
~ If! ataGeneral

o

o

EducaUonalSerwces

5200
ROOS USER

STUDENT HANDOUT

019-000048-04

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE­
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE­
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
MANAP, microNOV A, NOVA, PROXI, SUPERNOVA, ECLIPSE
MV /4000, ECLIPSEMV /6000, and ECLIPSE MV /8000 are U.S. registered
trademarks of Data General Corporation. AZ-TEXT, DG/L, ECLIPSE
MV /10000, GW /4000, GDC/I000, GENAP, PRESENT, REV-UP,SWAT,
TRENDVIEW, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN,
BusiTEXT, and XODIAC are U.S. trademarks of Data General Corporation.

Copyright © Data General Corporation, 1980, 1982, 1983
All rights reserved

o

o

o

General

c·······.·""" .. ·,' ;_, IV

o

o

EducaUonalSerwces

S200
RDDS USER

STUDENT HANDOUT

019-000048-04

o

o

o

o

S200

RDOSUSER

COURSE OUTLINE

o

o

o

I. ARCHITECTURAL OVERVIEW/FRONT PANEL OPERATION

A. MEMORY

1. KINDS
2. UNITS
3. SIZES OF PHYSICAL MEMORY
4. LOGICAL SUBDIVISIONS

B. CENTRAL PROCESSING UNIT (CPU)

1. REGISTERS AND FLIP FLOPS

• PC • ACCUMULATORS

0 • IR • CARRY

• DECODE LOGIC • ION

• ALC UNIT • MAP

2. OVERVIEW OF CAPABILITIES

• ARITHMETIC • DEVICE I/O

• CHANGE PC • MEMORY I/O

0 C. PERIPHERALS

1. CONTROLLERS

• I/O BUSS • REGISTERS

• DEVICE CODES • BUSY/DONE

2. DEVICES

0 • RUDIMENTARY DEVICES ($TTI TTOLPT DPO)

D. FROr~JT PANEL OPERATION

1. ADDRESS/DATA LIGHTS
2. DATA SWITCHES
3. OFF/ON/LOCK
4. START/CONTINUE:
5. RESET/STOP
6. EXAMINE/EXAMINE NEXT
7. DEPOSIT/DEPOSIT NEXT
8. EXAMINE/DEPOSIT ACCUMULATORS
9. PROGRAM LOAD

10. FUNCTION LIGHTS: (ROM FETCH INDIRECT MAP ION ...)

0

II. BOOTSTRAPPING, STARTUP, SHUTDOWN *

A. ORIENTATION & PROGRAMS

1. INSTALLATION OF SUCCESSIVELY MORE POWERFUL PROGRAMS
2. PGM LD/BOOT.SV (HIPBOOT)

B. POSITIONING TO THE BOOTSTRAP PROGRAM

1. DISK: POWER & LINE SWITCHES, TOGGLING
2. TAPE: LOAD SWITCH OR RESET REWIND ON-LINE

C. HOW TO PERFORM THE BOOTSTRAP

1. DISK
2. TAPE

D. STARTUP FROM DISK

1. FILENAME: "ENTER SYSTEM NAME"
2. DATE: "ENTER CURRENT DATE"
,3. TIME: "ENTER CURRENT TIME"
4. PROGRAMS SOUGHT ON DISK: CU. < SV,ER,OL >, BOOT.SV 0

E. SHUTDOWN FROM DISK

1. HALT VARIOUS SYSTEM PROCESSES: SPOOLING, FOREGROUND, LOG, ...
2. GET ACCESS TO THE COMMAND LINE INTERPRETER
3. RELEASE MASTER DIRECTORY

III. INTRODUCTION TO OPERATING SYSTEMS -- RDOS * • A. THE NEED FOR OPERATING SYSTEMS: A HISTORIC OVERVIEW

1. ORIGINAL PROGRAM DEVELOPMENT
2. THE FIRST UTILITIES - - EDITOR & ASSEMBLER
3. THE SIMPLE MONITOR SYSTEM
4. MODERN OPERATING SYSTEM TECHNIQUES FOR EFFICIENCY

B. ELEMENTS OF MODERN OPERATING SYSTEMS

1. PRIMARY GOAL: HELP USER MANAGE RESOURCES
2. 1/0 AND DEVICE MANAGEMENT
3. FILE MANAGEMENT
4. MEMORY MANAGEMENT
5. PROCESS MANAGEMENT 0

II

o

C. RDOS ANALOGUES TO THE MODEL OPERATING SYSTEM

1. PROCESS
2. MEMORY
3. FILE AND I/O MANAGEMENT

IV. INTRODUCTION TO THE COMMAND LINE INTERPRETER (CLI) *

A. DEFINITION OF CLI

B. THE CLI COMMAND STRUCTURE

1. COMMANDS AND ARGUMENTS
2. GLOBAL & LOCAL SWITCHES
3. CLI PUNCTUATION
4. EXPANDERS: IN-LINE, MULTI-LINE
5. RDOS FILE NAME TEMPLATES
6. SPECIAL SYMBOLS

C. CLI PERCENT VARIABLES

D. INDIRECT FILES

E. MACRO FILES

**************************** CLI VOCABULARY *****************************

BOOT
LIST

TYPE
REV

GSYS STOD
MESSAGE PRINT

LOG
XFER

ENDLOG
SDAY

PUNCH GTOD

**

LAB EXERCISE: BOOTSTRAPPING & CLI

III

V. DISK BASICS/ROOS & INFOS FILE STRUCTURES *

A. DISK BASICS

1. A PHYSICAL DISK BLOCK \

• SECTOR X SURFACE X TRACK (CYLINDER)

• SYNC BITS, ADDRESS, DATA, CYCLIC CHECK SUM

• DTOS/DDOS WRITES FORMATTING INFO

2. PRELIMINARY DISK BLOCKS

• HIPBOOT (BOOT.SV) BLOCK 0& 1

• PHYSICAL DISK MANAGEMENT INFORMATION BLOCK 3

• REMAP AREA (BAD DISK BLOCKS) BLOCK 4 e
• SOME UNUSED INITIAL BLOCKS BLOCK 2 & 5

• RDOS REFERS TO THESE PHYSICALLY

B. RDOS FILE STRUCTURES

1. SEQUENTIAL

• 255 DATA WORDS/BLOCK AND A LINK ACCESS WORD 0 • EXPANDABLE

• MEDIUM OVERHEAD, SLOWEST ACCESS

• SEQUENTIAL ACCESS, NO DMA

2. CONTIGUOUS

• 256 DATA WORDS/BLOCK AND GARENTEED PROXIMITY

• NONEXPANDABLE, FIXED ALLOCATION (EOF ON WRITE)

• MINIMUM OVERHEAD, FASTEST ACCESS

• RANDOM ACCESS, DIRECT MEMORY ACCESS (DMA)

• BEST FOR VERY LARGE FILES

3. RANDOM

• 256 WORDS/DATA BLOCK AND A FILE INDEX BLOCK

• EXPANDABLE

• MAXIMUM OVERHEAD, MEDIUM SPEED

• RANDOM ACCESS, DMA

C. INFOS FILE STRUCTURES OVERVIEW

1. SAM: • SEQUENTIAL ACCESS METHOD

• CONTIGUOUS ALLOCATION & RANDOM OVERFlOW

0

·IV

o

2. RAM:

3. ISAM:

4. DBAM:

fD RELATIVE ACCESS METHOD
.. ACCESS VIA RELATIVE RECORD NUMBER

.. INDEXED SEQUENTIAL ACCESS METHOD

.. SINGLE DEYED ACCESS VIA INDEX FI LE (.1X)

.. DATA.IX ~ (DATA.VL INDEX.VL) =>(DATA INDEX)

.. MULTIPLE DATA & INDEX FILES

.. DATA BASED ACCESS METHOD

.. MULTI KEYED ACCESS

.. MULTI LEVEL KEYED ACCESS

.. DATA. IX ~ (DATA.VL INDEXN.VL) => (DATA INDEXN)

VI. RDOS DIRECTORY STRUCTURE

A. PRIMARY PARTITION: CONTROLS ENTIRE DISK PLATTER

.. PRIMARY PARTITION SYSTEM DIRECTORY FILE: SYS.DR

.. SYS.DR - A FILE INDEX BLOCK

.. SYSTEM DATA BLOCKS - DATA ENTRY BLOCKS

.. MAP.DR - BIT MAP DISK BLOCK ALLOCATION CONTROL

1. DATA ENTRY BLOCKS

.. CONTENTS: USER FI LE DESCRIPTIONS (UFO'S, 14 MAX)

.. CURRENT UFD'S IN DATA ENTRY BLOCK (FIRST WORD IN BLOCK)

.. TOTAL UFD'S IN DATA ENTRY BLOCK (NEXTTO LAST WORD)

2. USER FILE DESCRIPTIONS (UFD)

.. FI LENAME & EXTENSION

.. ATTRIBUTES & CHARACTERISTICS o .. LINK ATTRIBUTES & CHARACTERISTICS

.. 512* RELATIVE BLOCKS + LAST BLOCK BYTES == TOTAL BYTES

.. WORD 12: POINTER TO DATA BLOCKS

.. DATE & TIME CREATED

.. TIME LAST ACCESSED

.. USE COUNT

.. DCT LINK

3. FI LENAME RESOLUTION

.. FRAME SIZE (FS) & HASH VALUE OFFSET (HVD)

.. FI LENAME SEARCH WITHIN DATA ENTRY BOOCK

.. NOT FOUND, TOTAL == 14; HVO == HVO + FS,SEARCH AGAIN

.. NOT FOUND, TOTAL < 14; FI LE NOT FOUND ERROR

V

4. FILENAME DELETION 0
• HASH & SEARCH DATA ENTRY BLOCKS

• DECREMENT CURRENT UFD'S COUNT

• NULL FIRST TWO CHARACTBRS IN FILENAME

• ZERO BITS ALLOCATED IN MAP.DR

B. SECONDARY PARTITION STRUCTURE

• USER NAMED UFD IN PRIMARY ~ SYS.DR FOR SECONDARY

• SYS.DR : FILE INDEX BLOCK FOR SECONDARY PARTITION DATA
ENTRY BLOCKS

• DATA ENTRY BLOCKS HOLD SECONDARY PARTITION'S UFD'S

• MAP.DR : ALLOCATION CONTROLL (INTERNALLY & EXTERNALLY)

C. SUBDIRECTORY STRUCTURE •
• USER NAMED UFD IN CURRENT DIRECTORY 4SYS.DR FOR DIRECTORY

• SYS:DR : FILE INDEX BLOCK FOR DIRECTORY'S DATA ENTRY BLOCKS.

• MAP.DR -- POINTS TO PARENT MAP.DR FOR SHARED ACCESS

D. REFERENCES WITHIN/BETWEEN PARTITIONS & DIRECTORIES

• DeB'S - INITIALIZATION & RELEASE 0 • LINKS - REFERENCES ACROSS DIRECTORY/PARTITION BOUNDARIES

• LINK UFD'S, LINK ATTRIBUTES & CHARACTERISTICS

VII. ALTERING THE INFORMATION ON DISK - DSKED.SV

A. DSKED.SV - STAND ALONE DISK EDITOR (BOOT'ED)

1. ADDRESS SPECIFICATION (BLOCK:OFFSET/CONTENTS) -2. HASHING (FRAMESIZE;FI LENAME=)
3. HALT DSKED, UPDATE DISK (ESC Z)
4. LOCAL COMMANDS:

RIGHTSLASH ASTERISK LINE FEED LEFT ARROW
APOSTROPHY EQUAL SIGN UPARROW CARRIAGE RETURN

o
VI

o

* * ** * * * * ****** * * ****** ********** VOCABU LARY ******************************

BUILD CRAND
CPART LDIR

RENAME
CHLAT

GDIR
DIR

CCONT CR EATE
MDIR CLEAR

FPRINT
LINK

INIT CHATR
DISK

FILCOM

LAB: MORE CLI AND DSKED LAB

VII

0
VIII. PROGRAM DEVELOPMENT *

A. SOURCE CREATION: EDIT.SV

'1. OPERATING PRINCIPLES
2. EDIT COMMANDS

• FILE ASSOCIATION • . CP POSITIONING

• INPUT / OUTPUT • SEARCH

• DELETE • DISPLAY

• MACRO IMPLEMENTATION

3. COMMON PROBLEMS

B. COMPILATION

1. LANGUAGE TRANSLATOR (HIGH LEVEL -+ ASSEMBLY)
. 2. EXTERNAL REFERENCES & RUNTIME SUPPORT LIBRARIES

3. SYNTACTICAL ERRORS - LISTING FILES

C. ASSEMBLY

1. SYMBOLOGY TRANSLATOR (ASSEMBLY -+ BINARY) 0
2. PASS 1 : TRANSLATION & SYMBOL TABLE CONSTRUCTION
3. PASS 2 : INTERNAL RESOLUTION - FORWARD REFERENCES
4. THE RELOCATABLE BINARY FILE (.RB)

D. RELOCATABLE LOADING

1. RELOCATABLE BINARY (.RB) -+ CORE IMAGE SAVE FILE (.SV)
2. CODEPLACEMENTIN.ZRELAND.NREL 0 3. ENTRY POINTS LOGICALLY CONNECTED TO EXTERNAL REFERENCES
4. UNRESOLVED EXTERNALS AND THE LOAD MAP

E. EXECUTION & TEST

1. LOGICAL ERRORS - LOCATION WITHIN LOAD MAP
2. DEBUGGER OVERVIEW

IX. OTHER RDOS EDITORS

C SEDIT / OEDIT / MEDIT / SPEED / LFE OVERVIEWS

o
VIII

o
.1. SED!T - SINGLE USER, SINGLE LOCATION SYMBOLIC EDITOR
2. OEDIT - SINGLE USER, SINGLE LOCATION EDITOR
3. MEDIT MULTIUSER, TEXT EDITOR (ESSENTIALLY EDIT)
4. SPEED SINGLE USER, MULTIBUFFER SUPER TEXT EDITOR
5. LFE SINGLE USER, SINGLE SCAN, LIBRARY FILE EDITOR

X. PROGRAMMING TECHNIQUES TO MANAGE MEMORY

1. CHAIN EXECUTION OF PROGRAMS

• MANIPULATION OF ENTIRE PROGRAMS

• DESTRUCTIVE MEMORY LOADS
EXECUTION AT SINGLE PROGRAM LEVEL:

";;".

•
0 2. SWAP EXECUTION OF PROG RAMS

• SUBORDINATE EXECUTION OF ENTIRE PROGRAMS
• NONDESTRUCTIVE MEMORY LOADS
• PROGRAM LEVELS & SWAP FILE INDEX BLOCKS

3. OVERLAY

o • PORTION OF USER SPACE LOADED WITH CODE FROM DISK
• ROOT CODE & OVERLAY AREAS WITHIN .SV
• SEGMENTS & OVERLAYS WITHIN .OL
• SIZES & ASSOCIATIONS (SEGMENT VS. OVLYAREA)
• RLDR CONFIGURATIONS

**** ********* * * ************ *** ** VOCABU LARY **** ***** *.* ** ** * *** * * * **** ** * **

0 PROGNAME NSPEED.SV MAC.< SV.PS> SEDIT.SV
ASM.SV SPEED.<SV,ER> CLG.SV OVLDR.SV

XREN.SV ALGOL.SV LFE.SV FORT.SV

EDIT.SV RLDR.<SV,OL> FIV.SV MEDIT.RB
OEDIT.SV CHAIN POP

LAB: TEXT EDIT, PROGRAM DEVELOPMENT, SEDIT

o
IX

XI. SYSTEM INSTALLATION ON A FORMATTED DISK*

A. THE RDOS STARTER TAPE [SYSGEN MANUAL 3-1]

1. MTO:O TBOOT.SV XFER FORMAT

2. MTO:1 CLI.<SV,ER,OL> DUMP
BOOT.SV, BOOTSYS.SV

3. MTO:2 BOOTSYS.SV XFER

4. MTO:3 BOOTSYS.OL DUMP/A

5. MTO:4 DKINIT.SV XFER

6. MTO:5 BOOT.SV XFER

7. MTO:6 RDOS UTILITIES DUMP

8. MTO:7 RDOS LIBRARIES DUMP

B. DISK INITIALIZER [SYSGEN CH 9]

1. FUNCTIONS

• DISK TYPE, FRAME SIZE, BAD BLOCK TABLE SIZE

• TEST FOR BAD BLOCKS, BUI LD REMAP AREA

2. COMMANDS

• FULL FULLY INITIALIZES THE,OISK 0
• PARTIAL INSPECTS FOR BAD BLOCKS

• ENTER UPDATE OLD REMAP AREA WITH NEW BAD BLOCKS

• LIST DISPLAY DISK STATUS, REMAP & FRAME SIZES,
BAD BLOCKS

• STOP HALTS DKINIT, REHOMES DISK HEADS

C. INSTALLATION OF RDOS SOFTWARE [SYSGEN CH 3]

1. INITIALIZE THE DISK
2. INSTALL HIPBOOT(BOOT.SV)
3. INSTALL STARTER SYSTEM & ASSOCIATED SOFTWARE
4. THE UTILITIES DIRECTORY
5. THE SYSGEN DIRECTORY (ALSO: EDIT, SYSGEN, RLDR.<SV,OL»

XII. SYSTEM GENERATION * [SYSGEN CH 5]

A. PROGRAMS AND FILES

1. SYSGEN.SV, RLDR.<SV,OL> THOSE EXECUTING
2. CLLCM, SYSOOO.RB THE TEMPORARIES
3. *RDOS<A,B,C,I,O> .LB THOSE REFERENCED FOR CODE
4. SYSNAME.<SV,OL,MP,SG> THOSE CREATED 0

x

o

o

c

o

B. THE PROCESS/MECHANICS OF SYSTEM GENERATION

1. SYSGEN INVOKATION : *SYSGEN SYSNAME.<lS SG/V MP/L>
2. CURRENT DIALOGUE QUESTIONS -"- ANSWERS
3. SYSOOO.RB LOADING WITH *RDOS<A,B,C,I.O>.LB
4. GENERATION OF SYSNAME.<SV,OL,MP,SG>

C. SYSTEM COMPONENTS, THEIR FUNCTIONS & SIZES

1. STACKS - TOTAL CONCURRENT SYSTEM PROCESSIES
- 310 OCTAL WORDS (OW), WAIT STA1"EWHEN INSUFFICIENT

2. CELLS - TOTAL CONCURRENT SYSTEM CALLS (FG & BG)
. - 20 OW, TCB WAIT STATE WHEN INSUFFICIENT

3. BUFFERS - SYSTEMS CAPACITYTO HOLD DATA IN CORE
- 416 OW, SLOWER OVERALL Mof:{E DISK ACCESSES.

4. UFT - SYSTEM CAPACITY FOR DISTINCTlIO TRANSPORT
- 50 OW/CHANNEL, ERROR REJECT WHEN INSUFFICIENT

- TOTAL CONCURRENTLY ACCESSABLE D.lSK DIRECTORIES
- .416 OW, ERROR REJECT WHEN INSUFFICIENT

5. DCB

6. OTHER CORE RESIDENT COMPONENTS

e SCHEDULER e INTERRUPTHANDLING
•. SYSTEM CALL PROCESSORe77 OVERLAYS (40Q OW /)
_ORIVERS& SERViCE ROUTINES·

XIII. SYSTEM UPDATES I PATCH FACILITIES··

. A. THE:STANDARD UPDATE TAPE
1. MAJOR / MINOR REVISION N~MBERS & UPDATE NUMBER (RDOS 19.84)
2. UPDATE FILE, PATCH FILES; PATCH MACROS •

. B. ENPAT UTI.LlTY

1. PATCH =AONEWOROCHANGET<)A.SV OR ,OLFILE .
2. ENPATftilLOWSCODINGOF PATGHDATA(CONDITIONALlY/

UNCONDITIONALLY)

Xl

C. PATCH UTILITY

1. PATCH INSTALLS PATCH DATA CREATED VIA ENPAT
2. COMMANDSTRUCTURE:

• PATCH SAVEFILENAME/S PATCHFILE.PF/P LOADMM./L

3. GLOBALS: /1 SUPRESS COMMENTS
/N NO ACCOMPANYING LOADMAP FI LE

XIV. MONITORING AN RDOS OPERATING SYSTEM

A. ASPECTS OF TUNING

1. REQUESTED DURING SYSGEN " 2. RESOURCE ALLOCATION RECORDS VS. ACCEPTABLE RESULTS
3. CLI MECHANICS

• TUON SYSNAME

• TUOFF

• TPRINT/L/O SYSNAME

XV. SYSTEM BACKUP: STARTER TAPE EMULATION 0
A. MECHANICS OF TRANSFERS (TAPE & DISK-+DISK)

1. XFER • FILE CONTENTS ONLY TRANSPORTED

• ONE DISK FILE/COMMAND: SOURCE DESTINATION

• CONTENTS BOOT'ABLE FROM TAPE

2. DUMP/LOAD • UFD & CONTENTS TRANSFERRED TO TAPE 0 • MANY DISK FILES/MAG TAPE FILE

• DIRECTORY STRUCTURE MAINTAINED

• NOT BOOT' AB LE

3. FDUMP/FLOAD • THREE MAG TAPE FILES/COMMAND

• ALL FILES IN CURRENT DIRECTORY TRANSPORTED

• FASTEST & MOST CONDENSED

• NEW TAPE VOLUME CONTROLS

4. MOVE • DI RECTORY TO DI RECTORY TRANSPORT

• UFD & FILE CONTENTS TRANSFERRED

• DIRECTORY SPECIFIER OR FILENAME TEMPLATES

• GLOBALS : /A /D /K /L /R /V

• LOCALS: MM-DD-YY/A, MM-DD-YY/B, NAME/N

0

XII

o

o

B. A BACKUP TAPE MACRO

1. .MESSAGE ANNOUNCEMENT - BACKUP IN PROGRESS
2. EMULATION OF THE RDOSSTARTER TAPE (FILES 0'-" 6)
3. DUMP ALL SOFTWARE TO MTO:(6,7) [BELTS & SUSPENDERS]
4. OR FDUMP ALL SOFTWARE TO MTO: (0,3) [ON.A NEW TAPE]
5. TERMINATION MESSAGE

******************************** VOCABULARY *******************************

DUMP
TPRINT

FDUMP
PATCH

MOVE
SYSGEN

TUOFF . ENPAT EQUIVLOAD FLOAO TUON

LAB: SYSTEM BACKUP MACRO& SYSTEM INSTALLATION

XVI. RDOS SPOOLING

A. THE OUTPUT PROCESS

1. USER DATA BUFFER OR SOURCE
2. RDOS DATA BUFFER
3. DEVICE DATA BUFFER
4. SPOOL FILES / OPTIMUM CPU TIMING
5. INTERRUPT DRIVEN DATA REQUESTS

B. CLI CONTROL COMMANDS & SPOOL'ABLE DEVICES

• SPDIS DEVICENAME • SPKI LL DEVICENAME .SPEBL DEVICENAME

$DPO
$TTP(1)

$LPT(1)

C. SPOOL FILE LOSS & RECOVERY

1. UNUSED DISK ALLOCATION

$PTP(1)

2. UNDELETABLE WITHOUT FILENAMES
3. FULL INITIALIZATION / BACKUP RECOVERY
4. SECONDARY PARTITION BOOTSTRAP REMEDY

$TTO(1)

XVII. RDOSPROCESSMANAGEMENT:FOREGROUND/BACKGROUND

A. MAP UNIT ADDRESS TRANSLATION

1. 5 + 10 BIT PROGRAM COUNTER
2. 32 SLOT TRANSLATION TABLE CONTAINING 7 BIT PHYSICAL ADDRESSES

o

3. 7 + 10 BITTO ACCESS PHYSICAL MEMORY
4. 10 BIT OFFSET INTO PHYSICAL PAGE (1 K)· _
5. EACH PAGE PROTECTED:VALIDITY, READ, WRITE, I/O, DATA CHANNEL

B. RDOS TRANSLATION TABLE MANIPULATION

1. PROGRAM TABLES LOAD MAPA, MAPB, DATA CHANNEL MAP
2. FOREGROUND: ACTIVATE MAPA
3. BACKGROUND: ACTIVATE MAPB
4. EVENTUAL 1 K PAGE SHUFFLE VS. LOGICALLY SEQUENTIAL PAGES

C. RDOS DUAL PROCESSES: FOREGROUND / BACKGROUND

1. CORE CONFIGURATION (MAPPED / UNMAPPED)

• USER SrACE / RDOS / PAGE ZERO
• USER STATUS TABLE & TASK CONTROL BLOCKS o
• UNMAPPED LOADING CONSIDERATIONS (/Z /F)

XIV

C

XVIII.

A.

B.

XIX.

A.

B.

2. PROCESS PRIORITIES

• EQUAL - ROUND ROBIN
• DEFAULT - FOREGROUND HIGHER (REAL-TIME APPLICATIONS)

3. CLI CONTROL

• EXFG/E • GMEM • FGND

• SMEM • CNTRL F

RDOS EXTENDED MEMORY: VIRTUAL TECHNIQUES

DEFINITION OF EXTENDED MEMORY / HYPERSPACE

1. MEMORY IN GROUND BEYOND USER ADDRESS SPACE
2. HYPERSPACE MAY HAVE: DATA -- WINDOW MAPPING CODE - VIRTUAL

OVERLAYS

1.
2.
3.

1.
2.
3.

WINDOW MAPPING & VIRTUAL OVERLAYS

WINDOW DEFINITION IN USER SPACE (BOTH)
EXTENDED MEMORY HOLDS CODE OR DATA
REMAP -- PHYSICAL PAGE ADDRESS TRADE IN TRANSLATION TABLE

RDOS MALFUNCTIONS & RECOVERY

TRAP - A MAP VIOLATION

$TTO(1) '* ACCUMULATORS, PROGRAM COUNTER
PROGRAM COUNTER = LOCATION OF INSTRUCTION IN ERROR
(F)BREAK.SV CREATED

PANIC - EXCEPTIONAL SYSTEM DATA [RDOS REFMAN.APPENDIX G]

1. $TTO '* ACCUMULATORS, PANIC CODE

** ** * * * ** * * * * * * *** ** * * ** * * * * * ** VOCABULARY * ** * * * * * * * ** * * * * * * * *** ** * * ** ***

SPDIS SPKILL GMEM EXFG (F)BREAK.SV PANIC TRAP SPEBL
FGND SMEM SAVE

LAB: SYSGEN, TUNNING FILE REPORT, CARRY OVER

XV

•

o

o

I o

o

o

8200

RDOSUSER

MODULE 1

ARCHITECTURAL OVERVIEW/FRONT PANEL OPERATION

~." v

•

o

o

o

c····· ·' ':)
}

o

Module 1

OBJECTIVES

Upon successful completion of this module you will be able to:

* DEFINE THE UNITS OF INFORMATION WITHIN MEMORY
* DEFINE THE PHYSICAL SIZES OF MEMORY WHICH RDOS CAN MANAGE
* DEFINE THE LOGICAL SUBDIVISIONS WHERE RDOS RESIDES, WHERE THE

FOREGROUND/BACKGROUND PROGRAMS RESIDE
* DESCRIBE THE INTERNAL REGISTERS IN THE CENTRAL PROCESSING UNIT

WHICH ARE CONTROLLED VIA THE FRONT PANEL
* ENUMERATE THE CENTRAL PROCESSING UNIT CAPABILITIES WHICHRDOS

BOTH RELIES UPON AS A PROGRAM AND MANAGES AS AN OPERATING
SYSTEM

* EXPLAIN THE SIZE OF USER ADDRESS SPACE USING CENTRAL PROCESSING
UNIT REGISTERS

* EXPLAIN RDOS'S REAL TIME DEVICE CONTROL VIA DEVICE CODES,
INTERRUPTS, THE I/O BUSS, AND DEVICE CONTROLLER BOARDS

* DISTINGUISH BETWEEN RDOS SINGLE AND MULTIPLE FILE DEVICE CONTROL
* LIST THE RDOS DEVICE NAMES

•

o

o

....
I

..;.,.

o

. .

e .• CORE/SEM1CONDUCTQR

() o

•. c' y -.-... .

DATA CHANNEL
DEVICES

()

PERIPHERALS
~

r ,
CONTROLLERS DEVICES

JNTERFACE

FRONT PANEL OPERATION

... '0'
POWER IMSTlU,ICTlON 0 1 0 0 0 I u 0 0 1 0 < 0

O. ---- -- -_ .. --._------ --'-" ----

... @ AOORtSS I' 0 0 0 1 c 0 0 I c 0 0 1 0 0 0 I 0 0 0
... ,., ntCUtt:

"""
0 0

DATA 0 0 1 0 c 0 I 0 0 0 1 0 0 0 I 0 0 0 I 0 0 0
OEfER

0

CAAIIY 0 , , , . , . , . . ~ " " " ,. " @ @ @@ @ @@ @ @@ @@@ @@@ CO" " U 0

~::t®-®-@-®t
IIIUIT ITAIIT , Mi:MDIn'm, - I © @ @ @ @ @ @ © QW1'1.'" .f'OIITMDT • • .,. mI" CHARa. ,TAIIT

I -'." a. DATA GENERAL CORPORATION I NOVA I I
DG-OI8'2

NOVA-
--- - ... ---.---~-.---.--.--.---. -_._.-..

--- •

NOVA 3 o

EGLIPSE

• ADDRESS/DATA LIGHTS • EXAMINE/EXAMINE NEXT

• DATA SWITCHES • DEPOSIT/DEPOSIT NEXT

• OFF/ON/LOCK • EXAMINE/DEPOSIT ACCUMULATORS

• START/CONTINUE • PROG RAM LOAD
• RESET/STOP -, • FUNCTION LIGHTS

o
1-2

o

o

o

S200

RDOSUSER

MODULE 2

BOOTSTRAPPING/STARTUP/SHUTDOWN.

o

•

o

o

o

o

o

MODULE 2

OBJECTIVES

BOOTSTRAPPING STARTUP, SHUTDOWN

Upon successful completion of this module you will be able to:

*
*

POWER UP & DOWN ALL DGCCOMPUTING EQUIPMENT
START RDOS RUNNING, THE REQUIRED SOFTWARE, AND
THE PROCESS

•

o

o

o

c·······.··, -t.)

o

BOOTSTRAPPING, STARTUP, SHUTDOWN

MEMORY

Wl)en HIPBOOT is loaded, it may be directed to load any RDOS System

MEMORY

HIPBOQT

RDOS

FILENAME: RDOS

ROOS
SYSTEMS

MASTER
DIRECTORY

Once loaded, RDOS is associated to tl)e disk until shutdown.

2-1

BOOTSTRAPPING, STARTUP, SHUTDOWN

Reposition to a Bootstrap Program

Disk Power Switch Line Switch Toggling
(HIPBOOT) OFF ~ON OFF ~ON Stop, Reset

(ouch!) (sloooow) ACO set 1400
061333, Deposit
Inst step

Tape Reset Reset
(TBOOT) LOAD REWIND

ON-LINE ON-LINE •
How to perform the Bootstrap

Disk Set 100033 Tape Set 100022
PGM LD PGM LD

Zebra Set 100027 Paper Tape [Set 000012 0
PGM LD PGM LD

NOTICE Bit 0 & Device Codes

o
2-2

o
Start Up

o
SHUTDOWN:

o

o

o

BOOTSTRAPPING, STARTUP, SHUTDOWN

FILENAME?
DATE (MM/DD/YV)
TIME (HH:MM:SS)

R

R

ACCESS CLI.SV
C(J~OL

FG tERM (HALt FOREGROUND)
R
ENDLOG (HALt LOG)
R
RELEASE %MDIR%
MASTER DIRECTORY RELEASED

2-3

o

o

o

o

o

o

o

S200

RDOSUSER

MODULE 3

INTRODUCTION TO OPERATING SYSTEMS

o

•

o

o

o

MODULE 3

OBJECTIVES

INTRODUCTION TO.OPERATINGSYSTEMS

Upon successful completion of this module you will be able to:

* EXPLAIN THE NEED FOR OPERATING SYSTEMS AND THE
NECESSARY DEVE LOPMENT OF SOFTWARE TO ACCOMODATE
OPERATING SYSTEM CONSTRUCTION

* DESCRIBE THE ELEMENTS OF MODERN OPERATING SYSTEMS
AND HOW THEY AIDTHE USER IN MANAGING A COMPUTING
ENVI RONMENT

* DEMONSTRATE THE RDOS ANALOGY1l0 THE MODEL
OPERATING SYSTEM

o

o

o

o
OPERATING SYSTEMS

. FILE PROCess
MANAGEMENT ' MANAGEMENT

MEMORY ..
M~NAGEMENT . -- --,-~

OPERATING SYSTEM

o

w ,
~

..
INPUT FILE B

ELEMENTS OF A MODERN OPERATING SYSTEM

PROCESSMANAGERI .. C

..
OUTPUT FILE B

..
COMPUTE FILE B

o

EMORY MANAGE

USERC

USER F

USER A

USER B

MEMORY

FILE & I/O
MANAGER

BUFFERED UNBUFFERE9 SPOOLING
I/O I I/O

CARDS

MAG
TAPE

o

DEVICE DRIVERS

INTERRUPT
PROCESSING

NOTES

o

o

3-3

3-4

RDOS MEMORY MANAGEMENT

CHAIN: Program invoking via destructive write to memory from disk.

A.SV

CHAIN B.SV
END

MEMORY

DESTRUCTIVE
WRITE

B.SV

SWAP: Program invoking with previous program execution "pushed" to disk

A.SV

SWAP B.SV
END

MEMORY

DESTRUCTIVE
WRITE

CURRENT
EXECUTION SAVED

B.SV

'" ---_. , ,

OV E R LA Y: Code destructively written to local memory area.

A.SV

OVLODOV1

END

DESTRUCTIVE
WRITE A.OL

--t---OV3-..... ~

OV2

OV1

ovo

o

I
II I

~
10

11

II

riO

i
~

NOTES

. \" ,.,"

3-5

3-6

RDOS FILE &1/0 MANAGEMENT

• SINGLE FI LE DEVICES

DEVICES CONTAINING INDIVISABLE INFORMATION

EX: - CARDREADERREADS80COLUMNS
- LINE PRINTER WRITES 80 or 132 COLUMNS
- PAPER TAPE PUNCH WRITES ONE CHARACTER

• MULTIPLE FI LE DEVICES

DEVICES CONTAINING DIVISABLE INFORMATION

EX: MAG TAPE REELS CONTAIN MANY FILES
- COMMUNICATION MULTIPLEXOR HAS MANY LINES

TO TERMINALS
- DISK DRIVES CONTAIN MANY DISK FILES
- MUL TICOMMUNICATIONS ADAPTER HAS MANY

UN ES TO CPU'S.

o

o

o

o

o

RDOS SINGLE FILE DEVICE NAMES

$CDR(1)
$DPI+
$DPO+
$LPT(1)
$PL T(1)
$PTR(1)
$PTP(1)
$TTI (1)
$TTO(1)
$TTR(1)
$TTP(1)

Card Reader
Dual Processor (I nput) I PB
Dual Processor (Output)
Line Printer (80 or 132 Columns)
I ncremental Plotter
Paper Tape Reader
Paper Tape Punch
Master Console (I nput)
Master Console (Output)
Teletype Paper Tape Reader
Teletype Paper Tape Punch

RDOS allows a primary and secondary controller board for each of the above
devices and distinguishes between the two by names having a "1" appended.
The hardware is distinguished by adding an octal 40 to the device code (Le.,
$LPT - 17, $LPT1-57).

+ Dual processor communications are supported for a primary controller only.

3-7

Tenninals:

Mag Tape:

Disks:

3-8

RDOS MULTIPLE FILE DEVICES

Asynchronous Data Communications Multiplexor
Terminal identified by line number n, 0 ~ n ~ 63

QTY:n

Cassette (CT) or Seven/Nine Track Magnetic Tape (MT)
Drive identified by unit number, n, 0 ~ n ~ 7/controller
File identified by file numberm, 0 ~ m ~ 99/reel.

MTn:M CTn:M
MTO:O CT7:99 primary controller
MT 1 0: 0 CT 17: 99 secondary controller

Fixed Head Disk (DK), Unit number n 0 ~ n ~1
Any RDOS filename (FN)

DKn:FN
DKO:DIL
DK1:C3PO

primary controller
secondary controller

Moving Head Disk (DP), unit number n, 0 ~ n ~ 7
DPn:FN
DPO:1A
DP7:LAST

primary: 0 ~ n ~ 3
secondary: 4 ~ n ~ 7

Fixed Plotter Portion on Moving Head Drive (5 Meg.W)
DPnF:FN
DPOF:YUP DP7F:DISKCOPY

o

c

o

Disks:

MORE MULTIPLE FILE DEVICES

Floppy Disks are Moving Head Disks
Zebra (DZ) Multiplattered Moving Head Disk, unit
number n 0 ~ n ~ 7

DZN:FN
DZO:BLAH
DZ7:FLAT

primary
secondary

Multiprocessor: Multiprocessor Communications Adapter (MCA)
Transmit Section (MCAT), Receive Section (MCAR)
to/from CPU number n, 0 ~ n~ 15

MCAR:n MCAT:n
MCAR:O MCAT:15 primary
MCAR1:0 MCAT1:15 secondary

Any CPU may communicate to any other CPU or
to itself for foreground/background communications.

,

3-9

3-10

FILENAME

EX

Examples:

RDOS DISK FILE NAMING RULES

... FI LENAM.EX

1 to 10 Characters ..
A - Z, 0- 9, $
ANY ORDER; AT LEAST ONE

EXTENSION
o to 2 Characters .
A ...,. Z, 0 -:-9, $
ANY ORDER

.. ZILON
DECOM.15
R2D2
C3PO
RDOS6.41

Examples with Directory Specifiers: .

DPO:DSKED.SV
UPDATE: BRDOS.PF
UTI L.: EDIT.SV
DPOF: SECPART:SUBDIR DATA

o

o

•

o

o

RDOS DISK FilE EXTENSIONS

Source File Extensions - Anticipated by Compilers

.SR

.FR

.AL

Assembly
Fortran (I V or 5)
Algol

Those derived from editing

.BU Back Up File

Those derived through program development

.LS
.OL
.LB

Listing File
Overlay File
Library File

Executable File Extensions

.SV Save File

.CB

.JB

.SC

.RB

.OR

.LM
o lu-.,vi 1>

.AB

Cobol
Basic
Batch Job File

Scratch File

Relocatable Binary FHe
Overlay Replacement F ite
Relocatable Load Map File

Absolute Binary File

System Utility or Informatory File Extensions

.DR Partition/Directory File
.KS Data General Keysheet

Those needed by the BASI C program

.sw =

.AF
Swap File
Accounting File

Commercial FHe Extensions

.VL Volume file

.CM Command File
.MC Macro File
.PF PatchFiJe
.TU - 11.A""\A.i~~~I<l-

.10 - Valid LOGON 10

.IX - Index File

3·11

0<:

'.

o

o

o

o

o

8200

RD08U8ER

MODULE 4

INTRODUCTION TO THE COMMAND
LINE INTERPRETER

---------------~-.------------ .. --------.--.-.---------.--

o

o

o

MODULE 4

OBJECTIVES

INTRODUCTION TO THE COMMAND
LINE INTERPRETER

Upon successful completion of this module you will be able to:

* IMPLEMENT VALID CLI COMMANDS
* DEMONSTRATE PROPER USE OF LOCAL AND GLOBAL

COMMAN D SWITCHES
* USE IN-LINE & MULTI-LINE COMMAND EXPANSIONS
* USE SPECIAL SYMBOLS TO CONTROL RDOS VIA CLI
* USE CLI PERCENT VARIABLES, INDIRECT, AND MACRO FILES

o

o

o

o

o

COMMAND LINE INTERPRETER

CLI translates a human oriented language into assembly language system calls.

Cli RDOS

Command/G lobals Arg1/Locals Arg2/Locals. .. Argn/Locals

I nternal Command?
Macro File on Disk ?
RDOS Program File?

File not found!

