-§200

RDOS USER

019-000048-04

»
)
§
ay
O
»n
]
Q
|~
S
—
)
S
©
w

STUDENT HANDOUT

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGCAND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE-
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE-
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
MANAP, microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE
MYV /4000, ECLIPSE MV/6000, and ECLIPSE MV /8000 are U.S. registered
trademarks of Data General Corporation. AZ-TEXT, DG/L, ECLIPSE
MV /10000, GW /4000, GDC/1000, GENAP, PRESENT, REV-UP, SWAT,
TRENDVIEW, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN,
BusiTEXT, and XODIAC are U.S. trademarks of Data General Corporation.

Copyright © Data General Corporation, 1980, 1982, 1983
' All rights reserved

S200

RDOS USER

019-000048-04

]
O
2
3
»
—y
q
c
2
b
Q
3
ﬂ

STUDENT HANDOUT

W
5200
) | RDOS USER
COURSE OUTLINE

I ARCHITECTURAL OVERVIEW/FRONT PANEL OPERATION

A. MEMORY

KINDS

UNITS :

SIZES OF PHYSICAL MEMORY
LOGICAL SUBDIVISIONS

PN~

B. CENTRAL PROCESSING UNIT (CPU)

1. REGISTERS AND FLIP FLOPS

e PC e ACCUMULATORS
e IR e CARRY
e DECODE LOGIC e ION
e ALCUNIT e MAP
2. OVERVIEW OF CAPABILITIES
e ARITHMETIC e DEVICEI/O

e CHANGE PC e MEMORY 1/0

< : ~ C. PERIPHERALS

1. CONTROLLERS

e 1/0 BUSS e REGISTERS
e DEVICE CODES e BUSY/DONE

2. DEVICES
@ e RUDIMENTARY DEVICES ($TTI $TTO $LPT DPO)
D. FRONT PANEL OPERATION

ADDRESS/DATA LIGHTS

DATA SWITCHES

OFF/ON/LOCK

START/CONTINUE

RESET/STOP

EXAMINE/EXAMINE NEXT

DEPOSIT/DEPOSIT NEXT

EXAMINE/DEPOSIT ACCUMULATORS

PROGRAM LOAD ' :

FUNCTION LIGHTS: (ROM FETCH INDIRECT MAP ION . . .)

SComNOO AWM

-—

- N =

PN~ =

N =

PON=

GOPrON~

BOOTSTRAPPING, STARTUP, SHUTDOWN *
ORIENTATION & PROGRAMS

INSTALLATION OF SUCCESSIVELY MORE POWERFUL PROGRAMS
PGM LD/BOOT.SV (HIPBOOT)

POSITIONING TO THE BOOTSTRAP PROGRAM

DISK: POWER & LINE SWITCHES, TOGGLING
TAPE: LOAD SWITCH OR RESET REWIND ON-LINE

HOW TO PERFORM THE BOOTSTRAP

DISK
TAPE

STARTUP FROM DISK

FILENAME: “ENTER SYSTEM NAME"’

DATE: “ENTER CURRENT DATE"

TIME: “ENTER CURRENT TIME"’ ,
PROGRAMS SOUGHT ON DISK: CLI. <SV,ER,OL >, BOOT.SV

SHUTDOWN FROM DISK

HALT VARIOUS SYSTEM PROCESSES: SPOOLING, FOREGROUND, LOG
GET ACCESS TO THE COMMAND LINE INTERPRETER
RELEASE MASTER DIRECTORY

INTRODUCTION TO OPERATING SYSTEMS — RDOS *
THE NEED FOR OPERATING SYSTEMS: A HISTORIC OVERVIEW

ORIGINAL PROGRAM DEVELOPMENT

THE FIRST UTILITIES - - EDITOR & ASSEMBLER

THE SIMPLE MONITOR SYSTEM

MODERN OPERATING SYSTEM TECHNIQUES FOR EFFICIENCY

ELEMENTS OF MODERN OPERATING SYSTEMS

PRIMARY GOAL: HELP USER MANAGE RESOURCES
I/0 AND DEVICE MANAGEMENT

FILE MANAGEMENT

MEMORY MANAGEMENT

PROCESS MANAGEMENT

20

N

C. RDOS ANALOGUES TO THE MODEL OPERATING SYSTEM

PROCESS
MEMORY
FILE AND I/0 MANAGEMENT

wn =

Iv. INTRODUCTION TO THE COMMAND LINE INTERPRETER (CLI) *
A. DEFINITION OF CLI
B. THE CLI COMMAND STRUCTURE

COMMANDS AND ARGUMENTS
GLOBAL & LOCAL SWITCHES

CLI PUNCTUATION

EXPANDERS: IN-LINE, MULTI-LINE
RDOS FILE NAME TEMPLATES
SPECIAL SYMBOLS

oSN~

C. CLI PERCENT VARIABLES
D. INDIRECT FILES
E. MACRO FILES

KREXXEREXEXXXEREXEXRERRRRX*X CL' VOCABULARY (AL XA R AR AL LSS LR E X

BOOT TYPE GSYS STOD LOG ENDLOG PUNCH GTOD
LIST REV MESSAGE PRINT XFER SDAY

HEREREEREEREE LR REEEEXEXREREREERXRREREREEREXERRRRERXRLXRRERERREERRXRERRERERERR

LAB EXERCISE: BOOTSTRAPPING & CLI

DISK BASICS/RDOS & INFOS FILE STRUCTURES *
DISK BASICS

A PHYSICAL DISK BLOCK

e SECTOR X SURFACE X TRACK (CYLINDER)

e SYNC BITS, ADDRESS, DATA, CYCLIC CHECK SUM
e DTOS/DDOS WRITES FORMATTING INFO

PRELIMINARY DISK BLOCKS

e HIPBOOT (BOOT.SV) BLOCKO& 1
e PHYSICAL DISK MANAGEMENT INFORMATION BLOCK 3

e REMAP AREA (BAD DISK BLOCKS) BLOCK 4

e SOME UNUSED INITIAL BLOCKS : BLOCK2 &5
e RDOS REFERS TO THESE PHYSICALLY

RDOS FILE STRUCTURES
SEQUENTIAL

255 DATA WORDS/BLOCK AND A LINK ACCESS WORD
EXPANDABLE

MEDIUM OVERHEAD, SLOWEST ACCESS
SEQUENTIAL ACCESS, NO DMA

CONTIGUOUS

256 DATA WORDS/BLOCK AND GARENTEED PROXIMITY
NONEXPANDABLE, FIXED ALLOCATION (EOF ON WRITE)
MINIMUM OVERHEAD, FASTEST ACCESS

'RANDOM ACCESS, DIRECT MEMORY ACCESS (DMA)

BEST FOR VERY LARGE FILES

RANDOM

256 WORDS/DATA BLOCK AND A FILE INDEX BLOCK
EXPANDABLE

MAXIMUM OVERHEAD, MEDIUM SPEED

RANDOM ACCESS, DMA

INFOS FILE STRUCTURES OVERVIEW

SAM: e SEQUENTIAL ACCESS METHOD
e CONTIGUOUS ALLOCATION & RANDOM OVERFLOW

VI.

RAM: ® RELATIVE ACCESS METHOD

ACCESS VIA RELATIVE RECORD NUMBER

ISAM: e INDEXED SEQUENTIAL ACCESS METHOD
e SINGLE DEYED ACCESS VIA INDEX FILE (.1X)
e DATA.IX = (DATA.VL INDEX.VL) = (DATA INDEX)
e MULTIPLE DATA & INDEX FILES

DBAM: DATA BASED ACCESS METHOD

MULTI KEYED ACCESS
MULTI LEVEL KEYED ACCESS
DATA.IX - (DATA.VL INDEXN.VL) = (DATA INDEXN)

RDOS DIRECTORY STRUCTURE

PRIMARY PARTITION : CONTROLS ENTIRE DISK PLATTER

DATA ENTRY BLOCKS

PRIMARY PARTITION SYSTEM DIRECTORY FILE SYS. DR
SYS.DR — A FILE INDEX BLOCK

SYSTEM DATA BLOCKS — DATA ENTRY BLOCKS

MAP.DR — BIT MAP DISK BLOCK ALLOCATION CONTROL

CONTENTS : USER FILE DESCRIPTIONS (UFD'S, 14 MAX)
CURRENT UFD'S IN DATA ENTRY BLOCK (FIRST WORD IN BLOCK)
TOTAL UFD’S IN DATA ENTRY BLOCK (NEXT TO LAST WORD)

. USER FILE DESCRIPTIONS (UFD)

FILENAME & EXTENSION

ATTRIBUTES & CHARACTERISTICS

LINK ATTRIBUTES & CHARACTERISTICS

512 * RELATIVE BLOCKS + LAST BLOCK BYTES = TOTAL BYTES
WORD 12: POINTER TO DATA BLOCKS

'DATE & TIME CREATED

TIME LAST ACCESSED
USE COUNT
DCT LINK

FILENAME RESOLUTION

FRAME SIZE (FS) & HASH VALUE OFFSET (HVD)
FILENAME SEARCH WITHIN DATA ENTRY BQOCK

NOT FOUND, TOTAL = 14, HVO = HVO + FS, SEARCH AGAIN
NOT FOUND, TOTAL < 14; FILE NOT FOUND ERROR

VIL.

PN~

FILENAME DELETION

HASH & SEARCH DATA ENTRY BLOCKS
DECREMENT CURRENT UFD’S COUNT

NULL FIRST TWO CHARACTERS IN FILENAME
ZERO BITS ALLOCATED IN MAP.DR

SECONDARY PARTITION STRUCTURE

e USER NAMED UFD IN PRIMARY - SYS.DR FOR SECONDARY

e SYS.DR: FILE INDEX BLOCK FOR SECONDARY PARTITION DATA
ENTRY BLOCKS

e DATA ENTRY BLOCKS HOLD SECONDARY PARTITION’S UFD’S

e MAP.DR : ALLOCATION CONTROLL (INTERNALLY & EXTERNALLY)

SUBDIRECTORY STRUCTURE

e USER NAMED UFD IN CURRENT DIRECTORY - SYS.DR FOR DIRECTORY
e SYS.DR:FILE INDEX BLOCK FOR DIRECTORY'S DATA ENTRY BLOCKS.
e MAP.DR - POINTS TO PARENT MAP.DR FOR SHARED ACCESS
REFERENCES WITHIN/BETWEEN PARTITIONS & DIRECTORIES

e DCB'S — INITIALIZATION & RELEASE

e LINKS — REFERENCES ACROSS DIRECTORY/PARTITION BOUNDARIES
e LINKUFD'S, LINK ATTRIBUTES & CHARACTERISTICS

ALTERING THE INFORMATION ON DISK — DSKED.SV

DSKED.SV — STAND ALONE DISK EDITOR (BOOT'ED)

ADDRESS SPECIFICATION (BLOCK:OFFSET/CONTENTS)

HASHING (FRAMESIZE; FILENAME=)

HALT DSKED, UPDATE DISK (ESC 2Z)

LOCAL COMMANDS:

RIGHTSLASH ASTERISK LINE FEED LEFT ARROW
APOSTROPHY EQUAL SIGN UP ARROW CARRIAGE RETURN

Vi

|
)

