
t. Data General
Software Documentation

Extended BASIC
Reference

093-000065-10

NOTICE
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE
IN IS THE PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE OR IN PART
WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/SOOO, TRENDVIEW, and MANAP are U.S.
registered trademarks of Data General Corporation, and AZ-TEXT, DG/l, ECLIPSE MV/10000, GW/4000,
CDC/1000, REV-UP, SWAT, XODIAC, GENAP, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN and BusiTEXT
are U.S. trademarks of Data General Corporation.

Revision History:

Original release: November 1971
First revision: May 1972
Second revision: September 1972
Third revision: March 1973
Fourth revision: September 1973
Fifth revision: October 1974
Sixth revision: February 1975
Seventh revision: April 1977
Eighth revision: August 1978
Ninth revision: August 1979
Tenth revision: August 1983

Extended BASIC
Reference

093-000065-10

Effective with:

Extended BASIC 1.60 (AOS and AOS/VS)
Extended BASIC 5.60 (RDOS, DOS, and
DG/RDOS)

Extended
BASIC

Reference

093-000065-10

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000065
©Data General Corporation, 1971, 1972, 1974, 1975, 1977, 1978, 1979, 1983
All Rights Reserved
Printed in the United States of America
Revision 10, August 1983
Licensed Material - Property of Data General Corporation

Summary of Changes
The Extended BASIC Reference is a revision of the Extended BASIC User's Manual. The manual
has been reorganized to promote ease of reference. Former chapters 4 (Extended BASIC Functions),
5 (Array Manipulation), and 6 (File Input and Output) of the User's Manual have been assimilated
into a dictionary of commands, statements, and functions (new chapter 3). The introductory material
from these chapters appears now in chapter 1. Former chapter 7 (SOS Extended BASIC) has been
eliminated. The appendices, however, remain the same.

In addition, the RDOS and DOS "privileged" commands previously documented in the Extended
BASIC System Manager's Guide are described in chapter 3 of this edition. These commands include
ALL, CDIR, CPART, DISABLE, ENABLE, FALL, FMSG, FREE, INIT, KILL, MAX, and
RELEASE.

Several previously undocumented commands also have been added to chapter 3: ESC, NOESC,
ECHO, NOECHO, and NOMSG.

Also new to this revision is a section in chapter 1 on screen handling.

Appendix E summarizes similiarities and differences of Extended BASIC on the different operating
systems.

The new material and the technical revisions and corrections to previously documented material are
marked with revision bars (I) in the margins.

.. ~

Contents

'Preface

Chapter 1 - Introduction

093-000065-10

General Information. .. 1-1
Terminology .. ' ' 1-1
The BASIC Program. .. 1-1
BASIC Commands , 1-2
Blank Spaces , .. 1-2

Using Extended BASIC. .. 1-2
Logging On to RDOS or DOS Extended BASIC. .. 1-2
Logging On to AOS, AOS/VS Extended BASIC. .. 1-3
Creating aNew Program .. 1-3
Running a Program. .. 1-3
Saving a Program. .. 1-3
Correcting the Program .. 1-4
Interrupting Program Execution .. 1-4
Logging Off RDOS or DOS Extended BASIC. .. 1-4
Logging Off AOS and AOS/VS Extended BASIC. .. 1-5
Telephone Line Interruption (RDOS, DOS, RTOS) .. 1-5
BASIC Program Example. .. 1-5

Uses of Commands. .. 1-5
File I/O .. 1-5
Calculations. .. 1-6
Dynamic Program Debugging .. 1-7

Dimensioning Arrays. 1-7
File Concepts ... 1-8

Definition of a File .. 1-8
File Devices .. 1-8
Creating File Records. .. 1-8

Filenames .. 1-8
DOS and RDOS Disk Filenames _ 1-8
DOS and RDOS Reserved Filenames. .. 1-8
. AOS and AOS /VS Disk Filenames 1-9
AOS and AOS /VS Reserved Filenames. .. 1-9