4-1

4-2

INTRODUCTION TO CLI

Some Commands take no arguments

R R
DISK GTOD

10/31/7913:00:00
R

LEFT:3127 USER:149870
R

R
LIST
BULLFROG
ITCH
ITCH.SC
R

22
.259

259

C
D
P

Some Commands take one argument

R R
STOD 17 45 SDAY 1 168
R R

More Commands use Multiple Arguments

R
LIST YO
YO
R

R R R

R
MDIR
DPO

R

o

DELETE 1234
R

XFER/A FILE $LPT FILECOM F1 F2
R R

Global Switches Alter the Command

LIST
LlST/A
LlST/E/A
LlST/S/L

XFER
XFER/A
XFEH/A/B

list a filename on disk
list permanent files on disk
list ENerything about permanent files
sorted list of files to the line printer

binary transfer command
ASC.l1 transfer command
append this ASCII transfer to a file

XFE R/A TEXT $LPT XFER/A $TTI QTY:O
XFER/A $TTI NEWFILE XFER TBOOT.SV MTO:O

o

o

!: O~ ..

o

o

o

o

INTRODUCTION TO THE COMMAND LIN.E INTERPRETER

Arguments are separated with Spaces or Commas

TYPE EZRA TYPE;EZRA

Semicolon separatesMultiple Commands
Up Caret Ignores Next Character .

PRINT BZ; GTOD; XFER/A 259$LPT; PUNCH CHARLES;/\.
STOD 1745; SAVE TOM.S

Angles Allow Arguments to Share Common Characters

MESSAGE F < 1,2,3,4,5> ILE
F1 LE F2LE F31LE F41LE F61LE

Parenthesis Generate Multiple Command Lines

MESSAGE F(1,2,3,4,5)1 LE
F11LE
F21LE
F31LE
F41LE
F51LE

(LIST, DELETE/V) MYFILE
MYFILE 0 D
MYFILE

L

4·3

4-4

INTRODUCTION TO THE COMMAND LINE INTERPRETER

RDOS FI LENAME TEMPLATES

*

L1STF -
FFILE1.
FFILE2.

88
88

LIST *
1. 0
7. 13
Y. 410
Z. 26

Special Symbols

• RUBOUT
• ts to
• tA tc
• tz

. Substitute any number of characters, any value
Substitute one character, any value

D
SD
D

BACKS LASH

LIST F -'­
FFILE1.
FFILE2.
FCOM.CM

LIST CLI. -

88
88
18

CLI.OL 43008 C
CLI.SO 0 D
CLI.TO 0 D
CLI.ER 8704 D
CLI.SV 10752 SD
ill.Sf) . -+..e-

c. L /. <. S V I 0 L.) a.,b 7<.e.». --=i, 1iiJ i1 t.vv' I.t 0 d-,
R eLI. S V

Deletion
Scrolling
Interrupt
ENDOF DATA INPUT

o

o

o

o

o

o

INTRODUCTION TO THE COMMAND LINE INTERPRETER

eLI Percent Variable

ROOS will substitute a value for the variabtewhen enclosed .
between percent signs

.. MESSAGE "DATE:", %DATE%, "TIME", %TIME%
DATE: 5/2/79 TIME >10:42:30

MESSAGE "MASTER DIRECTORY", %MDIR%
MASTER DIRECTORY DZO

MESSAGE"CURRENT DIRECTORY", %GDIR%
CURRENT OIREGTORYWORK

ME$SAGE " LAST DIRECTORY", %LDIR%
LAST DIRECTORY UTIL

XFER/A %GCIN% TESTFILE/R

XFER/A TESTFILE %GCOUT%

INDIRECT FILES

R DOS will sUbstitute the contents of a disk .file if the disk fi.lename is
enClosedin,i@"signs

TYPE DIBS
FORT4.DR, FORT5.DR,UTILDR,WORK.DR, GEN.OFt

INIT (@DIRS@) . .
:::=*INIT (FbR4.DR,FORT6.DR, UTlL;OR, WORK;DR, G.EN.DR)
:::=> INITFORT4.DR

==> INIT fORT5.DR
==> INITUTIL.OR
==> INIT WORK.DR
=.->:INITGEN.OR

4-5

4-6

. INTRODUCTION TO THE COMMAND LINE INTERPRETER

INDIRECT FILES

TYPE COMMANDS
MESSAGE "DATE", %DATE%, "TIME", %TIME%
INIT MTO; DUMP/A/L MTO:O
MESSAGE "ALL FILES IN THIS DIRECTORY DUMPED TO MTO:O"
R
@COMMANDS@
DATE 5/2/79 TIME 10:50:47
ALL FILES INTHIS DIRECTORY DUMPED TOMTO:O
R

MACRO FILES

Files having the .MC extension will have their contents executed as
CLI commands.

TYPE DIRNIT.MC
DELETE DIRS
BUILD 01 RS -.DR
INIT{@DIRS@)
MESSAGE "INITIALIZED", @DIRS@

·R

DlRNIT
FI.LE DOES NOT EXIST DIRS
INITIALlZED4.DR, 5.DR, UTILDR, GEN.DR

o

o

c

o

o

o

BOOT

TYPE

GSYS

STOD

LOG

ENDLOG

APPEND

GTOD

LIST

REV

MESSAGE

PRINT

XFER

SDAY

DELETE/C/V
'](A' LU

VOCABULARY

A bootstrap program used to invoke operating
$Ystems or stand-alone progralTls

Displays the contents. of an argument filename

Get the system name

Set the time of day

Record eLi communication in (F)LOG.CM

Halt recording of CLI communications

Join two or more files together ..

Get system time of day

Display bookkeeping of a file

Get a program's revision number.

Display a message

Tran$fer an argu ment file to the line printer.

Transfer a source file into a destination file.

Set the system~s date;

Report time and date with every prompt.

4-7

o

o

o

o

o

S200

RDOSUSER

MODULE 5

DISK BASICS

o

o

o

o

o

o

o

MODULE 5

OBJECTIVES

DISK BASIc::S

Upon successful completion of this mOdule you will be able to:

*
*

*

*

DESCRIBE RDOS'S DISK BLOCK NUMBERING SCHEME
DETERMINE WHEN TO FORMAT A .. DISK, IDENTIFY THE
NECESSARY PROGRAMS ANDDESCRIBETHEINltlAL
STEPS OF DISK FORMATTING.
DESCRIElE THE LOCATION AND USAGE OF PRELIMINARY
DISK .BLOCKS WHICH RDOS MUST USE TO INITIAUZEOPERATIONS
DESCRIBE THE LOGICALSTRUCTURE OF RDOS FILES
ANDREALIZETHEIR FlJNCTIONAL TRADEOFFS·

o

o

o

o

o

6

o

o

o

DISK BASICS

LOGICAL BLOCK ADDRESS = SECTOR, SURFACE, TRACK
1 BLOCK = SECTOR X SURFACE X TRACK

.. EAMBLE SYNC

..... MORE SYNC II\IFO

DATA BLOCK & CYCLI(:cHeCK SUM

. 5-1

PRELIMINARY DISK BLOCKS

BLOCK __ --------------__
o
1

3

4

7

~--HIPBOOT ...,..,.....----,1
WORD BLOCK 3 ...

REVISION NUMBER

DISK CHECKSUM

TRACKS/CYLINDER

SECTORS/TRACK

PHYSICAL DISKINF.O

1

2

3

4

5

6

~NUMBER OF BLOCKS-

-------,--_.-­.---­I---...:.-----...-;..-~

REMAP INFO

]H{rW,f

:n:><>::>:::H~QNijgg::e::::::e<)::t:

....

o
1

2

3

4

5

6

7

FRAME SIZE

DISK IDENTIFICATION

BLOCK 4

WORDS IN THIS BLOCK

ADDRESS OF

REMAP AREA

SIZE OF REMAP AREA

BAD BLOCK

ADDRESS

. BAD BLOCK

ADDRESS
SYS.DR FIL.E INDEX BLOCK" :.. : :

~~--- ------ -- -- -.,.---_ . ."

SWAP

FILE INDEX BLOCK

o
1

2

· · · 11

BLOCK7

1st SWAP FIB ADR

BACKGROUND

· · ·
1st SWAP FIB ADR

FOREGROUND ~~~~~~~·.~~h 12
10-16 k:/:U::U::::}::::W~M~~tHU/<::«:) r.................. . :

17 . MAP DR \ :. .

· · ·
'.,,;i.. ________ .:. _. _______ ~

\

\\
~ ..

IN(! I~

5-2

)
MOREBAD
BLOCKS

4 TOTAL

o

o

o

o

o

o

Link Access Word = Previous LBA .~OR;NexttB~
(assume initial LBA ~-O) ," " -! 42

Blocks Contiguous on Disk

256 Data Words/Block

L9,: , ... , 11 lo(.ht

CONTIGUOUS .~
47

LOGICAL BLOCK. ADDRESS

DATA BLOCKS

RANDOM

o BLO<;K 0 LBA

1 27

2 65

255 4711
256

NOTE:

L..o.. __1

link Access Word
(fileeontinuation)

File Index tJlb¢k ..

5-3

5-4

SEQUENTIAL DISC FILES

PHYSICAL ORGAN IZATION

BLK ADD= 017

ST

---.
BLKO

026:

LINK = 026 .. BLK 1

027 .

030 .. BLK2

043

065 .. BLK3

027
GENERAL CHARACTERISTICS

• UPTO 255 DATA WORDS PER BLOCK

• LAST BLOCK PADDED WITH NULLS AS REQUIRED

• LAST WORD IN EACH BLOCK IS A LINK FOR COMPUTING
THE NEXT BLOCK ADDRESS.

• SEQUENTIAL ACCESS ONLY.

• CANNOT USE 01 RECT BLOCK 1/0

• EXPANDABLE

• TO ACCESS A BLOCK, RDOS MUST ACCESS ALL INTERVENING
BLOCKS

• MEDIUM SYSTEM OVERHEAD
\fl­

{'}_t\. ~~\
b\c;.:J ~

o

o

o

CONTIGUOUS DISK FILES

PHYSICAL ORGANIZATION

LOGICAL BLOCK ADDRESS ,.----------,
1000 BLKO

1001 BLK 1

1002 BLK2

DATA BLOCKS

GENERAL CHARACTERISTICS

• UP TO 256 DATA WORDS PER DATA BLOCK

• DATA BLOCKS PADDED WITH NULLS AS REQUIRED

• DATA"BLOCKS ASSIGNED AT TIME OF FILE CREATION

• DATA BLOCKS PHYSICALLY CONTIGUOUS ON THE DISC

• CREATION POSSIBLE ONLY IF SUFFICIENT CONTIGUOUS DISC
BLOCKS ARE AVAILABLE

• CAN USE ALLFILE ACCESSING METHODS

• FILE SIZE IS FIXED AT TIME OF FILE CREATIONAND
CANNOT BE ALTERED SUBSEQUENTLY

• FASTEST ACCESSIBLE DATA
MINIMUM SYSTEM OVERHEAD "

5-5

LOGICAL
BLOCK

ADDRESS

2144

5-6

1020

342

4221

100

NULL

NUll

NUll

NUllS ETC.

FilE
INDEX
BLOCK

RANDOM DISC FILES

PHYSICAL. ORGANIZATION

_Il10.

...
....
.... BlK 2 4221

....
BlK3 100

BlK 1

DATA BLOCKS

GENERAL CHARACTERISTICS

• UP TO 256 DATA WORDS PER DATA BLOCK

• DATA BLOCKS PADDED WITH NULLS AS REQUIRED

....
BlKO ...

342

• UP TO 255 DATA BLOCK ADDRESSES PER FI LE INDEX BLOCK

1020

• FILE INDEX BLOCKS PADDED WITH NULLS TO INDICATE NO DATA
BLOCK ASSIGNED

• LAST ENTRY IN FILE INDEX BLOCK IS A LINK TO THE NEXT
FI LE INDEX BLOCK (IF REQUIRED); LINKING SAME AS SEQ FILE:

• CAN USE ALL FILE ACCESSING METHODS

• EXPANDABLE

• TO ACCESS A DATA BLOCK, RDOS NEEDS ONLY THE APPRO­
PRIATE FILE INDEX BLOCK TO BE CORE RESIDENT

o

o

INFOS FILE STRUCTURES OVERVIEW

SAM: Sequential Access Method

SAM retrieves a record from a physically ordered sequence,
after examining all preceding records.

Used to process sequential devices

ABLE CO. JONES MFG.

ABLE & Smith Co. mu be read prior to Jones Mfg.

VOLU DEFINITION FILE .VL

Disk Files have a. L file for bookkeeping & allow physical
device spanning, Itiple constructionsac;comodating
overflow

DATABASE

PACK 1

A CO.

BCO.

CCO.

o CO.

CONTIGUOUS
RDOS FILE

RECORD SIZES

POINTERS

T A BASE EXTENDED

PACK 2

ECO.

FCO.

GCO.

RDOS FILE
FOR OVERFLOW

, \

5-7

t'--

5-8

INFOS FILE STRUCTURES OVERVIEW

RAM: Random Access Method

Records Accessible via Relative Record Number

RECO
500

RD#

t'---

.. ..

~
/'

.---"

0 JAMES

1 EMILEY
•
•
•
•

507 WILSON

508 ZEKE

All files use .VL File~;fo expand physical devices

" RECORD
ACCOUNTS.VL

i SIZES
I

/
POINTERS

V

----- t'---
~ .

0 JAMES

1 EMILEY

507 WILSON

508 ZEKE

FASTEST RETRIEVAL METHOD

RECORD 500
..

500 I MULBLES I ..

--"
~ .
509 FRANKLIN

510 JOHNSON

729 JAY

730 RAY

o

c

o

o

INFOSFILE STRUCTURES OVERVIEW

ISAM: I ndexed Sequential Access Method

KEY

1A-101

DATA
BASE

Records Accessable Via Alphanumeric Keys

1A ·101 = 321

1A-l02= 25

2B·134= 116

INDEX

Li kewise, . V L will allow expansi

DATA.IX _1IIiIiII"' __ "'~

1A· 101 TUBE $2.50

DATA BASE

DATA
BASE
ExT

INDEX
EXT

5·9

5-10

INFOS FILE STRUCTURES OVERVIEW

DBAM: Data Based Access Method
/

/
/

Multiple Indices & Multi-Ievellndicies, Data BaseeVAccess
r/

E/'
;/

INDEX
LEVEL 0

INDEX
LEVEL 1

INDEX
LEVEL 2

50-00025

Again, the. vi... file will allow file expansion.
/

,/

!

,/
I

FOR MORE DrAILED INFORMATION SEE THE INFOS STORY BOOK

(

o

I' 0",',

S200

RDOSUSER.

MODULE 6

c ROOS DIRECTORVSTRUCTURE

o

o

o

o

o

o

MODULE 6

OBJECTIVES

RDOS DIRECTORY STRUCTURE

Upon successful completion of this module you will be able to:

* RESiORE ACCIDENTALLY DELETED FI LES
* MANIPULATE AN RDOS DIRECTORY STRUCTUREWITH A

DISK EDITOR. .,'... .
* DESCRIBE THE MODULARORGANIZATION PARTITIONS

AND DIRECTORIES OFFER
* SPAN THE RDOS, DIRECTORY STRUCTURE USING LINKS
* DESCRIBE THE DISTINCTIONS BETWEEN PARTITIONS

& DIRECTORIES AND IMPLEMENT TECHNfQUESOPTfMIZING
THEIR FUNCTIONAL TRADEOFFS

o

o

o

2

cp
.....

0

1

2

3

56

t.

I
SYS.DR
(LBA 6)

LBA's FOR

DATA ENTRY

BLOCKS

4717

· · ·

() o

RDOS DIRECTORYSTRUCTURE

DATA ENTRY BLOCKS
LBA

~ REL BLOCK 01

11

2l
4717

3[

~
.br.e 1='·,1.(1..

L

A 'D~~ ¥ .a.-S (.h.",

UFD

PRIMARY PARTITION

14 UFD's MAX, EACH 22 OCTAL WORDS::'? S' !;f1:e. ~~Y-~ SDfJ 7J<f

RELATIVE WORD 12 = LBA FOR START OF FILE

LOGICAL CONTROLS FOR ANY RDOS DISK DIRECTORY

CURRENT NUMBER OF UFD's

55 56 57 60
61 ~~~2. ::~63 12.x1 <>,,"L V.e 11 ('" c ~ 1/.

~ BLOCK 0 BLOCK 1 2 3 COITIGUOUS rLE
If S- c;

k

f-+ 71 ~ 307 ~ 315 SEOUENTIAL FILE

MAP.DR UFD 0 1 2 o-J.~ :j e: 11
1SwnllL~~

~ ""-
OL .. UFD ~ 1 RANDOM FILE ·U .. 41

'!>
TOTAL NUMBER FILE '.4J f-;"e

BIT PATTERNS REPRESENT INDEX 13 lod, ~ N"-<
BLOCKS IN USE (1) OF UFO's

NOT IN USE (0). EVER IN BLOCK BLOCK

FIRST BIT MAPPED TO SYS.DR DATA BLOCKS

1'1[01, I Q ~ (.zS'6 \.Ii rrJe) ::: /I

'P vo - If

r lA/I W crvt V e s p

DECIMAL OCTAL RESOLUTION U FD

1 (0 \\

2 1 liS-> AO
~\d~

3 2 FILENAME

4 3

5 4

6 5 EXTENSION .t~0~

7 6 FILE ATTRIBUTES

8 7 LINK ATTRIBUTES L
9 10 LAST RELATIVE BLOCK NUMBER

10 11 # BYTES IN LAST BLOCK

11 112 LOGICAL ADDRE-SS FIRST BLOCK

12 13 DATA LAST ACCESSED

13 14 DATA CREATED -.-.-.. ---"-~-~----- ~

14 15 TIME CREATED

15 16 UFO TEMPORARY j ~~t~

16 17 UFO TEMPORARY ~)
17 20 FILE USE,COUNT

18 ~ 21
I

OCT LINK ll'("~ CtJrb::!o\ \ ""\9--6' t.-

o
6-2

o

o

FI LE CHARACTERISTICS

PHYSICAL CHARACTERISTICS OF A FI LE CATALOGUED IN THE
RESOLUTION FILE ATTRIBUTE WORD OF THE FILE'S UFO.

C CONTIGUOUS

o RANDOM

DEFAULT IS SEQUENTIAL

T PARTITION

Y DIRECTORY

--b- . LINK ENTRY

'6-3

6-4

FilE PROTECTION

DIRECT PROTECTION THROUGH USE OF RESOLUTiON FILE ATTRIBUTES

P PERMANENT

W WRITE PROTECT

R READ PROTECT

S SAVE FILE

N CANNOT BE LINKED TO

? USER DEFINED

& USER DEFINED

A ATTRIBUTE PROTECT

v,... ~~~-.J-'l:~e 1)1<;:« 't I:>

<1: .••. _ . _ s -r ' S ~

LINK PROTECTION THROUGH THE USE OF LINK ACCESS ATTRIBUTES

USERS OF A FILE THROUGH LINKS SEE A SET OF ATTRIBUTES
THAT IS THE OR'ING OF RESOLUTION FILE ATTRIBUTES AND
LINK ACCESS ATTRIBUTES

SAME SET OF ATTRIBUTES AS ABOVE

a

USER FILE ATTRIBUTES! CHARACTERISTICS WORD

ATTRIBUTES CHARACTERISTICS

BIT POSITIONS

o
1

2

GJ
[]I]

READ PROTECTED

ATTRIBUTE PROTECTED

SAVED FILE

LINK ENTRY

PARTITION ENTRY

01 RECTORY ENTRY

NO RESOLUTION

DIRECT I/O ONLY

USER ATTRIBUTE 1

USER ATTRIBUTE 2

CONTIGUOUS FI LE

RANDOM FILE

PERMANENT FILE

WRITE PROTECTED

R

A

S

L

T

Y

N

I

?

&

C

0

P

W

,

BIT POSITIONS

3

4

5

IJD
[IU

6-5

RDOS DIRECTORY STRUCTURE

FILENAME RESOLUTION

A. Filename given to system

TYPE FILENAME.EX

B. Filename is Hashed

F I 43111 2
L E 46105 Character
N A 47101 Octal
M E 46505 Equivalent
0 0 00000
E X 42530

/1554 J
d/;(O I~' l)~.,

overflow
f

" \A J»t >
~.~,... ... "'-''V-'

o
(Octal Arithmetic)

6-6

c

o

o

C Hash Value Offset is Applied to SYS.DR

SYS.DR File Index Block
offset

31 153
Hash Value 32 154
Offset ---.--,....... 33 155 ~ The Data Entry Block
(HVO) 34 156 is LBA 155

35 157
36 160

D. Data Entry Block (155) is Searched for

E.

FI LENAME.EX

Overflow Condition

If Data Entry Block (155) was once filled
(Le., Toti;d UFO's Ever =14)

Hash Value Offset = 33 +65 = 120
(Next)

~-- Look Again---

6-7

C»
00

DPO

SYS.DR

RDOS DIRECTORY STRUCTURE
SECONDARY PARTITION STRUCTURE

PRIMARY PARTITION ? SECONDARY PARTITION . ' \ I'
~ ...::::.:.:.::::.:.:.::::.:.::::::':.:.::::.:.::::.:.:.::::':':'::':1 VVJ t- Ve\ v~(,,~,

eXVvE~:'
""'~'I.-t

f[f
Jff OAT A ENTRY BLOCK SYS.DR if: .'::::::::::':':':'::::::::::::':':':'::::::::::::':':.:.::::::::'\\\\ U? Jf; ,'::::::::::':':':':':':':':':':':':':':':':':':'::::::::::.:.:.::::

LBA'
,III

.:. :.: OAT A ENTRY BLOCKS ii SECOND.DR t I

) ~-='::=~1
,'::::':':':':':':':':'::::::::':::':':':':':':':'::::::::::::::::.:.:.:.:.:.:.:.:.:.

LBA
::.

11~ii r COrTIGU1US j;
f&

I: ::
FILE

t .:.: :.: . . :.: :.: . . :.:
~'I-

16 BIT WORDS J I; ~~j
:.:

MAP.DR J :.:.:.:.::::::.:.:':.:.:.:.:.:.::::::.:.:.:.:.:.::::::.:.:.:.:.::: . •. ':':':':':'::::::':':':':':':'::::::::':':':':'::::::·:·:·:·:·:·:1.!i », . : ... 177777
..
:::

SYS.DR It ••• 177777 ::: .:.

000000 i -- UFO =i= ••• SYSDR =iii ,~ i
000000 MAP.DR ~!i ... MAP.DR

UF'D } •
177777

::: :.: UFO =i= MAP.DR t .:.
"",.:.:.:.::::::.:.:.::::::::.:.::::::.:.:.::::::::.:.::::::::·:·::=i=~. :.: ~::

177777 :;:
iii

r: 177777 ~ UFO SEOUENTIAl FILE
BLOCKS ALLOCATED TO (of, 177777 !Jf. Jff:

SECOND.DR SHOWN AS iiii ••••• I J 100000 iiI.
:~:J

t IN USE.

;1111
I \ 000000 r ::.

j) ':l1JeJ e Q;\ '':11) \ S V\

BLOCK EXCLUSION MAINTAINED VIA INDEPENDENT MAP.DR FILES

o 0····· "-,

0"'·.''\ "

o

o

.------'-'-'" "-------~--------:---------..

SYS.DR

RDOS DIRECTORY STRUCTURE
,SUBDIRECTORY STRUCTURE

PRIMARY OR SECONDARY PARTITION

.L;:::::;:::;:;:::::::: • • ::;:;::::::::::::;:;:;:;:::;:;:;:;:;

:::;:.:1::'::.:::.:1.::.:.:.;:;::.: _ CONTIGUOUS FILE UFO __ .,::::::::.:.:.:.:.:.:.:.::.::::::::.:.::::::::~~:.:.:::,:,:,:,:::".:::.::::::::::::::::·::::::::::::i:::.::::::::::::::::::::::::::;::::::::::.:.:.::::::::::::::::::::::::::::::::::'::":::':':':':'::.11111

1----'----f:'.;I~:_~ __ ~ ____________ ~_~ _______________ ~ ___ ,
MAP. DR i.<I.~.II.; 1_ .. :.:.: :~;,.~::R.~:.:.:.:.:.::::

MAP.DR

,I

SUaDR ~ i.I.!.I ..

':i=t 1"'"" ... __ -. I--------I',!
I
I
I
I
I
I

Ir

: UFO

1--~-1-1-1-11-1.,...' ---f\l:l::~;,.;;-.-;-;--;-;;-.-;.--;-.-;.;;J~--;;~;.---tJ.~~:~!~:~~~=J
:---~ ~..;..~..;..~~.....;~~-~r ·

=: I
I
I

- RANDOM
FILE

, r FIB

1--------1;;;:

L ____________ ~---------_-_----_______ -_--_________ 4

A SHARED MAP DIRECtORY ALLOWS SHARED DISK SPACE USAGE
WHILE SEPARATE SYS.DR FILES ALLOW DISTINCT FILE NAME RE~OLUII0N

6-9

LINKS - REFERENCES ACROSS DIRECTORY/PARTITION BOUNDARIES

DPO

EDIT.SV

UTIL:
EDIT.SV

LINK, UFD

DIR:

Link Creation:

Link Resolution:

Link Removal:

Link Access Exclusion:

6-10

r------------------,
I I UTll.DR
I
I
I I
I I
I I
I ~

I EDIT.SV
,

EDIT
PROGRAM

I 100.

I--

I-

I--

r--
i--

I
I
I
I
I
I
I
I

I RESOLUTION UFD I
~---------------------~

I '

SYSTEM FI LE DEVICE CONTROL BLOCKS

SCAN IDCB

--- ~
DPO SEC

DCB DCB

R
LINK EDIT.SV UTIL:EDIT.SVI
R

R
INIT UTIL
R
EDIT
*

R
UNLINK EDIT.SV
R
UNLINK _.-

R

R
DIR UTIL
R

** Never Delete Links **

UTIL

DCB

CHLAT EDlT.SV PW **LlNK USERS CANNOT DELETE EDIT VIA THE LlNK**
R

o

,

en
I

o () o c o
REFERENCES WITHIN/BETWEEN PARTITIONS & DIRECTORIES

OPO DPOF SPooL.OR

J I ""'- I
J I ~ ~ ... J

II I J

'" j"1 UFO

I J
OATAENTRV

BLOCKS r-UFD UFO ~

ovaDR y UFD

~ooy
UFD y UFD r-

SVS.OR¥
SUB1.DR 1£ SUB2.DR ¥

J J

~/UFO
... J

I'" II UFO
UFD UFD UFD

SYSTEM FILE DEVICE CONTROL BLOCK CHAIN HOLDS INITIALIZED DIRECTORIES

(CORE RESIDENT DATA ENTRY BLOCKS)

START OF DCB j M
CHAIN

MASTER DIRECTORY
R .
MDIR
DPO
R

DPO
DCB

DPO
MAP
DCB

SUB1
DCB

DPOF
DCB

SEC
MAP
DCB

SUB2
DCB

Ii:

(CORE RESIDENT MAP.DR BLOCKS)

SPOOL
DCB

SPOOL
MAP
DCB

SUB3.DR

J

·~/UFO
UFD I"
UFD

.'.

' .• CURRENT D.IRECTORY

SUB3
DCB

R
GDIR
SUB3
R

o

o

o

S200

RDOS USER

MODULE 7

ALTERING INFORMATION ON THE DISK

o

o

o

o

MODULE 7

OBJECTIVES

ALTERING INFORMATION ON THE DISK

Upon successful completion of this module you will be able to:

* PERFORM EDITING OF AN RDOS DISK WITH THE DISK
EDITOR

o

o

-----'''''--------------------,
Oat::! G.eneral Corporation (DC' has prepared this manual for use by DGC personnel and/or customers as a guide to the

proper installation, operation, maintenance of DGC equipment and softwaI;e. The drawings add specifications contained
herein are the property of DGC and shall neither be reproduced in whole or in part without DGC prior written approval nor
be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

ALTERING THE INFORMATION ON DISK

STAND ALONE DSKED.SV

1001000111

R

BOOT DSKED J

DISK MODEL NUMBER __

DISK UNIT NUMBER __ _

Display Disk Addresses

• Block Number: Word Number/Contents

• 177:200/047117

/ \
lA OG1d~' \

\]\I

-:(, I
v ' I

Filename Hashing:

\

(0 V<'~.ve, J
\, '

• Frame Size; Filename = Hash Offset

• 65; SEC.DR = 47
File

HVO

o
•
•
•
•
•

•
•
•

200

•
•
•
•

377

BLOCK 177

047117

7-1

7-2

STANDALONE DSKED.SV

Disk is Updated at Termination: $Z

DSKED.SV

Local Commands:

Apostrophy:

Asterisk:

MAKE
UPDATES

Output Formats: .$Command

$' ASCII Output / AB

$* Octal Numeric Output /075177

Disk Control Commands: .Command

• Line Feed Open & Display Next Location

• Up Caret' Open & Display Last Location

• Carriage Return Close Current Location

NOTE: $ is ESC

o

o

o

ALTERING THE INFORMATION IN DISK

DSKED AND THE DIRECTORY STRUCTURE

.
DPO SYS.DR: BLOCK 6 WORK.DR -. -r r HASH OFFSET HASH OFFSET r 47

V I
BLOCK, WORD 0 l/

317

U' CURRENT UFO's IN

- WORK.OR V 5117

~2
'---

/ WORD 12 CONTENTS
00 FILE 12 OF

MYFILE

14 MAX

TOTAL UFO's IN SYS.DR
BLOCK EVER, DATA ENTRY BLt CK
WORD 376 '31"7 BLOCK 2305 DA rA E~U~Y BLOCK

Restoration of a Deleted File

R

BOOT DSKED . ~.
Goh (flo rtf)

Disk Model Number j.2a2(

Disk Unit ~fl~ber D~

• 3:6~?J (Frame ~iie), ')
.till(,. (;...

• 65;WORK.pR '47 (Hash offset)
('

• 65;MYFI LE =. 2; (Hash offset)
.".-~,~,

• 6: 47/317 1. (Entry Blopk)

• 2305:62/5117 (Entry Block) !v'\ 'IT' L.. £-

• 5117:23/000000 (Deleted Filename)

• 5117:23/000000 liMY (Filename Restored)

• 5117:0/000001 (Single UFD in Entry Block)

• 5117:0/000001: 2 (2 UFD's in Entry Block)

• $Z (Update Disk- File Restored)

FI LENAME? (Reboot System)

• 317: 1~/~~9?!}/ (SYS. D R for WO R K. DR) (MAP.DR bits in error; move file away from
partition, redelete file, move file back to
partition) (May have ~o line feed through Entry Block

to find SyS.DR LBA) <R

\ ;f:, \A! , \1"""1"-.-- c>
\ \!\ ,J 11 J.lfD
\J~ j,;, l...J (j"V1 /1.' ., ill (I

~\ cJ'\-~ 1\ h "I', I'

.,... \)~ . I M/tl . ~~, &
Loi' [0-.

r,

7-3

' , 0·.·'··

o

o

o

S200

RDOSUSER

MODULE.8

PROGRAM DEVELOPMENT

o

o

o

o

;~' 1 C·~C .. '.' •. \

.~ . j

MODULE 8

OBJECTIVES

PROGRAM DEVELOPMENT

Upon successful completion of this module you will be able to:

*
*
*

OPERATE THE TEXT EDITOR
PERFORM PROGRAM DEVELOPMENT ON SOURCE MODULES
UNDERSTAND PROGRAM DEVELOPMENT WELL ENOUGH
TO ACCOMODATE STRATEGIC ERRORS

o

o

o

EDIT PHASE

COMPILE PHASE

PROG.FR

ASSEMBLE PHASE

o PROG.SR

LOAD PHASE

PROG.SV

o

PROGRAM DEVEl()pMENT OVERVIEW

ACCEPT I
DO 100 1=1.N+
WRITE I

.. 100 CONTINUE

+ FORTRAN

FORT.SV
FIV.SV

LDAO.DKP
01101.11010 +

~ ... 10111J011. 11
"""JIII""'01110000

.STA3.2 .

liNKS
RESOLVED

RLDR.SV
RLDR.OL·

+PROG.SV

EXECUTING f'RlJlOHiAM

PROG.FR

FORTRAN SOURCE FILE
(.FR)

PROG.SR

. ',' ,: :,' .::'. . : : "

ASSEMBLY SOURCE FILE
(.SRI

PROG.R8

. : : :' ..

RELOCATABLE BINARY FILE
(.RBI

PROG.SV

EXECUTAB.LE CORE IMAGE
. SAVE FILE

(.SVI

8-1

8-2

SOURCE CREATION EDIT.SV
OPERATING PROCEDURES

CORE

~

TEXT BUFFER -. DEAR MOM,
HAVING A GREA'

TIME AT SCHOOL, -LEARNING MANY
THINGS: BOOT,

CONSOLE • COMMAND BUFFER
lIo.
i"""

EDIT.SV PROGRAM

FORMATS & FILE ASSOCIATIONS

CHARACTER POINTER; (CP)

'--- ~ TEXT BUFFER r-----
Il INPUT FILE /\ ..

1st { • PAGE 1/. -iI
PAGE SEPARATOR ff CURRENT PAGE

II<

CURRENT{
PAGE

ff YANK PUT
A COMMAND BUFFER A

NEXT { PAGE PAGE
PAGE NO FF

EDlt.SV
ff

TO ASSOCIATE AN INPUT FILE:

TO ASSOCIATE AN OUTPUT FILE:

PAGES ARE INPUT WITH YANK:

PAGES ARE OUTPUT WITH PUT:

DISK
~

INPUT
DISK
FILE

OUTPUT
DISK
FILE

o

~

OUTPUT FILE

..
~

*GRFILEINPUT$$

*GWFILEOUTPUT$$

*Y$$

*P$$

0,···
".,

o

o

EDIT COMMANDS AND EXAMPLES

File Association Commands:

* GRFILENAME$$

* GWFI LENAME$$

* GOFI LENAME$$

* GC$$

EXAMPLE

*GWFILEOUT$$
*

EDIT.SV

*GRFILEIN$$
*

EDIJ.SV

*GOOUTPUT$$
*

EDIT.SV

*GC$$
*

EDIT.SV

Associate FILENAMEfor Input

Associate FILENAME for Output

Close current output file, open FILENAME
for Output

Close all file associations.

DISK

--....... ~IFILEOUT

System Errors occur usually because the Association has already been done; or the
file does not ex ist. r

8-3

8-4

EDIT COMMANDS AND EXAMPLES

I nputiOutput Commands:

*Y$$

*A$$

*P$$

Yank the next page into the command buffer, overwrite
previous data. Position CP to top of page.

Append the next page to the bottom of the current page.

Put the current page to the Output file.

*Itext$$ Insert the text following the "I" command from the
current position of the CPo

EXAMPLES:
CORE

~~--.~------~~ ----------------) t ---I NPUT---)
--------------~,

---INPUT---
*P$$------

DISK

*-INPUT ff

-INPUT

NOTE: PREVIOUSLY,A
GWOUTPUT$$ WAS
PERFORMED!

NOTE: THE *B$$ REPOSITIONS THE
CHARACTER POINTER (CP) TO THE
BEGINNING OF THE BUFFER.

•

o

o

Q

I

I :·0

EDIT COMMANDS AND EXAMPLES

Delete Commands'

*nK$$
*nD$$

Examples: LINE 1

tLlNE2

Kill n lines relative to the CPo
Delete n characters relative to the CPo

LINE 3~*2K$$~

LINE 4

LINE 3

tLlNE 4

ABC D ~ *3D$$ ~ t D
t

Character Pointer (CP) Positioning Commands:

*B$$
*Z$$
*nJ$$
*nL$$
*nM$$
*CNTRL I

Examples: LINE

LINE

LINE

LINE

LINE

rUNE

LINE

LINE

1

2

Reset CP to beginning of buffer
Reset CP to end of buffer
Place CP at start ()f line n.
Move CPn lines from current CP position.
Move CP ri characters from current CP position.
Move CP to the next TAB position. . .
This is the TAB function, can be affected via TAB key~

LINE 1 LINE 1

t LINE 2 LINE 2

3t~ *B$$~ LINE 3 => * Z$$~ LINE 3

4 LINE 4 LINE 4

1 3 LINE 1 LINE 1 t
2"'* 4J$$.~ L1NE2~ *-2L$$~ LINE 2

3, LINE 3 tLlNE .3

4 1,.INE 4 LINE 4

t

I· .
A BtC D E ~ *2M$$ ~ A B. C Dt E ~ * -4M$$ ~.AB C DE

*ltl1t12$L1T$$ ~ 1 2 _._-.----_._"---- -
7 spaces 7 spaces

NOTE: The TAB ch81acter (tl) is kept as octal 11 not actually spaces,
EDIT translates this on output

8-5

8-6

EDIT COMMANDS AND EXAMPLES

Search Command:

*Stext$$

Example:

L_
ABC

Change Command:

* Ctext1$text2$$

Example:

t
CAT

Display Commands:

*nT$$
*U?$$
*.$$
*:$$
*=$$

The buffer is searched for text, CP is positioned
immediately following the first occurrance of
text. If text is not found a message results and
CP is put to the buffer start.

*SAB$$

The buffer is searched for text 1 , text2 is
substituted for text1 and CP is positioned
immediately following.

*CCAT$DOG$$ DOG
__ t

Type n lines from the position of the CPo
Display the Input & Output file associations
Display the line number containing the CPo
Display the total number of lines in the buffer.
Display the total number of characters in
the buffer.

o

o

0

o

EDIT COMMANDS AND EXAMPLES

Display Commands:

Examples: ONCE

UPON *T$$

ONCE

UPON

A t
TIME

*.$$.

2

*B.$$

1 ~At

TIME * *

THERE

t WAS *1T$$ THERE
t-

*:$$

4

*=$$

14 A

SMALL

Macro Implementation:

*XMCOMMAND$$
·XD$$
*X$$
*X?$$

Examples: LlNE1

tLlNE2

LlNE3

LlNE4

LlNE5

Watch Out***

* *

. Store COM MAN D in the macrO register.
Clear the macro register.
Execute the COMMAND within the macro register
Display the contents of the macro register.

PAGE1

*XMCUNE$PAGE$$ PAGE2

*5X$$ PAGE3

PAGE4

PAGE5

*X?$$ t

CLlNE$PAGE$$

*XD$$

*X?$$

INCORRECT OR UNDEFINED MACRO

*

• As the Yank Command clears the buffer, be sure to output the current buffer first.

• Make sure all commands are entered after the asterisk prompt; if.in Insert mode, commands
are not executed, they're treated as data.

r

8-8

*

COMPILE PHASE - FORTRAN EXAMPLE

PROG.FR

WRITE X

A Compiler translates a source language into
a more fundamental language.

10 ACCEPT "THETA", TH
C CALCULATE SINE

X=SIN(TH)
TYPE "X". X, "TH", TH

GOTO 10
END

* Source files are translated into Assembly Language.

PROG.SR

DOA O,LPT

DISK
PROG.LS LPT

MT

* Names generated, call Runtime Support Routines for desired functions.

* Errors are reported at the console and within the listing file.

o

•

o

o

o

*

o

*

*

*

*

ASSEMBLY PHASE

WORKSPACE
PROG.RB

ASM.SV

The Assembler generates relative binary instructions; their location is
measured from the first instruction and modules referenced are unresolved.

PRQG.SR

TH:: LDA 0,40,0

JSRoFSINE
JSR FWRIT
JMPTH
END

PROG.RB

000002 030040

000011
000012
000013
000014

006003$
006006$
000741
127710

SYMBOL TABLE

000003 FSINE XN

000006 FWRIT XN

The Assembly first pass translates symbology into binary.

Backward references and self-contained instructions are completely resolved.

Assembly second pass resolves internal forward references.

All other unresolved references are installed in a symbol table by
statement number and routine referenced.

8-9

,...---
~

*

*

*

*

*

*

8-10

LOAD PHASE

r-- ~

RELOCATABLE PROG.SV

LOADER CORE PROG.RB
SYMBOL IMAGE

~
WORKSPACE SAVE TABLE ~

FILE

'-- ----PROG.MP
RLDR. <SV,OL>

FORTRAN
RUNTIME PROGRAM
LIBRARY ~ LOAD
SUPPORT MAP

-'"

The Relocatable Loader builds the Core Image Save File according to the
RB file and Support Libraries.

The Program Code is first installed into the Save File.

