN ON THE LOCKED

; RETURN TO CALLER
LOCK

. ,
2,1
SPIN
XLOCK . ,

TURN INTERRUPTS ON
; NON ATOMIC TEST OF LOCK
; STILL LOCKED KEEP SPINNING

; GO TRY TO ATOMICALLY SET
LOCK

Licensed Material 6-38 Property of Data General

There is another routine that uses the same locking scheme. This
routine is called BSLOCK.

NOTE: For more information on this routine, see spin lock PPCB
in Section 6.4.7 for basic operations.

6.9 User Services

When booted and during initialization, AOS/VS sets up and starts
LPO and PPO. This is to ensure that there is at least one
physical and logical processor in the system.

Once the system is running, there are several system calls
(User Services) which can be issued to manage the JP environment.
They are:

?JPINIT - Initialize a JP
?JPREL - Release a JP
?JPMOV - Move a JP to a new LP
?JPSTAT - Get JP status information

Assuming that AOS/VS is up and running and we have a
multi-processor system, what do we do next to use the
multi-processor capabilities of the hardware?

Actually there is already one JP running and one LP available,
since these are needed to get AOS/VS up and running. This booted
processor is called the "mother processor" (also called the
"initial processor"). Any future additional processors will be
called "child" processors.

To add a JP to the multiprocessor system, the system manager must
initialize the new JP. The system call to do this is ?JPINIT.

Licensed Material 6-39 Property of Data General

6.9.1 ?JPINIT

The purpose of JPINIT is to initialize a JP into the system. It
has several options that allow the system manager some
flexibility in using the multiprocessor environment.

The first and most important check is to make sure the caller has
the MP privilege. The packet used contains some other very
important parameters. They are:

1. JPID
2. Flag word
3. LPID
4. uCode options
5. length of uCode string
6. Byte pointer to pathname of microcode

Flag word is used to tell JPINIT how to handle the microcode
loading procedure. If flag word has a value of 10, then use the
microcode file pointed to in the packet. If it is 1, then use the
microcode that already exists in the JP. If it is 0, then use the
default microcode based on the JP's CPUID.

The microcode option word is used with the JPLCS instruction.
With this option word, the machine will be able to determine what
it may have to load. It has the capability to load microcode
(i.e., use FP microcode or not).

Licensed Material 6-40 Property of Data General

The following is a description of what happens when the ?JPINIT
system call is issued.

/* $$ */
/* */
/* If the user does not have the MP privilege */
/* leave the call. */
/* */
/* $$ */

/* This is the user packet supplied to the system call.*/

LOC Name Summary
+---+----------+-------------------------------------+ o

2
3
4
5
6
7

11

pckid
reserved
flags
jpid
Lpid
uc option
uc=bptr
uc size

Packet identifier

JPINIT flag bits
jp id for the JP being inited
LPID of LP to assign the JP to
Microcode options word
Byte pointer to microcode file
size of the microcode pathname

+---+----------+-------------------------------------+
JPINIT.P(packet)

{
if (SYS PRV)

return(user_not_privileged);

/* ** */
/* */
/* Set up the stack the JP will use when it */
/* runs. Setting up the stack means allocating a */
/* Primary CB for that JP. Check if system can */
/* have more than one JP. Currently only MV/20000s*/
/* can be MP systems. */
/* ** */

SET_UP_STACK();

if (!(mp system»
return(not_an_MP_system);

/* ** */
/* */
/* Set up the trap handler in the CB in case */
/* there is a serious problem we are unprepared */
/* to deal with. Get the packet info. */
/* See above for packet info. */
/* */
/* ** */

set up trap handler();
Get=packet_info();

Licensed Material 6-41 Property of Data General

/* ** */
/* */
/* If supplied, get the pathname of the microcode */
/* file. */
/* */
/* ** */

if (pathname supplied)
move to system space();

Clear_trap=handler(); /* now we can handle errors*/

/* ** */
/* */
/* The user supplied JPID and LPID must be valid */
/* before the JP can be brought into the system. */
/* */
/* ** */

if «packet->jpid « 0) 11 (packet->jpid » 1»
return(invalid jpid);

if «packet->lpid-« 0) 11 (packet->lpid » 15»
return(invalid_lpid);

/* ** */
/* If the user supplied the path of a microcode */
/* file, then the user will have set the bit in */
/* the flag word in the packet. If so, get and */
/* validate the byte pointer to the pathname. */
/* ** */

if (bit(packet->flags,O) == 1)
if (packet->UC NAME == 0)

return (invalid_byte_pointer);

/* ** */
/* */
/* Now we lock the JP LP database (see pend */
/* locking) and see if PPCB is already there. */
/* */
/* ** */

LOCK_JP_LP();

if (ppcb exists)
return(JP already exists);

save = packet->lpcb;-

Licensed Material 6-42 Property of Data General

/* ** */
/* */
/* Now set up to load microcode. See if the JP is */
/* ok, has microcode running on it, and is stopped. */
/* */
/* ** */