Screen Handling. .. 1-9

Licensed Material-Property of Data General Corporation

Chapter 2 - Arithmetic and Strings
Numbers. .. 2-1

Single-Precision Print Representation .. 2-1
Double-Precision Print Representation. .. 2-1
Internal Number Representation. .. 2-1

Numeric Variables. 2-2
Arrays. .. 2-2

Array Elements. .. 2-2
Declaring an Array. .. 2-3

Arithmetic Operations .. 2-4
Priority of Arithmetic Operations. .. 2-4
Parentheses .. 2-4
Relational Operators and Expressions. .. 2-4

String Data .. 2-5
String Literals. .. 2-5
String Variables .. 2-5
Dimensioning String Variables 2-5
Substrings ... 2-5
Assigning Values to String Variables .. 2-6
Strings in IF-THEN Statements .. 2-6
String Concatenation .. 2-7
String Arithmetic .. 2-7

Chapter 3 - BASIC Statements, Commands, and Functions
. (period) .. 3-2
.A... 3-3
.C .. ,........... 3-3
.E ... 3-4
.P .. 3-5
ABS(X) .. 3-5
ACL... 3-6
ALL .. ' 3-7
ATN(X) ... 3-7
AUDIT.. 3-8
BYE (AOS, AOS /VS) .. 3-8
BYE (RDOS, DOS) .. 3-9
CALL... 3-9
CARDS .. 3-10
CDIR ~ 3-10
CHAIN ' 3-11
CHAR (AOS, AOS/VS) ... 3-12
CHAR (RDOS, DOS) .. 3-13
CHATR .. 3-15
CHR$(A) .. 3-16
CLI ... 3-16
CLOSE FILE .. 3-17
CON .. 3-17
COS(X) ;' ... 3-18
CPART .. 3-19
CPU (X) .. 3-19
DATA ... 3-20
DEF FNa(d) .. 3-20
DELAy .. 3-21

Licensed Material-Property of Data General Corporation 093-000065-10

093-000065-10

DELETE ... 3-22
DIM ... 3-22
DIR (AOS, AOS/VS) .. 3-23
DIR (RDOS, DOS) .. 3-24
DISABLE .. 3-25
DISK .. 3-25
ECHO ... 3-26
ENABLE .. 3-26
END .. 3-27
ENTER .. 3-27
EOF(X) .. 3-28
ERASE .. 3-29
ESC ... 3-29
EXP(X) .. 3-30
FALL .. 3-30
FILE (AOS, AOS/VS) ... 3-31
FILE (RDOS, DOS) .. 3-31
FMSG ... 3-32
FOR and NEXT. .. 3-32
FREE .. 3-34
GDIR .. 3-35
GOSUB and RETURN. .. 3-35
GOTO ... 3-36
GPOS FILE .. 3-37
HELP ... 3-37
IF-THEN .. " 3-38
INIT .. 3-39
INPUT ... 3-39
INPUT FILE .. 3-40
INT(X) .. 3-41
KILL .. 3-41
LEN(X$) .. 3-42
LET ... 3-42
LEVEL .. 3-43
LIBRARY (AOS, AOS/VS) .. 3-43
LIBRARY (RDOS, DOS) .. 3-44
LIST .. 3-45
LOAD ... 3-46
LOCK ... 3-46
LOG(X) ... 3-47
LREAD .. 3-48
LREAD FILE. .. 3-48
L WRITE. .. 3-49
LWRITE FILE ... 3-50
Matrix, Addition and Subtraction ... 3-51
Matrix, Assignment .. 3-51
Matrix, Determinant (DET) .. 3-52
Matrix, Identity (lDN) .. 3-52
Matrix, Inverse (lNV) .. 3-53
Matrix, Multiplication .. 3-54
Matrix, Transposition (TRN) .. 3-55
Matrix, Unit (CON) ... 3-56
Matrix, Zero (ZER) .. 3-56
MAT INPUT ... 3-57
MAT INPUT FILE .. 3-57