Library Modu les are scanned and compared to the Symbol Table for
load on reference.

The Load Map records where in memory modules are loaded; additionally,
unresolved references are flagged in error.

Logical Errors are referenced to the Load Map for the module with functional
maladies.

Debugging Software can be loaded to interact with the running program for
diagnosis of functional errors.

~ DISK
LPT

o

o

o
*

*

*

*

o

/
UNUSED MEMORY

PROGRAM DATA AREAS

RUNTIME LIBRARY ROUTINES

MAIN PROGRAM.

1-------------------------
USER STATUS TABLE

(OTHER CONTROL TABLES)

PROGRAM
SPECIAL LOCATIONS
. & ADDRESSES

/

V

NMAX
(sliding)

INMAX

ZMAX

Highest Memory
Location Used

Start of NREL
Code

Highest Location
Used in ZREL.

The Relocatable Loader stacks information into N REL & ZRELrriemory areas.

ZREL,·accessable from any memory location, contains the addresses of the
Runtime Library software.

NREL is loaded with Control Tables, Program code, the Runtime Library
Routines, and the Program Data Storage Area.

RODS controls the entire program via the User Status Table, it contains the
amount of core usage, flags and some important pointers.

8-11

•

o

o

o

o

S200

RDOS USER

MODULE 9

OTHER RDOS EDITORS

•

o

o

I

~ 0'

I

MODULE 9

. OBJECTIVES

OTHER RDOS EDITORS

Upon successful completion of this course you will be able to:

* DISTINGUISH BETWEEN THE APPROPRIATE USES OF
THE REMAINING RDOS EDITORS

o

o

o

*

*

*

*

BINARY EDITORS

SYMBOLIC EDITOR: SEDIT.SV

Single User, Single Location, Symbolic Editor

Symbol Table may be used to specify file offsets

R
SEDIT PROG.SV
SEDIT REVISION X.X
.START + 10/105433 105427J,

.ESCZ
DONE
R

OCTAL EDITOR: OEDIT.SV

Single User, Single Location, Octal Editor

Locations specified via octal numeric offset

R
OEDIT PROG.SV
OEDIT REVISION X.X
.472/105427 105433,).

.ESCZ
R

NOTE: All binary editors employ the predominantly same command set.

9-1

9-2

*

*

OTHER RDOS EDITORS

TEXT EDITORS

SUPER EDITOR: SPEED.SV

Single User, Multibuffer Super Text Editor

Global file associates allow 1/0 to any buffer, local file associations
allow 1/0 to different fil!es for each buffer.

* Buffers can hold macro definitions

*

*

R
SPEED FI LENAMEJ.

all edit commands supported
additional super edit commands
buffer commands supported

MULTIEDITOR : MEDIT.SV

Multiuser, Text Editor

All EDIT commands available over multiplexor lines

R
MEDIT 16Jl-

edit command available at QTY:O to QTY: 15
tA,.- interrupt MEDIT .SV
INT
R

•

o

o

OTHER RDOS EDITORS

LIBRARY FILE EDITOR: LFE.SV

* Single User, Single Scan, Library File Editor

* Edits the collection of . .RBfiles, .LB

R
LFE T FORT.LB
R
LFE X RBNAME SYS.LB
R
LF E M UB/O <1,2,3,4 > . LB

Type Modul~ Names in FORT.LB

- Extract RBNAME fromSYS.LB

Merge libraries 1,2,3,4 into
LIBRARY

9-3

o

•

o

o

o

.0

S200

RDOS USER

MODULE 10

PROGRAMMING TECHNIQUES

TO

MANAGE MEMORY

o

o

o

o

o

o

o

o

MODULE 10

OBJECTIVES;

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

Upon successful completion of this module you will be able to:

* DESCRIBE RDOS PROGRAM CONTROL OVER MEMORY
* DESCRIBE RDOS PROGRAM MEMORY MANAGEMENT

TECHNIQUES

o

o

o

o

*

*

*

*

o

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
CHAIN EXECUTION OF PROGRAMS

PROGRAM A EXECUTES

CHAIN

END

B.SV

PROGRAM B EXECUTES

AS THE SECOND

STAGE OF A

END

Program A is Invoked
from Cli

R
A.J,

Program B.SV
Overwrites A.SV in

Memory!

Entire programs can be manipulated via the chain form of execution without
special considerations. in their programming.

The called· program is loaded into memory destructively.

Program Applications can be infinitly large if manipulated in a ch(iined fashion.

CLicanexeclJte programs via chain:

*

*

10-2

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

SWAP EXECUTION OF PROGRAMS

Execute resumes with
the statement follow­
ing the CALL SWAP

SWAP RETURN
END

SWAP
NEXT STATEMENT

END

Program A.SV is invoked
via SWAP from CLI.

R
A.l

Program B.SV is invoked
via SWAP from A.SV

Program A is swapped
out to disk

SWAP
INDEX BLOCK

When Program B.SV
performs the SWAP RETURN,
A.SV is resumed.

Swap Execution of programs stores a snapshot of the executing
program on disk prior to loading the called program.

Programs are said to execute at a Program Level, when the
swap is employed the next program level is used, eLi executes
at level zero, programs may use levels. 1 - 4.

o

o

o

o

o
*

*

*

*

o

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

SWAP EXECUTION OF PROGRAMS

PROGRAM LEVELS

LEVEL

C;SV · · SWAP

· SWAP RETURN

END

BG
LEVEL
POINTER

FG
SWAP

FIB
PORTION

Program Levels allow subordinate execution of entire programs; swap Returns
always pass control back to the previous level.

Partitions hold the SwapFHe IndexBIQck which controls the oore image
snapshots ..

Foreground & EJackground share the Swap FIB and are each limited to
levels 0 through 4.

The Swap FI B: points to a File Index Block which points to the core
image data blocks.

o

1

2

'-------~---------------------~--~--------"-~---,---,---

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAPS & CHAINS TOGETHER

PROGRAM LEVELS: o 1 2 3

10-4

CLI .. A
•
•
•
•
B .. C

•
•
•
•
D .. E

•
• · ' •
F
•
•
•
I

§-- ® .. ®-- (0 ..

* An unlimited number of programs can be executed; the greatest
nested level is 4.

* RDOS searches the disk for CLI.SV, upon initialization, to
execute at level zero.

* THE SWAP RETURN RESUMES THE
PROGRAM SWAPPED FROM.

KEY
. WHERE : : CHAIN

~:SWAP

® : SAVED PROGRAM LEVEL

0"1 , ,"

4

.. G
•
•
• · H o

@

o

o

0',1 ., 1

,0

o

o

PROGRAMMING TECHNIQUES TO MANAGE MEMORY
SWAPS & CHAINS

EXAMPLE: COMPILE LOAD & GO PROGRAM ClG . .sV

PROGRAM LEVEL o 1 2 3 4
~ __ ~ __ ~ ______ ~ ____ ---r----__ ~------~

FORTRAN
COMPILER
EXECUTION

FORT

·~FIV
~~
~.

A~M

XREF

~y-­
~~

R. ELOCAT.ABLE I.
LOADER
EXECUTION

I RLDR

@)~ . .
PROG

@y--

* Programming Structures may be incorporated ihto larger schemes
providing level 4is not exceeded.

* Communications between Levels is performed via common disk files.
com.cm

10-6

~
w
a: «
w
c o
(J

I­o o
a:

*

*

*

*

*

*

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

OVERLAYS
PROG.SV

OVERLAY 1

OVERLAY 0

Segments within the Overlay file are associated to core resident
Overlay Areas.

After the channel association to the Overlay File, overlays are
loaded into the Overlay Areas by name.

The Overlay is a vehicle, to bring infrequently used subroutines
into core; more than one subroutine may occupy the overlay.

Overlays within :a segment are each exclusively accessable.

When the Overlay is resident, its subroutine may be called.

ISEG~ENT

ISEG~ENT

Overlays are controlled by the Overlay 0 irectory in core following
the User Status Table.

o

o

o

*

o *

*

o

o

PROGRAMMING TECHNIQUES TO MANAGE MEMORY

OVERLAY OPTIMIZATION

RLDR MAIN [OVOO, OV01, OV02] SUBAJ

[OV10; OV11, OV12, OV13] LIBRARY J

SEGMENT
1

SEGMENT
o

Overlay Areas accomodate the largest Overlay with an integral
number of blocks (256 'Words)

Speed may be optimized, Overlay files are contiguous and block
transfers are used to load overlays.

Core Usage may be optimized by grouping similarly sized
overlays together.

RLDR MAIN [OVOO,OV10] SUBA .

[OVa <1.2 >, OV1 < 1,2,3> 1 LIBRARY

MAIN

SEGMENT
o

1~7

o

o

o

o

o

S200

RDOSUSER

MODULE 11

SYSTEM INITIALIZATION

ONA

FORMATTED DISK

---~ --

o

o

c

o

MODULE 11

OBJECTIVES

SYSTEM INITIALIZATION

ON A FORMATTED DISK

Upon successful completion of this module you will be able to:

* USE DKINIT TO INITIALIZE AN RDOS DISK
* MAKE AN RDOS DISK BOOT'ABLE
* INSTALL THE REMAINING RDOS SYSTEM SOFTWARE

o

o

o

o

c····· .. i ./

SEa
OF

EXEC

*

*

*

*

TAPE
FILE

SYSTEM INSTALLATION ON A FORMATTED DISK

RDOS STARTER SYSTEM ON MAG TAPE

PROGRAMS FORMAT PURPOSE

DKINIT inspects the disk for bad blocks and builds the REMAP table.

BOOT installs HIPBOOT on blocks 0 & 1, making the disk BOOT'able.

BOOTSYS is the starter system, it loads MTO:3 & 1 thereby gaining
control of the system via CLI.

The remaining software comprises the RDOS system; it is loaded via
CLI commands.

11-1

SYSTEM INSTALLATION ON A FORMATTED DISK

DISK INITIALIZER : DKINIT.SV

* Disk initializer installs a
disk ID, Frame Size.

* A full initialization inspects
the disk for bad blocks to
build a REMAP Table.

FROM MTO: 4l

DISK INITIALIZER - REV X.X

DISK DRIVE MODEL NUMBER? 4234 J -TOP LOADER 4047~ - FRONT LOADER

DISK UNIT? DPO l

COMMAND? FULL)

IDGC Model" I Disk Drive Type I Type In'/

6001-6008 Fixed-head DK~)
(no cartridge)

I DGC Model" I Disk Drive Type Type In I
4047A. 4047B} Front-loading cartridge Dpt))
4237, 4238

4234A Top-loading cartridge
RDOS on cartridge DPf))
RDOS on fixed disk DPf)F)

6001-6008 i Fixed - head (no cartridge) 6001) to
6008)

4048A Top-loading pack DPf))
(6 platters)

4057A I Top-loading pack D!'0) I (11 platters)

423lA Top-loading pack D!'0)

(ll platters)

'disk identifying mnemonics

I 4047) 4047 A. 4047B}i Front~loading cartridge
4237, 4238 4237) or

4238)

4234A I Top-loading cartridge 4234)

4048A I Top-loading pack (6 platters) 4048)

4057A \ Top-loading pack (11 platters) 4057)

4231A Top-loading pack (11 platters) 423d

* Other commands allow further manipulation of bad blocks.

0

o

r'\

U

c··········\ • J

._--"--_ ... ,--,-------------------------......

FULL

PARTIAL

ENTER

LIST

STOP

SYSTEM INSTALLATION ON A FORMATTED DISK

DKINIT COMMANDS

Performs the full initialization shown below

COMMAND DESTROYS ANY PREVIOUS ROOS DISK STRUCTURE
RDOS INIT/F MUST BE DONE ON DISK AFTER COMMAND
TYPE CQNTRQL-A NOW TO ABORT WITHOUT LOSS

NUMBER OF PATTERNS TO RUN (1-5) 21
*** PATTERN #:1 (125252)

*** PATTERN #2 (052525)

*** PATTERN #3 (155555)

*** PATTERN #4 (177777)

*** PATTERN #5 (000000)

*** ALL PATTERNS RUN ***

DO YOU WISH TO DECLARE ANY BLOCKS BAD
THAT ARE NOT ALREADY IN THE BAD BLOCK TABLE? NO)

DEFAULT REMAP AREA SIZE IS 12 BLOCK{S) LONG
IT NEEDS TO BE AT LEAST 0 BLOCK(S) LONG

REMAP AREA SIZE (TYPE RETURN FOR DEFAULT)? ~

REMAP AREA START BLOCK NUMBER (TYPE RETURN FOR DEFAULT)? 1
DEFAULT FRAME SIZE IS 37 I

MIN IS 1, AND MAX IS 406

DISK FRAME SIZE (TYPE RETURN FOR DEFAULT)? 1
FULL DISK INIT COMPLETE

COMMAND? STOP)

DKINIT.SV DIALOGUE

I nterrogates each block for validity and reports
bad blocks, disk contents is maintained.

I ncorporates additional bad blocks into the
REMAP table.

Displays disk status, frame size, and lists
bad blocks within the REMAP area.

Halts DKINIT, rehomes disk heads.

SYSTEM INSTALLATION ON A FORMATTED DISK

INSTALLATION OF RDOS SOFTWARE

FROM MTO:~J
BOOTSTRAP DEVICE SPECIFIER? DPO J
INSTALL BOOTSTRAP (V OR N)? V.J

HALT COMPUTER

BOOTSVS.SV: Starter System

FROM MTO: 2J
FULL (F) OR-PARTIAL(P OR <CR»? £J
INITIALIZING WHAT DISK DPO J

DATE (M/D/V) 6/7/79 J
TIME (H:M~S) 11:35:00 J
'R

CORE MAG TAPE

BOOTSVS.SV

11-4

BLOCKS
o

DISK

1

o

o

o

o

SYSTEM INSTALLATION ON A FORMATTED DISK

INSTALLATION OF THE ROOS SOFTWARE

* The remaining software is loaded via CLI control.
* A utility directory holds the utility software on MTO:6.

R
INIT MTOJ
R
(COl R,OI R) UTI LJ
R
LOAO/A/V MTO:6 J
R
RELEASE UTI L.L
R

* The system generation software resides in a GEN directory; additional utilities
from MTO: 7 will aid generation.

R
(COIR,OIR) GEN,l
R
LOAO/A/V MTO:6*SYSGEN.SV RLOR<SV,OL>,)
R
LOAO/A/V MTO:7 J
R

NOTE: BOOTSYS.SV is not a large ROOS System, it affords no line printer, nor
more than one directory initialized. Links cannot be resolved to alternate
directories; therefore, the SYSG E N & R LOR files shou Id be put into the
GEN directory.

o

o

o

o

o

o

S200

RDOSUSER

MODULE 12

SYSTEM GENERATION

•

o

o

o

o

MODULE 12

OBJECTIVES

SYSTEM GENERATION

Upon successful completion of this module you will be able to:

* LIST THE SOFTWARE REQUIREMENTS TO SUPPORT
SYSTEM GENERATION

* GENERATE AN RDOS SYSTEM APPROPRIATE FOR ANY
USER HARDWARE

* GIVEN TUNING FILE OUTPUT DETERMINE THE APPROPRIATE
SPECIFICATION OF RDOS SYSTEM COMPONENTS

•

o

o

o

.---------,_ .. _-,----------------------.,....----..,

SYSTEM GENERATION

SYSGEN EXECUTION

* The * SYSGEN program asks the user what to incorporate into the system.

* A ffirmative responses cause external references to be loaded into an . R B
t rigger file: SYSOOO. R B.

*SYSGEN.SV

* SYSOOO.RB is loaded with the RDOS libraries to produce a system save
and overlay file.

12-1

12-2

SYSTEM GENERATION

SYSTEM LIBRARIES

LOAD PHASE

EXTERNAL
REFERt:Nl;t::;· ..

RLDR. SV,OL

CLI.CM

SYSNAME.SV

RDOSSYSTEM

SYSNAME.OL

• The system load is conducted via an R LOR command line which
SYSGEN, writes into the file eLl.eM

• The asterisk denotes the system flavor: * Z, A, B, M, U, N

ZRDOS <A, B, e, 1,0> .LB
ARDOS <A, B, e, .1, 0 >.LB
BRDOS <A, B, e,l, 0> .LB

MRDOS <A, B, e, 1,0> LB
URDOS <A, B, e, 1,0 >.LB

NRDOS <A, B, e, 1,0 >.LB

Large Mapped Eclipse
Small Mapped Eclipse
Unmapped Eclipse

Mapped Nova System
Unmapped Nova System

Mapped Nova 3/4 System

o •

o

o

o

Q, '
,r" "

o

c

o

SYSTEM GENERATION

MECHANICS

* The SYSG E N Command:

*SYSGEN/N SYSNAME., <is SG/V LM/L>
/N - Halts sysgen prior to load to adjust the CLI.CMload line.

* The CLI.CM load line:

*

RLDR/Y/N/P SYSOOO SYSNAME.Sv/sl\~
*RDOSA.LB *RDOSB.LB BADSP ALMSPD *RDOSC.LB *RDOSI.LB~
[*RDOSO.LB] SYSNAME.LM/L AJ
DE,LETE BADSP.RB SYSOOO.RB',J

The System FUes G,enerated

SYSNAME.SV
SYSNAME.OL
SYSNAME.LM
SYSNAME.SG

The core resident, executable file
The system overlay file
The system load map
The system SYSGEN dialogue file , ' ,

12-3

12-4

SYSTEM GENERATION
SYSTEM COMPONENTS

*THE SYSTEM STACK: ALLOWS FOR
CONCURRENT SYSTEM TASKS

STACKS USED FOR: DISK I/O
SPOOLING
SYSTEM CALLS

PRINT OLD FILE [STACK I

XFER/A %GCIN% FILE I STACK I

DELETE OLDFILE I·STACK I

LINE
PRINTER

o

.; 1

0·····

·········.\·

SYSTEM COMPONENTS

* CELLS

• 16 words long

• hold system task information

• 1 cell for each active system call

• 2 cells for each active spool request

• SYSGEN allocates minimum of 3 cells per system stack

DEVICE QUEUE

~.CE.LL· ~.ELL ~ .. C.ELL ... LJOOOLJOOOu

~.CEL.L ... ~. CEL .. L ... LJOOOLJ

~.CELL .. ~ .. LJOOOLJ

DEVICE

DISK

MAG- -TAPE

LINE
PRINTER

12-5

12-6

SYSTEM GENERATION

SYSTEM COMPONENTS

* Buffers hold System Overlay Code and Block Oriented Data

HIGH
CORE DATA FROM DISK SOVO: RENAME

DATATOMTO SOV13: GTOD f416 OCTAL WORDS .0

LOWER
CORE

CORE RESIDENT SYSTEM
COMPONENTS

* User FileTables: UFT -Control Distinct I/O Transport
Mapped-U FT's are in the operating system

Unmapped-U FT'S are in User Address Space

UFT 0 :l~: CHANNEL NUMBER

OUTPUT ®
UFT

INPUT

UFT

OUTPUT

~-------:3~1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I

"1ft
~~--

SEPARATE UFT AREAS
ALLOW FG/BG DISTINCT I/O

j50 OCTAL WORDS/CHANNEL

o

o

SYSTEM GENERATION

SYSTEM COMPONENT

* System File Device Control Blocks (DCB) coordinate initialized directories.

•
SUB1 • • 'SPOOL

SVS.DR •

* Other Core Resident Components

Scheduler: Decides which system task is ready to execute;
System Call Processor: Assigns each cell to a system task

L-__._--

Drivers & Service Routines: . Manipulate devices & respond to interrupts
I nterrupt Handler: Save machine state and pass control to service routines.
Overlays: Vehicles for the call logic.

J ~TALWORDS EACH

12-7

o

o

o

S200

RDOSUSER

MODULE 13

. SYSTEM UPDATES

PATCH FACILITIES

o

o

o

o

MODULE 13

OBJECTIVES

SYSTEM UPDATES

PATCH FACILITIES

Upon successful completion of this module you will be able to:

* PERFORM UPDATES TO ANYRDOSSYSTEM
* USE THE ENPAT UTILITY TO CREATE PATCH OATA
* USE THE PATCH UTI.LlTY TO PATCH ANY PROGRAM

OR OPERATING SYSTEM

---~------~~-~---

o

o

o

o

o

o

1°
J

SYSTEM UPDATES/PATCH FACILITIES

RDOS REVISION 19.84 . -If· Upcfata Numi..,

. . Minor Revision Number

'----Major Revision Number

* The Update Tape provides documentation, patch data, and macro files
for easily implemented updates. . .

~. --.....,. _____ -----.. UPDATE: PATCH DOCUMENT

PATCH DATA MTO:O

MTO:1

13-1

13-2

SYSTEM UPDATES & PATCH FACILITIES

PATCH & ENPAT

A patch is a one word change to a save or overlay file.

* ENPAT.SV creates the patch data
* An interactive dialogue creates an entry for each patch:

S 10422 177777 177723

SAVE PATCH OLD NEW
OR LOCATION CONTENTS CONTENTS

OVERLAY
FILE

* PATCH.SV installs the patch data into a save or overlay file
* PATCH execution:

ALPHA

Conditional Symbol,
Apply patch only if

ALPHA appears
within the load map

PATCH SYSNAME.SV/S

SAVE FILE
TO PATCH

SYSNAMELM/L

LOAD MAP FI LE
FOR CONDITIONAL

PATCHES

PATCH FILE.PF/P ~

PATCH DATA
FILE

* 0

o

o

o

SYSTEM UPDATES/PATCH FACILITI ES
PERFORMING THEUPPATE

* Creation of the UPDATE directory: .
R
(CDIR,DIR) UPDATE
R

* Loading of the update software:
R
INITMTO
R
LOAD/A/V MTO.:(O, 1)
R
PRINT UPDATE
R

* LI N K'ing the update files & utilities
R .

LINK <,UTIL: > PATCH.SV
R .
LINK < ,GEN: > SYSNAME.(SV,OL)
R

13-3

*

13-4

SYSTEM UPDATES/PATCH FACILITIES
PERFORMING THE UPDATE

Performing an Update:

- via macro:

- via patch utility:

R
LINK < ,GEN: > BSYSGEN.SV
R
BSGENPATCH - Installs patches

R
PATCH SYSNAME/S SYSNAME.LM/L ARDOS.PF/P

-----1 nstallation of Patches
R

o

o

S200

ROOS USER

MOOULE14

MONITORING AN ROOS SYSTEM

o

o

o

o

o

o

o

MODULE 14

OBJECTIVES

MONITORING AN RDOS SYSTEM

Upon successful completion of this module you will be able to:

* GENERATE AND EFFECTIVELY EMPLOY TUNING UNDER.RDOS
* ASSESS AND OPTIMIZE THE RESOURCE ALLOCATION WITHIN

AN R DOS SYSTEM

•

o

C)

o

o

o

MONITORING AN RDOSSYSTEM

TUNING

• Tuning measures the systems usage of stacks,cells, and buffers.

• Tuning is a SYSGEN option:
TUNING7("O" = NO, "1" = YES)

• The Tuning report shows the total number generated, the total number of
requests, anda percentage failure rate for stacks, cells, and buffers. Additionally,
a buffer itemization may be requested according to overlays used.

• Tuning report data is recorded with the file SYSNAME.TU. CLI commands
control and report tuning data ushig the system tuning file.

• A properly generated system suffers a 5% failure rate on all software
resources. Typical numbers are shown below:

16 channels/ground
8. buffers

NOTE: 16 channels required forCLI

8 stacks
12 cells

14-1

14-2

MONITORING AN ROOS SYSTEM

Cli TUNING MECHANICS

e To initiate the capture of tuning data:

eTohal:t tuning:

R
TUON
R

R
TUOFF
R

e To obtain a tuning file report:

R
TPRINT/l/O SYSNAME
R

l produce a line printer listing
o include an overlay report.·

•

0,

o

o

o

o

R
TUON TUSYS

.R
MESSAGE COMMANDS FOLLOWING USERDOS SOFTWARE FACILITIES

. COMMANDS FOLLOWING USE RODS SOFTWARE FACILITIES

R
GMEM
BG: 28 FG: 29
R
SMEM 16
R
GMEM
BG: 16 FG: 41
R
LIST lElA· TUSYS
TUSYS.OL GEN:TUSYS.OL
TUSYS.TU 1536 C 06/22/7911 :2306/22/79 [004516] 1
TUSYS.SV GEN:TUSYS.SV
R. .
MESSAGE NOTE THETUNINGFILE IS CONTIGUOUS - FASTER ACCESS
NOTE THE TUNING FILE IS CONTIGUOUS - FASTER ACCESS
R
TPRINT/LIO TUSYS
R
TUOFF
R
ENDLOG

The LOG.CM fil~ above demonstrates tuning implementation on. the FtDOSsystem.

Pages following contain the tuning file printout.

14-3

o

o

o

S200

RDOSUSER

MODULE 15

SYSTEM BACKUP: STARTER TAPE EMULATION

•

o

o

o

rf 'I' U ~' .. ·,,·.i

o

o

MODULE 15

OBJECTIVES

SYSTEM BACKUP: STARTER TAPE EMULATION

Upon successful completion of this module you will be able to:

*'

*

EMPLOY VARIOUS TRANSFER COMMANDS TO EFFECT.
BACKUPS TO TAPE OR DISK
CREATE A ,.APE BACKUP MACRO

o

OJ

XFER:

Examples:

o

o

SYSTEM BACKUP: STARTER TAPE EMULATION

TRANSFER MECHANICS

File Contents Transported Only
One Disk File Per Command
Source Files--Destination File.
Tape Files are Boot'able

Transfers from disk to tape; the firstargument is the source
file, the second argument is the destination file:

XFER TBOOT.SV MTO:O
XFER/A BOOTSYS:SV MTO:2
XFER DKINIT.SV MTO:4
XFER BOOT.SV MTO:5

Transfers from tape to disk

XFER MTO:1 COPY.SV/R
XFER MTO:3. MYFILE/C
XFER MT4:4 KATHY
XFER MTO:4 DKINIT.SV/R

DUMP/lOAD:

EXAMPLES:

15-2

SYSTEM BACKUP: STARTER TAPE EMULATION

TRANSFER MECHANICS

UFD and contents transported
many disk files/tape file
directory structure maintained
tape file not BOOT'ABlE

All Files in a Directory Dumped
DIR UTll; DUMP/A/V MTO:6

All Files in a Partition Dumped
DI R PART; DUMP/A/l MTO:7

Certain Files can be Dumped
DUMP/A/V MTO:1 CLI.-, BOOTSYS.SV,BOOT.SV

The Entire Disk Structure may be lOADed
GDIR; LOAD/AIL MTO:O
DPO
R

o

o

o

SYSTEM BACKUP: STARTER TAPE EMULATION

TRANSFERMECHANICS

.. "'. _ ... () ~ '. rl -I- /a.ti, ~~o'y:(ys, s V
. l,e- ~k.~KAA. ~ ~

FDUMPIFLOAD: /Three lTIag tape fileslcommandallfiles in .

EXAMPLES:

All files in current directory transported
Fastest backup method
Most condensed new tape volume cantrols .

MU.ltiPle copies of the disk/D/fL . __ .'5, 4 ...• ~.
GDIR; FDUMPIL MTO: (0, ~ ...- c,,::!'
DISK TO TAPE TRANSFER .
OPO

Multiple volume controls
FDUMPIL MTO:36
DISK TO TAPE DUMP

. ENDOF TAPE
MOUNT NEXT REEL- STRIKE KEYWHENREADY

/'DWHrp
I L()/ju

.. /J;(;(P L f CI4 V'E.
/ VE-Ql fY

MOVE:

EXAMPLES:

15-4

SYSTEM BACKUP: STARTERTAPEEMUlATION

TRANSFER MECHANICS

Directory to Directory transport UFO and
UFO and fi Ie contents transferred specifier
Must include a directory specifier
May use filename templates

Move all save and overlay files to the alternate
directory.
MOVE/A/V ALTERNATE ·-.SV, -.OL

Move all files, not links, only move recent files
MOVE/ A/V /K/R UTI L

Make a copy of DPO using DPOF
MOVE/A/V DPOF

load & boot another pack

DI.R DPOF
R
MOVE/ A/V DPO a copy of the original DPO.

o·

o

o

o

o

SYSTEM BACKUP: STARTER TAPE EMULATION

A TAPE BACKUP MACRO

MESSAGE "BACKUP IN PROGRESS"
\
\ STARTER TAPE STANDALONE FACILITIES
XFER TBOOT.SV MTO:O
DUMP/A MTO: 1 CLI .<SV,ER,OL>, BOOTSYS.SV,BOOT.SV
XFER BOOTSYS.SV MTO:2
DUMP/A MTO:3 BOOTSYS.OL
XFER DKINIT.SV MTO:4
XFER BOOT.SV MTO:5
\
\ TWO COPIES USER SOFTWARE - PARITY PROTECTION
DUMP/A/L MTO: (6,7)
MESSAGE "BACKUP COMPLETE"

15-5

o

o

o

o

S200

ROOS USER

MOOULE16

ROOS SPOOLING

! C)

o

MODULE 16

OBJECTIVES

RDOS SPOOLING

Upon successful completion of this module you will be able to:

*
*

DEFINE METHODS TO CONTROL RDOS SPOOLING
RECOVER LOST SPOOL BLOCKS

r:>",. \ 1 " . ,

o

0··•··· ..

o

RDOS SPOOLING

Spooling is a process to optimize CPU usage during an output request to a slow device.
The device is started and data passed to it; upon backup, information is written to disk
in a temporary file. When the device can output more data, it signals the CPU via an
interrupt.

DATA BUFFER

RDOS

USER DATA

BUFFER

R
PRINT MYFILE
USER SPACE

DATA BUFFER

RDOS

R

USER SPACE

DEVICE INITIATED INTERRUPT

WHEN DEVICE BACKS
UP INFORMATION __ ~
WRITTEN TO SPOOL
FILES ON D,,-!I~SK::...-___ -

RDOS
SPOOL
FILES

%MDIR%

THE DEVICE SIGNALS
FOR MORE DATA VIA

INTERRUPT

RDOS
SPOOL
FILES

SPOOL FILES WRITTEN

III TO THE MASTER DIRECTORY
MDIR

HARDWARE REGISTER
$LPT

$LPT

I

16-1

RDOS SPOOLING

Although Spool Control is limited, its optimizing effect is remarkable.

Spooling is enabled by default; to disable spooling:

To Reenable Spooling:

R
SPDIS devicename
R

R
SPEBL devicename
R

To kill a spool train of data to a device:
R
SPKI LL devicename
R

The following are spoolable devices:
$DPO)$LPT(1) $PTP(1) $TTO(1) $TTP(1)

i\

" w

o

o

RDOS SPOOLING

SPOOL File Loss & Recovery

I f the system crashes during spooling, spool file blocks are left in use; the spool
files are maintained by logical block address in resident R DOS and may not be
deleted through normal means.

Recovery Techniques

Initialization After Backup

• Mag Tape will contain only files in the directory structure'

• 0 KI N IT destroys all previous block information

• The Back Up ~rocedure recreates an optimum directory .
structure. (Max contiguous space preserved)

16-4

ROOS SPOOLING

Spool File loss & Recovery

Boot the System from a Secondary Partition

• Master Directory is Secondary Partition

• Spool Files Localized to Secondary Partition

• Partition may be deleted to dispense with Spool Files.

Secondary Partition Bootstrap

• Links to Operating System must be available
LINK < ,GEN: > MYSYS.(SV,OL)

• CLI files must exist physically
MOVE/A/V SPOOLPART CLI. < SV, ER, OL>

• Boot Program will Accept a Partition Specifier
FI LENAME? SPOOLPART:MYSYS

o

o

o

8200

RD08U8ER

MODULE 17

RD08PROCESS MANAGEMENT: FOREGROUND/BACKGROUND
t- • . '. '.' .

~
~

o

o

0,;' "

o

o

MODULE 17

QBJECTIVES

RDOS PROCESs MANAGEMENt: FOREGROUND/BACKGROUND

Upon successful completion of this modyle you will be, able to:

*

*

CONTROL THE MAP UNIT TO ALLOCATE MEMORYFOR
RDOS'S DUAL PROCESS MANAGEMENT
I MPLOY APPROPRIATE CLICOMMANDS TO eXECUTE
PROGRAMS IN THE FOREGROUND/BACKGROUND

o

o

o

o

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

DISK

.... ~ FOREGROUND CLI
FClI.CM

~ -~
CLl.CM

. BACKGROUND CLI FLOG.CM
~+----p __ ------~

MAPPED ROOS LOG.CM
DPO

FOREGROUND CONSOLE BACKGROUND CONSOLE

• Foreground is a separate User Program 'in High Memory
.• Bac~ground is a separate User Program in Lower Memory
• Each Communicate via elf to their respective consoles. ..
.RDOS<preserves all facilities for.l:>oth programs

17-1

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

MAP UNIT ADDRESS TRANSLATION

CPU MAP B ACTIVE
~--------~~---------,

5 BITS & 10 BITS
PROGRAM COUNTER

17-2

5 BITS
USED AS AN

OFFSET INTO
MAP TRANSLATION

TABLE

IR: 16 BITS

PC: 15 BITS

MAP B

• • • • • • • • •
PAGE 96

Map Translation Tables

+ 10 BIT OFFSET = 900

PAGE NUMBER AND OFFSET

WITHIN PAGE

MEMORY
12SK ---.....;.~..;..;..----. 4SK·1

112K

SOK

64K

EXTENDED MEMORY

OFFSET = 900

PAGE 96

FOREGROUND USER
ADDRESS SPACE

MEMORY PARTITION

EXTENDED MEMORY

BACKGROUND
USER ADDRESS

SPACE

32K·1

o
4SK·1

32K·1

32K 1-------------4 g2K.1

MAPPED RDOS
.... ________ 0

Physical
Addresses

Logical
Addresses

o

o

o

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

RDOS TRANSLATION TABLE MANIPULATION

• Two resident Program Tables record and control page allocation
• Initially, CLI occupies background space, foreground is unallocated.
• Under background control, a foreground program is executed.

UNUSED MEMORY ~..... I$4K TOTAL

2B~ 1---: ___ .U_NU_S_ED_F_G_A-:'.R EA __ --II .. ~ 16K ~=~~ .. ;:: 1-_....,...;_ . .;..FG P.;..RO_G __ SV_· ----.. , -;.,.......Ii:
jiG CLI.SV

n~ 1--"---------i?1
PT1 PT2

g1K 1---PT-1-'-M-. R-OO-S:...... -P-t';"2 --Ii' 11:

NULL

0-32
1-33
2;34 .
16-48

o . .~~_~_~ ____ ~J 0
LOGICAL PHYSICAL

o
LOGICAL

049
1-50
2-51

11-60

..

0-32
1·33
2-34

16-48

o
PI-IYSICAL

• If a 20K program is swapped to BACKGROUND unused pages are aliocated.

20K

11K
11K

;0
16K

ci
16K

o
LOGICAL

PT1

0-49
1-50
2-61.

11·60

BGPROG.SV

;

FGPROG.SV

BGPROG.SV

..

PT2·

.0-32
··.1-33 .

. 16-48
17-61
20-64

F

-.

, ..

··.64K .

61K
60K

49K
48K

o
PHYSiCAL

1.7·3

17-4

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

MAPPED CONFIGURATION _ """"""'=
128K

Map Unit Applies Address
References to One of Three
Possible Address Spaces

MAPBACTIVE

FOREGROUND PROGRAM

FGPAGE ZERO
CPU 80K

BG HYPERSPACE

BACKGROUND PROGRAM ADDRESS REFERENCE

BG PAGE ZERO

32K

1
·1
I
I
I

MAPPED RDOSSYSTEM
_______ ~ ___ J

RDOS PAGE ZERO 0'--__________ _

Physical Logical
Addresses Addresses

• No Special RLDR Considerations
• The Map Unit Translates All References to One of Three User

Address Spaces
• Each Ground may occupy a full 32K words
• Virtual Techniques Permit Extended Memory Access above

32K words.

o

o

o

c

0·· . .

o

o

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

PAGE
ONE
NREL

PAGE
ZERO
ZREL

HYPERSPACE NMAX. ~-.. ________ .;._ .. __ .. _________ .;..;. ___________ ~ ___ .

PROGRAM DAtA AREA

TASK CONTROL BLOCK MONITOR:
TCBMON

~----~--------------------.. --------------~. RUNTIME LIBRARY
SUPPORT SOFTWARE

SUBROUTINES

MAIN PROGRAM

INMAX~----------~[------------~.
OVERLAY DIRECTORY

TASK CONTROL BLOCK POOL

400
USER STATUS TABLE

.:~7 PROGRAM PAGE ZERO·· .
~~---------------------------. ----~--~--->---. .41 ..
16 AUTO +/- 8tSTACK LOCATIONS

~5 RDOS RESERVED LOCATIONS

• Program Status is held in the User Status Table
• Multitasking is controlled by TCBMON and the TCB Pool.
• Overlays are controlled with the Overlay Directory

TOP
OF

GROUND

CONTROLS
MULTITASK

ENVIRONMENT

RDOS
CONTROL

TABLES

•

17-6

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

3
System is loaded into
high memory using/N
in the RLDR Line

The Foreground's
starting NREL
position is specified
at RLDR with /F

2K

..Jo.

...."..

..
00
77

4
3

Foreground's usage of .. Page Zero is specified
in RLDR with /Z

Example:

15

0

UNMAPPED CONFIGURATION

RDQSSYSTEM

FOREGROUND USER PROGRAM

r----------------------------------~-------

BACKGROUND USER PROGRAM

FOREGROUND PAGE ZERO
--

BACKGROUND PAGE ZERO

RDOSPAGEZERO

J
HIGH NREL

OCCUPIED BY
RDOS

NORMALLY
RELOCATABLE

NREL

PAGE ZERO
RELOCATABLE

ZREL

RLDR #8/F #8/Z FGPRGM LIBRARY

• Unmapped FG programs are specially loaded, the .RB file must be accessable

• Commands to control FG programs are identicle to the mapped environment.

o

o·

0·","
, .

o

o

o

o

RDOS PROCESS MANAGEMENT: FOREGROUND/BACKGROUND

.GMEM

• SMEM.

• FGND

• EXFGIE

• eNTRl F

ell CONTROLS

Get Memory displaysFG/BG page usage:
GMEM
BG: 29 FG: 29

Set Memory sets BG page usage. (FGgets remainder)
SMEM 31
R
GMEM
BG: 31 FG: 27

Interrogates whether an FG program is executing
FGND
NO FOREGROUND PROGRAM

Execute a program in the Foreground with equal
priority; Foreground at a higher priority is the default.

R
EXFG/E FGPRGM
R

Terminate a Foreground Program·
tF
FGTERM

o

o

o

o

S200

RDOSUSER

MODULE 18

RDOs EXTENDED MEMORY: VIRTUAL TECHNIQUES

o

o

o

o

o

MODULE. 18

OBJECTIVES

RDOS EXTENDED MEMORY: VIRTUAL TECHNIQUES

Upon successful completion of this module you will be able to:

*

*

DESCRiBE TECHNIQUES FOR EXTENDING USER
ADDRESS SPACE
DEFINE THE OPTIMUM USAGE OF VIRTUAL
TECHNIQUES TO MANAGE MEMORY

~-----.-~~-------....

o

o

o

RDOS EXTENDED MEMORY: VIRTUAL TECHNIQUES

DEFINITION OF EXTENDED MEMORY/HYPERSPACE

FG EXTENDED MEMORY

32K:-;-.. --------------.. ------~------------- ... -
FG PROGRAM

GROUND
AllOCATION

FULL USER ADDRESS I
SPACE OCCUPIED 10 PARTITION VIA MAP UNIT

BG EXTENDED MEMORY

PARTIAL USER
ADDRESS SPACE

OCCUPIED

~r----------- .. ------------------------------13K·'
GROUND ALLOCATION

BG PROGRAM
0

MRDOS

• Extended Memory is that memory within the ground not occupied
by the program.

• Access is provided by R DOS via Map manipu lation

• Data access in Hyperspace constitutes Window Mapping

• Code access in Hyperspace constitutes Virtual Overlays.