JPSTAT();
If !(jp ok)

return(hardware error);
if !(uCODE loaded)-

load ucode();
if !(compatable machine) */ are the model

return(incompatable ucode); */ same
if !(jp stopped) -

return(jp_is_not_stopped);

ids the*/
*/

/* ** */
/* */
/* Now set up part of the PPCB. Put the JP into the*/
/* PPCB list. Attach the JP to the LP in LPID. */
/* */
/* ** */

GSMEM(len of ppcb);
ppcb.jpid-= }pid;
PPC.W LIST[jpid] = *ppcb;
ATTACH_JP(jpid,lpid);

/* ** */
/* */
/* Now start the JP at the address JPSWART.P, */
/* put the PPCB on the system JP list CP.W, */
/* and exit. */
/* ** */

JPSTART(JPSWART.P);
CP.W[JPCNT] = *ppcb;
return(); /* good return */

One of the steps in initializing a JP is to allocate its unique
memory. Each JP has a unique page 0 page, which is allocated from
system memory. Using the JPID the system takes and multiplies it
by the value of JPUMSIZE.W and adds the result to JPUMBASE.W to
allocate the right spot for this JP's unique memory. For example,
if this were JPID 2 the formula would be:

(JPID
(2

* JPUMSIZE.W) + JPUMBASE.W
* 10000) + 122532 = 132532

Licensed Material 6-43 Property of Data General

The next step is to validate and allocate these pages in the PTEs
for those pages. Next the PTPs for these pages are created so the
new JP can use them for its SBRs and PTPs. Once this is done, the
pages are actually filled with data. Page zero is copied and
modified from the mother processor. A second page is created
containing pointers to the undefined interrupt-device, interrupt
service routine, since the child cannot process hardware
interrupts. In this page of interrupt handlers there are actually
three devices that it can handle: (1) PIT, (2) Power Fail, and
(3) Cross Interrupt. Once all this is done, the system builds a
special control block and waits for it to be built. Once built,
it creates the stack registers in the new page zero to use this
new primary control block. The last thing done is to load the
page tables into the SBR for this ring 0 so that the JP can run
its software ATU. The JP is started and we go back to the
mainstream of JPINIT.

If you wanted to look at the SBRs for a particular JP, you would
have to do the following:

1. Take JPID * JPUMSIZE.W

2. Add it to the value in JPUMBASE.w

3. Add the value of SSBRTAB to the above

This will give you the SBRs for the particular JP. At this point
you could look at all the pages in use by
this JP.

To find a particular JPs PPCB you would have to take its JPID and
multiply it by two and add it to the value of PP.W to get the
address of the PPCB. From here you can get to the LPCB of the JP
by using the offset pointer in the PPCB for the LP. There is also
an offset in the PPCB to get the JP state block. Or just using
MYPPCB.W for the in that JPs page zero. The following figure
illustrates the relationships.

Licensed Material 6-44 Property of Data General

PP.W+(JPID * 2)
\
+-------------------+

Physical
Processor
Control
Block

/
/

\
+-------------------+ \

/
/

/

\

+-----------------------+

I
(LPID * 2) + V
LP.W ---------)+--------------+

Logical
Processor
Control
Block

+--------------+

Figure 6.6 JP Database Relationships

-)+---------+

JP
STATE
BLOCK

+---------+

Licensed Material 6-45 Property of Data General

6.9.2 ?JPMOV

Once you have created a JP it can be moved from one LP to another
by executing the ?JPMOV system call. You might ask why would we
want to move a JP from one LP to another LP? It is a case for
giving more computer power to a particular class of user. This is
a very useful way for the system manager to control his resources
to give better service to the user community.

/* $$ */
/* JPMOV.P */
/* This routine moves a JP from one LP to another. */
/* This routine can pend. */
/* */
/* */
/* $$ */

/* This is the user packet supplied to the system call.*/

LOC Name Summary
+---+----------+-------------------------------------+

0 pckid Packet identifier
2 reserved
3 flags
4 jpid
5 Lpid

JPMOV flag bits
jp id for the JP being inited
LPID of LP to assign the JP to

+---+----------+-------------------------------------+
JPMOV.P(packet);

{
/* ** */

*/
Does the user have the MP privilege? If not, exit.*/

/*
/*
/*
/* **

*/
*/

IF (! (syspriv»
return(not privileged);

set up stack();
Set-up-trap handler();
jpid =-packet->jpid;
flag = packet->flag;
lpid = packet->lpid;
Clear_trap_handler();

Licensed Material

/* get packet */
/* information */

6-46 Property of Data General

/* ** */
/* */
/* Check for a valid Jpid. A valid jpid is an */
/* integer between 0 and 15 octal. If not valid, */
/* return the "Invalid JPID". */
/* ** */

if (!«jpid>=O)&(jpid<=15»
return(inva1id jpid);