S

\

BUILD CRAND RENAME GDIR CCONT CREATE FPRINT INIT CHATR FILCOM
CPART LDIR CHLAT DIR MDIR CLEAR LINK DISK

KRR EEERER AR X ERERREERERE AR RERL R R RRRRXRARRREREEAXXREERERRXREREERR X RN

LAB : MORE CLI AND DSKED LAB

Vil

VI

e

PON= W~

PO~

PROGRAM DEVELOPMENT *
SOURCE CREATION : EDIT.SV

OPERATING PRINCIPLES
EDIT COMMANDS

e FILE ASSOCIATION : e CP POSITIONING
e INPUT/OUTPUT e SEARCH

e DELETE e DISPLAY

e MACRO IMPLEMENTATION

COMMON PROBLEMS

COMPILATION

LANGUAGE TRANSLATOR (HIGH LEVEL - ASSEMBLY)
EXTERNAL REFERENCES & RUNTIME SUPPORT LIBRARIES
SYNTACTICAL ERRORS — LISTING FILES

ASSEMBLY

SYMBOLOGY TRANSLATOR (ASSEMBLY - BINARY)

PASS 1: TRANSLATION & SYMBOL TABLE CONSTRUCTION
PASS 2 : INTERNAL RESOLUTION — FORWARD REFERENCES
THE RELOCATABLE BINARY FILE (.RB)

RELOCATABLE LOADING

RELOCATABLE BINARY (.RB) > CORE IMAGE SAVE FILE (.SV)
CODE PLACEMENT IN .ZREL AND .NREL

ENTRY POINTS LOGICALLY CONNECTED TO EXTERNAL REFERENCES
UNRESOLVED EXTERNALS AND THE LOAD MAP

EXECUTION & TEST

LOGICAL ERRORS — LOCATION WITHIN LOAD MAP
DEBUGGER OVERVIEW

OTHER RDOS EDITORS

SEDIT / OEDIT / MEDIT / SPEED / LFE OVERVIEWS

Vil

)

1. SEDIT — SINGLE USER, SINGLE LOCATION SYMBOLIC EDITOR
2. OEDIT — SINGLE USER, SINGLE LOCATION EDITOR
3. MEDIT — MULTIUSER, TEXT EDITOR (ESSENTIALLY EDIT)
4, SPEED — SINGLE USER, MULTIBUFFER SUPER TEXT EDITOR
5. LFE — SINGLE USER, SINGLE SCAN, LIBRARY FILE EDITOR
X. PROGRAMMING TECHNIQUES TO MANAGE MEMORY

1. CHAIN EXECUTION OF PROGRAMS

e MANIPULATION OF ENTIRE PROGRAMS
e DESTRUCTIVE MEMORY LOADS
e EXECUTION AT SINGLE PROGRAM LEVEL.

2. SWAP EXECUTION OF PROGRAMS

e SUBORDINATE EXECUTION OF ENTIRE PROGRAMS
e NONDESTRUCTIVE MEMORY LOADS
e PROGRAM LEVELS & SWAP FILE INDEX BLOCKS

3. OVERLAY

PORTION OF USER SPACE LOADED WITH CODE FROM DISK
ROOT CODE & OVERLAY AREAS WITHIN .SV

SEGMENTS & OVERLAYS WITHIN .OL

SIZES & ASSOCIATIONS (SEGMENT VS. OVLYAREA)

RLDR CONFIGURATIONS

KRR XEEREEREEERRRERRERRERERRXX NN VOCABULARY EXTEEEE TR E LR R R S R E LR LY LR SR L

PROGNAME
ASM.SV
XREN.SV
EDIT.SV
OEDIT.SV

NSPEED.SV MAC.<SV.PS> SEDIT.SV
SPEED.<SV,ER> CLG.SV OVLDR.SV
ALGOL.SV LFE.SV FORT.SV
RLDR.<SV,0L> FIV.SV MEDIT.RB
CHAIN POP

PREpErgagrgngagagngrggngrgageg g R E XTI R T AL E X X X A R R L R L R R AR AR R R AR L R L

LAB : TEXT EDIT, PROGRAM DEVELOPMENT, SEDIT

IX

Xl.

XI1.

N -

O NOORW

agrLON =

PN~

SYSTEM INSTALLATION ON A FORMATTED DISK *

THE RDOS STARTER TAPE [SYSGEN MANUAL 3—1]

MT 0:0 TBOOT.SV XFER FORMAT
MTO:1 CLL.<SV,ER,OL> DUMP
BOOT.SV, BOOTSYS.SV
MTO:2 BOOTSYS.SV XFER
MTO:3 BOOTSYS.OL , DUMP/A
MT0:4 DKINIT.SV XFER
MTO:5 BOOT.SV XFER
MTO:6 RDOS UTILITIES DUMP
MTO:7 RDOS LIBRARIES DUMP
DISK INITIALIZER [SYSGEN CH 9]
FUNCTIONS

e DISK TYPE, FRAME SIZE, BAD BLOCK TABLE SIZE
e TEST FOR BAD BLOCKS, BUILD REMAP AREA

COMMANDS

o FULL — FULLY INITIALIZES THE DISK

e PARTIAL — INSPECTS FOR BAD BLOCKS |

e ENTER — UPDATE OLD REMAP AREA WITH NEW BAD BLOCKS

o LIST — DISPLAY DISK STATUS, REMAP & FRAME SIZES,
BAD BLOCKS

e STOP — HALTS DKINIT, REHOMES DISK HEADS

INSTALLATION OF RDOS SOFTWARE [SYSGEN CH 3]

INITIALIZE THE DISK :

INSTALL HIPBOOT (BOOT.SV) :

INSTALL STARTER SYSTEM & ASSOCIATED SOFTWARE

THE UTILITIES DIRECTORY

THE SYSGEN DIRECTORY (ALSO: EDIT, SYSGEN, RLDR.<SV,0L>)

SYSTEM GENERATION * [SYSGEN CH 5]

PROGRAMS AND FILES

SYSGEN.SV, RLDR.<SV,0L> THOSE EXECUTING

CLI.CM, SYS000.RB THE TEMPORARIES
*RDOS<A,B,C,I,0>.LB THOSE REFERENCED FOR CODE
SYSNAME.<SV,OL,MP,SG> - THOSE CREATED

B. THE PROCESS/MECHANICS OF SYSTEM GENERATION

SYSGEN INVOKATION : *SYSGEN SYSNAME.</S SG/V MP/L>
CURRENT DIALOGUE QUESTIONS — ANSWERS

SYS000.RB LOADING WITH *RDOS<A,B,C,1.0>.LB
GENERATION OF SYSNAME.<SV,OL,MP,SG>

PON=

C. SYSTEM COMPONENTS, THEIR FUNCTIONS & SIZES

1. STACKS — TOTAL CONCURRENT SYSTEM PROCESSIES
— 310 OCTAL WORDS (OW), WAIT STATE WHEN INSUFFICIENT

2. CELLS — TOTAL CONCURRENT SYSTEM CALLS (FG & BG)
— 200W, TCB WAIT STATE WHEN INSUFFICIENT

3. BUFFERS — SYSTEMS CAPACITY TO HOLD DATA IN CORE
— 416 OW, SLOWER OVERALL MORE DISK ACCESSES

4. UFT — SYSTEM CAPACITY FOR DISTINCT I/0 TRANSPORT
— 50 OW/CHANNEL, ERROR REJECT WHEN INSUFFICIENT

5. DCB ~ — TOTAL CONCURRENTLY ACCESSABLE DISK DIRECTORIES
O v ; - — 416 OW, ERROR REJECT WHEN INSUFFICIENT

6. OTHER CORE RESIDENT COMPONENTS |

e SCHEDULER o INTERRUPT HANDLING
e SYSTEM CALL PROCESSOR e 77 OVERLAYS (4000W /)
e DRIVERS & SERVICE ROUTINES '

X111, SYSTEM UPDATES / PATCH FACILITIES

. THE STANDARD UPDATE TAPE
1. MAJOR/MINOR REVISION NUMBERS & UPDATE NUMBER (RDOS 19.84)
2. UPDATE FILE, PATCH FILES, PATCH MACROS.

'B. ENPAT UTILITY

PATCH = A ONE WORD CHANGE TO A .SV OR .OL FILE

2. ENPAT ALLOWS CODING OF PATCH DATA (CONDITIONALLY/
UNCONDITIONALLY)

-
.

X

C. PATCH UTILITY

PATCH INSTALLS PATCH DATA CREATED VIA ENPAT
2. COMMAND STRUCTURE :

——l

e PATCH SAVEFILENAME/S PATCHFILE.PF/P LOADMAR/L

3. GLOBALS: /I SUPRESS COMMENTS
' /N NO ACCOMPANYING LOAD MAP FILE

XIV. MONITORING AN RDOS OPERATING SYSTEM
A. ASPECTS OF TUNING
REQUESTED DURING SYSGEN

RESOURCE ALLOCATION RECORDS VS. ACCEPTABLE RESULTS
CLI MECHANICS

WN =

e TUON SYSNAME
e TUOFF
e TPRINT/L/O SYSNAME

XV. SYSTEM BACKUP : STARTER TAPE EMULATION
A. MECHANICS OF TRANSFERS (TAPE & DISK—DISK)
FILE CONTENTS ONLY TRANSPORTED

ONE DISK FILE/COMMAND: SOURCE DESTINATION
CONTENTS BOOT‘ABLE FROM TAPE

1. XFER

2. DUMP/LOAD UFD & CONTENTS TRANSFERRED TO TAPE @
MANY DISK FILES/MAG TAPE FILE
DIRECTORY STRUCTURE MAINTAINED

NOT BOOT'ABLE

THREE MAG TAPE FILES/COMMAND

ALL FILES IN CURRENT DIRECTORY TRANSPORTED
FASTEST & MOST CONDENSED '

NEW TAPE VOLUME CONTROLS

3. FDUMP/FLOAD

4. MOVE DIRECTORY TO DIRECTORY TRANSPORT

UFD & FILE CONTENTS TRANSFERRED
DIRECTORY SPECIFIER OR FILENAME TEMPLATES
GLOBALS : /A/D/K/L/R/V

LOCALS : MM—DD-YY/A, MM—DD-YY/B, NAME/N

J

Xl

B. A BACKUP TAPE MACRO

MESSAGE ANNOUNCEMENT — BACKUP IN PROGRESS
EMULATION OF THE RDOS STARTER TAPE (FILES 0 —5)
DUMP ALL SOFTWARE TO MTO: (6,7) [BELTS & SUSPENDERS]
OR FDUMP ALL SOFTWARE TO MTO: (0,3) [ON A NEW TAPE]
TERMINATION MESSAGE ‘

agrLON =

EEEREEEXREXE R XXX R XX ERRRRR* VOCABULARY FREEXEEEFXEAXRERXXEXFEREREXEXRRN

DUMP FDUMP MOVE TUOFF ENPAT EQUIV LOAD FLOAD TUON
TPRINT PATCH SYSGEN '

0 EXEIEEEEEREEEE RS S AR LSS EEEL R RS RS LR R R R A SRR R RS SRR LR R R RIS SRR R RS LR
{

LAB: SYSTEM BACKUP MACRO & SYSTEM INSTALLATION

Xl

XVI.

XVII.

