AOS/VS Internals
CPU Management-
The Scheduler

ceimod

talGeneral

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART WITHOUT DGC PRIOR WRITTEN AP-
PROVAL.

DGC reserves the right to make changes in specifications and other infor-
mation contained in this document without prior notice, and the reader
should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT-
TEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PER-
FORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
INFOS, MANAP, GENAP, microNOVA, NOVA, TRENDVIEW, PRE-
SENT, PROXI, SWAT, ECLIPSE MV/4000, ECLIPSE MV/6000, and
ECLIPSE MV/8000 are U.S. registered trademarks of Data General
Corporation. COMPUCALC, DG/L, DATA GENERAL/One, ECLIPSE
MV/10000, ECLIPSE MV/20000, ECLIPSE MV/2000, GW/4000,
GDC/1000, MV/UX, REV-UP, DEFINE, SLATE, microECLIPSE,
BusiPEN, BusiGEN, BusiTEXT, DATA GENERAL/One, DASHER/
One, CEO Connection, CEO Drawing Board, CEO Wordview, CEOwrite,
DG/UX, MV/UX, and XODIAC are U.S. trademarks of Data General
Corporation.

Copyright © Data General Corporation, 1988
All Rights Reserved

I UNDERSTAND THAT INFORMATION AND MATERIAL PRE-
SENTED IN THE VS INTERNALS MANUAL MAY BE SPECIFIC TO
A PARTICULAR REVISION OF THE PRODUCT. CONSEQUENTLY
USER PROGRAMS OR SYSTEMS BASED ON THIS INFORMATION
AND MATERIAL MAY BE REVISION-LOCKED AND MAY NOT
FUNCTION PROPERLY WITH PRIOR OR FUTURE REVISIONS OF
THE PRODUCT. THEREFORE DATA GENERAL MAKES NO REP-
RESENTATIONS AS TO THE UTILITY OF THIS INFORMATION
AND MATERIAL BEYOND THE CURRENT REVISION LEVEL
WHICH IS THE SUBJECT OF THIS MANUAL. ANY USE
THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM
ANY SUCH SITUATIONS AND I AND MY COMPANY HOLD DATA
GENERAL HARMLESS THEREFROM.

)

AO0S/VS Internals
CPU Management-
The Scheduler

\
¢y DataGeneral 053-001011

ff//

Table of Contents

Introduction

Chapter 1 - ELQUE Management

1.1

Objects
1.1.1 The Queue Structure
1.1.1.1 ELQUE

1.1.1.2 ELQUE Ordering

1.1.2 Process Scheduling
1.1.2.1 Priority Numbers
1.1.2.2 Priority Changes
1.1.2.3 Changing Type
1.1.2.4 Priority Mapping
1.1.2.5 Examples of Mapping
1.1.2.6 PNQF
1.1.2.7 Bias Factors

1.1.3 HANDQ

1.1.4 PELEMQ

1.1.5 The Globals

Queueing Operations

1.2.1 PENQ

1.2.2 PENQG

1.2.3 PDEQ

1.2.4 QMOVE

1.2.5 CBDEQ

1.2.6 PENQT

The Scanner

Locking

1.4.1 Pend Locks

1.4.2 Element and Queue Locking

1.4.3 Element Locking

1.4.3.1 Element Locks

1.4.3.2 Queue Locks

1.4.3.3 GET_Q LOCKS

1.4.3.4 RELEASE Q LOCK
1.4.4 ELQUE Locking

Chapter 2 - CB Management

2.1
2.2

Introduction
Objects
2.2.1 The PTBL/CB
.2 PTBL/CB Offset Explanations
.3 CB Unique Offset Explanations
4 Control Block Pages
5 Types of CBs
2.2.5.1 Gl and G2/3 CBs
2 Disk Manager
3 Core Manager
4 System Manager
5 Daemons

L U U
HOWVWOMOMONUKkWW

e e Ty
1

Licensed Material iii Property of Data General

2.2.6 Primary, Secondary, and Temp CBs 2-18
2.2.6.1 The Primary CB 2-18

2.2.6.2 The Secondary CB 2-18

2.2.6.3 The Temp CB 2-19

2.2.7 The CB Management Globals 2-19

2.3 Operations on CBs 2-22
2.3.1 CB Allocation 2-22
2.3.2 Pending 2-24
2.3.2.1 PEND/MPEND 2-25

2.3.2.2 Unpending 2-28

2.3.3 FIXCB 2-32

2.4 Internal Paths 2-34
2.4.1 The CB Dispatcher 2-34
2.4.2 TRTN/TGRTN 2-38

2.5 Locking 2-46

Chapter 3 - Process Scheduling
3.1 Introduction
3.1.1 Relation to Other Parts of Paths and Time
3.2 Time Handling

1 Accounting and Charging
2 Timeslicing
3 Timeslice Exponents (TSE)
4 Subslice Count (PSLCN)
5 Process Scheduling Priority (PNFQF)
em Calls
1 1Initial System Call Handling
2 Starting or Queueing a System Call
3 Running the System Call
4 Concurrency
5 Page Faults and Daemons
Pr
1
2
3
4
e
.1
2
3
4

*« o o .
|

3.3

v

I
NOVWONNNOGOUUOORPEPWUNDNNMNNREHE

.
3
.
.
.
tem
.
.
.
.
°

ewwwwwmwwwww

e o e e e

rocess Databases

Importance/Use in Process Scheduling
States of the PTBL

Blocking and Unblocking

WWWWWWWLWWWWWWWwwWwwWwwww
|

o o . .

High-Priority Activities 3
ss Scheduler Use of CBs 3-
CBs in a Process World 3-12
Setting Up and Dispatching CBs 3-13

H
=

C

Time and CBs 3-13

. . . .

. Concurrency 3-14
r Tasks Scheduling 3-14
.1 Overview 3-14
.2 Task Scheduling 3-15
.3 The TCB 3-16
.4 The UST and Ring 3 3-16
erfaces to the Rest of AO0S/VS 3-17
.1 External Routines Used by Process

Scheduling 3-17
.2 Global Data Used by Process Scheduling 3-18

(0]

o Foe e e
\1 \1(1‘0\0\0\0\@Ul(ﬂ(ﬂ(ﬂOlhlblhlhmwwwwmel\)NNN

w WHWWWWAWWWLWWTWWWW

Licensed Material iv Property of Data General

3.8 Databases Used by Process Scheduling
3.8.1 Process Table
3.8.2 Process Table Extender (PEXTN)
3.8.3 TCB - Task Control Block
3.8.4 User Status Table
3.9 PTBL Scheduling Details
3.9.1 General Outline
3.9.2 The Process Scheduling Code Segments
3.9.3 Detailed Discussion of Code Segments
3.9.4 Pseudocode
Chapter 4 - Logical Processor Management
4.1 Introduction
4.1.1 Purpose
4.1.2 Overview
4.2 Logical Processor Management Objects
4.2.1 The Logical Processor Control Block (LPCB)
4.2.1.1 LPCB Offset Explanations
4.2.2 The Globals
4.2.2.1 Global Definitions
4.2.3 Basic Operations
4.2.3.1 Attach
4.2.3.2 Detach
4.2.3.3 Update Class Timings
4.2.3.4 Manage Interval
4.2.3.5 Reset
4.2.3.6 Update Totals Counters
4.2.3.7 Update Scan Mask
4.2.4 Paths that Affect the LPCB
4.2.4.1 The Scanner
4.2.4.2 LP Accounting
4.2.5 LP Locking
4.2.5.1 GET_LOCK
4.2.5.2 Release Lock
4.2.5.3 Lock LPCB
4.3 User Services
4.3.1 ?LPCREA
4.3.2 ?2LPDEL
4.3.3 ?2LPSTAT
4.3.4 ?2LPCLASS
4.4 System Services
Licensed Material v

3-20
3-20
3-23
3-25
3-27
3-29
3-29
3-31
3-32
3-44

Property of Data General

Chapter 5 - Class Management
5.1 The Class Matrix
5.1.1 Basic Operations on the Class Matrix

5.1.1.1 Get Class Value
5.1.1.2 Set Class Value
5.1.2 Class Matrix User Services
5.2 The Class Control Block (CLCB)
5.2.1 CLCB Offset Explanations
5.2.2 The CLCB Globals
5.2.3 Basic Operations on the CLCB, CL.W,
and CMAP
5.2.3.1 Create a CLCB
5.2.3.2 Delete a CLCB
5.2.3.3 Find a CLCB
5.2.3.4 Add a CLCB
5.2.3.5 Remove a Class
5.3 User Services
5.3.1 2CLASS
5.3.2 ?2PCLASS
5.3.3 7?2CLSCHD
5.3.4 ?2CLSTAT

Chapter 6 - Job Processor Management

6.1 Introduction
6.1.1 Purpose

6.1.2 Overview

6.2 The Real JP

6.2.1 Introduction
6.2.2 JP Instructions
6.2.3 JP Running Operations

6.2.3.1
6.2.3.2
6.3 The PPCB

Interrupts
Faults

6.3.1 Offset Explanation
6.3.2 The JP Globals
6.4 Basic Operations on the PPCB

Detach

Idle JP
IDLE

O EVENT

1

DEFEFFRFOVONOOPBWNE

(= 2 I T)

o e e e o e

GO BB BRBDN

(o)W W+ le) We e We We W e We We) We Wo)l

.
. .

Licensed Material

Alloc.ppcb
Dealloc.ppcb
Attach a PPCB to an LP

Update Time
Set Mask
Lock PPCB

MATCH/MATCH1

that Affect the PPCB
1 The Scanner

2 Time Accounting

(e)We We e We We We We We e We))
LI
PHEONOCUUOBRWWRERRE

o O
11
e

vi Property of Data General

(o)}

The Idle Loop (Checksum)

6.6.1 Preparing for the Idle Loop
The Checksum Loop

Locking

User Services

6.9.1 ?2JPINIT

.2 ?2JPMOV

.3 ?2JPREL

.4 ?2JPSTAT

6.10 System Services

(o) We o)) o))
. .
O 0N

(o)W o))

.9
.9
.9

Chapter 7 - Time Management
7.1 Introduction
7.1.1 Purpose
7.1.2 Overview
7.2 The PIT
7.2.1 The Objects
2 The Globals
3 Basic Operations
7.2.3.1 I.PIT.S

7.2.3.2 RUN.PIT
7.2.3.3 STOP.PIT
7.2.3.4 LOOK.PIT
7.2.3.5 CHECK.PIT

7.2.4 Paths in the PIT World
7.2.4.1 Base Level
7.2.4.2 Interrupt Level

7.3 The Real Time Clock (RTC)

7.3.1 The Objects

7.3.2 The RTC Globals

7.3.3 Paths that Access the RTC

7.3.3.1 Base Level
7.3.3.2 Interrupt Level

6-33
6-33
6-35
6-38
6-39
6-40
6-46
6-50
6-53
6-55

L U e I |
NNNFEFOONOCOOOOORAPOWRERE

NNNNNNNNNNNNNNNNN
I

NN NN
)
(o

Licensed Material vii Property of Data General

Introduction to the
AOS/VS Scheduler

Paths and Time is the area of the operating system that
schedules the system and user paths and manages the timing
devices used by the system.

Paths are sequences of code. An example of a Path is part of
a program written to do a matrix multiplication; the path
would be the main program loop. Or a path would be one of
the subroutines that does one traversal through the matrix.
Another example cof a path is the Scheduler in AOS/VS.

Time to the operating system is what is defined by the timing
devices. These devices can be compared to a wall clock or
stop watch. These devices are used to make decisions about
resource use by a certain path. Like a wall clock, the
shortest amount of time is called a tick.

There are three major types of paths dealing with Paths and
Time. First there is the user path, which is called a
process and is represented by a Process Table (PTBL). All
user-visible paths are user paths. The second type of path
is a system path, which works in the system on behalf of a
user or is used to manage the system resources. These types
of system paths are called Control Blocks (CBs). User CBs do
work for the user and System CBs do system resource
management. The last type of path is a system path, which is
not part of a CB or a PTBL. The SCHEDULER is such a path.
These paths are used to either dispatch CBs or PTBLs, or they
handle special events such as interrupts that affect a path
on the system, or they provide accounting services for CBs,
and users.

Paths and Time dispatches system paths to allow the other
major components to do system management. This ties all of
AOS/VS together. Thus dispatching and accounting services
are Paths and Time's connection to the other components in
the system.

Licensed Material ix Property of Data General

Below is an illustration of the components of AOS/VS and what
type of path is used in that component. This will be done by
using PTBL to represent a user path. User CB, System CB, and
non-CB system paths will be used to represent the system
paths. Remember that the point of view here is from the
kernel in ring O.

PTBL
o ————————— +
Fom e —————— Fmmm +
PROCESS MANAGEMENT
USER CB
o o e + HOST
PATHS MEMORY AGENT I/0 MANAGEMENT
AND MANAGEMENT PTBL
TIME temm————— tommm————— +
USER AND FILE TERMINAL PTBL
NON CB SYSTEM SYSTEM |SERVICES USER CB
SYS PATH CB AND
USER PTBL SYSTEM CB
USER CB AND
SYSTEM
CB
fomm——————— o Fommm————— tmmm————— o +

Figure 1 AOS/VS Components

Licensed Material X Property of Data General

There are seven major components to Paths and Time: Time
Management, Job Processor Managment, Logical Processor
Management, Class Management, ELQUE Management, CB
Management, and PTBL Management. These components are
arranged in the figure below from bottom up. The more
knowledge the component has of the hardware, the lower its
placement in the picture.

e + e +
PTBL CB
MANAGEMENT MANAGEMENT
o + e e - +
e +
ELQUE
MANAGEMENT
e ettt P +
o + o +
CLASS e +
LP
MANAGE- MANAGEMENT TIME
MENT MANAGEMENT
o ——— + o +
e il +
et +
JP
MANAGEMENT
et +

Figure 2 Paths and Time Components

Each component manages its own databases and provides
services for the higher components in the system. Each
component has distinct differences from the others and
is considered a separate chapter, although the code is
not actually broken down this way.

Licensed Material xi Property of Data General

Each chapter in this book is arranged as follows.

I. Introduction
II. Objects managed
A. Define objects
B. Basic operations on objects
C. Paths that use the basic operations
III. User services
IV. System services

o The system services show how a component of Paths and
Time services other upper-level functions or provide
services for the rest of AOS/VS.

o JP management manages the processors. The main
service it provides to the other components is that it
allows the other components to run code.

o LP management manages the user-visible representation
of a processor. The service it provides is keeping
class scheduling statistics and updating the class
part of the scan mask used by the scheduler.

o Class management manages the class-specific
databases. These databases are used by the PROC code
(see Process Management Volume) to assign a class to a
process. These databases are also accessed by the LP
management code to assure existence of a class.

o Time management manages the time devices that provide
data used by other components to manage or account for
the time they use.

o ELQUE management manages the eligible queue and the
other major scheduling queues. The services this
component provides is dispatching the system paths
(CBs) and the user path (PTBLs). This dispatching
transfers control of the ability to run code to the
different paths.

o Process management interface services provide user
path management such as task scheduling, a system call
interface, and user time usage. This component sets
up the CBs for CB management.

o CB management dispatches the different types of system
paths in the system. These paths are called CBs.
There are two types of CBs: system CBs and user CBs.
User CBs are created when a user makes a system call.
System CBs do functions necessary to manage the system
resources such as memory.

Licensed Material xii Property of Data General

The figure below shows how these components interrelate.

o e + e +
PTBL |--=---- > CB
MANAGEMENT MANAGEMENT
e - + e +
S P !
I e +
Fom e mm e + SYSTEM
o ——————— +
ELQUE DRIVERS
+===> MANAGEMENT IDEF
FILE SYS
o + {==+
| Fommm————— +
e ——— + o - +
CLASS |<-- o +
LP
MANAGE- |[--> MANAGEMENT |<+- TIME
MENT MANAGEMENT
e ——— + et et +
e e T +
e +
tm————— +
+-——- Jp G + |
MANAGEMENT LR L L L EEE T +
------------ >| INTERRUPT LEVEL |
e + R et P +

Figure 3 Paths and Time Component Relationships

Licensed Material xiii Property of Data General

Throughout the Paths and Time section, references will be
made to the PTBL and CB databases. Each section that
works substantially with the databases will describe
sections of the PTBL and CB databases that are relevent
to those sections. They will not, therefore, describe
the whole database.

The table below (Table 1) shows the entire PTBL. Part of
the PTBL is the PTBL/CB common area. This table is also
shown in the PROCESS Management volume.

Process Table Offsets

The following is a field-by-field description of the main
database for each process on the system. It is called a "Process
Table." This database is built when a process is proc'd. It
contains all the information needed by a process to be run by the
operating system.

Each process is linked in priority order to each other when they
are on any given scheduler queue. This link is established
through the first four words of the process table. Process tables
and Control Blocks share the first 24 16-bit words in common.
This is so that they can both reside on the ELQUE and be scanned
and scheduled in the scheduler.

The first column is a code that points to the section of the
Internals manual where the full description of the field can be
found. Codes are as follows:

- Paths/Time

- File system

Process management

- Memory management

- Look at individual bit definitions

*2UM®n
1

Licensed Material xiv Property of Data General

Table 1 The Process Table

|variable| offset | Lock and Meaning

P PLNK.W 0 T Forward Link

S PBLNK.W 2 T Backward Link

S PNQF 4 L Priority eNQue Factor

S PCLASS 5 L Process CLASS

S PSTAT 6 RE Process Status Bits for use
during scheduler scanning

S PSTAT1 7 RE Process status bits which are not
needed during scheduler scanning

S PPC.W 10 I Control address when scheduled

S PLPCB.W 12 L Logical Process Control Block to
charge time used by this process

S PGNUM.W 14 L (CLASS #)*2 integer used by XWADD

S PTIM.W 16 L Current interval of time expended
by a direct/indirect system call

S TTIME.W 20 L Accumulated time expended by a
direct/indirect system call

S CALLN.W 22 L (SYS CALL NUMBER)*2 used during
SYS CALL time accounting by XWADD

S PKEY.W 24 X UNPEND KEY

S MAPFLG 26 N MAPCON needs to be done for CP

S PURFLG 27 N Purge ATU needs to be done for CP

Licensed Material

End of Common area between CB and PTBL

XV Property of Data General

PTBL continued

|variable| offset | Lock and Meaning
P PSELF.W 30 I Address of PTBL
S PULOC 32 L Current User Locality
S PPLOC 33 L Program Locality
S PLLOC 34 L Legal localities
S PCLAS1 35 L Copy of PCLASS for restore
S LMAST 36 RE 'MOTHER-ONLY' Status word
P PDAD.W 37 I PTBL Address of Father
P PSONP.W 41 P Son pointer to son list
P PSONL.W 43 P Son Link Word for Father's

Son List
* PFLAG 45 RE Flag word 1
* PFLG2 46 RE Flag word 2
* PFLG3 47 RE Flag word 3
* | PFLG4 50 RE Flag word 4
P PEXTN.W 51 I PTBL Extender address
P PIORR.W 53 L Blocked Receive Request chain
P PIORB.W 55 L Backward Link
P PIPCS.W 57 I Spool file
P PRPRV 61 I PRIV bits assigned by Creator
P PID 62 I PID assigned at create time
P PERPC.W 63 L PC when RETER called
P PCMLK.W 65 T Core Manager ENQUE Link
S PSLEX 67 L Time Slice Exponent
P PCRMX 70 I Max # SON procs
M | PMKEY 71 L MEM WAIT flag key
P PPRI 72 L Father assigned pri factor
S PDINH.W 73 ? Delay current INC word
S PDLNK.W 75 ? Delay chain forward link
S PDBLK.W 77 ? Delay chain backward link
P PCONH.W 101 I Console Port Number
P PCONH 101 I Console Port Number (HI)
P PCONL 102 I Console Port Number (LO)
P PHASH 103 I Process name hash value
P PTUP.W 104 T TCB signal bit map on SWAPIN
S PINSU 106 L In scheduler mode flag (0O OR 1)
S PSSEL 107 L # of subslices used since put on
ELQUE

P PKCHR 110 T ?2KWAIT char
P SWCCB.W 111 I SWAP File CCB for this process
P PGCCB.W 113 I PAGE File CCB for this process
M PWSET 115 L Working set size (# Phys pages)
M PWSSH 116 L # Shared pages in WS
P PERWD 117 L Error word
P PSWPO 120 ? # Times swapped out
P PSWID 121 ? SWAP unique ID
P PTRGC 122 L Target call counter
P PSRNG 123 L Server Ring Bit map (bits 0-7)

Licensed Material

xvi Property of Data General

PTBL continued

| variable| offset | Lock and Meaning

P PSFDF.W 124 L Fwd Link Spool File Dir Chain

P PSFDB.W 126 L BKWD Link Spool File Dir Chain

P PSFRC.W 130 L Spool File Entry Count per Ring

S PSIDIR 134 L # Enqueued TCBS W/Indirect calls

* PFLG5 135 RE Flag word 5 (added at end to keep
offsets the same)

P |PRNGTP.W 136 T Ring type - New or 01d

S PSTATE 140 T VS/MP Process State Word

P PMXPR 141 L Maximum Process Priority

P |PSWPSIZE 142 L Usable Swapfile space (WS pages)
[Invariant for life of process]

P PDIPC 143 N # of TCB's pended on ?IREC

P PRCCB.W 144 L Break File CCB address

F PTUNL.W 146 ? Bit Mask of tasks to unlock
(FLOCK)

F PLCNT 150 ? Count of active ?FLOCKS

S PCBLK 151 ? PLOCK fail counter

PLN 152 Length of PTBL

Process Table bit parameters for first status word (PSTAT).
Note that this is the status word where bits are defined that
will be looked at during the ELQUE dispatch scan.

Status Bits

Status bits have common meaning for both CBs and PTBLs.

PSRDY 100000 Not ready to run

PSRUN 040000 Running

PSEW 020000 Sched action

PSNCB 010000 Don't look - process can only use a CB

The following status bits are used in SCHED as a dispatch
value. Highest priority function has lowest bit assignment.

PSBRK 004000 OP interrupt

PSBAG 002000 SWAP OUT process

PSBLK 001000 BLOCK process

PSDP 000400 START UP DAEMON

PSMWT 000200 Wait for memory key to change
PSTSU 000100 Timeslice is up

Licensed Material

xvii Property of Data General

The following bits are not used via DSPA:

PMAST
PLCK

PSETR
PSFSY
PTRAN

000040
000020
000010
000004
000002

Mother-only element (1l=Mother-only)
Process table lock bit

Don't enter

System page fault

Element transition bit

-- A critical state/counter being viewed/changed

Process table bit parameters for second status word (PSTAT1l).
Note that this is the status word where bits are put that will
not be looked at during the ELQUE dispatch scan.

PSYST
PTYP
PNAD
PNFST

PFPTA
PFPTB
PFPTC

Licensed Material

000001
040000
020000
010000

System CB bit -- CM, SM,DM

Element type (1=Control Block)

No address space to release(BPLCK)
Sys call did not run 'FAST'

MULTIPLE BIT DEFINITIONS

000000
000002
000003

Process type A
Process type B
Process type C

xviii Property of Data General

Bits in PFLAG

PFNIN 100000 “C”A interrupts will wait

PFPRE 40000 Preemptive Resident

PFDEB 20000 DEB entry

PFFIR 10000 First execution and load

PFELG 04000 Process is ELIGIBLE (in core)

PFTRP 02000 Trap bit

PFINT 01000 Run “C"A DAEMON

PFBRP 00400 Breakfile (“C"E) requested

PFTRM 00200 Run TERM DAEMON

PFMBL 00100 Proc can only be explicitly UNBLOCKED
PFILT 00040 Prot trap at interrupt level

PFRSH 00020 Resched flag

PFWSC 00010 Page added to WS since last PFF
PFNFR 00004 Narrow process becoming non-resident
PFSWP 00002 Swapping task

PFEBL 00001 Waiting for son termination

Bits in PFLG2

PFSP 100000 SWAP OUT/IN in progress

PFSU 40000 UNPEND someone waiting for SWAP IN/OUT
PFCMQ 20000 Process is enqueued to CM

PFDUP 10000 UNPEND TCB at head of delat chain
PFIEB 04000 PTBL on IEBLK queue

PFUCF 02000 UNPEND waiters when cleanup finishes
PFOIQ 01000 PTBL is on IEQUE

PFBLE 00400 Scheduler can block process

PFWSL 00200 Waiting on .SGNL

PFSWO 00100 - Process is being swapped out

PFCIP 00040 Cleanup in progress

PFATL 00020 Process termed by system

PFSUP 00010 Superuser mode

PFNTR 00004 Narrow process becoming resident
PFWSG 00002 Process is waiting for ?SIGNAL

PFQSC 00001 Inhibit scan of backed up TCB request

Licensed Material xXix Property of Data General

Bits in PFLG3

PFTSE 100000 At least 1 time slice ended
PFUBD 40000 Unblock FATHER on RTN

PFPTM 20000 Processing a TERM

PFPCN 10000 Processing a CHAIN

PFCIE 04000 Has created an IPC type entry
PFIWC 02000 Interrupt (“C°B,“"C°E) term of PROC
PFIRS 01000 Int world interrupted task
PFATC 00400 AGENT term work completed
PFSTM 00200 Process self-termination

PFDIN 00100 Delayed “C"A waiting

PFATT 00040 AGENT term task is running
PFMBQ 00020 Process on MBLKQ

PFARBS 00010 All ref bits set in working set
PFPCH 00004 Hold on >1 parallel call

PFMGR 00002 SYSMGR mode

PFOPCH 00001 Parallel call overwrite(TARGET)

Bits in PFLG4

PFBRK 100000 Process wants breakfile on trap
PFDIS 40000 Disconnect of modem occurred
PFTBS 20000 Terminated by superior process
PFSPR 10000 Superprocess mode

PFMRL 04000 MAX CPU limit in use

PFPBS 01000 Block after initial load

PFOBQ 00400 Process is on blocked queue
PFACL 00200 User default ACL enabled

PFSRV 00100 Process is a server

PFMDP 00040 Process wants MDUMP on trap
PFNRO 00020 Process is narrow (16 BIT)
PFDP1 00010 Pass MDUMP flag to AGENT on term
PFKWB 00004 Process has task doing a ?KWAIT
PFKIB 00002 Process has all “C"X disabled
PFISS 00001 INT SEQ received

Bits in PFLGS

PFENB 20000 Process is the target of an ?ENBRK

PFDWS 10000 System default working set limits

PFTDC 04000 TERM if FATHER chains

PEXTIV 02000 PTABLE Extender invalid(SWAPped out)

PLWAIT 01000 Address space waiter bit

PTWAIT 00400 Waiter bit for target count(PTRGC)=0

POPER 00200 Process is a global operator

PFREQ 00100 At least one task of this process has
request block memory of ?0PER database

PFXPT 00002 Extended (POST REV6) program type

PFHRP 00001 High range PID

Licensed Material XX Property of Data General

Chapter 1
ELQUE Management

ELQUE management is the part of Paths and Time that manages the
major scheduling queues. The queues that will be discussed in
this chapter are: ELQUE, PELEMQ and HANDQ.