/* ** */
/* */
/* Check for a valid lpid. A valid lpid is an */
/* integer between 0 and 15. If not valid, exit */
/* with the "Invalid LPID" error. */
/* ** */

if (!«lpid>=O)&(lpid<=15»
return(invalid_lpid);

get_JPLPlOcks();

/* ** */
/* */
/* Find jp is used to loop each time the routine */
/* pends to ensure the JP still exists. */
/* The findjp function is called to get a ppcb */
/* for the jpid supplied in the packet. */
/* ** */

find jp:
newppcb = findjp(jpid);
if (error rtn)

return(JP does not exist);
/* ** */
/* */
/* If the JP is stopping, then the JP no longer */
/* exists in our eyes. Return an error. */
/* */
/* ** */

if(bit(new.ppcb.cpstop) == 1)
return(jp_not_inited);

Licensed Material 6-47 Property of Data General

/* ** */
/* */
/* If the JP is moving, then this routine must pend */
/* waiting for the other JPMOV to complete. */
/* After pending, loop to find_jp. */
/* */
/* ** */

if (bit(newppcb.cpmov) == 1)
{
pend(wait on jpmov); /* pend ••• */
goto find-jp;

} -

/* ** */
/* */
/* Get the target LP. If it doesn't exist, return */
/* "LP does not exist". */
/* ** */

newlpcb = findlp(lpid);
if (error rtn)

return(lp does not exist);
/* ** */
/* */
/* If the new lp is the same as ours, then exit. */
/* */
/* ** */

/*
/*
/*
/*
/*
/*
/*

if (newlpcb == lpcb)
return();

**

If this is the last jp
error return is taken.
user wishes to be sure
one JP attached to it.

on the old lp, then the
This is only done if the

that the LP has at least

**

if «bit (packet->flags,O) == 1) &&
(PP.W[packet->jpid]->cplpcb.w->jplpcnt <= 1»
return(cannot_rel_last_jp);

*/
*/
*/
*/
*/
*/
*/

Licensed Material 6-48 Property of Data General

/* ** */
/* */
/* If I'm moving myself then do it. */
/* */
/* ** */

if (myppcb.w == oldppcb)
{
interrupts(off);
detach(mylpcb.w,myppcb.w);
attach(newlpcb,myppcb.w);
mylpcb.w = newlpcb;
mlpcb.w = newlpcb;
interrupts(on);

} /* if moving self */
else

/* ** */
/* */
/* Else move the other JP. Idle jp will pend until */
/* JP is "idle". Once the target JP is idle, then */
/* detached from the old LP and attach to the new. */
/* ** */

{
bit(newppcb.cpmov) = 1; /* move in progress */
idle jp(newppcb);
detach(oldlpcb,newppcb);
attach(newlpcb,newppcb);

} /* else */

/* ** */
/* */
/* Unlock the JPLP lock word and return. */
/* */
/* ** */

release jplp locks();
return('); -

} /* end of ?JPMOV */

Licensed Material 6-49 Property of Data General

6.9.3 ?JPREL

Until now we have discussed how to get a JP into the system, but
how do we get one out of the system? This is done by issuing the
JPREL system call. This call will release a JP from the system.
It will not work on the "mother" processor. Care has to be taken
to not leave an LP "unattached" when all of its JPs are released.

/* $$ */
/* JPREL.P */
/* This call is used to release a JP from the */
/* system. */
/* */
/* $$ */

JPREL.P(packet)
{

/* This is the user packet supplied to the system call.*/

LOC Name Summary
+---+----------+-------------------------------------+

0 pckid Packet identifier
2 reserved
3 flags JPREL flag bits
4 jpid jp id for the JP being inited

+---+----------+-------------------------------------+
/* ** */
/* */
/* Make sure the user has the privilege to do this */
/* call. If not exit. */
/* */
/* ** */

if (! (syspriv»
return(caller not privileged);

if (!(mp system» -
return(not mp system);

set up trap handler();
jpid =-packet->jpid;
flag = packet->flag;
clear_trap_handler();

Licensed Material 6-50 Property of Data General

/* ** */
/* */
/* If the jpid is invalid, exit. JPID is valid if */
/* it is between 0 and 15. Get the LPJPlock. */
/* ** */

if (!(jpid>= O)&(jpid <= 15.»
return(invalid jpid);

get_Ipjp_Iock(); -

/* ** */
/* */
/* Find jp will be looped to if this code pends. */
/* Get the new ppcb from the supplied jpid. */
/* On error, exit. */
/* */
/* ** */

find jp:
newppcb = findjp(jpid);
if (error rtn)

return(jp_not_inited);

/* ** */
/* */
/* If the user is trying to release the mother, exit.*/
/* If the processor is running a system task, exit. */
/* If the JP is already stopping, exit. */
/* */
/* ** */

if (newppcb == myppcb)
return(can not reI mom);

if (bit(newppcb.cpsys) == 1)
return(can not re1 during sys task);

if (bit(newppcb.cpstop) == 1) -
return(jp not inited);