PN =

PWON~

agpLON=

PON=

RDOS SPOOLING
THE OUTPUT PROCESS

USER DATA BUFFER OR SOURCE
RDOS DATA BUFFER

DEVICE DATA BUFFER

SPOOL FILES / OPTIMUM CPU TIMING
INTERRUPT DRIVEN DATA REQUESTS

CLI CONTROL COMMANDS & SPOOL'ABLE DEVICES
e SPDIS DEVICENAME e SPKILL DEVICENAME eSPEBL DEVICENAME

$DPO $LPT(1) $PTP(1) $TTO(1)
$TTP(1)

SPOOL FILE LOSS & RECOVERY

UNUSED DISK ALLOCATION

UNDELETABLE WITHOUT FILENAMES

FULL INITIALIZATION / BACKUP RECOVERY
SECONDARY PARTITION BOOTSTRAP REMEDY

RDOS PROCESS MANAGEMENT : FOREGROUND / BACKGROUND
MAP UNIT ADDRESS TRANSLATION

5+ 10 BIT PROGRAM COUNTER

32 SLOT TRANSLATION TABLE CONTAINING 7 BIT PHYSICAL ADDRESSES
7+ 10BIT TO ACCESS PHYSICAL MEMORY

10 BIT OFFSET INTO PHYSICAL PAGE (1K)

EACH PAGE PROTECTED:VALIDITY, READ, WRITE, /0, DATA CHANNEL

RDOS TRANSLATION TABLE MANIPULATION

PROGRAM TABLES LOAD MAPA, MAPB, DATA CHANNEL MAP
FOREGROUND: ACTIVATE MAPA

BACKGROUND: ACTIVATE MAPB

EVENTUAL 1K PAGE SHUFFLE VS. LOGICALLY SEQUENTIAL PAGES
RDOS DUAL PROCESSES : FOREGROUND / BACKGROUND

CORE CONFIGURATION (MAPPED / UNMAPPED)

e USER SPACE / RDOS / PAGE ZERO

e USER STATUS TABLE & TASK CONTROL BLOCKS
e UNMAPPED LOADING CONSIDERATIONS (/Z /F)

Xiv

| (’\
S

FGND

N

L

| 2. PROCESS PRIORITIES
e EQUAL — ROUND ROBIN
e DEFAULT — FOREGROUND HIGHER (REAL-TIME APPLICATIONS)
3. CLI CONTROL
e EXFG/E o GMEM e FGND
e SMEM e CNTRL F
XVIIL. RDOS EXTENDED MEMORY : VIRTUAL TECHNIQUES
A. DEFINITI ON OF EXTENDED MEMORY / HYPERSPACE
1. MEMORY IN GROUND BEYOND USER ADDRESS SPACE
2. HYPERSPACE MAY HAVE: DATA -- WINDOW MAPPING CODE — VIRTUAL
OVERLAYS
B. WINDOW MAPPING & VIRTUAL OVERLAYS
1. WINDOW DEFINITION IN USER SPACE (BOTH)
2. EXTENDED MEMORY HOLDS CODE OR DATA |
3. REMAP — PHYSICAL PAGE ADDRESS TRADE IN TRANSLATION TABLE
XIX. RDOS MALFUNCTIONS & RECOVERY
A. TRAP — A MAP VIOLATION
1. $TTO(1) = ACCUMULATORS, PROGRAM COUNTER
2. PROGRAM COUNTER = LOCATION OF INSTRUCTION IN ERROR
3. (F)BREAK.SV CREATED |
B.

PANIC — E’XCEPTIONAL SYSTEM DATA [RDOS REF MAN.APPENDIX G]

$TTO = ACCUMULATORS, PANIC CODE

SPDIS SPKILL GMEM EXFG (F)BREAK.SV PANIC TRAP SPEBL

SMEM SAVE

IR R SRS R XS LI R R XL S X A XXX SRR XL R E AR AR IR AX R RS R E XL IS S LY L X

LAB : SYSGEN, TUNNING FILE REPORT, CARRY OVER

XV

$200
RDOS USER
MODULE 1

ARCHITECTURAL OVERVIEW/FRONT PANEL OPERATION

Module 1

OBJECTIVES

Upon successful completion of this module you will be able to:

*

DEFINE THE UNITS OF INFORMATION WITHIN MEMORY

DEFINE THE PHYSICAL SIZES OF MEMORY WHICH RDOS CAN MANAGE
DEFINE THE LOGICAL SUBDIVISIONS WHERE RDOS RESIDES, WHERE THE
FOREGROUND/BACKGROUND PROGRAMS RESIDE

DESCRIBE THE INTERNAL REGISTERS IN THE CENTRAL PROCESSING UNIT
WHICH ARE CONTROLLED VIA THE FRONT PANEL

ENUMERATE THE CENTRAL PROCESSING UNIT CAPABILITIES WHICH RDOS
BOTH RELIES UPON AS A PROGRAM AND MANAGES AS AN OPERATING

SYSTEM :
EXPLAIN THE SIZE OF USER ADDRESS SPACE USING CENTRAL PROCESSING

"UNIT REGISTERS

EXPLAIN RDOS’S REAL TIME DEVICE CONTROL VIA DEVICE CODES,
INTERRUPTS, THE 1/0 BUSS, AND DEVICE CONTROLLER BOARDS
DISTINGUISH BETWEEN RDOS SINGLE AND MULTIPLE FILE DEVICE CONTROL
LIST THE RDOS DEVICE NAMES '

L-l

96K

64K

32K

ARCHITECTURE OVERVIEW

MEMORY
MAX , | on} | map
HYPERSPACE PC: 15 BITS : ~
- e | PERIPHERALS
0 — __ [rwrc
i e] IR:16BITS] feamRv) === CONTROLLERS DEVICES
FOREGROUND e ACO: 16 BITS
32K | DECODELOSEY | ac2 Rl
BACKGROUND ALCUNIT AC3: '
0
32K - MEMORY BUSS $TTO
RDOS ACCUMULATOR 1/0
B
9 P,
MEMORY /// P ST
/ $CDR
DIRECT MEMORY ACCESS (DMA)
e CORE/SEMICONDUCTOR INTERFACE
e BITS, BYTES, WORDS A 16 BITS
B DETAILED
| c CONTROLLER
BUSY |DONE
$LPT
SLPT
BYTE DEVICES
DATA CHANNEL

DEVICES

FRONT PANEL OPERATION

RUN o
POWER INSTRUCTION | o] [<
oN — - - — =
B FETCH EXECUTE
ADDRES: 1" o o o o | e o o | o o o | o o o ° o
OFF Lock.
o o | « o © 0o | o o o | 0o o o | o o o oeren
CAl o 2 3 s L] 7 L] 9 0 " 12 3 4 it}
el
© PP PP PP PG OO °
oeposry, 480 act acz acs RESEY START oePonT EXAMINE MEMORY STEP PROGRAM LOAD
O cwwd®@—O@—O@—061 ©@ ©© 6 @ @ O @)
sTor COMTINUE DEPOOIT MEXT EXAMINEMIXT INST STEP CHANMEL START

(b DATA GENERAL CORPORATION |Nova| |

P
ST v D— ’
0
ez

NOVA

N
{UDDATA GENERAL CORPORATION
ECLIPSE

ADDRESS/DATA LIGHTS

°

e DATA SWITCHES
e OFF/ON/LOCK"

e START/CONTINUE
e RESET/STOP

ECLIPSE

EXAMINE/EXAMINE NEXT
DEPOSIT/DEPOSIT NEXT
EXAMINE/DEPOSIT ACCUMULATORS
PROGRAM LOAD

FUNCTION LIGHTS

1-2

$200
RDOS USER
MODULE 2

BOOTSTRAPPING/STARTUP/SHUTDOWN

N/

MODULE 2
OBJECTIVES

BOOTSTRAPPING STARTUP, SHUTDOWN

Upon successful completion of this module you will be able to:

POWER UP & DOWN ALL DGC COMPUTING EQUIPMENT
* START RDOS RUNNING, THE REQUIRED SOFTWARE, AND
THE PROCESS

BOOTSTRAPPING, STARTUP, SHUTDOWN

?Q%W\Aﬂeaa(
MEMORY |-t— PGM LD

TBOOT

PlaHen

Whén HIPBOOT is loaded, it may be directed to load aﬁy_RD.OS‘ System

FILENAME: RDOS

MEMORY \-‘
, RDOS
HIPBOOT |« . ‘
, SYSTEMS |)
‘ e e
| — TN
e MASTER
DIRECTORY

~ Once loaded, RDOS is associated to the disk until shutdown.

BOOTSTRAPPING; STARTUP, SHUTDOWN

Reposition to a Bootstrap Program

Disk ——Power Switch
(HIPBOOT) OFF -~ ON
(ouch!)
Tape —— Reset
(TBOOT) ~ LOAD
ON-LINE

How to perform the Bootstrap

Disk = Set 100033
PGM LD

Zebra ——Set 100027
PGM LD

NOTICE Bit O & Device Codes

Line Switch
OFF - ON
(sloooow)

Reset
REWIND
ON--LINE

Tape

Paper Tape

—Toggling

Stop, Reset
ACO set 1400
061333, Deposit
Inst step

Set 100022
PGM LD

Set 000012
PGM LD

2-2

Start Up

SHUTDOWN:

BOOTSTRAPPING, STARTUP, SHUTDOWN

FILENAME?
DATE (MM/DD/YY)
TIME (HH:MM:SS)

ACCESS CLILSV

CLI.OL
R
R .
FG TERM (HALT FOREGROUND)
R
ENDLOG (HALT LOG)
R

RELEASE %MDIR%
MASTER DIRECTORY RELEASED

2-3

$200
RDOS USER
MODULE 3

INTRODUCTION TO OPERATING SYSTEMS

MODULE 3
OBJECTIVES

INTRODUCTION TO OPERATING SYSTEMS
Upon successful completion of this module you will be able to:

* EXPLAIN THE NEED FOR OPERATING SYSTEMS AND THE
NECESSARY DEVELOPMENT OF SOFTWARE TO ACCOMODATE
OPERATING SYSTEM CONSTRUCTION

* DESCRIBE THE ELEMENTS OF MODERN OPERATING SYSTEMS
AND HOW THEY AID THE USER IN MANAGING A COMPUTING
ENVIRONMENT

* DEMONSTRATE THE RDOS ANALOGY TO THE MODEL
OPERATING SYSTEM ‘

OPERATING SYSTEMS

M

«(@v@»

I ‘V woowr M 3
RO 0O

o

MEMORY | 1/O & DEVICE
MANAGEMENT | MANAGEMENT

e e - ek e - —— —]

FILE ' PROCESS
MANAGEMENT ' | MANAGEMENT

OPERATING SYSTEM

'|COMPILERS INTERP

ASSEMBLE | LOADERS

EXPANDERS | -

peBuGGeRs| MACRO | epiToRS

USER

PROGRAMS

PROGRAMS

UTILITY

USERS

THE SIMPLE MONITOR SYSTEM

SYSTEM
MONITOR

CARD LINE
PROCESS PRINTER
! PROCESS

: LINE
CARD PRINTER

DEVICE . _

DRIVER DEVICE
DRIVER

_ CDR LPT

DECIDES WHAT IS EXECUTED NEXT

€t

A
USER'
MONITOR

[]

[]

.
INPUT FILEB

[

ELEMENTS OF A MODERN OPERATING SYSTEM

|PROCESS MANAGER

B Cc
USER { USER
MONITOR MONITOR
7/

°

.