18-1

RDOS EXTENIDED MEMORY: VIRTUAL TECHNIQUES

USER'S
LOGICAL
ADDRESS
SPACE

VIRTUAL OVERLAYS

OV3 ________________________ 19

OV2
________________________ ~!1

3

OV1

BACKGROUND

USER PROGRAM

38
37

;L ______________________ ~~

OVO
L ______________________ =!!?

ROOT CODE
34

HYPERSPACE LOADED
WITH OVERLAYS

f
WINDOW DEFINITION
OF ONE PAGE

" 10
LOGICAL
PAGES

PHYSICAL
PAGES

• Virtual Overlays require a local IV after the overlay designation:
RLDR PRGM [OVO, OV1, OV2, OV3] IV LIBRARY

• During overlay channel open, overlays are loaded as shown above.
• For alternate overlay access the Map Translation Table is altered:

LOGICAL
SLOT

NUMBERS MAPB REMAP MAPB

0 34 0 34

SLOT 1 CONTAINS 1 35 OVO 1 39 OV2
WINDOW DEFINITION 2 36 2 36

3 37 37

4 38 OV1 38 OV1

5 39 OV2 5 35 OVO

6 40 OV3 6 40 OV3 ----------------

• Alternate overlay access is very fast, two numbers are moved.

18-2

USER
ADDRESS
SPACE

HYPERSPACE
DEFINITION

0

0

o

RDOS EXTENDeD MEMORY: VIRTUAL TECHNIQUES

DATA ACCESS: WINDOW MAPPING

USER ADDRESS
SPACE

. _______ .~.~~~. _~_.'" ____ ._] HYPERS. P.AC .. E FOR .
GROUND·

, DATA 2 I ..

,: f

ROOT CODE

-----."--~~;~-~----".--- J ;
WINDOW DEFINITION OF

-------------------------- TWO PAGES·

bATAO

.. --.... ---------------_ _- ,
ROOT USER PAGE BOUNDARY . .

pROGRAM COD.E

LOGICAL
PAGES

PHYSICAL
PAGES

• Special. Commands, ERDB,EWRB allow reading/writing
virtual areas to/from disk.

• The REMAP call allows individual page mapping

MAPB MAPB
LOGICAL SLOT -----------
NUMBERS 0 0 18

WINDOW 11 1
DEFINITION . 2 2

3 3 21

4 4

5 20 DATA 1

6 6 19 DATA 0

.1
· USER AODAESS

. SPACE

1
HYPERS .. PACE.
.DEFINITION .

• Again Access is extremely fast because a minimum of information is
actually moved.

1s..3

o

o

o

o

S200

RDOS USER

MODULE 19

RDOS MALFUNCTIONS & RECOVERY

o

o

o

MODULE 19

OBJECTIVES

AOOS MALFUNCTIONS & RECOVERY

Upon successful completion of this module you will be able to:

*

*

EMPLOY RECOVERY TECHNIQUES FOR RDOS
MALFUNCTIONS
ENUMERATE DOCUMENTATION REQUIRED BY DGC
PERSONNEL TO DEBUG OR DIAGNOSE SYSTEM
MALADIES

O· "'-,

C)

ROOS MALFUNCTIONS & RECOVERY

TRAP Program Counter ACO AC1 A3
BREAK
R

• Traps occur via the map unit due to:
Validity Unauthorized Memory Reference
I/O Unauthorized device I/O attempted
Read/Write Unauthorized I/O to memory attempted
Defer Greater than 16 levels of indirection attempted

• Correction Copy the message at $TTO(l) above
FPRINT/L BREAK.SVorSAVE USERNAME
User program is amiss - correct it ...

• The accumulators have the indicated value at error.

• The program counter has the memory location of the improper instruction;

19-1

19-2

RDOS MALFUNCTIONS & RECOVERY

SYSTEM CRASH:

ACO AC1 AC2 AC3 Panic Code

• . Panics occur whenever a vital error occurs, RODS stops at the start
of the core dump algorithm.

• Documentation for DG System's Engineer:

• Copy front panel lights

• Core Dump to Mag. Tape

• Print System G"eneration Dialogue

• Print System Patch Dialogue

• Print System Load Map

• Document Ha.rdware Configuration

• Producing a Core Dump

• Answer SYSGEN question affirmative

• Upon Panic put all front panel switches down

• Press Continue twice

• Reboot the system and clear all files left open to recover.

• If software suspicious, perform backup and reboot.

• CPllJ power off/on and reboot the system.

e

C)

a-

o

System Generation and Patch

APPENDIX A

• System Example

• Performing an RDOS Update

• Guidelines for Sizing RDOS 6.10

• RDOS Error Summary

o

o

o

~CLIPSE SYSGEN kEV b.4U
VALID AN5WE~5 AN~ IN PARENTH~SIS RESPOND ACCORDINGLY

MAPPED SYSrEMi ("O";NO "l";YEb) $1
S/~~O O~ C/3~u lYPE PkUCfSSOki ("O"=NU "1"=YE5) 10
5/2UO UR CI3uu MAPi ("V";~O "l"=YES) $1
M A X J. M U IV! :'4U Mdt ~ U F C H A NI\I t L S .; A C K G R 0 U N U w ILL U S t:: (1-2 5 5) $:s 2
MAXIMUM NUMdt~ UF CHANNELS FUkEGROUND wILL USElU-~~5) 132

NUMdER 0F N0VAUlbK U1S~ GUN1HULLERSlO-2) $0
~UMbER OF bOb~/bOb4 Ul~~ CONTROLLERS(O-~) ~o
NUMBtR uf bUbO/bOhl/bUb' OISK CONTROLLE~SlU-2) il

Dt:. VIC E P t-I 1 i~i A k Y (II U ") u ~ SEC U I'-J lJA In (II 1 II) i $ U
NUMd~R uF 0EVILtS FUH CONTROLLER #1(1-4) ~l

NUMB£~ UF UIH~k T~Pt~ U~ ~OVINGHEAD OIb~ LUNTRULLERS(U-21 'I
DEvICE Pk.l;';ARy(IIO"j (j~ btCUi~DAKY("lll)i;DU

NUM~£R uf JEvlCtj FUR CUN1ROLLER #1(1-4) .2
IUP LUADER(S)t ("O";NU "1 11 =Y£S) 51

ENTER dAD tiLUCK POOL SIlt IN bLUCKS (U-~l~) $1~
DUAL P~OC~SSUR~ (lPb)~ ("U"=NU IIl"=YESJ i~
tNTE~ ~UM~Ek Uf STACKS (i-lv) $8
~NrE~ NUMM~H OF ~Xl~A CtLLS (O-b4) $1~
TUNING? (IIUIl=NU "lll=Yt~J ~o

ENTER NUMtitH O~ ~XlHA buFFtRS ~E~UIHEU lU-bJJ $ti

MAXIMUM NUMdER UF ~Ud-UIRECTURIES/SU~-PARrlTlUNS
ACCt~~ldL~ AT UNt TIME (U-b4) $12
ENTER NUMBER U~ CUNTH0LLt~s FUR MTA(O-2) i1

DEVICE PHIMA~Vl"u") uR SECUNUA~Y("1")1 so
ENTER NUMKER u~ uEVICtS FUR CONTROLLEk #1 (1-~) i1

tNTEH I~UMdEk UF CUI-J1RULLERS FuN erAtO-c) $U
AUTO HESTA~r UN PUw~~ FAILt ("v";NU "1"=,E8) $0
OP~RATOH MESSAGES? ("VIl;NU "l"=YESJ IU
RIC? ("U"=NU "1"=VtS) ~1

DEVICE PNIMA~Y("U") OR SECUNDA~Y(1I1"Jl $0
ENrER Rrc F"t~ (l=lOHt 2=~OHl 3=bOHl A=lOUHZ ~=lUOOHZ) $1

ENfEH NUM8~H UF PfklO-2J 10
ENTEH NUM~tH OF ~T~(O-2) $0
ENTER NUMdEH uF L~llU-2J $1

ENTtH CDLUMN SIZE FUR LPT #1 (dO UR 132) tHO
OATA CHANNEL LIN~ p~rNTERi (~OIl=NU IIl"=VES) 51

ENTER NUM8~R O~ CuRCO-2) .0
ENTEH ~U~8Ek OF PLTlO-2) $U
~NTER NUM~~k UF MCA(O-2) $0
QTY? ("O"=NU "l"=VtS) ~u
ULM? ("O"=NU "l"=YES) ~u
ALM1 ("O"=NU "lll=Y~ti) ~o
SECUNO TTY~ ("Q";NO "l"=Ytti) $1
CORE DUMP fACILlfV1 l"U"=NU "l":LPl "2"=MIA "3"=b030) l2

A-1

A-2

ECLIPS~ tiYSG~N R~V b.QU
VALID ANSwERS ARE IN PARENTHESIS HESPO~U ACCOROI~GLY

~APPto SYSlt~l l"O"~NO "l":Y~Sl ~1
9/25u OH C/35U fYHE PROCESSOR? lUU"=NO "l"=VfSJ $~
S/2UU OR CI30U MAP? l"O"=NU"l":YES) $1
MAxIMUM NU~ti£H uF CNANN~L~ ~AC~~ROUND wILL ~9t(1-~55) ~32
t'1AX!tvlUM l\liJMbtR UF CHAI'l/flJtLS FlH<EGj.(OUI\lU WILL USE(v-25!'l) :jdi

NUMbEH OF NUVAOlb~ DISK GUNTHOLLt.HS(O-2) $V
NUMti£H OF 6U&31&064 OISKCUNTHOLLtHSlU-2) ~u
NUM~ER OF 6U60/b061/bObl DISK CUNlkOLLEkS(U-~) ~1

DE 1/ ICE P R 1 MAR Y (II 0 ") 0 H S tC UN U A R Y (" 1 11)1 ;Ii 0
NUM~t.R U~ UEVICtb FON CUWT~OLLER #1(1-4) 61

NUMtiEH OF UTHt.k IYP~S u~ MOVING HtAu UISK CUNT~OLLtRS(U-2) $1
UEI/1CE Pkl~ARYl"OIl) Uk SECUNDARY("l")i $0
NUMdEH UF 0tviCES FUN CU~T~ULLtH #1(1-4) ~2

TUP LUAUE~(Slt ("U"=NU IIl l1 =Y£5) 51
ENTEH BAO ~LUCK PUOL SILt IN BLUCKS (O-~12J 612
DUAL PROCESSOHS lIPbJi l"O"~NO "l"=Y~S) SU
ENTE~ ~UM~ER OF SlACKS (1-10) is
ENTEw NUMbER UF ~XTRA ~tLLS (O-b4) $1~
TUNI~Gl ("O"=NU fflll:v~Sl $U
ENfEN NUMBEH OF EXTHA bUFFERS REWUI~EU (O-b3) $d
MAXIMUM NUM~~~ UF SU8-U1RECTORIES/SU~-PARTITIUNS
ACCESoI~LE AT UNE TIMt (O-b4) $12
ENTEH NUMBER O~ CUNfHULLER5 FOR M1A(O-2) $1

DEVICE Pj.(IMARYl"O") ~R SEC0NDANY("I")? $U
ENTt.N NUMdEN UF DEVICES FOk CUNTRULLER ul ll-d) $1

t;:NTEt< .I/Ui"lHER OF l:UN TROLL..i::HS FUR eTA (O-en $0
AUTU NE~rART ON PUWER FAILi (~U"=NO "l"~~ES) iv
OPERATUR MtbSAb~S? l"UII=~O "1"=VtS) $U
HTC? ("OIl:NU "1 11 =Y£b) ~l

DEVICE PHIMA~V("OIl) Uk St.CUNOAj.(Y("l"J? $0
EN1EH RTC FHEw ll=10Ht 2=~UHZ 3=bOHL 4=lUOHl ~:lUVOHll $1

ENTEH NUM~ER UF PTH(u-2J $0
ENTER NUM~E" UF ~lP(O-2) ~u
ENTER NUMBER Of LPllU-~) $1

ENrE~ COLUMN SIlt FOR LPT #1 (80 OH 1~2) $80
UATA CHANNt.L LINE ~~lNTERl ("O"=NO "l"=YtS) $1

ENTER NUMdEH OF CON(u-2) $0
ENTER NUMbER OF PLT(O-2) $U

ENTER ~UMdEH UF MCA(U-21 SO
QTY? ("O"=NO "l"=YEb) ~o
ULM1 ("O"=NU 11":V~S) ~~
ALM? ("O"=NO "1"=VES) ~u
SC:C(JI\lU TTyr ("OIi=i\lU "1"=YESJ $1
CO~E OUMP FACILITYl ("U"=NO "lll=LPT "2"=MTA "5"=&030) ~~

0,' I", .. i'

0',', , ,

o

o

1

l

o

o

o

~OVA j SYSGEN REV b.40
VALLO AN~w~RS A~~ Il~ PARENTHESIS M~SPUND ACCO~OINGLY

MAPPED SYST~M1 ("U"=NU "l"=VESl $1
MAXIMU~ NUMaE~ OF CHANNELS ~ACKGROUNUWILL USE(1~25~) $3~
MAXIMUM NUM8E~ OF CHANNELS FOREG~OUND wILL USElO-255l $32

NUMB EN OF NUVAUISK DISK CUNTROlLtNS(O-2) $
NUMbtH nF bOb3fbOb4 UlSK CONT~OLLEHS(O~a) 1
i\JUrvlb£R OF Q V b 0 IbOb 11 00 b" U.1:;iK CON TR OLLEt< S·(0'" cD $
NU~BER OF. 01HE~ lYPES UF MbVINGHtAO OISKCUNTNOLLERSlO-2J .$1

DEVICE Pt<IMAHY("O") OR SECONUAHY1"1")1 .0
NUMdER DF DEVICES FOH CU~TRULLER q1'1~4) $1

TUP LOAOER(Sll l"O"=NU "l"=YES) $1
E.NTEH ijAO jjLOCK POOL SIZE 111/ tiLOCKS (O~51cn $112
D0AL PROCESSO~S (IP~)i ("O"=NU "1"=Y£S) 5v
ENJER NUMdtR OF SlACK~ (1-1U) $5
ENTER NUMBER 0F txTRACtLLS (O-b4) ~la
TUNINb? ("O":NO "1"=YE5) 10
ENTER N~MdEH OF tKlkA~~FFtWS ~t~UIRED lV-&3) 15
MAXIMUM NUM~E~ UF SU~-VI~tCTUWIES/SU~~~AW1111UN&
.A C C E 3 S r d L E .~ TUN E. rIl\'l t l 0 -0'") $ 1 ~
ENTE~ ~UM8E~ OF CONT~ULLE~S FO~ ~TA(U·~J 51

DEVICt ~RIMAHY("0") uw S~CUND~~Y("lU)l $0
ENTEf< NuMtsEI(UF OEVICtS FOR CUIHROLLEW#l(1-&)Sl

ENTER ~UMSE.R OF CUNTROLLfHS FO~ CTA(O-2) $
AUTO ~tSTAHT ON 90wtM FAlLl (wO"=N0 "l~:fEl) i
OPERA rOR MESSAGES'! ("U":l\Iu"1 "=VES) :{;
RTe? l"O"=NU -1"=YE6) $1

DEVICE ~~lMAHYl"U") UN SECONDARY("1")l $0
ENTtR Rrc F~E.Q (1=lUHl t:!:SOHZ 3=bOHl 4::1()OI'tZ 5=1000Hll $1.

ENTER NUivlSEHI.lF "'lTl:H o-a) ;&I

ENTEH NUM8E~ OF PTPlO-2) ~
ENT£~ NUM~EA Of LPf(O-2J $1

ENTER COLUMN 51£E fOR LPT #1 (t;O OR 132)$80\
DATA CHANN~L LINEPHINTERl ("O"::NO "1"~vE~).0

ENTER NUMBEH 0F CORlO-2) I
ENTEH NUMSfR OF PLf(O-~) •
ENTER NUMi;tR OF ~ICA (o .. ~) $
QTY1 l"O"::NO "1"=YES) ~
ULM1 lOv"=NO "l·:YES) $
ALM? ("O"=NO "l":YESJ •
SECOND TTV? ("Q"=NO "l":YES) $1
COHE UUMP fACILITY'(("O":NO "1"=LPT "a".MfA ·"31t :b03.0}Sl

A-3

ECLIPSE SYSGEN REV b.40
VALID ANSWEkS AR~ IN PARENTHESIS RESPONO ACCORDINGLY

MAPP~D SYS1EM? ("O";NO "1";YES) $1
5/250 OR C/350 TYP~ P~OCE5S0R? ("O"=NO "l"=YES) $0
S/2UO OR C/JOO MAP1 ("O"=NO "l"=YES) $1
MAXIMUM NUMBEM OF CHANNELS BACKGROUND WILL USE(1-255) $32
MAXIMUM N~MdtH UF CHA~NELS FOREGROUND ~ILl USElO-iSS) i32

NUMBER UF NOVAOISK DISK CONTROLLENS(O-~l $U
NU~BE~ UF bOb31bObQ DISK CUNTROLLEHS(0-2) $0
NUM8ER UF b060/bOb1/bOb7 OISK CONTROLLERSlO-~) $0
NUM~ER OF OTHER TYPES Of ~OVING HEAD DISK CONTROLLERS(O-2) ~1

DEVICE PRIMARY("O") U~ SECUNDARY("1")1 $0
NUMdER UF DEVICES FUR CONTROLLER #1(1-4) '3

TOP LUADER(Sli ("U"=~O "1"=YESJ $1
ENfER dAD ~LOCK POOL SIlE IN dLOCKS (0-512) $12
DUAL PROCESSORS (IPd)l l"O"=NO "l"=YES) $0
ENTER NUMdEN OF STACKS (1-10) $5
ENTER NUMdER OF EXTRA CELLS (0-b4) $12
TUNING1 ("O"=NU "l"=YES) iO
ENTEH NUMtitR·OF EX1HA tlUFFERS REQUlRED (O-bJ) $5
MA X!MUM tlJUMBER OF SUS""O ll1EC TOR IESI SUB-PART 1 T IONS
ACCESSli:iLE AT ONt. TIME. (0-b4) $12
ENTE~ NUM8~H OF CONrHOLLE~S FOR MTA(O-2J i1

DEVICE PRIMARY("U") OM SECONOA~Y("l")i $0
ENTE~ NU~ijf~ UF DEVICES FO~ co~rROLLER #1 (1-8) 51

ENTER NUMBER OF CONT~OLLERS FOR CrAtO-d) $U
AuTORESTA~T ON PO~tR fAlL? ("O"=NO "1"=YES) $0
OPERATOM MESSAGES? ("O"=NO "1"=YES) $1
~TC1 ("O"=NO "1"=YE.S) ~1

DEVICt PRIMARY("O") UN SECONDARY("1")? SO
ENTER RTC FREQ (1=loHZ 2=50HZ j:bOHZ 4=100HZ 5=1000HZ) $1

ENTENNUM~EHOF PTR(0-2) $0
. ENTER NUM~~H OF PTP(O-2) ~o

ENTER NUM6ER OF LPT(u-2) ~1
ENTER COLU~N SIlE FOR LPT #1 (dO OR 132) $80

DATA CHANNEL L!N~ PRINTER? ("Q":NO "1"=YES) $0
ENTEM NUMBE~ OF COR(O-21 ~o
ENTER NUMBER OF PLT(O~2) $0
ENTE~ NUMdER OF MCA(O·2)~U
UTY? ("O"=NO "l"=YES) $0
UL~? ("O"=NO "l"=YES) $0
ALM? ("O"=NO "1";YESJ ~1

DEVICE PRIMARYl"O") O~ SECONOARY("1"l1 $U
ALM CLOCK FRE~UENCV1 (0-3) ~o
USE DEFAULT ALM/QTY IN1ERRUPT CHARACTERS1 ("o"=NO "1"=YES) $1
NUMSfN OF NULLS AFTER CARRIAGE RETUkNJ (O-i5bl iO

SECOND TT}l ("0"=NO"1"=YE~J $1
CORE DUMP FACILITY? l"O"=NO "l"=LPT "2"=MTA "3"=b030) $2

A-4

o

o·

0:

o

o

o

o

ECLIPSE SYSGaN ~iv b.QO
VALID AN~wt~b Akt IN PAHENrHESI5NESPONU'ACCORUINGLY

MAPPE0SYSTEM1, ("O~=NU "1"=YES) $1
5/2::)0 OR C/j50 TYPE"'ROCE~SOH1 ("0"=1\I0"l":Vf5) lIH)
5/200 UMCf500 MAPi l"U"=NU "1"=YES) $1.
MA~IMUM NUMdfH OF CHANNELSbACKGRQUND W1LL USE(1-25~) ~J2
MAXIMUM NUMOE~ UF CHANNtLS FORfGROUNO ,wILL U5E(0-255) $32

NUMtiER OF NUVAUlSK DISK CO~l~ULLtHSlO-l) $0
NUM6ER OF bObJlbObQ DISK CUNTROLLERSlO-2)$0
i~UMjjE~ OFb 0 0 0 I b () b 1/ bV b 7 01 SKC UNT ROLLER S (0-2)$0
l'4UMBt.t1 (iF urriCo'" TYPeS llF' rYlO~lNb HtAiJOlSK CUNHWLLENS(0-2) $1

DEVICE PHIMAH1("U") U~ SECU~DA"'Y("I")l $0
NUM~~~ OF U~VICES FOM CONTRULLER ~1(1-~) $J

TOP LOAOfHl~Jl l"O"=NO "1"=YE5) ~1
ENTE'" dAD dLueK PUOL Sl~E IN 8LOCKS (O·~l~l ~ll
DUAL PKUCEbtiUMS (IP8)1 L"O"=NU "1"=Y£5) 10,
ENTER HUMdEN UF SlACKS 11-[U) ~5
EN 1 E RIW!VI H E t(U f I:. X , ~ A l,; t:.L. L ti (I) - b 4) $12

. TUNli'Jbt ("V"=I'4U "1 n=Yt::.tiJ :DO
I:.NTEH NUMbl:.H Uf I:.~(RA dUFFt:.RS NtQUlkED (O~b3J $i
MAXIMUM NUM~EN UF Su~-ulRECTURl~&/SU~-PA~llTlQNS
ACCESSl~L.1:. Al ONt .1IM~ (O~bQ) $l~
ENTER l'o/UfYttltHI.Jf" CUI'4TROLLEkS FOR MT A (O-cD :U.
UEVICEPRIMAR1'"~") D"S~CONDARYl"1")1 ~U
ENft:k NUMoEROF OtVICES FORr.;OIHROLLEH~l (1-8) $1

ENTtR NUMdfR uf CUNTRULLI:.RS FUR erAlo-iJ ~»
AUTO RES1ART ON PO~I:.R FAIL! ("O":NO "l"=VfB) ~O
OPERATOR MESSAGEb1 l"U"=NU "1"=YE5) $1
RTC? l"O"~NU ~l"=Yt~) j1

OiVICE PHIMARY("O") Ok bECUN~ARY("I")l $~
ENTt:.w.wIC Ftctltlll=lUHl. ~=50hl 3=bOHl 4=lUOHl5=1000HlJ :Dl

I:.NTER NUMdE",OF"'IR{O-~) so
ENH':RNUMdt,tc UF PfP (O-~l IbO
I:.NTER ~uMbER OF LP(U-i) $1

E~Tl:.k COLUM~ ~llE FUH LPf #1 (dO UR lJ~J$80
OATA CMANNt:.L LINE ~MINTE~l (~O"::NU "1·=Y~SJ 10

ENTE~ NUMdER OF CUH(0-2) $\)

ENTEN~UMaER OF PLTlo-2l .$0
ENTEk.NUKdtH UF MCAlU-~) $0
QTY·? ("0"=1111.1 IIl"=YI:.5) 1II0
ULM? V'O n:.NO "1" = Y tS) ~V
AL.Ml l"~"~NO "1"~Yf6)jl

DEVJCE P~IMAMY("O") O~,SECONOAHY("1"J1 ~O
ALM ,CLOtK FNf~UI:.NCY? (0-3) $0 . "
USt DEfAULT ALM/~rY lNT~HRUPT CHARACfERS1 (ftO"=WO ~ln='ES) i1
NUfYlt;ER OF NULLS AFltkCAFUHAGE NETUloli'fl (0-2'0)10

~ECONDllYt l"Q"=N0 "l"=YEti) ~1 .
CORE ~UMP FACILITY? l"O":NO "l"=LPT ~2"=MrA "3"=&030) l~

A-5

A-6

IN ORDER TO USE THIS UPDATE, YOU MUST HAVE ALREADY BROUGHT UP
RELEASE 6.40 OF RDOS IN ACCORDANCE WITH ITS RELEASE NOTICE,
085-000022-05, AND THE INSTRUCTIONS IN "HOW TO LOAD AND GENERATE
YOUR RDOS SYSTEM".

TO INSTALLTHIS UPDATE:

1) CREATE A SUBDIRECTORY TO CONTAIN THE UPDATE FILES, AND
THEN MAKE THE NEW SUBDIRECTORY YOUR DEFAULT DIRECTORY.
FOR EXAMPLE:

CDIRRDOSUD641;OIR RDOSUD641

2) LOAD THE FILE NAMED "UPDATE" CONTAINED IN THE UPDATE
MATERIALS ACCOMPANYING THIS NOTICE. TO DO THIS, USE THE
COMMANDS FROM THE SET BELOW WHICH MATCH THE MEDIUM
YOU HAVE:

FROM MAGNETIC TAPE 071-000224-03
INIT MTX; LOAD/V MTX:O UPDATE;RELEASE MTX

[WHERE "X" IS THE UNIT NUMBER THE TAPE IS ON]

F ROM CASSETTE 070-000175-03
INITCTX;LOAD/V CTX:O UPDATE;RELEASE CTX

[WHERE "X" IS THE UNIT NUMBER THE CASSETTE IS ON]

FROM DISKETTE 072-000091-03
DIR DPX;MOVE/V RDOSUD641 UPDATE;DIR RDOSUD641

[WHERE "X" ISTHE UNIT NUMBER OF THE DISKETTE DRIVE]

FROM PAPER TAPE 088-000326-03
088-000344-02

LOAD/V $PTR UPDATE
[THEN MOUNT THE FI RST PAPER TAPE IN THE READER,
FOLLOWED BY THE REST OF THE TAPES AS REQUESTED]

3) 'READ AND FOLLOW THE INSTRUCTIONS IN THE FILE "UPDATE". TO
SEE THIS INFORMATION ON YOUR LINE PRINTER, USE THE COMMAND

PRINT UPDATE

IF YOU DON'T HAVE A LIN.E PRINTER, DISPLAY THIS INFORMATION ON
YOUR CONSOLE WITH THE COMMAND

TYPE UPDATE

o

o

o

o

THE PURPOSE OF THE PRODUCT UPDATE IS TO REDUCE THE TIME REQUIRED TO
RESPOND TO PROBLEMS, BY PROVIDING USERS WITH THE MINIMUM MATERIAL
REQUIRED TO UPDATE THE PRODUCT AND ITS STATUS. THIS DOCUMENT WILL
DETAIL THE STEPS NECESSARY TO INSTALL THE UPDATE.

THE SPECIFIC CONTENT OF RDOS REV 6.40 UPDATE 1 IS DEFINED BYTHE
FOLLOWING TABLE.

FILE NAME DESCRIPTION
================~==

UPDATE

ARDOS.PF
BRDOS.PF
MRDOS.PF
NRDOS.PF
URDOS.PF
BSYSGEN64.PF

BSGENPATCH.MC

THIS FILE.

PATCH FILES FOR
VARIOUS RDOS
SYSTEMS (ZRDOS
USERS WILL USE
ARDOS.PF).
PATCH FILE FOR
BSYSGEN
COMMAND FILE TO
UPDATE BSYSGEN

===

MAGTAPE, CASSETTE USERS - -YOU WILL FIND THESE FILES, IN DUMP FORMAT,
ON FILE 0 OF YOUR TAPE.

DISKETTE USERS -- YOU WILL FIND THESE FILES, IN FILE FORMAT, ON YOUR
DISKETTE.

PAPER TAPE USERS -- YOU WILLFIND THESE FILES, IN SeGMENTED DUMP
FORMAT, ON YOUR PAPER TAPES.

A-7

A-8

TAB LE OF CONTENTS

HOW TO LOAD THE UPDATE FILES
HOW TO APPLY SYSGEN PATCHES
HOW TO APPLY RDOS PATCHES
CURRENT PROBLEMS/STATUS

IN THE EXAMPLES GIVEN BELOW, WE WILL MAKE 3 (THREE) ASSUMPTIONS:

1. UTILITIES (EXCEPT WHERE NOTED) RESIDE IN DIRECTORY "UTIL".
2. RDOS LIBRARIES FROM WHICH YOU SYSGEN RESIDE IN DIRECTORY

"SYSGEN".
3. UPDATE FILES WILL BE LOADED/MOVED INTO DIRECTORY "RDOSUD641".

COMMANDS WHICH YOU WILL TYPE FROM THE CONSOLE ARE UNDERLINED IN
THE FOLLOWING EXAMPLES.

THE SYMBOL "*,, (ASTERISK) IN THE FOLLOWING EXAMPLES IS DEFINED
AS FOLLOWS:

MAPPED ECLIPSE (S/200, C/300) USERS:
MAPPED ECLIPSE (S/130, S/230, C/330) USERS:
MAPPED ECLIPSE (S/250, C/350) USERS:
UNMAPPED ECLIPSE USERS:
MAPPED NOVA USERS:

. MAPPED NOVA 3 USERS:
UNMAPPED NOVALJSERS:

A
Z
Z
B
M
N
U

THUS, FOR MAPPE:O NOVA 3 USERS, THE FILE *RDOSC.LB WOULD REFER
TO THE FILE NRDOSC.LB

THIS UPDATE INCLUDES SUPPORT FOR THE ARRAY PROCESSOR SUBSYSTEM
ON THE ECLIPSE S/250. THIS SUPPORT HAS THE ADDITIONAL CAPABI LlTY OF
ALLOWING CONFIGURATIONS OF AP MEMORY WHICH CAN EXIST ANYWHERE
WITHIN 2 MEGABYTES AS LONG AS IT'S THE LAST 4K OF PHYSICAL MEMORY.
IF THE AP IS SYSGENED, RDOS WILL DYNAMICALLY FIND THE LOCATION OF
THE AP MEMORY. IT SHOULD BE NOTED THAT RDOS STILL ONLY SUPPORTS
UP TO .5 MEGABYTES ON MEMORY, THIS ADDITIONAL SUPPORT BEING JUST
A SPECIAL CASE.

o

o·

o

o

o

HOW TO LOAD THE UPDATE FILES

1. CREATE A SUBDIRECTORY TO CONTAIN THE UPDATE FILES AND MAKE
IT YOUR CURRENT DEFAULT 01 RECTORY.

NOTE: IF YOU FOLLOWED THE INSTRUCTIONS ON THE UPDATE NOTICE,
YOU WILL HAVE ALREADY PERFORMED THESE STEPS.

EXAMPLE:

R (CLI READY)
CDIR RDOSUD641 (CREATE UPDATE SUBDIRECTORY)

R (CLI READY)
DIR RDOSUD641 (MAKE IT CURRENT DEFAULT)

R (CLI READY)

2. LOAD THE APPROPRIATE UPDATE. FILES (ACCORDING TO YOUR SYSTEM).

A) FOR MAGNETIC TAPE
FROM MTX, WHERE X = UNIT NUMBER WHERE UPDATE TAPE RESIDES:

E~AMPLE:

R (CLI READY)
INIT MTX (lNIT MAG TAPE UNIT)

R (CLI READY)
LOAD/V MTX:O (FILES LOADED AND LISTED)

*RDOS.PF BSYSGEN64.PF BSGENPATCH.MC

R (UPDATE FILES LOADED)

B) FOR CASSETTE
SUBSTITUTE CTX FOR MTX IN SECTION A, ABOVE.

C) FROM PAPER TAPE

EXAMPLE:

R (CLI READY-
LOAD/V $PTR (FILES LOADED AND LISTeD)

*RDOS.PF BSYSGEN64.PF BSGENPATCH.MC

R (UPDATE FILES LOADED)

A-9

A-10

C) FROM PAPER TAPE

EXAMPLE:

R (CLI READY)
LOAD/V $PTR (FILES LOADED AND LISTED)

*RDOS.PF BSYSGEN64.PF BSGENPATCH.MC

R (UPDATE FILES LOADED)

D) FOR DISKETTE
FROM DPX, WHERE X = UNIT NUMBER WHERE UPDATE DISKETTE RESIDES:

EXAMPLE:

R
DIR DPX

R
MOVE/V RDOSUD641

(CLI READY)
(MAKE UPDATE DISKETTE CURRENT)
DEFAULT DIRECTORY)
(CLI READY)
(FILES MOVED AND LISTED)

*RDOS.PF BSYSGEN64.PF BSGENPATCH.MC

R (UPDATE FILES MOVED)

o

o

HOW TO APPLY SYSGEN PATCHES

MAPPED ECLIPSE USERS RUNNING ON THE ECLIPSE S/250WHO DESIRE ARRAY
PROCESSOR SUPPORT SHOULD INSTALL THIS PATCH TO BSYSGEN. ALL OTHER
USERS CAN SKIP THIS SECTION ENTIRELY.

TO UPDATE YOUR BSYSGEN PROGRAM, FOLLOW THE PROCEDURE OUTLINED
BELOW.

NOTE: WE WILL ASSUME THAT YOUR BSYSGEN PROGRAM RESIDES
IN THE DIRECTORY SYSGEN.

EXAMPLE:
R (CLI READY)
DIR RDOSUD641 (GET INTO THE UPDATE DIRECTORY)

R (CLI READY)
LINK BSYSGEN.SV SYSGEN:BSYSGEN.SV

(CREATE LINK TO BSYSGEN)

R (CLI READY)
LINK PATCH.SV UTIL:PATCH.SV (LINK TO THE UTILITY PATCH.SV)

R
BSGENPATCH

R

(CLI READY)
(PATCH MACRO FQRBSYSGEN)

(CLI READY, BSYSGEN PATCHED)

A-11

A-12

HOW TO APPLY RDOS PATCHES
_ _-------------------------... --_.---_ .. _------.----..

N.B.: RDOSPATCHES MUST BE APPLIED TO EVERY SYSTEM THAT IS SYSGENED.

PATCHING YOUR RDOS SYSTEM INVOLVES THE FOLLOWING GENERAL STEPS:

1. MAKE THE DIRECTORY IN WHICH YOU HAVE YOUR RDOS
LIBRARiES ("SYSGEN") YOUR CURRENT ONE.

2. SYSGEN A NEW SYSTEM USING THE LIBRARIES IN DIRECTORY
"SYSGEN". BE SURE TO REQUEST A SYSTEM LOAD MAP.

3. LINK TO THE APPROPRIATE PATCH FILE.

4. LINK TO THE UTILITY PATCH.SV.

5. INVOKE THE PATCH UTILITY.

ASS UME YOU HAVE SYSGENED AN NRDOS SYSTEM CALLED "NSYS",
WHOSE LOAD MAP NAME IS "NSYS.LM". THE FOLLOWING IS AN EXAMPLE
OF WHAT THE PATCH PROCEDURE WOULD BE.

EXAMPLE:

R (CLI READY)
DIR SYSGEN (GET TO "SYSGEN")

R . (IeLi READY)
LINK NRDOS.PF RDOSUD641:NRDOS.PF (LINK TO PATCH FILE)

R (CLI READY)
PATCHNRDOS.PF/P NSYS/S NSYS.LM/L (INVOKE PATCH)

R
(PATCHES BEING INSTALLED)
(SYSTEM PATCHED)

6. THE PATCH INSTALLATION PROCESS MAY CONTINUE BY ASKING FOR
FURTHER INFORMATION. FOR EXAMPLE, THERE MAY BE A PATCH WHICH
ONLY A CERTAIN SET OFUSERS WOULD LIKE INSTALLED. IN THIS CASE,
YOU MUST RESPOND WITH A '1' (YES) OR '0' (NO) ANSWER TO THE QUESTION.

o·

o

7. YOU MUST SAVE A COPY OF YOUR SYSGEN DIALOGUE, LOAD MAP AND
PATCH DIALOGUE (.PD) FILE IN CASE YOU SUBMIT AN STR OR CORE
DUMP TO DATA GENERAL FOR ANALYSIS. THIS WI LL INSURE THAT DATA
GENERAL /CAN TAKE YOUR PATCHES INTO ACCOUNT WHEN ANALYZING
YOUR SYSTEM.

8. YOU SHOULD CONTINUE TO UPDATE YOUR RDOS SYSTEMS AS THEY ARE
GENERATED. THIS CAN BE DONE EASILY BY KEEPING THE DIRECTORY
RDOSUD641ON DISK UNTIL THE NEXT UPDATE OR SYSTEM REVISION IS
ISSUED ..

A-13

A-14

PROBLEMS/STATUS

NOTE: THE NUMBERS IN PARENTHESIS REPRESENT STRNUMBERS AND
ARE FOR INTERNAL (DGC) USE.

RDOS

1) (1062) THE VIRTUAL OVERLAY HANDLER DOES NOT CHECK WHETHER
AN OVERLAY FILE HAS BEEN PREVIOUSLY OPENED. THIS CAN CAUSE
A SYSTEM CRASH ON CONTROL-A OR .RIN.

2) (1194) IF RDOS CANNOT RESOLVE DISK SEEK ERRORS WITHIN THE
TIMEOUT PERIOD, THE ERROR RETURNED IS DISK TIMEOUT INSTEAD
OF DISK SEEK ERROR. BECAUSE OF THIS, A PANIC 6 (MASTER DEVICE
TIMEOUT) CAN RESULT FROM REPEATED DISK SEEK ERRORS ON THE
MASTER DEVICE.

3) (1365)THE .OL FILE OF THE CURRENTLY RUNNING SYSTEM HAS A USE
COUNTOF 0, PERMITTING ACCIDENTAL DELETION OF THE FILE.

'4) (1787,2572) CHECKPOINTING WilL CAUSE A PANIC 3 ON ECLIPSE SYSTEMS
IF THE BACKGROUND HAS BEEN PUSHED. SEE PATCH R-1.

5) (2156) USER .IDEF OF ERCC INTERRUPTS DOES N'OT WORK PROPERLY.

6) (2187) WHEN A TAPE DRIVE GOES OFF-LINE, RDOS WILL NOT GIVE AN
ERROR UNTIL THE DRIVE COMES BACK ON LINE.

7) (3274) OTASKING WITH OVERLAYS DOES NOT WORK PROPERLY ..

8) (3279) WHEN A DEVICE IS ENABLED BY .DEBL IT REMAINS ENABLED
UNTI L IT IS CHANGED BY A .DDlS.

9) (4393) THE NOVA 3 MAP IS NOT SET UP ON THE TASK CALL
.SMSK. SEE PATCH 6-2. (REV 6.41).

10) (2140) ATTEMPTING TO EXTEND A FILE. BEYOND THE MAXIMUM
LENGTH WILL NOT GIVE AN ERROR MESSAGE. SEE PATCH R-4.
(REV 6.41).

11) BUFFER OVERFLOW ON A OTY WILL NOT GIVE ERROR MESSAGES.
SEE PATCH R-4. fREV.6.41),

o

o·

o

12) SPURIOUS OTY INTERRUPTS WILL CAUSE THE SYSTEM TO HANG. SEE
PATCH R-6. (REV 6.41).

13) THE SYSTEM WILL NOT RECOVER FROM ERRORS DETECTED IN
ATTEMPTING TO LOAD USER OR VIRTUAL OVERLAYS. SEE PATCH
R-8; (REV 6.41).

14) HEAVY I/O IN ONE GROUND AND TERMINAL INTERACTION IN THE OTHER
GROUND IS NOT HANDLED PROPERLY I F THE SYSTEM RUNS OUT OF CELLS
ON MAPPED NOVAS AND NOVA 3 SYSTEMS. SEE PATCH B-9. (REV 6.41).

A-16

A-16

UTILITIES

SPEED

1) (687) THE CHARACTERISTIC INHIBIT MASK CONTAINS GARBAGE IN THE
RIGHT BYTE WHEN OPENING AFILE VIA A "GRFILENAME$" COMMAND.

2) (741) BUFFER COMMANDS OF THE FORM "BNN" AND THE "-N" COMMAND
WHEN USED INCORRECTLY PRODUCE THE ERROR MESSAGE "I LLEGAL
ARGUMENT TO COMMAND" RATHER THAN "I LLEGAL COMMAND".