(o}

ELEMENTs are the items on the scheduling queues. There
are two types of elements: PTBLs and CBs. Within CBs
there are system CBs, user CBs, and DAEMONS.

A PTBL is the system representation of a process (user
path) in the system. The PTBL holds information
necessary to run the user's code paths and keep user
statistics.

A CB is used to either run a system call or perform a
system service. The CBs used for system calls are
called user CBs. CBs used to perform system functions
are called system CBs.

A DAEMON is a special kind of CB that performs a
function for the system on behalf of a user, i.e., such
as process termination. This kind of CB runs at very
high priority.

Licensed Material 1-1 Property of Data General

Figure 1.1 shows the connections between ELQUE management and
Paths and Time.

o — + Fmmm e - +
PTBL CB
MANAGEMENT MANAGEMENT
e + o e +
S !
| |- +
e + SYSTEM
o ———— +
ELQUE DRIVERS
MANAGEMENT IDEF
FILE SYS
e et e + <--+
| o ————— +
o ————— + e et e +
CLASS |<-- Fom e +
LP
MANAGE- |--> MANAGEMENT |[<+- TIME
MENT MANAGEMENT
tmm——————— + e e +
o —— +
e +
o ———— +
+———= JP {=—=mmmm——— + |
MANAGEMENT e +
———————————— >| INTERRUPT LEVEL |
o - + o +
Figure 1.1

ELQUE Management interacts with four other parts of paths and
time: JP, LP, CB, and PTBL management. ELQUE management runs
code on the JP and dispatches elements that it selects to PTBL or
CB management. ELQUE management gets the Class scan mask from LP
management that it uses to select an element.

This chapter is organized as follows:

The objects

The operations that work on the objects
The internal paths of ELQUE Management

Service provided to the rest of AOS/VS

0000

Licensed Material 1-2 Property of Data General

1.1 Objects

This section describes the queueing structures in ELQUE
Management: ELQUE, PELEMQ, and HANDQ.

1.1.1 The QUEUE Structure

AOS/VS manages system resource users by way of the Queue. When a
user is on a certain Queue, then that queue reflects the state of
the user. For example, if a process is on the ELQUE then the
process is in an ELIGIBLE state. Each Queue described in this
chapter is a doubly linked list of elements. The first and last
elements of a queue are pointed to by the header block. The
header block is a structure that has the following offsets.

tmmm o - - +

0 QHEAD Contains the pointer to the head

2 QTAIL Pointer to the tail of the Queue

4 QSTATUS Qstatus word

5 QUSERS Queue users count

6 QSCAN Queue scanners count(ELQUE ONLY)
- e e +

Figure 1.2 Queue Header Block

QHEAD holds the pointer to the first element in the queue. For
ELQUE this value will always point to the Disk manager (DMTSK).

QTAIL holds the pointer to the tail of the queue. On ELQUE this
will always contain the pointer to the root process table.

QSTATUS contains the status bits for this queue. Currently there
is one bit defined for this one word entry and that is the Qlock
bit. This bit is used as a spin lock. (See JP management.)

This bit is used to lock the queue in order to allow modification
of the queue or to increment the QSCAN counter.

Licensed Material 1-3 Property of Data General

QUSERS is a 16-bit counter that reflects the number of elements
attached to the queue.

QSCAN is a counter of all the scanners of the queue. This is
only used for ELQUE. This counter is used to arbitrate shared
and exclusive access to a Queue by the queueing routines. The
usage of the scan count is as follows:

When the scanner wishes to scan ELQUE it tries to first get
the QLOCK (a spin lock). If successful, the scan count is
incremented and then the QULCK is released. After the scan
completes, the scanner decrements the scan count without
locking ELQUE.

When a path is trying to modify ELQUE, the path first tries
to get the QLOCK. When the path gets the lock, it then spins
on the scan count. When the count goes to zero the queue can
be modified. After the queue is modified then the QLOCK

is released.

There are four major queues used in ELQUE management. They are
the ELigible QUEue (ELQUE), The HANDler Queue (HANDQ), the Pended
ELEMent Queue (PELEMQ), and the IDle System Control Block

Queue (IDSCBQ).

1.1.1.1 ELQUE

ELQUE is the queue of eligible elements. This queue is used by
the scanner to find an element to dispatch. ELQUE contains PTBLs
and CBs. To access ELQUE one or more of the ELQUE locks must

be held.

Except for a few cases, ELQUE is ordered by element type and
Priority ENQue Factor (PNQF). This ordering allows the scanner
to get the highest ready-to-run element first. Figure 1.3 shows
the ordering of the Eligible queue.

Licensed Material 1-4 Property of Data General

1.1.1.2 ELQUE Ordering

ELQUE: This is the eligible queue of process tables and control

blocks.

*

This is the primary queue used by the scheduler.

The DISK MANAGER Control Block is always first on this
queue. (This CB is always on ELQUE.)

The CORE MANAGER Control Block is always second or third
on this queue if not idle.

The SYSTEM MANAGER Control block is always second or
third if not idle and the Core Manager is on ELQUE.

The active Group 1 Control Blocks are next. These are
in FIFO order by time.

The group 1 process tables are next. These are in order
based on a PNQF. These include the PMGR process table
which is permanently on the ELQUE.

Next comes the Group 2 Control Blocks. These are in
FIFO by time.

The group 2 process tables are next, ordered by PNQF.
The group 3 process tables are next, ordered by PNAF.

Last on queue is a dummy process table, called the Root
Process Table. This never requires time, but is used to
mark the end of the ELQUE. The root process table has a
PID of 0, and is considered the father of the PMGR and
OP:CLI processes.

Licensed Material 1-5 Property of Data General

Figure 1.3 shows the ordering of ELQUE.

Header Block

Notes:

1.

All control blocks are

in FIFO order.
(by group)

All process tables are

in ordered by group

The PMGR is always on
ELQUE

The last allocated
resident CB is always
reserved for the PMGR

Figure 1.3

Licensed Material

e +
>| System Control blocks |
gy +
\Y
gy +
| First of the group 1 CBs |
i +
e +
| Last of the group 1 CBs |
T T +
\
e +
| Highest pri group 1 PTBL |
Sy +
i +
| Lowest pri group 1 PTBL |
e +
\Y
e +
| First of the group 2,3 CBs |
g Vg +
iy Sy +
| Last of the group 2,3 CBs |
e +
\Y
e +
| Highest pri group 2 PTBL |
e +
ittt T T T - +
| Lowest pri group 2 PTBL |
s i +
B Tt +
| Highest pri group 3 PTBL |
e LT +
e +
| Lowest pri group 3 PTBL |
T T +
\Y
e +
| puMMY ROOT PTBL |
T R — +

1-6

Property of Data General

1.1.2 Process Scheduling

AOS/VS schedules eligible processes based on their priority
numbers and scheduling characteristic; the range of process
priority numbers (1 through 511) spans three scheduling groups.

Group 1 ranges from 1 to a number, "G1l", which is set during
VSGEN. AOS/VS schedules any process whose priority number places
it in Group 1 on a round-robin basis. Under this scheme, each
process is allocated a uniform slice of time during which it may
execute. Once a process of a specified priority temporarily
stops executing (having used up its time slice), it is not chosen
to execute again until all other processes of that priority have
been chosen to execute.

Group 2 ranges from Gl+1 to a number, "G2", which is also set
during VSGEN. AOS/VS schedules any Group 2 process heuristically,
which means that the system takes the process' past behavior into
account when allotting it an interval of time during which it
may execute.

Group 3 ranges from G2+1 to 511. AOS/VS handles processes in
this group on a round-robin basis.

NOTE: If you need to maintain compatibility with A0S, Gl and G2
must be set to 255 and 258, respectively.

Group 1 processes are always more important (that is, more likely
to be chosen for execution) than those in Group 2 or 3, and Group
2 processes are always more important than those in Group 3.
Within each group, the lower the priority number, the greater the
importance of the process.

If an executing process cannot proceed, you can issue the
?RESCHED system call, which allows the calling process to give up
control of the CPU and forces AOS/VS to immediately schedule
another process for execution.

Licensed Material 1-7 Property of Data General

1.1.2.1 Priority Numbers

-

Eligible processes are placed on ELQUE partly based on their
individual priority numbers. AOS/VS uses priority numbers to
determine each process' priority. When you create a process, you
may assign it a priority number.

Priority numbers range from 1 (the highest priority) through 511
(the lowest). These numbers span three scheduling groups (with
no overlap and no gaps), whose boundaries are determined during
VSGEN.

1.1.2.2 Priority Changes

If a process wants to change its own priority, and it has change
priority privilege, it may issue the ?PRIPR system call. To
change the priority of another process, however, the calling
process must be in Superprocess mode.

1.1.2.3 Changing Type
The priority of a process may also change when you change its

type with either ?CTYPE or ?PROC. Given that the boundaries of
the 3 scheduling groups are:

Group 1 =1 - G1
Group 2 = Gl+1 - G2
Group 3 = G2+1 - 511

then the following tables summarize the changes in priority that
occur when a process changes type. Notice that a swappable
process can never assume a priority of 1, 2, or 3, but it may
APPEAR to do so because of the way priority numbers get mapped.
(See mapping in the next section.)

Licensed Material 1-8 Property of Data General

Priority Changes Going from a
Resident or Preemptible to Swappable Type

Priority Before Change Priority After Change
1 -3 1 -3 * k%
4 - G1 2 k%
Gl+1l - G1+3 1 -3 **%
Gl+4 - G2 Gl+4 - G2
G2+1 - 511 G2+1 - 511

* This parallels what happens under AOS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be Gl+1l - G1+3. See "Mapping" below.

Priority Changes Going from a
Swappable to a Resident or Preemptible Type

| Priority Before Change Priority After Change
1 -3 ** 1 -3 *
4 - G1 4 - G1
Gl+4 - 511 Gl+4 - 511

* This parallels what happens under AOS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual

priorities would be Gl+1 - G1+3.

1.1.2.4 Priority Mapping

A resident or preemptible process can assume any of the priority
numbers 1 through 511. The system uses this number in gauging
the importance of the process during scheduling and displays this
same number if you request the process' priority.

Licensed Material 1-9 Property of Data General

To maintain compatibility with AOS, however, AOS/VS has to map
priority numbers for swappable processes. As a result, the
actual number the system uses in its scheduling calculations

and the number it displays when you request the process' priority
may differ.

The discrepancy between actual and displayed priority numbers
occurs in three cases:

1) If you assign a swappable process priority of 1, 2, or 3.
2) If you assign a swappable process priority of Gl+1 - G1+3.

3) If a resident/preemptible process with priority 1, 2, or 3
changes its type to swappable.

In all three cases, AOS/VS uses a priority number of Gl+1 - G1+3
when scheduling the process because a swappable process cannot
have a priority of 1, 2, or 3. The system cannot, however,
display the numbers Gl+1 - G1+3 for a swappable process, and so
displays 1 - 3.

In all other cases (4 - Gl and Gl1l+4 - 511), the actual number is
the same as the displayed number.

Remember, however, that if you do assign a swappable process a
priority of 1 and then it changes type to resident (or
preemptible), the resident process will have an actual priority
of 1, even though the swappable process could not.

1.1.2.5 Examples of Mapping

1) If a resident process with a priority of 2 changes its type
to swappable, the system displays a priority of 2, but it
actually uses Gl+2 when scheduling the swappable process.

2) If a resident process with a priority of 3 changes its type
to preemptible, the system displays and uses a priority of 3
for the preemptible process.

3) 1If a preemptible process with a priority of G1+3 changes its

type to swappable, the system displays a priority of 3, but
uses G1l+3 in scheduling the swappable process.

Licensed Material 1-10 Property of Data General

4) If a preemptible process with a priority of G2+44 changes its
type to swappable, the system displays and uses a priority of
G2+44 for the swappable process.

5) If a swappable process with a display priority of 3 (meaning
its real priority is G1+3) changes its type to resident, the
system displays and uses a priority of 3 for the resident
process.

6) If a swappable process with a priority of 5 changes its type
to preemptible, the system displays and uses a priority of 5
for the preemptible process.

1.1.2.6 PNQF

The Priority eNQue Factor (PNQF) is the value by which ELQUE is
ordered. For Gl processes the PQNF is equal to the process
priority. For G2 processes it is a calculation. This
calculation allows for subgroups within each priority.

If the process is in Group 1 then:
PNQF = Priority
E =6

If the process is in Group 2 then:
PNQF = G1 + 1 + (7 *(process priority - gl)) + E

If the process is in Group 3 then:
PNQF = G1 + 1 + (7 *(process priority - gl)) + E
E =6
Gl is the genned max value for a Gl type process.

Before the 7 in the PNQF calculation can be described the "E" in
the calculation must be discussed. The E is the time slice
Exponent. This is a value from 1 - 6 and varies based on process
behavior. The lower the E value the more interactive a process
is and, therefore, the process will have a higher priority.
Therefore, AO0S/VS favors the more interactive processes over CPU
bound process within Group 2. The E value allows the ELQUE
manager to subdivide each G2 priority group into 6 subqueues.
These subgueues are managed by round-robin. The E value gets set
up based on the amount of time slice residue the process has
left. There are two times when E is touched from the scheduling
point of view: 1) after unblocking a process and 2) after the
process uses up its time slice. The algorithm below shows how E
is calculated.

Licensed Material 1-11 Property of Data General

/* khkkkhkkhkkhkkhkhkhhkhhhhhkkhkhkkhkkkhkhkkkhhhkkkhkhkhhkkkhhhkkkkkkkhkk */

/* This block of code calculates a new Time Slice */
/* Exponent after a process unblocks. */
/% */
/* *

/* kkkkkkkkhkkkhkhkhkkkhhkhhkkkkkhkkkkkhkkhkkhkkkhkkhkkhkhkhkhkhkkkhkkkhikk */

residue = ptbl.pextn.pscln;

current_exponent = ptbl.pslex;

total subsllces = 2** current_exponent;

remalnlng subslices = total subslices - residue;

E = lead bit(remaining subslices) /*see LOB instruction*/
if (E >> 5)

E = 5;
if (E << 1)
E = 1;

During time slice end processing, E is merely incremented unless
E is already at the maximum of 6.

The 7 is used to divide each priority grouping into subgroups.
These subgroups are numbered from O to 6. (See Figure 1.4.)

ELQUE PNQF SUBGROUPS
| G1 slots | G2 CB | G2 1st | G2 2nd | G2 3rd | G3 1st|
PNQF = PRI SlOt o1 -- 61 -- 61 -- 61 --6

Figure 1.4

The ELQUE subgroups for Gl are a one-to-one relationship, e.g.,
PNQF = priority. The subgroups for G2 and G3 allow for a
subgroup 0. This subgroup allows a spot for a G2-G3 control
block. Since the G2-G3 CBs must go before the G2 processes then
there must be an assigned place on ELQUE for the G2-G3 CBs.
Subgroup 0 is used for that purpose. Because there are 6
possible subgroups allowed by the Exponent subgroup 0 is
accounted for by the 7 in the PNQF calculation. Slot O in the
other G2 and G3 subgroups will not be used, but that is not a
problem because no extra space is taken up by the holes.

The difference between the process priority and Gl is the value
of the G2 mapped priority. (See Priority Mapping above.)

Licensed Material 1-12 Property of Data General

1.1.2.7 BIAS Factors

The locations BIAS and HBIAS, in STABLE, define the AO0S/VS bias
value. The bias factor is used to manage the size of ELQUE by
setting an upper and lower limit on the number of non-interactive
processes on ELQUE. BIAS contains the minimum number of
non-interactive processes that A0S/VS attempts to keep on ELQUE,
while HBIAS represents the maximum number. A non-interactive
process in the AOS/VS sense is a swappable process having a time
slice exponent of 6. This mechanism is used when trying to
preempt or swap a process on ELQUE. If the number of CPU bound
processes is greater than HBIAS, then some of the processes will
be preempted or swapped.

1.1.3 HANDQ -- unpended queue

There are some problems in working with the Eligible Queue. The
main problem comes from the locking mechanisms used to manage
ELQUE. If ELQUE is locked when trying to put an element on
ELQUE, the code path must do something to avoid spinning on the
QLOCK. Therefore, the system puts the element on another queue
called the HANDler Queue (HANDQ). This way the code does not
have to spin waiting for a lock.

The HANDQ is a queue of elements that have become unpended or
unblocked but could not be put on the ELQUE because ELQUE was
locked. This queue removes the need for a system code path that
is trying to put something on ELQUE to spin on the ELQUE locks.
The code that puts an element onto ELQUE tries to get QULCK,
which is a spin lock. If the lock is held, then the code puts
the element onto HANDQ. (See PENQ.)

Licensed Material 1-13 Property of Data General

1.1.4 PELEMQ -- pended element queue

The PELEMQ is a queue of control blocks that have pended on some
event, system control blocks such as core manager and system
manager, and specific user CBs which are pended on MKEY. The
purpose of this queue is to shorten the length of the ELQUE as
memory size in MV's increases thereby allowing for more processes
to be potentially active. A long ELQUE increases the amount of
time the search instruction takes to find an element.

1.1.5 The Globals

OMIDDLE is used by the ELQUE enqueue routines, which do
pseudo-binary searches. (See PENQ.) To do any kind of binary
search a middle point must be defined. For ELQUE, AOS/VS must
use a PNQF value. The value of QMIDDLE is 417. This is the
location of the priority 256.(400 octal) where E=1. (See

PNQF calculation.)

QMIDCNT is a counter that reflects which side of the ELQUE the
PSEUDO binary search falls on. If the QMIDCNT is positive, then
the majority of the searches were on the low side of the QMIDDLE
(e.g., PNQF < 417). 1If QMIDDLE is negative, then the search
spends more time on the high side of QMIDDLE (e.g., PNQF > 417).

G1lRANGE is two double words used to define the range of groupl.
It is set up at SINIT time to test what group a process is in.
During a proc this range is used to decide what time slice
exponent to give to the blocking caller. If the caller is in
G1lRANGE then the callers exponent is set to 6.

Gl is the Genned value of the highest possible Gl process
priority.

G2 is the Genned value of the highest G2 priority.

G4 is the highest priority on the system. The value of G4
is 511..

SCMASK is a constant that holds the initial scan mask. The value
of this constant is 160023. For more information on the bits of
this constant see the Process table PSTAT word.

NCBDEQ.W counts the number of times CBDEQ was called.

Licensed Material 1-14 Property of Data General

The next group of counters are used as collision counters.
These counters are updated every time a spin lock collision
occurs. These counters are only used for development and
debugging purposes.

COMVS.W counts the number of source queue collisions in the
QMOVE routine.

CQMVD.W counts the number of destination queue lock collisions in
the QMOVE routine.

CCBLK.W is used to count the number of times CBDEQ encountered a
lock of ELQUE.

CCBDQ.W counts the number of times CBDEQ had to use HANDQ.

CPDEQ.W counts the number of collisions encountered in the
general dequeueing routine PDEQ.

CPQHL.W counts the collisions in the ENQH routine.

CPQTL.W counts the collisions in the ENQT routine.

Licensed Material 1-15 Property of Data General

1.2 Queueing Operations

There are 7 basic queueing operations that work with the queues
discussed in the previous operations. The general queueing
operations are PENQ, PENQG, PDEQ, QMOVE, CBDEQ, PENQT, and
PENQH. These operations do whatever locking operations are
needed to maintain the integrity of the queues they're working
with. Below is the pseudocode for the queueing routines.

1.2.1 PENQ

PENQ enqueues an element onto the ELQUE only. The element is
positioned on ELQUE by PNQF. The routine searches ELQUE to find
the place to put an element. This is done by a PSEUDO binary
search of the ELQUE. If the location of the position on the
queue is found in the first half of the queue, then the routine
returns; otherwise, the second half is scanned from the end and
returns. The middle of the queue is defined as QMIDDLE.

Ordering by PNQF(p = PNQF)

ELQUE
OMIDDLE
v
> p0|p2|...|p400|p416|p417 p420|....|p776|p777|
PNQF <= 417 = - PNQF >> 417
DIRECTION OF SEARCH

Figure 1.5 Pseudo-Binary Search of ELQUE

/* SSSSSSSSSSSSSSSSSTSSSSTSSSSSSSSSTSSSSSSSSSSSSSSSSS */

/* PENQ(element) */
/* This routine enqueues entities onto ELQUE. */
/* /
/* SSSsss */
peng(element)

{

pngf = element->PNQF;

Licensed Material 1-16 Property of Data General

/* hkhkkhkkhkhkkhhkkhhkhkhhkhkhhhkhhhkkhhhkhkhhkhkhkhhhhkhkkhkhkikkxkkkk */

/* If the PNQF of the element is in the first half of */
/* the queue then scan the first half of the queue. */

J* kkkkkkkkkkkkkhkhkkkkkhhhhhkhkkkkhhkkkkhkhkkkkkkkkkkx */
if (pngf <= QMIDDLE)

pngf ++; /* put at end of priority group */
gmidcnt ++;

get g lock(&ELQUE, glock, &CPENQ.W);

location_ found = NFSLE(ELQUE,pngf,element->PNQF);

/* khkkkhkkkkhkhkkhkkhkkhkhkhkkkhhkkhkhhkkkhhkhkkhkhhkhhhkhhkhkkhkhkkhkhkkhkkkkkk */

/* If the scan of the ELQUE found the right location */
/* in the queue to put an element then enqueue the */

/* element to that location. */
/* khhkhkkhkhkhhkkhkhhkhhkhkhkdhhkdhkdkhkkhkhhhhkhhbhhkhkhhhkkhhhkhkhkkhkkhkhkkkk */

if (location_found->PNQF <= gmiddle);
{

/* ArkKkAkAkAIrAAAAAkkIdkkkhkkhkdrkhkhkkrkhkkhhkkhkhkhkhkkhkhkkkhkhkkhkkhkhkkk */
/* Wait for the scanner's count to go to zero before */

/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */

/* hhkkkkkhkhkkhkkkhkkhkkhkhkhkhkhhhhhkhkhhhkkhkhkkhhhkhhhkhhkkhhkhhkhhkk */

if (ELQUE.QSCAN >> 0)
while (ELQUE.QSCAN >> 0)
{3
ENQH(location_found, element);
return();
} /* if found location */
else

/* hkhkkhkkhkhhkkkkhkkhkkhkhkhhhhhkhhhhhkhkkkkhkkkhkhkhkkhkhhkhhhhhhhkkkkkk */

/* Wait for the scanner's count to go to zero before */
/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */

*

/* kkhkkhkkhkkhkhhkhkkkhkkhkkhkkhkhkhkhhhhhhhhhhkkhhkkhkkkkhkkkhkkhhhhhhkkkkkkk */

{
if (ELQUE.QSCAN >> 0)

while (ELQUE.QSCAN >> 0)

{1}
ENQT(location_found,element);
return();
} /* did not find location */
}/* search first half */

Licensed Material 1-17 Property of Data General

/* kkkkkkhkkkhkkhkkhkhkkhhkhkhkhkhkkhkkhkkkkkkkhkkkhkkhkkhhkhkkhkkkkkkkkkk */

/* Search the second half of the eligible queue. */
/* If the PNQF of the element was not less than or * /
/* OMIDDLE value. This section does a backward */
/* search of the second half of ELQUE. */

/* kkkkkkkkhkkhkhkkhkkhkkhkhkhkhkhhhkhkhkhkhkkkkkkkkkkkkkkkkkhkkkkhkkkkkk */

QMIDCNT --;

pngf = element->PNQF;

get g lock(queue,qlock,penq.w);

location_found = WBSGE (ELQUE, pnqgf,element->PNQF);

/* khkkkkhkkhkhkhkhhkkhhkkkhkkkkkkhkhkhkhkkhkhhkkhkkkhhhkhhkhkkhkhkhkkkkhkkkkkxk */

/* If the scan of the queue found the right location */
/* in the queue to put an element, then enqueue the */

/* element to that location. * /
JF KEKKKRKKKKKIKKKKKKRKKKKKKRKKKRRKARKKARK KRR KKK K KR KKK & /

if (location_found->PNQF >= QMIDDLE);
{

J* kkkkkkkkkkkkkhkkkh kA kX kkkkkkkkkhkkkkkkkkkhkkkkkkkx */
/* Wait for the scanner's count to go to zero before */

/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */

/* khkkkkkkkkkhkkkhkkkkhkkhkkkhkkkkkkkkkkkhkkkkkhkkkkkhkkkkkkkxk */

if (ELQUE.QSCAN >> 0)
while (ELQUE.QSCAN >> 0)
{3

ENQT(location found, element);

return();

} /* if found location */
else

J* kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk */
/* Wait for the scanner's count to go to zero before */

/* enqueueing to it. This prevents the queue from */
/* being altered while other paths are looking at it. */
/* */

/* kkkkkkkkkhkhkhkkkkkkkhkkkkkkhkkkkhkkhkkkkkhkhkhkkhkhkhkhkkkkkkkk */

{
if (ELQUE.QSCAN >> 0)

while (ELQUE.QSCAN >> 0)

{3
ENQH(location_found,element);
return();
} /* did not find location */
} /* PENQ */

Licensed Material 1-18 Property of Data General

1.2.2 PENQG

PENQG is used as a general queueing routine to enqueue by PNQF.
The routine searches the queue to find the place to put an
element. This is done by a PSEUDO binary search of the queue.