Licensed Material-Property of Data General Corporation

MAT PRINT .. , 3-58
MAT PRINT FILE ... , 3-58
MAT READ. .. 3-59
MAT READ FILE .. 3-59
MAT TINPUT .. 3-60
MAT WRITE FILE ... 3-60
MAX .. 3-61
MSG (AOS, AOS /VS) .. 3-61
MSG (RDOS, DOS) .. 3-62
NEW ~ ... 3-62
NEXT ... 3-63
NOECHO .. 3-63
NOESC .. 3-64
NOMSG ... 3-64
ON ERR THEN .. 3-65
ON ESC THEN. .. 3-66
ON-GOTO and ON-GOSUB .. 3-67
OPEN FILE .. 3-67
ORD(X$) .. 3-70
PAGE ... 3-70
POS(X$, Y$,Z) 3-71
PRINT .. 3-71
PRINT FILE ... 3-73
PRINT FILE USING .. 3-74
PRINT USING ... 3-75
PUNCH ... 3-79
RANDOMIZE. .. 3-80
READ ... 3-81
READ FILE. .. 3-82
RELEASE ... 3-83
REM .. 3-83
RENAME. .. 3-84
RENUMBER. .. 3-84
RESET FILE ... 3-85
RESTORE .. 3-86
RETRy .. 3-87
RETURN .. 3-88
RND(X) .. 3-88
RUN .. 3-89
SAVE ... 3-90
SEARCH LIST .. 3-91
SGN(X) ... 3-92
SHARE .. 3-92
SIN (X) .. 3-93
SIZE (AOS, AOS/VS) .. 3-93
SIZE (RDOS, DOS) .. 3-94
SPOS FILE. .. 3-94
SQR(X) .. 3-95
STOP ' 3-95
STR$(X) '. .. 3-96
SYS(X) ... ' 3-96
TAB ... 3-97
T AB(X) .. 3-97
TAN (X) ... 3-98
TIME .. 3-99
TINPUT ... 3-100

Licensed Material-Property of Data General Corporation 093-000065-10

UNLOCK .. 3-100
UNSHARE ... 3-101
USERS .. 3-101
V AL(X$) ... 3-104
WHATS ... 3-104
WHO .. : 3-105
WRITE FILE ... : 3-105

Chapter 4 - Calling an Assembly Language Subroutine from
Extended BASIC

Character String Storage and Definitions .. 4-1
Linking the Assembly Language Subroutine .. 4-1
RDOS BASIC Multiuser. 4-3

Appendix A - Error Messages

Appendix B - Programming on Mark-Sense Cards

Appendix C - Hollerith Character Set

; Appendix D - ASCII Character Set

Appendix E - Statement, Command and Function Summary

, Appendix F - Checklist of Operating System Incompatibilities

Index

Preface

Data General's Extended BASIC is a powerful, straight
forward language. Its interactive qualities enable begin
ning programmers to develop their skills; its advanced
features allow experienced programmers to handle com
plex and diverse applications. These attributes have made
BASIC very popular, and in recent years it has become a
model language for multiuser systems.

This manual presumes that you have experience with the
BASIC language. If you do not, the introductory manual,
basic BASIC, gives you the background you need.

This manual begins with a brief description of Extended
BASIC, explains terminology and symbols, and outlines
the steps to follow to log on to the BASIC system, create
and run a program, and log off. Also included in chapter
1 are brief introductions to matrices, file I/O, and screen
handling. Chapter 2 explains BASIC arithmetic and
strings; it includes numbers, variables, arrays, and arith
metic operations. In chapter 3, all interactive BASIC
commands, statements, and functions are listed alphabeti
cally; each is explained in detail, and illustrated by
example. Chapter 4 explains how to call assembly lan
guage subroutines from Extended BASIC.

Appendix A lists all BASIC error messages; Appendix B
outlines BASIC programming on mark-sense cards. Other
appendixes include Hollerith and ASCII character sets
and a BASIC keyword summary.