3) (811)THE ERROR MESSAGE "STACK OVERFLOW" IS RETURNED BY
SPEED (AND NSPEED DIES) WHEN ENOUGH ''WC'' OR ''WM'' COMMANDS
ARE ENTERED IN A SINGLE COMMAND LINE.

4) (881) SPEED ERRORS CAN CAUSE STACK UNDERFLOW, WHICH CAN RESULT
IN THE PROGRAM'S BEING OVERWRITTEN.

5) (902) THE TRACE MODE FEATURE DOES NOT WORK PROPERLY.

OTHER UTILITIES

1) THERE IS A PROBLEM IN MEDIT IN HANDLING LINES WHICH CONTAIN TOO
MANY CHARACTERS. IF A 'UEH' IS ISSUED ON A FILE WHICH CONTAINS A
LINE WITH MORE THAN 132 CHARACTERS, A "LINE TOO LONG" MESSAGE
OCCURS, AND MEDIT TERMINATES THE SOURCE "FILE AT THE LINE PRIOR
TO THE LONG LINE.

2) (761) IN OEDIT, WHEN AN OPEN LOCATION IS USED AS AN ADDRESS FOR
THE NEXT OPEN, THE B (BASE) REGISTER IS NOT ADDED IN WHEN
COMPUTING THE ADDRESS.

3) (11'23) EXITING FROM MEDIT VAl CONTROL-A CAUSES A SYSTEM CRASH.

o

o

o

o

GUIDELINES FOR SIZINGRDOS REV6.10

NOTE:. UNLESS OTHERWISE SPECIFIED, NuMBERS ARE GIVEN IN THE
FORMAT OCTAL (DECIMAL).

1. CHANNELS - 45(37) PER CHANNELSHSGEN'ED .

2. FIXE,D HEAD DISKS

. A; TABLES -121 (8'1) WORDS PER CONTROLLERSYSGEN'ED.
(3 EXTRA WORDS PER CONTROLLER FOR NOVAiS)

r

B~ DRIVER (BOTH CONTROLLERS SHARESAIVIEDRIVER)

, MAPPED ECUPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPEDNOVA3

, ' ". '

UNMAPPED NOVA

163 (115) WORDS
152 (105)WORDS
153,(1,07)WORDS
153(107) WORDS
153. (101) WORDS

3. MOVING HEAD DISKS (NOT INCLUDING 96MB1192M8)

A.

B.

TABLES

1. 15(13) WORDS PER CONTROllERSYSGEN'EO
(3 EXTRA WORDSPE RCONTROLLERFOR NOVA'S):'

2. 104 (60)· WORDS PER DEVICE SYSGEN'EDPER CONTROLLER
104 (60) EXTRA WORDS PER DE,VICE IF TOPLOADEA*

·210 (1:36)' .

DRIVER (BOTH CONTROLLERS SHARE $AMEDRIVER)

MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPE 0 NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA

455 (301) WORDS
- 444 (292)WORPS
- 446(294) WORDS,
-446(294) WORDS*
- 442(296) WORDS *. '

' .. 96MB/192MB MOVING HEAD DISKS

A. TABLES

15 (13) WORDS/CONTROLLER SYSGEN'ED;
(3 EXTRA WOR Ds/caNTRO llE R FOR NOVA'S)

1.04(60) WORDS/DEVICE DNEACHCONTROLLER

A-18

B. DRIVER (INCLUDING CORE RESIDENT ECC CODE)

MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA

1067 (567) WORDS
- 777 (511) WORDS

1112 (586) WORDS
1105 (581) WORDS
1013 (523) WORDS

4. BAD BLOCK POOL

6 WORDS PER DEVICE (I.E. DISK) SYSGEN'ED + 2 * BAD BLOCK POOL
SIZE SYSGEN'ED (TOP LOADERS COUNT AS 2 DEVICES)

5. IPB

6. STACKS

MAPP.ED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA ..

2776 (1534) WO R DS
2776 (1534) WORDS
3036 (1566) WORDS

- 3036 (1566) WORDS
- 3036 (1568) WORDS

ANY ECLIPSE - 310 (200) WORDS PER STACK
ANY NOVA - 340 (224) WORDS PER STACK

NOTE: NUMBER OF STACKS SYSGEN'ED ALSO AFFECTS NUMBER OF CELLS
AND BUFFERS TABLE BELOW GIVES ACTUAL TOTALS (ALL NUMBERS
ARE IN DECIMAL)

STACKS CELLS BUFFERS

1 3 6
2 6 8
3 9 6
4 12 8
5 15 10
6 18 12
7 21 14
8 24 16
9 27 18

7. CELLS - 20 (16) WORDS EACH

8. TUNING - 1 EXTRA BUFFER IF NO OVERLAY REPORT REQUESTED.
3 EXTRA BUFFERS IFOVERl,.AY REPORT WAS REQUESTED.

o·

o

9. BUFFERS - 416 (278) WORDS EACH

10. SUB-DIRECTORIES/SUB-PARTITIONS ACCESSIBLE AT ONE TIME-
60 (40) WORDS EACH.

11. MAG TAPES

A. TABLES

1. 111 (73) WORDS PER CONTROLLER SYSGEN'ED
(3 EXTRA WORDS PER CONTROLLER FOR NOVA'S)

2. 21 (17) WORDS PER DEVICE SYSGEN'ED PER CONTROLLER

B. DRIVER SIZE (BOTH CONTROLLERS SHARE SAME DRIVER)

MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPED NOVA 3

12. CASSETTES - SAME AS MAG TAPE

13. AUTO-RESTART AFTER POWER FAIL

MAPPED ECLIPSE
UNMAPPED ECLIPSE'
MAPPED NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA

14. OPERATOR MESSAGES

MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPE D NOVA 3
UNMAPPED NOVA

- 606 (390) WORDS
- 610 (394) WORDS
- 606 (390lWORDS
- 610 (394) WORDS

- 365 (245) WORDS
325 (213) WORDS

- 423 (275) WORDS
- 441 (289) WORDS
- 403(259) WORDS

- 404 (260) WORDS
- 336 (222) WORDS
- 417 (271) WORDS
- 412 (266) WORDS
- 336 (222) WORDS

15. RTC - NO EXTRA WORDS LOAD IF SYSGEN'ED.IF NORTC IS $VSGEN!ED,
THE CLOCK IS JUST NOT STARTED.

16. PAPER TAPE READER

124 (84) WORDS IFONE (1) SPTR

231 (153) WOR DS I F TWO (2) SPTR'S

,6.-19

A-20

17. PAPER TAPE PUNCH

115(77) WORDS IF ONE (1) SPTP

213 (139) WORDS IF TWO (2) SPTP'S

18. LINE PRINTERS

A. TABLES

1. FIRST DCH SLPT - 200 (128) WORDS UNMAPPED
302 (194) WORDS MAPPED

2. SECOND DCH SLPT - 162 (114) WORDS UNMAPPED
264 (180) WORDS MAPPED

3. FIRST PIOSLPT - 174 (124) WORDS UNMAPPED
276 (190) WO R OS MAPPE 0

4. SECOND PIO SLPT - 156 (110) WORDS UNMAPPED
260 (176) WORDS MAPPED

B. DRIVER

1. DCH SLPT (IF 2 DCH SLPT'S, THEY SHARE SAME DRIVER)

MAPPED ECLIPSE
UNMAPPED ECLIPSE.:..­
MAPPED NOVA 840 -
MAPPED NOVA 3
UNMAPPED NOVA -

200 (128) WORDS
153 (107) WORDS
203 (131) WORDS
201 (129) WORDS
174 (124) WORDS

2. PIO SLPT - NO EXTRA WORDS LOADED

19. CARD READERS

20. PLOTTERS

420 (272) WORDS IF ONE (1) SCDR (3 EXTRA WORDS IF NOVA)

731 (473) WORDS IF TWO (2) SCDR'S (6 EXTRA WORDS IF NOVA)

171 (121) WORDS IF ONE (1) SPLT

343 (227) WORDS IF TWO (2) SPLT's

•

o

o

o

o

21. MCA

A. TABLES - 264 (180) WORDS PER MCASYSGEN'ED
(6 EXTRA WORDS PER MCA SYSGEN'E.D FOR NOVA'S)

B. DRIVER (IF TWO MCA'S, THEY SHARE tHE SAME DAIVER)

22. aTY

MAPPED ECl-IPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA

A. TA8LES...;. 141 (97) WORDS

B. DRIVER

23. ALM

. MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA840
MAPPED NOVA 3
UN~APPED NOVA

- 676 (446) WORDS
- 633 (411) WORDS
- 710.(456) WORDS

704 (452) WORDS.
- 633 (411) WORDS

1404 (772) WORDS
.-,. 1312(714) WORDS

1444 (804) WORDS
1441(801) WORDS
1341 (737) WORDS

A. TABLES ANDALMINIT CODe .;..327 (215)WORDS

. B. MODEM CONTROL -114(78) WORPS

C. DRtVER....,.LJSES OTY DRIVER

24. $ECQNDTELETYPE -402 (258) WORDS·

·Nt1TE:FIRSTTELETYPE HAS454 (300) WORDS OF TABLESAND A 324 (212)
WORD DRIVER;WHJCHHASSHAREDBY BOTHSTTY'S WHEN PRESEN
". '.' , ."\,' '" '"' ; c' •. "

25; COREOUMPFACILITY

MAPPED. ECLIPSE
. UNMAPPED ECLIPSE

MAPPE[) NOVASotO
MAPPED NOVA 3
UNMAPPED NOVA

.- . 330 (216) WaR OS
- . 233 (156) WORDS
- 333(219) WORDS
- 336(222) WORDS

233(155) WORDS

A-21

A-22

1.

BASE SIZES

ALL BASE OPERATING SYSTEM SIZES GIVEN BELOW
ARE CONFIGURED IN THE SAME WAY.

NO CHANNELS
NO DISKS
NO EXTRA ANYTHING
1 STACK
1 TTY

MAPPED ECLIPSE
UNMAPPED ECLIPSE
MAPPED NOVA 840
MAPPED NOVA 3
UNMAPPED NOVA

GENERAL NOTES

21252 (6874)
16653 (7598)
21415 (8073)
22202(9346) *
17341 (7905)*

ON UNMAPPED SYSTEMS, CHANNELS ARE CONSIDERED PART OF
USER SPACE, SO DON'T INCLUDE THEM IN THE OPERATING SYSTEM
SIZE.

2. TO SIZE AN UNMAPPED OPERATING SYSTEM WHILE IT IS RUNNING,
YOU MUST USE THE SYSTEM CALL'.MEM'. THIS WILL RETURN THE
HIGHEST MEMORY ADDRESS AVAILABLE (HMA) TO THE USER. SUBTRACT
HMA FROM THE MEMORY SIZE SPECIFIED AT SYSGEN TIME TO GET THE
OPERATING SYSTEM SIZE.

3. ON MAPPED SYSTEMS, THE 'SYSTEM SIZE MUST BE ROUNDED UP TO THE
NEXT HIGHEST MULTIPLE OF 1024 (DECIMAL) WORDS, SINCE tHE LAST
PAGE OF THE OPERATING SYSTEM WILL BE FILLED OUT WITH FROM
0-3 EXTRA SYSTEM BUFFERS, DURING SYSTEM INITIALIZATION TO
AVOID WASTING THAT SPACE.

4. MAPPED SYSTEMS ARE SIZED WHILE THEY ARE RUNNING BY USING
THE CLI GMEM' COMMAND. SUBTRACT SUM OF FG AND BG TOTALS
FROM TOTAL MEMORY AGES TO GET OPERATING SYSTEM SIZE.

o

0,<,
< •

o

MESSAGE:

REACTION:

TRAPS

MAP PROTECTION VIOLATIONS

"TRAP=LOCATION ACO AC1 AC2 AC3
BREAK (copy user program to "BREAK.SV")
R " (CLI)

COpy TRAP NUMBERS FOR PROGRAMMER

FPRINT BREAK.SV

(ALLOWS PROGRAMMER TO .RELATE \.
LOCATION TO INSTRUCTIONS)

PRINT RLDR LIST FOR PROGRAM

(ALLOWS p. ROGRAMM. ERT.·.O R. ELATE\
~REAKSVTOSOURCECODE)

A-23

A-24

ERRORS

UTILITY PROGRAMS

ON ERROR,
SEND ERROR CODE TO CLI
RETURN TO CLI
CLI PRINTS-

"ERROR MESSAGE: PROGRAM"

E.G. "FILE NOT FOUND: RLDR"

DON'T THINK THAT THERE'S
NO RLDR.SV

BUT, WHILE THE PROGRAM
'·RLDR WAS

RUNNING,
IT COUNT'T FIND ONE OF
FILENAMES YOU PASSED AS AN

. ARGUMENT.

o

o

EIFitRORS

PANICS

DISAGREEMENT BETWEEN
BOOKKEEPING TABLES -

RATHER THAN CHANCING MAKING
THINGS WORSE BY BELIEVING THE

WRONG ONE',
RDOS GIVES UP!

MESSAGE: :
ACO AC1 AC2 AC3 CODE
(RDOS HALTS AT CORE DUMP)

REACTION:

(
p 135 HANDBOOK

. P 127 HANDBOOK

ANALYZE CODE, RECORD ACs

IF FI~ST.NUMBER = 1, THENPA .. NIC CODE)
IF = O~ THEN SYSTEM ERROR CODE

PRODUCE CORE DUMP

(p G-2, RDOJ REF. MANUAL)

A-25

"A-26

PANIC CODES

1: NO LONGER USED
2: SYS.DR ERROR

3:

AC2=ADDRESS IN BUFFER THAT
CONTAINS COpy OF BAD UFO.
GET SYSTEM RLDR LIST TO FIND
CLOSEST BUFFER START = "BO "
BO - 4=DISK UNIT NUMBER
BO -3=LEFT HALF OF BLOCK ADDRESS
BO -2=RIGHT HALF OF BLOCK ADDRESS
DSKED MIGHT REPAIR IT

STACK OVERFLOW
CHECK AC3 AGAINST RLDR LIST

NOVA: AC3=RETN +, CODE OVERFLOW
AC3=OVFLOT, INTERRUPT OVERFLOW

ECLIPSE: AC3=SSOVT, CODE OVERFLOW
AC3=OVFLOT, INTERRUPT OVERFLOW

NO WAY YOU CAN FIX THIS - INDICATES
EITHER BAD SYSTEM CODE OR FAULTY
tNTERRUPTHARDWARE

o

o

o

PANIC CODES CaN'T

4: INCONSISTANT SYSTEM DATA
BOOKKEEPING POINTS BIGGER ADDRESSES
THAN EXIST ON DISK. AC2=BUFFER
ADDRESS (BQ). USE VALUES OF PANIC
2 TO FIND DISK BLOCK INVOLVED. OTHER
BLOCKS MIGHT ALSO HAVE TO BE SEARCHED.
(SEQUENTIAL LINKS, INDEX BLOCKS)

5: MASTER DEVICE DATA ERROR
HARDWARE ERROR WHILE READING
SYSTEM FI LES. RUN A "READ ONLY"
HARDWARE DIAGNOSTIC SET TO
IGNORE "COMPARE" ERRORS TO GET
EXACT ERROR REPORT WITHOUT DESTROYING
DATA ON DISK.

6: MASTER DEVICE TIMEOUT
HARDWARE DIDN'T RESPONDATALL
AFTER COMMANDED TO TRANSFER SYSTEM
FILES. RUN CONTROLLER DIAGNOSTIC
ON BLANK DISK.

7: MOVING HEAD DISK ERROR - REV. 4
THIS PANIC (REMOVED FROM REV 5)
INDICATES ERRORS WHILE INIT'ING A
DISK. RETRY INIT AFEW TIMES.
IF STILLNO GO, RUN "READONL.Y"
NO "COMPARE" ERROR DIAGNOSTIC
TO GET ERROR REPORT.

10: UNDEFINED INTERRUPT
AC2=DEVICE CODE OR
FOR ECLIPSE I F AC2=ADDRESS
OF PFDCT FROMR.LDR MAP,
INTERRUPT PRIORITY HARDWARE
CHAIN IS BROKEN.

A-27

PANIC CODES CaN'T

11 : NO SUCH PANIC

12: NOT ENOUGH CONTIGUOUS SPACE
TRY INIT'ING A FEW MORE TIMES.
USE DSKED TO KILL SOME FILES
SO OTHERS MIGHT LIVE.

13: RETURN FROM LEVEL ZERO 0
RETURN TRYED WITH NO SWAP.
USER PROGRAM ERROR.

14: I NCONSISTANT I PB DATA
ONLY VALID IN SYSTEMS OF
2 CPUsSHARING A DISK
THROUGH INTER-PROCESSOR BUS.
IF NO IPB IN. SYSTEM, MEMORY

0 HARDWARE FAI LURE COULD CAUSE
THIS MESSAGE ERRONEOUSLY.

15: TRAP IN USER INTERRUPT CODE
FIX IT.

16: MULTI-BIT ERCC MEMORY ERROR
ECLIPSE WITH ERROR CHECKING & ..
CORRECTION MEMORY CAN FIX A 0 1 BIT ERROR, BUT THIS IS MORE
THAN IT CAN HANDLE.
ACO= FAULT CODE IN BITS 0- 4

RIGHT BIT OF MEM.ADDRESS = BIT 16
AC 1 = LEFT BITS OF MEM. ADDRESS

o

A-28

APPENDIX B

• Fortran Program Development Example

o

<)

o

o

o

o

C THIS 15 A F~~TRA~ T~STFIL~, THE PHOGRAM OEMONSTRATES
C TH~ CODE REPRESENTATION ~T EACH PHASE OF PROGRAM DEVELOPMENT.
C THE ALGORITHM ACCEPTS: LOWERLIMIT~ UPPER LIMIT, AND INCRE-
e M(Nf fO SU~A GROUP OF NUMBEHS OVEri. THE RESULtS ARE
C PRINTED OUT.
e
10 ACCt~l "LOwER LIMI1, UPPER LIMIT, INCREMf.Nl ", LL, LH, INC
C

SUM:; 0.0
00 100 I = LL, LH, iNC

SUM = SUM +FLOATlIl
TYPE "1 = ",I,~ SUM = K,SUM

1 00 C 0 rod J.I'~ u I:.

GO Tu 10
ENU

8·1

B-2

1:
~:

3:
to/:
5:
b:
7:
8:
~ :.

lU.
11:
it!:
13:
111 :
1~:

1 &:
17:
11':

c
c
c
c
c
C
lU
C

lUU

ThST

Ihl~ lS A FU~I~A~ YEtiT FILt, T~~ ~KOGHA~ ut~UNtiT~ATES
rHt CUU~ ~t~~~8~~TAT'UN Al ~ACH ~HAbE UF ~hOGRAM UEVELO~MENf·.
1.Ht AL~U~lr"~ ACC~PTti : LuwE~ LIMIT, U~~E~ Ll~Il, AND INC~E­
M~~l lU SUM A bRUUP U~ ~UMde~S OVt~. THt RtSUL1S AwE
f-~ll .. rt.LI uur.

bUM = v.IJ
Ull lUI) i =. LL, LH. lio/C

bUM = SUM + FLDATlI)
IYPt "1 = ",1," ~U~ = ",SUM

(;U ru 11)
tt'iD

o

o.

o

ATTHH:!UTES

STAC~ VANIABLE5 --

LL
LH
INC
1
SUM

INfEGt:.H
INTt:.Gt::H
INTI:.GER
INTEGEt<
REAL

C) -- tXTERNAL SU6P~OGRAMS --

.IAce

.F~Rl
.FWRS
.FVvl'lrt

t->O~ITION SIZE

1
C
3
I~

5

.Ft<UI
• T TYP

• rAce .ITYP

8-3

000000'103/10 SAVt 1';) .1"jIlIN
OOO()Ol'OllOul~
00U002'030040 L.UA 2,40,0 LINt 1
000003' 00600 U JS~ aI.1Ace
000004'lbnLl7U l:. L t::F 1, 7?. , 1
00000':)'OoOU72
000000'00buU2.Jl J St< Q'. F ~ t<S
00000/'lb"1410 t:.L.t:t' 1,1 .3 LL
00001u'OOU001
000011'00&003$ J 51(1i.FRt)l
000012'lb74/0 I:.LI:.F 1,t:!.,3 LH
OU001.3'OOOOOt:!.
OOUO 11.1' \106 1)0.3$ JSi< (11 R U 1
OOOOl':i'lb7.,j/U t.Ltr 1,3,3 ll\iC
00001h'\lIIOuu3
000017'OObUO,S:i; JSi(31.F·kul
0000':0'021402 LUA u,~,3 Lh
OOOOd 'ldl LliH LOA 2, .~, ,S 11\1(. 0 000022'151112 S(,U 2,2
000023'100400 i\itG 0,0
00OOc~'041QOI ~"IA il r7, 3
UOOOt:!.::>'O.sOtl40 LiJA 2,4IJ,U
000020'OObOllLl.1l JSR ai.TAce
OOo027'12t:?\I':i0 FLU:; 0,72,1 u.o Ll t-?E. 9
00003U'UOUO/tt.
000031'1?22r,u fillS u,5,3 Sur.)
OOOU.sc'UOOOO';)
0000053'02111u1 LUA \1,1,3 LL LlI~1:. 1 (;
OU0034'0414011 STA 0,4,3 1

I' UOOO.s':i'U':140,+ LUA. 0,4,3 ! liNt: 12
00003b'1024'::1U FLAS U,O
OOOu.sl'lbbiJ~iJ FLUS 1,'),3 ~lJi4

UUOOIIO'OOOOO';)
OOOOIl!'1040::>U FAS 0, 1
0(}UO"':'lbb2~u F:HS 1,':>,3 SlF'1
000043' uOUlll.b
000044'03UII<40 LOA 2.4V,0 LlJlJI::. 13
00004~'00bOU~$ J~I-/ Ri. !Trio>
0OOO4b'lbOLl/v I:.LI:::F 1,S':).1
000047'000oS'J
OUOO';)0'ov6uU2$ JSI< Ill. h'it<S 0 0000';)1'1614(0 t.L.t.F 1 ,4, 3
UOOUSe'OUOu04
OOOO~3'OUbUOb:b JSf.i 1!.F,~"!
0000':)4' 1h64"(0 t:.LtF 1,:'i:!rl
OUOO';)S'UOOU::>e
OOOO::>b'UUbUIlt:!.'II .jtiR IIJ.F.vRS
00UO::>/'1674/0 tLEF 1 , ,;), ~ SUi'1

00006u'000O()S
OOOUo1'uubOU7i1i JSi< <lI. ~ ~~I(!,/

OOOUbc'OObU1IIJl JSi< (I). I Tn'
000063' Ud 403 LUA 0,3, .s INC Llr~E 15
000Ob4'0.s1404 LUA 2,LI,.s 1
0000&5'145000 ADO 2.0
OOOO&b'V414V4 STA 0,4,3 I
OOOObl'0314U.s LLlA 2,3,$ 11\]C
OOOO/U'15111e SGt:.Z 2,2
UOOO 11' 11)f)40U I~t(; U,O
OUOOIC!'051L101 LOA 2 r7,.s
000013'111010 SL"I e,U
000014' OU07 1H J"'1P -37
0000/5'000/0'::1 Jr'IP -75 LINt. 1 7

8-4

10

o

0000l&'1,H710

.0 0 0 0 77 ' 0 4& 1 1 -,
0001UU'U~3~05
000'101' .051040
000102'046111
000103'04&511
000104'0'J2054
00010S'Oio!0125
OUO lOb '050120
000107'042522
000110'020114
000111'04451~
000112'044524
000113'02&040
000114'04451&
000115'041522
00011b'Q42515
000117' 04251.&
000120'052040
000121'000000
0001~2'000000
000123'00000.0
000124'044440
000125'(}36440
00012&'000000
000127'020040
0001.$O'02U040
000131'020123
000132'05~515
0001.53'OaOQ7S
000134'020000

RTN

04&117.
053505
'051040
04&111
04&511
052054
020125
050120
042522
020114
04451S
044524
026040
044516
041522
042515
.042S1&
·052040
000000

'000000
000000
044440
0.5&440
000000
Oa004Q
020040
020123
OSaS1S •
020015
020000

L.OWER LIMIT, U~

B-6

IOENflFlEH

I 10 12 . 13 15
INC 7. 10 15
LH 7 10
LL 7 lv
SUM q 12 13

10
100

7
10

11
1'5

REFERENCES

o·

o

o
NO COMPILAT~ON EkRURS -- TERMINATED AT 12:28:31 AM

o

o

B-B

TEtiT.5V LUAOE~ dY RLO~ k~V 01.1U AT OU:44:~~ ObIOJ/7~
.1"4 A ,(I'll
FORf~
fi-j r I'll
NSAC.5
ITAC~
1 f T n~
Gt:.f
pur
lJFfYil
IUII~{
IOTti-l
FIolI:.AI)
F 1"1 r< l I
uNFt/ll
CVt:i
t,;VO
IFILt:.
OGCIJC
L 1I''II·t:.~
lued
ILEI'J
IATI
FOPt,v
NeAL
iHEtot
T~ACI::
lRTI\j
CON.,O
t::CO()t:.
F J

.5 U V i.
FIN!T
lE.Ru
STAcre;
lH"MA x
OLE.F
URTi'l
F~ErvU

t\JMAX 0071j2
ZIVlA X vi)(.il'sO
C5lE OOOUOO

I:.Sf VOOOQlI
stir ooouuo

.SLE'F VUOUvv
• "<LEI-' OUIJu0u
ESII.Z UOUU02
.51-' 01)(1040

• F P OOvU'41
.·SSe. iJOv(j4~

.SOV OUUV4j

.lACC OOVU~U

.fACC 000U;)1

.1IYP 00 0.0 ~c!

.TTYP UUlJ(I~~

.GCH UOOO~4

.GI<t:.c.: uuuu~':)

• Pi~M OuOu';)6
.PCH vuuu~7
./Jet< U 0 OObU

0

0

o

.Pt<EC ovOO01 .F.T OO1..l12~
• uF i"'l OIJOOb~ .GP OVOleb
.F1'(01 VVUOtij E:)V.S OOlJlc::!o
.FRDL OI,)OObLi .~P UOu127
.FKUR VUUUblJ USfAO OOOLlC)O
.~rtt)C OVOOhi:l .LeFD 0004()1
• rt-<lH) oOvOol .LiFE 000401
.F litJX 000010 • MAIN ·VVV44b
• F v'jt-<l \JUVO}l • F:J OOUbO~
.hNkL UO()(jr~ T M.! 1\1 OUO'16
• F.vH rt U 0 0.01 j 1LFRO VU14eo
.F~i-lL VUIJU74 1iUtW 001432

C> .FWrW Ou(}V15 ?IF~R 0014~1
: • F v'j,{)(0000" b 11.Ui"lR \lO14~~

.F~kS OVV071 O(i K~A 00 1·~·11
• II/Fi"; I vO (;11 v 0 ?iIoJRT 0Ol~1 1
.CVa OV(l1<Jl ?ltJUN 0Ol~2';)
• ~ \lD UOOIQc! 1lACt: v{Ji~:dJ
• WUUI~ 00010$ 'iITYP OUl '":344
.1F.lL OOOlVQ 'i lute 0011)b':l
dUCtj 01.101.05 11ii~C 001':17u

0 .1Lf:;i~ OU010b ~nFKIJ OV10':;5
.iATl OOOllJ-' 1TF~R OJ)l.f:I.H·
.FutJ 0001 10 11U~vR OIJ:l 0.4 ()
.FOPf:; ovon.! lTAl:C. .volbLl .5
.• Ii::W6 1 oOuU~ tTl yp . UO.1 bSb
.l'illi::tol QU01 14 iruRO ... 0(11003
.TIHi\l OOu 11 b .$rMf !;jo~aC1.s
.t;V\CH vuvlc!v .peT 004:).1. j:J
.Ckl..r OV0121 FOP£.i~ 0\):'164
.CWwL OvU12e!

Q .CNMO 1.1001.2';
.CNMO OOOl~4

o

• j~C A L 006112 froTK 1vo013
.1r<AC OOb11~ F~t:vr lUbV14
.SUVL 006"1::'3 F?FNU 1Vbl.l25
.!-':)IS UUbLl/l F ?rYlUtJ 10bOGb
.!-S!U 01.16471 Fii'<Ck lOb027
1.SuV i.lub~ob Ftv'41K lUbldl
.!-:.rf~ VilbS7V F -, t; L\! lOolJ3e'
I.SP UOlU5:' F :tiLl,: lObO!l3
I.SSt: 00710:' F,?iliPC 1UbU.54
• I\jI"lA X OiJll.H F'(t<Li\j IVbO,S!:>
.At-'Tt:. OUll!lC' F'iLEF lvo\).s~
.RtV. vlU!:>~v F?U,\lU 100 U 37
.SACO OGUUlt:l F:'UAO lUb04U
.SACl \Ji:!401b F'rT lU lObi.l41
.SAL:t:! \,J$vO 1 b F:'tJ~1 lObi.l42
.:)At;~ 0541.110 F it. V I'J IVb043
F:'::H.J~ u4olJl!:> F ?tJl\lA 1Vov44
F:'i::.XtJ 046U1b F" r IIJ 1Ubu,,+':)
F:LUG 046u11 F'?IHC IVb()~b
F" A SC U4bUr:U F iT ,~Ibi 1001.147
F'rA Ti\J 046021 FiFPU l~bv':iiJ

0 FrP~i1 \J4bVG2 F i 1"1 0 V lu6Q:,1
F': 11\j r 04f:lIJC::!I F'iMEM 10oV!:>2
F ?I'l TI'~ 0"61.124 F'iIOP 1vbO~~
L.I.I\! 1vU2U4 FrPTU 1UbO:,4
.Lt::FS lu2460 F'/ r fL lUbO:.5
FiFMl 10bOU4 F? .L Kill 10bU!:>b
f ':'l NM 101:)00':1 F'/lFV 10bO!:>1
f"'r ~ C L 10bOUo F'iSQV 14bOO1
Ftt-(~S 10bOvl F,i'IJAT 14b002
F?lFI'J 106010 F1tidS 1 4b V,O 3 0 F':' AT r 10bU11 Fil::Ub 14bUjO
F'itiEI\ 106012 LI\!. K T 1171'11

Le.tH 171711
S.TAS 117117
pe.RI 11"117'1

o
B-l0

o

o

o

o

-------------------.------------------~~------------------------~--~

Iv OOUUlfU UUU1~.s ••••••••••••••• K
2U OOOUOO uouoou OUUUUO OUOUUO OvouOO OvOOOO~uouuO uouoou ••••••••••• ~ ••••

40 uu7U3':1 OOUUOO OU110':l UOb~bb OOOUUO UUUUOO UUUUOU uoOOOO
50 UUl':l~3 OUlb~3 Vv1"'14 UOlo':l6 oOIUll UU\0'.)3 U01114 U01121
bO OU1141 UUl1b6 OuIJbO U016'3 OUlb77 Oul1U5 UUllul UU1713
7U 01.11711 UUC246 OUc25c 1.1022':16 uucc02 01.12266 UU~212 UU2~7b

...... t.v
• l.R.D ••••• +.L.iII
.A.v.P.'f. t.C.G.1\
.U.~.* ••• ~.b.:.>
••••••• " .• T.~ ••• toi
•. !". T .L.V.~.II .• t ••
.G· • .L • A • (vi ••• G ••••

lUU uuJ220 UU5~2':1 OU4211 u04414 V~44':13 VU'I7Gl uuSU3J U05122
110 UU':Il':1':1 UO':llb4 uu~3':14 U053b6 00':l5b7 VV~b42 UvbOSU UUUUUu
12U OOblul uOb135 OU6141 OOhl':1':1 OUoG02 01.1&341 UOUOOO UOOUUU
ljO OOOUUO OOOUUO 001.1000 lfuOOOO OOOOUO UOUUUU uUOvOU OO~UUO · ~

4UO
41U
£120
4JU
440
450
'IbO
'1/0
SUU
51u
5C!U
5JO
'j4V
5::'0
':Iou
'.)70
oUU
blu
bcv

·b~U
b4U
b5v
bbU
bl0
IOU
110
72U
?sO
74U
750
7bV
7/0

10uO
1010
lucu
1031.1
lU<4u
lOS\)
1001.1
10{U
l1UO
III II
1121.1
113u
1141.1
11':11.1
I1bU
1170

OOOOUU UUU13u OUOOUU uuuouo OU/1!2 uuu71b 177777 uU1132
OVOUOU 177771 117111 U00410 OU0424 UUU'Ic4 171771 OUU44'.)
i77171 UOUUOO OU~43b UUUOUU ul~~bU v~UUOO UOVuOU U~UOOU

••• ~ •.•••• z.!\J ••• 1..
• • II II •• II II ••• II II II II ~
., II • II II II II • ~ '"" II • II • II •

uuouOU OOUOUO OUUV~U 17/777 UUVUUU UOUUUU OOOUOO vuuouu ••••••••••••••••
UOOUUO vOOUUO OUUUUU uu00uU ,OUUOUU 10j/lU UUOUIS UJU~4U .~~ ••••••• ~H •• U
u06u5u 16b4/U OUOOlc U06077 1,'4'U vUOuvl UU~UbJ.l~147u .l~8.:.10~ ••• 30d
OUQOOc UObv~5 1bl'l7U OOOOOj UUb~&j U214U~ U514UJ 1~1112 ••• 308 •• ~3~.5.~J
1004UO 0414U7 U~UU40 UUbOSl 12~D~U uUU01~ lb~2~u UOvuU5 •• C.Q .J'(~:D(••
021~Ul UQ14U4 021404 lU2'1~u IboU~U uUU~U~ lU40~u 1bb2~U #.C.# •• lL(••• (Ll
OUOuO~ U3Uv40 uUc~S~ lbb4/0 OUOO~5 U~bul1 107470 OU0004 .~O .*~ti.-.?Oti ••
UObUI1 16.o<+1U uOOU':I2 UUbU7' lb747U ilUOOUS UOblJij !lObU':I3 ~9""3 ••• ?Uti ••• :.+
U~1403 U314~4 ·14$OUU U'Il'104 O~14U3 1':11112 10U4UU 0314U) #~3.~at~3.~J •• 3.
l11U1U 1.100/41 UUU7u':I 127710 U46111 05J50':l O~104U 04bl11 ••• A.~/HlU~Ek· Ll
Oqb~l.l O~~U~'I U~~12S 0':lu12u 04c5~2 U2U114 044~1~ U~4~24 MiT~ upp~~ LIMll
026U4U O1.i4~16 U41':l2~ U4c'jl~ 1.142':116 U~2040 VUOOUU IJUUOOO .11\1CF<j;iIIlt:.Nf ••••
UOOOOO 0'14441.1 Oj044U UUUOUO 02UU4U UGVU4U u2012J 05~~lS •• 1 : •• SUM
U20Ulj U2UUUO U1U~j~ 041~17 O~OlJl U~1111 U45~lU U5~040 - •• X~UP'AIGMT
Oc!'I1(d iJ2444U U42101 uS21Ul 020107 OQ251b 04~52C! v4U.~14 lCl .DA1A Gti~i::::KAL

0201u$ 01<1';)22 u':IUlll \)':1111.11 0':l~111 v4151602b040 !Hu4f1.COt<PORAIIOi\j, 14
0314b~ U26Uoi 0544bl UJ20':14 OJuQ/l VJ146~ U~6Ubl 0344b7/3,1974,19/':1,197
UJ3U~4 alU4fl UlJ4b7 U20061 u3'14b7 UJ4U~b 04u~14 U4bU4U b,1977.197S.ALL
U':Il111 U4j~lU u':I~lc5 U2U12~ 0425c5 U42':Jc.: v,;)3105. U4cO~O RIGHIS RI:'S.t::RVElJ.
U40111 U41':10':l 041125 U1.i2':104 DcUllS U4U':I24 U4~':Il~ U44501 LtC~~SEO MAIE~lA
u~6U4U 020441.1 U~Ulc2 u4J':J2U 04c':l~c U52131 1.120117 U43u~u L - p~U~Et<rrOF
U421.01 0.':IiH01 U~UID7 OLli':l16 0425e2 U40'll.4 021110.3 U41.~2~ [lAlA l:iEN.EKAL C·Ot<
o ~ U 1 1 1 U:) 110 l' v ':I Co! 111 04 I :, 1 b 001.1 1)1.1 \J U U 0 1 5 ~ . V J 2 'I 3.s U 2 ~U 0 ~ PU R AT ION ••• t< 5 • * •
12S1J~ 000424 U21UOI ~2~U02 u.s~U10 U':I401~ u14001 t7b2S4 *Z.~"~*~:.X.8~ ••
U00406 UJ~UU4 u51uu3 U2041':1 121~lU ~~02u2 03bUQu 1~:'220 •• :.2.1./H •••••
0~tl4VI ~5':1u04 UjlOU.s ObUI71 UIl240J 15c4U.U UU043':1 UUUuUUY.:O;2 lJ •••••
OQ!luu6 OUU414 uuuu60 \J~4177 uJ40Ul 11~014 u60271 11~Ul~<~ ••• j~Y.8 ••• t ••
01u001 Ulbtlu 041401 04':J4U2 v':I14U.s 1110UU034Ulb 0550U4 •• :XC.K.'S.i-I.I:!.Z.
U3t11b2 U~.'IUlb U4':101U 02~QOu 04SUUb 175.4.10\1 If':lSUO O~~(j~O qR(.J.+.J .•••• ~)L.
U 2 :. u 0 ~ 1 ~ r 2 €I II U 4 ::; 0 U S O:S 'I 0 .) 1 1 I ~ d $ 4 U I) c! U 0 i:' 1 4 1 0 0 Ii 1 1.13 ~ 1\i* ~ • J • IS .••• io • t3 ... Ii
UfJoc!u2 IbliJUO UJb12b O':l14a 0(UQ23 Ujl';)'sO U.oS4U 14i:?4id .rl.<V5.C.3",It E.
0.00'10':1 lqdlV ull::,36 u31Qc!2 uU542j Uj14~1 1~11114 U(j04uldl::.t1."3~ •• 3.R •••
.lvl01~ OUUlll U4j424 OU4420 02':142~ ~OU7bO Il11014 UUUqO~ ••• Y~~.~~ •• P~~i.
U21413 UjV447 1424U5 oou/~1 0e!{J.:j.4~. Ujl';).H 1531UU 1':5111clJ:l'I: •• O!t;3YVa,t<J
0007':1:3 U30441 006113 uS41iU UJbl~b U21':1j4 U41536U315.3c! .Kl!;iO(V\<V#\C"5l
lS0U15 Q02127 UC!S':I.H 125115 Ou042U 15.sc!~4 OU0400 UJ0424 P •• VI+Y*K.,.V, •• .1.
U~5577 U501C!~ 133uU0031004 QObUllulS477 000113 104110 *.OUb.2.~ •• 1.~.rl
03.bJ.26 12suOv u4154U vU21.:!1 Uli6011 Ul'Son U06113 Ou0771 <VI!o.C 1.I(;Y
1'1775 OQUULlU lUbOOl U~tI':Il~ 1731·1U u3b12b l'J77~ OU0060 .~ ••• ~.v~<VGx.u.
000403 11311U (db12b 0315.56 025':14U 1J241Su()(i40~' ullS3b •• VH<V3"+ 5
143UI0 143~lO 111710 00b06.1 02':1427 lc!~U1':1 uu(J16':1 03vS04 F.F- •• H.l+.* .•• U1D
UU611J.17Jllu U30126 02~tI~7 12':Ju14 0007Sb Oc!55~i .125113 .KVH<V+~~.;.~~Y.K
000(':1) U304/3 1U1Ul~ 14~25S U004U~ UUU74b 12111j UUU437 .~lJ •• D~~ •• F.K.io
14~U14 OOOQ6b U31~3b U11536 1431.110 OU.o4b2 i731~\i 03b1lb U •• b3a.~f.~2VH~V
031~')c l';)uvb \10.o4bl U25::'.51 12~11c 001.1406 Ue.1534 OObUl{ 3LP •• l+l~*..I •• *\~.