°
COMPUTE FILEB
: °

X2

®
OUTPU'l; FILEB

L]
[4

SYSTEM
MONITOR

MEMORY MANAGER

:

USERC

USER F

USER A

USER B

MEMORY

FILE& I/O
MANAGER

BUFFERED UNBUFFERED

1/0

/o SPOOLING

l

Yo

DEVICE DRIVERS

¢

INTERRUPT
PROCESSING

CARDS

MAG

TAPE

EE

KEYBOARD

NOTES

33

RDOS MEMORY MANAGEMENT

CHAIN: Program invoking via destructive write to memory from disk.

DESTRUCTIVE
WRITE —
A.SV ‘
« B.SV
CHAIN B.SV |
END | _— ' ——

SWAP: Program invoking with previous program execution “‘pushed’’ to disk
DESTRUCTIVE

WRITE ’)

- ASV B.SV

SWAP B.SV
_ END _____',’4\
MEMORY CURRENT Pl i
EXECUTION SAVED

OVERLAY: Code destructively written to local memory area.

= e

DESTRUCTIVE
WRITE

A.SV
OVLOD 0V1

AREA ‘ -~
END ovo)

AN
)

NOTES

35

RDOS FILE & I/0 MANAGEMENT

e SINGLE FILE DEVICES
DEVICES CONTAINING INDIVISABLE INFORMATION

EX: — CARD READER READS 80 COLUMNS
— LINE PRINTER WRITES 80 or 132 COLUMNS
— PAPER TAPE PUNCH WRITES ONE CHARACTER

e MULTIPLE FILE DEVICES
DEVICES CONTAINING DIVISABLE INFORMATION

EX: — MAG TAPE REELS CONTAIN MANY FILES
— COMMUNICATION MULTIPLEXOR HAS MANY LINES
TO TERMINALS
— DISK DRIVES CONTAIN MANY DISK FILES
— MULTICOMMUNICATIONS ADAPTER HAS MANY
LINES TO CPU'S.

3-6

/’(m

RDOS SINGLE FILE DEVICE NAMES

$CDR(1)
$DPIT
$pPO t
$LPT(1)
$PLT(1)
$PTR(1)
$PTP(1)
$TTI(1)
$TTO(1)
$TTR(1)
$TTP(1)

Card Reader

Dual Processor (Input) IPB
Dual Processor (Output)

Line Printer (80 or 132 Columns)
Incremental Plotter

Paper Tape Reader

Paper Tape Punch

Master Console (Input)

Master Console (Output)
Teletype Paper Tape Reader
Teletype Paper Tape Punch

RDOS allows a primary and secondary controller board for each of the above
devices and distinguishes between the two by names having a “‘1”” appended.
The hardware is distinguished by adding an octal 40 to the device code (i.e.,

$LPT - 17, $LPT1-57).

+ Dual processor communications are supported for a primary controller only.

3-7

Terminals:

Mag Tape:

Disks:

RDOS MULTIPLE FILE DEVICES

Asynchronous Data Communications Multiplexor
Terminal identified by line number n, 0 <n <63
QTY:n ~

Cassette (CT) or Seven/Nine Track Magnetic Tape (MT)
Drive identified by unit number, n, 0 < n < 7/controller
File identified by file number m, 0 < m < 99/reel.

MTn:M CTn:M
MTO:0 CT7:99 primary controller
MT10:0 CT17:99 secondary controller

Fixed Head Disk (DK), Unit number n 0 < n <1
Any RDOS filename (FN)

DKn:FN
DKO:DIL primary controller
DK1:C3PO secondary controller

Moving Head Disk (DP), unit numbern,0<n<7
DPn:FN i
DPO:1A primary: 0<n <3
DP7:LAST secondary: 4<n<7

Fixed Plotter Portion on Moving Head Drive (5 Meg.W)
DPnF:FN
DPOF:YUP DP7F:DISKCOPY

3-8

w

Disks:

Multiprocessor:

MORE MULTIPLE FILE DEVICES

Floppy Disks are Moving Head Disks

Zebra (DZ) Multiplattered Moving Head Disk, unit
numbern0s<n<7

DZN:FN
DZ0:BLAH primary
DZ7:FLAT secondary

Multiprocessor Communications Adapter (MCA)

Transmit Section (MCAT), Receive Section (MCAR)
~ to/from CPU numbern,0<n< 15

MCAR:n MCAT:n ;
MCAR:0 - MCAT:15 primary -

MCAR1:0 MCAT1:15 secondary

Any CPU may communicate to any other CPU or

to itself for foreground/background communications.

RDOS DISK FILE NAMING RULES
FILENAM.EX

FILENAME — 1 to 10 Characters
A—-2,0-9%
ANY ORDER, AT LEAST ONE

EX — EXTENSION
0 to 2 Characters -
A—-2Z,0-9¢%
ANY ORDER

Examples: ZILON
DECOM.15
R2D2
C3P0
RDO0S6.41

Examples with Directory Specifiers:

DPO:DSKED.SV

UPDATE: BRDOS.PF

UTIL: EDIT.SV

DPOF: SECPART:SUBDIR DATA

3-10

fmm
\

AN /

RDOS DISK FILE EXTENSIONS

Source File Extensions — Anticipated by Compilers

.SR — Assembly .CB — Cobol
.FR — Fortran(IV or5) — Basic
AL — Algol .JB — BatchJob File

Those derived from editing

.BU — Back Up File .SC — Scratch File

Those derived through program development

.LS — Listing File .RB — Relocatable Binary File
.OL — Overlay File .OR — Overlay Replacement File
.LB — Library File .LM — Relocatable Load Map File
odurMP
< Executable File Extensions

.SV — SaveFile .AB — Absolute Binary File

System Utility or Informatory File Extensions

.DR — Partition/Directory File ,CM — Command File
@ .KS — Data General Keysheet .MC — MacroFile
PF — Patch File

TU L Tl g Fle
Those needed by the BASIC program

.SW = Swap File \ D — Valid LOGON ID
.AF — Accounting File
Commercial File Extensions

VL — VolumeFile X = Index File

3-11

0

O

$200

RDOS USER

MODULE 4

INTRODUCTION TO THE COMMAND
LINE INTERPRETER

MODULE 4
OBJECTIVES

INTRODUCTION TO THE COMMAND
LINE INTERPRETER

Upon successful completion of this module you will be able to:

IMPLEMENT VALID CLI COMMANDS
DEMONSTRATE PROPER USE OF LOCAL AND GLOBAL
COMMAND SWITCHES
USE IN—LINE & MULTI—LINE COMMAND EXPANSIONS
* USE SPECIAL SYMBOLS TO CONTROL RDOS VIA CLI
* USE CLI PERCENT VARIABLES, INDIRECT, AND MACRO FILES

T

COMMAND LINE INTERPRETER

CLI translates a human oriented language into assembly language system calls.

CLi

RDOS

Command/Globals Arg1/Locals Arg2/Locals ...
Internal Command ?
Macro File on Disk ?
RDOS Program File ?

File not found !

Argn/Locals

INTRODUCTION TO CLI

Some Commands take no arguments

R R

GTOD DISK

10/31/79 13:00:00 LEFT:3127 USER:149870
R R

R

LIST

BULLFROG 22 C

ITCH 259 D

ITCH.SC 259 P

R,

Some Commands take one argument

R R R
STOD 1745 SDAY 1168 LIST YO
R R - YO

R

More Commands use Multiple Arguments
R R R
DELETE 1234 ‘
R R R

Global Switches Alter the Command

LIST list a filename on disk

LIST/A list permanent files on disk

LIST/E/A list everything about permanent files
LIST/S/L sorted list of files to the line printer
XFER binary transfer command

XFER/A ASCII transfer command

XFER/A/B append this ASCII transfer to a file
XFER/A TEXT S$LPT XFER/A
XFER/A‘ $TTI NEWFILE XFER

MDIR
DPO

XFER/A FILE $LPT FILECOM F1 F2

$TTI QTY:0
TBOOT.SV MTO0:0

s
- 3

INTRODUCTION TO THE COMMAND LINE INTERPRETER

Arguments are separated with Spaces or Commas

TYPE EZRA TYPE,EZRA

Semicolon separates Multiple Commands
Up Caret Ignores Next Character

PRINT BZ; GTOD; XFER/A 259 $LPT; PUNCH CHARLES; A
STOD 17 45; SAVE TOM.S

Angles Allow Arguments to Share Common Characters

MESSAGE F< 1,2, 3,4,6>ILE
FILE F2LE F3ILE F4ILE F5ILE

Parenthesis Generate Multiple Command Lines

MESSAGE F(1,2,3,4,5)ILE
F1ILE
F2ILE
F3ILE
FA4ILE
F5ILE

(LIST, DELETE/V) MYFILE
MYFILE O D
MYFILE

INTRODUCTION TO THE COMMAND LINE INTERPRETER

RDOS FILENAME TEMPLATES

— Substitute any number of characters, any value
* Substitute one character, any value

LISTF — LIST F ——
FFILE1. 88 FFILE1. 88
FFILE2. 88 FFILE2. 88
FCOM.CM 18
LIST * , ; LIST CLI. —
1. 0 CLI.OL 43008 o
7. 13 D CLIL.SO 0 D
Y. 410 SD CLLTO 0 D
Z. 26 D CLLER 8704 D
CLLSV 10752 SD
cLy. (SV,OL) ab Rev. .00 vt wocs,
Special Symbols RcCci(.sv
e RUBOUT BACKSLASH Deletion
e 1S 1Q Scrolling
e TA 1C Interrupt
o 1Z END OF DATA INPUT

INTRODUCTION TO THE COMMAND LINE INTERPRETER

CLI Percent Variable

RDOS will substitute a value for the variable when enclosed
between percent signs

MESSAGE “DATE:", %DATE%, “TIME", %TIME%
DATE: 5/2/79 TIME 10:42:30

MESSAGE “MASTER DIRECTORY", %MDIR%
MASTER DIRECTORY DZ0

MESSAGE “CURRENT DIRECTORY", %GDIR%
CURRENT DIRECTORY WORK

MESSAGE “LAST DIRECTORY", %LDIR%
LAST DIRECTORY UTIL

XFER/A %GCIN% TESTFILE/R

XFER/A TESTFILE %GCOUT%

INDIRECT FILES

RDOS will substitute the contents of a disk file if the disk file name is
enclosed in @ signs

TYPE DIRS
FORT4.DR, FORT5.DR, UTIL.DR, WORK.DR, GEN.DR

INIT (@DIRS@)

== INIT (FOR4.DR,FORTS. DR UTIL.DR, WORK.DR, GEN DR)
== |INIT FORT4.DR

== |INIT FORT5.DR

== [NIT UTIL.DR

== |INIT WORK.DR

== |NIT GEN.DR

INTRODUCTION TO THE COMMAND LINE INTERPRETER

INDIRECT FILES

TYPE COMMANDS

MESSAGE “DATE"’, %DATE%, “TIME", %TIME%

INIT MTO; DUMP/A/L MTO0:0

MESSAGE “ALL FILES IN THIS DIRECTORY DUMPED TO MTO0:0"
R

@ COMMANDS@

DATE 5/2/79 TIME 10:50:47

ALL FILES IN THIS DIRECTORY DUMPED TO MTO:0

R

MACRO FILES

Files having the .MC extension will have their contents executed as
CL| commands.