See the following manuals for related information:

069-000003 basic BASIC

093-000119 Loading and Managing Extended BASIC

069-000002 Introduction to the Real Time Disk Operat
ingSystem

093-000075 Real Time Disk Operating System Reference
Manual

093-000093 Introduction to the Real-Time Operating
System (RTOS)

093-000056 Real-Time Operating System Reference
Manual

093-000201 Disk Operating System Reference Manual
(DOS)

093-000087 BATCH User's Manual

069-000016 Introduction to the Advanced Operating
System (AOS)

093-000122 AOS and AOSjVS Command Line Interpret
er User's Manual

069-000018 Learning to Use Your Advanced Operating
System

Keyword Descriptions
This manual uses the following format to describe each
BASIC keyword:

• Grids with check marks to indicate the operating
systems on which the term may be used and whether it
is a statement (S), command (C), or function (F). A
keyword may be available on one, two, or all four
systems.

AOS, AOS/VS

ROOS, DOS

• Keyword, followed by a brief description of its purpose.
Certain keywords (e.g., MSG) are available in more
than one version of Extended BASIC, but differ signifi
cantly in description. Each version is documented sepa
rately.

• Format for using the word. Insert parentheses as shown.
Brackets indicate optional arguments. Other conven
tions are described below.

• Arguments, with definitions.

• Remarks, which include rules, cautions, and other
pertinent information for using the keyword.

• Examples, showing typical uses and illustrating the
format.

Note: Reserved filenames under DOS and RDOS Extend
ed BASIC use the $ symbol as a prefix, whereas under
AOS and AOS /VS the prefix is an @ symbol. Most of
the examples in this manual reflect an RDOS system;

093·000066·10 Licensed Material·Property of Data General Corporation

AOS and AOSjVS users, please note the difference. See
chapter 1 for detailed information on reserved filenames.

Format Conventions
The following general format illustrates the typographical
conventions used in the keyword formats:

KEYWORD argument [option]. ..

Where

KEYWORD

argument

[option]

Means

Enter the word (or its accepted abbreviation)
as shown.

You must enter the given argument (such as
a filename). In the following case enter one
of the arguments, but not the braces, which
merely set off the choices:

{:;~~~:~:~ }
You have the option of entering the given
argument. Don't enter the brackets, which
merely set off the optional argument.

You may repeat the preceding entry or
entries. The explanation tells you what you
may repeat.

Also Note
All numbers are decimal unless shown otherwise; e.g.,
358.

In examples of system interactions, the manual uses

THIS TYPEFACE TO SHOW YOUR ENTRY
ITALIC TYPEFACE FOR SYSTEM QUERIES AND
RESPONSES

) is the AOS and AOSjVS CLI prompt.

R is the RDOS jDOS CLI prompt.

* is the Extended BASIC prompt.

o indicates a space in an entry or in a system response. It
is used only as necessary for clarity.

End of Preface

Licensed Material·Property of Data General Corporation 093-000065-10

Chapter 1
Introduction

Extended BASIC is an interactive programming language
that operates under Data General's Advanced Operating
System (AOS), Advanced Operating System/Virtual
Storage (AOS/VS), Real-time Disk Operating System
(RDOS), Real-Time Operating System (R TOS) as a
feature of RDOS, and Disk Operating System (DOS).

RDOS supports certain commands and features that DOS
does not. Generally, if you try to use an RDOS-only
command or feature in a DOS system, it is nonoperational,
and you receive an error message.

DOS does not support cassette use or BATCH mode.
Disks created under DOS are entirely compatible with
RDOS. Diskettes created under RDOS may not be
compatible with DOS when certain RDOS features not
supported under DOS are used. See the Disk Operating
System Reference Manual for more information.

General Information
Data General's Extended BASIC includes the following
features:

• String manipulation

• Matrix operations

• Program and keyboard modes

• Fixed- and variable-length file manipulation

• Format control

• Assembly language subroutines

Terminology
BASIC uses words, sometimes called keywords. as in
structions. When written in appropriate formats, they act
as statements or functions in a program. Many keywords
can also be used as keyboard commands.

Some BASIC words alone perform an operation. Others
require one or more arguments to be properly executed,
for example:

INPUT A,S

In this case, A and B are arguments to the INPUT
instruction.