8-11

7040 UOUUUU UUUUUU OOUUUU UUUvOU OOUUOU OUOUUU ~UUOUU OlJUUuU

11 .s v (j 0 0 0 (j 0 U 7 I I 7 (U U U U 0 U U 0 U \l 0 U U 0 U U U \I U V l' U U 0 II U {J u 0 U U () U 0 U 0
7140 OUUvUV vOuuuu UUOUI.IU UUUUJo OOOOUU OUUUUU VUUUUU UUvuOU

7q1v vouuoo VOOVUU VlJUOVU OuUOOU vououu OOOOuo

B-12

................

................

o

o

APPENDIXC

• Detailed Front Panel

o .• Optional Front Panel Exercise

o

o

o

c

..,.---------'"""

FRONT PANEL

INTRODUCTION

The front panels of the NOVA line computers con­
tain all the function switches and display all the
information needed to operate them. As shown in
the figure, all the consoles are essentially the
same. The console at the top is for the NOVA
computer, beneath it is the SUPERNOVA computer
console, next is the console for NOVA 1200 , NOVA
800, and NOV A 2 computers. Next is the console
found on NOVA 3 computers. The bottom console
is a turnkey console, which is available for all
NOVA line computers. This console is designed

forthose computers that will be running in dedi­
cated environments and contains only those switches
needed to initiate processing. These switc hes, and
the one light, operate exactly the same as those
found on the other consoles.

The function and data switches on the consoles
allow the operator to perform many useful opera­
tions and the lights reflect the current state of the
machine. If a light is lit,it means the correspond­
ing bit is 1. If the light is not lit, the correspond­
ing bit is o. The lights and their meanings are
described below.

FRONT PANEL LIGHTS
LIGHT

ADDRESS

CARRY

DATA

DCH

DEFER

EXECUTE

MEANING WHEN LIT

These 15 lights display what is
currently in the memory address
register.

The ('arry bit is 1.

These 16 lights display what is
currently on the memory bus.

The next CPU cycle will be used
by the data channel to gain access
to memory. (NOVA, SUPER­
NOVA, and NOVA 3 conlputers
only.)

The next CPU cyde will be used
to follow an indirection chain.

The next CPU cycle will be used
to execute an instruction.

FETCH The next CPU cyde will be used
to fetch an instruction,

INSTRUCTION These 8 lig'hts display the hig'h­
order 8 bits of the instruction

LIGHT

MEM PAR

MEM PWR

ON

OVERLAP

PI

MEANING WHEN LIT

The memory parity feature has
deteeted a memory error. (NOVA
3 computers only.)

Power is being supplied to the
semiconductor memories..
(NOVA 3 computers only)

5V power is being' supplied to the
CPU. (NOVA 3 computers only.)

Two Ac('umulator-multiple opera­
tion format instructions are being
executed out of read-only memory
and the CPU is overlapping the
execution of one with the fetching
of the next. (SUPERNOVA com­
puter only.)

The next CPU cyde will be used
to start aprogram interrupt by
storing the program counter in
location O. (NOVA and SUPER­
NOVA computers only.)

iust completed. (NOVA and PROTECT The MAP feature is operating in
user mode. (SUPERNOVA com­
putersonly.)

SUPERNOVA computers only.)

ION The Interrupt On flag' is 1.

l\!AP B

MAP
ENABLED

06-01929

Prograi'll map "B" or data chan­
nel map"B" is enabled.
(NOVA 3 computers only)

One of the two prog'ram maps is
enabled and not inhibited aT a
data channel map is mapping
addresses. (NOVA 3 computers
only ..)

RUN The CPU is executing instructions
or data is being transferred via
the data channeL

.

For the NOVA 3 series of computers,there is one
row of lights that serves the Junction of both AD­
DRESS and DATA in the above table. The current
contents of the program counter is displayed in
these lights unless a console function is being per­
formed.

FRONT PANEL LIGHTS

C-1

"N ION

PO .. £III INStRUCTION 0 I 0 0 0 I 0 0 0 I 0
, 0

ON _.-- -----
'ntH I"«CUTI ome .DDiItlU I 0 " 0 I " 0 0 I " 0 0 I 0 0 0 I 0 0 0 0 " lOC<

DE"!"
DATA 0 " I 0 < 0\ I Q 0 0 I 0 0 0 I 0 0 0 I 0 0 0

" C.t.R"Y 0 I • • • • • 1 • • 10 II I. n
"

..
@ @@@ @@@ @@@ @@@

DCN

@@@
.,

Co "

or."O,1T ACO lei. ACZ ACI lilian ITAR'

CO < +@-@-"@-®+ @ @ currlNUI

I
vG 01872

NOVA

INSTRUCTIQ N o I 0 0 0 0 0 0 0
POW£"

ON ------"-'--"----------,------
ADDRESS I 0 o o 0 0 0 0 0

LOCK

DATA o o I 0 o o 0 0 0 0 0

CAARY • • •

"'01fT DAM'N! WI..,.., nt:P f'fI()MA" LON)

® ® @ @ <0
IDIfIOelTMIXT --. "In· STU at"tlNa. IT""T

a. DATA GENERAL CORPORATION I NOVA I

OViltLAP PIIOTECT ... ION

0 0 0 0

nTC" £UCUTE
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
DIE,U

0 .. " I. n I. IS

@@@ ®@@ @®@ @®®
DCN " 0 0 @@@ ®

EXAMINE

® ©

OG-01871

SUPERNOVA

;:,:=~ I ~~ I ~~ ~w
OUN ION

.. owta
0 0

o.
"!TCN DE"!" [XECUTf

O .. e lOCK
0 0 0

I
D!,iOSIT ACO ACI ICZ AC' Run ITUT - D'''05lT n.t.MtNI "'MOftY ITt,. "'OOJC"" LOAD

CO ,-..'+@-®-®-®+ ® @ ® ® ® ® ©
"",' CONTINUE DEfI'OSilT NlXT-ocr INST STEP

I (CJc, 04T4 GENERAL CORPORATION I NOVAZ

OG-01870

NOVA 80011200 and NOV A 2

C-2

I
I

0 " ".

I

) I

0""" -. ," '

DATA SWITCHES

Beneath the data lights is a row of 16 switches.
These switches are used to enter either data or ad­
dresses and can be read using the READ SWITCHES
instruction. Only switches 1-15 are used for enter­
ing addresses. When these switches are in the up
position, they represent a 1; when down, they re­
present a O.

CONSOLE SWITCHES

In addition to the data switches, there are a number
of function switches. These switches are spring
luaded. When pushed up, they perform the function
labeled above the switch, and when pushed down,
they perform the function labeled below the switch.
When released, these switches return to a neutral
"off" position. The switches and their functions
are explained below.

Accumulator Deposit--Examine

On all consoles except the NOVA 3 consoles, the
left-hand four switches reference the four CPU
accumulators. The switches are numbered 0-3
from left to right. Each switch affects only its
corresponding accumulator. When one of these
switches is pushed up, the current setting of the
data switches is deposited into the corresponding
accumulator. The data lights display the informa­
tion placed in the AC. When one of these switches
is pushed down, the contents of the corresponding
accumulator are displayed in the data lights.

Reg Dep -- Reg Exam

For the NOVA 3 computers, the accumulator deposit
and examine functions are performed by the com­
bination of one function switch and a 7 -position
rotary switch. The seven registers available for
depositing and examining are the four accumulators,
the stack pointer, the frame pointer, and the pro­
gram counte r. When the function switch is pushed
up, the contents of the data switches are deposited
into the register indicated by the current setting of
the rotary switch. As long as the switch is pushed
up, the value indicated by the data switches is dis­
played in the lights. When the switch is released,
the program counter is displayed in the lights.

C-4

When the function switch is pushed down, the con­
tents of the register indicated by the current setting
of the rotary switch are displayed in the lights. As
long as the switch is held down, the value is dis­
played in the lights. When the switch is released,
the program counter is displayed in the lights.

Reset--Stop

When this switch is pushed up, the RESET function
is performed and an I/O RESET instruction is exe­
cuted. The CPU is stopped after completing the
current processor cycle. The Interrupt On flag,
the 16-bit priority mask, and all Busy and Done
flags are set to O.

When this switch is pushed down, the STOP function
is performed. The CPU is stopped after complet­
ing the current instruction and before executing the
next instruction. If an I/O device requests an in­
terrupt during the execution of the current instruc­
tion' it is honored before the CPU is stopped. All
outstanding data channel requests are honored be­
fore the CPU is stopped. For the NOVA 3 series
of computers, data channel requests are honored
while the machine is in the stopped state. After the
CPU is stopped, the address lights display the ad­
dress of the next instruction to be executed and the
data lights display the current contents of the mem­
ory bus.

Start--Continue

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter and
sequential operation of the processor begins with
the word addressed by the updated value of the pro­
gram counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Deposit--Deposit Next

When this switch is pushed up, the DE POSIT func­
tion is performed. The current setting of the data
switches is placed into the word addressed by the
current value of the program counter. The up­
dated value of the altered word is displayed in the
data lights.

o·

o

o

When this switch is pushed down, the DEPOSIT
NEXT function is performed. The program counter
is incremented by one and the current setting of the
data switches is placed into the word addressed by
the updated value of the program counter. The up­
dated value of the program counter is displayed in
the address lights and the updated value of the al­
tered word is displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORYDEP--DEPNEXT switch.
As long as the switch is held in
either the up or down position, the
value indicated by the data switches
is displayed in the lights. When the
switch is released, the program
counter is displayed in the lights.

Examine--Examine Next

When this switch is pushed up, the EXAMINE func­
tion is performed. The address indicated by data
switches 1-15 is placed in th~ program counter.
This value is displayed in the address lights. The
contents of the word addressed by the program
counter are then read and displayed in the data
lights.

When this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORY EXAM--EXAM NEXT
switch. As long as the switch is
held in either the up or downposi­
tion, the value contained in the mem-
0ry location is displayed in the
lights. When the switchis released,
the program counter is displayed in
the lights.

Memory Step--Inst Step

When this SWitch is pushed up. the MEMORY STEP
function is performed. The CPU performs a single
processor cycle and stops. After the processor
stops, the lights indicate the next cycle to be
executed.

When this switch is pushed down, the INSTRUC~
TION STE P function is performed. The instruc­
tion contained in the word addressed by the current

value of the program counter is executed and then
the CPU is stopped. The address lights display
the updated value of the program counter and the
data lights display the contents of the memory bus.

Program Load

In the NOVA 1200, NOVA 800, and NOVA 2 com­
puters, when this switch is pushed up, the PRO­
GRAM LOAD function is performed if the Program
Load option is installed on the machine. The con­
tents of the bootstrap read-only memory are placed
in memory location 0-378 and a "JMP 0" instruc­
tion is performed. If the option is not installed,
this switch has no effect.

In the SUPERNOVA computet, when this switch is
pushed up, the PROGRAM LOAD function is per­
formed. Thirty-three words are read from the de­
vice whose device code is set in data switches
10-15 on the console. These words are placed in
locations 0 -408 of main memory. After the last
word is read, a "JMP 40" instruction is performed.

NOTE For the NOVA 3 computers, the
MEMORY STEP function has been
deleted. The PROGRAM LOAD
and INSTR UCTION STE P functions
share the same function switch.

Channel Start

When this switch is pushed down, the CHANNEL
ST ART function is performed. A "JMP 377" in­
struction is placed in location 3778 of main mem­
ory. Then a DATA IN Awith a Start (DIAS)
instruction is issued to the device whose device
code is set in data switches 10-15 on the console.
After the instruction is issued, a "JMP 377" in­
struction is performed.

Power

The POWER switch is a three position key switch.
Thethree positions are labeled "OFF", "ON", and
"LOCK" . With the switch in the OFF position all
power to the CPU is shut off and the machine will
not run. Turningthe switch to the ON position
turns on the power and enables all the switches.

Turning. the switch to the LOCK poSition. enables the
key to be removed. While the CPU is processing
and the switch is in the LOCK position, all console
functions are disabled. If the switch is turned to
the LOCK position while the CPU is stopped or if
the CPU executes a HALT instruction while the
switch is in the LOCK position, all the function
switches are enabled.

CONSOLE SWITCHES

C-5

C-6

.. ..
'" Q.

E

G
~
z

o

C

0

Q

o

FRONT PANEL

INTRODUCTION

The front panel of the ECLIPSE line of computers
contains all the functions' switches.and displays
all the information needed to operate the machine.
The function and data switches.allow the operator
to perform many useful operations and the lights
reflect the currentsfate of the machine. If a
light is lit, it means the corresponding bit is.!.
If the light is not lit, the c()rrespondingbit is O.
The lights and their meanings are described below •

LIGHT MEANING WHEN LIT

USER MODE The- MAP feature is translat-
ing addresses in the user
mode.

ADDR COMPARE Operation of the machine is
suspended because the com:'"
Parison requested by the
ADDRESS COMPARE switch
has come up true.

rON The Interrupt on flag is 1.

CARRY The. carry bit is -1.

ROM ADDRESS These ten lights display the
addressiri the micro-code of
the next micro~instructionto
befefched.

DATA . These 16 lights display what
is currently in general reg-
ister 0 of the micro,..code
processor.

ADDRESS These i5 lights display what
is currently in the memory "-
address bus: . -

CONSOLE SWITCHES

In a row alorigthe bottom of the console are 26
switches. These are broken downirito three
groups;~ function switches., 16dataswih~hel?, and
5 more function switches. The ten function .
switches are springload~d. Whenpushedup,they , . .

perform one function, when puShed down, they
perform another function. When released, these
switches return toa neutral "off'; position. The
16 data switches are two -position toggle. switches.
When in the up position, they represent a 1; .when
inthe down position,theyrepresent a O. These
switches have no neutral position. These 16
switches ,::an be used to enter either data or ad­
dresses., If the' switches are to .be interpreted as
datlJ., all 16 data switches are used and they cor"
respond to the bits in an internal 16-bitword, The
leftmost switch of this group .correspondsto bit 0
and the rightmost switch correspOl).d,s to.bit 15. If
the switches are to be interpreted as an address;
only the rightmosti5 sWitche.sare',used.When
interpreted as anaddr,ess, t~e -secorid switch from
the left is the high-orderbitof the address and the
rightmost switch is the low~orderbit. Ali ad.:. .'
dresses coming from' the. console are treated as
logical addresses. - ,

Starting from the left of the consolE! and proceeding
to the right, the function switches and their mean-
ings are described below. .. .' ..

Reset-Stop

When this 5witchispushed uP •. the RESET function
is performed and anIjO :RESET instruction is
executed. The CllU is stopped after completing
the current processor cycle . TheInterruplOn
flag., the i6-bit priority mask,. and all Busy and
Done flag!! are .set.to O.While. iilthi$state, the
CPU will honor data ~hannelrequests~·

When this l?Witch is.p~shed·d6\Vn,the$T()p func,.
tion.is performed. The CPU-is stopped after
complet~ng the current Instruction and befo~e.exe­
cutingthe next instruction. If I\llI/O.Ctevicere­
q~ests an interrupt during theexec~Hon' of the
current irtstrl,lctiol'),Jtis.not honbri:1d before the
Cl?tJ1sstopped.Anoutsta;ndingdat~. chanti.ei 1'13'­
Ql1estsarehpn()red be.fore the .CPu tsstopped.·

. D!!-ta c-hannelrequestsiare continuaUY honored
.while the mac1iirii:! is in .~he!l!t()ppei:l state.Afte~

.. the C Pli is stopped, tlJ.e address li1t:htsdispiaythe

C-7

address of the next instruction to be executed. The
contents of the data lights are unpredictable.

Deposit-Examine

The next four switches are the accumulator
DEPOSIT-EXAMINE switches. The switches are
numbered 0-3 from left to right. Each switch af­
fects only its corresponding accumulator. When
one of these switches is pushed up, the current
setting of the data switches is deposited into the
corresponding accumulator. The data lights dis­
play the information placed in the AC.

When one of these switches is pushed down, the
contents of the corresponding accumulator are
displayed in the data lights.

Exam-Exam Nxt

When this switch is pushed up, the EXAMINE
function is performed. The address indicated by
data switches 1-15 is placed in the program
counter. This value is displayed in the address
li!:?;hts. The contents of the word addressed by the
p~ogram counter are then read and displayed in the
data lights.

When this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

NOTE If the machine is stopped while
in the user mode and the LOAD
EFFECTIVE ADDRESS instruc­
tion is enabled for the current
user, and a LOAD EFFECTIVE
ADDRESS instruction is exe­
cuted by use of the instruction
step function, tbe action of the
console is undefined.

When this switch is pushed down, the MICRO­
I:"l"STHUCTION STEP function is performed. The
next nicro-instruction in logical sequence is per­
formeci and the micro-:-code processor is stopped.

C-8

The ROM address lights display the micro-code
address of the next microinstruction to be fetched.
The address lights display the contents of the mem­
ory address bus, and the data lights display the
contents of the memory bus for the microinstruction
just performed.

PR Load-Exec

When this switch is pushed up, the program load
function is performed. The contents of the boot­
strap read-only memory are placed in memory
locations 0-378 and a .. JMP 0" instruction is
performed.

When this switch is pushed down, the EXECUTE
function is performed. The current setting of the
data switches is interpreted as an instruction and
that instruction is executed as if it were in mem...,
ory at the location specified by the program
counter. After the instruction is stopped, the ad­
dress lights display the updated value of the pro­
gram counter. The contents of the data lights are
unpredictable.

NOTE If the machine is stopped while
in the user mode and the LOAD
EFFECTIVE ADDRESS instruc­
tion is enabled for the current
user, and a LOAD EFFECTIVE
ADDRESS instruction is exe­
cuted by use of the execute func­
tion. the action of the console is
undefined.

Start-Cont

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter and
sequential operation of the processor begins with
the word addressed by the updated value of the
program counter.

When this switch is pushed down, the CONTINUE
function isperformed. Sequential operation Of the
processor continues from the current state of the
machine.

Dep-Dep Next

When this switch is pushed up, the DEPOSIT func­
tion is performed. The current setting of the data
switches is placed into the word addressed by the
current value of the program counter. The updated
value of the altered word is displayed in the data
lights.

When this switch is pushed down, the DEPOSIT
NEXT function is performed. The program count­
er is incremented by one and the current setting of
the data switches is placed into the word addressed

o

o

o

by the updated value of the program counter. The
updated value of the program counter is displayed
in the address lights and the updated value of the
altered word is displayed in the data lights.

Address Compare

The ADDRESS COMPARE switch is a four position
rotary switch. The four positions are labeled
"OFF", "MONITOR", STOP/STORE", and
·'STOP/ADDR". The functions of these four posi­
tions are described below.

Off

When the switch is in the OFF position, the
ADDRESS COMPARE.feature is disabled.

When the switch is in the l\lONITOR position. it is
possible to examine and monitor locations in mem­
ory while the CPU is running. When the switch is
in this position, the contents of the memory loca­
tion addressed by the current setting of the data
switches is displayed in the data lights each time
the location is accessed by the CPU. The data is
not displayed until either the CPU accesses the
location or the EXAM-EXAM NXT switch is pushed
up. The data lights continue to display this infor,.
mation until either the contents of the addressed
location are altered by the CPU or the setting of
the data switches is changed. In the first case, the
updated value of the location is displayed in the
data lights. In the second case, the old data reo.
mains in the lights until either the CPU accesses
the location addressed by the new data switch set­
ting or the EXAM-EXAM NXT switch is pushed up.
As soon as the CPU accesses the location addressed
by the new switch setting or the EXAM -EXAM NXT
switCh is pushed up, the contents of the location
addressed by the new switch setting will be dis­
played in the data lights.

Stop/Store

With the switch in the STOP/STORE position, the
ADDRESS COMPARE feature will suspend the opera­
tion of the CPU if the CPU tries to alter the. location
whose address is set in the data switches. The ad­
dressed location is altered. The ADDR COMPARE
light is lit to indicate that the ADDRESS COMPARE
feature has sllspended the operation of the machine.
The contents of the data and address lights are
unpredictable.

Stop/Addr

With the switch in the STOP/ ADDR position, the
ADDRESS CO~IPARE feature will suspend the opera­
tion of the CPU if the CPU tries to access the loca­
tion whose address is set in the data switches. The
addressed location is neither read nor written.
The ADDR COMPARE light is lit to indicate that
the ADDRESS COMPARE feature has suspended the
operation of the machine. The contents of the data
and address lights are unpredictable.

Power

The POWER switch isathree position key switch.
The three positions are labeled" OFF", "ON",
and "LOCK". With the switch in the OFF position,
all power to the CPU is shut off and the. machine
will not run. Turning the switch to the ON position
turns on the power, performs a RESET function,
and enables all the switches. Turning the switch to
the LOCK position allows the key to be removed.
While the switch isin the LOCK position, all con-

. sole functions except the MONITOR function of the
ADDRESS CO:\IPARE feature are disabled.

CONSOLE SWITCHES

C-g

C-10

S200 RDOS USER LAB EXERCISE

MONDAY

Hardware Familiarization

I n order to power up all devices in the system, the black breaker switch(es) located
on the rear of the cabinet must be in the up position. Turn these on if necessary.
All remaining power switches are located on the front of the machine. Turn on the
Central Processing Unit (CPU) via the key switch; it should be in the "ON" position
as the "LOCK" position will disable the front panel. It would seem appropriate to
learn a little more detail about the most fundamental hardware unit, the front panel.

Front Panel Operation

You have one or two sets of lights, these are for display of addresses and data; examine,
examine next, deposit, deposit next allow the display and modification of any memory
location. Set the number switches to some non-zero value (Le., 15 bit, octal); then
switch to examine.

What happened?

Next, switch to examine next, note the lights in both positions of the switch; first
the data is displayed. Then the address.

What does examine next do?

Repeat the above process with the deposit, deposit next switches to store the octal
numbers 0 through 10 in the accumulators first and the remaining digits in the first
memory locations. Don't let variation in front panel fool you; some have distinct
examine/examine next and deposit/deposit next switches, others imploy a rotary
selector switch. So, deposit the values; and then check them by examine/examine
next.

o

o

Front Panel Operation

Let's execute a small program; the two instructions with their binary equivalents
will execute a program which requires all of memory. The first instruction loads
accumulator zero with the binary value of the second instruction (40401), located
one memory location beyond this instruction. The second instruction stores
accumulator zero in the memory location to be executed next.

LOA 0,. + 1
STA 0,.+1

020401
040401

Store these instructions in memory anywhere, but record their addresses.

_____ LOA 0, .+1 020401

_____ STAO,.+1 040401

Now examine any other memory location, this will alter the Program Counter; now
if you toggle in your start address and press start your program will execute, at that
address. This is the only difference between STARTand CONTINUE.

What did your program do? Examine very low memory locations and large ones;
what value do they contain?

What's in accumulator zero?

How did it get there?

Why did your program modify location zero? You began execution at some higher
location, but the program wrote to location zero,Examine memory location 77777,
then examine next; wh~t happens when programs execute location 77177+ 1?

C-11

C-12

BOOTSTRAPPI NG

Power up the remaining equipment; terminals have black on line switches, the
line printer switch is hiding on the lower right, and disk units have arrow boxes
pointing to the disk they switch power to.

To be safe you should let your instructor show you disk loading; you need only
slide the switch over and lift the black handle to disengauge the dust cover from
the disk pack. For top loading drives, unlatch the drawer at the bottom or on
the sides and slide it out. Pull the drawer wings out if applicable and, mount
the disk by rotating the platter into position with the slot in the pack pointing
toward the processor.

Put the dust cover on top, slide the drawer in and place the disk on-line. At
this point, everything waits until the disk drive is ready.

Now, ready for bootstrap; load a 100033 into the number switches and depress
. stop, reset, program load. When you get FILENAME, you've accessed HIPBOOT
on blocks zero and one.

FILENAME: BOOTSYS
DATE (M/D/Y) Today's Date
TIME (H:M:S) The time

R

RDOS is initialized and CLI.5V is executing. Now you have CLI, to work with.

o

o

o

·-0;,·---..

Command Line Interpreter

The UST Command will report bookkeeping information about files, so try it.
If things serol.1 too quickly; you can stop your console with control S(tS) and
resume with control Q. If you want an IIR" prompt at any time hit tAo

. BOOTSYSisastarter operating system and you will invok~ itlaterto initiaJize
anRDOSSystem;howaver,it is very small and should be rep I aced by smore
appropriatlygei'lerated system. Look for all, the names of possible operating
systems with the following listcommand.

LIST -.SV -.OL

This will give you a clue as to more appropriate systems .to SPOT; N ova 3
systems might be N3SYS or Eclipse systems ASYS or BSYS and aHother
Nova.systems USYS or IV!SYS. To be sure of something appropriate, ask your
instructor; he probably created the systems. Now tv,pethefoJlowing: .

BOOT SYSTEMNAME J

Once you've initialized your new system with a better device configuration,
the eLI exercise may begin. . - - .- ..

Several comtTlI~nds may be used to interrogate system p8rameterva11les, what
dothe foUowingtell you.

GTOD~

GSYSJ

REV SYSTEMNAMEJ

GCINJ and GCOUTJ

C-13

C-14

Command Line Interpreter

The XFE R Command can copy files, enter data, and transfer files to devices.

Type in: XFER/A $TTI (1) YOURNAME J

Anything you type in now is transferred into the file you have created, until you
hit control Z. Enter some ASCII text to the file and hit control Z; the global slash A
alters theXFER command to observe ASCII conventions and must be used with
ASCII devices.

Now print YOURNAME: XFER/A YOURNAME $LPT

And again PRINT 'YOURNAME

Put YOURNAME out to $TTO first usifJIg the XFER command and then using
the TYPE command.

Let's transfer YOURFI LE to another group in the class; use either paper tape or
mag. tape depending upon what your .system configuration is:

Paper Tape: You may transfer out using XFER/A YOURFI LE $PTP,
or PUNCH YOURFILE.J

How would you transfer back into the system from th
paper tape reader ($PTR)

o

o

o

o

o

o

. .t '~'O

Command Line Interpreter

Mag. Tape Mag Tape mustbe initialized priorto device access; so
, after loading a volume, powering up the drive, and setting,

itoQ-line, issue the following INIT command.

INITMTOJ

Now you may transfer your file to mag tape file zero; the
emphesiswith the XFER command is that only the data is
transferred and so files may be executed from mag. tape.

XFER/A YQURFILE MTO:OJ

And you may bring in a mag. tapEdile by switching around
the arguments as the first is the source filewhich must exist
on disk, the secondergument is the destination file or device
which is assumed notto exist in the disk file case thereby
allowingR DOS to create a file. I f a destination disk ,file
does",exist a global slash Bmust be used so that the neW ., . ,

information is appended to the existent material. ,

XFE RI AMTO:O N EWF I LE)'

Additionally, XFER may be used to transfer a set of Information from anydevic:e,
to any oth~r device. Go. through all device transfers, a S(!t of ex arn pies foH6wing .
will get you started. ' , ,

XFER/A $TTI(1) $ LPTJ

; XFER/A MTO:O $LPTJ'

XFER/A

XFER/A YOURFILE $PTp.

C-16

Command Line Interpreter

The log file, (F)LOG.CM, may be used to record CLI and master console communications;
the foreground operations will record FLOG.CM but still use the same command formats

To start the log: LOG/H/T J

You should have the "R" ready prompt; if not you have a LOG.CM file with a use count
of 1 which must be cleared first. Try the CLEAR command, and then try deleting LOG.CM:

CLEARI A/V ID
DELETE/V

LOG.CM J
LOG.CMJ

Try, LOG/H/T again; CLI is recording to (F)LOG.CM ... The global switches: H - for
heading (date, time) and T - for trace which will expand CLI macros (.MC). Above the
switches are somewhat more general: V - usually for verify, A - usually for permanent
files (those which cannot be deleted.), in this case D - for devices.

Ending the log file report is by ENDLOG, if you have used the password implementation
it must also accompany the ENDLOG. You'll have to ENDLOG prior to shutdown; but
for now it will document your lab responses.

Let's implement a macro file using percent variables, indirect files and CLI constructions;
the macro name must contain the .MC extension and any legitimate RDOS filename. Record
and create the file with the XFER command .

. MC

MESSAGE" : TIME", %TIME%,"DATE", %DATE%
MESSAGE "LIST OF ALL SAVE FILES"l
L1ST/E/A -.SV J
MESSAGE "DIRECTORY FILES"
DELETE DIRS
BUILD DIRS -.DR <SYS.DR, MAP.DR >/N
TYPE @DIRS@

o

o

o

Command Line Interpreter

Invoke your macro by typing its name; to correct it involves editing the. file which you'll
do. later. In the meantime, pick a new name or delete the old and· recreate it.

What does the build command do?

What do u@" and U%" signs do?

What makes one file or another a macro file?

To interrogate RDOS/CLIinterpretation one may use commands with the MESSAGE
command, all constructions will be expanded, etc. Use the folloWil'lgto further inspect
CLLexpanders.

Type: MESSAGE F < 1, 2,3,4,5 >1 LE J
What happened:

Type MESSAGEF (1, 2, 3,4, 5)1 LE
Vl(hat happened:

How about together, what happens in each case, below:

MESSAGE (1, 2,3), (A, B, en
MESSAGE < 1, 21 3> (A, B, C) J

MESSAGE (1,2,3) <A, B,C,>J

. MESSAGE <1,2,3> < A, S, C >1

C-18

Command Line Interpreter

Some files are not written in ASCII; they're binary code cbf some sort depending upon
their creation. Such files require special editors to alter, but under CLI one may use
FPRINT to examine any disk file in a number of formats.

Type FPRINT SYSTEMNAME.SV J

You will be watching the core resident RDOS scroll before your eyes; each word is
numbered by line number plus its relative position on the line and the ASCII byte
equivalent is on the right. You may notice some familiar bytes like the RDOS title
or certain error messages.

Printthe same file in hexidecimal from position 400 to position 2000 octal.

Print the same information at the line printer; and you've got an operating system
binary file dump.

Let's take a core du mp of a program ... ; execute the program C LI, just type its name.
Now hit control C, you have interrupted the program and caused a core image to be
written into the file (F)BREAK.SV. Print it on the line printer with the FPRINT command.
Then delete it. The numbers and ASCII interpretable code were in memory prior to tC.

End this session by typing period, then again. What time did the system have? If the time
slot for lab is up; EN DLOG and release the master directory.

ENDLOGJ
MDIRJ
DPO
RELEASE DPO J
MASTER DEVICE RELEASED

Power down all equipment, including cabinet breakers; please dispose of your line­
printer paper.

. . 0··

a.

o

o

o

o

. ,

o

8200
APPENDIX D

• STUDENT LABORATORIES.

o

o

S200 ROOS User Laboratory Exercise

BOOTSTRAPPING LAB

The purpose of this lab is to enable you to employ the correct sequence for:
• Bootstrapping an operating system
• Initiating a program in the foreground
• Recovering from a system crash
• Powering down a system

BOOTSTRAPPING AN RDOS SYSTEM

C Perform these steps to bootstrap the system:

o

o

1. Turn on power to the CPU, background and foreground terminals, and the disk drive.

2. Place a disk in the drive (see I nstructor for help).

3. Power on the printer and put it online.

4 .. Setthe CPU switches to: 100033, then press STOP and then RESET.

5. When the Ready light appears on the disk drive, press Program Load.

6. FI LENAME? should appear asa prompt on the background terminal.
Respond with the name olthe operating system youwanttoboot in (ask your
Instructor if necessary).

7. Enter today's date and the time (in 24-hour form) in response to the next two questions.

8. The R prompt that appears indicates that you are running the command line
interpreter (CLI) through which you will communicate with RDOS.

INITIATING APROGRAM IN THE FOREGROUND

Bring up CLI in the foreground in the following manner:

1. GMEM (Find out the available memory left after RDOS takes its share.)

2. SMEM 25 (Reserve 25K for CLI in the background and givethe rest of memory
to the foreground.)

3. EXFG/E CL.I (Execl,Jte CLI in the foreground with equal priority.)

D-1

D-2

4. R prompt should appear now on the foreground terminal.

NOTE: The amount of memory you reserve for the background using SMEM will depend
on the needs of the programs you run. You can run any other executable program
in the foreground by typing:

EXFG/E PROGRAMNAME

Using the GMEM command, confirm that the memory has indeed been divided.

RECOVERING FROM A SYSTEM CRASH

A crash occurs when your system goes down (voluntarily or, not) without the master
directory (DPO here) having been released.

First, crash the system by pressing the STOP switch on the front panel. Notice that at
this point nothing can be entered on the keyboard.

Below are the steps you should follow to recover from a system crash:

1. Re-home the disk heads. There are two ways to do this:

A. (Faster with practice)
On the front panel:

• Press STOP and then RESET
• Switches to 001400 and deposit

into ACO (not the Memory
Deposit switch)

OR

• Switches to 061333 - Deposit
• Press instruction step.

B. Toggle the LOAD/RUN switch on the
disk drive. First, press LOAD to bring
the disk down. Then press RUN to bring
it up to speed again.

2. Press STOP and then RESET

3. Switches to 100033 and press PROGRAM LOAD

4. Respond to the FILENAME? prompt

5. Type C when asked

6. Enter the date and time

7. Clear the file use counts by:
CLEAR/A/V/D
CLEAR/V CLI.<ER,OL)

o

("'., •.... "

"""..-/

0,'·: ~'

o

o

o

ORDERLY SYSTEM POWER~DOWN

To power down the system in an orderly fashion:

1. CTRL F

2. Release DPO

(Bring down the foreground. Important: be certain that
nobody is still operating in the foreground)

(or release %MDI R%) Wait for the response:
MASTER DEVICE RELEASED

3. Power down the disk, other peripherals, and the CPU.

0-3

0-4

DAILY LAB START·UP PROCEDURE

At the beginning of each day's lab session - starting with the next lab - you should perform
the following step$:

1. Bootstrap the machine and bring up CLI in the foreground as described in
the BOOTSTRAP LAB.

2. LOG/H (Begin a log of the session.
Background CLI activity is held in a file called LOG.CM
Foreground activity is held in a file called FLOG.CM)

3. Proceed to the lab exercises.

PROCEDURE FOR THE END OF THE LAB SESSION

At the end of each day's lab session, you should perform the following steps prior to
leaving:

1. ENDLOG (Close off your log file)

2. DIR DPO (If you're not there already)

3. Get a printout of your log and then erase the log file.
If there are two of you at the terminal, get two copies before deleting the log.
To do this:

on the BIG:

PRINT LOG.CM
DELETE/V LOG.CM

on the FIG:

PRINT FLOG.CM
DE LETE/V F LOG.CM

4. Once logs of both grounds have been printed, power down using the steps described in
the BOOTSTRAP LAB. After you bring the disk down (Load light will go on), remove
the disk pack before powering off the drive.

5. Clean up all the excess printer paper.

o

o

o

o

o

o

S200 RDOS User Laboratory Exercise

eLi LAB 1

In this lab, you'll work w-Hh disk files through CU. You'll make, keep track of,
back up, destroy, and restore files using commands that will haunt you throughout
your life with RDOS. You'll have eLI record your dialog and make one copy
of this record file for you to keep to remember how you did all this great stuff.
In this exercise, you will create 2 disk files. They are referenced as "S200XXX"
in this print out. Where XXX represents your initials, please substitute your
own filenames for them. If you are using a foreground console, substitute
"$TTI1" for each use of "$TTI", and "$TT01" for "$TTO", and "FLOG.eM"
for "LOG.eM". You will need the RDOS User's Handbook to look up the
following commands:

DELETE

DISK

ENDLOG

GTOD

LIST

LOG

MDIR

PRINT

RELEASE

SDAY

STOD

TYPE

XFER

D-5

0-6

BOOT UP THE SYSTEM

Follow the directions on 'page 149 of RDOS User's Handbook. Instructor will tell
you the "FI LENAME" of the system. Fill in the current date and time.

Although eLi is just a user program, and not built into the system, RDOS will
start running CLI by default. You should see CLI's "R" prompt on your terminal
by now.

RECORD THIS SESSION IN "LOG.CM"

Out with the old ...

DE LETE/V LOG.CM (If the file doesn't exist, that's good.)

I n with the new ...

Start logging with a header and a password.

LOG/H

Get the name of the current operating system:

GSYS

SET UP & CHECK THE RUNNING ENVIRONMENT.

Change time to zero.

STOD 000

Now, ROOS will track elapsed time of the CLI session.

Verify the new time with

GTOD

Speaking of time, type in a period ("."). CLI will now give you the time after
each command.

Change the date to your birthday for this year (SDAY command).
Verify the change. Happy Birthdayl

Now change back the date.

Check out disk space with

DISK

How many blocks are used?

How many blocks are unassigned? ______ _

o

o

TRANSFER DATA FROM ONE FILE TO ANOTHER.

Make a copy of the contents of a file

XF E R S200SHOW S200XXX

This createsS200XXX which contains a copy of the data in S200SHOW.,

LIST IE S200XXX

The dates in the list output should match the SDAY you just did. They are the
creation date and the date the file was last used.

Now,

LlST/A S20OSHOW

The number is the length in bytes.

Do the two file lengths match? ____ _

How many bytes in each? ____ _

DISPLAY DATA ON OUTPUT DEVICES.

Display your file on the console:

XFER S200XXX $TTO ($TT01 if you're at the FIG)

(The letter 0, not the number 0.) Was it readable? ______ _

try

XFER/AS200XXX $TTO

The ASCII device switch (/ A) is very important for the correct formatting of
data for the system's character devices.

try

TYPE S200XXX

Is the outputany different from the XFER/A? ____ _

D-7

D-8

Display S200XXX on the line printer by an XFER command with
"$LPT" as the destination argument.

Now for a little creativity - You'll be making up some text for a file.

SENDING MESSAGES BETWEEN DEVICES

XFER some text to the line printer ($LPT) from the console keyboard ($TTI).
Remember the /A (there are 2 ASCII devices involved here). Every line you type
in from now on will be used by CLI as data and not as commands. You must
signal the end of data with an ASCII END-OF-FILE character (CTRL Z).

Now try this transfer the wrong way (without /A). The only way to get CLI
back to command mode now is to use a console interrupt (CTR LA).

Write some more to the line printer with

PRINT $TTI
(If the cursor goes to the top of the screen, hit the erase page key.)

The command PRINT Q is the same as XFER/A Q $LPT
and TYPE Q is the same as XFER/A Q $TTO

Displaying data on the console and printer is so common that CLI provides
these shortcuts.

CREATING AND WRITING TO DISK FILES

XFER to a disk file (S200XXX.2) from $TTI. Notice that the delete (or rubout)
key will erase a character if you make mistakes. You'll use this technique
later in this lab to create indirect CLI command files.

Display S200XXX.2 on the line printer.
So far you've only been concerned with the contents of files. Now, you'll
take a look at some of the bookkeeping info that R DOS also keeps on disk.

First, stop the printing out of the time by typing a period and hitting
a carriage return (CR).

o

o

o

__ --------o------------------------~--------------------~

DISPLAYING BOOKKEEPING INFO ABOUT FILESON DISK

THE CLI ALLOWS YOU TO GET A LlSTOF FI LES ON THE DISK,
. USING THE " LIST'" COMMAND. TRY IT.

R
LIST

TO GET A HARDCOPY OF THE LIST ONA LINE PRINTER, ADD THE GLOBAL
SWITCH /LTO THE LIST COMMAND

R
L1ST/L

THE FILES LISTED ARE IN NO PARTICULAR ORDER. TO GETTHEM SORTED
ALPHABETICALLY, DOTHEFOLLOWING:

R
LIST/US

THESE ARE NOT ALLTHE FI LES ON THE DISK, ONLY THE ONES WHICH ARE
NOT PERMANENT (ALL THESE ARE "DELETE"-ABLE). TO GET A LIST OF
"ALL"'FILESON THE DISK; APPEND THE/A GLOBAL SWITCH TO THE LIST
COMMAND.

R
LIST/US/A·

NOTE THAT NEW FILES HAVE APPEARED, NOTABLY SOME IN THE BEGINNING
THAT START WITH A DOLLARSIGN ($). THESE ARE THERDOS NAMES OF
THE DEVICES IN THE SYSTEM.