/* ** */
/* */
/* If the JP is moving pend ••• waiting for move */
/* to complete. */
/* Go to find_jp. */
/* */
/* ** */

if (bit(newppcb.cpmov) == 1)
{
pend(mov complete);
goto find jp;

} -

Licensed Material 6-51 Property of Data General

/* ** */
/* */
/* Check to see if the user does not wish to have */
/* the LP that the "being released" JP is the last */
/* JP on that LP. */
/* */
/* ** */

if «bit(f1ag,0) == 1) &&
(PP.W[jpid]->cp1pcb.w->jp1pcnt <= 1»

return(can_not_re1_1ast_jp);

/* ** */
/* */
/* Set the stop bit and "idle" the JP. */
/* */
/* ** */

bit(newppcb.cpstat.cpstop) = 1;
idle jp(newppcb);
cp.w[jpid] = 0;
JPSTOP;

/* ** */
/* */
/* Wait for the JP to stop. */
/* */
/* ** */

while (!(newppcb.saddr.stopped»
JPSTATUS;

/* ** */
/* */
/* Release the resources that the JP had (e.g., its */
/* page zero, its PPCB memory). */
/* ** */

release jp pages();
detach(newppcb.1pcb.w,newppcb);
dea110c ppcb(newppcb);
re1 jp1p lock();
return();

} /* ?JPREL */

Licensed Material 6-52 Property of Data General

6.9.4 ?JPSTAT

We have talked about JP management until this point, but how does
one see if there is problem with a JP or if it is running? There
are watchdog timers associated with each JP in the scheduler to
tell if a given processor is running or stuck in a loop/hang as
well as panicking. There is a ?JPSTAT system call for this very
purpose. It will give the status for general information or
specific information.

/* ** */
/* JPSTAT.P */
/* This routine provides status information about */
/* the jp. This provides two kinds of status: */
/* 1) The JPmap and JP count. */
/* 2) The type of JP and status info. */
/* ** */

/* This is the user packet supplied to the system cal1.*/

LOC Name Summary
+---+----------+-------------------------------------+

0 pckid Packet identifier
2 function Function code (type of status)
3 subpkt Word pointer to subpacket (2 words)

+---+----------+-------------------------------------+
General Information subpacket

LOC Name Summary
+---+----------+-------------------------------------+

0 pckid Subpacket identifier
2 jpcnt # of JPs initialized
3 jpmap Bitmap on initialized JPs (2 words)

+---+----------+-------------------------------------+
Specific Information Subpacket

LOC Name Summary
+---+----------+-------------------------------------+

0 pckid Subpacket identifier
2 jpid User supplied JP id
3 state Current JP state
4 status JP status bits
6 model model # of the JP
7 uc rev Microcode revision (uc -> ucode)
8 flags Flag bits
9 1pid LP the JP is attached to

+---+----------+-------------------------------------+

Licensed Material 6-53 Property of Data General

JPSTAT.P(packet)
{

if (!(mp system»
return(non mp sys);

Set up trap handler();
subpkt-= packet->subpkt;
function = packet->function;

/* ** */
/* */
/* Is the system call request a general call */
/* type 1 above or a specific call type 2 above. */
/* */
/* ** */

switch (function)
{

/* ** */
1* *1
/* A general call. */
/* */
/* ** */

case 0:

}

get jplp lock(read);
subpkt->Jpcnt = jpcnt.w;
subpkt->jpmap = jpmp.w;
reI jplp lock(read);
clear trap handler();
return(); -

/* ** */
/* */
/* A specific call. */
/* */
/* ** */

case 1:

/* ** */
/* Test for validity of the jpid in the subpacket. */
/* A valid JPID meets the following rule: */
/* 0 <= jpid <= 15. */
/* ** */

if (!(jpid>=O) & (jpid <=15»
return(invalid jpid);

get jplp lock(read);
ppcb = fIndjp(jpid);
if (error rtn)

return(jp_not_inited);

Licensed Material 6-54 Property of Data General

/* ** */
/* */
/* Set up packet from the ppcb. */
/* If "mother" set the mother bit in subpacket flags */
/* word. Store the lpid this jp is attached to in */
/* the subpacket. */
/* */
/* ** */

setbit(subpkt->flags,mom) = 1;
lpcb = ppcb->cplpcb.w;
subpkt->lpid = lpcb->lpid;

/* ** */
/* */
/* Since the JPstatus instruction returns three */
/* pieces of info jpstate, jpstatus, and jpmodel, */
/* store this info in the user packet. */
/* */
/* ** */

JPSTATUS(&jpstate,&jpstatus,&JPmodel);
subpkt->jpstate = jpstate;
subpkt->jpstat = jpstatus;
subpkt->jpmodel = jpmodel;
reI jplp lock(read);
return();

6.10 System Services

The JP manager provides one service to the rest of Paths and time
other than allowing JP resource usage. That service is system
accounting.