If the location of the position on the queue is found in the
first half of the queue, then the routine returns; otherwise, the
second half is scanned from the end. This routine uses the same
logic as PENQ but is designed to work with any queue.

/* S8SSSSSSSSSS8SSSSSSSSSSSSTSSSSSSSSSSSSSSSSSSSSSSss */
/* PENQG(queue, element) */
/* This routine works with queues other than ELQUE. */
/* It is assumed that the queue is modified by PNQF. */
/* */
/% SSss */

pengg(queue, element);
pngf = element->PNQF;

/* hhkkhkkkkkhkkkhkkhkhhhhkhhkhhhhhhkhkkhkkhkkhkkhkkhkkhkkkkhkhhkhkhhhkkkkkkkk */

/* If the PNQF of the element is in the first half of */
/* the queue, then scan the first half of the queue. */

J* kkkkkkkkkkkkkhhkkhkkkhkhhhhkkkhhhrkkkhhkhkkkkkkkkkrxx */
if (pngf <= QMIDDLE)

pngf ++;
gmidcnt ++;
location_found = WFSLE(queue, pngf,element->PNQF);

/* kkkkkhkhkkkhkkhkkhkhkhkkhkkhkhhkhkkhkhhhhhkhkhhhhhkkhkkhhhkkkkhhkkkkkkkk */

/* If the scan of the queue found the right location */
/* in the queue to put an element, then enqueue the */
*

/* element to that location.
JF Kkkkgkkkkhkh Ak A KA K XXKKXRIKXXKKXRKKXKK KRR KKK KK I* %/

if (location_ found->PNQF <= gmiddle);
{
ENQH(location found, element);
return();
} /* if found location */
else
ENQT(location_ found,element);
return();
} /* did not find location */
}/* search first half */

Licensed Material 1-19 - Property of Data General

Licensed Material 1-20 Property of Data General

L L Y
Search the second half of the QUEUE. */
If the PNQF of the element was not less than or */
QMIDDLE value. This section does a backward */
search of the second half. *

kkhkkhkkhkkkhkhhkkkkkkhkhkhkkhkkhkhkkhkkhkhkkhkhkhkhkhkhhkhkhkkhkhkkkkkkkkkkkkkkk */

OMIDCNT --;
pngf = element->PNQF;
location_found = WBSGE (queue,pngf,element->PNQF);

khkkkkkkhkhkhkkhkhkkhkhkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkhkikhkhkkhkkhkhkkhkkhkkhkkkhkkhkkhkk */
If the scan of the queue found the right location */
in the queue to put an element, then enqueue the */

element to that location. */
khkkkkkkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkhkkkkhkkkkhkhkkkhkkhkkkkkkhkkkkkk */

if (location_ found->PNQF >= gmiddle):;
{
ENQT(location_found,element);
return();
} /* if found location */
else
{
ENQH(location found, element);
return();
} /* did not find location */
} /* routine */

1.2.3 PDEQ
PDEQ is the routine that removes a PTBL from a QUEUE. The

routine has two arguments passed to it: the queue address and the
PTBL address.

/* Xk khkhkkhhkdkhhkhhhhhhhhhhhhhhhhhhhhkhkkhkhkhhhkhhhhhkkkx */

/* PDEQ(queue, ptbl) */
/* This routine removes an element from a queue */
/* supplied to the routine. */
/* */

/* khkkkhkkhkkkhkkhkhkhkhkkkhkhhhkkhkhkhkhkkhkhhkhkkhkhkhkhkhkkhkhkkhkhkkhkkhkhkhkhkkkkikhk */
pdeqg(queue, ptbl)

get g lock(queue,glock,cpdeq.w);

/* kkhkkkhkhkhkhkkhkhkhkkhkhkhkkhkhhkhhhhkhhhhhhhhhhkkkkhkkkhkkkhkkhkhhkhhhkkkkk */

/* Are we working with ELQUE? If so, check for */
/* validity of the element to be dequeued. */
/% */

/* khkhkhkhkhkkhkkhkkhkkhkkhkhhhhhkhkhhhhhhhhhkhkkhkhkkhkhkhkkhkkhkhkhkhhhkhhhkkkkkk */

if (queue == ELQUE)
{

/% kkkkkkkkkkkkkkkkkkkkhhhhhhkhhhhkkkhhhkkhkkkkhkkkkkx %/
/* Are we trying to dequeue the root process table? */

/* If so, panic with a 14627. */
/* *x/
/* khkkkhkkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkkkkkhkhkhkkkkhhkkhkkkkx */
if (ptbl->plink.w == -1)
panic(14627);

/* khkkhhhhkkhkhkhkkkhkhkhhkhkhhkhkhhkhhhhhhhhhkkhhkhkhkhkhhkhhhkhhhhhhkx */

/* Wait for any scanners to finish before dequeueing */
/* the element from ELQUE. */

/* hhkkhkhhkkkhkhkhhhkhkhhkkhkhhkkhkhhkhhkhkhkhkhhkhhhhhhhkhhhkhhkkk */

if (ELQUE.gscan >> 0)
while(ELQUE.gscan >> 0)
{1}
}

DEQUE (queue, ptbl)
release_q_lock(queue)
queue.qusers --;
return();

}/* PDEQ */

Licensed Material 1-21 Property of Data General

1.2.4 QMOVE

OMOVE is the operation that moves an element from one queue to
another. The routine does any locking that is necessary to work
with the queues, but the caller must set any element transition
locks. If necessary, the caller must turn off interrupts.

/* kkkkkkhkhkhhkhkhhhkkkkkhhkhhhkhhhhhhkhkkhkhhkkhkkkkhkkhkkhkkhkkhkkhkkhkkkk */

/* OMOVE(sque, element, dque) */
/* This routine moves the element from the source */
/* queue(sque) to the destination queue(dque). * /
/* both queues get locked for the move. */
/* */

/* kkkkkhkhkhhkhkkkkkkhkhkhhkhhhhkhkhhhkkhkhkhkkkkkhkkkhkkkhkhkkkkkkkk */

gmove(sque, element, dque)

get_g_lock(sque,qlock,CQOMVS.W);

/* khkkkkhhhkkkkhkkkhkkhkkhkhkhkhkhkhhhkhkkhhkkkkhkkkkkkkkkkhkkkkkkk */

/* Are we working with ELQUE? If so, check for */
/* validity of the element to be dequeued. */
/* */

/* kkkkhkhkkhkhkhkkhkhhkkhkhhhkhkkkhkhkhkhkkhkkhkkkhkhkkhkkkhkkkhkkhkkhkhkkk */

if (sque == ELQUE)
{

J%* Fkkkkkkkkkkkkhkkrkkkhkrkhkhhkhhkhhkdhkhkkrrkkkkkhkkk %/
/* Are we trying to dequeue an element that is not on */

/* a queue? If so, panic with a 14630. */
/* */
/* khkhkhkkkhkhkhkhkkkkhkkhhkhkkhkkhhkhkkhkhkhkkkhkhkhkhkkkkkhkkhhkhkkhkkhkkkkkkkkk */
if (ptbl->plink.w == -1)
panic(14627);

Licensed Material 1-22 Property of Data General

Licensed Material 1-23 Property of Data General

hhkkhkhkhhhkkhhhkkhhhhhhkhhhhkhhkhkkhhhhhhhhhkhkhhkhkhhkhkhhhkkx

Wait for any scanners to finish before dequeueing
the element from ELQUE.

hhkkkhkhkkhkkhkkkhkkhkkhkhkhhhhhhhhhhkhkhkkhkkhkkhkkhkhkkhkhkkhkhkhhkhkhkhkkkkhkk

if (ELQUE.gscan >> 0)
while(ELQUE.qgscan >> 0)
{1}
}

DEQUE(sque, ptbl)
release_qg_lock(sque)

khkkhkkhkkkhhkhkhkkhhkkhhhkkhkkhhkhkhhkhkhkhhkhkhhkhkhkhkhkhkhkhhkhkhkkkhkkk

Is the destination Queue ELQUE? If so, then

check for scanners of the queue.
hkkkhkkkhkkkhkkkhkhkkkhkhkkhkkhkkhkkhkkkhkkhkhkkhkhkkkhhkhkhkkhkhkhkhkhkhkhkkhkhkkkkhkhkkhkkkkkkkk

if (dque == ELQUE)

{
PENQ(element);
Return ();

}

get_q_ lock(dque,glock,CQMVD.W)
ENQT(dque, element);

release_q_ lock(dque);
return();

}/* Qmove */

1.2.5 CBDEQ

This routine is called by UNPEND and UNPNDN to remove
from PELEMQ and put it on the right queue.

hkkhkkkhkkhhhhkhkhkkkhkkhkkhkkkhkkkhkkkhkkhkkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkk

CBDEQ
This routine dequeues elements from PELEMQ and
engqueues them onto the ELQUE or HANDQ.
The argument is the address of the element to be

dequeued.
dkhkkkkkkhkkkhkhkhkhkkhkhkhkkhkkhkkhkkhkhkhkhkkhkhhkhkkhkhkhkkhkkhkhhkhkkhkkhkkhkkhkkkhkhkkkk

cbdeqg(cb)

{
NCBDEQ.W++;

khkkkhhkkhhkhkhkhkkhkhkhkhkhkhhkkhkhhhhhhkhkhkhhkkhhhkkhkhkhkkhkhhhkhkikkkk

If the element is not pended, then panic with a
14572.

hhkkhkkkhkkhhkkkhhkhkkhkhkhkkhkhkkhhkhhkhkhkhkhkkhhkhhhhhkkhkhkhkkhhkkikhkhkikk

if (bit (cb->pstat,psrdy) == 0)
panic(14572);
clear bit(cb->pstat,psrdy)

khkkkhkkkkkhkhkkkhkkkkhkkkhhkkkkhkhkkkhkhkhkhkkhhkkhkhkkhkhkkkhkhhkkkhkk

Clear the pend key and "not ready to run bit" in
the CB.

hhkkkhkkhkhkkkhkhkhkkhhkhhkhhkhkhkhhkhhkhkhkkhkhhkhhkhhkkhkhkkhkhkhkhkkkikkk

cb->ckey = 0;
DEQ(pelemqg,cb);

an element

Licensed Material 1-24 Property of Data General

/* khkkkkkkkkhkkhkhkkkhkhkkkhkkkhkhhkhhkkhkhkhkkhkhhkkhkhhkkkhhhkkhkhhkkhkkkikkk */

/* If ELQUE is locked, then use the HANDQ. * /
/* ENQUEUE the element to HANDQ and return. */
/* Otherwise lock ELQUE. */

/* dhkkkhkkhkhkkhkhkhkkhhkhhkhhkhhkhkhhkhkhhhkhhkkhhhhkhkhhkhhkhhhhkkikkkk */

if (elque_is_locked)
{
CCBDQ.W ++;
ENQT(handqg,cb);
set_bit(MPPCB->ppstat,prsch);
return();

Y /* if */

{
get _q lock(elque);

else

/* hkkhkhkhkkhkkhkhkhkhhhkhkkhhkhkhkhkkhhkhkhhhhhkhhkhkhhhkhkhhkkhkkhkk */

/* If there are other paths scanning ELQUE, wait for */
/* the count to go to zero. We do not want to touch */

/* ELQUE while there are scanners because we may */
/* corrupt the queue. */
/* After we're done, return. */

/* kkkkhkkhkkkkkkkkhkkhkkhkkhkhhhhhhhhkhkhkhkkhkkkhkkkhkhkhkhkkhkhkkhhkhkkkkkkkk */

if (elque_scanners >> 0)
while (elque_scanners >> 0)
{1}

ENQ(elque,cb,pngf);

event(); /* See JP management. */

return();

} /* else */

}/* end of cbdeq */

Licensed Material 1-25 Property of Data General

1.2.6 PENQT

When a path wishes to enqueue an element to the tail of a queue
the routine PENQT is called. PENQT stands for Ptbl ENQue to
Tail. This routine does all the necessary locking to work with
the QUEUE.

/* hkkkkhkkhkkhkhkhkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhhkhhkhkhkhkkkkkkkhkkkkkhhkikkk */

/* PENQT (queue, ptbl) */

/* This routine enqueues a PTBL to the tail of a queue.*/
/* khkkkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhhkhkkhkhkhkhkkhkhhhkkkkkhkkkkk */

pengt(queue, ptbl)
{

get_q_lock(queue,qlock,CPQTL.W);
ENQT(queue, ptbl);
release_g_lock(queue);

return();

}/* PENQT */

PENQH

When a path wishes to enqueue an element to the head of a queue,
the routine PENQH is called. PENQH stands for Ptbl ENQue to
Head. This routine does all the necessary locking to work with
the QUEUE.

/* kkkkkkkkkkkkkhkkkhkkhhkhkhkkhhkhkhkkkkkkkkkhkkhkkhkhkkkhkhhkhkkkkkkkkk */

/* PENQH(queue, ptbl) */

/* This routine enqueues a PTBL to the head of a queue.*/
/% kkkkkkkkkkkkhkkkkkkhkhkkkkhkhkhkhkkhhkhkkkkkkhhkkkkkkk %/

pengt(queue, ptbl)
{

get g lock(queue,qlock,CPQHL.W);
ENQH(queue, ptbl);
release_q_lock(queue);

return();

}/* PENQT */

Licensed Material 1-26 Property of Data General

1.3 The Scanner

The scanner is the path, in the module SCHED, that scans ELQUE to
find a CB or PTBL to run. This path is not called "scanner" in
the code, it has several entry points. (See below.) The scanner
cleans up HANDQ by removing elements from it and putting the
elements onto ELQUE. The scanner then builds a scan mask for

its scan, scans ELQUE and dispatches the element found. If no
element is found then class scheduling is reset. (See LP
Management) or the scanner will go to the Checksum loop.

(See JP Management.)

The major entry points to the scanner are used for optimization
of locking and uncontrollable changes of state in the system.
The entry points are listed as follows:

- RESCH is the entry point for the top of the scanner. It
is the place that paths go to when they find the need
for a reschedule.

- SMONO is at the same location as RESCH. Most of the
system paths that go to the scanner go to SMONO. This
is different than RESCH only in name. A branch to SMONO
implies that this is just a normal reschedule; e.g., a
CB pended.

- M6 is the entry point of the element dispatch. This

entry is used by TRTN (see CB management) to allow a
PTBL that made a "fast" call to continue running.

Licensed Material 1-27 Property of Data General

In this chapter the scanner is presented from the ELQUE
management point of view. The reason for this, is that the
scanner in the system imbeds three logically separate points
of view in line. For example, consider the following lines of
C code.

A: if (bit(myppcb.w.cpstat,cpmast) !=1) /*daughter?*/
setbit(mask, process _mother bit):;

B: element = SCAN(*ELQUE,mask);

C: if (mask == mylpcb.lpciu.w)
{1}

"A:" is supplied by JP management because the if statement uses
the global MYPPCB.W to find out if this is a daughter processor.
(See JP Management.)

"B:" is supplied by ELQUE management because the scan function
uses ELQUE, which is managed in ELQUE management.

"C:" is supplied by LP management because the initial scan mask
comes from the LPCB.

In the above example, three major areas of Paths and Time are
used in three nearly consecutive commands. This is the way
the code is really presented in the system, but to modularize
the scanner for each section the scanner is presented with
different emphasis.

There are three possible things that happen from the scan
of ELQUE.
1) The scan could find a PTBL. In this case, the PTBL is
sent to the PTBL dispatcher. (See PTBL scheduling.)

2) The scan could find a CB. In this case, the CB is
sent to the CB dispatcher (TACT or TACTl). (See
CB management.)

3) The scan could not find anything. In this case, if
class scheduling is on (see LP management) the scanner
could do a reset or go to secondary classes. If class
scheduling is not on or there is nothing more to be done
even with class scheduling on, then the scanner will go
into the Checksum loop (see JP management).

Licensed Material 1-28 Property of Data General

The pseudocode below shows the scanner from the LP point
of view.

/* SSSSSSSSSSSSSSSSSSSTSSSSSSSSSSSSSSSSSSSSSSSSSSSSSs */

/* */
/* The Scanner * /
/* The scanner will loop forever unless it is told */
/* to go idle. (See JP management.) */

/
/* SSSSSSSSSSSSSSSSSSSSSSTSSSSSSSSSSSSSSSSSSSSSSSeSes */

#define loop forever true
scanner()
{
int model tier; /* variable used for call to
set mask*/

SMONO:
RESCH:
J* KEKKKXKIIKKKXKIIKKRKKKKKRKKKKKXKRKKKARKKKKKXRKKKKKXX %/
/* */
/* This is the top of the scanner. Show that this */
/* JP is not running a user. *x/
/* */
J% KEKKIKKKIKKXKKIKKXRKKKKXKRKKKKKRRKKKKRKRKKKKKRRKK KKK %/
CC.W = O;
MYPPCB.W->cpelm.w = -1;

/* khkkkhkkkkkhkkhkkkhkkhkkhkhkhkkhkhhkhkkhkhkhhkhkkhkkhhhhkkhkkhkkkkkhkkhkkkkk */

/* Clean out the Handler Queue. Take from HANDQ and */
/* put onto ELQUE. First check if there is anything */

/* on the queue and try to lock it. If either */
/* fails then don't work with the HANDQ. Let */
/* another JP work with it. If HANDQ is locked */
/* then someone else is working with it and therefore*/
/* it will get cleaned out eventually so continue */
/* onto the scan. *

JF KkkEkkkAKIAKKXK KKK KKK KXKIKXK KKK KARKKARK KKK K KKK % /
interrupts (on);

if (HANDQ.head != -1)
if (bit(HANDQ.qlock,0) != 1)
{

Licensed Material 1-29 Property of Data General

J* EkxkkkkRIIKKRRIRII KKK RI I Ik kkhkhkhhkkhkkkkkkkkkkkxkk %/
/* */
/* This is the loop to clean off of HANDQ. If there */
/* is more than one JP in the system, then see if the */
/* JPs reschedule flag can be set. This allows any */
/* JP that is in the checksum loop to do a reschedule.*/
/* */
J* KkEkkkkkkRRkKkKKkhhkhhkhkrrhhhhhkhhhhrhkkhrkhkkhkkkkkr %/

while (HANDQ.head != -1)
{
element = DEQ(HANDQ);
interrupts(off);
PENQ(element);
interrupts(on);
if (MAXCP > 1)
EVENT(); /* see JP management */
3}

}

/* kkhkkkkhkhkhkhkhkhkkhhhkhkkhkkkkkhkkkkhkkhkkkkhkhkhkhkhkhhhkhhkkkkhkkkkkk */

/* Lock ELQUE */
% kkkkkkkkkkkkkhkkkhkkhkhhkhkhhhhkhhkhhhhhhkkhhkhkkkhkkkk */

model tier = 0; /* initialize value passed to */
/* get _mask routine LP management*/
while(loop forever)

/* hkkhkkhkhkhkhkhkhkkhkkhkkhkkhkkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkhkhhkhkhhkhkhkhkkhkkkkkhkkkkhkkkkkk */

/* */
/* Get the current mask. If child processor then */
/* mask out the mother bit and scan ELQUE. * /
/* MYPPCB.W is the PPCB for that JP. */
/* mylpcb.w is the address of this 1lpcb. */
/* setmask is a function in JP management. */
/* */
/* The Scan mask used by the scanner is broken into*/
/* two parts. The first part(I call classmask) */
/* comes from the LPCB. (See LP management.) The */
/* second part (I call regmask) comes from */
/* SCMASK.W. These two masks are concatenated to */
/* be used in the scan. If both the bit in the */
/* PTBL/CB and the corresponding bit in the mask */
/* are set then that element will not be selected. */

/% Kxkxkkkkkkkkkkkkkkkkkkkkhkhkkkhhhkkkhhhkkkhhkkkkkkk */
regmask = SCMASK.W;

if (bit(MYPPCB.W->cpstat,cpmast) !=1) /*daughter?*/
setbit(regmask, pmast);

Licensed Material 1-30 Property of Data General

/* hhkkkhkkhkhhkhkkhkhhkkkhhkkhkhhhkkhkhkhhhkhkhhhhkhkhhkhhkhhhhkhhkkhhkkhhkk */

/* */
/* If there are no more stacks (see CB */
/* management) and no more free memory that can be */
/* wused to get more stacks, then set the */
/* "run only CBs" bit in the mask. This is done */
/* to prevent selection of an element that we can't */
/* run. */
/* *
/* khkkkhkkkhkhkkkhkhkkhkkkhkhkhkkhkkkkhkkhkkkhkkhkkkhkkhkkhkhkkkhkkhkkkhkkhkhkkkhkkkkikkkkxkx */
if ((SSTKCT <= 0) && (SSTUSE == 0) &&
(((FBLKC.W+UNMODCN.W) <= 5) !! (SSTMAX == 0)))

setbit(regmask, psnchb);
classmask = set mask(mode,mylpcb, ppcb->cpmode);

/* Build the scan mask by putting the class */
/* mask in the high part of the double word */
/* and the regular mask in to low part. */

mask = concat(classmask,regmask);
J* KKKKKKKKKKKIKKKRRRKRKKRKKIIKKKKXXKRRKKKK KKK XKXXKRRRKK %/
/* RESCN */
/* This is an entry point used when the rescan bit */
/* 1is set. The rescan does not change the mask, it */
/* Jjust locks ELQUE and rescans it for an element. */
/* The check for rescan is made when the scanner is */

/* about to go into the Checksum loop. * /
/* The Rescan Bit is set when an event occurs which */
/* causes a reschedule. When reschedule is set */

/* Rescan is also set. See EVENT in JP management. */
[kkkkkkkkkkkkkkkkkkkhkkkhkhhkkhkhhhkhkhkkkxkkkkkkx */

RESCN:
get g lock(ELQUE);
ELQUE.QSCAN++;
element = SCAN(*ELQUE, mask);

Licensed Material 1-31 Property of Data General

/* AREXKXKKA XA AR AkAkXAkhkhkhhkhkhkhkkhkhkkhkhkhhkkhkkkhkkhkkhkkkhkkhkkhkkhkhrhkkkkx */
/* If the scan was successful the element will get */

/* dispatched. 1In the code the dispatch is a JMP */
/* @PPC.W. This means that the element knows the */
/* dispatcher it will use. For user CBs the */
/* dispatcher is TACT. (See CB management.) */
/* For PTBLs the dispatcher is PCALL. (See PTBL */
/* management.) For system CBs coming from IDSCBQ */

/* the dispatchers are the startup sections of the */
/* code. For system CBs that pended, the dispatcher */

/* 1is TACT1. */
/* hkkhkkkkkkkkhkkkhkhkkhkhkkhkkkhkkkhkkhkkkhkhkkkhkkkhkkkhkkkhkkhkhkhkkhkkhkhkkkhkkhkkx */

ELQUE.QSCAN --; /* one less scanner */

if (successful scan)
switch(element type)

{

case ptbl:
goto PCALL;
break;

case CB:
goto TACT;
break;

case sys_cb:
if (just_woke up) && (cormanager)
goto CMINT;

else

if ((just _woke up) && (sysmanager))
goto SMINT;

else
goto TACT1;
break;

} /* switch * /
Y /* if */

Licensed Material 1-32 Property of Data General

/* khkkhkhkkhkhkkhkhhkkhkhhkkhkhhhkhhhkhkhhhhkhhhkhkhkhhkkhkkhkhkhkhkkkhkkk */

/% */
/* If not successful then check to see if */
/* class scheduling in on. If not then go idle. */
/* 1If class scheduling is on then check if a mode */
/* change is necessary. If the current */
/* mask is the same as the initial scan mask, */
/* RESET and change mode. This is considered a */
/* sufficient check because the scan failed with */
/* +the initial mask meaning there are no more */

/* primary classes ready to run.

To avoid a second */

/* unnecessary scan, RESET to run the secondary */
*

/* classes.

/* hhkkhkhkhkkhkhkhkkhkhkhkkhkhhkhhhhhkhhhhhhkhhhkhhhhhhhhkhhhkhihkhhkhi */

if (bit(MYLPCB.W->1lpstat,lpoff) == 1)

{

/* Before going idle check to see if a */
/* Rescan is necessary. 1if so then goto*/
/* RESCN in this routine. */

if (bit(MYPPCB.W->cpstat,crescn) == 1)

goto SMONDD;

{

clearbit(MYPPCB.W->cpstat,crescn);

goto RESCN;
}

/* see JP management */

if (classmask == mylpcb.lpciu.w)

{
}

else

rese
/* i

t(mylpcb.w);
f */

/* kkhkkkkkhkhkkkhkhkhkhkhkhkhhhhkhhhhhkhkhhhhhhhhhhkhkhkhhhhhkkkkhhkk */

/*

/* If not changing the mode,

/* what mode we're in.

/* 1lp databases and get a new mask.
/* next tier if possible.

*/

then check it to see */

If mode O, then reset the */

If not, get the */
*

/* kkkkkhkkhkkhhhhhhhhhhkhhkhkhkkhkhkhkhkhkhkhkkihkhkhhkhhkhkhhhhhhkkkhkhhkhkik */

if (MYPPCB.W.cpmode == 0)
reset (MYLPCB.W); /* LP management */

else

model tier = O;

/* check if we're at the last tier. */
if ((MYPPCB.W->cptmk.w+2 >
MYPPCB.W->cphmk.w+32) !!
(MYPPCB.W->cphmk.w+2 == -1))

Licensed Material

1-33

Property of Data General

reset():
MYPPCB.W->cpmode = O;
model tier = O;

}
else
{
MYPPCB.W->cptmk.w += 2;/*next tier */
model tier = MYPPCB.W->cptmk.w;

}/* else */
} /* while loop */
} /* scanner /*

Licensed Material 1-34 Property of Data General

1.4 Locking

There are two types of locking discussed in paths and time. The
first is "spin" locking. (See JP management.) The second is
pend locking.