;0-9

D-10

$CDR CARD READER
$TTI TELETYPE INPUT (ALSO CRT INPUT)
$TTO TELETYPE OUTPUT (ALSO CRT OUTPUT)
$LPT LINE PRINTER
$PTP PAPER TAPE PUNCH
$PTR PAPER TAPE READER

THE DEVICES THAT ARE LISTED ON YOUR OUTPUT MAY NOT AGREE WITH
THE ONES I HAVE LISTED ABOVE. THEY DEPEND ON THE SYSGEN THAT
WAS DONE FOR THIS PARTICULAR SYSTEM. IF YOU DON'T ASK FOR A
CARD READER, $CDR WILL NOT APPEAR. THIS INSURES THAT THE RDOS
SYSTEM YOU GENERATE IS THE SMALLEST POSSIBLE FOR A GIVEN
CONFIGURATION.

BY NOW YOU MUST BE WONDERING WHAT THE OTHER NUMBERS
AND LETTERS ARE ON YOUR OUTPUT. LET'S LOOK AT ONE IN
PARTICULAR. THE LINE PRINTER.

$LPT o RAP

$LPT
o

RAP

THE NAME OF THE FILE (OF COURSE)
BYTE COUNT (MEANINGLESS FOR A DEVICE)
THE ATTRIBUTES OF THE FILE

R READ PROTECTED. RDOS WI LL PREVENT
YOU FROM READING THE LINE PRINTER

P PERMANENT. THE $LPT CANNOT BE
DELETED FROM THE SYSTEM

A ATTRIBUTE PROTECTED. NORMALLY, THE
ATTRIBUTES CAN BE CHANGED FROM THE
CLI. THE "A" ATTRIBUTE PREVENTS
CHANGING ANY OF THE ATTRIBUTES.

RDOS KNOWS MORE ABOUT EACH FILE THAN IT IS TELLING YOU ABOUT.
TO DETERMINE EVERYTHING RDOS KNOWS ABOUT A FI LE, APPEND THE
/E GLOBAL SWITCH TO THE LIST COMMAND.

R
LlST/LlS/A/E

THIS COMMAND LISTS ALL FILES ON DISK, SORTED ALPHABETICALLY,
LISTED ON THE LINE PRINTER, AND TELLS YOU EVERYTHING RDOS KNOWS
ABOUT THE FILE. LET'S LOOK AT ONE IN PARTICULAR, THE BOOTSYS.SV.
THE NUMBERS THAT ARE GIVEN BELOW MAY NOT CORRESPOND EXACTLY
TO THE ONES ON YOUR LIST COMMAND.

BOOTSYS.SV 9430 SO 05/15/75 09:34 001204 0

o

o

10·,··.·.····' '-- >

o

_-----e------"e'-' .. '-------- --------------.....

BOOTSYS.SV

9430

SO
05/15/75
09:34
05/15/75
001204
o

THE NAME OF THE FI LE. THE .SV
EXTENSION MEANS IT IS AN EXECUTABLE
"SAVED" FI LE.
BYTE COUNT. THERE ARE 9430 BYTES ON THE
DISK USED TO STORE THE FI LE.
S=SAVED FILE (IGNORE THE 0 FOR RIGHT NOW)
FILE WAS CREATED MAY 15, 1975 AT
9:34 AM. IT WAS LAST ACCESSED ON
MAY 15, 1975.
THE STARTING DISK BLOCK ADDRESS
USE COUNT. NO ONE IS CURRENTLY USING THE
FILE. LOOK AT USE COUNT FOR CLI.SV. IT IS IN
USE BY YOU RIGHT NOW.

MANY TIMES YOU ARE NOT INTERESTED IN ALL THE FILES ON THE DISK,
ONLY CERTAIN ONES. YOU CAN DO THIS BY PASSING AN ARGUMENT TO
THE LIST COMMAND.

R
LIST / A BOOTSYS.SV

WHATHAPPENED? ____________________________ _

WHAT HAPPENS WHEN YOU DO THE FOLLOWING?

R
LlST/A BOOTSYS

THE DASH (-,-) CONVENTION! IS USEFUL IN THIS CASE BECAUSE IT MATCHES
ANY SEQUENCE OF ASCII CHARACTERS. DO THE FOLLOWING:

R
LlST/A CLI.-

WH ICH FILES AR E LlSTE D? ________ ---,----,-----' ___ ---,-__ _

0-11

0·12

DO THE FOLLOWING

R
L1ST/A C-.-

WHICH FILES ARE L1STED? _____________ _

HOW WOULD YOU GET A LIST OF ALL "SAVED" (EXECUTABLE) FILES?

__________ . TRY IT. DOES IT WORK?

HOW ABOUT ALL FILES THAT HAVE THE LETTER "R" IN THEM?

____________ . TRY IT. DOES IT WORK?

TAKE SOME TIME TO TRY SOME OTHER FILE SEARCHES USING THE - AND
* TEMPLATES.

CD

o

o

o

o

o

'XFER'ING TO MAG TAPE

IF YOU HAVE A BLANKMAG TAPE (MAKE SURE IT IS BLANK AND HAS THE
WRITE RING IN IT), LOAD IT ON THESYSTEM AND DO THE FOLLOWING:

R
INIT MTO

(NOTE: MTO:O IS MT ZERO: ZERO)
THIS NOTIFI.ES THE SYSTEM THAT YOU HAVE A MAG TAPE LOADED.

NOW
R
XFER!A S200XXX MTO:O

THE TAPE SHOULD MOVE, FINALLY

R
XFER!A MTO:O$LPT

ITSHOULDPRINT ON THE LINE PRINTER.

DO ONE LAST THING. TRY TO XFERTO S200XXX AGAIN ..

R
XFER/A $TTI S200XXX

WHAT ERROR MESSAGE DO YOU GET?""",".""","· _____ -'--_-'--_------'---

WHAT DOES THIS TELL YOU?_---'--'---'----'---------

0·13

0-14

USE THE XFER/A COMMAND TO CREATE ANOTHER TEST FILE

R
XFER/A $TTI TEST2 (TEST2F and $TTI1 in F/G)

TYPE IN SOMETHING AND HIT A CONTROL Z.

DO A LISTIE COMMAND ON THE FILE TEST2.

WHAT IS THE BYTE COUNT? ______ ATTRIBUTES? __ _

HOW MANY CHARACTERS DID YOU TYPE? ____ INCLUDING CR.

NOW DELETE THE FILE

R
DELETE/VIC TEST2

WHAT IS THE IV SWITCH FOR? _______ ~-----_

WHAT IS THE IC SWITCH FOR? _____________ _

NOW DO A LISTIE TEST 2

WHATHAPPENED? _______ ~ _________ _

CREATE THE FILE TEST2 AGAIN IN THE SAME MANNER.

DO ANOTHER L1STIA ON IT. YOU SHOULD GET WHAT YOU GOT BEFORE
(PERHAPS WITH A DIFFERENT BYTE COUNT)

RENAMING ALLOWS YOU TO CHANGE THE NAME OF A FI LE. IT IS DONE WITH
THE "RENAME" COMMAND. LET'S RENAME TEST2 TEST3.

R
RENAME TEST2 TEST 3 (TEST2F TEST3F for FIG)

DOA LIST TEST -.- TO VERIFY THAT TEST2 HAS
DISAPPEARED.

NOW CREATE TEST2 AGAIN BY TRANSFERRING TEST3 TO TEST2

R
XFER/A TEST3 TEST2

0'",
"I

o

.0

o

o

o

DO A LISTIE ON BOTH. THEY SHOULD HAVE THE SAME BYTE COUNT.

TO MAKE SURE THEY ARE THE SAME, DO A FILE COMPARISON ON THEM.

R
F I LCOM TEST2TEST3

VERIFY THAT THEY ARE THE SAME. IFTHEREARE ANY DIFFERENCES,
THEY WI LL BE PRINTED ON THE CONSOLE. IF NO RESPONSE, THEY ARE
THE SAME. TO TEST THIS OUT, DELETE TEST3 AND TYPE INTO IT (XFER/A
$TTI TEST3) THE SAME MESSAGE, VARIED BY ONE (1) LETTER, THEN
REPEAT FILCOM.

THE FOLLOWINGINTEROGATIVE COMMAND WILL DISPLAY THE REVISION
NUMBER OF ANY EXECUTABLE PROGRAM FOR WHICH A REVISION HAS
BEEN DEFINED. TRY.

R
REV CLI

WHAT REV OF CLI ARE YOU USING? ___ ----..,..--..,..-..,..---

CONSTRUCTIONS USING PARENTHESIS AND ANGLE BRACKETS CAN LEAD
TO CONFUSION. THE MESSAGE COMMAND CAN BE USED TO gXPLOIT THE
INTERPRETATION OF THESE CHARACTERS; TYPE THE FOLLOWING:

R
MESSAGE < 1,2,3,4 >(A,B,C,D)

WHATHAPPENED? ____ ~~---..,..--_----_-~-_

PLAY WITH THE CONSTRUCTIONS BY VARYING COMBINATIONS.

WHEN YOU'VE HAD ENOUGH, TERMINATE THIS SESSION.

WHEN YOU'RE DONE FOR THE DAY, TYPE ENDLOG.

YOU CAN THEN PRINT OUT A COpy OF YOUR LOG BY:

PRINT LOG.CM (FLOG.CM for FIG)

1;)-15

D-16

RELEASE THE MASTER DIRECTORY WITH THE FOLLOWING:

RELEASE %MDIR%

PLEASE POWER DOWN ALL EQUIPMENT AND DISCARD ANY EXTRA LINE
PRINTER PAPER; YOUR INSTRUCTOR WILL HAVE A VERY LARGE SMILE ...

c

o

o

S200 RDOS User Laboratory Exercise

CLi LAB 2 - FI LE TYPES

INTRODUCTION:

. ROOS HASTHREE(3) DIFFERENT KINDS OF FILE STRUCTURES -
SEQUENTIAL, RANDOM AND CONTIGUOUS. WHENAUSERWISHES
TO CRE.ATE HIS OWN FILES, THE DECISION HE MAKES FORWHICH
TYPE HEWILL USE CAN GREATLY AFFECT HOW HIS SYSTEM WILL
PERFORM. THIS SECTION WILL TEACH ALL THREE TYPES, HOW
THEY ARE IMPLEMENTED BY RDOS, AND WHEN TO USE EACH ONE.

THE SMALLEST UNIT ON THE DISK THAT THE DISK CONTROLLER
CAN ACCESS IS CALLED A "BLOCK;'. THIS PHYSICALLY CORRESPONDS
TO A SECTOR ON THE DISK (IF YOU DON'T KNOW WHAT THIS MEANS,
IT DOESN'T MATTER). A BLOCK CONTAINS 256 (DECIMAL) = 400
(OCTAL) 16-BITWORDS, OR 512 DECIMAL, 1000 OCTAL 8-BIT BYTES.

RDOS MAINTAINSA MAP DIRECTORY WHICH CONTAINS 1 BIT FOR
EVERY BLOCK ON THE DISK TO INDICATE THAT PARTICULAR BLOCK'S
STATUS.

0= FREE
1 = IN USE

IN FACT, THE "DISK" COMMAND JUST COUNTS THE NUMBER OF 1's
and O'slN THE MAP DIRECTORY,AND OUTPUTSTHEANSWER .

. THUS, SCATTERED THROUGHOUT THE DISK ARE FREE AND USED
BLOCKS.

DISK BLOCKS ARE NUMBERED 0 THROUGH N WHERE N ISTHE NUMBER
OF BLOCKS ON THE DISK. THEREFORETHE USER DOES NOT HAVE TO
THINKIN TERMS OF CYLINDER/HEAD/SECTOR, ONLY A NUMBER FROM
OTON.

0-17

D-18

SEQUENTIAL FILES

THE FIRST FILE STRUCTURE WE WILL LOOK AT IS SEQUENTIAL FILES.
SEQUENTIAL FILES ARE LIKE MAG TAPE. THAT IS, IF YOU WANT TO GET TO
ANY PART OF THE FILE, YOU MUST READ ALL DATA UP TO THAT POINT. THERE
IS A LOW OVERHEAD IN THIS FILE STRUCTURE MAKING IT IDEALLY SUITED FOR
TRANSACTION LOGGING, WHICH COMES IN SEQUENTIALLY AND IS PROCESSED
SEQUENTIALLY. ALSO, SOURCE PROGRAM FI LES FOR ASSEMBLY, FORTRAN,
ALGOL, COBOL, RPG,ETC. ARE GOOD CANDIDATES FOR THIS FILE STRUCTURE.
SEQUENTIAL FILES ARE STORED RANDOMLY ON THE DISK,'ASSHOWN BELOW.

************** **********
* * *

DIRECTORY' --.~* *
* **************

* *
* * * *

* 944 *
********** --~. **********

BLOCK 123 * *
* *
* * * *

* 76 *
********** -----~

*****t**** BLOCK 944
* *
* *
* *
* *
* *' * *

* END *

BLOCK 76

AS CAN BE SEEN FROM ABOVE,THE DIRECTORY POINTS TO THE FIRST BLOCK,
AND EACH BLOCK'S LAST WORD POINTS TO THE NEXT BLOCK IN THE CHAIN.
THERE IS A FLAG IN THE LAST WORD OF THE LAST BLOCK TO INDICATE THE
END OF THE CHAIN. ALSO NOTE THAT THE BLOCKS ARE RANDOMLY SCATTERED
THROUGHOUT THE DISK.

QUESTIONS:
IS THIS FILE EXPANDABLE? ________________ _

HOW COULD RDOSDO IT? _____________________ ___

o

o

o

GIVEN THE FACT THAT THE LINK TO THE NEXT BLOCK IS A 1-WORD ADDRESS
HOW MANY USABLE BYTES AND WORDS ARE THERE IN EACH DISK BLOCK?

_______ BYTEs OR _______ ~WORDS ..

WHY WOULD THIS FI LE STRUCTURE NOT BE USEFUL FOR KEEPING A REAL-TIME
INVENTORYSYSTEM?~ ____________________________ __

SEQUENTIAL FILE EXERCISE

THERE ARE TWO WAYS TO CREATE A SEQUENTIAL FILE. THE FIRST WAY IS THE
"CREATE" COMMAND.

R
CREATE TEST4 (TEST4F on the FIG)

NOW DO A LIST COMMAND AND RECORD THE ATTRIBUTES OF THE FILE. ___ _

THE WAY YOU CAN TELL THIS IS A SEQUENTIAL FILE IS THAT IT HAS NO
ATTRIBUTE THAT SAYS WHAT THE FI LE STRUCTURE IS. THAT MEANS THE FILE
IS SEQUENTIAL "BY DEFAUL Til.

NEXT, DELETE TEST4 ANDVERIFY THAT IT IS GONE.

WE WILL USE THE SECOND METHOD FOR CREATING SEQUENTIAL FILES. BEFORE
YOU DO, THOUGH, DO A DISK COMMAND AND DETERMINE HOW MANY BLOCKS
HAVE BEEN USED.

_________ F REE __ '--__ '--_____ -'--USED

THE "XFER" COMMAND CREATES SEQUENTIAL FILES BY DEFAULT, SO WE WILL
USE IT TO CREATE A SEQUENTIAL FILE

R
XFER/A $TTI TEST4 ($TTI1 TEST4F)

NOW TYPE IN ATEST MESSAGE FOLLOWED BY A CONTROL Z

DO A LIST COMMAND AND RECORD THE ATTRIBUTES ____________ -'---__

NOW DO A DISK COMMAND _________ FREE _____________ USED

HOW MANY DISK BLOCKS WE RE USE D? _____ ~ _ __'_ __ _"___" _ __"" ___ -----

DOES THIS MAKE SENSE? ______________ --'-----'--'-__ _

0-19

D-20

CONTIGUOUS FI LES

THE SECOND KIND OF DISK FILE STRUCTURE WE WILL EXAMINE ARE
CONTIGUOUS FILES. CONTIGUOUS FILES ARE SO NAMED BECAUSE THEDISK
BLOCKS WITHIN THEM ARE ARRANGED CONTIGUOUSLY ON THE DISK AS SHOWN
BELOW.

* *
* DI RECTORY *

PHYSICAL BLOCK #

LOGICAL BLOCK #

*

*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

555 556

o 1

557

2

558

3

559

4

ALTHOUGH THIS FILE PHYSICALLY RESIDES AT BLOCK # 555 - 559, THE USER
DOESN'T KNOW OR CARE WHERE ON THE DISK IT IS. THE USER ONLY REFERENCES
BLOCK #0, 1,2,3, OR 4. RDOS DOES THE REST. THIS IS EASY FOR RDOS, BECAUSE
IF THE USER WANTS BLOCK #31T IS AN EASY CALCULATION FOR RDOS TO
D'ETERMINE WHERE ON THE DISK IT IS.
555+3=558.

FOR THIS REASON, CONTIGUOUS FILES OFFER THE FASTEST DISK ACCESS
POSSI BLE. CRITICAL REAL-TIME SYSTEMS USUALLY USE THIS FI LE STRUCTURE.

A DISADVANTAGE OF CONTIGUOUS FILES IS THAT THEY ARE NOT EXPANDABLE.
THEI R SIZE IS FIXED AT TIME OF CREATION. WHY DO YOU SUPPOSE THIS IS TRUE?

AN ADVANTAGE OF CONTIGUOUS FILES IS THAT THERE IS NO EXTRA DISK SPACE
WASTED IN OVERHEAD POINTING TO THE NEXT BLOCK AS IS TRUE WITH SEQUEN­
TIAL FI LES. THUS IN A CONTIGUOUS FI LE OF 3 BLOCKS, HOW MANY WORDS OF
STORAGE ARE AVAILABLE. HOW ABOUT IN A SEQUENTIAL FILE OF THE SAME
LENGTH?

CONTI GUOUS _________ SEQUENTIAL, ________ _

CONTIGUOUS FILES ARE USEFUL IN SITUATIONS WHERE FAST ACCESS IS
REQUIRED, BUT THE DATA BASE DOES NOT GROW. IN RDOS, OVERLAYS ARE
ALWAYS CONTIGUOUS FILES. ANOTHER USER APPLICATION MIGHT BE WHERE A
PROGRAM KEEPS TRACK OF 100 DIFFERENT ELECTRIC UTILITY STATIONS, WHERE
EACH STATION REPORTS CIRCUIT BREAKER STATUS (ON OR OFF) AND VARIOUS
VOLTAGES AND CURRENTS WITHIN THE STATION.

0.

o

WHAT MIGHT BE OTHER APPLICATIONS OF CONTIGUOUS FILES?

CONTIGUOUS FILE EXERCISE

THE COMMAND TO CREATE A CONTIGUOUS FILE IS "CCONT". WE WILL CREATE
A CONTIGUOUS FILE OF 10 BLOCKS LONG. BEFORE WE DO, LET'S DO TWO THINGS.

FIRST, DELETE TEST4 FROM BEFORE

R
DELETE/V/C TEST4

NOW DO A DISK COMMAND TO SEE HOW MANY BLOCKS ARE IN USE.

R
DISK

FREE ____ IN USE. ___ _

TO CREATE A CONTIGUOUS FILE, DO THE FOLLOWING:

R
CCONT TEST4 10

DO A DISK COMMAND. HOW MANY BLOCKS DID IT USE?

THE ATTRIBUTE THAT SAYS IT IS A CONTIGUOUS FILE IS "C".
DO A L1ST/E ON TEST4.

ATTRIBUTES _________ STARTING DISK BLOCK ___ _

IT WAS STATED BEFORE THAT ALL RDOS OVERLAYS FI LES ARE CONTIGUOUS.
ALL OVERLAY FILES HAVE A .OL EXTENSION. DO A

R
L1ST/A/E -.OL

AND VBRIFY THAT THEY ALL HAVE A "C" AS AN ATTRIBUTE.

IN ORDER FOR YOU TO BE ABLE TO CREATE A CONTIGUOUS FILE, THERE MUST
BE ENOUGH CONTIGUOUS BLOCKS AVAILABLE.

0-21

0-22

XFER CAN ALSO BE USED TO CREATE A CONTIGUOUS FILE BY USE OF
THE "/C" LOCAL SWITCH. TRY TO CREATE A CONTIGUOUS FILE AND
NOTE THE ERROR THAT OCCURS:

XFER/A $TTI S200XXX.3/C

REMEMBER THAT THE SIZE OF A CONTIGUOUS FI LE IS DETERMINED AT
THE TIME OF FI LE CREATION AND CANNOT BE ALTERED. WHEN YOU
ATTEMPT TO CREATE A CONTIGUOUS FILE BY XFER'ING FROM $TTI,
THE CLI (HENCE RDOS) CANNOT TELL HOW MUCH CONTIGUOUS DISK
SPACE TO ALLOCATE FOR THE FILE; RDOS DOES NOT KNOW HOW MUCH
DATA YOU'RE GOINGTO TRANSFER. THEREFORE, A CONTIGUOUS FILE
CAN ONLY BE CREATED BY XFER WHEN THE XFER IS MADE FROM AN
EXISTING DISK FILE. SO TO CREATE YOUR CONTIGUOUS FILE WITH
XFER:

XFER/A

XFER/A

DELETE/V

$TTI

DUMMY

DUMMY

DUMMY

S200XXX.3/C

DISPLAY BOOKKEEPING INFO ABOUT THIS FILE.

WHAT ARE ITS ATTRIBUTES/CHARACTERISTICS? __________ _

**

OMIT UNLESS INSTRUCTOR APPROVES
**

DO A DISK COMMAND AND RECORD THE NUMBER OF FREE BLOCKS.

NOW TRY TO CREATE A CONTIGUOUS FI LE WITH THE SIZE OF FREE BLOCKS YOU
JUST RECORDED MINUS 10 (TO BE SAFE).

WHAT ERROR MESSAGE DID YOU GET?

THIS MEANS THAT WHENEVER YOU WANT TO CREATE A LARGE CONTIGUOUS
FILE YOU SHOULD DO IT RIGHT AFTER YOU CREATE THE PACK AFTER A FULL
INITIALIZATION. OTHERWISE YOU WON'T HAVE ENOUGH CONTIGUOUS BLOCKS
TO DO IT LATER.

o

o

o

o

0

o

RANDOM FILES

THE LAST FILE,STRUCTURE IS CALLED RANDOM. ITIS SOMEWHERE BETWEEN
CONTIGUOUS FILES AND SEQUENTIAL FILESAND HAS SOME NICE FEATURES
OF BOTH.

*

* O~ * #7495
* *

* *
* *
* 1 * #154

* * **********
* INDEX * * *
* BLOCK *)Iii: * 2 * #1776
* * * *
************ **********

INDEX BLOCK CONTENTS **********
* *

WORD 0 7495 * 3 * #492
WORD 1 154 * *
WORD 2 1776 *********'*
WORD 3 492
WORD 4& UP -1

AS CAN BE SEEN FROM ABOVE, A RANDOM FILE HAS AN INDEXBLOCK(CALLED
THE "RANDOM FILE INDEX BLOCK") WHICH POINTS TOTHE VARIOUS BLOCKS '
WITHIN THE FILE. FOR THIS REASON, THE FILE CAN BE ACCESSED RANDOMLY
AS WITH CONTIGUOUS FILES. UNLIKE CONTIGUOUS FILES, AND LI.KE SEQUENTIAL
FILES, A RANDOM FILE IS EXPANDABLE, AND CAN GROW TO THE USER'S ENVIRON-
MENT. . ' . ,

THE DIAGRAM ABOVE SHOWS TH'AT LIKE A CONTIGUOUSFILE,THE USERONLY
NEEDS TO KNOW THE RELATIVE SlOCK NUMBER, NOT THE PHYSICAL.LOCATION
ON THE DISK. THUS, THE USER ACCESSES BLOCK2,AND NOTPHYSICALaLOCK
NUMBER 1776.

.D-23

0-24

RDOS WI LL TAKE THE LOGICAL BLOCK NUMBER, DISPLACE OFF OF THE INDEX
BLOCK, AND LOOK AT THAT DISK BLOCK FOR THE INFORMATION.

THUS TO FIND BLOCK #2, LOOK IN INDEX BLOCK WORD 2 FOR THE PHYSICAL
BLOCK NUMBER (=1776).

GIVEN THE FACT THAT A BLOCK IS ONLY 256 (DECIMAL) WORDS LONG,ONLY
255 ENTRIES WILL FIT IN AN INDEX BLOCK. WHEN AN INDEX BLOCK BECOMES
FULL, THE SYSTEM AUTOMATICALLY CHAINS INDEX BLOCKS TOGETHER AS A
SEQUENTIAL FI LE AS SHOWN BELOW:

* * ------..
*INDEX * ---------.
* BLOCK * --------------.-

,..---* 0 *-,...
I ***********

I

I ***********
L.,,-* * ---------------,...

* INDEX * ----------..
* BLOCK *-

r--- * 1 * -----.
I ***********
I

*********** L.._,,-* * ---------
* INDEX
* BLOCK
* 2

* --------- -----
* .-..-
* ------

o

-----_ ..•• _. _ .. _._------------,...-----------

THIS SHOWS THAT 255 ENTRIES CAN FIT IN EACH INDEX BLOCK (THE LAST WORD
POINTS TO THE NEXT INDEX BLOCK RATHER THAN A DATA BLOCK).

THE DISADVANTAGES OF RANDOM FILES ARE THAT THEY REQUIRE AT LEAST.
1 EXTRA BLOCK OF DISK SPACE TO STORE THE INDEX BLOCK AND THAT AT
LEAST 1 EXTRA DISK SEEK IS REQUIRED TO ACCESS A BLOCK OF DATA.

THE ADVANTAGES ARE THAT THEY ARE EXPANDABLE, AND THAT BLOCKS CAN
BE ACCESSED IN A RANDOM ORDER.

RANDOM FILES ARE USEFUL IN KEEPING SMALL INVENTORY FILES THAT ARE
DYNAMIC AND MUST BE ACCESSED QUICKLY. THE REASON I SAY SMALL IS
BECAUSE AFTER A WHI LE (SAY 700 BLOCKS)THE SEQUENTIALLY STRUCTURED
INDEX BLOCKS BECOME A FACTOR IN DISK ACCESS TIME. LARGER FILES THAT
MUST BE ACCESSED QUICKLY SHOULD PROBABLY BE CONTIGUOUS. AND ENOUGH
SPACE LEFT FOR EXPANSION.

WHAT ARE THE OTHER USES FOR RANDOM FJLES?_~_,..--_____ _

RAN DOM FILE EXE RCISE

JUST AS A SEQUENTIAL FILE CAN BE CREATED IN TWO WAYS, SO CAN A RANDOM
FILE. FIRST, THOUGH, CLEAN UP BY DELETING TEST4.

R
DELETE/V/C TEST4

ALSO .00 A DISK COMMAND. FREE ___________ USED __ ~~

D-25

D-26

THE COMMAND "CRAND" IS USED TO CREATE A RANDOM FILE.

R
CRAND TEST4 (TEST4F)

DO THE ABOVE COMMAND AND THEN A DISK COMMAND FREE USED_

HOW MANY DISK BLOCKS WERE USED? WHY? ____________ _

DO A LIST COMMAND. THE ATTRIBUTE "D" INDICATES A RANDOM FILE.

ALL RDOS EXECUTABLE SAVED FI LES ARE RANDOMLY ORGANIZED.

DOA

R
LlSTiA/E -.SV

AND VERIFY THAT THIS IS SO. (INCIDENTALLY, THE STARTING BLOCK NUMBER
IS THE BLOCK NUMBER OF THE RANDOM FI LE INDEX BLOCK.) NOTE ESPECIALLY
THAT ALL SAVED FILES HAVE AN "S" ATTRIBUTE TO INDICATE THAT THEY ARE
SAVED FILES.

NOW DELETE TEST4, AND WE WILL USE THE OTHER METHOD OF CREATING A
RANDOM FILE. 0 .

R
XFER/A $TTI TEST4/R

THE /R INDICATES THAT YOU WANT IT TO CREATE A RANDOM FILE INSTEAD OF
THE DEFAUL TSEQUENTIAL FI LE. THE /R IS CALLED A "LOCAL SWITCH" AND
MODIFIES A PARAMETER TO THE COMMAND RATHER THAN THE COMMAND
ITSELF. (THE /A IS A GLOBAL SWITCH).

DO A LIST COMMAND TO VERIFY THAT IT CREATED A RANDOM fiLE, AND A
DISK COMMAND TO SEE HOW MANY BLOCKS WERE USED UP. WHY WERE THOSE
BLOCKSUSED? ______________________ __

RDOS SAVED FILES CAN ONLY BE RANDOMLY ORGANIZED. LET'S
TEST THIS OUT WITH THE EDITOR. FIRST WE WfLL MAKE IT SEQUENTIAL.

R
INIT UTIL
R
XFER UTIL:EDIT.SV MYEDIT,SV (MYEDITF.SV in F/G)

NOTE NO GLOBAL /A IS USED BECAUSE THIS IS A BINARY TRANSFER, NOT AN
ASCII TRANSFER. WE MUST ACCESS EDIT FROM THE UTILITY DIRECTORY BECAUSE
THAT'S WHERE IT RESIDES. o

o

.----~<~ ----------

SINCE WE ARE TRYING TO FAKE A SAVED FI LE,WE NEED TO ADD THE
ATTRIBUTE THAT SAYS THAT THIS IS A SAVED FILE. SO

R
CHATR MYEDIT.SV S

TRY TO EXECUTE MYEDIT BY TYPING IN

R
MYEDIT (MYEDITF in FIG)

WHATHAPPENED?~ ____________________________________ ___

NOW DELETE MYEDIT.SV AND CREATE A NEW ONE, RANDOMLY ORGANIZED.

R
XFERUTIL:EDIT.SV MYEDIT.SV/R

NOW CHANGE ITS ATTRIBUTES.

R
CHATR MYEDIT.SV S

EXECUTE ITIN THE SAME WAY.

R
MYEDIT

AN ASTERISK PROMPT MEANS YOU AREIN THE EDITOR. TYPE AN H$$ TO GET
OUT. THE DOLLAR SIGNS ARE REALLY ESC CHARACTERS. THIS CHARACTER
IS ON A SPECIAL KEY LABELED "ESC" AND IS LOCATED SOMEWHERE ON YOUR
KEYBOARD. IF THAT DOESN'T WORK, HIT A CONTROL C.

THAT'S IT FOR EDITING, FOR NOW, SO DELETE MYEDIT.SV

D-27

S200 RDOS User Laboratory Exercise

CLI LAB 3 - DIRECTORIES, LINKS

This section concerns disk files again and also links, secondary partitions, and subdirectories.
Files, directories, and links to be created are referred to as "S200XXX." Please
substitute your own names for them. You'll be using many of the commands and
techniques introduced yesterday, so you may use the previous lab exercise as a reference.
The new CLI commands used today are:

CHATR GOIR

CHLAT INIT

CPART LINK

OIR RELEASE

COIR UNLINK

0-28

0

o

o

o

o

CHANGING FILE ATTRIBUTES

Attributes are features of a file which can be set and changed by the .user .. They
are most commonly used for file protection.

Copy S200SHOW To S200XXX.1

Now make your file read-protected.

CHATR S200XXX.l R

Display bookkeeping info about this file. What are its attributeslcharacteristics?

Display the file's contents with the type command. What happened?

Remove the restriction.

CHATR S200XXX,1 0 (zero)

Can you display the file now? ________ __'' ____ - __ ~

Use CHATR to apply the "0" characteristic to S2ooXXX.1
Whathappened?_· ___ ~ _ __" _______ ~~~ _____ ~~~~

Remember that characteristics are distinctive features of files which ate set by
RODS and c;ahnotbe changed by theuSer. 0 == RANDOM FILE.· .

Make your file permanent (P Attribute).

Can you displayfile bqokkeeping about the file now7_..,......_-..,... _______ -.-~

. . '.' .'

To display bookkeeping about a permanent file; you must use the,ilA"global
switch in the list command.

Try to delete your file.

0-29

D-30

CREATING A LINK

Links are a means whereby one file can be referenced by one or more alias names.

Create a link to S200XXX.1

LI N K S200XXX.1 L S200XXX.1

TYPE S200XXX.1 L

TYPE S200XXX.1

What was different between the two outputs?_-'--__________ _

Display bookkeeping info about your link.

A link is merely a UFD which points to another UFO.

PROTECTION THROUGH LINKS

Links can also be used to protect a file. An extra set of attributes can be placed on
a file that will be used whenever that file is accessed by any link.

Apply the link access attribute read-protect to S200XXX.1

CH LAT S200XXX.1 R

Note that the real (resolution) UFD determines the attributes added through
links -- not the alias (link) UFO!!

How does list report the newattribute? ______________ _

Now, TYPE S200XXX.1

TYPE S200XXX.1 L

Whathappened? ___________________ ~ ____

o

o

o

o

o

o

~--

REMOVING A LINK

DE LETE S200XXX.1 L

What happened?_~ ____ -,--____ --,-____________________ _

Remove the P attribute on S200XXX.1 and try the delete again. Then do a LIST
on both files to see what's gone.

Accessing a file through a link takes you to that file (the resolution file) and then
performs the CLI operation: DE LETE, TYPE, XFE R, etc. List is the exception.

Notice that when accessing a file through a link, two sets of attributes apply: Link
access and file. Butwhen accessing a file by its real name only the file attributes
apply.

To remove a link use the unlink command.

UNLINK S200XXX.1L

Try to list S200XXX.1 L

SUBD I VIOl NG .·DISKS

The total of all the space on a disk is a primary partition and has the same name as
the disk unit (DPO, DP3F, OK 1, for example). Parts of the disk may be sectioned
off as sec:ondary partitions or subdirectories. Primary partitions, secondary partitions,
and subdirectories are all directories containing access information (UFO's) of files.

Create A Secondary Partition.

Secondary part~tions are a fixed, contiguous set of blocks taken from a primary
partition.

CPART YOUR-PARTITION (Use an original filename here)

Note that size is a required argument. Once created, a secondary partition can't be
expanded.

CPART YOUR-PARTITION 96

List bookkeeping about YOUR-PARTITION.

LISTIE YOUR-PARTITION.DR

The DR extension is automatically ap~ended on partitions and subdirectories.

0-31

What are the secondary partition's attributes/characteristics? _______ _

What is its size? ______________________ _

Is this the size you created? __________________ _

(1 block = 512 BYTES)

, Create a Subdirectory ,

D-32

Subdirectories are variable in size and randomly organized. They may be carved out
of either primary or secondary partitions.

CDI R YOUR-SUBDI RECTORY (Use an original filename here)

No size needed here. List the bookkeeping on this subdirectory. What are its
attributes/characteristics?

Changing Directories

Directories are used to isolate groups of files (i.e. all the work done for one client).
Whenever you access a file, RDOS searches the current "default directory" for the
UFD of that file.

Find the default directory--

GDIR

The list command reports only on files in the current directory. Is 520OSHOW in
this primary partition?

Make your subdirectory the current default--

DI R YOUR-SUBDI RECTORY

Verify the change by finding the current default directory.

File access in directories

N ow try to display S20OSHOW.

Whathappened? __________________________ _

o

O·
...

c

~------"'-' .. --.-'-------------------------

LlST/A -.- These are the only files in your subdirectory.

LINKS AND DIRECTORIES

Links provide not only additional protection to files, but also an easy way to access
files across directory boundaries.

Create a link in your subdirectory to DPO's copy of S200SHOW.

LINK S200XXX.2L DPO:S200SHOW

Now,

TYPE S200XXX.2L

A link can be used to span directories for many commands. Create S200XXX.2
by XFERing from S200XXX.2L. Did you get S20OSHOW's contents?

Links can even be used to create their own resolution files!

LINK S200XXX.3L S200XXX.3

Check the bookkeeping to see if the link was created.

Well, was it? _______ --'-_______ _

Try to type the link to display it.

Whathappened?_~-----------~-----~--~----

Create a text file by XFERING from $TTI to S200XXX.3L Now,
"TYPE" the link. Make DPO the default and verify that S200XXX.3 has
been created.

Ain't links wonderful?....,-_______ -'-_-....;...-.--

INITIALIZING DIRECTORIES

Let's try that last trick with your secondary partition (The contiguous type of
directory). Link to it from the primary --

LINK S200XXXAL YOUR-PARTITION: S200XXXA .

List it. OK so far? _________________ ------

0-33

D-34

Now, XFER from S20OSHOW to S200XXX.4L.
Whathappened? __ __

RDOS can remember the names of only a limited number of directories. To let RDOS
access files in a directory, it must be introduced to RDOS thru initialization. DPO was
INIT'ed when RDOS started up. Your subdirectory was INIT'ed as a part of "DIR".
You haven't INIT'ed YOUR-PARTITION so RDOS doesn't recognize its name.

INIT YOUR-PARTITION

Now,

XFER S20OSHOW S200XXX.4L

Display the contents of the link.

RELEASING DIRECTORIES

Once a directory is "IN IT"ed it stays that way till"RE LEASE"ed. Only one directory
at a time is the defau It, but many can be I NIT' ed at once. The exact number depends
on the RDOS you're using. To allow room for new INIT'ed directories, release those
you're done with. 0
RELEASE YOUR-PARTITION

Now,

TYPE S200XXX.4L
(That link resolves to a file in the partition you just released)

You should get the same error message that started this section of IN IT'ing directories. o
DELETING DIRECTORIES

When you delete a directory, you also delete all the files that live in that directory.

How many free blocks are there? _______ ---' __

DELETE/V YOUR-PARTITION.DR

o·

c

Try to get rid of YOUR-SUBDI RECTORY.DR.

Your subdirectory is stilllNIT'ed so RDOS figures you're still using it; tell RDOS to
let go of the directory with the RELEASE command. Now delete it (Remember the
.DR extension).

How many free blocks now? __________________ _

0·35

D-36

S200 R DOS User Laboratory Exercise

DISK EDITOR LAB

Note

This exercise is optional because of its general applicability and degree of difficulty. So
continue from this point providing that you have time and with your instructor's approval.

You'll be using the disk editor to trace thru directories and find a file. Then you'll use
DSKED to recover a deleted file. Be careful when using DSKED - - it is a very powerful tool.

Create a secondary partition.
Create a sub-directory within that partition.
Create a file in that sub-directory.

Now invoke DSKED and trace through your file. Use the diagram on page D-39 as a
reference.

Boot up DSKED. by - -­
BOOT DPO
Answer to "FI LENAME?" -- DSKED
(DSKED runs instead of RDOS, not under RDOS)
Answer to "Disk Type?" --

4234 for top loader
4047 for front loader

Answer to "Disk Unit?" - DPO

(FS) Determine the frame size for this disk:

(SPHV)

3:61

Determine the hash value for your secondary partition. The hash value is the
word of SYS.DR's index pointing to the block that will contain a UFD:

FS;your partition.DR=

(SPUFD) Now, what is the address of the block containing the secondary partition's UFD?

6:SPHVI

Find the UFD for your partition in this block. That is, search SPUFD: 1,
SPUFD:2 looking for the UFD describing your-partition.DR. SPUFD:O will
tell you how many UFD's are currently held in the block.

When you find the UFD, determine the starting address of your secondary
partition (SPADD). It is the 12th octal offset within the UFD which points
to the SYS. D R of the secondary partition.

0 ... :·,·
..

(.)

o

o

o

:1;

0···,··········

o

o

(SDHV) Now determine the hash value for your sub-directory:
FS;your-sub-directory.DR=

(SDU FD) What is the address of the sub-directory's UFD block?

SPADD:SDHV!,--· ~ __ -'---""""-_"""-'-_""';'-" _____ ~ ______

Find the UFD for your sub-directory in this block; search from SDUFD: 1

(SDADD) When you find the UFD, determine the starting block address of your
sub-directory.

Determine the hash value for your file.

(FHV) FS;your file name =

What is the address of the. block that contains the UFO for your file?
(FUFD)

SDADD:FHV/

Find the UFD for your file.in this block.

(FADD) When ypu find the UFO, determine the starting block address of your file (FADD).

Go to that address and verify the contents of the file. (Display from FAOD:O
several words. Isthis the contents of your file?)

Togo back to CLI hit the escape key (ES.C), then Z and re-boot the system.

RECOVER A DELETED FILE

Once your back in CLI, create a file in..y.our secondarY partitioh. Now delete
the file.

To recover this file we're going to invoke the disk editor and rebuild the file's
UFD. We must also increment the first word of the block containing the file's
UFD by 1. The first word keeps a count of the current number of UFD's ina
block. Once we have recovered the file we should be able to print it. Remember
the blocks. comprising the recovered file are free according to MAP.DR $oyou
should disable spooling (SPDIS $LPT) so the spooler do.esn<;lt grab these blocks.