Whenever a system function is done, timings are taken. (See Time
Management.) These timings are in PIT ticks and must be added to
the PPCB. The reason the PPCB holds these timings is that each
JP runs in the system independently of the others. For example,
when an interrupt happens each interrupt service routine saves
the PIT reading in a base. When dismissing the interrupt another
reading is taken. The difference between the base and the
reading is the amount of time spent at interrupt level. This
accounting is done for system time.

Licensed Material 6-55 Property of Data General

7.1 Introduction

7.1.1 Purpose

Chapter 7
Time Management

The purpose of this chapter is to present AOSjVS time management
and how it relates to the rest of Paths and Time.

7.1.2 Overview

Time management is the part of Paths and Time that interfaces
between the timing devices and the rest of AOSjVS. These timing
devices are called the Programmable Interval Timer (PIT) and the
Real Time Clock (RTC). These devices can be either real devices
or implemented in microcode and are used to maintain different
kinds of timing services.

The primary service that time management provides is supplying
amounts of time to the requestors. These amounts of time are
called ticks. A tick is a different amount of time for each
device. For the PIT, a tick is 0.1 millisecond. For the RTC, a
tick varies based on the gen of the system. The main users of
time management, outside of paths and time, are Memory Management
and the File System.

There are several relationships between the components of paths
and time and time management. These relationships are shown in
Figure 7.1 Time management provides services to JP management,
LP management, entity management, and Process Management
Interface Services. Time management is serviced by the JP
management.

JP management provides interrupt-level service so the devices can
interrupt. Time management provides JP management with timings
for the counters in the JP's PPCB. Time management also provides
timing services for LP and entity management in the form of
timing device management. ?DELAY and subslice management done in
process management interface services use each of the devices in
time management.

Licensed Material 7-1 Property of Data General

+---------------+ +------------------+
PTBL

MANAGEMENT
-------) CB

MANAGEMENT

+---------------+ +------------------+
1
+----- --------------+
1 -------------------+

+---)

+-------------------+
ELQUE

MANAGEMENT

+-------------------+

+---------+ +---------------+
CLASS <--

MANAGE- --)
ME NT

+---------+

LP
MANAGEMENT

+---------------+

+---------------+

<+-

SYSTEM
+---------+

DRIVERS
IDEF
FILE SYS

+---------+
+--------------+

TIME
MANAGEMENT

+--------------+

<--+

+-------+
+---- JP <-----------+ 1

MANAGEMENT +-----------------+
------------>1 INTERRUPT LEVEL 1

+---------------+ +-----------------+
Figure 7.1

Time management is allowed to run interrupt-level code on the JP
by JP management. Time management provides timing data to JP
management for "in system" timings. Timing data is provided to
LP management to enforce class scheduling. Time management
provides time data to PTBL management to help PTBL management
manage the users subslice and timeslice. Time management
provides time data to CB management to allow CBs to be timed for
JP purposes. (See PPCB in JP Management.)

Licensed Material 7-2 Property of Data General

7.2 The PIT

7.2.1 The Objects

The Programmable Interval Timer (PIT) is a programmed I/O (PIO)
device that counts, in ticks, where one tick is equivalent to 0.1
milliseconds. The PIT uses a 16-bit counter. To access a PIO
device, the program must use PIO instructions such as DOAS, DIA,
etc. The PIT is assigned a negative number of ticks and counts
upward until it reaches zero or gets stopped. For example, a
process gets set up to run. Before it runs a process, the
dispatcher starts the PIT with a negative value (e.g., -20).
(See pseudocode, Section 7.2.4.2). When the PIT reaches zero, it
will interrupt the system.

Each JP in the system has its own PIT and handles its own
interrupts from its PIT. Because the PIT is used for scheduling
subs1ice and times1ice operations, each JP must have its own PIT
to allow each processor to schedule processes independently of
other JPs.

All PITs are started with a negative number and count (tick)
toward zero. At zero, the PIT will interrupt the system. After
the PIT reaches zero, the PIT may behave differently depending
upon the model of the MV. There are three different kinds of
PITs depending upon the MV processor model the PIT is on. The
three PITs are "stop at zero," "keep ticking," and "reset last
value and keep ticking." To AOS/VS these PITs are a device, but
in actuality the PIT may be implemented in microcode.

o The "stop at Zero" PIT will interrupt then stop and will
not continue until restarted.

o The "Keep Ticking" PIT will interrupt then continue
beyond zero, thus going positive.

o The "Reset Last Value and Continue" PIT will interrupt
and reset itself to the same value it was started with
and continue. This may cause problems with time
accounting. Because accounting could be affected by a
PIT that restarts and continues, there has to be
adjustments made in the operations that work with it.
(See Operations.)

Licensed Material 7-3 Property of Data General

7.2.2 The Globals

To use the PIT to calculate time, some globals must be used.
There are three globals used with the PIT: IBASE, SBASE, and
TSLSV. Each JP has its own copy of these globals.