TYPE DIRNIT.MC

DELETE DIRS

BUILD DIRS —.DR

INIT (@DIRS@)

MESSAGE “INITIALIZED"”, @DIRS@

R

DIRNIT

FILE DOES NOT EXIST DIRS

INITIALIZED 4.DR, 5.DR, UTIL.DR, GEN.DR

4-6

BOOT

TYPE
GSYS
STOD
LOG
ENDLOG
APPEND
GTOD
LIST
REV
MESSAGE
PRINT
XFER

SDAY

DELETE [c /v
BuiLp

VOCABULARY

A bootstrap program used to invoke operating
systems or stand-alone programs

Displays the contents of an argument filename
Get the system name

Set the time of day

Record CLI communication in (F)LOG.CM
Halt recording of CLI communications

Join two or more files together.

Get system time of day

Display bookkeeping of a file

Get a program'’s revision number.

Display a message

Transfer an argument file to the line printer.
Transfer a source file into a destination file.
Set the system’s date.

Report time and date with every prompt.

47

O

$200
RDOS USER
MODULE 5

DISK BASICS

)

=

(

0

MODULE 5
OBJECTIVES

DISK BASICS

Upon successful completion of this module you will be able to:

DESCRIBE RDOS’S DISK BLOCK NUMBERING SCHEME
* DETERMINE WHEN TO FORMAT A DISK, IDENTIFY THE
NECESSARY PROGRAMS AND DESCRIBE THE INITIAL
STEPS OF DISK FORMATTING.
* DESCRIBE THE LOCATION AND USAGE OF PRELIMINARY
DISK BLOCKS WHICH RDOS MUST USE TO INITIALIZE OPERATIONS
* DESCRIBE THE LOGICAL STRUCTURE OF RDOS FILES
AND REALIZE THEIR FUNCTIONAL TRADEOFFS

DISK BASICS

LOGICAL BLOCK ADDRESS= SECTOR, SURFACE, TRACK
1 BLOCK = SECTOR X SURFACE X TRACK

TOP SURFACE

BOTTOM
SURFACE

O

O

15

14

POSTAMBLE SYNC

SECTOR

A.FORMAT INFORMATION

PREAMBLE SYNC

ADDRESS WORD

“MORE SYNC INFO
DATA BLOCK & CYCLIC CHECK SUM

- 51

PRELIMINARY DISK BLOCKS
BLOCK
0
HIPBOOT ———
1 BLOCK 3
2 REVISION NUMBER
1 DISK CHECKSUM
2 TRACKS/CYLINDER
, 3 SECTORS/TRACK
3 PHYSICAL DISK INFO : 4
SIC : - - NUMBER OF BLOCKS —
: Q(ﬂ
PUINVT 6 FRAME SIZE Chrornn gt F‘*%v
DISK IDENTIFICATION
‘:::::: _____
T ——— L BLOCK 4
‘ 0 | ##WORDS IN THIS BLOCK
1 ADDRESS OF
4 'REMAP INFO 2 REMAP AREA
_ 3 | SIZE OF REMAP AREA O
DR T 4 BAD BLOCK ’
5 ADDRESS
6 " BAD BLOCK
5 e 7 ADDRESS :
, SSeeeel : MORE BAD
’J—.TN“.E-_*“‘-S—'ﬁNM SYS.DR FILE INDEX BLOCK - B N MY i BLOCKS
1 V k ~~~§~.~~
| 0 X ~~~~‘~- N
Slf/lﬂ‘lbéﬂ/r , 1: BLOCK 7
SWAP
7 1 1st SWAP FIB ADR
FILE INDEX BLOCK 2 BACKGROUND 4 TOTAL
ber Bedard beu-fp) Scbuvap Lere, (1\
- 11 1st SWAP FIB ADR
| 12 FOREGROUND
| ~~aae : : : 4 TOTAL
17 | Mabor | R 3
Loodswc. OL \|
/‘):‘ o0 \»@S‘ i.
, K\
i
| |
\ L ; N QT h: j

5-2

O

(17 SEQUENTIAL
START LBA
5 j
13
LINK ACCESS WORD | 13 '

B 004 444 =
P A00 OAD

26

B

Link Access Word = Prevuous LBA .XOR. Next LBA

f

42

(assume initial LBA 0)

i,t»;asqaaf” LY A
CONTIGUOUS Aéwt

47

Blocks Contiguous on Disk
256 Data Words/ Block

50 LOGICAL BLOCK ADDRESS

N

RELATIVE
BLOCK NUMBER

J

' DATA BLOCKS

35 BLOCK 0

RANDOM File Index Block

27 BLOCK 1 256 WORDS/DATA BLOCK |
65BLOCK 2 :
0 | BLockoLBA
> ~) ~ ~
1 27 S Ny
~ N
2 65 < S
B JS\;:,
255 4717 47178LOCK 255
256
Link Access Word —
(file continuation) RN o
> ~
‘\ ~

NOTE: All link access word pointers and logical block addresse; ina{y

require double words to access all blocks on the larger zebra

dlsk pack.

SEQUENTIAL DISC FILES
PHYSICAL ORGANIZATION
BLK ADD= 017
BLK 0
ST
026
LINK = | 026 ’ BLK 1
027 S
030 ’ BLK 2
043
065 ’ BLK 3
027
GENERAL CHARACTERISTICS
e UP TO 255 DATA WORDS PER BLOCK
e LAST BLOCK PADDED WITH NULLS AS REQUIRED
e LAST WORD IN EACH BLOCK IS A LINK FOR COMPUTING ,
THE NEXT BLOCK ADDRESS.
e SEQUENTIAL ACCESS ONLY.
® CANNOT USE DIRECT BLOCK 1/0
® EXPANDABLE |
® TO ACCESS A BLOCK, RDOS MUST ACCESS ALL INTERVENING
BLOCKS
e MEDIUM SYSTEM OVERHEAD
| e
B> TR T
Ser WPERAT “gites
C@,’c@; (E

CONTIGUOUS DISK FILES

PHYSICAL ORGANIZATION

LOGICAL BLOCK ADDRESS

1000 BLK O

1001 BLK 1

1002 BLK 2

DATA BLOCKS

GENERAL CHARACTERISTICS
e UPTO 256 DATA WORDS PER DATA BLOCK

® DATA BLOCKS PADDED WITH NULLS AS REQUIRED

O

e DATA BLOCKS ASSIGNED AT TIME OF FILE CREATION
e DATA BLOCKS PHYSICALLY CONTIGUOUS ON THE DISC

° CREATION POSSIBLE ONLY IF SUFFICIENT CONTIGUOUS DisC
BLOCKS ARE AVAILABLE

@ . ® CANUSE ALL FILE ACCESSING METHODS

o FILE SIZE IS FIXED AT TIME OF FILE CREATION AND
CANNOT BE ALTERED SUBSEQUENTLY

® FASTEST ACCESSIBLE DATA
MINIMUM SYSTEM OVERHEAD .

ccont anc 20 =lecke (Lulieinanda)

LOGICAL
BLOCK
ADDRESS

2144

RANDOM DISC FILES
PHYSICAL ORGANIZATION

342 h—_ BLK 1| 342

4221 m———p | BLK 2| 4221

100 - BLK 3| 100

NULL

NULL

NULL DATA BLOCKS

NULLS ETC.

FILE
INDEX
BLOCK

GENERAL CHARACTERISTICS

® UP TO 256 DATA WORDS PER DATA BLOCK
® DATA BLOCKS PADDED WITH NULLS AS REQUIRED
e UP TO 255 DATA BLOCK ADDRESSES PER FILE INDEX BLOCK

@ FILE INDEX BLOCKS PADDED WITH NULLS TO INDICATE NO DATA
BLOCK ASSIGNED

® L ASTENTRY IN FILE INDEX BLOCK ISA LINK TO THE NEXT
FILE INDEX BLOCK (IF REQUIRED); LINKING SAME AS SEQ FILE:

@ CAN USE ALL FILE ACCESSING METHODS

e EXPANDABLE

® TO ACCESS A DATA BLOCK, RDOS NEEDS ONLY THE APPRO-
PRIATE FILE INDEX BLOCK TO BE CORE RESIDENT

5-6

SAM:

INFOS FILE STRUCTURES OVERVIEW
Sequential Access Method

SAM retrieves a record from a physically ordered sequence,
after examining all preceding records.

Used to process sequential devices

L

S

e

ABLE CO. SMITH CO. JONES MFG.

ABLE & Smith Co. my/be read prior to Jones Mfg.

VOLLyb/DEFINITION FILE .VL

/L file for bookkeeping & allow physical
ultiple constructions accomodating

Disk Files have a .
device spanning,
overflow

- COMPANIES.VL RECORD SIZES

POINTERS

DATA BASE

C___pack1 7T 3 "\ PAcK2
A CO. | o
B CO. S _Eco.
c co. | Fco.
, D co. Geo. |
CONTIGUOUS ‘ ‘ RANDOM - - -

RDOS FILE ‘ : RDOS FILE =

FOR OVERFLOW

DATA BASE EXTENDED

5-7

INFOS FILE STRUCTURES OVERVIEW

RAM: Random Access Method

Records Accessible via Relative Record Number

RECORD#

N—

—
_—

0 |JAMES

EMILEY

500 E— .

507 |WILSON

Y 508 |ZEKE

__—

All files use .VL File/sf‘fo expand physical devices

7

ACCOUNTS.VL

7
s

JAMES

EMILEY

507

WILSON

ZEKE

RECORD
SIZES

POINTERS

Qs

_

FASTEST RETRIEVAL METHOD

RECORD 500 -

s> 500 | MULBLES |

509

FRANKLIN

510

JOHNSON

729

JAY

730

RAY

¥

/

ISAM: Indexed Sequential Access Method
Records Accessable Via Alphanumeric Keys
KEY ~—
[1A-101 M 1A-101=321 |y |
1A-102=25 1 16//(734 DIODE $.03
1A - 102 RESIS1UR $.07

2B-134=116

321 1A - 101 TUBE $2.50
INDEX w

Likewise, .VL will allow expansi

DATA.IX

DATA
BASE

INDEX

INFOS FILE STRUCTURES OVERVIEW

DATA.VL

INDEX.VL

DATA BASE

5-9

INFOS FILE STRUCTURES OVERVIEW

DBAM: Data Based Access Method p
/

, ,
Multiple Indices & Multi-level Indicies, Data Base9/Access
/;‘

S
INDEX va
LEVEL O M—
/I/{/ ‘
INDEX '
LEVEL 1 : 1
INDEX i
LEVEL 2 l_ 1 _ _ ﬁ
\ YYVY i A

ﬁ)ATA BASE /

SD-00025

Fd

£
4

Again, the .\g,ﬁ file will allow file expansion.