1.4.1 Pend Locks

Pend locking is only used by pendable paths (CBs). A pend lock
causes a CB trying to get the lock to pend if the lock is held.
The reason for using pend locks is that the particular lock is a
long term lock. This means that the lock may be held for an
indeterminate amount of time. For a path to spin the lock must
be a short term lock.

Example:

A CB is trying to get a change lock on the global lock
JPLPLOCK.W. (See LP management.) The CB finds the lock is
held, so the CB will pend waiting for the lock. When the lock
is released the unlocking routine unpends all the CBs pended on
the lock.

To get a pend lock there is a two-level locking scheme used. The
first part is getting the transition lock and the second is
getting the pend 1lock.

The first part of the locking scheme is getting the transition
lock. The transition lock allows the Code Path to set up for a
long term action, such as get a long term lock or do some quick
operation with an element. If the path tries to get the long
term lock and cannot then the path will pend, but before pending
the path must release the transition lock. The routine that this
manual has designated to do this type of locking is get lock.
(See LP management.)

1.4.2 Element and Queue Locking

In this section two groups of locking routines will be
discussed. The first group of locking routines used in ELQUE
management are the queue locks. The second group of locking
routines discussed are the pend locks that deal with JP and
LP databases.

Licensed Material 1-35 Property of Data General

1.4.3 Element Locking

In ELQUE management it is necessary to lock elements and gqueues
to maintain their integrity for specific operations. For
example, when the element is accessed for modification, the queue
lock (glock) must be held on that queue before the queue can be
touched. Elque has a special extra lock, which will be discussed
later.

1.4.3.1 Element Locks

An element gets locked when it has some system call working with
it, such as a system call (CB) doing an operation to a PTBL; or
when a PTBL is being dispatched to run. The PTBL long term lock,
PLOCK, is a form of a pend lock. The difference between the PTBL
lock and the normal pend lock is, if the PTBL lock is set, the
dispatchers, which are nonpendable paths, simply do not use the
PTBL and return to the scanner for another element.

1.4.3.2 Queue Locks

There are two routines used by this manual to lock queues. They
are: get _g_lock and release _q_lock. The locking scheme used for
queues is spin locking. These locking routines are not real
locking routines, they are implemented inline. The reason these
functions are implemented inline is because of the speed of not
having to go to a subroutine. The routines are shown in the
pseudocode below.

1.4.3.3 GET Q LOCK

Get_q_lock tries to get a lock for the caller. When the locking
succeeds then the routine returns. If the locking fails the
routine increments the collision counter supplied to the routine
and spins until it gets the lock.

/* $SS */

/* get_qg_lock(queue, counter) */
/* This routine gets a lock for the queue */
/* supplied as an argument. */
/* */

/* SS */

Licensed Material 1-36 Property of Data General

get_qg_lock(queue, counter)

JF KEKKKKKKKKKRKRKRKKXKXKXK KX KX KX Kk hkkkkkkkkkx */
/* if there lock is locked then increment the */

/* counter and spin. */
/* After the lock is released then set the x/
/* 1lock. */
/% Kkkxkkkkkkkkkhkkkkkkkkkkhkhkkkkkkhkkhkkkkkkk */
if (bit(queue.gstat,QLOCK) == 1)

counter ++;

while (bit(queue.gstat,QLOCK) == 1)

{3

setbit(queue.gstat, QLOCK);
return();

}

1.4.3.4 RELEASE Q LOCK

Release g lock releases the gqlock for the queue passed as an
argument.

/* khkkhkkkkhkhhkhhkhhkkkkhkhkkhkkhkkikkkkhkkhkkkkhkkhhkhkkkkkhkkkkkkkkk */

/* release g lock(queue) */
/* This roiutine releases the queue lock for */
/* queue passed to the routine. */
/* */

/* kkkhkkkhkhkkkkhkhkkhkkhhkkhkhhkhkkhkhkhkhkhhhkkhkkhkhkhkhkhkhkkhkhkkhkikkikk */

release_q_lock(queue)

clearbit(queue.gstat, QLOCK);
return;

}

1.4.4 ELQUE Locking

ELQUE has a special extra locking scheme, which is used for
readers of the queue. This lock is called the scan count. The
scan count is used to keep track of scanners. This prevents a
path from modifying ELQUE while other paths are reading it.

After a path gets the QLOCK on ELQUE it must also wait for the
scan count to go to zero before enqueueing or dequeueing from
ELQUE. The scan counter is useful because scans of ELQUE occur
more frequently than do modifications. The scan count for ELQUE
is called QSCAN. QSCAN is a part of the ELQUE structure so it is
accessed by ELQUE.QSCAN.

Licensed Material 1-37 Property of Data General

Chapter 2
CB Management

2.1 Introduction

Control Block or CB management is the part of Paths and Time that
manages the databases and paths used by CBs. CBs are system
paths that run on behalf of a user request or are used to manage
the system resources. There are three types of CBs: user CBs,
system CBs, and daemons.

Control blocks are used for cases in which the system needs a
stack to handle a code path or there is a possibility that the
path will pend. These stacks may be allocated when a user makes a
system call that requires a stack, or they may be allocated for
system use (daemons).

Both the control block and process table share some common header
area information so the scheduler can accommodate them on the
scheduler queues. This eliminates the need for separate queues
for process tables and CBs when scanning for eligible elements to
run. Elements are members of a queue; in this case these
elements are PTBLs and CBs.

o User CBs are used whenever a user makes a system call that
goes into ring 0. The CB runs until some event occurs to
cause the CB to Wait for some condition to be met. This
"waiting" is called pending. An example of pending is CB
waiting for a disk request to return.

o) System CBs do system resource management services such as
manage memory.

o) A Daemon is a special kind of CB that performs a function for
the system on behalf of a user, such as termination.

o CB Management is the highest-level of the object management
components of Paths and Time. CB management gets services
from Process scheduling, ELQUE management, and Time
management. From process scheduling, CB management gets the
CB that will be run. CB management gets the CBs to dispatch
from ELQUE management. CB management gets timing data (in
PIT ticks) for the CBs from time management.

Licensed Material 2-1 Property of Data General

Figure 2.1 below shows the connections between CB management and
Paths and Time. The connections are services provided to CB
management by the other components of Paths and Time.

e + e ————— +
PTBL |-=-=——- > CB
MANAGEMENT MANAGEMENT
o + e +
I I
et Rttt +
| |- +
et e + SYSTEM
e ———— +
ELQUE DRIVERS
+===> MANAGEMENT IDEF
FILE SYS
- + {--+
| o ———— +
o ——— + o= +
CLASS |<-- o mmmmm e +
LP
MANAGE- [--> MANAGEMENT | <+- TIME
MENT MANAGEMENT
e + B ket +)
e bkt P +
e +
tm—————— +
et JP {mmmmmme e + |
MANAGEMENT o +
------------ >| INTERRUPT LEVEL |
e + et ettt +
Figure 2.1

Licensed Material 2-2 Property of Data General

This chapter is organized as follows:

The objects

The operations that work on the objects
The internal paths of CB management
Service provided to the rest of AOS/VS

2.2 Objects

This section describes the objects in CB management: the PTBL,
CB, CB management Queues, and the globals.

2.2.1 The PTBL/CB

The process table (PTBL) is used by AOS/VS to manage a process.
The first 24 words, however, are used as a common area between
the CB and the PTBL. To access a common area, certain locking
conventions may need to be used. These locks are defined below.
The letter representing the type of lock is shown in the PTBL/CB
database offsets section.

Licensed Material 2-3 Property of Data General

%%* PTBL LOCKING CODES ***

For each PTBL/PEXTN definition there is a one-letter code that
indicates what lock, if any, is needed to access the value. A
more detailed explanation is supplied in the section on locking.

The
T =

L =

LA

RE

one-letter codes are listed below:
The PTRAN lock controls this wvalue.
The PLOCK lock controls this wvalue.

NONE No lock is needed to access this wvalue.

INVARIANT the value does not change for the life of the
process and no lock is needed to access the wvalue. [Note,
however, that the caller may need to ensure the continued
existence of the process (via counter PTGRC, for example).]

NOT APPLICABLE the corresponding value is not applicable to
PTBLs and, thus, does not fall within the realm of the PTBL
locking scheme (e.g., a value's definition is for CB only).

PLOCK/ATOMIC to access this wvalue you must either acquire
PLOCK or use an atomic instruction.

REFER refer to another definition to get this value's
locking code. (For example, bit definition words do not
have a locking code, you must refer to the individual bits.)

PID LOCK the PTBL pointer values to sons and fathers
(PSONP.W, PSONL.W) fall under pids lock PIDSLK.W.

UNUSED the value is not used and should be removed from
PTBL.

SPECIAL locks one or more different locks not previously
mentioned. For example, an offset may require some sort of
interrupt mask as well as a normal locking code.

Licensed Material 2-4 Property of Data General

The following is a field-by-field description of the main
database for each process on the system. It is called a "Process

Table."

This database is built when a process is at ?proc time.

The fields described below are only the fields used by Paths and

Time.

PTBL OFFSETS COMMON TO BOTH CBs And PROCESSES

WORD OFFSET

NOORNO

22

PLNK.W
PBLNK.W
PNQF

PCLASS
PSTAT
PSTAT1
PPC.W
PLPCB.W
PGNUM.W
PTIM

TTIME

CALLN.W

PKEY.W

LOCK USAGE SUMMARY
——————————————— i e e 5
T Forward Link
T Backward Link
L Priority eNQue Factor
L Process CLASS
RE Process Status Bits for SCAN
RE Process Status Bits not FOR SCAN
I Control address when scheduled
L LPC Block to charge run time
L (CLASS #)*2 integer used by XWADD
L Current interval of time expended
by a system call
L Accumulated time expended by a
system call
L (SYS CALL NUMBER)*2 used during
SYS CALL time accounting by XWADD
X UNPEND KEY
--------------- e D itttk 3

End of common area between CB and PTBL

Figure 2.2 Process Table Offsets

The CB Unique Offsets

WORD OFFSET

SUMMARY DESCRIPTION

—————————————————— D ittt Tt TP S

CKEY.W
CATCB.W
CSTK.W
CBFEH.W
CSTKC.W
CPTAD.W
CTEMP
CERWD
CBDLS.W
CBULA.W
CERPC.W
CLKPT.W

CB UNPEND key

User TCB address

Frame Pointer

CB fatal error handler address
Stack base

A(PTBL which made system call)
Utility

System call error word
Dynamic Logical Slot for CB
Logical address for DLS

PC when RETER called

A(PTBL CB holds PLOCK on)

------------------ ittt s &

Licensed Material

60 Length of Control Block

2-5 Property of Data General

The PSTAT and PSTAT1 bits are defined in the tables below, with
an extra column used to show whether a PTBL(P), a CB(C), or
both(B) use a particular bit.

PSTAT BITS USED FOR SCANNING

USE BIT OFFSET SUMMARY DESCRIPTION
————te— e e +
P 0 PSRDY Not ready to run
B 1 PSRUN Running
P 2 PSEW Sched action
P 3 PSNCB Don't look - process can only use a CB
B 11 PLCK Process table lock bit
B 14 PTRAN Element transition bit
| 15 PNTCB Run only CBs
————p o - +

PSTAT BITS KNOWN AS "PRIORITY BITS"

USE BIT OFFSET SUMMARY DESCRIPTION
e o e +
P 4 PSBRK OP interrupt
P 5 PSBAG SWAP OUT process
P 6 PSBLK BLOCK process
P 7 PSDP START UP DAEMON
P 8 PSMWT Wait for memory key to change
P 9 PSTSU Time slice is up
bt Rttt TP ettt +

PSTAT BITS NOT USED BY SCANNER

USE BIT OFFSET SUMMARY DESCRIPTION

————tm - e et ittt +
B 10 PMAST Mother-only element (1l=Mother-only)
P 12 PSETR Don't enter
P 13 PSFSY System page fault

et o - +

PSTAT1 BIT DEFINITIONS

Process table bit parameters for second status word.
Note that this is the status word where bits that will not
be looked at during the ELQUE dispatch scan are put.

USE BIT OFFSET SUMMARY DESCRIPTION
----- o e e}
C (15 PSYST |System CB bit -- CM, SM,DM
B |1 PTYP Element type (1=Control Block)
CcC |2 PNAD No address space to release(BPLCK)
C |3 PNFST |Sys call did not run 'FAST'
----- e e

Licensed Material 2-6 Property of Data General

2.2.2 PTBL/CB Offset Explanations

PLINK.W -

PBLINK.W-

PNQF -

This offset is the forward link word for the process
table. When this wvalue is not -1, then the PTBL is on
a queue. If the value is -1, then the PTBL is at the
end of a queue. Typically if the wvalue is -1 and the
PTBL is on the ELQUE, then the PTBL is the root process
table. In order to modify this offset, the PTBL
transition lock must be set. This value is most often
modified by queueing instructions.

This offset is the backward 1link word for the process
table. When this value is not -1, then the PTBL is on
a queue. If the value is -1, then the PTBL is at the
beginning of a queue. In order to modify this offset,
the PTBL transition lock must be set. This value is
most often modified by queueing instructions.

This is the Priority Enque Factor word. This word is
used for placement on ELQUE. See ELQUE section for
calculation. 1In order to modify this wvalue, the PTBL
lock must be held. This value is set at process
creation time and is recalculated at time slice end.

The next two words are used during the scan. When doing a scan
for a PTBL, the scanner searches ELQUE with a scan mask. The
scan mask is tested against the concatination of PCLASS and
PSTAT. If a bit in those two words matches the corresponding bit
in the scan mask, the PTBL will not be selected.

o

PCLASS -

Word 1 is a class mask word. If a bit is set, the
class canNOT be selected by the scanner (initialize
to 0).

Word 2 is a mask for the PTBL's PSTAT word. If a bit
is set, the LP will NOT select the process.

This is the process class word. The PTBL will have the
associated bit set for the class it belongs to, so
during the scan if that class is masked out this PTBL
will not be selected. To modify this entry the Plock
must be held.

Licensed Material 2-7 Property of Data General

PSTAT - This is the process status word. It is used during
scanning to find out whether to choose this PTBL or
not. Not all of the status word is used for scanning.
The status bits used are defined as follows:

PSRDY is the "Not Ready To Run" bit. If this bit is
set, the process will not be picked by the scanner.

The way a process becomes "not ready to run" is if
there are no system TCBs to run and there are no user
TCBs to run. During a dispatch if the PTBL is found to
meet the above conditions then PSRDY is set. Typically
a process will have PSRDY set if the process is single
threaded and is doing a system call or the process is
multitasked and all the tasks are suspended (see
process management interface services). The PSRDY bit
is cleared after a system call finishes or a task wakes
up from a delay.

PSRUN is the running bit. If a process is running on a
JP, this bit will be set. This bit is set in the
dispatcher immediately after a CB has been found by the
scanner. The reason for this is to prevent other JPs
from getting the same CB. The bit is cleared if the CB
is not able to run. For example: If process is
selected to run and one of the priority bits is set
then PSRUN is cleared. If a CB is set up on behalf of
the caller before the CB runs, the PSRUN bit will be
cleared on the PTBL. PSRUN will be cleared if an event
occurs such as Subslice End.

PSEW is the scheduler action bit. This bit is set when
the system is doing something to the process. For
example: If the process is chaining, the PSEW bit will
be set to ensure that the process will not be scheduled
on another JP while it is chaining. This bit gets
cleared when the operation on the process finishes.

Licensed Material 2-8 Property of Data General

PSNCB - 'Don't Look' - This bit is set in a group 2/3
process' PTBL whenever it needs a CB before it can do
anything else. The scheduler includes this flag in its
SCAN MASK whenever there are no group 2/3 CBs
available. Therefore, the system WON'T LOOK at
processes that can't proceed because no group 2/3 CBs
are available.

Specificaly, there are three instances that cause
this bit to be set in a group 2/3 process' PTBL:

1) Attempt to start up a daemon failed for lack
of CB.

2) Attempt to get a CB for a TCB waiting to start
a call failed and nothing else can be done for
the process because its 'Don't Enter' (PSETR,
BPSEN) bit is set.

3) Task scheduler finds no ready TCBs, but there
are TCBs waiting to start system calls. In
this case, 'Don't Enter' (PSETR, BPSEN) is
always set, and, if the process is group 2 or
3, PSNCB is also set.

PLCK is the PTBL lock bit. This bit gets set to
prevent another processor from accessing this
particular CB. This lock is considered a long term
lock.

PTRAN is the CB transition lock. When locking a PTBL
or CB, PTRAN gets set for the short term then the PLOCK
can be obtained. If PTRAN is already set, the JP will
spin on the lock (see LOCKING) as soon a PLOCK is
obtained and PTRAN is released. This is a short term
lock.

PNTCB is the Run only CB bit. When set, this bit will
not schedule a process until some CB has Run. This
bit is set when trying to dispatch a CB running on
behalf of a PTBL. The dispatcher tried to get the
PLOCK on the PTBL and couldn't. After setting the
bit, the dispatcher goes back to the scanner. The bit

gets cleared when the CB dispatcher gets the PLOCK on
the PTBL.

Licensed Material 2-9 Property of Data General

The next group of bit offsets do not affect scanning.
These are considered the PRBITS (priority bits). 1If
one of these bits is set, the system must do some other
action before running this PTBL. After a PRBIT
function is performed a reschedule is done.

PSBRK is the operator interrupt flag. This means that
the user has done a “C"B and the process must abort.

PSBAG is the process swap flag. If this bit is set the
core manager needs to be woken up to allow the process
to be swapped.

If PSBLK is set then process management interface
services must be called to put this PTBL on the BLKQ.

If PSDP is set then a daemon must be set up on behalf
of this process. Control will go to CB creation when
this occurs.

PTSTSU is the Time Slice Up bit. This bit gets set
when a system call charge is made and the time slice
ends. Control will go to time slice end processing.

The following bit offsets are other status bits not
used by the scanner.

PMAST is the "Mother Only" bit. If this bit is set a
CB can only run on the mother. If the CB element is a
PTBL then the bit in LMAST is also set signifying that
there is an outstanding IDEF. If the CB element is a
CB, then the CB is performing some task that falls
into the mother-only category. (See mother-only

calls table.)

PSETR is the "Don't Enter" bit. This bit is set when
there are no outstanding system TCBs enqueued in the
PTBL extender. This bit gets cleared when a TCB is put
on the PSWD.W chain.

PSFSY is the system page fault flag. This bit is
not used.

Licensed Material 2-10 Property of Data General

PSTAT1-

PPC.W -

PLPCB.W -

PGNUM.W -

This offset is not used for scanning. These bits are
used to find a characteristic of a CB.

PSYST is used to show that a CB is a system CB. If the
CB is a system CB then this bit is set.

PTYP is used to show the type of element we are
currently working with. If this bit is set the element
we are working with is a CB. Otherwise the element is
a PTBL.

PNAD is used to show that the CB is working with a
target PTBL. This bit is used by the dispatcher to
allow locking of the target PTBL so the CB can work
with the target process. This is used when a system
call such as ?ISEND is used on a target PTBL. To

do the call the caller must get the PLOCK on the
target process.

PNFST is used to show whether or not a CB ran "fast."
A "fast" running CB is a CB that does not pend.

The control address is the address of the type of
dispatcher this element will go to. If the element is
a CB, this offset will contain the address of TACT. If
this is a PTBL, then the offset will contain the
address of PCALL.

This offset contains the address of the LPCB to charge
time used to. The LPCB that this process is running on
has statistics for class scheduling that must be
updated after the process runs. The process, however,
can run on more than one LP. Therefore, before a
process is allowed to run, PLPCB.W is compared to
MYLPCB.W, which is the LPCB that the current JP is
attached to. If they are different, PLPCB.W is changed
to ensure that time used is charged to the correct
LPCB. To touch this field the PLOCK must be held.

This offset contains the number of the class that this
process belongs to multiplied by two. This value is
used as an offset into the LPCB class statistics
table. The reason that the class is multiplied by two
is the table consists of double- word entries. To
touch this field the PLOCK must be held.

Licensed Material 2-11 Property of Data General

PTIM.W

TTIM

CALLN.W

PKEY.W

This ends
and CBs.

This counter contains the current amount of time used
in a system call. This value starts at zero when a CB
runs. When the PIT interrupts while processing the
system call, PTIM.W is incremented by the amount of
time used in the current run. To update this field the
PLOCK must be held.

This counter measures the total amount of time expended
on a system call. This value is updated after a CB
runs for a period of time (not necessarily to
completion). To update this field the system takes the
current total and adds it to the contents of PTIM.W.
This value is zeroed at CB creation. To update this
field the PLOCK must be held.

This offset is only used if the element is a CB. This
value holds the system call number * 2. The reason for
this is to help in keeping time accounting for the
table of system calls. The reason the contents of
CALLN.W is multiplied by 2 is the system call table is
a group of double-word entries.

This offset holds the position for the unpend key for a
CB when it is on PELEMQ. This offset is not touched if
this is a PTBL. See the CB section for the
redefinition of this offset.

the description of the common area between PTBLs

Licensed Material 2-12 Property of Data General

2.2.3 CB Unique Offset Explanations

CKEY.W holds the unpend key for a CB. This key, when used, has
the value that will be used to unpend the CB. When a CB is not
pended, PKEY should be zero. When pend is called, one of the
keys will be used as the unpend condition. When unpend is
called, all the CBs with matching pend keys will be unpended.
For more information on pending, see "Pending" in this chapter.

CATCB.W contains the address of the user TCB. This offset is
used to get the address of the packet for a system call. The
users TCB contains the necessary state information to get the
packet information.

CSTK.W is the frame pointer for this CB. When this CB gets
rescheduled this offset will be used to reset the stack. This is
considered part of the CB's state information. This is used to
reset the frame pointer when the CB is ready to run. This offset
is set up when the CB pends.

CBFEH.W holds the address of the trap handler. When used, this
contains the starting address of the system call trap handler.
If a trap occurs the system will try to go to the trap handler.
This prevents the system from panicking on errors that are
considered recoverable.

CSTKC.W holds the address of the stack base. This is part of
the CB state area. This value is used to reset the stack base
when a CB is scheduled to run. This value is set when a CB is
going to pend.

Licensed Material 2-13 Property of Data General

CPTAD.W contains the address of the PTBL that made the system
call. This offset is used when dispatching a CB to map the
associated PTBL so the CB can work with the PTBL. This offset is
also used after the CB finishes running to allow the PTBL to
either run immediately or allow the PTBL to be scheduled.

CTEMP is a double word used as a utility location. Currently it
is used to temporarily store error codes.

CERWD is used to hold the error word if the system call takes an
error. This word is used after the system call runs to tell the
user that the system call took an error. The error word is put
into the ACl of the process. (See TRTN)

CBDLS contains the address of the Dynamic Logical Slot that
will be, or is, currently being used by the CB. (See Memory
Management.)

CBULA is not used.

CERPC.W contains the address of the routine that took an error
while the CB was running. This is not used.

LKPT.W contains the address of the target PTBL of a call. When a
system call, such as ?ISEND, is made the receiver or target of
the system call must be held so the information the system call
is sending can be sent to the target.

2.2.4 Control Block Pages

The Control Block is a whole page. The reason for this is that
the control block needs a page to hold its components.

Each control block page is divided into:
1) Stack prefix area
2) Stack itself
3) Space reserved for stack overflow fault blocks
4) A context block
5) The control block itself

Licensed Material 2-14 Property of Data General

CB stacks have data words relative to the stack base. The offsets
and definitions are:

OFFSET DESCRIPTION
e e +
0 CBSL.W Stack 1limit for CB
2 CBCB.W This CBs address
4 CBCX.W Fault context block for this CB
6 Stack base
1156 Overflow area
1206 Context block for this CB
1715 The CB
et N ettt +

Figure 2.3 The Control Block in Memory

While CB pages are not being used they are on a chain called
SSTKQ (System STacK Queue). The pages are attached to the list
at the forward and backward link in the CB.

SSTKQ=---+ tm———— + tm———— + tm——— +

Figure 2.4 CB Pages on SSTKQ

Licensed Material 2-15 Property of Data General

Each control block has associated with it a fault context block,
a stack, and a dynamic logical slot. When the control block is
selected as the CB to run, the MV's hardware registers are set up
to point to the appropriate corresponding values for the control
block. The memory needed for a CB is allocated from GSMEM except
for the first group 1 control block (CBO00), the CMTSK CB, and
the system manager task CB.

Unallocated CBs (those not on ELQUE) are enqueued to SSTKQ. (see
SSTKQ or CB allocation)

There are four types of control blocks and of these the first two
are user CBs: Gl; G2/3 or system CBs; and DAEMONs. Each control
block has its own stack. There are three system CBs: the disk
manager, core manager, and system manager.

2.2.5 Types of CBs

There are five CBs discussed in this section: wuser CBs (Gl and
G2), disk manager, core manager, system manager, and daemons.

2.2.5.1 G1 and G2/3 CBs

Gl and G2/3 control blocks are used when a Gl or G2/3 process
makes a system call. For example, a G2/3 CB is used when a G2
process makes a system call.

2.2.5.2 Disk Manager

The disk manager runs as the highest priority control block on
the ELQUE. The disk manager runs all IOCBs when they are ready to
run. When N T RUN.W is set, the scheduler branches to RUNLC in
DSKIO to schedule IOCBs. All active IOCBs are run. As long as
there are ready I0CBs, they are run. When there are no more ready
IOCBs, the disk manager control block is changed by setting the
'not ready to run' bit and resetting the running bit. The disk
manager is readied by a call to the routine DWAKE.