IBASE is an integer that contains the "enter interrupt level"
sampling of the PIT. IBASE stands for Interrupt level BASE.
When leaving interrupt level the difference between IBASE and the
PIT reading is the time used at interrupt level.

SBASE is an integer that contains the "enter the system" PIT
reading. SBASE stands for System BASE time. When leaving the
system to go into user mode, the PIT is sampled again and the
amount of time spent in the system is the new PIT reading - the
contents of SBASE.

TSLSV is an integer that gets the amount of time in PIT ticks the
user has left in its subslice. TSLSV stands for Time SLice SaVe
variable. This value holds the PIT reading when entering
interrupt level to save the state of the entity running at the
point of interrupt. This will be used to restart the PIT when
the interrupt gets dismissed.

7.2.3 Basic Operations

There are some basic operations performed on the PIT. In AOS/VS
the operations are implemented in the form of macros. Some of
these operations work with the different types of PITs. The
basic operations performed on the PIT are:

I.PIT.S
RUN. PIT (ACO)
STOP.PIT
LOOK. PIT
CHECK. PIT (pit_residue)

7.2.3.1 I.PIT.S

When an interrupt occurs (except for IPIT - See paths below), if
we are at interrupt level 1, then the PIT is read using this
macro. I.PIT.S is the only macro that uses globals. I.PIT.S
reads the PIT and stores the value of the reading in two places.
These places are TSLSV and IBASE. IBASE is used as the initial
value to calculate the amount of time the system spends at
interrupt level (this is used in JP management). TSLSV holds the
PIT residue so that the state of the PIT gets restored when the
interrupt-service routine is finished processing the interrupt.

Licensed Material 7-4 Property of Data General

7.2.3.2 RUN.PIT (Input in ACO)

The RUN.PIT function stores a value in the PIT and starts it.
The value that this macro starts the PIT with is in ACO. This is
used when dispatching a process or when an interrupt is
dismissed. When dispatching a process, the PIT is started with
the contents of PSL. (See CB or Ptable Management.) When
dismissing an interrupt, the contents of TSLSV are supplied to
the PIT.

7.2.3.3 STOP.PIT (Returns a value in ACO)

STOP.PIT reads and stops the PIT. This is used when a reading of
the PIT is needed to update statistics and the PIT will be
restarted with some other value. For example, when dispatching
a user a STOP. PIT is used to read the PIT to update the amount of
time the system has used (by subtracting the contents of SBASE
from the current value held in ACO) and then does a RUN.PIT with
the user's subslice residue (see above).

7.2.3.4 LOOK.PIT (Value returned in ACO)

LOOK. PIT reads the PIT without stopping it. This is used when
entering the system. The PIT is read and the value is stored in
SBASE. SBASE is used as the base for system timing. The reason
the PIT is just looked at and not stopped and restarted is that
stopping and restarting the PIT has too much overhead.

7.2.3.5 CHECK.PIT (PIT residue is in ACO)

CHECK. PIT reads the PIT, checks to see if the PIT wrapped since
the last reading. This is done by checking the PIT to see if it
has interrupted the system since the last check. This situation
would exist if interrupts were off when the PIT fired (caused an
interrupt). If the PIT has fired, then this operation checks to
see if the reading (residue) is negative. If the reading is
negative, then restart the PIT with a zero. The effect this has
is it prevents the PIT from interrupting during a system
activity. Otherwise, restart the PIT with the value in the
reading.

Licensed Material 7-5 Property of Data General

7.2.4 Paths in the PIT World

There are two different environments or levels where the PIT is
accessed. The first is called base level and the second is
interrupt level. Base level is the normal running mode on a JP.
When the PIT expires, it interrupts the JP, which puts the JP at
interrupt level. The JP then makes decisions based on the JP
state.

7.2.4.1 Base Level

At base level a number of functions can be performed on the PIT.
The PIT can be started, stopped, or sampled.

o The PIT is started when a user is dispatched to run.

o The PIT is stopped when a transition from system to user
is about to occur.

o The PIT is sampled when entering a major component of
the system. This sampling is used for time accounting
done in JP management. The way this is done is the PIT
is sampled on entry into a component of the system
(LOOK. PIT) and the value is stored into a BASE
variable. When leaving the component, the PIT is
sampled again and the amount of time used is calculated
by subtracting the amount of time stored in the BASE
variable and the result stored in the PPCB.

There are situations in which the PIT is less than the base
value. In this case, the PIT has wrapped. Wrapping means the
PIT has counted beyond the 16 bits that it is allotted. If the
PIT wraps then the calculation for accounting is reversed.