The following abbreviations appear in the descriptions of
arguments used with BASIC keywords:

Abbreviation Meaning

var
expr
rel-expr
str lit
val
line no.
col
control var
svar
mvar
filename

numeric variable
numeric expression
relational expression
string literal
numeric value
line number
column
control variable
string variable
matrix variable
a disk filename or a device

The BASIC Program

A BASIC program consists of several BASIC statements.
Each statement includes a properly formatted BASIC
word preceded by a line number in the range 1 to 9999.
The line number of a statement determines the order in
which BASIC executes it. Program execution proceeds
from the lowest numbered line to the next higher num
bered line, unless directed elsewhere by statements such
as GOTO or GOSUB.

You can use the exclamation point (!) in place of a REM
statement, or at the end of a line to add comments about
the program step. Anything to the right of the! has no
effect on the program. See AUDIT in chapter 3 for an
example of this in a program.

As in the following example, write each program state
ment on a separate line; terminate each line with a
carriage return (CR) or new line (NEW LINE).

• 05 PRINT "SAMPLE PROGRAM"
• 10 LET A=5
• 15 LET S=2
• 20 PRINT A·S
• 25 END

The asterisk (*) prompt at the beginning of each line
indicates that BASIC is ready for you to enter a command
or a program statement. In RDOS/DOS/RTOS environ
ments, a system manager can create any prompt string of
up to 10 characters, or use the default asterisk prompt.

093-000065-10 Licensed Material-Property of Data General Corporation 1-1

The asterisk prompt appears in the examples in this
manual.

BASIC Commands

BASIC commands do not include line numbers; the
system executes them immediately after you terminate
the command with a carriage return or new line. In the
following case the command LIST instructs BASIC to
display the current program statements. The command
RUN instructs BASIC to execute the program.

• LIST
0005 PRINT "SAMPLE PROGRAM"
0010 PRINT 5*2

0025 END
• RUN
SAMPLE PROGRAM
10

END AT 0025
*
See "Uses of Commands" below for additional uses of
commands.

Blank Spaces
As an aid to typing, BASIC ignores blank spaces unless
they are part of a string literal; however, this requires
some care. For example, in the following statement Sand
P are intended to be variables for initializing a loop:

• 10 FOR X=S TO P

However, BASIC ignores the spacing and interprets the
statement as

10 FOR X=STOP

and displays a syntax error message.

Using Extended BASIC
The following sections describe the procedures for invok
ing Extended BASIC on the various operating systems;
for creating, executing, and correcting programs; for
interrupting execution; and for leaving Extended BASIC.

Logging On to RDOS or DOS Extended
BASIC
For single-user systems, logon procedures do not apply.
Execute Extended BASIC from the RDOS CLI and come
immediately to the BASIC prompt (*). The directory

BASIC.DR must be initialized before execution, or it
must be a subdirectory in the partition in which you are
executing BASIC.

On multiuser systems, you can log onto the system as
soon as you see the BASIC prompt message on your
terminal:

BASIC xx.xx
Ready

Begin the log-on procedure by pressing either the ESC or
DEL key. Use the ESC key on hard-copy terminals, on
which DEL echoes a backarrow (_). Use the DEL key
on display terminals, on which DEL backspaces the cursor
and erases a character.

The system requests your account name. Respond by
typing your assigned account name (4-20 characters),
and a carriage return. BASIC checks all the characters
before allowing you access, but saves only the first four.
It denies you access if that 4-character name belongs to
an active user. The system asks for your assigned pass
word. Type the password and a carriage return. To protect
the confidentiality of your password, it is not echoed at
your terminal.

You have three chances to correctly enter your account
name and password. If your third attempt fails (no match
is found in the BASIC.lD file), the message TOO MANY
ATTEMPTS appears, the ready message reappears, and
modem lines disconnect. You must reinitiate the sign-on
sequence. If you encounter sign-on errors other than
UNKNOWN ACCOUNT NAME or UNKNOWN
PASSWORD, the ready message reappears, modem lines
disconnect, and you must reinitiate the sign-on sequence.

If your account name- and password are valid, the system
outputs your account name, the date, time, and assigned
terminal number and displays a prompt. A summary of
the log-on procedure and format follows:

BASIC xx.xx
Ready

ESC

ACCOUNT NAME: aaaa

PASSWORD: yyyy

aaaa mm/dd/yy hh:hh

(Account (Date)
name)

* (Prompt)

(Time)

(Screen display)

(Press ESC or DEL.)