Licensed Material 2-16 Property of Data General

2.2.5.3 Core Manager

The core manager runs as the second-highest priority control
block on ELQUE. The core manager manages memory. It remains
dormant until a code path calls the routine CWAKE, which sets the
‘ready to run bit' in the status word for the CB. In addition,
it sets the words or bits needed to indicate which action the
core manager should process when it gets control of the CPU.
Requests to the core manager are indicated by SMFLG.

2.2.5.4 System Manager

The system manager is currently used for five purposes. The
first is to report device errors, the second is to report
over-subscribed memory, the third is to enable look-ahead
faulting, the fourth is to enable look-ahead flushing, and the
fifth is to handle SCP error reporting. The unit errors are
detected by the controllers, which set up error status words in
the appropriate UDB (unit device block). The error routine then
calls SWAKE, which will cause the system manager to wake up the
next time a scan is made of the eligible queue (much as CWAKE
does for the core manager). The over-subscribed memory condition
(no memory available, no pre-emption possible) is detected by the
pre-emption code, which then calls SWAKE. The system manager
reports the error to error-log.

The requests to the system manager are indicated in CMFLG. (The
core manager equivalent is SMFLG)

2.2.5.5 Daemons

A daemon can be considered an AOS/VS initiated system call (as
opposed to the user oriented or standard call). When AOS/VS
needs something done, and the code path required might pend,
AOS/VS will use a daemon for the processing.

Daemons are currently used for the following:

1. Process terminations (Four types: normal, trap, fatal error,
and “C"B)

2. Process initial load. (The path can pend waiting for
the disk)

Licensed Material 2-17 Property of Data General

3. Process a 16-bit process changing to/from resident (we will
wire in the pages of a resident 16-bit process)

4. Process keyboard interrupts (other than “C°A)

Daemons are started by setting the request daemon bit in PSTAT
and running off control blocks. They can be identified by
examining offset CATCB.W (12) of the CB. It will contain a O.

2.2.6 Primary, Secondary and Temp CBs

This section describes the use of these CB Pointers. These point
to currently used CBs in the system.

2.2.6.1 The Primary CB

The Primary CB (PCB) is the stack that each JP always uses while
it is running system code. System code can be either a control
block or the Scheduler. The Primary CB is pointed to by PCB.W.
When a CB pends, the Primary CB is put onto the Pended element
queue (see Pending). The primary CB is allocated during system
initialization. The only time a primary CB gets released is when
a JP is released from the system.

2.2.6.2 The Secondary CB

When a path pends the Primary CB is put onto PELEMQ and the code
goes to the Scheduler. The problem is that if the Primary CB is
on PELEMQ then the system needs a new primary CB to be able to
run the scheduler. This new primary comes from the secondary CB
(SCB.W). The secondary CB is the backup stack. The secondary CB
is pointed to by SCB.W. When a system call is made the secondary
CB must be allocated (see CB allocation). If the allocation
attempt fails for any reason, then the system call will not run
until the system can allow allocation of a CB. This mechanism,
although it may sometimes penalize the user, allows the system to
efficiently go from a pended code path to the Scheduler to get
another element. The figure below shows the exchange from
secondary to primary.

Licensed Material 2-18 Property of Data General

PCB.W -—=> |

\
\ pendable
\ path
-——=>
PCB to PELEMQ path
pcb = scb pends
scb = 0 -—
PCB.W --—-- > To
\ Scheduler
\
-——>

Figure 2.5 PCB/SCB Exchange
2.2.6.3 The Temp CB

When the system dispatches a CB, it must somehow make that CB
the Primary. This is done by assigning the CB to PCB.W. But
what happens to the Primary CB? The primary cannot be lost!
Therefore, what the system does is assign PCB.W to SCB.W. But
what if SCB.W is already defined? The solution is the Temporary
CB (TMPCB). This CB is pointed to by TMPCB.W. This is a
temporary holder for the CB if SCB is already defined. It is
the first choice for becoming the primary CB. Therefore, in

the previous figure the part that shows PCB.W = SCB.W actually
looks 1like.

if (TMPCB.W != 0)
PCB.W = TMPCB.W;
else
PCB.W = SCB.W;

The temp CB is the only CB that gets deallocated when a system
call completes.

2.2.7 The CB Management Globals

The CB management Globals are used to either work with CBs or are
used as counters. The Globals in this section are broken into
three groups: the general purpose globals, the event count
globals, and the collision counters.

The general globals work with CBs. They are: IDSCBQ, SSTKQ,

SSTKCT, RSTKCT, SSTUSE, RSTUSE, SSTMAX, RSTMAX, SSTMIN, RSTMIN,
PCB.W, SCB.W, and TMPCB.W.

Licensed Material 2-19 Property of Data General

IDSCBQ -- Idle System Control Block Queue

When a system CB puts itself to "sleep," it puts itself on the
IDSCBQ. Putting as system CB to "sleep" is effectively the same
as pending, with a major difference. That difference is that a
system CB puts itself to sleep only if it has nothing more to
do. For more information on system CBs, see Memory Management
and the File System volumes of this manual.

The System STacK Queue (SSTKQ) is a minor Queue of CBs. SSTKQ
Queue is called the free control block Queue and is also referred
to as the "CB pool." This Queue contains a linked list of all
the allocated but unused CBs in the system. When the system
needs a CB, it is provided from this queue. This Queue is
created at SINIT time when the system allocates the CBs. This
queue contains all unused CBs irrelevant of type. This queue is
managed by two counters. Those counters are SSTKCT (Swappable
STacK CounT) and RSTKCT (Resident StacK CounT). The combined
values of these counters add up to the total number of CBs that
are in SSTKQ.

SSTKCT (Swappable STacK CounT) is the counter used to manage the
G2/3 CBs in the CB pool. During system initialization, the
system allocates CBs until SSTKCT is equal to the minimum number
of G2/3 CBs. This number is currently 15 (octal). This number
can increase to a maximum of 200 (octal).

RSTKCT (Resident STacK CounT) is the counter used to manage the
Gl CBs in the CB pool. During system initialization, the system
allocates CBs until RSTKCT is equal to the minimum number of Gl
CBs. This number is currently 5. This number can increase to a
maximum of 100 (octal). There must always be at least one free
Gl CB in the free pool for PMGR.

SSTUSE is a counter of all the currently allocated Group 2/3
CBs. It is used to keep track of the CBs that have been
allocated but are not in use.

RSTUSE is a counter of all the Group 1 CBs that have been
allocated.

SSTMAX is the maximum number of Group 2/3 CBs that can be
allocated. This constant is set to 200. (decimal). When
allocating CBs the allocation code will check whether another CB
should be allocated or the requestor should wait for a CB.

Licensed Material 2-20 Property of Data General

RSTMAX is the maximum number of Group 1 CBs that can be
allocated. This constant is set to 100. (decimal). When
allocating CBs the allocation code will check whether another CB
should be allocated or the requestor should wait for a CB.
SSTMIN is the minimum number of Group 2/3 CBs that must be
allocated. This constant is 10. When the de-allocation routine
DALCBl1l is called to de-allocate CBs, the CBs are de-allocated
to SSTMIN.
RSTMIN is the minimum number of Group 1 CBs that must be
allocated. RSTMIN is a constant with the value 5. During
de-alloction, DALCB1l de-allocates to RSTMIN.

PCB.W contains the pointer to the Primary CB.

SCB.W contains the pointer to the Secondary CB.

TMPCB.W contains a pointer to a Temporary CB.
The next group of globals are event counters. An event counter
is used to count the number of significant events that happen
to a CB. For example, if a CB pends the appropriate counter
is updated.

NUNPDN.W counts the number of times UNPNDN is called.

NUNPD.W counts the number of times UNPEND is called.

NPEND.W counts the number of times a CB pends.

NCBDEQ.W counts the number of times CBDEQ was called.

RSTDAL.W counts the number of Gl CBs that get de-allocated.

SSTDAL.W is the counter for the total number of G2/3 CB
de-allocations.

CTRTN.W counts the ELQUE collisions in the CB return
routine TRTN.

Licensed Material 2-21 Property of Data General

2.3 Operations on CBs

There are three basic types of operations that work with the
objects in CB management: CB allocation/de-allocation,
pending/unpending, and FIXCB.

2.3.1 CB Allocation

When a user does a system call the system must allocate a CB to
do the system call. Most of the time there are enough CBs in the
CB pool so there is no need to allocate the CB. If there are no
"known" CBs in the CB pool and memory management cannot allocate
more memory for CBs, then a TCB is attached to the PTBL of the
caller to wait for a CB to become available.

The system has two types of allocation routines used to manage
the free pool. The first one manages the counters and the second
manages the queue. ALSTK1l and ALSTK2 are used to get a CB from
the free pool and update the counters. The routine called
differs depending upon the group of the caller. If the CB is
allocated on behalf of a GROUP 1 process, then ALSTK1l will be
called. If the caller is a group 2 or 3 process, then ALSTK2 is
called. If the counters go below the minimum amount of free CBs,
then these routines call a routine to add to the queue.

The system has two routines that add CBs to the free chain. They
are called ALCBl1 and ALCB2. The routine called differs depending
upon the group of the caller. If the CB is allocated on behalf
of a Group 1 process, then ALCBl will be called. If the caller
is a Group 2 or 3 process, then ALCB2 is called.

ALCB1/ALCB2Z allocates a CB and stack space for the CB. To do
this the routines call memory management to get the memory for
the CB. If there is no memory available to allocate a CB, then
the CB allocation routines will take an error.

The CB allocation routines are called from three places in the
system. Two of the routines are called at system
initialization. The first one calls ALCB2 to set up an extra CB
for the JP in the system. The second allocates CB up to the
minimum number of CBs allowed. The third time the allocation
routine is called is when the Secondary CB is needed to run a
CB. The allocation routine will be called if the number of free
blocks in the pool is less than the minimum number of allowable
blocks in the pool.

Licensed Material 2-22 Property of Data General

The main reason for two separate allocation routines is
accounting. AOS/VS updates different counters depending upon the
Group the caller is from.

After a CB completes, the CB must get de-allocated. To
de-allocate a CB, the routines DALSTK1l and DALSTK2 are called by
TRTN depending on the caller. TRTN will only de-allocate the CB
in TMPCB.W. Otherwise, the CB will not get de-allocated but
instead is returned to the SSTKQ pool.

During memory contention, memory management will take CBs from
the free pool. To do this the core manager will call DALCB1l and
DALCB2 to de-allocate pages until the minimums are reached.
Calling the de-allocation routines frees up a few pages of memory
for use by the users.

The figure below shows the stages of a CB from being free memory
through the different allocation schemes and back to free memory.

Free memory

ALCB DALCB
v
SSTKQ
ALSTK DALSTK
ACTIVE
CB

Figure 2.6 CB Allocation

Licensed Material 2-23 Property of Data General

2.3.2 Pending

Pending is a way to stop a CB that has to wait for some condition
so the system can run other paths. An example of a pendable CB
is an I/0 operation, where the code has to wait for the device to
respond to the I/0 request.

When a CB pends the PEND routine is called. PEND is given a key
word that represents the reason this CB pended. This pend key
must be satisfied before the CB can be unpended. PEND takes the
currently running CB and puts it onto the Pended ELeMent Queue
(PELEMQ) to wait for the pend condition to be satisfied.

Below is a table of all the predefined pend keys used when a
CB pends.

o e +
SKTRM == 1| Wait for son to term

SKTRG == 2| Wait for target call completion

SKOOM == 4| Task waiting for memory

SKSWP == 5| Waiting for swap to finish

SKSIO == 6| Wait for shared read (not used)

SKBUF == 7| Base level waiting for a system buffer
SKDED == 10| Wait for special unpend (not used)
SKNWU == -1| Never wake up key (not used)

CPLCK.W **%| JP lock word (see JP management)

Figure 2.7 System Pend Keys

When a CB pends the CB is put onto PELEMQ. This means, if
necessary, taking the CB off of ELQUE and putting it onto

PELEMQ. There are four routines that perform the
pending/unpending operation. These operations do all the
necessary locking for enqueueing and dequeueing the queues. The
operations are: PEND, MPEND, UNPEND, and UNPNDN. PEND and MPEND
put CBs onto PELEMQ. UNPEND and UNPNDN take CBs off of PELEMQ
and put them onto ELQUE or HANDQ (see ELQUE management for
information on ELQUE and HANDQ).

Licensed Material 2-24 Property of Data General

The pseudocode below shows how these operations work.
2.3.2.1 PEND/MPEND

This operation pends the current CB. It puts the CB onto the
PELEMQ. The routine also sets the pend condition into CB->
CKEY. If the CB is on ELQUE, move the CB from ELQUE to PELEMQ.
This routine goes to a routine called PENDO. PENDO is an entry
point that is used by PEND and MEPEND.

/* SSSSSSSSSSSSSSSSSSSSSSSSTOTSSSSSSSSSSSSSSSSSSSSSSS */

/* PEND/MPEND */
/* This routine puts a CB onto the PELEMQ to wait for */
/* whatever unpend condition passed to the routine. */
/* */
/* MPEND gets called when a lock is held and the CB */
/* is pending. MPEND will release the lock before */
*

/* pending. /
/* SSSs */

pend(unpend_key)/mpend(xtran,unpend key,xtran_address);

{
cb=CC.W; /* get the current CB */
NPEND.W ++; /* one more pend * /

/* hkhkkhkkkhkhkkkhkhkhkhkkhkkkhkhhhkhhhkhkhkhkkhkhkhkhhkhkkhkhkkhkkhhkkkkkhkkk */

/* 1If this is a CB that never pended then set the */
/* CB up so it can pend. To do this operation the */
/* FIXCB routine is called. If plnk.w is not -1 then*/
/* the CB has been on some queue before and therefore*/

/* has pended. */
/* khkkkhkkkhkkhkkkkkkhkhkkkhkhkhkkhkkhkhkkhkhkhkkkkhkhkkkkhkhkkkkhkhkkkkkkhkikxk */

if (cb->plnk.w == -1)
fixcb(cb);
interrupts(disable);

/* khkkkkkkkkkkhkkhkkhhkhhhkkkkkkkkkhkkhkkhkkhkhkhkkhkkhkhkkhkhkkkkkkkkkkkkkkkx */

/* If there is not a valid pend key in the CB then */
/* panic with a 14434. A valid pend key is either 0 */
/* or the same as the value passed as an argument to */

/* this routine. */
/* khkkkkhkkhkhkkhkkkhkkkkhkkkhkkhkkkhkkkhkhkhkhkhkhkkhkkhkkhkkhkkkhkkkhkkhkkhkkhkhkhkkhkkkkkkk */

if (cb->ckey.w !=0) && (cb->ckey != pend key)
panic(14434);

cb->ckey.w = pend key;

set_bit(cb->pstat,psrdy):

Licensed Material 2-25 Property of Data General

/* hhkhkkkhkkhkkhkhkhhkhkhkkhkhhhhhkhhhhrhkhhhkhhhkhhkhkkhkhhkkikkhkhikkk */

/* If the CB was on ELQUE then move it from ELQUE to */
/* PELEMQ. If not then ENQUE to PELEMQ at the tail. */

/* hkhkkkkhkkhkkkkhkhkhkhkhkhkkhkhhkhkhhkkhkkhkhkhkhhkhkhkhkhkkhkhkkhkhkkhkhkkkiihkhkikkkk */

if (cb->plnk.w != -1)

gmov(elque,cb,pelemq);/* see ELQUE Management */
else

engt(pelemqg,cb);

/* KRkhkkkkhkkkkhkkhkkkhkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkkhkkhkhkkkhkhkkhkkhkkkhkkhkkkkikkkkikkxk */
/* If the routine MPEND was called then clear the */
/* xtran bit in the lockword. xtran is a transition */
/* 1lock of any kind. It is called "x"tran because */

/* the routine cannot define which tran lock is used.*/
/* kkhkkkkkhkkkkhkkkhkhkkkhkhkkhkkhkhkhkhkkhkhkhkkhkhhkkhkhkhkkhkkhkhkkhkhkkkkhkhkkhkkhkkhkkhkkkkkk */

if (mpend)
clear bit(xtran lockword, xtran);

/* Falls through to next page */

/* LR RS S S LS LSS ST ETELTETLETLTELI LS LT LTEIEETEEEEEEEE SR LT L L L L */
/* pendO * /
/* This is an entry for CBs being "handed off" to the */
/* mother processor. This routine releases the ptbl */

/* locks, makes the secondary CB a primary CB, and */
/* returns to the top of the scheduler. */
/* */

/* khkkkkkkkhkhhkhkkkkhkkkhkhkhhhkkkkhhhkkhkhhhhkkkhhhkkkhhkhkkkkhhkk */

pendO:

interrupts(enable);
cb = cc.w;

/* hkhkkhkkkkhkkhkkhkkhkkkhkkhkkkhkhkhkhkhkkkkhkkhkhkkhkkhkkhkkhkkhkkhkhkkkhkkhkhkhkhhkhhkhkkikkhkkkk */
/* If this CB is not a system CB then check to see if */

/* we need to release the process table locks. */
/* 1f we need to release the PTBL locks call relptbl; */
/* */

/* kkkkkkkhkhhkkkkhhhkkkhkkkhkkhkkkhkkhkhkkhhkkkkhkhkhkhkhkkhhhkkhkhhkhkkhkikkkk */

Licensed Material 2-26 Property of Data General

/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

Licensed Material 2-27 Property of Data General

if (bit(cb->pstatl,plock) ==0)

{

if (bit(cb->pstatl,pnad) != 0)
cb->clkpt.w = cmap.w;

else

ptbl = cb->cptad.w;
if (ptbl != 0)
relptbl(ptbl);

tcsys();/* go from CB timing to system timing */
clear bit(ptbl->ptbl,psrun);

KAkKkAkKRXRKRAXAKRA KA RARARhhhkhkhkhkhkkhkhkhkkhkhhhkkhkkhkikkhkkkikhkikikk

If there is a temporary CB then make that CB

the primary CB. If there is no temporary CB then

make the secondary CB the primary.

khkkkkkhkhkhkkhkkhkhhkhkkhkhhkhhhkhhhkhkhhhkhkhhhkkhhhhkhkkhkhhhkhkkihkik
if (TMPCB.W != 0)
{
PCB.W = TMPCB.W;
TMPCB.W = O;
}/* tmpcb.w */
else
{
pcb.w = scb.w;
scb.w = 0;

}/* else *

hkkkhkkkhkhkhkhkhhhkhkhkhkhhkhhkhhkhhhhkhhhkhhkhkhhkhkhhhkkhhhhkihkhik

Set up the fault block for the primary CB and

go to the top of the scanner.

*/
*/
*/

*/

hkhkkkkkkhkhkkkhkkhkkhkhkhkhkhkhhkhkhhkhkhkhhkkhkhhkhikhhhkhhkhkhkhhkhkikhkhkkkhk */

FLTBLK.W = SYSTEM FLTBLK.W
SET_UP_STACK();

GOTO scanner();

} /* pend */

2.3.2.2 Unpending

Unpending a CB allows the path to be scheduled. A CB can be
unpended only if the pend condition is satisfied. There can be
multiple CBs pended on the same type of condition. Unpend does
not check indiviual conditions, it just unpends every CB with a
particular condition. The CB that is unpended has the
responsibility of checking whether it is the right CB to unpend.

For example: a CB is doing an I/0 operation that causes it to
pend. There are other CBs pended on some I/0 operation. An I/O
operation completes, which causes the related CBs to unpend. The
operation completing only satisfied one CB. Therefore, the other
CBs must pend again.

There are two unpend routines. These routines are called UNPEND
and UNPNDN. UNPEND unpends all the CBs that match the pend
conditions. UNPNDN unpends a certain number of CBs.

Below is the pseudocode for UNPEND and UNPNDN.

/% SSS8888s */
/* UNPEND(unpend key)/UNPNDN(unpend key,max unpend) */
/* */
/* These routines unpend the elements that satisfy */
/* the unpend condition(unpend key). UNPNDN unpends */
/* CBs up to the max number allowed(max unpend). */
*

/
/* SSSSSSSSSSSSSSSSSSSSOSSSSSSSSSSSSSSSSSSSSSSSS$$$s$s */

unpend(unpend key)/unpndn(unpend_key,max unpend);

Licensed Material 2-28 Property of Data General

/* hhkhkkhkkhhhkhhhhhhhhkhkhhhhhhhhhhhkhkhhhkhhhkhhkhkhkkkhkhikkk */

/* The local vars */
/* ints test is used to reflect whether interrupts are*/
/* on(<> 0) of off (== -1). */
/* count bef int is used to count the number of */
/* elements to work with before interrupting. */
/* count test is used to check if the above count */
/* should be used. (<> == use the count) */
/* (= 0 == don't use the count) * /
*

/* temp is a general purpose variable.
/% Kkkkkkkkkkxxkkkhhhhhhkhkkkhhhhhkhhkhxkkhkkkkkkkkkkx */

#define loopcnt = 5; /* loop counter for max number */
/* of iterations through this */
/* code with interrupts off. */
int ints_test,
count bef int,
count_ test,

temp;
/* kkhkkkhkkkkhkkkkkkhkhkhkkkhkhkhhkkhkhkhhkkhkhkhhkhkhkhkkhkhhkhkhkkhkkhkhkhkkhkkkkkkk */
/* If we came in through unpend or unpndn then */
/* different initialization is done. */

/* Check if interrupts were off when we came in so we */
/* can leave with the same interrupt state as we came */
/* in. */
/% Kkxkkkkkkkkkkkkkkkkkkhkkkkkkkkhkhrkhhrkhkkxkkkkkkk %/

if (unpndn)
{
count_bef int =
if (interupt ==
ints_test = -1
else
ints_test = max_unpend;
NUMPDN.W ++;
else
{
count_test = 0;
ints_test = loopcnt;/* non zero */
if (interrupt == off)
ints_test = -1;
NUMPD.W ++;
}

interrupts(disable);
get_q_lock(pelemq);

max_unpend;
off);

Licensed Material 2-29 Property of Data General

kkkkkkkkhkkhhkhhhkhhhhhhhhkhhkkhkhkkkhkhkhkhkhkhkkkhkkhkkkhkkhkkkhkkkkk

top of the loop
This is the top of the unpending loop. This
section of code will unpend all CBs that match the

unpend condition passed to the routine.
hkkhkhkhkhhkkhhkkhkhhkhhkkhkhkhkkhhkhkkhhkhkkhkhhkhkkkhkkk

top _of loop:

Licensed Material 2-30 Property of Data General

if (PELEMQ != -1) /* is PELEMQ empty? */
{
temp = pelemq;
for (i=0;i<=count_bef int;i++)

{

hhkkkkhkkkkhkkhkhkhkhkhkkkhhkhkhhhkkkhkkhkkkhkkhkkhkkkhkkhkhkhkkhkhkkikkkkikk

If there are no more elements then break out of
the unpend loop.

khkkkhkkkkhkkkhkkkkkhkkhkhkhkkhkkkkhkhkkkkkhkkhkhkkkkhkkkkkkkkkkkkikkkk

if (temp = -1)

break;
0
searchqg(pelemq, unpend key)

cb
cb

khkkkhkkhkhkkkhkhkhkkkhkhkhkkhkhkhkkhkhhkhkhkhkkhkkhkhhkkhkhhkkkhkhhkhhkkhkkkk

If we found a CB then call CBDEQ to dequeue the
element from the PELEMQ and enqueue it to ELQUE.
This is done in a routine called CBDEQ. If no CB
was found break out of the unpend 1loop.

hkkhkkkkkkkhkhkhkkkhkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkhkkkkkkkkkkkk
if (cb != 0)
{
temp = cb->plink;
cbdeqg(cb);
}
else
temp = -1;

count_test --;
} /* for loop */

/* hhkkhkhhkhkhhkkhkhhhkhkhhhkhhhhkhhhhkhhhhkhhhhkhkhkhhhkhkhkhkhhkkikx */

/* If we aren't ingoring the interrupt 1limit and */
/* we have more elements to hunt for then enable */
/* interrupts for a short while and come back to */
/* unpend more elements. */
/* KEEKAAIAAA ARk AXkAk Ak khkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkhkhkkhkhkkkkkkkkkk */
if ((count_test == 0) && (temp != -1))
{

release q lock(pelemq);
interrupts (enable);
interrupts (disable);
goto top of loop:;
}/* if */
} /* if not pelemqg empty */
release_q_ lock(pelemq);

if (ints_test != -1)
interrupts(enable);
return();

}/* end of unpend */

Licensed Material 2-31 Property of Data General

2.3.3 FIXCB

FIXCB is a routine that sets up a CB to go onto the Eligble
queue. The reason this routine is needed is that a CB does not
need to go onto ELQUE unless it pends. FIXCB is an entry point
in SCHED. There is another part of FIXCB that is not an entry
point, but is called from other parts of SCHED. This entry is
called FIXCB1l. The difference between FIXCB and FIXCBl is that
FIXCB actually enqueues the CB onto ELQUE and FIXCBl1 does not.
FIXCB is called from the PTBL dispatcher (see process management
interface services) in the routine NODCL to enqueue a new CB that
cannot run immediately onto ELQUE. FIXCB1l is called from pend.
(See Pend code.) Very little of the CB is changed by Fix CB.
Most of the CB is set up by the code that creates the CB. The
code that sets up the CB is in the PMIS chapter.