The following pseudocode shows how the PIT would be used:

int PIT val;
GLOBAL int sbase,ppcb.cpsys.4;/* see PPCB for cpsys.4 */

enter sys: PIT val = LOOK.PIT();
- sbase= PIT_val;

DO SYS ACTIONS;
PIT-val-= LOOK.PIT();
if (PIT.val < sbase)

ppcb.cpsys.4 = sbase - PIT val
else

ppcb.cpsys.4 = PIT val - sbase;
LEAVE SYS;

Licensed Material 7-6 Property of Data General

7.2.4.2 Interrupt Level

The PIT is read at interrupt level using the I.PIT.S function.
This function will set up the variables IBASE and TSLSV for the
interrupt dismiss (DISMISS) routine. DISMISS will restore the
user's context, including TSLSV, and return to the user. The
only exception to this is the PIT interrupt.

When the PIT interrupts the system, its counter has gone to
zero. The following pseudocode shows what happens when a PIT
interrupt occurs.

/* ** */
/* */
/* IPIT is the entry point the interrupt is dispatched*/
/* to when it occurs. This routine stops and reads */
/* the PIT, checks to see if we were running a user. */
/* If so, then process the subslice end. */
/* ** */

IPIT: pit val = STOP.PIT();
/* ** */
/* */
/* If interrupts are off or the PIT is masked out, */
/* the counter may have been incremented before the */
/* interrupt gets serviced. The PIT may go beyond 0.*/
/* Therefore, check if it did and if so clear the */
/* PIT VAL. */
/* */
/* ** */

if (pit val >= 0)
{ -
pit val = 0;

1* ** */
/* */
/* If we were running in the system, save the PIT VAL*/
/* in the base and the restore area. - */
/* The PIT can interrupt the system at any time. */
/* Since the PIT's only operation is the PIT */
/* incrementing to zero, and the PIT is not */
/* necessarily restarted upon entering the system, */
/* the PIT can and does interrupt the operating */
/* system. */
/* */
/* ** */

Licensed Material

if (SYSIN == 1)
{
IBASE = pit val;
TSLSV = pit=val;
}

}/* if >= 0 */

7-7 Property of Data General

/* ** */
/* */
/* Restart the PIT for interrupt-level timing. */
/* */
/* ** */

START.PIT(pit val);
/* ** */
/* */
/* If we were running at interrupt levell, save */
/* interrupt level time accounting value. */
/* */
/* ** */

if (INTLV == 1)
IBASE = pit val;

/* ** */
/* */
/* If we were running a user, do the subslice end */
/* processing. Call USLICE. */
/* */
/* ** */

if (SYSIN == 0)
{

USLICE(); /* see process scheduling*/

/* ** */
/* */
/* If we were running a user and could do the */
/* subslice short cut, give the user a new subslice. */
/* */
/* ** */

}

if !(short cut) /* see USLICE */
TSLSV = ~320; /* new subslice */

else
TSLSV = 0;

goto DISMISS; /* dismiss the interrupt*/

Licensed Material 7-8 Property of Data General

7.3 The Real Time Clock (RTC)

7.3.1 The Objects

The real-time clock is a device that keeps real time. The RTC is
the device that AOS/VS uses to keep the values of Time of Day and
Current Date. The RTC will interrupt the system 10, 50, 60, 100,
or 1000 times per second depending on the system gen. (See "How
To Generate and Run Your AOS/VS System" manual.) Once started
the RTC continues counting until it interrupts the system. The
interrupt service routine then restarts the RTC.

The RTC is a PIO device. This means that it is started with a
DOAS instruction. The device is started with the frequency it
will run. The frequency is the number of times per second the
RTC will interrupt the system. The value that the RTC is started
with is not really the frequency, but some value in
a variable called RTCI representing the frequency. (See Figure
7.2)

RTCI
VALUE

FREQUENCY

+-------+------------------------------+ o 50 OR 60 HZ DEPENDING ON

1
2
3

LINE FREQUENCY
10
100
1000

HZ (VSGEN DEFAULT)
HZ
HZ

+-------+------------------------------+
Figure 7.2 RTC Frequency

Licensed Material 7-9 Property of Data General

Once the RTC is started, its running can be VISUALIZED as a
simple loop. This is not actual code from the RTC.

/* ** */
/* */
/* This code shows the basic loop of the Real time */
/* clock. (This is an interpretation of the RTC) */
/* ** */

START RTC(rtci);
loop: cnt =-cnt + 1;

/* ** */
/* */
/* If the RTC has run to a point where it needs to */
/* interrupt the system, do so and reset the counter */
/* loop. */
/* ** */

if (cnt == rtci setting)
{ -

}

INTERRUPT VS;
cnt = 0; -

goto loop; /* restart function in IRTC */

Licensed Material 7-10 Property of Data General

7.3.2 The RTC G1oba1s

The Real Time Clock is considered a critical region because both
base and interrupt level do things such as work with ?DELAYS.
Therefore, a locking mechanism for the RTC must be used. The
globa1s that exist for the RTC are used for locking and collision
counting. The globa1s are: RTCLCK.W, RTCSPN.W, and RTCISPN.W.
There is a fourth global called RTCTMP.W, which is used at base
level to hold the return address of the caller.