(Enter a 4-20 character
account name.)

(Enter a 0-20 character
password--not echoed.)

SIGN ON, zz

(Terminal
no.)

1-2 Licensed Material-Property of Data General Corporation 093-000065-10

Logging On to AOS, AOS/VS Extended
BASIC
Log onto an AOS or AOS/VS system according to the
instructions in the Command Line Interpreter User's
Manual for the given system.

Once you have logged on to the operating system, you
may go directly into BASIC or to the command line
interpreter (CLI), depending on how the system manager
has built your system. If you go directly into BASIC, the.
message below appears; and you can begin to work. If
you log into the CLI, enter the following command
command to execute BASIC; BASIC displays logon
information and its prompt:

) EXECUTE BASIC

AOS BASIC Revision xx.xx 14-Sep-83 1-0ct-83
09:14:22

*

Creating a New Program
Having successfully logged onto the system, you may
enter a new program, or modify and run an old program.
It is generally good practice to type the NEW command
before entering a new program. The NEW command
clears your work area in memory and thereby prevents
the interspersion of lines from an old program into your
new program. NEW is described in chapter 3.

When typing a new program, begin each line with a line
number of not more than four digits; end each line with a
carriage return. Before pressing the CR key, you can
correct typing errors with the DEL key. Press DEL once
for each character you want erased; then continue by
typing the correct characters.

On a CRT terminal, each DEL erases the last character
on the screen. Note that on some terminals the RUBOUT
key replaces DEL. If you are using a hard-copy terminal,
a backarrow (~) echoes at your terminal each time you
press RUBOUT. For example:

• 10 PRINT "CONV ~ ~ RRECTION BY RUBOUTS"

In line 10, two characters (N and V) are "rubbed out"
and then the line is completed. Use a LIST command to
inspect the corrected line.

• LIST 10
0010 PRINT "CORRECTION BY RUBOUTS"
* .
In addition, in RDOS /DOS you can delete an entire
current statement or command line by entering a
backslash character (\). BASIC echoes a backslash and
a carriage return. On AOS and AOS /VS, the ESC key
has the same effect.

• 10 PRINT "HELLO\ (Backslash deletes line.)
• 10 PRINT "WELCOME, MEREDITH" (Reenter line.)
• LIST
0010 WELCOME, MEREDITH

Programs can be documented by using the REM state
ment or by an exclamation mark (!) following a statement.
Enter comments after REM or the exclamation mark, for
example:

0010 REM THIS PROGRAM PERFORMS ORDER ENTRY
0020 DIM A$(25) ! DIMENSION STRING VARIABLE
0030 REM
0040 DIM B(100) ! DIMENSION NUMERIC ARRAY

The REM on line 0030 merely aids'readability.

Running a Program
After you have finished typing a program, execute it by
entering the RUN command. BASIC runs the program,
starting from the lowest numbered statement. If there
are no runtime errors (see Appendix A), BASIC outputs
all results that you requested in PRINT statements.

The system translates lowercase letters in BASIC to
uppercase if they are part of a variable name, keyword,
or numeric literal, but not if they are part of a string
literal. Commands that accept string literals as arguments
(e.g., CHAR, ACL, CHATR) accept either uppercase or
lowercase letters. The edit commands, .E andl .C, do not
translate lowercase letters to uppercase, so you must count
lowercase and uppercase letters separately when you edit.

Programs that were previously written and saved can be
executed in one of the following two ways:

• LOAD "program-name"
• RUN

or

• RUN "program-name"

Saving a Program
There are two methods for saving your BASIC programs:
save a memory (or core) image of the program using the
SAVE command, or save an ASCII copy using the LIST
command.