/* SS8S */

/* FIXCB/FIXCB1(CB) */
/* This routine sets up a CB to go onto ELQUE. 1If */
/* FIXCB is called then put the CB onto ELQUE. */
/% SSSSSSSSSSSSSSSSSSSTSSSSTSTSSSSSSSSSSSSSSSSSSSS8Ss */
FIXCB/FIXCB1l(cb)

{

/* khkkhkkkhkkkhhkkhkhkkhkhhkhhkhkkhhkhhkhhhkkhkhkhhhkkhkhhkhhkkkhkhhhhkkkhhkhkkkkx */

/* Is the CB a DAEMON? If it is then set the "mother */
/* only" bit in the pstat word and clear PCLASS in */

/* the CB. */
/* hkkhkkhkhkhkkkhkhkhkkhkkhkkhkkhkhkkhkkhkhkhkkkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkkkhkkhkhkkhkhkkhkkkkkk */

if (cb->calln.w = -1)
}
setbit(cb->pstat,pmast);
cb->pclass = 0;
}

setbit (cb->pstatl,pnfst);

/* hkhkkkhkkhkhhkhhkkkkkkhkkkhkkkkhkhkkhkhkkhkkhkhkkhkkhkkhhhkhkhkkhkkkkhhkkkkkk */

/* 1If we came in through FIXCBl1 then we do not want */
/* the CB put onto ELQUE. So just return. */

/* hkkhkhkhkhkhkhkhkhkhkkkhhkkkkhkkkkhkhhkhkhkhhhhhkhkhkhkhkkkkkkkkkkkkk */

if (FIXCB1l)
return;

Licensed Material 2-32 Property of Data General

/* hhkhkhhhhhhkhhkhkhhhkhhkhhhkkhkhhhkhhhkhhhkhkhhkhkhkhkhkhkkkhkkk */

/* We have to be sure that interrupts are turned off */
/* before enqueuing to ELQUE. Therefore, if interrupts*/
/* are on, turn them off before calling PENQ and turn */
/* them back on afterward. */
/* */
/% kxkkkxkkkkkkkkkkkkkhkkkhhhhhhhkhkhhkhkhkkrhkkrhkkx %/

if (interrupts == off)
PENQ(ELQUE, cb);
else

interrupts(off);
PENQ(ELQUE, cb);
interrupts(on):
} /* else */
return;
}/* FIXCB/FIXCBl */

Licensed Material 2-33 Property of Data General

2.4 Internal Paths

There are three general internal paths that CB management uses:
the scanner, the dispatcher, and the idle loop.

2.4.1 The CB Dispatcher

When a CB is selected to run by the scanner, the CB dispatcher
routine sets up and runs the CB. This dispatcher is divided into
two different entry points, one for the system CBs(TACT1l) and the
other for user CBs(tact). The only time this dispatcher is used
is if a CB has pended or put itself to sleep (see system CBs).

This dispatcher restores the state of a CB and runs it. The
pseudocode below shows how TACT and TACT1 work.

/* SSSSSSSSSSSSOSSSSSSTSSSSSSSSTSSSSSSSSSSSSSSSSSSss */

/* TACT(PPCB,CB) / TACT1(PPCB,CB) */
/* This routine restores the state of a CB, maps its */
/* PTBLs memory, and runs the CB. The arguments */
/* supplied to this routine are the PPCB (see JP */
/* Management) and the CB address. */

/% SSSSSSSSSSSSSTSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSsss */
tact(ppcb,cb)/tactl(ppcb,cb)

{
R L T L Ly
/* Test and set the running bit for the CB. */
/* I1f the CB is already running then go get another.*/
/* Leave this routine and go to RUNEX1. */
/* */

/* kkkkkkkkkkkkkhkhkhkhkkhkhkhkhkhhhhhhkkkhhkkkhhhkkkkkhkkkkkkikkkkkk */

if (bit(cb->pstat,psrn)
runexl();

else
set_bit(cb->pstat,psrn);

/* kkkkhkhkhkhkhkkkkkkkhkkhkkhkkhkhkhkkhkhkkhhkhkhhkkhhhhkhkkkkkkkkkkkkkkkk */

/* *x/
/* Came in through TACT1. */
/* *x/
[KEIKKIKKKKKKIKKKKKKKKKXKKKKKRRKKKKRKK KK KRR K I KKk *k % /
if (tactl)

{

ptbl = cb->cptad.w;

}

Licensed Material 2-34 Property of Data General

/* hkhkkkkkkkhkkhkkkkhkkhkkkhkhhkkhkhkkkhkkhkhkkhhkkkhkhkkkhhkhkkkhkhkhkkhkkkkkkx */

/* *x/
/* Came in through TACT. */
/* */
/* khkkkkkhkkkkhkkkhkkhkkhkkhkkhkhhkkhkhkhhkhhkhhkkhkkhkhkkkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkikkkkkk */
else
{
J* KKRKIKKKKIKRKKIRKKIKRKKARKKXKRKKRKKARKK AR KKK KAk kK k* %/
/* Is the CB dealing with a target PTBL? If so, */
/* the PTBL to be locked is in CLKPT.W in the CB. */

/* If not, then use the PTBL in CPTAD.W in the CB. */
/% kEkxkkkkkkkkkkk kA AAXIIKXARIIKXRKIIKXXKIKKRKK KKK KKK X /

if (bit(cb->pstatl,pnad) == 0)
ptbl = cb->cptad.w;
else

ptbl = cb->clkpt.w;

/* kkkkkkkkkkkkkkkhkhkhkkhkkhkhkhkhhhkhkhhkhkhhkhkhkkkkkkkkkkkkkk */

/* Is there a PTBL defined? If not then the CB deals*/
/* with the system and there is no need to try to */

/* lock it. If there is a PTBL defined then lock it.*/
[KEkEKKIKIKKKKKIKKXKKIKKRKKKKXKKKKAXKKK KKK KK KXRK KK %/

if (ptbl != 0)
{

/* hhkkkhkkkkkhkkkkhkkhkkhkkhkkhhkhkhkhkhkhhkhkhhhhkhkhhhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkkkk */

/* Is the target PTBL locked? If so, then decrement*/
/* the "tried to get the lock counter" and return to */

/* the scanner. */
R T T T I Y

if (bit(ptbl->pstat,plck) == 1)
{
clear bit(cb->pstat,psrun);
ptbl->pcblk --;

/* kkkkhkkhkhkkkkkkkkkkkkhkkkhkhkhkkhkhkhkhhhhhhhhkkkkkkhkhkkhkhkhkkkk */

/* If we have tried to lock this PTBL more than 500 */
/* times, then set the "run only CB" bit in the PTBL.*/
/* This will allow the CB to run on the target PTBL. */
/* This happens when the PTBL is locked and we can't */

/* get the lock. */
/* kkhkkkkhkhkkkhkkkhkkhkkkhkkkkhkkhkhkkkhkhkkhkkhkhkhkhkhkhkkkhkhkhkhkkkhkkkkhkkhkkkhkkhkkhkhkkk */

Licensed Material 2-35 Property of Data General

Licensed Material 2-36 Property of Data General

if (ptbl->pcblk != 0)

{
set bit(ptbl->pstat,pntcb);
tcblck.w ++;
}/* if count is zero */
runexl();
} /* if ptbl locked */
else
{
ptbl->pcblk = 500;
clear bit(ptbl->pstat,pntcb);
}/* not locked */
}/* there is a ptbl address */
}/* came in through tact. */
cc.w = cb;
elque.gscan --;
tcscl(cb);/* change to cb timings */
interrupts(enable):;

khkkkhkkkhkhkhkhkhhkhkhhkkkkhkkhkkhkkhkkkhkhkkkkhkhkhkkkhkhkkkkkkkkkkk */

If the current LP is not the same as the LP in * /
the CB, then do some work to set up the correct */

LPCB in the CB. */
khkkkkkkkhkkkkhkkhkhkhkkhkhkkkhkkhkkhkkhkkkkhkkkkkkhkkkkkhkkkkkkkkkkkkkkk */

if (mylpcb.w != cb->plpcb.w)
{

hhkkkhkkkkhkkkkkkkkhkkkkhkkkhkkkkkhkkikkkkkhkkkkkkkkkkkkkkkxk */

Is this a mother-only process? If it is, then the*/
scanner took care of mother only by adjusting */
the scan mask. Therefore, if this is a mother-only*/
process and we have the CB, then we must be the */
mother. If not, call CBUPDT and put the MYLPCB.W */

into the CB. */
khkkkkhkkkkkhkkkkhkhkkhkkhkkhkkhkkkhkkhkhkkkhkkkkhkkhkhkkhkkkkkhkkkhkkkkhkkkkhkkkkk */

if (bit(cb->plpcb->1pstat,pmst) != 1)
{
cbupdt(cb);

cb->plpcb = mylpcb;
}

Licensed Material 2-37 Property of Data General

hhkhhkkhhhhhhhkhhkhhhhkhbhhhhhhhhhhkhhkhhhkkhkhhkhkhkhkiik

Is there a secondary CB? If there is no secondary
CB defined, then define the primary to be the
secondary and the primary will be the current CB.
If it is defined, use temp CB to hold the Primary
CB so we don't destroy the secondary.

The CB in tmpcb.w will run before the CB in SCB.W.

kkhkkhkkhkkhhhhhkhkhhkkkhkkhkkhkhkhkhkhkhhkhhkhhhhhhhhhhhhhhkhkhkkhkkhkkhkkhkkhkhik

if (scb.w != 0)
tmpcb.w = pcb.w;
else
scb.w = pcb.w;
pcb.w = cb;
mapcon(ptbl);

T L T I Ly S I I LR L L)
Now set up the user stack and run the CB.

kkhkkkkkkkkkkhkkkhkhkkhkhkhkhkkhhkhkkhhkkhkkkkkkkhkkkhkkhkhkkhkhkkkhkhkkkkkk

interrupts(disable);

stack ptr = cb->cstk.w;

frame ptr = cb->cstk.w;

stack_base = cb->cstkc.w;

stack_limit = cb->cstl.w;

fbk.w = cb->cbcx;

interrupts(enable);

return(); /* returns to call to pend */
}/* tact/tactl */

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/

2.4.2 TRTN/TGRTN

When a CB finishes running it does a WRTN, either TRTN (for error
returns) or TGRTN (for good returns). The routine cleans up the
CB and either returns to the PTBL that made the call or returns
to the scanner.

/* kkkkkkkkkhkkhhkhkhkhhkhkhkhkkhkkkkhkkkhkkhkhkhkkhkhkhkkhkkkkhkhkkkkhkhkkk */

/* TRTN/TGRTN() */
/* This routine is used when returning from running */
/* a CB or DAEMON. This routine cleans up the CB * /
/* and returns to either the appropriate PTBL or */
/* to the scanner. */

/* khkkkhkhkkkhkkkkhkhkkkhkhhkhkkkkhkkhkkhkhhhkhkhkhhkhkhkhkkhkkkhkhkkhkkikkk */

trtn/tgrtn()
{

/* khkkkkhkhkkhkhkhkhkhkkhkkhkkkkkhkhkhkhkhkhkkhkkhkhhkhkhhkkhkhkkkkkkkkkkkkk */

/* If we entered through TRTN, do the error rtn * /
/* processing. Check to see if the TCB is a * /
/* DAEMON; if not, check for a restart. */
J* kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhkkxkkkkhhkkkkkkxx %/

cb = CC.W;

tcb = cb->catcb;

if (trtn)

{

error = cb->cerwd;
if (tcb != 0)
{

/* khkhkkhkkkhkkkkhkkkkhkkhkkhkkhkhkhhkhkhhkhhhkhkhkhkhkhkhkkhhhkkhhkhkkkkkkk */

/* The CB is not a daemon. If the TCB needs to do a */
/* restart to get memory, the daemon must enqueue */
/* the TCB onto the tcb chain in the process table. */
/* Set the MKEY priority bit in the PTBL and set the */
/* global memkey so the PTBL will not get scheduled */

/* until some memory gets freed. Once the memory */
/* gets released the global key will be reset to */
/* allow the PTBL to be rescheduled. */

/* khkkkhkkhkkhkkkhkkkkkkkkkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhhkhkkkhkhkhkhkhhkhikhkhkkkk */

Licensed Material 2-38 Property of Data General

if (error == ERRST)
{
ptbl = cb->cptad.w
setbit(ptbl->pstat, psmwt);
clearbit(ptbl->pstat,psncb);
PMKEY = MKEY;
IRSTRT ++;
ptbl->psidir ++;
setbit(cb->pstatl,pnfst);
NQTCB(cb);
}

/* khkkhkhkhkhkhkkhkhhhkhkhkkhkhhkkhkhkkhkhkhkhhkkhkhhkkhkhhkhkhhkhkhkhkkhhkkhkkkk

/* The CB is not a daemon and not doing a restart.
/* The CB is taking an error. Set up the error
/* return and go to TGRTN to complete the cleanup for

/* the CB.
R T e e T T

else

{

tcb->tac0.w = error;
tcb->tpc.w --;

goto tgrtn();

}

}

/* hhkkkhkkkhkhkkkkhkhkhkhkkhhkkhkhkhkkkhkhkhkkhkhkkkhkkhkkkkhkhkkkhkkkhkkhkkkkkkkkk

/* If we came in through TGRTN, then the CB completed
/* its work and now we must set up to try to return

/* to the calling PTBL or the SCANNER.
/% kkkkkkkkkkkkkkkkhkkhkkhkhhkhhdkkhkhkhkhkkkhkkkhkkkkkk

if (tgrtn)
{

/* khkkhkkhkhkkkkhkkkhkhkkhkkhhkhhhhkhhhhhhkkhkkhkkkkhkkhkkhkkhkhkhkhkhkkhkkkkkkk

/* If we are working with a daemon, clear the pend
/* bit in the TCB. (For explanation of TCBs, see
/* Process Management Interface Services.)

/* hkhkkhkkkkhkhkkhkkhhkkkhkhkkhkhkkhkhkkhkhkkkkhkkkhkhkkkhkkhkkkhkhkkkhkkhkhkkkkkkkkk

if (tcb == 0)
clearbit(cb->tstat, tspn);
} .

Licensed Material 2-39 Property of Data General

*/
*/
*/
*/
*/

/* khkkkkhkhkkkkhkkhkkkhkkkkhhkkhkhhhkkhhhkhkhhkkhhkhkhkhhkkkhkkkhhkhkkkkkkkhkkk */

/* 1Is the CB on ELQUE? If so, remove the element */
*

/* from the queue.
/* khkkkkkhkkkkhkhkkhkhhkhkkhkhkhkhkkkhkhhkhkkkhkhkkhkkkhkkhkhkhhkkhkkhkkkkkkkhkkkk */

if (cb->plink != -1)
pdeq(ELQUE, cb,CTRTN.W);
cb->cbtpl.w 0;
cb->cbtp2.w 0;
TCSYS();
CBUPDT(cb);/* see LP management */

/* hkkkkkkkkkkkkhkkkhkkkkhkhkkhkkhkkhkkhkkkkkhkkkhkkkhkkkkkkkkikkkikkkkkk */

/* Update the CPU time used during the system call. * /
/* Do this in the routine called CBSTAT. CBSTAT takes*/

/* the time used and adds the cputime used to the */
/* corresponding offset in the system call counter */
/* table. This table is a Global table whose address */
/* is in SSTBL. SSTBL.w is a pointer to a table of */
/* system call timing counters.

/% */

/* hkkkhkhkkkhkkkkhkhhkhkhkkkhkhkhkhhhkkhhkhhkhkhkhhkkhhhhkhhkhkhkhkkhhkkkkhkkkx */

If (STTBL.W != 0)
CBSTAT (cb);

/* khkkkkhkkkkhkkkhkkhkhkkhkhkkkhkhkkhkkhkhkhkhkkkhkkhkkhkhkhhkhhkkkhkhkkkhkhkkkikxk */

/* If we used a temporary CB, release the CB to the */
/* free queue. This frees up TMPCB.w cleanup so when */

/* another call is made the tepr 1z available for use.*/
J* kkkkkkkkkkkkkkkkkhkkkkkkkkkdk. khhkkkkkkhkkhkkkhkkk %/

if (TMPCB.W != 0)
engt(SSTKQ,cb);

/* hkhkkkhkkhhkkkhkhkkkhhkkkhkhkkhkhkkhhkhkkhkhhkhkhkhhkhkhkhkkhhkkhkhhkhkhkhkhkhkhkkkk */

/* Update the counters for Gl or G2 CB usage. This */
/* allows the system to keep track of what kind of */
*

/* CBs use system resources.
/* hkhkkkhhkkhkhkkkhkkhkkkhkhkhkkkhkhhkhkhkkhkhhkhkhkhhkhhkhkkhkhkhkhkkkhkkkhkhkk */

if (PCB.W->pngf == 0)
RSTKCT ++;

else
SSTKCT ++;

ptbl = cb->cptad.w;

Licensed Material 2-40 Property of Data General

/* % % %k %k Kk Kk Kk %k Kk Kk Kk k Kk Kk %k Kk k Kk Kk Kk Kk %k Kk Kk k %k Kk 3k k Kk k k Kk Kk Kk Kk %k k Kk ok k kK kkkkkk */
/* When the term daemon runs, the high-order bit of * /

/* the PTBL address in the CB is set. So to work * /
/* with the PTBL databases we must fix the address */
/* which is invalid by clearing the high-order bit. */
/* *

/* kkkkhkhkkhkkkkkkhkhkkhkkhkkhkhkhkhkkkhkhkkhkkhkkhkhkkhkkkhkkkkhkkkkkhkhkkkkkkkkkkkk */

if (ptbl <= 0)
{
clearbit (cb->pstatl,pnfs);
FBK.W = FLTBK.W;
ptbl &= '177777777777"';
clearbit (ptbl->pstat,psrun);

/* kkkkkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhhkkhkhkhkhhkhkhkhkkhkkhkhhkkkhkkkkk */
/* Does the CB hold an address space lock? If so, */
/* call RELPTBL (see Memory Management) to release the*/
/* PTBL address space lock. If not, just clear the */
/* "no address lock" bit and go to the top of the */

*

/* SCANNER which is at SMONO.
/% kkkkkkkkkkkkkkkkkkkkhhkhhhkkhkkkhhhkhhkkkkkkkkkkkx %/

if (bit(ptbl->pstatl,pnad) == 1)
clearbit(ptbl->pstatl,pnad):;

else

RELPTBL(ptbl);
goto SCANNER; /* SMONO */
}

/* khkkkhkkkkhkkkkhkhkhkhkkhkkhkhkhkhkhhhhkhkhhhkhhhkhkhhhhkhhhkhkhhkkhkhkkhkkk */

/* The CB is not a DAEMON. Did the user do a Parallel*/

/* Call? 1If so, clear the bit and check for waiters. */
/% kkkkkkkkkkkkxkkkhhhhhhkkkkkhkhhhhkkkhhhkkkhhkkkkkx %/

if (bit (ptbl->pflag3,pfpch) == 1)
{
clearbit(ptbl->pflag3,pfpch);

/* khkkhkhkhkhhhkhkhkhkhhhkhkhhkhkhhkkhkhhhhhhhkhhhkhhhkhhkhkkhkkx */

/* Are there any waiters on the Parallel call that */
/* PTBL did? If so, unpend the waiters and continue */
/* CB cleanup. * /

/* kkhkkkhkhhkhkkhhhhhkkkhkkkkhkkhkkhkkhkhkhkhkhkhkkkhkhkhkkhkhkkkkkkkkkkkkkk */

Licensed Material 2-41 Property of Data General

Licensed Material 2-42 Property of Data General

if (bit(ptbl->pflag5,pfpchw);
{
clearbit(ptbl->pflag5, pfpchw)
unpend (ptbl,cb);
}

}

Khkkkkkkkkkkhhkhhhhhhkhhkkkkhkkkhkhhhhkrkkhkhkkkxkkk %/
Did the CB run "FAST"? Running "fast" means the CB*/
did not pend. If so, check the TCB to see if it */

*

ran fast.
kkkkkkhkkhkkhkhkhkkhkkhkkkkhkhkhkhkhkkkhkhkhkkhkkkhkkkkhkhkhkkkkhkkkkhkkkkhkkkhkkkkkkk */

if (bit(cb->pstatl,pnfst) == 0)

{
tcb = cb->catcb;

hhkkkhkkkhkkkkhhkkhkhkhkhkhhkhkhkhhhkhkhhkhkhkhkkhkhhkhkhkhkkhkkhkhkhhkikhhkkk */

We have a TCB address from the CB. 1Is there */

an address? */
Jedkkok ko dkokokkokokkokk ko kkokk ko kkkk ko kkkkkkkkhkkkkkkkkkk * /

if (tcb != 0)
{

khkkkkhkhkkhkkkhkkhkkhkhkhkhkhkhkkhkkkhkhkkkhkhkkkhkkhkhkkkkkhkkkkhkkkkkkkkkk */
There is a TCB address. Did the TCB run "fast"? */

A TCB runs "fast" if it does not have to wait for */
memory. If the TCB did not run "fast" clear the */

bit and continue cleanup to go to the Scanner. */
*/
kkkkkkkkkkkkhkkkkkkkrkkkhkhhhhhhhhkhkkkkkkkkkkkkkk */

if (bit(tcb->tcbfl, ?scfast) == 1)
{
clearbit(tcb->tcbfl, ?scfast);
} /* if tcb ran "FAST" */

else

{
L L L T Y
Both the CB and the TCB ran "fast", so start */

setting up to run the user. Check if the user did */

not use up their time slice. If not, run the user.*/
kkkhkkkkkkkkkkkkkkkkkkkkkhkhkkkkhkkkhhhhkkkkkkkkkkx */

if (bit(ptbl->pstat,pstsu) == 0)
goto run_user;
}/* else */
} /* have a TCB */
else

{

/* hhkkhkhhhkhkkhhkhhkhhhkhkhhkhhkhkhkhhkhhkhhkhhhkhhkhkhkhhkhhkkhhkkk */

/* We weren't running a TCB. Then is this TCB a */
/* DAEMON? If so, continue and check the reschedule */
/* flag. If not, drop out to do the cleanup before */

/* going to the scanner. */
/* */
J* kkkkkkkkkkkkkkkkxkkkhkhhkhkkkhhkkkhhkhkkkkkkkkrkkxk %/
if (cb->calln.w == -1)
{

ppcb = myppcb;

/* hkhkkkhkkhkkhkkhkhhkhkhkhkkhkkkhkhkhhkhkkkhkhkkhkkkhkkkkkhkkhkkkhkhkhkhkhkkkhkkkkkkk */

/* Did something else on the system request a */

/* reschedule? If not, go RERUN the daemon. */
/* khkkhkkkhkkhkhkkhkhkhhkhkkhkkhkhkhkhhkhkkhkhkhhkhkhhhkhkhkhkhkkhkkhkdhhkkhkkhhkkkhkhk */

if (bit(myppcb->cpstat,resch) == 0)
{

setbit(ptbl->pstat, psrun);
CC.W = ptbl;
ptbl->pextn.w->psqgct --;
goto RERUN;
}
}
}/* no TCB */

}/* if not fast */
clearbit(cb->pstatl, pnfst);

/* kkkkkhhhkhkkhkkkkhkkhkkhhkhhhhkhhkhhhhkkhkkkhkkhkkhkhkhhkkhkhhhhhhkkhkkhhkk */

/* This label is jumped to from the run_user routine */
/* to go to the top of the scanner if there are any */

/* conditions that keep the PTBL from being run. */
/* KhkkhkkhkhkkhkkhkhkAkkhkkhkhkhkhkdhkhkhkkhkhkxkhkhkkhkhkkkkhkkhkkhkkkkhkkhkkkhkkkk */

to scanner:
ptbl->pextn.w->psqct --;
clearbit(ptbl->pstat, psetr):
clearbit(ptbl->pstat, psncb);
clearbit(ptbl->pstat, psrdy):
clearbit(ptbl->pstat, psrun);
setbit(ptbl->psflag,pfrsh);
FBK.W = FLTBK.W;

/* hhkkhhhkkkkkkhkhhhhkhhhhhhhhhkhkkkkkhkhkhkhhhhkhhhhhhhkhhhkhkhk */

/* Did the user use up its time slice? If so, set up */
*

/* to go to TSUP (time slice end processing).
k Kkhhkhkkhkkkhkkkhhhkkhhhhhhhkkhhhhkhhhkkhhhhkhhrkhhhhkhhk *
/ /

if (bit(ptbl->pstat,pstsu) == 1)
{

Licensed Material 2-43 Property of Data General

/* khkkkkkhkhkhkkkhkhkhhkhkhkhhhhkhhhkhkhkhkkhhkhhhkhkhkhkkhkhkkkkhkkkhkkk */

/* 1Is there an address space lock? If not, check for */

/* PLOCK. */
/* kkhkkkhkkkkhkhkhkkkhkhhkhkkkkhkhhkhkhhhhhkhkhkhkkhkhkhkhkkikkkkhkkhkkkk */

if (bit (cb->pstatl,pnad) == 0)

/* khkhkkkkkkhkkhkkihkhkhkkhkhkhkkhkhkhkhkkkhkkkhkkhkkkkkkkkhkkkkhkhkkhkkkhkkkkk */
/* Time slice has expired. Test for PLOCK. If held, */

/* clear the lock bits and the time slice up bit. */
/* Go to TSUP. */
/* Khkhkkkhkkhkkkhkhkkkhkkkhkkhkhkhkkhkhkhkkhkkhkkkhkkhkkkhkkhkhkkhkhkkkhkkhkkkkikkkkhkkkkkk */
if (bit(ptbl->pstat,plock) == 0)
{

setbit(ptbl->pstat, plock);
clearbit (cb->pstatl,pnad);
3
clearbit(cb->pstat,pstsu);
goto TSUP(ptbl);

}
J* KEEXRKKKRKKKXKKKXKKKKKKAKRKKRK KKK K AKX K KAR KKK KX XX KK */
/* If the Address space lock is being held on this */
/* PTBL then go unlock it. */

/* kkhkkkkhkhhkhkhkhkkkkhkkhkhkkhkkhkhkkhkhkkhkkhkkhkhkhkhkhkhkkkhkhkkhkkhkhkkkkkk */

if (bit(cb->pstatl,pnad) == 0)
RELPTBL(cb, ptbl);
clearbit(cb->pstatl,pnad);

/* hhkkhkhkkkkkkhkkhkkhhkhkhkkhkkhkkhkhkhkhkkhhkhkhkhkkkhhkhkkhkhkrkhkhhkkkkhkkhkhkkkikk */

/* 1If the PTBL is swapping then go do a reschedule */

/* after locking ELQUE. */
J% KKKKKKKKKRKKXKRKKXKKKRKKARKKARKK AR KKK KKK AKX KRR X KX &/

if (bit(ptbl->pstat,psbag) = 0)
goto SCANNER; /* SMONO */

get_q_lock(ELQUE, QLOCK);

goto SCANNER; /* M6 */

/* hkhkkkhhkkhkhkhkhkhkkhkhkhkhkhhkhkhkhkkhhkhkhkhhhkhkhhkkhkhkkkhkhkkkhkhkkkkkk */

/* We hit the situation where we can run the user. */

/* Check if the reschedule flag was set. */
/* hhkkkhkhkkhkhkhkhkhkkhkhkkkhkkhkhhhkhkhhkhkhkkkkkhkkhkhkhkhkkhkkhkhkhkikkkkkhkixk */

run_user:

if (bit(myppcb->cpstat, presch)
goto to_scanner;

Licensed Material 2-44 Property of Data General

/* hkhkkhkhkkhkhkkhhhkhkhkhkkhkkhkhkkkhkhhkhhkhkhkkhkhhkhkhkhkkhhhkhhkkkhkhkkhkhkk */

/* If there is no address space, lock on the PTBL we */

/* want to run and go to the SCANNER. */
R e L T T L T T Y

if (bit(cb->pstatl,pnad) == 1)
goto to_scanner;

/* khkkkhkkhkkhkkkkkkhkhkkhkkhkkhkhkhhhhhhhhkkhkkkkkkkhkhkkhkhkkhkkhkkhkhkhkkkkkk */

/* Is there some BIT set in the PSTAT word except */
/* those masked out in the process table. */
/* Go to the scanner. */

/* hkhkkhkhkkhkkhkkkhkkhhkkhkkhkhhkkhkkhhkhkhkkhkhkkkhkhkkhkkhhhkkhkhkhkkhkhkhkkhkhhkhkkhkhhkhkhkkik */

if ((cb->pstat & CSBIT) != 0)
goto to_scanner;
setbit(ptbl->pstat,psrun);
CC.W = ptbl;
ptbl->pextn.w->psqct --;

/* hkhkkkhkhkkhkkkkhkhkkkhkhkhkhhkhkhkkhkkhkhkhhkhkhhkkkhkkhhkkhkhhkkhhhkkhkkkhkkkkk */

/* Was the task in the PTBL faulting? If not, call */

/* the task scheduler. If so, run the user. */
/* %k %k %k k k Kk k Kk k k Kk kk k k ok k k kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk */

if (bit (tcb->tstat,?tswp) == 0)
{
FSYSCL.W ++;
goto PSCHD(ptbl):;

}
else
{
mytcb = ptbl->ctsk.w;
RSTPR1(ptbl,mytcb);

FPGFLT.W ++;
clearbit(mytcb->tstat, ?2tswp);
interupts (on);
goto USER; /* start the user via WDPOP */
} /* else */
} /* TRTN/TGRTN */

Licensed Material 2-45 Property of Data General

2.5 Locking

There are two types of locking discussed in paths and time. The
first is "spin" locking (see JP management). The second is pend
locking.