RTCLCK.W is the lock double word used for the RTC. This lock is
a spin lock (see JP management). This lock is used to keep
interrupt level or base level from working with the delay chain
while the other is doing work with it. The delay chain holds the
processes doing ?DELAYs. The other reason for using this lock is
that in an MP environment the system doesn't have to lose time
because of interrupts being off during base-level operations with
the RTC.

RTCSPN.W is an integer that holds the number of base-level
collisions encountered with RTCLCK.W. This value is incremented
each time a lock collision occurs.

RTCISPN.W is an integer that contains the number of
interrupt-level collisions with RTCLCK.W. This counts the number
of times that interrupt level encountered a lock RTC. This
number reflects the number of times that RTC interrupt level has
to spin on a lock.

Licensed Material 7-11 Property of Data General

7.3.3 Paths that Access the RTC

The RTC can be accessed at both base and interrupt level.
7.3.3.1 Base Level

At base level there are two ways to access the RTC: one is done
at SINIT time and the other is done when a process wishes to go
on the delay chain.

o At SINIT time the RTC is started with the value in
RTCI.

o When a process wants to do a delay, the process is put
on the delay chain. To do this in a UNI environment the
RTC interrupt must be masked out. The reason for this
is that in a UNI environment, base level can be setting
up a delay and get interrupted by the RTC, which affects
the delay chain. In the MP environment, the RTCLCK.W
must be held because masking an interrupt on the
daughter processor does not prevent the mother from
being interrupted. This means that there are two levels
of locks held on the RTC at base level. This locking
mechanism seems to be redundant because the ?DELAY is a
"mother only" call, but the mechanism is designed for
when the daughter will also be allowed to handle
interrupts.

To mask out the RTC interrupt, the RTC lock (RTCLCK.W) is used.
If this lock is held, others must spin on the lock. If the
unlock routine must spin, one of two counters are incremented
depending on whether we are at base level (RTCSPN.W) or a
interrupt level (RTCISPN.W).

7.3.3.2 Interrupt Level

The RTC interrupt service routine is called IRTC. It performs a
number of services. Some services IRTC performs are at each tick
and others are performed at each second. The services RTC
performs allow other AOS/VS modules (e.g., memory management) to
do timing functions. For example, at each tick IRTC calls memory
management to do PFF timing. Memory management will make PFF
decisions based on these timings. The pseudocode below shows
what IRTC does and who it calls.

Licensed Material 7-12 Property of Data General

/* ** */
/* IRTC */
/* This is the interrupt service routine for the real*/
/* time clock. At each tick this routine will */
/* increment the elapsed time counter and call the */
/* histogramming function, memory management, and */
/* process management services. Each second this */
/* will call memory management, the files system, */
/* and process management interfaces. */
/* */
/* ** */

IRTC() I.PIT.S /* see PIT section /*
{

/* ** */
/* */
/* If the RTC is locked then someone is doing some */
/* operation with the RTC and, therefore, spin on */
/* this lock. Spinning assumes that the lock will */
/* not be held very long. */
/* */
/* ** */

if (bit(rtclck.w,O) == 1)
{
rtcispn.w ++;
while(bit(rtclck.w,O) -- 1)

{}
}

setbit(rtclck.w,O);
RESTART RTC;

/* ** */
/* */
/* If we are PFFing call memory management to do PFF */
/* timing update. */
/* */
/* ** */

if (PFF FLAG)
MEM_MANAGE(do_pff);

Licensed Material 7-13 Property of Data General

/* ** */
/* */
/* If a second has been used, then call process */
/* management interface services (PROC_MAN_INT_SERV) */
/* to update time of day. */
/* We need the Time of Day lock to do the checking. */
/* Memory management is called to do PFF and state */
/* 3 to state 4 checking and conversions. */
/* The file system is called to do disk histogramming*/
/* and device timeouts. */
/* */
/* ** */

INTERRUPTS OFF(); /* See JP management */
LOCK TOD; /* lock Time of DAY */
ticks per sec --;
if (tIcks-per sec == 0)

{ - -
ticks per sec = total ticks in sec;
PROC MAN INT SERV(sec-elapse);­
MEMORY MANAGEMENT(do state 3 4 work);
FILE SYSTEM(do disk histo); - -
FILE-SYSTEM(do-device timeouts);

} - --
UNLOCK TOD(); /* unlock Time of Day */
INTERRUPTS_ON(); /* See JP management */

/* ** */
/* */
/* Each tick PROC MAN INT SERV must be called to do */
/* histogramming. */
/* */
/* ** */

/* ** */
/* */
/* If there are any PTBLs on the delay chain, then */
/* call PROC MAN INT SERV to handle any delays. */
/* Release the RTC lock and go to DISMISS. */
/* ** */

if (outstanding delays)
PROC MAN INT SERV(do delays);

clearbit(rtclck.w~O); -
DISMISS(); /* Dismiss interrupt */

Licensed Material 7-14 Property of Data General