/

/

/

FOR MORE DETAILED INFORMATION SEE THE INFOS STORY BOOK

5-10

$200
RDOS USER
MODULE 6

RDOS DIRECTORY STRUCTURE

O

MODULE 6
OBJECTIVES

RDOS DIRECTORY STRUCTURE

Upon successful completion of this module you will be able to:

* RESTORE ACCIDENTALLY DELETED FILES

* MANIPULATE AN RDOS DIRECTORY STRUCTURE WITH A
DISK EDITOR

* DESCRIBE THE MODULAR ORGANIZATION PARTITIONS
AND DIRECTORIES OFFER
SPAN THE RDOS DIRECTORY STRUCTURE USING LINKS
DESCRIBE THE DISTINCTIONS BETWEEN PARTITIONS
& DIRECTORIES AND IMPLEMENT TECHN{QUES OPTIMIZING
THEIR FUNCTIONAL TRADEOFFS

1-9

f
\

v:f\ro(uo ok (258 Wvb«[é):: A ALED
puo ALFD = AQ Werig £ Gn g

. < C . eb
o Wt O cud die fumallde) LFED's el perdhen™

Bt ot - RDOS DIRECTORY STRUCTURE
SYS.DR DATA ENTRY BLOCKS
(LBA 6) LBA
0| LBA'sFOR REL BLOCK 0 PRIMARY PARTITION
1| DATA ENTRY 14 UFD's MAX, EACH 22 OCTAL WORDS =18 Byte. 2efaunt= SDY Bepie
BLOCKS 2 RELATIVE WORD 12 = LBA FOR START OF FILE
, 14717 3 : : .
3 anz LOGICAL CONTROLS FOR ANY RDOS DISK DIRECTORY
. 1
. 1
256 : '
CURRENT NUMBER OF UFD’s
Le Fie =3 5 > =
: ; 56 57 0 61 6
Desons phom 85 W W“ﬁ*%egq 'E{ocezs W
UFD |jmmapp| BLOCK O [BLOCK 1| = 2 3 CONTIGUOUS FiLE
vl 5]«
7 307 315 SEQUENTIAL FILE
MAP. UFD 0 1 2 Re | L 7&590& Ve
AP.DR i Rwele | % elative
~
L 1L RANDOM FILE
-1 UFD <
| Lelative
FILE fefive
BIT PATTERNS REPRESENT TOFAL NUMBER INDEX Rlock - My
BLOCKS IN USE (1) OF UFD's BLOCK
NOT IN USE (0), EVER IN BLOCK
FIRST BIT MAPPED TO SYS.DR ‘ DATA BLOCKS

i

)

DECIMAL OCTAL RESOLUTION UFD

B 0
2 9 145 A0 Loyl
3 2 |FILENAME
4 3
5 4 @
6 5 |EXTENSION 2 ot ol
7 6 |FILE ATTRIBUTES |
8 7 |LINK ATTRIBUTES [
9 10 |LAST RELATIVE BLOCK NUMBER
10 11 |#BYTES IN LAST BLOCK O
11)(12 |LOGICAL ADDRESS FIRST BLOCK | -
12 13 |DATA LAST ACCESSED 6 (AWW)
13 1 |patacreatep |} a8l
14 15 |TIME CREATED
15 16 |UFD TEMPORARY _ gyt
16 17 |UFD TEMPORARY o
17 20 |FILE USE COUNT
18 {21 [pcT LINK Dwece Cokeroll Table

Nuoe o P e B
9¢ M(@"*%k
A A@rﬂ‘ %
Q lg M (g M)WJ(Q' 442
%QLM . LI\A\I,\ ‘aiwf«"’ A | O
4 Qulr |
. o Y,

6-2

f‘ﬁm

W‘\

W/

FILE CHARACTERISTICS

PHYSICAL CHARACTERISTICS OF A FILE CATALOGUED IN THE
RESOLUTION FILE ATTRIBUTE WORD OF THE FILE’S UFD.

c CONTIGUOUS
D RANDOM

DEFAULT IS SEQUENTIAL
T PARTITION
Y DIRECTORY
|- -DIRECT-BLOEKAHO-ONLEY—
+—: LINKENTRY

6-3

FILE PROTECTION

DIRECT PROTECTION THROUGH USE OF RESOLUTION FILE ATTRIBUTES

P : PERMANENT
W : WRITE PROTECT
R : READPROTECT | |
S : SAVEFILE
N : CANNOT BE LINKED TO
? . USER DEFINED |
& : USER DEFINED | 0
A : ATTRIBUTE PROTECT - -
| ornidarban won ooy DIS K ED(TDR

3o SYS5DR mootlys ¢

LINK PROTECTION THROUGH THE USE OF LINK ACCESS ATTRIBUTES

USERS OF A FILE THROUGH LINKS SEE A SET OF ATTRIBUTES
THAT IS THE OR‘ING OF RESOLUTION FILE ATTRIBUTES AND
LINK ACCESS ATTRIBUTES

SAME SET OF ATTRIBUTES AS ABOVE

C

6-4

ATTRIBUTES

USER FILE ATTRIBUTES/ CHARACTERISTICS WORD

CHARACTERISTICS
BIT POSITIONS

0 READ PROTECTED R

1 ATTRIBUTE PROTECTED A

2 SAVED FILE S BIT_F_’S)EI_I_ONS
LINK ENTRY L 3 |
PARTITION ENTRY T 4
DIRECTORY ENTRY Y 5

7 INo RESOLUTION N SN
[DIRECT 1/0 ONLY | 8

9 USER ATTRIBUTE 1 ? o

10 USER ATTRIBUTE 2 &
|CONTIGUOUS FILE C [12 |
RANDOM FILE D [13 |

14 IPERMANENT FILE P

15 WRITE PROTECTED W

6-5

RDOS DIRECTORY STRUCTURE

FILENAME RESOLUTION

Filename given to system

TYPE FILENAME.EX

Filename is Hashed

\
F ool 43111
L E 46105
N A 47101 ¢
M E 46505
0o o 00000
E X 42530
/
71554 |
overflow _
e 1055

Frame Size:” 65 | 7155
(FS)

31y 5
I ﬁ} , 411
T3y 83\
(Octal Arithmetic)

2
Character
Octal
Equivalent

ptle
;1' /{0
Swﬁg

o sz,«m

N

= Hash Value @Mt

i VR

6-6

O

c

D.

E.

Hash Value Offset is Applied to SYS.DR |

SYS.DR File Index Block

offset
31 153
~ Hash Value 32 154
Offset — = 33 155 |—3 The Data Entry Block
(HVO) 34 156 is LBA 1565
35 157
36 160

Data Entry Block (155) is Searched for

FILENAME.EX

Overflow Condition
If Data Entry Block (155) was once filled
(i.e., Total UFD’s Ever = 14)

Hash Value Offset = 33 +65= 120
(Next) ' ‘

Look Again—

6-7

89

RDOS DIRECTORY STRUCTURE

SECONDARY PARTITION STRUCTURE
DPO

PRIMARY PARTITION SECONDARY PARTITION

.)
T e Y e WV e U/% ’Zg 7 00’{@@
evwel lewry, el conn 7E
&

DATA ENTRY BLOCKS
SECOND.DR { i . .

co
UFD FILE |
UFD
16 BIT WORDS
——MAPDR AR
177777 . e e e
177777
000000 SYS.DR
000000 ;5, UFD
177777 MAP.DR
177777 B UFD SEQUENTIAL FILE
BLOCKS ALLOCATED TO
SECOND.DR SHOWN AS /' / 100000
IN USE. | (_000000

xASV\

/ 17 ook b7V

BLOCK EXCLUSION MAINTAINED VIA INDEPENDENT MAP.DR FILES

RDOS DIRECTORY STRUCTURE
~SUBDIRECTORY STRUCTURE

PRIMARY OR SECONDARY PARTITION

CONTIGUOUS FILE

177777
177777
177777
177777
177777

000000

000000

111111
010111
000000

FIB

000000
000000

RANDOM
FILE

[e o o e e

[5

A SHARED MAP DIRECTORY ALLOWS SHARED DISK SPACE USAGE
WHILE SEPARATE SYS.DR FILES ALLOW DISTINCT FILE NAME RESOLUTION

_ ‘ A , |)

6-9

LINKS - REFERENCES ACROSS DIRECTORY/PARTITION BOUNDARIES

r—-——-———-"-"""""""""7""""" 7
DPO : UTIL.DR !
‘ |
| |
! |
| |
EDIT.SV | |
| EDIT.SV EDIT
UTIL: PROGRAM |
LINK. UED | RESOLUTION UFD I
' A _l
SYSTEM FILE DEVICE CONTROL BLOCKS
SCAN 'DCB
DIR: DPO SEC UTIL
DCB DCB DCB

Link Creation:

Link Resolution:

Link Removal:

Link Access Exclusion:

R
LINK EDIT.SV UTIL:EDIT.SV!
R

R

INIT UTIL
R
EDIT

R

UNLINK EDIT.SV
R

UNLINK ——

R

R
DIR UTIL
R

** Never Delete Links **

CHLAT EDIT.SV PW **LINK USERS CANNOT DELETE EDIT VIA THE LINK**

R

6-10

L1-9

0

O o O

REFERENCES WITHIN/BETWEEN PARTITIONS & DIRECTORIES

DPO DPOF SPOOL.DR
I T |
DATA ENTRY

BLOCKS

UFD UFD UFD
UFD UFD UFD

SYS.DR SYS.DR
SUB1.DR SUB2.DR SUB3.DR
SYS.DR

UFD UFD
UFD i UFD
UFD UFD

START OF DCB

SYSTEM FILE DEVICE CONTROL BLOCK CHAIN HOLDS INITIALIZED DIRECTORIES
(CORE RESIDENT DATA ENTRY BLOCKS)

| CURRENT DIRECTORY

CHAIN
DPO
DCB
MASTER DIRECTORY

R

MDIR

DPO

R

(CORE RESIDENT MAP.DR BLOCKS)

$200
RDOS USER
MODULE 7

ALTERING INFORMATION ON THE DISK

MODULE 7
OBJECTIVES

ALTERING INFORMATION ON THE DISK

Upon successful completion of this module you will be able to:

* PERFORM EDITING OF AN RDOS DISK WITH THE DISK
EDITOR

O

Datz General Corporation (DG ; has prepared this manual for use by DGC personnel and/or customers as a guide to the
proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained
herein are the property of DGC and shall neither be reproduced in whole or in part without DGC prior written approval nor
be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

ALTERING THE INFORMATION ON DISK

STAND ALONE DSKED.SV /v 0. s e o 2/t ool

aé{q fas o> C%«-»@ﬁ’-?fu§"f€, éw» (ﬂ/@

=7 = -
[e P2 o f;é:

1001000111

R
BOOT DSKED)

DISK MODEL NUMBER)

DISK UNIT NUMBER——___)

Display Disk Addresses 5 BLOCK 177
o Block Number: Word Numbei/Contents s
e 177:200/047117 \ .
. [}
/ \ PN ig‘ L (e oA ’ .
\ flay & ' ¢
H ocV- | : . .
wWeut 200 [o0arm17
3.0/ FRAME S(RE :
5 ' 377

Filename Hashing:

e Frame Size; Filename = Hash Offset //Qyi)

e 65;SEC.DR =47
File n

7-1

L

STANDALONE DSKED.SV

Disk is Updated at Termination: $Z

Apostrophy: $ ASCII Output / AB

Asterisk: $* Octal Numeric Output /075177
Disk Control Commands: .Command
e Line Feed — Open & Display Next Location
e Up Caret’ — Open & Display Last Location
e Carriage Return — Close Current Location
NOTE: $isESC

DISK CHANGES
o T M /—\
“ee ¥V O A
<
L. 284 Q
1 MAKE
UPDATES
DSKED.SV
Local Commands: Output Formats: .$Command