Pend Locks

Pend locking is only used by pendable paths (CBs). A pend lock
causes a CB trying to get the lock to pend, if the lock is held.
The reason for using pend locks is the particular lock is a
long-term lock. This means that the lock may be held for an
indeterminate amount of time. For a path to spin the lock must
be a short-term lock.

Example:

A CB is trying to get a change lock on the global lock
JPLPLOCK.W. (see LP management). The CB finds the lock is held,
so the CB will pend waiting for the lock. When the lock is
released, the unlocking routine unpends all the CBs pended on the
lock.

To get a pend lock there is a two-level locking scheme used. The
first part is getting the transition lock and the second is
getting the pend lock.

The first part of the locking scheme is getting the transition
lock. The transition lock allows the lock to set up for a
long-term action, such as to get a long-term lock or do some
quick operation with an element. If the path tries to get the
long-term lock and cannot, then the path will pend, but before
pending the path must release the transition lock. The routine
that does this type of locking is get lock (see LP management).

Element and Queue Locking

In this section two groups of locking routines will be
discussed. The first group of locking routines used in ELQUE
management are the queue locks. The second group of locking
routines discussed are the pend locks that deal with JP and LP
databases.

Element Locking

In ELQUE management it is necessary to lock elements and queues
to maintain their integrity for specific operations. For
example, when the element is accessed for modification the queue
lock(glock) must be held on that queue before the queue can be
touched. Elque has a special extra lock which will be discussed
later.

Licensed Material 2-46 Property of Data General

Element Locks

An element gets locked when it has some system call working with
it, such as a system call (CB) doing an operation to a PTBL; or
when a PTBL is being dispatched to run. The PTBL long-term lock,
PLOCK, is a form of a pend lock. The difference between the PTBL
lock and the normal pend lock is if the PTBL lock is set the
dispatchers, which are nonpendable paths, simply do not use the
PTBL and return to the scanner for another element.

Queue Locks

There are two routines used to lock queues: get g lock and
release g lock. The locking scheme used for queues is spin
locking. These locking routines are not real locking routines,
they are implemented inline. The reason these functions are
implemented inline is because of the speed of not having to go to
a subroutine. The routines are shown in the pseudocode below.

GET Q LOCK

Get g lock tries to get a lock for the caller. When the locking
succeeds, then the routine returns. If the locking fails, the
routine increments the collision counter supplied to the routine
and spins until it gets the lock.

/* SSSSSSSSSSSSSSSSSSSOSSSSSSSSSSSSSSSSSSSSSSSS */

/* get g lock(queue, counter) */
/* This routine gets a lock for the queue */
/* supplied as an argument. */
/* */

/* SS */

get g lock(queue, counter)

{

J* kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkx */
/* 1If there lock is locked then increment the */

/* counter and spin. */
/* After the lock is released then set the */
/* lock. */

/* khkkkhkkkkhkkkhkhkkhkhhkkhkkhhkhkhkhhkhkkhkhhkhkhkhkkkhkhhkhkkhkhkihkk */

if (bit(queue.gstat,QLOCK) == 1)
counter ++;
while (bit(queue.gstat,QLOCK) == 1)

{3
setbit(queue.gstat,QLOCK);

return();

}

Licensed Material 2-47 Property of Data General

RELEASE Q LOCK

Release g lock releases the glock for the queue passed as an
argument. <

/* khkkkkkkkhkhkhkkhkkhkkhkhkhkkhkhkkkhkkhkhkkkhkhkkkhhkkkkkkkkkkkkkk */

/* release g lock(queue) */
/* This routine releases the queue lock for */
/* queue passed to the routine. */
/* iy

/* kkkhkkhkhkkhkhhhkhkhkkkkkkkkkhkkhkkkhkhkikhkhkhhkhkhkhkkhkhkhkkhkkk */

release g lock(queue)

{
clearbit(queue.gstat, QLOCK);
return;

}
ELQUE LOCKING

ELQUE has a special extra locking scheme that is used for readers
of the queue. This lock is called the scan count. The scan
count is used to keep track of scanners. This prevents a path
from modifying ELQUE while other paths are reading it. After a
path gets the QLOCK on ELQUE, it must also wait for the scan
count to go to zero before enqueuing or dequeuing from ELQUE.

The scan counter is useful because scans of ELQUE occur more
frequently than do modifications. The scan count for ELQUE is
called QSCAN. QSCAN is a part of the ELQUE structure so it is
accessed by ELQUE.QSCAN.

Licensed Material 2-48 Property of Data General

Chapter 3
Process Scheduling

3.1 Introduction

The Process Scheduling chapter of Paths and Time, documents
the activities within the system that are controlled by the
process table and its state. The structure of the chapter
progresses from high-level discussion of the topics to
detailed information about the databases and the system
paths.

3.1.1 Relation to Other Parts of Paths and Time

The overall view of Paths and Time is shown below. Process
Scheduling has close connections to both the system scheduler
(ELQUE management) and CB management. It also takes input
from time management.

B + Fomm e +
PTBL {—- CB
MANAGEMENT --> MANAGEMENT
e + e +
S— | _________ |
System
e + Fmmm e +
ELQUE DRIVERS
- > MANAGEMENT IDEF <-+
Fomm e ———————— + FILE SYSTEM
- Fmm e +
e + +-1 —————————— + e +
CLASS <{--{ LP TIME
MANAGEMENT |-->| MANAGEMENT |<-+--| MANAGEMENT
e + tommm + o +
iy + |
tomm———— JP {mmmmmm == + e +
MANAGEMENT |-=-======-==-- >| INTERRUPT LEVEL |
Fommmm e + D itttk +

Process Scheduling is closely associated with ELQUE
management for scheduling of activity on, and for a process.
The ELQUE scanner depends on Process Scheduling to do a
detailed check of the PTBL after it is picked to run.
Process Scheduling will either run the process, run a CB on
behalf of the process, or return control back to the ELQUE
scanner. If it returns to the scanner then the scanner may
restart or continue the scan.

Licensed Material 3-1 Property of Data General

CB management is tied to Process Scheduling to handle the
allocation and scheduling of CBs started on behalf of the
process. This is done to start system calls and daemons.

Time management interfaces to Process Scheduling when a
subslice or a timeslice has occurred by setting flags in the
PTBL. It also provides the handlers, and switches CPU timing
from general system overhead to either a specific CB or to
the user.

3.2 Time Handling

Process Scheduling takes notice of time, primarily at the end
of subslices and timeslices. It makes use of routines
provided by Time Management to charge and reallocate time and
to handle the PIT.

3.2.1 Accounting and Charging

Time is counted by the system in several different ways.

CPU time is tracked by the PIT in CBs, PTBLs, and global
counters. System calls are charged to the PTBL at a standard
rate in the interest of fairness and repeatability.
Histograms sample the program counters at interrupts and
count the samples in buckets according to the PC value.

Actual CPU time (PIT ticks) are accumulated in the LPCBs
and system call timing tables. These numbers are quite
accurate and will usually match histogram information over
reasonable periods.

User CPU time however is the sum of PIT ticks spent on PTBLs
plus the standard system call charges. This is what is
reported by the ?RUNTM system call. Since the standard
system call charge doesn't necessarily match the actual time
spent in the system call, the sum of user time, system time
and idle time will not usually equal 1 CPU-second per

second. It is this composite user CPU time that has the most
effect within Process Scheduling.

3.2.2 Timeslicing

CPU time is allocated to PTBLs according to a timeslicing
algorithm. A timeslice is the amount of time that a process
is allowed to use before the process' timeslice and priority
is re-evaluated. CPU time is tracked and charged in units of
PIT ticks. Each tick is 1/10,000 of a second. 1t is
allocated in multiples of ticks called subslices. The
default size of a subslice is 320 ticks or 32 milliseconds.

Licensed Material | 3-2 Property of Data General

Timeslicing is in effect only when a PTBL has control of a
JP. If the process loses control, then its remaining PIT
count, the residue, is saved for later use, and timing
against the subslice is suspended. Each time a user task is
started by Process Scheduling the PIT is loaded with the
current subslice residue from the process table extender. 1If
a PTBL is not in control (i.e., a CB or system path is
running) the PIT is used to accumulate timing data but there
is no timeslicing.

A subslice end is detected either by a PIT interrupt or when
a system call charge overruns a subslice. When this happens,
subslice end processing is performed. This stops the
process, updates the running total CPU time in the PTBL
extender, and makes several checks on the PTBL. Process
rescheduling is also signaled at subslice end.

If the process has a CPU time 1limit and exceeds it, then the
process is marked for termination. If round-robin task
scheduling is not disabled, then the PTBL is marked for task
rescheduling. If this subslice was the last one in a
timeslice then the PTBL is marked for timeslice end
processing.

Timeslice end processing involves reassigning a timeslice
exponent (TSE), subslice count (PSLCN), and scheduling
priority (PNQF) for the process. Memory management also is
run, and a process' working set may be trimmed if the system
is in a memory contention state.

3.2.3 Timeslice Exponents (TSE)

A group 1 process is always assigned a TSE of six. The TSE
of a group 2 or 3 process depends on its prior behavior and
this results in heuristic scheduling.

When a group 2 or 3 process uses its entire timeslice without
blocking significantly its TSE will increase by one unless it
is already at the maximum TSE of six. If it blocks
significantly before using up its entire timeslice then its
TSE will be recalculated.

A blocking event is significant if it blocked the process for
at least 2 tenths of a second and if the event is one that is
not masked out by global location TUNPBLK. The blocking
events that can be masked out are: ?PMGR write request,
?SIGNL, ?SIGWT, ?WTSIG, ?IREC, and ?WDELAY. By default all
of these events are significant except 7?PMGR writes.

Licensed Material 3-3 Property of Data General

The recalculation of a group 2 or 3 timeslice exponent is
done according to the following rules. If the process used
less than one whole subslice before blocking its TSE is set
to 1. If the process used 32 or more subslices then its TSE
is set to 5. Otherwise its TSE is set to the smallest value
such that 2 raised to the TSE power is greater than or equal
to the number of whole subslices used. For example if a
process used 5.00 subslices before blocking then its next TSE
would be 3, ((2°3)=8 which is >= 5); if a process ran for
4.99 subslices its next TSE would be 2. Fractions of
subslices are not actually used in the calculation but they
do occur in the real world.

3.2.4 Subslice Count (PSLCN)

The calculation of the subslice count is done using the
formula PSLCN = 2°TSE with one exception. If the process

is "Swappable priority 1" (the highest group 2 priority) and
its TSE is 6 then the number of subslices is PSLCN =
2°(TSE+1). In other words it is given twice the normal
number of subslices.

The resulting timeslices (assuming 32 msec subslices) range
from 64 milliseconds to 2.048 seconds (or 4.096 seconds for
the exceptional case).

3.2.5 Process Scheduling Priority (PNQF)

The scheduling priority of a PTBL on the ELQUE called the
PNQF or Priority Enqueue Factor. For a group 1 or group 3
process the PNQF is a function of the process group and
process priority. For a group 2 process the PNQF calculation
also takes into account the process' timeslice exponent
(TSE). In the formulas below PPRI is a process' assigned
priority, TSE is its timeslice exponent, Gl is the largest
priority value assignable to a group 1 process and G2 is the
largest priority value assignable to a group 2 process. Gl
and G2 are constant for any given system.

The PNQF of a group 1 process is equal to its priority. The
calculation is simply PNQF = PPRI.

The PNQF of a group 2 ("swappable") process is a function of
both its priority and its timeslice exponent. The
calculation is PNQF = Gl + (7*(PPRI-Gl)) + TSE + 1. This
formula gives each group 2 priority a range of values. For
any given priority the specific PNQF value is determined by a
process' TSE. Thus, for a given priority, processes with
lower TSEs will have greater effective priority.

Licensed Material 3-4 Property of Data General

The PNQF of a group 3 process is calculated according to the
formula PNQF 7 * (G2-G1l+1) + PPRI.

The overall allocation of PNQFs reserves PNQF=0 for system
and group 1 process' CBs, followed by a contiguous range of
group 1 PNQF's, PNQF=(Gl+l1) reserved for CBs of group 2 and 3
processes, a spread out range of values for heuristic
scheduling of group 2 processes, and lastly a contiguous
range for group 3 processes.

3.3 System Calls

A system call originates as a request from a user task, but
to run in the system it must convert to a system task so it
can use system resources. It is this transition that enables
system calls to run in parallel with other tasks in the user
program. The transition also makes it complicated to start

a call.

3.3.1 Initial System Call Handling

System call requests enter the system through a gate via an
LCALL. The very first thing the system does is make the
transition from the user world to the system world. This
means switching the PIT timing from the user to the system,
establishing the system stack and saving the user's task
state and pending the task. If the user has made a system
call from interrupt level or has exceeded his CPU time limit
then the process will be marked for termination.

Next the user is charged for the call. There are two
different charges. The standard charge is 10 PIT ticks,
expensive calls are charged 100 PIT ticks. 1Illegal calls are
not charged.

3.3.2 Starting or Queueing a System Call

When a system call first enters the system it may not start
if conditions prevent it from running or if resources are not
available. These calls become queued TCB requests. They are
queued off of the PTBL extender through the TCBs.

A system call that has already started may also queue itself
to be restarted if it finds that required resources are not
available. This is usually because a system call needs memory
but cannot get it.

Licensed Material 3-5 Property of Data General

Every call requires that a system CB be available. The CB
may or may not be used but one must be available and it must
be available from the proper allocation pool. There are two
CB pools, one for group 1 processes and one for all others.
If the process already has used its maximum number of CBs or
if none are available then the call will be queued. Those
calls that are known as "parallel calls" will be queued if
any other calls are already running or if the process is the
target of another process' call. A call will be queued if
there is already a parallel call running.

Queued system calls starting takes precedence over user tasks
when a process is run by the scheduler. A queued call may

be unable to start when the process is scheduled for the same
reasons that it was queued in the first place. In some cases
(such as a call pends and the user is multitasked) the user
code may then be allowed to run even if the system call

could not.

3.3.3 Running the System Call

Once the system has decided to run a system call it can take
two paths. The least expensive in terms of CPU time is to
simply point the system to the CB and jump right into the
handler. The other path requires that the CB be filled in
and placed on the system ELQUE for later scheduled

execution. The particular path taken depends on the call and
the current JP identity and state. Only if the JP is
eligible to run the particular call and it does not need to
reschedule can the fast path be taken.

If a call does "run fast" (a technical term) and it never
pends during execution then the process will regain control
of the CPU without rescheduling. Otherwise, the process
loses control to be scheduled again later.

3.3.4 Concurrency

Because each system call runs as a separate system task with
its own CB there can be more than one call active in the
system at the same time. And because the PTBL represents
another system task it can be active at the same time as the
system call(s).

If there are multiple JPs in the system then it is possible
to have multiple paths being executed for the user
simultaneously. Note that while multiple system elements
(CBs and PTBLs) can be running on different JPs at the same
time, it is not possible to have multiple user tasks of the
same process running at the same time because each user
process is represented in the system by only one PTBL.

Licensed Material 3-6 Property of Data General

3.3.5 Page Faults and Daemons

The mechanism used by system calls for running concurrently
on a CB is a general purpose mechanism. User page faults and
daemons are handled like system calls except that they are
not initiated by the user directly.

Page faults join the system call path just after the initial
user to system transition. Page faults are very similar to
system calls in that they can be queued off of the process
table extender and their start can be delayed.

Daemons are started only when a process has no other calls
active and join the system call path at the point where a
system call will definitely be started. Daemons are also
discussed below.

3.4 The Process Databases

The activities of Process Scheduling are centered around
the two databases that describe a process to the system,
the process table (PTBL) and the process table extender
(PEXTN). Together they provide the driving force for
Process Scheduling.

The other major data structures that Process Scheduling is
concerned with are the CB, task control blocks (TCBs) and
user status tables (USTs). These are described later.

3.4.1 Importance/Use in Process Scheduling

The process table (PTBL) remains in memory as long as the
process exists but the process table extender (PEXTN) swaps
with the process. By the design of these two databases and
the placement of the status information Process Scheduling
will attempt actions that require information from the
extender only when a process is eligible (swapped in).

Thus it can ignore the possibility that an extender might
be unavailable.

The PTBL holds the data with which the system schedules and
maintains process unique information. It also holds
information about operations done to or capable of being done
to a process while it is swapped out. Of course it also
holds pointers to the other process related data structures.

Licensed Material 3-7 Property of Data General

The PEXTN holds data that describes the state of the process
and its activities in greater detail. Information needed
only when the process is running or eligible to run can be
kept here.

Process Scheduling is concerned primarily with data used
for scheduling the process. Most of this driving data are
various status and flag bits. The flags used by Process
Scheduling fall functionally into three groups plus a few
miscellaneous ones. The first group is the show stoppers.
They are checked at the beginning of process scheduling and
if any are set the process is skipped. This group includes
the locking flags and the running flag. The second group
contains the "high-priority" bits that cause certain actions
to be taken before any actual scheduling can occur. The
flags of the first two groups are in word PSTAT. The final
major group of flags is known as the daemon request flags.
These flags are scattered throughout PSTAT1 and the

PFLAG words.

There are many other data items in the PTBL and PEXTN used
by Process Scheduling, they are defined in Section 3.8 and
their use is discussed in the code walkthroughs and shown in
the pseudocode.

3.4.2 States of the PTBL

A process can be in many different states. Within the system
the process is represented by its PTBL for the entire life of
the process. The states of the process are determined by the
queue the PTBL is found on and by status information in the
PTBL. The queue the PTBL is on reflects the major state of
the process.

When a process is eligible its process table extender and
current working set are actually in memory although not
necessarily mapped. The PTBL of an eligible process will be
on either the ELQUE, BLKQ or MBLKQ. The MBLKQ links PTBLs of
processes that are explicitly blocked by the ?BLOCK or ?PROC
system call. The BLKQ holds PTBLs of processes that are
blocked because they are waiting for something to complete.
The ELQUE is the queue of PTBLs of processes ready to run or
needing some action by the scheduler. Only if the PTBL is on
the ELQUE and is selected to run by the system scheduler will
the process scheduler be called for the process.

Licensed Material 3-8 Property of Data General

When a process is swapped out the PTBL is moved to one of the
swap queues IEBLK, IERES, IEQUE, or IESWP depending on the
process type and its state before being swapped. Even while
the process is swapped out to disk the PTBL remains in memory
to represent the processes. The process extender is swapped
to disk as part of the ring 1 to 7 context of the process.
Other subsystems will still keep information referring to the
process in their data structures. For instance, the
connection management subsystem will still have references to
the process in its connection database.

The process management volume of the internals manual has a
more detailed description of the various queues that the PTBL
can be on and the process states that each represents.

3.4.3 Blocking and Unblocking

During the 1life of a process it is quite normal for it to
block and unblock. It will be blocked when the process
scheduler finds no TCBs ready to run, while it is waiting to
terminate, or if it is explicitly blocked by a system call.
When a process is blocked its PTBL is put onto one of the
blocked queues. If the process is explicitly blocked it is
placed on queue MBLKQ, otherwise it is placed on queue BLKQ.
A process unblocks if a TCB is unpended by the occurrence of
some event, or if the system needs to start a daemon for the
process, or if the process is explicitly unblocked.

The process of blocking and unblocking a heuristically
scheduled (group 2) process affects the process' ELQUE
priority. In theory if a process blocks before using its
full timeslice then it is displaying interactive behavior
and the system should give the process a higher ELQUE
priority (but shorter timeslices) to enhance interactive
response times. See the discussion of timeslicing above for
more information.

The problem with the theory is that a non-interactive process
can display similar blocking behavior. One example is a
program that continuously writes data to a terminal. The
process will block when the output buffer fills and unblock
when the buffer empties. This behavior looks interactive

if the only factor taken into account is the blocking

and unblocking.

Licensed Material 3-9 Property of Data General

To counter this AOS/VS allows the system manager to prevent
certain specific blocking events from affecting process ELQUE
priority if the event didn't block the process for very
long. Global location TUNPBLK is a mask of those events to
be discriminated against. The blocking events that can be
specified are PMGR reads and writes, ?7SIGNL, ?SIGWT, ?WTSIG,
and ?DELAY system calls, and IPC messages. The value of
TUNPBLK can be set for the needs of a specific environment
by patching the system .PR file or by using the SYSTUNE
utility. See PARSA.SR or STABLE.SR for specific bit
assignments.

When a process on the BLKQ is unblocked a check is made to
see if it was blocked for one of the events in TUNPBLK. This
is done by logically AND'ing global TUNPBLK with the contents
of TBLKFLG in the PTBL. If the result is zero then the
blocking event was not one being discriminated against and
the process is deemed interactive.

If it was blocked for an event whose bit is set in TUNPBLK
then a check is made for how long the process was blocked.

If the process was blocked for more than two tenths (0.2)
seconds then the process will also be considered interactive.

If a process appears interactive during an unblocking then
it may have its timeslice exponent lowered. This lowers
its PNQF and improves interactive response. This also
shortens the timeslice allocated to the process when it is
next scheduled.

If the process was blocked less than the 0.2 second time
limit on an event type marked in TUNPBLK then the blocking is
not considered significant and the process' timeslice
exponent will be left unaltered. The process may eventually
use up its full timeslice without encountering a significant
blocking event. At that time its timeslice exponent (and
PNQF) may be raised, thus limiting the process' ability to
compete for CPU time. This is the appropriate action for
non-interactive programs.

3.4.4 High-Priority Activities

After the scheduler has determined that the PTBL is not
locked or already running it must check certain high-priority
status flags. These flags indicate that the process or PTBL
is in a state that requires attention before the system can
consider scheduling the user code. The flags are 'all in word
PSTAT of the PTBL. In the source and in the discussions and
pseudocode below the bits are collectively known as PRBITS.

Licensed Material 3-10 Property of Data General

The processing of these conditions is handled during the
scheduling of the process since each is specific to the
process and, as far as the system is concerned, the priority
of the actions are the same as the priority of the process.
It does not make sense for these actions to be completed at
higher or lower priorities.

In order of decreasing priority the flags are:

PSEW scheduler activity is in progress

PSBRK a “C°X interrupt is pending

PSBAG process should be swapped out

PSBLK the process is blocked and the PTBL needs
to be moved to a blocked queue

PSDP a daemon needs to be run

PSMWT the process needs memory

PSTSU timeslice end processing needs to be done

before running the user.

By this ordering you can tell that, for instance, swapping a
process out has higher-priority than checking if it should
try to get memory again.

PSEW is set if the PTBL is in a state where it should not be
checked in any greater detail or if a system task or daemon
is active for the process. This does not include active
system calls however. If PSEW is set the scheduler
immediately skips the PTBL and continues the ELQUE scan.