To save and recover a memory image of your program,
use the following commands:

• SAVE "program-name"
• LOAD "program-name"
• RUN

093-000065-10 Licensed Material-Property of Data General Corporation 1-3

To save and recover an ASCII list file, use the following
commands:

• LIST "program-name"
• ENTER "program-name"
• RUN

The LIST command is useful for maintaining an updated
version of your code in ASCII format. If you are entering
source code under control of the BASIC interpreter, use
the LIST command to copy the code to a specified file. If
you are copying to the same file each time you revise your
code, you are prompted to press the NEW LINE key to
rewrite the file, for example:

• (Write a program.)
• LIST "TEST.PGM"
• ENTER "TEST.PGM"
• (Revise the program.)
• LIST "TEST.PGM"
PRESS NEW LINE KEY TO DELETE OLD: <NL>
*

Correcting the Program

After running a program, you may need to change it
because of error messages or incorrect results. Correct
the program by using any of the following procedures:

1. Substitute a new statement for a statement contain
ing errors by retyping the entire line, including line
number and carriage return.

2. Eliminate a statement 'from the program by typing
its line number followed by a carriage return, or by
using the ERASE command:

• 125 <CR> (Deletes line 125.)
• ERASE 200,300 (Deletes all lines from 200 to

300.)

3. Insert new statements between existing statements
by typing the new statements with intermediate line
numbers. If the number of new statements exceeds
the number of line numbers available between the
existing statements, use the RENUMBER com
mand (see chapter 3) to change the increment
between line numbers. (It is generally good practice
to number your lines by increments of 10 to allow
for program expansion and correction.)

4. Use editing commands to correct statements held in
the edit buffer. If Extended BASIC encounters
faulty syntax in a statement, it inserts the statement
into the edit buffer. Several editing commands can
then be used to correct the statement, for example:

• 0010 LET B$ = A
ERROR 2 - Illegal statement syntax

• .C/A/A$
0010 LET B$ = A$

In this example the .C command changes A to A$,
and sends the corrected statement to working stor
age. In many instances, editing commands· can
prevent you from having to retype an entire line of
code.

Interrupting Program Execution
To stop a running program, the listing of a program, or
any other task which BASIC is performing, press the
ESC key. BASIC then outputs a prompt to signal that
you can enter a new command.

• RUN

<ESC>

STOP AT0110
*
The line number that is output is the last line that
completed execution.

Certain BASIC statements or commands--INPUT,
LREAD, ENTER, ERASE, MAT PRINT, DELAY,
MAT INPUT, LIST, FILE, and LIBRARY--may re
quire a long time to execute. You can abort them, but
further execution that depends on their completion will
be affected.

The statement MAT INV and all file I/O statements
may require considerable execution time, but cannot be
interrupted by ESC. If you enable ESC on the console
and get no response, check to see if one of these
noninterruptable statements is executing or if there is a
system failure.

Logging Off RDOS or DOS Extended
BASIC
On RDOS or DOS you may leave Extended BASIC by
entering the BYE command. The BASIC system then
outputs a summary of usage information (see below) and
puts the terminal into an idle state:

• BYE

aaaa mm/dd/yy hh:mm SIGN OFF, zz
aaaa mm/dd/yy hh:mm CPU USED, qq
aaaa mm/dd/yy hh:mm I/O USED, rr, ss

BASIC xx.xx
R

where: represents:

1-4 Licensed Material-Property of Data General Corporation 093-000065-10

aaaa Your account name

mm/dd/yy Today's date

hh:mm The current time

zz The terminal port number

qq The number of CPU seconds you used
during the terminal session, to the nearest
tenth of a second

rr The number of file input and output state
ments executed (OPEN, CLOSE, READ,
WRITE, etc.)

ss The number of BASIC I/O statements
executed (LIST, LOAD, ENTER, etc.)

Logging Off AOS and AOS/VS Extended
BASIC
When you want to leave AOS or AOS/VS Extended
BASIC, enter the BYE command. The BASIC process
then terminates and the process (e.g., CLI) that was in
effect when BASIC was invoked continues.

Telephone Line Interruption (RDOS, DOS,
RTOS)
If your terminal is attached to the computer by a Bell 103
modem or compatible hardware, and line transmission
fails for any reason, BASIC saves your current program
and data in a memory image file and does an implicit
BYE command. You can retrieve the file--named
aaaa$.CI, where aaaa is your account name--by using the
LOAD command (see Figure 1-1).