HALT
DSKED

7-2

$

ALTERING THE INFORMATION IN DISK

DSKED AND THE DIRECTORY STRUCTURE

WORK.DR

DPO SYS.DR: BLOCK 6
A) ‘
HASH OFFSET HASH OFFSET
47 62
CURRENT UFD’s IN / <_l
BLOCK, WORD 0
317 . 4 5117 =
WORD 12 CONTENTS
00 FILE 12 OF |
MYFILE =
14 MAX |
TOTAL UFD’s IN =} SYS.DR |
BLOCK EVER, __Etb
WORD 376 DATA ENEI;%Y CK BLOCK 2305 DATA EI%I;I'1R7Y BLOCK

Restoration of a Deleted File

R
BOOT DSKED

Gojo (Wore)

Disk Model Number 4234~

Disk Unit Number D L
APIOR - leS
e 3:6/65 (Frame Size) < gne
® 65WORK.DR (47, (Hash offset)
e o4

¢
o 65MYFILE =62) (Hash offset)
o 6:47/317 /L (Entry Block)
o 317:1: /:%30/5"

(May have to line feed through Entry Block

to find SY?.DR LBA) L N3
T, I @;}j le
\f\j%ﬂ. e /\l- \IO"”"TW‘i",'},O(/

(SYS.DR for WORK.DR)

2305:62/5117 (Entry Block) M7 =
5117:23/000000 (Deleted Filename)
5117:23/000000 “MY (Filename Restored)
5117:0/000001 (Single UFD in Entry Block)
5117:0/000001: 2 (2 UFD's in Entry Block)
$z (Update Disk - File Restored)

FILENAME? (Reboot System)

(MAP.DR bits in error; move file away from
partition, redelete file, move file back to
partition)

7-3

T,

|
%ﬁmww” ’

$200
RDOS USER
MODULE 8

PROGRAM DEVELOPMENT

(™ /

MODULE 8
OBJECTIVES

PROGRAM DEVELOPMENT

Upon successful completion of this module you will be able to:

- * OPERATE THE TEXT EDITOR
* PERFORM PROGRAM DEVELOPMENT ON SOURCE MODULES
UNDERSTAND PROGRAM DEVELOPMENT WELL ENOUGH
TO ACCOMODATE STRATEGIC ERRORS

EDIT PHASE

COMPILE PHASE

PROG.FR

ASSEMBLE PHASE

PROG.SR

LOAD PHASE

PROG.RB

RUNTIME
LIBRARIES.LB

PROGRAM DEVELOPMENT OVERVIEW

CORE

ACCEPT |
DO 100 I=1,N
WRITE |

= 100 CONTINUE

EDIT.SV

» FORTRAN »

FORT.SV
FIV.SV

LDA 0, DKP
0110111010
10111101111

= 01110000

STA 3.2

ASM.SV

O\

LINKS
RESOLVED

RLDR.SV
RLDR.OL

= PROG.SV

EXECUTING PROGRAM

PROG.FR

FORTRAN SOURCE FILE
(.FR)

PROG.SR

ASSEMBLY SOURCE FILE
’ (:SR)

PROG.RB

RELOCATABLE BINARY FILE
(.RB)

EXECUTABLE CORE IMAGE
SAVE FILE
(.sv)

CONSOLE

— >

SOURCE CREATION EDIT.SV
OPERATING PROCEDURES

st |
PAGE

CURRENT
PAGE

NEXT
PAGE

INPUT FILE

PAGE SEPARATOR .

ff

OR
TEXT BUFFER
INPUT
DEAR MOM, - froamstony DISK
FILE
HAVING A GREA
TIME AT SCHOOL,
LEARNING MANY
THINGS: BOOT,
COMMAND BUFFER OUTPUT
DISK
EDIT.SV PROGRAM FILE
FORMATS & FILE ASSOCIATIONS
CHARACTER POINTER: (CP) (—
TEXT BUFFER gy

——
A

PSS
v

[SEE——
CURRENT PAGWE

YANK

PAGE

COMMAND BUFFER

NO FF

EDIT.SV

PUT

JPAGE

TO ASSOCIATE AN INPUT FILE:

TO ASSOCIATE AN OUTPUT FILE:

PAGES ARE INPUT WITH YANK:

PAGES ARE OUTPUT WITH PUT:

OUTPUT FILE

*GRFILEINPUTS$$

*GWFILEOUTPUTSS

*Y$$
*P$$

8-2

EDIT COMMANDS AND EXAMPLES

File Association Commands:

* GRFILENAME$$ — Associate FILENAME for Input
* GWFILENAMES$$ — Associate FILENAME for Output
* GOFILENAMES$$ — Close current output file, open FILENAME
for Output
* GC$$ — Close all file associations.
EXAMPLE CORE

*GWFILEOUT$$
* FILEOUT
EDIT.SV A o 10,
e
. FILEOUT
*GRFILEIN$$ FILEIN
EDIT.SV |
___’_/

OUTPUT
FILEIN

EDIT.SV ‘ p

*GOOUTPUTSS

*

OUTPUT
FILEIN

S el

System Errors occur usually because the Association has already been done; or the
file does not exist.

*GC$$
*

EDIT.SV

EDIT COMMANDS AND EXAMPLES

Input/Output Commands:

*Y$$ — Yank the next page into the command buffer, overwrite
previous data. Position CP to top of page.

*ASS — Append the next page to the bottom of the current page.
*PES — Put the current page to the Qutput file.
*|text$$ — Insert the text following the ‘I’ command from the

current position of the CP.
EXAMPLES:

CORE DISK

- - w

NOTE: PREVIOUSLY, A
GWOUTPUTS$$ WAS
PERFORMED! '

NOTE: THE *B$$ REPOSITIONS THE
CHARACTER POINTER (CP) TO THE
BEGINNING OF THE BUFFER.

8-4

EDIT COMMANDS AND EXAMPLES

Delete Commands.

*nK$$ - Kill n lines relative to the CP.
*nD$$ - Delete n characters relative to the CP.
Examples: LINE 1
JLINE 2 LINE 3
LINE 3= *2K$$=> 4§ LINE 4
LINE 4

ABCD =*3D$$= D

Character Pointer (CP) Positioning Commands:

*B$S — Reset CP to beginning of buffer
*Z%% — Reset CP to end of buffer
*nJ$$ — Place CP at start of line n.
*nL$S '— Move CP n lines from current CP position.
*nM$$ — Move CP n characters from current CP position.
* *CNTRL | — Move CP to the next TAB position.
This is the TAB function, can be affected via TAB key.
Examples: LINE 1 LINE 1 ' LINE 1
LINE 2 }LINE 2 ‘ LINE 2
LINE 3t=*B$$= LINE 3> *Z$$~ LINE 3
LINE 4 LINE 4 LINE 4
LINE 1 3 LINE 1 Lined |
ALINE 2= *4J$$= LINE2= *-2L$$= LINE 2
LINE 3 LINE 3 $LINE . 3
LINE 4 LINE 4 LINE 4
* ;
/
A B,CDE = *2M$$ = ABCDE=*—4M$$=‘ABCDE
*IM111128L1T$S = 1 ____2
' 7 spaces 7 spaces

NOTE: The TAB character (11) is kept as octal 11 not actually spaces,
EDIT translates this on output

85

)

EDIT COMMANDS AND EXAMPLES

Search Command:

*Stext$$

Example:

|

Change Command:

* Ctext1$text2$$

Example:

-

Display Commands:

*nT$$
*U?2$$
*$$
*.$3
*=$$

The buffer is searched for text, CP is positioned
immediately following the first occurrance of
text. If text is not found a message results and
CP is put to the buffer start.

*SAB$$

4>
w
(@]

The buffer is searched for text1, text2 is
substituted for text1 and CP is positioned
immediately following.

*CCAT$DOGS$$ DOG

.

Type n lines from the position of the CP.
Display the Input & Output file associations
Display the line number containing the CP.
Display the total number of lines in the buffer.
Display the total number of characters in

the buffer.

8-6

Display Commands:

Examples: ONCE
UPON
T AY
THERE
tWas
A
SMALL
Macro Implementation:
*XMCOMMANDS$$
*XD$$
- *XS
*X?$$
Examples: LINE1
tLINE2
LINE3
LINE4
LINES

Watch Qut***

® As the Yank Command clears the buffer, be sure to output the current buffer first.

o Make sure all commands are entered after the asterisk prompt; if.in Insert mode, commands

EDIT COMMANDS AND EXAMPLES

ONCE
*T$$ UPON * $$
At 2
TIME
*1T$$ THERE *.$$

g
S

- Store COMMAND in the macro register.

— Clear the macro register.

- Execute the COMMAND within the macro register
- Display the contents of the macro register.

PAGE1
*XMCLINE$PAGESS PAGE2
*5 X $$ PAGE3
PAGE4
PAGES
*X?$$ }
CLINE$PAGESS
*XD$$
*X?$$

*B.$$

*=$8
14

INCORRECT OR UNDEFINED MACRO

*

are not executed, they're treated as data.

J

8-7

COMPILE PHASE - FORTRAN EXAMPLE

COMPILER
WORK SPACE

PROG.FR PROG.SR

WRITE X

DOA O,LPT

FORT.SV

PROG.LS

* A Compiler translates a source language into
a more fundamental language.

PROG.FR

PROG.SR

10 ACCEPT “THETA"”, TH TH: LDA,40,0
C CALCULATE SINE JSR FSINE
X =SIN(TH) JSR FWRIT
TYPE "X, X, TH”, TH JMP TH
ND .END .MAIN

* Source files are translated into Assembly Language.

* Names generated, call Runtime Support Routines for desired functions.

PROG.LS
FORTRAN CODE
ASSEMBLY CODE

VARIABLE ANALYSIS

* Errors are reported at the console and within the listing file.

MT

! ASSEMBLY PHASE

PROG.FR

PROG.RB

ASSEMBLER
WORK SPACE

ASM.SV

- * The Assembler generates relative binary instructions; their location is
measured from the first instruction and modules referenced are unresolved.

) PROG.RB
TH: LDA0,400 ; 000002 030040
C | JSR'FSINE 000011 006003$
JSR FWRIT 000012 006006%
JMP TH 000013 000741
END 000014 127710
SYMBOL TABLE
000003 FSINE XN
000006 FWRIT XN

* The Assembly first pass translates symbology into binary.
* Backward references and self-contained instructions are completely resolved.
* Assembly second pass resolves internal forward references.

* All other unresolved references are installed in a symbol table by
statement number and routine referenced.

, & 89

>

PROG.SV

CORE
IMAGE
SAVE
FILE

_______/

PROG.MP

LOAD PHASE

RELOCATABLE
PROG.RB I-P“—b LOADER
SYMBOL WORKSPACE
TABLE

RLDR. <SV,0L>
FORTRAN
RUNTIME
LIBRARY
SUPPORT

PROGRAM
LOAD
MAP

* The Relocatable Loader builds the Core Image Save File according to the
RB file and Support Libraries.

* The Program Code is first installed into the Save File.

* Library Modules are scanned and compared to the Symbol Table for

load on reference.

* The Load Map records where in memory modules are loaded; additionally,
unresolved references are flagged in error.

* Logical Errors are referenced to the Load Map for the module with functional

maladies.

* Debugging Software can be loaded to interact with the running program for
diagnosis of functional errors.