If PSBAG or PSBLK are true then the scheduler hands the PTBL
off to another part of the system to be processed. For PSBAG
the PTBL is moved to the core manager queue. This may fail
if the process state changed since the flag was set. For
PSBLK the scheduler attempts to move the PTBL to a blocked
queue. It may fail if the appropriate queue is locked. For
both PSBAG and PSBLK if the PTBL was removed from the ELQUE
the scheduler is restarted otherwise the scheduler continues
the ELQUE scan with the next element on the ELQUE.

Both PSBRK and PSDP signal that a daemon needs to run before
the user regains control. Even though “C interrupts are
handled by a daemon they are given their own priority flag
because the interrupts are more important than process
blocking or swapping. If the interrupt was a “C"B it would
not make sense to hold up the process termination. The
scheduler takes the same path for both priority flags,
possibly after resetting PSBRK. Daemons are handled in the
system as a special case of system call processing. They
differ in that they are not initiated by the user program and
do not return to the user. When a daemon is started bit PSEW
is set indicating that system activity is taking place for

Licensed Material 3-11 Property of Data General

the process and no user code or system calls will be
scheduled to run for the process. When a daemon finishes it
is the daemon's responsibility to update the PTBL status
flags to allow it to run later.

When PSMWT is true there is at least one system call

waiting. The flag is set if a system call cannot continue
for lack of free memory. When this happens the call copies
system global MKEY into PTBL word PMKEY, backs out to its
starting point and puts its TCB onto the chain of waiting
system calls. The high-priority action taken is to compare
the current value of global MKEY with the stored PMKEY.

Since MKEY is changed when the release of memory adds a block
to a previously empty chain, if PMKEY differs from MKEY then
memory may be available and the system call can be
re-attempted. It is quite possible that not enough memory
was freed or a higher-priority process has taken the memory
and the system call may fail again. But this mechanism does
ensure that the processes compete for memory in a manner that
takes into account their relative priority and available

CPU time.

PSTSU indicates that a process' timeslice expired because of
a system call charge and that timeslice end processing is
waiting. The possible effects are to change (lower) the
processes priority, or to terminate the process for using up
its CPU time allocation. After timeslice end processing the
system scheduler is restarted from the top.

3.5 Process Scheduler Use of CBs
3.5.1 CBs in a Process World

Despite its emphasis on PTBLs, the process scheduler is also
responsible for spawning the vast majority of CBs within the
system. This responsibility is given to the process
scheduler because the coordination and priority of these
system activities are based on the PTBL.

CBs are allocated, initialized and started by the process
scheduler to handle user system calls and daemons. System
calls and daemons are similar in that they both execute code
paths within the system (ring 0) address space and are
managed via CBs. System calls are started at the request of
the user or his Agent. They represent a continuation of a
user task within the system and they return control to the
task when they finish (unless the call terminates the
process). Daemons on the other hand are started to perform
process activity independently of any user task.

Licensed Material 3-12 Property of Data General

When looking at a CB in a system dump a daemon can be
identified by the contents of fields CALL.N and CATCB.W.
CALL.N will contain a -1 indicating no valid system call
number. CATCB.W will contain a 0 indicating no associated
user TCB.

3.5.2 Setting Up and Dispatching CBs

The process scheduler always allocates and initializes the CB
but it may either dispatch the CB directly or 1link it onto
the ELQUE for later execution. CBs are dispatched directly
by the process scheduler only if there are no higher-priority
ready CBs or PTBLs, no reschedule flags set, and if the CB
can run on the current job processor.

When allocating CBs, the Process Scheduler maintains (or
calls routines that maintain) several system globals.
Locations PCB.W, SCB.W and TMPCB.W defined in SZERO.SR hold
the address of the current, backup, and possibly temporary
backup CBs for a specific job processor. Locations RSTCKT
and SSTCKT defined in STABLE.SR count the number of CBs
available within the entire system for group 1 or group 2/3
process requests.

Before dispatching a CB or putting it onto the ELQUE to be
scheduled later the process scheduler must initialize the

CB. Entries that are set to initial wvalues include its
status, the timing and error entries, the pointers to the
CB's stack and the address of the associated PTBL. Data that
define the execution path of the CB include its priority
enqueue factor (PNQF), system call number and associated TCB
address for system calls and class code for class scheduling.

If the process scheduler is going to transfer control
directly to the CB then it must put the addresses of the
logical processor and job processor control blocks into the
CB. In this case the process scheduler must also duplicate
the action of the ELQUE scanner in setting up the system
global databases and the processor states. (See CB
management elsewhere in this volume.)

3.5.3 Time and CBs

AOS/VS keeps track of the actual CPU time spent while running
on CBs and PTBLs. The CPU times accumulated are totalled in
the data bases of each logical and physical processor and in
the table of system call timings. These actual times are not
the times charged to a user process. The user process is
assessed the total of the actual time spent on the PTBL (in
user space) and system call charges which are determined by
the system call number.

Licensed Material 3-13 Property of Data General

When a CB completes a system call or daemon, CBUPDT is called
to update the appropriate time counters in the processor data
bases (LPCB and PPCB). If class scheduling is on or class
timings are being accumulated then the appropriate counters
and allocations are updated. After system calls CBSTAT is
called to accumulate the CB time into the table of system
call times pointed to by STTBL.W. CBSTAT, CBUPDT and the
related PTUPDT routines are discussed in detail in the LP
management chapter.

3.5.4 Concurrency

Activity for a process can be represented in the system by
both its PTBL and CBs. This makes it possible to have
multiple threads of execution eligible at the same time for a
process if the program is multitasking with one or more
outstanding system calls. If the hardware configuration
includes more than one job processor it is possible to have
more than one code path running simultaneously. However
since the user code is represented by only a single control
block, the PTBL, it is not possible to have more than one
user task running at the same time. This greatly simplifies
the job of the task scheduler in the Agent.

Several situations can prevent concurrency. For instance,
daemons require that there be only one active execution
thread. If user code, or a system call CB, or another

daemon is running then a daemon will not start, and user

code and other system calls will not be started once a daemon
is running.

Even after starting concurrent paths, the various locks in
the PTBL and system limit simultaneity. So long as a lock
is held, any other code paths needing the same lock will
not run.

3.6 User Task Scheduling
3.6.1 Overview

Part of the function of the A0S/VS process scheduler is to
dispatch user tasks. This includes handling task state
switching and round-robin rotation of tasks with the same
priority. Most of the actual management of tasks however is
handled by the Agent in ring 3. This section will not delve
into services provided by the Agent.

Licensed Material 3-14 Property of Data General

Task scheduling is performed as the final phase in the
scheduling of a specific process. The priorities of ready
tasks plays no part in the selection of a process to run.
One result of this is that for processes of equal priority a
task of lower priority on one process can run before a
higher-priority task of another process if the process with
the lower-priority task was nearer the head of the ELQUE.

This emphasis on scheduling of processes is a major
difference between AO0S/VS and AOS/RT32. Where AOS/VS keeps
PTBLs on its eligible queue, AOS/RT32 keeps tasks on its
queue. This allows AOS/RT32 to interleave priorities of
tasks on its eligible queue across processes.

3.6.2 Task Scheduling

When the task scheduler scans the active TCB queue it selects
the first TCB with no pend bits set. Since the queue is in
priority order this is the TCB of the highest-priority ready
task. If no ready TCB is found the process is marked "not
ready to run" and if the process can be blocked the PTBL will
be moved to queue BLKQ.

The next step in task scheduling is implementing the
round-robin scheduling policy. This means putting the TCB of
the selected task behind other TCBs with the same priority in
the queue. This is done before starting the task so that no
matter how the task loses control the round-robin policy is
enforced. The check is simple: if there is another TCB in
the queue behind the selected TCB and it is at the same
priority then the shuffle must be done.

A task context switch is also needed if the selected task is
different than the last task that ran. Each task has several
global state variables that must be saved and restored during
the switch. These include stack pointers, fixed and floating
point registers and status, trap handlers, and the extended
save area. See the code descriptions or pseudocode below

for implementation.

A task loses control when it makes a system call that must
pend, when it makes a task call with rescheduling enabled, at
the end of a CPU subslice (32 milliseconds), if a higher
priority task in the same process becomes ready, or if a
higher priority process becomes ready.

Licensed Material 3-15 Property of Data General

3.6.3 The TCB

The TCB is the repository of the scheduling state of each
task in a process. The TCB plus the task's stacks in rings 3
to 7 and possibly an extended save area in ring 7 contain all
the information needed to run a task.

Unlike process PTBLs, all TCBs for a process' active tasks
are on a single queue no matter what their state. The head
of the queue is in the UST.

Each task has a priority from O to 255 with O being the
highest-priority. This priority is kept in entry TPR of the
TCB. The initial task of a process is given priority O by
the LINK utility. The priority of all other tasks is
determined by the user code that creates the new tasks. The
TCBS in the active queue are linked in task priority order.

In addition to being linked onto the UST for task scheduling,
the TCB may also be linked onto one of two chains off of the
process table extender. If one or more tasks are waiting on
the completion of a ?WDELAY then location PDFR.W in the
extender points to the TCB of the task with the shortest wait
and offset TSYS.W in the TCB points to the next one, if any.
If one or more tasks have issued system calls that were
unable to start then location PSWD.W in the extender points
to the first TCB and if there are any other TCBs they are
linked through TSLK.W.

The scheduling state of an active task is determined by the
pend flags in entry TSTAT. Bit ?TSPN indicates that the task
is pended in the system. The other pend bits in TSTAT are
managed by the Agent and honored by the scheduler. By having
all the pend conditions in a single word the MV queue
instructions can be used to scan the queue. See the TCB

data structure in Section 3.8 for descriptions of the pend
flag bits.

See Section 3.8 for a short description of the other TCB
entries used by process scheduling. For a complete
description of the entire TCB see the Process Management
volume.

3.6.4 The UST and Ring 3

The UST is the central database for managing all of a
process' TCBs. The UST is shared by the Agent and the AOS/VS
kernel to schedule and keep track of user tasks and global
process state. Each TCB is on either the active chain (queue
header USTAQD1 and USTAQD2) or on the free chain (USTFQD1

and USTFQD2).

Licensed Material 3-16 Property of Data General

Process scheduling is concerned only with the entries in the
UST that deal with the scheduling of tasks. These are the
extended task state area address, the active task and, of
course, the active TCB chain. For a short description of
the entries used by the process scheduler see Section 2.8.
For a complete description of the UST see the Process
Mangagement volume.

When the Agent needs to change the task scheduling queues or
databases it sets word ?TSMA in ring 3. When this flag word
is non-zero the task scheduler in the kernel returns control
directly to the place in the user program that it was
executing when it lost control. This will always be in the
Agent who will continue to process the task database changes
and clear ?TSMA when done.

3.7 Interfaces to the Rest of AO0S/VS

Of course Process Scheduling does not stand alone in the
system. It relies on many other parts of the system and it
provides specific services to them.

Services that Process Scheduling provides to ELQUE are the
final check of the PTBL for runnability and the dispatching
of code to be run. The service provided to CB management is
the restarting of a process after a CB has completed its task
but before a subslice has expired. This same service is used
within Process Scheduling to continue a process in the middle
of a subslice after a task rescheduling.

The service required of ELQUE management is the insertion of
CBs onto the ELQUE for later execution.

3.7.1 External Routines Used by Process Scheduling

Process Scheduling depends on many other areas of the system
to implement the daemons and the individual system calls.
They are too numerous to mention individually. The system
call dispatch table MCCT.W is the 1link to the system calls.
Table BTBL in the scheduler contains the links to the daemon
routines. Do not confuse table BTBL in the scheduler with
global BTBL, which is the interrupt vector table.

Licensed Material 3-17 Property of Data General

Routines Called by Process Scheduling

Symbol Module Action or Service

ALSTK SCHED Allocate CB/Stack according to PTBL group
CTBLK CORM2 Move PTBL from ELQUE

FIXCB SCHED Puts CB onto ELQUE w/proper MP status
MAPCON SCHED Set ATU map for process address space
MEVENT SCHED Resched mother if event is higher priority
PRBAG CORM2 Start process swap-out

RELPTBL MPUTIL Release PTBL

Unlocks the PTBL, releases its address
space and unpends any CB/PTBL pending on

it.
RESCH SCHED Start ELQUE scan (same as SCHED:SMONO)
RUNEX1 SCHED Resume ELQUE scanning

The PTBL is not locked, the scan mask is
still on the stack, the scanner count is
still incremented.

RUNEXP SCHED Resume ELQUE scanning
PTBL is locked, address space is not
mapped.
RUNPTP SCHED Resume ELQUE scanning
PTBL is locked, address space is mapped
RSTPRC SCHED Restore task state from TCB + PTBL

sets up FPU and fault handler, checks for
subslice up and restarts PIT on process

SMONO SCHED Same as SCHED:RESCH

TCBAD SCPRC Abort process for of bad TCB chain in AGENT
TDSCL SCHED Start PIT timing on CB

TSKRST SCHED Restore task stack state from TCB

TSKSAV SCHED Save task stack state in TCB

TSUP CORM2 End of timeslice processing

XLOCK MPUTIL Standard spin lock

3.7.2 Global Data Used by Process Scheduling

Like any system function, Process Scheduling relies on global
system data and storage. Some of the data controls the decisions
made, while others reflect the results of those decisions.

The scheduling functions depend especially on globals defined in
module SZERO. Each JP has its own copy of the data in SZERO.
This is the data describing and controlling the scheduling state
of each processor.

Those items from module STABLE are system-wide and affect all job
processors. Many of these data items are protected by locks and
others must be updated using indivisible instructions. Most of
the monitoring and statistical data generated by the system is
located in this module.

Licensed Material 3-18 Property of Data General

The table below lists the external data locations used by Process

Scheduling.
Symbol Module
CC.W SZERO
CHTBL SCPRC
CTSK.W SZERO
CWTB SCPRC
ELQUE STABLE
FBK.W PARS
Gl STABLE
MAXSYS SCPRC
MKEY STABLE
MYLPCB.W SZERO
MYPPCB.W SZERO
NMONLY STABLE
NNODCL.W STABLE
NNORQ1.W STABLE
NPSCDR.W STABLE
NPSLP.W STABLE
PCB.W SZERO
PTMP1.W SZERO
PTMP2.W SZERO
PTMP3.W SZERO
RSTCKT STABLE
SCB.W SZERO
SCTBL.W STABLE
SSTCKT STABLE
TINDST.W STABLE
TMPCB.W SZERO
UST PARSA, PARU. 32

Licensed Material

Description
current control block (CB or PTBL) address
bit map of calls legal for child JP
addr of current TCB in current process
bit map of parallel system calls
offset QSCAN in queue descriptor
decremented if PTBL not locked
hardware defined location (32 octal)
addr of context fault block
lowest group 1 priority
highest legal system call number
times memory page(s) released (mod 64K)
addr of LP for current JP
addr of Physical Processor Ctrl Blk for JP
metering location
number of times child JP couldn't process
a system call because it was mother-only
metering location
number of times a TCB request was started
(system calls)
metering location
number of times only the current TCB in a
process could be scheduled
metering location
number of times task rescheduling is
found disabled
metering location
number of times TCB chain scanned
addr of CB currently running
process scheduling temp
holds system call number (or O if daemon)
across the transition from PTBL to CB
process scheduling temp
holds TCB address of task making a system
call, or 0 if daemon
process scheduling temp
holds entry point address of system call
or daemon code
number of group 1 CBs available
addr of CB to replace PCB.W
metering location
address of system call count table
number of group 2/3 CBs available
metering location
number of times activity started on CB,
includes system calls, daemons and page
faults
addr of CB to replace PCB.W or SCB.W
ring 3
User Status Table

3-19 Property of Data General

3.8 Databases Used by Process Scheduling

Process Scheduling maintains or references several databases to
perform its services. The most important of these are the
process table (PTBL) in ring O and its extender (PEXTN) in ring
1, and the task control blocks (TCBs) and the user status table
(UST) in ring 3. Those parts of the databases used by Process
Scheduling are described below.

3.8.1 Process Table

The following is a description of the parts of the PTBL used
during process scheduling. See the table in the Process
Management chapter or PARS for a more complete listing and for
the locking rules for modifying each item.

Symbol /Value Meaning

PCLASS 5 Process class
Contains a bit indicating the class of the PTBL
or CB, or zero if the PTBL is mother-only or if
class scheduling is not enabled. Set in PTBL at
?PROC. Set in CB when initialized or cleared if
a system call needs to become mother-only.

PSTAT 6 Process status bits (see below)

PSTAT1 7 Process status bits, word 2 (see below)

CALLN.W 22 SYS CALL number times 2
Used to index into system call handler address
table and into system call count and timing
table. Also used as an indication of whether a
CB is running a system call or a daemon (CALLN.W
= -1).

PFLAG 45 Flag word 1 (see below)

PFLG2 46 Flag word 2 (see below)

PFLG3 47 Flag word 3 (see below)

PFLG4 50 Flag word 4 (see below)

PEXTN.W 51 PTBL Extender address
Physical address of the process table extender.
Set when process is initially loaded or whenever
process is swapped into memory. Contains a zero
if the extender is not in memory.

PID 62 PID assigned at create time

PMKEY 71 MEM WAIT flag and key
Set to the current value of MKEY when the process
pends for memory. See also PSTAT bit PSMWT.

PINSU 106 In scheduler mode flag (O OR 1)

PTRGC 122 Target call counter

PSIDI 134 # Enqueued TCBS W/Indirect calls

PFLG5 135 Flag word 5 (see below)

Licensed Material 3-20 Property of Data General

Below are descriptions of the various flags and bits in the PTBL
used by process scheduling. Those bits that have special meaning
for Process Scheduling have more detailed descriptions.

PSTAT

Flag bits that will be checked during the ELQUE scan must be in
this word. It is adjacent to word PCLASS and together they hold
the status used by the scan. The ELQUE scan bits have common
meaning for both CBs and PTBLs. These bits are:

PSRDY 00001 Not ready to run

PSRUN 40000 Running
This bit indicates that a PTBL or CB is running
and is also used to prevent a CB from being
selected after it is put onto the ELQUE but
before it is fully initialized. This is done
when a CB to run a system call is being put onto

the ELQUE.

PSEW 20000 Sched action
Usually means that a DAEMON is running or is on
the ELQUE.

PSNCB 10000 Don't look - process can only use a CB

Set if there are system calls waiting to run and
either there is no CB available for the call or
there is no user task ready. Never set for group
1 processes.

PMAST 00040 Mother-only element (1l=Mother-only)
Set in PTBLs of processes that are mother-only,
or in CBs of daemons, or in CBs of mother-only
system call paths.

PLCK 00020 Process table lock bit

PSETR 00010 Don't enter
Indicates that the user code should not be run
for some reason.

PSFSY 00004 System page fault
Used to determine what type of return to the user
ring should be used. If set then a WDPOP must be
used to restore the context and possibly restart
an instruction.

PTRAN 00002 Element transition bit

The following PSTAT bits are used in PRBITS as a dispatch value.
The highest-priority function has the leftmost (lowest bit number)

assignment.
PSBRK 04000 OP interrupt
Even though “C"x interrupts are handled by
daemons they have their own priority bit because
they are higher priority than swapping or
blocking.
PSBAG 02000 SWAP OUT process

Licensed Material 3-21 Property of Data General

PSBLK

PSDP

PSMWT

PSTSU

PSTAT1
PNFST

PFLAG
PFFIR

PFINT
PFTRM
PFRSH
PFNFR

PFLG2
PFBLE

PFATL

01000

00400

00200

00100

10000

10000

01000

00200

00020
00004

00400

00020

BLOCK process
If a PTBL couldn't be put onto the blocked queue
because of a lock then this bit will be set. The
scheduler will try again to move the PTBL if this
bit is set.

START UP DAEMON
If this bit is set then other bits in the PTBL
are checked to determine what daemon to run. The
individual daemon bits are indicated in the flag
words below. See table BTBL for the relative
priority of the bits.

Wait for memory key to change
Global MKEY is copied into the PTBL and this bit
is set if the process must wait for memory. When
the PTBL is selected the global MKEY is checked
against the stored value. If there is no change
then the process cannot get memory and will not
be started.

Time slice is up

Sys call did not run 'FAST'
Set if a system call or daemon had to pend or was
put onto the ELQUE to be run on another JP. If
this bit is clear then a system call path can
return to the process via RERUN without going
through a full reschedule.

Initial Load
Used in daemon dispatch table BTBL. If PSTAT bit
PSEW is not set then the initial load daemon
should be started.

Run “C"A DAEMON
Used in daemon dispatch table BTBL.

Run TERM DAEMON
Used in daemon dispatch table BTBL.

Resched flag

Narrow process becoming non-resident
Used in daemon dispatch table BTBL.

Scheduler can block process
Clear if the process is resident or cannot be
blocked. Checked when the PTBL scheduler finds
that there are no user tasks to run and no system
activity running or waiting to run for the ‘
process. If set then the scheduler will try to
move the PTBL to the blocked queue.

Process termed by system
Used in daemon dispatch table BTBL.

Licensed Material 3-22 Property of Data General

PFNTR 00004 Narrow process becoming resident
Used in daemon dispatch table BTBL.

PFQSC 00001 Inhibit scan of backed up TCB request
Checked before looking to start or restart system
calls waiting on TCBs. Set just before major
housecleaning is done to the process as is done
for swapping it out.

PFLG3

PFIWC 02000 Interrupt (“C°B, C"E) term of PROC
Used in daemon dispatch table BTBL.

PFIRS 01000 Int world interrupted task

PFPCH 00004 Hold on >1 parallel call
Set if a parallel system call is started for a
process. Checked before a system call is
started.

PFLG4
PFNRO 00020 Process is narrow (16 BIT)
Set at ?PROC. Used to determine whether to
restore a wide or narrow stack when restoring a
task's state.
PFISS 00001 Interrupt sequence (“C"x) received
Used in daemon dispatch table BTBL.

PFLG5
PFUTC 100000 Run user context trap daemon.
Used in daemon dispatch table BTBL.
PLWAIT 01000 Address space waiter bit

If set then RELPTB will call UNPEND with the PTBL
address as the key to wake up anyone waiting on
this PTBL's address space.

3.8.2 Process Table Extender (PEXTN)

The process table extender holds information not critical to the
management of AOS/VS when the process is swapped out. It is
allocated in ring 1 address space and is swapped out with the
process. The table below defines the offsets used by Process
Scheduling.

Symbol/Value Meaning

PSQCT 0 Active system path count
Indicated the number of CBs running on behalf of
the process including system calls and daemons.

PSQMX 1 Maximum active system calls
Set at ?PROC to limit the number of system calls
that the process can have active at the same time
within the system. It is compared to PSQCT to
determine whether to start a system call or link
the TCB making the request on the chain pointed
to by PSWD.W.

Licensed Material 3-23 Property of Data General

PSWD.W

PSL
PSBRS.W

PSIOC

PCEXV.W

PMARG.W

PMACO.W
PMACl1.W
PMAC2.W
PMAC3.W
PMPC.W

PUGFH.W

12

17
22

44
162

206

210
212
214
216
220

464

Link of TCBs waiting to start system calls
Contains the address of the first TCB whose
system call couldn't start immediately. The TCBs
are linked through TCB offset TSLK.W. Set to
zero if no TCBs have calls waiting.

Sub-slice residue

Start of array of Segment Base Registers (SBRs)
The SBRs of rings 1 to 7 are kept here for MAPCON
and REMAPCON. The SBR of ring N is at offset
PSBRS+2*(N-1).

Count of outstanding MCA and LPB I/Os
Used to see if a process can be swapped out.

Addr of TCB whose extended state is current
When a program uses the extended task state save
area the scheduler keeps the address of the TCB
of the last task that had its variables moved
into the global area. If the same task is the
next to run with a save area then no save/restore
is needed even if other tasks without the save
area have run.

First Dblword of stack return block
When the user enters the system wvia an LCALL the
return block from the stack in the user's ring is
copied into words PMARG.W to PMPC.W in the
extender. Used to construct a return block on
the ring 0 stack to return to the user. Copied
into the TCB also.

ACO from return block

ACl from return block

AC2 from return block

AC3 from return block

PC + Carry from return block (see also PMARG.W)
Used to determine the ring of the caller by
extracting it from the PC. The length of the
return block is PMPC.W-PMARG.W+2.

Address of ring 3 GIS fault handler
Restored during RSTPRC.

Licensed Material 3-24 Property of Data General

3.8.3 TCB - Task Control Block

Each task in the user process has a TCB. There is at least one
task and one TCB for each process. The TCB holds the state of
one execution path of the process across all of the non-system
rings. State data saved for each task includes the stack
pointers, the PC and register contents, the arithmetic
overflow/underflow detection flag, extended save area and other
task specific data.

TCBs are created and managed in ring 3 by the Agent for the
process. They are scheduled by the PTBL scheduler in ring O.
The offsets used by Process Scheduling are described below.

Symbol Value Meaning
TLNK.W 0 Forward 1link among TCBs

Used (with TLNKB.W) to maintain the queue of TCBs
in ring 3. Modified by the process scheduler to
implement round-robin scheduling of equal
priority tasks.

TLNKB.W 2 Backward 1link among TCBs (see TLNK.W)

TSTAT 4 Task status word (see individual bits below)

TCBFL 5 Task flag word (see individual bits below)

TSTACKS.W 6 Start of per ring stack save areas
For rings 1 to 7 each task has its own stack.
The information saved for each ring is the stack
overflow handler address, frame pointer, stack
pointer, stack 1limit, and stack base. The start
of each ring's stack save area is at
TSTACKS.W+10.*(ring-1). Used in TSKSAV and
TSKRST when a task's stack state is saved and
restored.

TOVF.W 114 Overflow mask for task
Saved each time the task enters the Agent or the
system. Copied from the PTBL extender if the
task directly entered a ring O gate.

TACO.W 116 ACO save area for task (see TOVF.W)

TACl.W 120 ACl save area for task (see TOVF.W)

TAC2.W 122 AC2 save area for task (see TOVF.W)

TAC3.W 124 AC3 save area for task (see TOVF.W)

TPC.W 116 PC save area for task (see TOVF.W)
Used to determine the ring of the PC of the tas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>