D-37

D-38'

Boot Up DSKED

Recover your File

Find your file's UFD. Remember your file is in a secondary partition, so
you'll first have to trace to the secondary partition and then to the file.

SPHV SPUFD ~ SPADD ~ FHV ~ FUFD

When you find your file's UFD, put the first two characters of the file
name back into it. Then increment the first word of the block (containing
the UFD) by 1.

Go back to CLI.

Disable Spooling

SPDIS $LPT

And Print Your File.

o

o

0'

~

o o

PHYSICAlL Y ACCESSED
i •

61FRAME SIZEIFS

BLOCK 3

o
PRIMARY PARTITION: DPO

SYS.DR

T
SPHV

jJ SPUFD I

BLOCK 6

-
o

DATA ENTRY BLOCK

\
I

of INUMBER OF UFO'S
11\1 BLOCK

o
12

UFO

SPADD

· •
•
•

BLOCKSPUFD

ONDARY
RTITION UFO

TOSYS.DR
SIS THE 12th OCTAL 'I

RD IN THE UFO.

SECONDARY PARTITION: your-partition. DR SUBDIRECTORY: your-subdirectory.DR

SYS.DR OATAENTRY BLOCK
i

o
SYS.DR DATA ENTRY BLOCK , FRDMSPADOT.

UFO I FHVI 1 / UFO SDHV

11 .SDUFD -HI lM/ 12-1 FADD

UFO
• ,gj. SDAoDY:!\'~~ __ ul •

•

BLOCKSPADD BLOCKSDUFD BLOCKSPADD

o 1 12 13 . 14
THIS IS THE CONTENTS OF YOUR FILE,
IF IT WERE CREATED AS GONTIGUOUS

D-40

Ii!:

THE FOLLOWING SHOW UFD'S WITHIN DATA ENTRY BLOCKS
II O~80~~ 84111/ !347524 05153:1 051400 000000 047514 040012

li~! C"'_·'~~l..l(~).=l OOO',~~~:,5 (.10 to(1~:J CiO~)(~ .. ~~i O~=1(1t=1'=11 ()OLJ~)~:::11 OI.:1~=1~:::100 OOOOE1(1

0((~cI00 000808 0008~3 051104 04:52? o47~~e0 000000 000000
• ~; -~ t:.1~·' ~=iOCII.~l~~-;..t (1~J~~1UO(~ O(J~)l.2=: OL=i~=l=,'J:-O (!02Cl::rS (l~:~6=:~:6 ~J05515

~O 0(:70='0 000800 08~j000 880000 0000=~ 058101 051106 000000
5~1 00~·~j0 080800 0~;,1~22 00a000 000000 0000~O 000015 001003
60 005='65 005365 00080:. 000000 000000 000000 000833 000000

~
· . ..J ...•.•.....

· PC'ClSCI
LE: . S. '-'. t'l

.... F'AF.:F.
" SR

70 O='00~=' 850~22 O'l7502 031000 04S~2] 000004 000000 000084 03PR082. LS.
1(10 (1'-::1'~1;~4.2 00'5=:'12 00t:~~:t:~';:: ~:::105"+25 O(10 l : i 14 (1~=100(10 C~~=~(1~:::10(1 000000 II •• J: .
110 00002~ 000000 038515 047000 000000 000000 051524 006004 lMN ST.
~20 000008 000020 000000 006104 006]62 00~362 007012 000008 . , D ..
'1?0 008000 000000 000013 000000 000000 000000 000000 000000
1~0 000000 000000 000000 000000 000000 000000 000000 000000

]70 000000 000000 000000 000000 000000 800000 000005 000000
~OO 08000:: 0405~4 046523 050104 000000 000000 051102 000004
410 0000JO 000000 000734 002214 005514 005514 005444 000000

· ALt-lSPD. . PE: ..
... " L. \.. $..

420 000800 000000 000033 05~53~ 051400 000000 000000 000000 SYS.
·l10 O·t~:122 000004 000000 000045 0003:70 002423 086336 006336 LS %.
440 1>:'·141:: OO(:HX1 l:1 ,:HXhX10 0013000 0000::::: 044115 05(11::1 (142000 Hr·lP'T'[).
,15Ci 08(1800 000000 046102 000004 000000 000000 000234 002660 ... LB. , .
460 00S~66 005266 006030 000000 000000 000000 00003? 000000 . G, 6. (,
·\70 0461(15 03:0400 000000 800000 000000 000000 000000 000000~LE~ ... ,

~
.... J ...

..0

508 0300:2 005265 886571 6065?~ 0064~6 000000 000000 000000
510 0000=']' 000000 030523 031000 000000 000000 051182 800004
~20 0080'30 000001 000234 00606:: 006::S2 006362 007811 000000
~~ .. (! C'J~I~('0 000(!JJ 000827 000000 0::1l1~~ 04;'000 00G280 000000

.. lS2 PE:.

::,60
570

C1=::.1"i~J;~

O'=~7~::)20

O~=iO(1(10

0(16~:62

000004 000000 080000 080000 0061J7 006262 806162
000000 000(!00 000000 0000:: 000000 0::~122 030400
000000 05~102 000004 080000 000001 0007'46 006~27
086362 00704~ 000000 000008 000000 0000:3 008000

•• .,i"

........ 2t'11 I.
PE:

· 251.
PB I·j

60J O]:1~15 047'008 008000 000000 0475~4 000010 000000 00000: 2MN OL.'.
610 001000 006317 006362 006J62 007051 000000 000300 000000
~:28 000023 000000 000000 000080 000000 000000 000000 000000
6?8 000000 000000 000000 000000 000000 000000 000000 000000

· . CI . .) ..

770 IXn,1(1C1f1 00(1(10(1 (H:H,10(n) 0(K'IICi(n) l"l(U)O(H) OOO~X10 000010 (n"H:::H:U)I)
10001000~021051104 047523 041000 000000 000000 046102 000004 .. RDosa LB ..
1010 000014 000326 001717 006336 005514 004442 000000 ~ Q ~ L n ••

1020 _00 000000 000033 043111 047104 042000 000000 FINDUFD .. .
1030 000000 000000 000000 000035 006571 006571
~040 70 000000 000000 000000 000033 031~2~ 03L000 . 8 252.
1050 00' 100 000000 000000 000004 000000 000431 0047~5 , .. M
1060 00 62 006362 007036 000000 000000 060033 000000
1070 03 23 031000 000000 000000 051522 000000 000000 2S2 SP
1100 00(00 006300 006362 006362 007020 000000 000000 ... @
1110 000 <3 000000 000000 000000 000000 000000 000000
1120 000 10 000000 000000 000000 000000 000000 000000

~' f; :+:

NUMBER OF U FD'S
IN THE BLOCK

THE STARTING BLOCK OF
THE FILE

o

o

o

THE UFO AFTER FILE DELETION

':; 00(1(::::13: 041117 (14?524 101515::::1 I21S141X1 00012":11) 0475,14 1:;:4:xl:1 B .. 'OI.IJ.Tb.'T'\~'.li., '. r.UL .. @.'
1(1 (l;:\~~t~:!(1(1 (i(i~:U:::165 0(1i~3~30 Ot1002i (10(1~~'4C1i (iL)(1C101 (~(1(1gtj(t"° t-ti:3(fO~3(1 5. r
~0 008000 81210000 0000J3 051104 047523 047400 01210000 000000 R005Q
:0 046').',12 00(;(1(14 (K11)01211) 12112.1(112:: 0\!:10J70 (11)2055 (11)6:36 (11)5515 LB ... , . 5 ... -. ~'. 1'1
"10 O')"O:'~O 01::'0':1"::11) OI~1121')OO (1000(10 (1,,,,01)3:3 ('5.)11::,:1. 0'511(16 13(11)(1131) PARF ..
S~) (1L:.i~~1~)~:B~t Ot:1~1(~O~) O~i1522 O(1(1(H:H:1 (1(1(t(1J::u3 (n30~::rr(1 (H:::u)€11!:i (103:(H33 SR
,;~) (h=1:;,~·r.:.5 0053:65 ~:::n3~;'H)k.1:: (n2ltu](nj (1(10J.)('~1 (H)~::hj~H::t ~:1~n:u333: (1(1(1(n3f1
{'(1 «(;'006:3: 05~):1.22 0475132 1"13:11)('1(1 04612:: (1)0121.)4 0'::'(")0(1 IX1(H)04 03:PROB2, L5,

100 01210242 12105312.006362 005425 000014 00012100000000 000000 • n. J~ ,
110 0(110103'3> 1::;,::11)131:::11) 1)3:0515 047(1(10 000').30 00000.) 051524 01](1(1(14 :1NN ST ..
12.,1 00013(10 00(1(120 (1('1>3131;:11) 1)1<161134 (1":163:62 00';:'62 807.)12 1<101)(11)(1 O ' .. .
1:0 1308800 00001313 00131333 131210006 0601300 000080 000000 000000 , ..
140 I<lIX:i(1I::1(1 0(11).;:1~3Q 1~1:n::1I:::100 00~1I31:::1(1, 01011::11)(10 001:113(11) 131",00(10 01~'I01300 .. ,

370 (1I:)':)00(1I)1:i(I(100 0(1(11)0(1 00(31)1<10 OOOOIXl: 1~'I(10(l(lI:::1 000005 00~K1(1) .. ' , ..
.J.(n) O')O.)(C 040514 046523 O!;:i(1:11)4 (11)01011)(1 00(113(11) 051102 1)1)131)04 , . AL~lSP[). , .. Fm ..
41"3 (H:h)001) 0(11011)(1(1 (KII)('J4 002214 1)05514 0(15514 13,)5444 Iji2l0IX,0 \ ... L. L. $..
42(t 1)000('113 00013.)0 IjOOI)33: 1)5153:1 0514(10 (11;:":::100;<:1 101("211)1<11] l)(t(1£1IXt , 5'r'S. , . " ..
,~J'I] 046123 0IX1(1I)4 1)0(11:::11<11] 0(.1(1(145 0'XC70 1)02423 00633:6 13(163:36 LS ;-: .
• 140 0(14413: 000000 000001:::1, l)fj(1I:::;~'I('I 0'::1003:~, 1:,441:15 135013:1 1342(1130 " Ht'1P'r'D.
·~5l) OOO'XII] 000(1(11) 046:1132 0(1)(104 000(1IXI 00(1(1»(1 000234,1:::11)2660 LB 0
4';0 005266 ':::H:::6266 0061~'50 0(11)0(10 000000 (lI)C1.::,I)O OOOCC3 l:::lLI0(lIj(, . 6, 6. <.
47,:::, 046105 (CI::'400 0800(1) (,(10(11:':1(, OO,Xll)l) (1(11;:":::11)0 (1I)(1lj(lI) 1)(1(181<1(1 LE1.
50t."~, ~3(3(1(1::::2 (n35265 ~~U36571 ~'3065?1 ~:H)6426 ~~1(1~~1(H3(1 (n)(t0~::)(1 la(n~10"jQ •. ~ .. 5
510 00003? 008000 030523 031000 0000(1(1 00800(1 051102 000004 152 RR .
520 000000 00000:1 000234 006063 006362 01216362 007011 000000 3
,:;:.:-' IXH}OO(, (1(l(H:JOO 0(11)02::'(IX1,:::1I:::'00 IcGlll':, 0470·:::,1:::, (11)0(1(11::1 0(..:,000 , .. 2NN~
" ,,~, O~:;:!"U::12 O(1IX1(14 1)('I12KlI).;:l (1,;:H:::1I::1I)(1 000;;:1IX, 0061.:7 0063:62 006:::~62 RR _, .. .
~~0 007628 000000 000000 000000 000033 000000 031:123 030400 251.
5((1 O(1IXHX1 1)1300(11) 1351:102 0(11)1)04 000000 00(1)01 1)00746 (11::16:127 RB. !oj

'=,7.) (1)6:3'62 0063:62 ~jO?041 0(1(lIX1(1 000000 OOO'X',} O'XK13::: 00iJ!:,0(1 !
,,:l)(l 031115 047000 IXH)OOI"' 0(11)0(10 047514 00001.0 0\)0000 OOI~'O(G 2t-1N, OL.
618 0010~e 006317 006362 e~6362 007051 000800 000000 000000 . ,", o)
6~';J I)D,XC::: ,00(11:::'00 1:::1I)(1(10~:::1 IX1(tlX1(j 0(11)1.)0(1 000')00 ooo.jQO 1210(11:':1('10
;;}O OCHXH)(l 000000 O~)OOoO (100000 00,)(100 OC1>;:1(1.X1 OO(HX10 (11)0(11)0

"'·t· .,

;''70 (1L;:1L)')(11) 01300013 001<1I~1013 001301210 000(100 1)10112100121 012100:10
10(11)1 0(11:11)(11105:1:11214 1347523 134:1000 131<1013130 1301210130 0461'212

01<10000
130013Q4
0(11)1)00
13131:)13'21,]
0(1657:1

· . ROOSe LB. .
10J.0 (lIZll- 00 0(1)0:14 0003:26 0055:14 1304442
:1(21) (11) _:1 1)(113(1(10 0(10(tJ3 (15251)6 0420013
10]0 (11)£ 0(I(l(ll<tI3 1)(1I,KII:;:'0 (11)4740 01!:11557il.
104(1 0000013 (1(11:;:10130 00(11),),) .1)3:1:123
:1051-3
106(1
:1~]71] 031'
l1CIl"1
11.11]
11213

+.:+:.+:

130(1))(12 (101)43:1
0'31313131jl)(1I30J3:
;)lj(1I:.11214 (1131:::10(11)
1""~''.:l,,,,1,:.1I) 1)ljl)O(lI)
(1I:::101],)L;:1 1)(1(1(11)1)
(11)00":11) 0(10001;::1

· v. O. ~. L. " ..
· •... " .N[)UF[) ...

03::1(11]13 . 8 ... " .'~ ... 252.
e':1134715•.. ~1
iXII)000
0(1(101)1)
IjQtI)1300
0001jl]13
00000(1

252 SR:
••• @ •••.•••••••••

NUMBER OF UFO'S
COUNT DECREMENTED

FIRST TWO CHARACTERS
OF NAME ARE NULLED

•
0-41

D-4Z

S200 RDOS User Laboratory Exercise

TEXT EDITOR LAB

Introduction:

In order to.easily enter and modify ASCII text, Data General has created several text editors.
Each editor is similar in command structure for ease in learning; the differences occur as
extensions providing additional capabilities. The most fundamental editor is EDIT.SV; once
learned, it provides a sturdy foundation to grasp the extended editors. The first phase of this
lab is to correct the text in a file within the UTI Ldirectory called GETTYSBURG.

The second phase of this lab will be program development of a "canned" FORTRAN program. 0
You will merely enter in the fortran statements, compile the program, load the program and
execute it.

The multi-editor, MEDIT.SV will be used to allow editing over a multi-terminal line.

So, let's get started:

o

o·

o

YOUR INSTRUCTOR HAS ALREADY BROUGHT UP THE MULTI-TERMINAL
EDITOR. YOU SHOULD ESTABLISH A CHANNEL TO YOUR COpy OF THE
GETTYSBURG ADDRESS. TO DO THIS,FIND THE TAG ON YOUR TERMINAL
THAT SAYS "LINE #n". 'THE n IS THE HARDWARE LINE FROM THE COMPUTER.
YOU WANT TO EDIT A FI LE CALLED "GETTYn" WHERE "n" IS THE LINE NUMBER.

USE UYGETTYn$$ TO OPEN AND YANK IN GETTY (BAD COPY).

CORRECT THE ERRORS.

CLOSE WITH US$$.

DON'T USE THE "G" COMMANDS FOR THIS EXERCISE (GR,GW,GC).

D-43

EDIT COMMANDS

FILE ASSOCIATION COMMANDS

GRfilename$

GWfilename$

GOfilename$

GC$

GET A DISK FILENAME OR DEVICE FOR READING INPUT

.. GET A DISK FILENAME OR DEVICE FOR OUTPUT

CLOSE CURRENT OUTPUT FILE GET ANOTHER FILENAME

GET FOR CLOSING THE CURRENT INPUT & OUTPUT FILENAMES

INPUT / OUTPUT COMMANDS

Y$

- A$

. - P$

- Itext$

YANK THE NEXT PAGE INTO THE CHARACTER BUFFER: A
NUMBER MAY PREFACE THIS COMMAND AND THAT NUMBER
OF LINES WILL BE PUT INTO THE BUFFER. PREVIOUSLY THE
BUFFER IS CLEARED AND IS A POTENTIAL PROBLEM AREA
FOR NEW USERS FOR DATA LOSS, BE CAREFUL ...

APPEND THE NEXT PAGE TO THE CURRENT PAGE IN THE
BUFFER A NUMBER MAY PRECEDE THE COMMAND TO APPEND
A NWMBER OF LINES TO THE CURRENT PAGE .

PUT THE CURRENT PAGE TO THE OUTPUT FILE. IF A NUMBER
PREFACES THE COMMAND THAT NUMBER OF LINES FROM THE
CHARACTER POINTER POSITION (CP) IS OUTPUT.

INSERT TEXT FROM THE CURRENT POSITIQN OF CP UNTIL
ESCAPE. A COMMON ERROR HERE IS TO CONFUSE CARRIAGE
RETURN FOR ESCAPE AND THEREBY INCORPORATE
COMMANDS IN WITH THE TEXT. A VERY SEVERE MALADY IS
TO INCORPORATE THE PUT COMMAND INTO TEXT AND THEN
ACTUALLY YANK IN THE NEXT PAGE, LOSING THE PREVIOUS
PAGE OF TEXT. WATCH OUT. . . .

o·

o

o

SEARCHING

- Stext1$

CHANGE COMMAND

- Ct1$t2$

DISPLAY

T$

- U?

A SEARCH IS CONDUCTED FROM THE CURRENT CP POSITION
UNTI L TEXT1 IS LOCATED, THE CP IS POSITIONED JUST AFTER
TEXT1.

A SEARCH IS CONDUCTED FROM THE CURRENT CP POSITION
UNTIL T1 IS LOCATED, T1 IS REPLACED WITHT2 AND THE CP
IS POSITIONED JUST AFTER THE Tl TEXT.

DISPLAYS THE ENTIRE BUFFER; IF A NUMBER PRECEDES THE
T COMMAND THATNUMBER OF LINES ARE DISPLAYED FROM
THE CURRENT POSITION OF THE CP ..

DISPLAY CURRENT FILE OPEN FOR INPUT AND OUTPUt.

DISPLAY THE LINE NUMBER THAT CP IS LOCATED ON.

DlSPLAY TOTAL NUMBER OF LINES WITHIN THE TEXT BUFFER.

MACRO IMPLEMENTATION

-- XMcommand$

XD

- X$

-X?

THE COMMAND STRING FOLLOWING THE XM COMMAND
SERVES TO DEFINE A MACRO COMMAND STRING FOR REP­
ETITIVE EXECUTION. REDEFINITION WILL ALSO REWRITE
THE MACRO BUFFER

DELETES THE CURRENT MACRO IMPLEMENTATION.

EXECUTES THE CURRENTMACRO COMMAND STRING; IF THE
COMMAND IS PRECEDED BY A NUMBER, THE MACRO IS EX­
ECUTED THAT NUMBER OF TIMES.

: DISPLAYS THE C!,JRRENT MACRO STRING.'

COMMON PROBLEMS

- THE SEVEREST ERROR WILLOCCUR WHEN STUDENTS FORGET TO PUT A BUFFER
OUTTODISK, AND ACCIDENTLY YANK ANOTHER PAGEWHICH CLEARS THE BUFFER .

. - THE STUDENT WI.LL FORGET THE INSERT COMMAND "T", SUCH THAt INSERTIQN
WILL.OCCUR ONLY WHEN THE EDITOR $TUMBLESUPONAN "I,i IN THE TEXT.

--'- I F THEY ARE USING THE 6012 TERMINAL, CERTAIN CONTROL CHARACTERS WI LL
CHANGE THE CHARACTER INTERPRETAtiON ay THE EDITOR. OUTPUT WILL LOOK
LIKE" (S <Mil. THE REMEDY IS TO STRIKE THE SAME KEY WHICH CAUSED THE
MISINTERPRETATION,

NEVER IGNORE ERRORS -JUST WHEN YOU THINK YOU'RE SECURE, EVERYTHING
IS LOST ...

0-45

0-46

S200 RDOS User Laboratory Exercise

PROGRAM DEVELOPMENT LAB

The next phase involves program development of a FORTRAN program, contained below.
This details the phases of development that all higher level language programs must proceed
through and the code representation at each phase. Several errors have been imbedded
in the program for error diagnosis. The errors are syntactical in nature, except for one
logical error and for the FORTRAN neophyte the program is written correctly in an
appendix in the student handout. So enter the following version as the firlit step in
program development - ASCII source file creation.

C THIS IS A FORTRAN TEST FILE, THE PROGRAM DEMONSTRATES
e THE CODE REPRESENTATION AT EACH PHASE OF PROGRAM DEVELOPMENT.
C THE ALGORITHM ACCEPTS: LOWER LIMIT, UPPER LIMIT, AND IN-CRE-
e MENT TO SUM A GROUP OF NUMBERS OVER. THE RESULTS ARE

PRINTED OUT.

10 ACCEPT "LOWER LIMIT, UPPER LIMIT, INCREMENT", LL, LH,
C

SUM = 0.0
DO 100 I = LL, LH INC

SUM = SUM = F LOAT(I)
TYPE "I = ",1," SUM = ",SUMPTUOUS

100 CONTINUE

GO TO 100
END

Note: This program is intended to have errors.

o

o

o

Now compile your program with the following command:

R
FORT your-program-filename $LPT/L

Did it compile? ________________ __ ~ ______ _

What came out on the line printer? _____ ...,.---------------

Do you have any syntax errors?I-_________________________ _

Where are they? Circle them on your line printer listing. Now go back to the edit stage and
fix your program and recompile it. (Correct program listing ison page B-1.)

0-47

If you have a good compile, proceed, otherwise consult your student handout appendix B for
proper syntax.

How many words are generated for your program? ____________ _

What is the first octal value generated for your program?

___________ , and the last? ______________ _

Now load your program with the following Relocatable Loader Command:

R
RLDR/P your - program - file FORT.LB $LPT/L

What is the FORT.LB file used for? ___________________ _

Did you get any errors (yes, no). If you did check with your instructor, you shouldn't have
any errors during the load phase.

What came out at the line printer? _____________ _

What does the list tell you? ______________ _

Save both the source compilation listing and the program load map, there are questions about
these later.

Now execute your program:

R
your-program-file

Did it perform as expected? __________ _

If not, you have a logical error, which you should because we put one in the source program; but
only one. So eliminate it and edit it from your source.

D-48

o

.. 0'·"·····.·
--------."--.~. ---------------------~---"'"

OPTIONAL:

If you can read Fortrancode you know that the program is an endless loop. Type Control C
to terminate your program. This causes a core image which was executing to be copied into
(F) BREAK.SV.Printthis file on the line printer up to location 2000 octal:

BREAK
R
FPRINT/LBREAK.SV 20CO!T

The FPRINT command shows you exactly the core resident code loaded during execution.
The load map documents this; using the assembly source, the load map and the BREAK.SV o file make the following comparisons:

o

"

o

Where does the load map say your program starts?-'-________ '-"-___ --'-~
What is the first octal value in your sourceprogrCi!m? ____; __ __,_---------
Now, look at the start location of your program in the BREAK.SV listing, what octal
value is located there? ________ -_----_------'---'-.......... --

Go through the same procedure for the last location inyourprogram.

Usually errors are traced back to the source program usil1gloaq maps denoting absolute
core locations and relative off Sits from the beginning ofmo~ulestarts;

For example, what routine contains the Data General Copyright?

Feel free to play in the Fortran Realm from this point on; otherwisetelease RDOS, power
down all equipment, and discard your line printerpaper.

D-4-9

"""""'--------------------------_._-----_._._ ... _--------_.---

S200 ROOS User Laboratory Exercise

BACKUP LAB 1

In this lab you'll learn how to back up an RDOS system and install RDOS on an initialized
disk. The newell commands are:

DUMP

LOAD

MOVE

FDUMP

FLOAD

o

So, after a little practice with these commands you'll create a backup tape macro, execute it,
verify it, and ultimately destroy the disk information and restore the system from your backup
mag tape. After the system installation you'll generate your own tailored RDOS system with
tuning and obtain a tuning file report. So let's begin with a little practice. 0

o
'0-50

o

o

Bootup the system.

Record this session in "LOG.CM"

BACKING UP THE DISK INFORMATION

There are two kinds of information stored on disk -

File data (seen in XFER Commands) .

R DOS bookkeeping (seen in LIST Commands)

To protect this info from loss bya disk crash, you should copy it frOm the disk to
some .other storageplace--a spare disk; mag tape, or paper tape.

XFER isn't designed to do this kind of copy. It would involve too much typing for
an entire disk (XFER doesn't accept - or * templates). Butmore important than
operator laziness is that XFER only copies the contents of a file,. not its bookkeeping.

The DUMP ahdLOAD commands, however,are intended forback.up. "DUMP MTO:O"
will squish all the contents and bookkeeping of all the files on the entire disk into a
single mag tape file (first file on the first unit, in this example). The argument could also
be a single file on another disk or $PTP.lf you ever need to restore the disk, a command

. like "LOAD IVIT2:0" would be all you'd input. That one command rev~rses the dump
process and rebuilds many disk files from.a single dump file on tape (in this case, the
tape has been remounted on the third unit).

User XF E R to create two files, S200XXX.6 and S200XXX.7

Mount a scratch tape on mag tape unit O.Be sute there. is. awrite~enable ring ilithe
reel. Tell RDOS you've done this by

INIT MTO

USING DUMP/LOAD TO BACKUP

Ba<;k up one file you've created by

DUMP/VMTO:O S200XXX.6

0-51

The additional argument overrides DUMP's default action of copying an entire disk. And
it only backs up the files you describe. DUMP also accepts switches and templates that
make it easy to describe groups of files, like "all save files created since April 1, 1977."

Now delete S200XXX.6.

Now try

XFER MTO:O S200XXX.8.

And then try typing S200XXX.8.

Whathappened? ____ ~ ________________________________ --__________ _

Is the printout the same as the data you had originally inserted into the fiJe? ____ _

Now try

LOAD S200XXX.8

And then try typing S200XXX.6.

Whathappened? __ -

Remember the DUMP command dumped the contents of S200XXX.6 and its bookkeeping
into one tape file. When you XFER'ed it back, you transferred file data and bookkeeping
into one file called S200XXX.8. I n order to make the file meaningful, the LOAD command
separat~d the file data and bookkeeping again, thus recreating S200XXX.6. So to restore
files baCked up with the DUMP command, it's easier to use the LOAD command directly.
Delete both S200XXX.6 and S200XXX.8.

Then

LOAD/V MTO:O

And try typing S200XXX.6. What happened?

USING XFER TO BACK UP

XFER S200XXX.7 MTO:O

Now delete S200XXX.7 and

0-52

o

o

c

LOAD/V MTO:O

Whathappened? __ ~ __ _

Remember MTO:O was created with an XFER command, so no file bookkeeping is
contained in it; MTO:O is not in "DUMP" format. The dump file format is detailed
in an appendix of the CLI manual.

Try

XFER MTO:O S200XXX.7

This should work. Display S200XXX.7 and verify that it is the same as the file you
originally created. The file data was transferred, and new bookkeeping was generated
for the file. XFER, then, can accomplish the same objective as DUMP/LOAD (Le., backing
up files), but DUMP/LOAD is more efficient and easier to use.

USING MOVE TO BACK UP

MOVE, like DUMP/LOAD transfers both file data and bookkeeping, but maintains each
as separate entities. That is, it doesn't put both file data and bookkeeping into one file.

File data is transferred as a separate file; the bookkeeping is moved into an RDOS system
directory (SYS.DR) structure. For this reason MOVE cannot be used to create tape back
ups (tapes have no SYS.DR), but it is very useful for disk to disk backups or directory
to directory backups.

Create a subdirectory called DIRXXX.

MOVE DIRXXX S200XXX.6 S200XXX.7

01 R into 01 RXXX and verify that the fileswere moved. Notice that they're still
in the original directory as well. To use MOVE as a disk to disk backup you'd merely
substitute the disk name (DPOF, DP1, for example) for the directory name.

, 0-53

USING FDUMP TO BACKUP

0-54

The F DU MP & F LOAD programs (residing in UTI L) allow a backup mag tape to be created
in a more condensed format and more quickly. The speed is a result of multi-tasking programm­
ing; the condensed information is a result of storing bookkeeping and file contents together in
separate mag tape files. Let's create a backup tape of the entire system; this will use mag tape
files; MTO: 0, MTO: 1, MTO: 2. If mu Itiple copies of the disk are desired the second must be
written to MTO:3 given that the first three tape files are used. So let's perform the back-
up ... (you may have to link to the FDUMP.SV program in the UTI L directory).

R
FDUMP/L MTO:O

The F LOAD command is the reciprocal program to restore the disk information Trom tape.
Note the condensed line printer listing, each indented line of .asterisks denotes an entered
directory to access the files there.

Again, you should have noticed a faster operation with the mag tape unit.

o

o

o

o
S200 RDOS User Laboratory Exercise

SYSGEN LAB

You will need the HOW TO LOAD AND GENERATE YOUR RDOS SYSTEM (93-188xx).

In this lab you will build a tailored operating system for the purpose of getting the machine
to run more efficiently.

From DPO, initialize the UTI L directory and then:

(on B/G):DIR into the directory:GEN.DR

(on FIG) :01 R into FGEN.DR

From the GEN directory, create a link to RLDR.SV and RLDR.OL in UTIL
(these are used during the system generation).

Refer to chapter 6 in the manual"How to Load and Generate Your RDOS System" as an
aid to answering the SYSGEN questions; Your instructor can fill in any particular hardware
details you'll need for the system you are working on.

Begin the system generation by entering the SYSGEN command: o . *SYSGEN YOUR-SYSTEM-NAME.</S SGIV LM/L)

"

I
~o

where * is replaced by: nothing for NOVAs
N for NOVA 3s and 4s
B for ECLIPSEs

The IS will give the new operating system name to the .SV and .0 L files.
The dialogue taking place will be recorded under YOUR-SYS-NAME.SG and the Load
Map will have the. LM extension.

When you've answered all the questions, the system will load in (using R LOR) all the
modules you have requested. This will take a few minutes.

PATCHING - UPDATING TO THECURRENT REVISION

When you get your R prompt back,find the revision of the current operating system by:

REV %GSYS%

Now find the rev.ision of your new system (REV YOUR-SYS-NAME).
Your new system was created at the most recent major revision level. You can bring it up
to the current rev by patching your system.

0-55

Still in the GEN directory:

INIT OPO:PATCH.OR
LINK ROOS.PF PATCH:*ROOS.PF

where * is replaced with:
A for ~CLlPSE
N for NOVA 3 or 4
M for mapped NOVA
U for unmapped NOVA

and then:

PATCH YOUR-SYS-NAME/S YOUR-SYS-NAME.LM/L ROOS.PF/P

. After you have installed the patches, verify that your new system is at the current rev

0-56

level. . .

Now 01 R into OPO and create links to your operating system:

LlNKYOUR-SYS-NAME.{OL,SV) GEN~YOUR~SYS-NAME.{OL,SV) (FGEN ON,F/G)

When both the users at the background and foreground havf,! created these links, then
bring down the foreground (CTRLF) and bring up one of the new operating systems by
typing:

BOOT YOUR-SYS-NAME

TUNING

Now invoke tuning, exercise the system, and get a tuning file report:

TUON YOUR-SYS-NAME

R

Use some CLI commands to exercise the system

..
R

Turn off tuning and print the tuning report:

TUOFF YOUR-SYS-NAME
TPRINT/L/O YOUR-SYS-NAME

o

o

'--~-"" ,--"""--------------------------

OPTIONAL:

Analyze thetuning report and, if called for, generate a new operating system with more
appropriate requests for stacks, celis, and buffers either by:

1. Fully accepting the results of the tuning report:

*SYSGEN NEWSYS.(/S LM/L SG/V) YOUR-SYS-NAME.(SG/A,TU/T)

or

2. Going through all the questions again but having thetuning report recommendations
displayed for the questions on stacks, cells, and buffers:

*SYSGEN NEWSYS.(IS,LM/L,SG/V) YOUR-SYS-NAME.TU/T

I n either case, patch and boot th is new system.

Finally get any printouts you'll want (the .SG file is useful) and boot up the original
operating system, unlink your systems in OPO, and delete all the files that you created in
the GEN and FGEN directories.

0-57

0-58

S200 ROOS User Laboratory Exercise

SPOOLING LAB 1

By now, you should feel fairly inundated with laboratory material and exercises. Today's lab
is devoted to some finalization of previous material and some short studies on lesser important
facilities talked about on Friday. The new material exercised in lab will involve a SPOOL'ing
exercise and a Foreground/Background familiarization to allow the student an opportunity to
work wiith RDOS's full capabilities.

At this point, take it upon yourself to wrap up any unfinished lab assignment. If you are up
to date with lab, conclude. your inspection of RDOS with the following two exercises.

Spooling affords CPU optimization by temporarily storing information on disk as the output
device is initiated. Further information is requested when needed by the device via interrupt.
This technique allows the CPU to work on independent of the transfer.

Although subtle, we can realize spooling stages from output at the master console ... During
a long print, the system will go away, initiate the device transfer and, when spool files are
created on disk, an "R" prompt will be given. At this point CLI may be controlled, and
any device may be used in parallel while the line printer maintains the output transfer.
For example, create the following macro:

R
XFER/A %GCIN% DSK.MC
DISK
DSK.MC

Hit· t Z to terminate data entry mode. The above macro allows disk inquiries to be made
on RODS. If this is employed during SPOOling of output data to disk, we can be shown
intermediate disk storage used for spool files.

So print the file PARU.SR within the UTI L directory and, as soon as you have an "R"
prompt, submit the DSK.MC macro by typing its name. The repetitive execution of the
disk command is like watching a movie of disk block usage. You should be able to watch
spool files come from disk and print on the line printer.

0,

o

o

o

o

S200 ROOS User Laboratory Exercise

BACKUP LAB 2 (OPTIONAL)

This lab involves:
• Dumping all files to tape
• Full initialization of the disk
• I nstalling the RDOS starter system
• Load ing back files from tape

Now you have the necessary mechanics to create an effective backup macro. Remember,
the XFERcommandtransfers to tape an executable format of disk files. So either use
the editor or transfer from the master console the following backup macro under a name
with the .MC extension;

MESSAGE "BACKUP IN. PROGRESS.- DO NOT DISTURB"
/
/STANDALONE FACI LlTIES
XFERTBOOT.SV MTO:O
DUr\IIP/AMTO:1CU. < SV, ER, OL) ,BOOTSYS.SV,BOOT.SV
XFER BOOTSYS.SV MTO:2
DUMP/A MTO:3BOOTSYS.OL
XFER DKINIT.SV MTO:4
XFER BOOT.SVMTO:6
/DUMPTHE CURRENT OP SYS SV+OL FI LES
DUMPMTO:6 OP-SYS. <SV, OL) .

I
replace With
actual name

/
MESSAGE "BACKUp COMPLETE"

{
.. 0 .. rd. inar. il.y h.e.re you would Dump 2 copies of your

entire disk: .
. . Dump MTO:(6,7)

Verify the standalone facilities by releasing DPO and initiating execution for each
standalone program directly from tape. For example, if TBOOT.SV is installed.on the
tape properly, you should see:

0-69

D-60

RELEASE %MDIR%
MAsTER DEVICE RELEASED

set the number switches to 100022
depress STOP, RESET, PRGM LD

FROM MTO:

At this point TBOOT.SV has performed sufficiently to indicate that it is on MTO:O and is
bootstrap'able. So, check mag tape files: 0, 2, 4, and 5 as all the standalone files are on tape
at these relative positions.

Now it's a go - no go situation. If you are unsure of any portion of the backup tape ask your
instructor, later is not the time to ask questions ...

Refer to the How to Loa'd & Generate Your RDOS System for details around the system load;
this information is contained in Chapter Three. The sections to execute in sequence are:

3 -- 3:
3-6:
3-6:

The Disk Initializer
Installing the Disk Bootstrap
I nstaII ing the R DOS Starter System

So install the RDOS Starter System with aid from the above sections. Modify the remaining
section, Transferring the Remaining Files, because yours isn't a true starter tape.

When you bootstrap BOOTSYS.SV from MTO:2, it will afford you only two directories
initialized at the same time. Therefore, you must boot a more appropriate operating system.
So execute the following:

R
LOAD/ A/V MTO:6

Then boot a system affording more directories to be initialized simultaneously.

R
BOOT NEWSYSTEM (name of your original operating system)
MASTER DEVICE RELEASED

o

o

,.0",,"', i '
, ,

o

o

-_._----,,--, ,--------------------------

5200 R DOS User laboratory Exercise

SPOOLING lAB 2 (OPTIONAL)

Note: If optional lab 1 was performed, see your instructor for the back-up tape before
proceeding.

The purpose of this lab is to demonstrate the advantage of making a secondary partition
the master directory.

The plan is to create a secondary partition containing a minimum of software, links to
the operating system,and some spare blocks for spooling. Then bring up the system in
that secondary partition, thereby making it the master directory. Once you get an R
prompt from CLI, DI R to DPO and continue operating there. Then, if the system crashes
while spooling, the secondary partition can be deleted, allowing the disk blocks which were
used for spooling to be recaptured.

1. Create a secondary partition with enough space for CLI files and sorTie spare
blocks.

CPART SECPART 288

2. Set up the bookkeeping for it.

INIT SECPART

3. Move copies of the Cllfilesinto that partition.

MOVE/A/V SECPARTCLI. (SV, ER,Ol)

4. D I R into that partition and create I inks to the .SV and .0 l files for the
system you will be operating under. "

DIR SECPART
R
LINK opsysname. (SV, OL)/2
R

(Replace opsysname with the
name of your operating system)

5. From this point, you may bring up the system in SECPART using the device
specifier format. So, in response to FI lENAME7, you may specify SECPART:
opsysname. Or you may use the CLI command BOOT (that is, BOOT
5ECPART:opsysname).

At this time, boot up the system in the secondary partition using one of the
methods described ,above. '

6. Next, execute the following CLI commands:

GDIR
R
MDIR

Current default directory = _ ~ ______ _

Master directory = __ ------'--------,...-

D-61

0-62

R \
DISK
R
DIR DPO
R
DISK
R
INIT UTI L; PRINT UTI L:PARU.SR
R
DISK
R
DIR SECPART
R
DISK
R
SPKILL $LPT
R
DISK

__________ LEFT _______ USED

__________ LEFT _______ USED

_________ LEFT _______ USED

_________ LEFT ______ USED

__________ LEFT __ -----USED

Notice that the disk blocks for the spool queue were taken from the master
directory.

7. This time, repeat all the CLI commands in step 6 up to the SPKI LL command.
I nstead of issuing the SPKI LL command, toggle STOP and RESET on the front
panel. This will cause the system to cease operations in a less-than-graceful
manner. It will then be necessary to re-home the disk heads. This may be done
by toggling the LOAD/RUN switch on the disk drive. When the Ready light
comes on, boot the system in the normal manner and make DPO the master
directory.

8. Next, clear the file use counts in both DPO and SECPART.

CLEAR/A/V/D;CLEAR/V CLI.(ER, OL), opsysname.OL
R
DIR SECPART
R
CLEAR/A/V/D;CLEAR/V CLI.(ER, OL)

o
i

o

o

o

o

o

9. Now execute the following CLI commands:

DISK
R
DIR SECPART
R
DISK
R
DIR DPO
R
RELEASE SECPART
R
DELETE SECPART.DR
R
DISK

~ ________ LEFT _______ USED

__,.-____ LEFT ___ USED

________ LEFT _____ USED

You have re-captured the disk blocks which were lost when the system crashed.

D-63

o

o

o

o

o

:0

t. DataGeneral
Data General Corporation, 4400 Computer Drive, Westboro, MA 01580

(617) 366-8911

o

o

o