DISK
LPT

8-10

USER ADDRESS SPACE

32K
UNUSED MEMORY
NMAX —~ Highest Memory
PROGRAM DATA AREAS (sliding) Location Used
NREL RUNTIME LIBRARY ROUTINES
MAIN PROGRAM
------------------------ + <@ INMAX — Start of NREL
USER STATUS TABLE Code
400 (OTHER CONTROL TABLES)
377 PROGRAM ZMAX - Highest Location
ZREL SPECIAL LOCATIONS Used in ZREL
0 & ADDRESSES)

_ The Relocatable Loader stacks information into NREL & ZREL memory areas.

ZREL, accessable from any memory location, contains the addresses of the
Runtime Library software. ’

NREL is loaded with Control Tables, Program code, the Runtime Library
Routines, and the Program Data Storage Area.

RDOS controls the entire program via the User Status Table, it contains the
amount of core usage, flags and some important pointers.

8-11

S200
RDOS USER
MODULE 9

OTHER RDOS EDITORS

MODULE 9
OBJECTIVES

OTHER RDOS EDITORS

Upon successful completion of this course you will be able to:

* DISTINGUISH BETWEEN THE APPROPRIATE USES OF
THE REMAINING RDOS EDITORS

O

BINARY EDITORS

SYMBOLIC EDITOR : SEDIT.SV

* Single User, Single Location, Symbolic Editor
* Symbol Table may be used to specify file offsets
R
SEDIT PROG.SV
SEDIT REVISION X.X
.START + 10/ 105433 105427
.ESC Z

DONE
R

OCTAL EDITOR : OEDIT.SV
* Single User, Single Location, Octal Editor
* Locations specified via octal numeric offset

R

OEDIT PROG.SV

OEDIT REVISION X.X

. 472/105427 105433

.ESC Z

R

NOTE: All binary editors employ the predominantly same command set.

9-1

OTHER RDOS EDITORS

TEXT EDITORS
SUPER EDITOR : SPEED.SV

Single User, Multibuffer Super Text Editor

Global file associates allow 1/0 to any buffer, local file associations
allow 1/0 to different files for each buffer.

Buffers can hold macro definitions

R

SPEED FILENAME.

— all edit commands supported

— additional super edit commands
— buffer commands supported

!
!
!
I H$$
R

MULTIEDITOR : MEDIT.SV

Multiuser, Text Editor

All EDIT commands available over multiplexor lines

R
MEDIT 162
— edit command available at QTY:0 to QTY:15
TA — interruptt MEDIT .SV
INT
R

O

OTHER RDOS EDITORS

LIBRARY FILE EDITOR : LFE.SV

* Single User, Single Scan, Library File Editor

*

Edits the collection of .RB files, .LB

R :

LFE T FORT.LB — Type Module Names in FORT.LB
R ‘

LFE X RBNAME SYS.LB — Extract RBNAME from SYS.LB
R

LFEMLIB/O <1,234>.LB — Merge libraries 1,2,3,4 into
: LIBRARY

9-3

QI:;W%\

$200
RDOS USER
MODULE 10‘
PROGRAMMING TECHNIQUES
TO

MANAGE MEMORY

MODULE 10
OBJECTIVES

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

Upon successful completion of this module you will be able to:

DESCRIBE RDOS PROGRAM CONTROL OVER MEMORY
* DESCRIBE RDOS PROGRAM MEMORY MANAGEMENT
TECHNIQUES

AT,
A7
i)

i

~E Gy, P ‘
Gii Hea £

\ e (T> O o €4 ot T

-

PROGRAMMING TECHNIQUES TO MANAGE MEMORY \
CHAIN EXECUTION OF PROGRAMS

(o
B.SV ASV
A.SV PROGRAM A EXECUTES | Program A is Invoked
3 from CLI
R
CHAIN AY
END
/___, \
N A
B.SV
B.SV
A8V Program B.SV
PROGRAM B EXECUTES Overwrites A.SV in
AS THE SECOND Memory!
STAGE OF A
END
N~ RO
* Entire programs can be manipulated via the chain form of execution without
special considerations in their programming.
* The called program is loaded into memory destructively.
¥ Program Applications can be infinitly large if manipulated in a chained fashion.
* CLI can execute programs via chain:
R
CHAIN A)

10-1

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAP EXECUTION OF PROGRAMS

ey Ty Program A.SV is invoked
A 5 T A via SWAP from CLI.
A..SV : A Il
; ; Program B.SV is invoked
SW.AP via SWAP from A.SV
END Program A is swapped
out to disk
SWAP FILE__
B.§V INDEX BLOCK
B.SV .
A.SV . _—
SWAP RETURN N — !
\—_/ END CLLSV . Background
» Push Area
A.SV |
3 s Foreground
/ Push Area
Execute resumes with *
SWAP
the statement follow-
. = NEXT STATE
ing the CALL SWAP T STATEMENT When Program B.SV
performs the SWAP RETURN,
END A.SV is resumed.
* Swap Execution of programs stores a snapshot of the executing

program on disk prior to loading the called program.

* Programs are said to execute at a Program Level, when the
swap is employed the next program level is used, CLI executes
at level zero, programs may use levels . 1 - 4.

10-2

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAP EXECUTION OF PROGRAMS

PROGRAM LEVELS

P
ECOND PARTITION A reveL
SWAP FIB I‘b
C.SV 0 CLLSV =3 CLLSV m— oLl 0
: p 1. ASV FiB PROG || |-
SWA 2 BsV
: 2N =
: 4 ASV PROG 1
. FIB A g
SWAP RETURN i
" END PORTION L
B.SV PROG 2
FIB D g
\ /
* Program Levels allow subordinate execution of entire programs; swap Returns

always pass control back to the previous level.

¥ Partitions hold the Swap File Index Block which controls the core image
snapshots.

* Foreground & Background share the Swap FIB and are each limited to
levels O through 4.

* The Swap FIB: points to a File Index Block which points to the core
image data blocks.

10-3

- | N O

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAPS & CHAINS TOGETHER

PROGRAM LEVELS: 0 1 2 3 4

CLl ——»

Weeoool

Q

—_—

-0 0 6 Tleo 0 0 ofT1 -

C)—"@+~—0—0~—0

An unlimited number of programs can be executed; the greatest
nested level is 4.

* RDOS searches the disk for CLI.SV, upon initialization, to
execute at level zero.

* THE SWAP RETURN RESUMES THE
PROGRAM SWAPPED FROM.

KEY
WHERE : : CHAIN
=2 : SWAP
: SAVED PROGRAM LEVEL

10-4

AT
\

m W\/

O

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAPS & CHAINS

EXAMPLE: COMPILE LOAD & GO PROGRAM CLG.SV

PROGRAM LEVEL 0 1 2 3 4

T

CLI

FORTRAN
COMPILER
EXECUTION

RELOCATABLE
LOADER
EXECUTION

* Programming Structures may be incorporated into larger schemes
providing level 4 is not exceeded.

* Communications between Levels is performed via common disk files.
com.cm

105

ROOT CODE AREAS

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

OVERLAYS

PROG.SV

PROG.OL

- SUBROUTINE B
R SEGMENT
i 1
- OVERLAY 2 .
SEGMENT
OVERLAY AREA OVERLAY 1 0
: OVERLAY 0
- MAIN PROGRAM

Segments within the Overlay file are associated to core resident
Overlay Areas.

After the channel association to the Overlay File, overlays are
loaded into the Overlay Areas by name.

The Overlay is a vehicle, to bring infrequently used subroutines
into core; more than one subroutine may occupy the overlay.

Overlays within :a segment are each exclusively accessable.
When the Overlay is resident, its subroutine may be called.

Overlays are controlled by the Overlay Directory in core following
the User Status Table.

10-6

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
OVERLAY OPTIMIZATION

§
| SEGMENT
1
SUBROUTINE A
/
R
| SEGMENT
0

RLDR MAIN [OV00, OV01. OV02] SUBA)
[OV10,0Vv11,0V12,0V13] LIBRARY)

Overlay Areas accomodate the largest Overlay with an integral
number of blocks (256 ‘words)

Speed may be optimized, Overlay files are contiguous and block
transfers are used to load overlays.

Core Usage may be optimized by grouping similarly sized
overlays together.

RLDR MAIN [OV00, 0V10] SUBA

[OV0<1.2>,0V1<1,23>] LIBRARY

| SEGMENT
1

SUBROUTINE A

SEGMENT
0

10-7

S$200
RDOS USER
MODULE 11
SYSTEM INITIALIZATION
ON A

FORMATTED DISK

MODULE 11
OBJECTIVES
SYSTEM INITIALIZATION

ON A FORMATTED DISK

Upon successful completion of this module you will be able to:

* USE DKINIT TO INITIALIZE AN RDOS DISK
MAKE AN RDOS DISK BOOT'ABLE
* INSTALL THE REMAINING RDOS SYSTEM SOFTWARE

O

SYSTEM INSTALLATION ON A FORMATTED DISK
RDOS STARTER SYSTEM ON MAG TAPE

OF FILE PROGRAMS FORMAT PURPOSE
EXEC #
Bexench O
TBOOT.SV XFER Tape Bootstrap Program
J > ;
38 1 vty DUMP Archival Storage of
BOOT.SV RCLIS Important Files
3 2 BOOTSYS.SV <;‘>"’<’Fé? The Starter System
WA
o L@;M obhme Heodor
3A 3 BOOTSYS.OL DUMP Starter System Overlay File
1 4 DKINIT.SV XFER Disk Initializer
2 5 BOOT.SV XFER Disk Bootstrap Program
4 6 RDOS UTILITIES DUMP
The Remaining System
(>f{ o Software
5 7) RDOS LIBRARIES | DU@

*

- . 7

) gt laln

oo b L giwf"i'
b treanan e lg ,m%,upbfﬂpewym\’

A ix Y 6D Led A

10T <

P 4
Lo 0=F weector TURVY ” chands g

" Files in the XFER format are executable from tape, they offer initializing
features which must be accessable.

DKINIT inspects the disk for bad blocks and builds the REMAP table.
BOOT installs HIPBOOT on blocks 0 & 1, making the disk BOOT able.

BOOTSYS is the starter system, it loads MT0:3 & 1 thereby gaining
control of the system via CLI.

The remaining software comprises the RDOS system; it is loaded via
CLI commands.

11-1

SYSTEM INSTALLATION ON A FORMATTED DISK
DISK INITIALIZER : DKINIT.SV

Disk initializer installs a
disk 1D, Frame Size.

A full initialization inspects
the disk for bad blocks to
build a REMAP Table.

FROM MTO: 4)

DISK INITIALIZER — REV X.X

DISK DRIVE MODEL NUMBER ? 4234) -TOP LOADER 4047,-FRONT LOADER

DISK UNIT? DPO}

COMMAND? FULL)

[DGC Model #J Disk Drive Type pre In]
6001-6008 Fixed-head (no cartridge) 6001) to
6008)
40474, 404713} Front-loading cartridge 4047)
4237, 4238 4237) or
4238
4234A Top-loading cartridge 4234)
'4048A Top-loading pack (6 platters) 4048)
4057A Top-loading pack (11 platters) 4057)
4231A Top-loading pack (11 platters) 1231)
*

DGC Model # J Disk Drive Type Type In*
6001-6008 Fixed-head DK@)
(no cartridge) '
40474, 40478} Front-loading cartridge | DPp)
4237, 4238
4234A Top-loading cartridge
RDOS on cartridge DPg)
RDOS on fixed disk DPJF)
4048A Top-loading pack DPY)
(6 platters)
4057A Top-loading pack DPg)
(1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>