BASIC Program Example
The following example shows an entire BASIC session
under RDOS or DOS: logging in, communicating with
the system operator, r~nning the program, and logging
off.

BASIC xx.xx
Ready
<ESC> (Press ESC or DEL key.)
ACCOUNT-NAME: DREW
PASSWORD: EASY (Password EASY not echoed.)

DREW 1/23/83 10:32 SIGN ON, 2

• MSG OPER PLS MOUNT TAPE # 1255 (NO RING)
FROM OPER: DONE-TAPE ON MT12
• MSG OPER THANX
• LOAD "PRODUCTION"

• LIST
0010 DIM A$ (10)

00)0 INPUT "TAPE MOUNTED ON",A$
0030 A$=A$, ":0", "<0>"
0040 OPEN FILE (0,3),A$
0050 READ FILE (O),A,B,C$
0060 IF EOF-(O)=l GOTO 200
0070 PRINT A,B,C$
0100 GOTO 50
0200 CLOSE FILE (0)
0210 PRINT "END OF JOB"
0220 STOP

• RUN
TAPE MOUNTED ON MT12

END OF JOB

STOP AT 0220
• MSG OPER PLS RELEASE MT 12
FROM OPER: TAPE REMOVED FROM MT12
• BYE
DREW 1/23/83 10:40 SIGN OFF, 2
DREW 1/23/83 10:40 CPU USED, .3
DREW 1/23/83 10:40 I/O USED, 4,2

BASIC xx.xx
Ready

Notice that this program provides device independence.
That is, the assignment of the magnetic tape drive number
is deferred until program execution time, thereby allowing
the system operator to assign any available unit.

Uses of Commands
You can use most BASIC statements as keyboard com
mands. However, certain statements have meaning only
within the context of a program and cannot be used as
commands. These statements are DATA, DEF, END,
FOR, GOSUB, GOTO,NEXT,ON, REM,RETURN,
RETRY, and STOP. All other BASIC statements can
act as commands to help you

• Perform file I/O

• Perform calculations

• Dynamically debug programs

File I/O
With BASIC commands you can open and close files;
you can also input or output programs and-data from files
and devices. These commands are derived from the file
I/O statements described in chapter 3. For example:

• OPEN FILE (1,3), "$PTR"
• READ FILE (1), A, B, C, D, E, F, G (5)

093-000065-10 Licensed Material-Property of Data General Corporation 1-5

ACCOUNT NAME: MARY
PASSWORD:

MARY 10/13/8306:35 SIGN ON, 12

* 20 FOR 1 = 0 TO 1 9
* 30 ;1, SYS(I)
* 40 NEXT 1
* LIST
0020 FOR I = 0 TO 19
0030 PRINT I, SYS(J)
0040 NEXTI

*RUN
o
1
2
3
4
5
6
7
8

23746
26
10
1977
2
.2
6
o

ACCOUNT NAME: MARY
PASSWORD:

MARY 10/13/8306:47 SIGN ON, 03

* WHATS "MARY$.CI"

(U ser signs on)

(User enters and runs program)

(Disconnect occurs here)

(User repeats sign-on)

(Identifies disconnected program)

MARY$.CI DW 379 10/13/83 06:38 (10/13/83) 00

DG-25447

* LOAD "MARY$.CI"

* LIST)
0020 FOR I = 0 TO 19
0030 PRINT I, SYS(J)
0040 NEXTI

(Retrieves it)

(Examines it)

(Session continues)

Figure 1-1. Telephone Line Interruption

Calculations
With the PRINT command, you can obtain immediate
results of arithmetic computations. A semicolon (;) can
be used for the word PRINT.

• ;EXP(SIN(3.4/8»
1.5103188
• LET A=EXP(SIN(3.4/8»

• PRINT USING u+####.####OOOO",A
+0001.5103
*
You also can interrupt a running BASIC program and
use the assigned values of program variables to make
calculations.

1-6 Licensed Material-Property of Data General Corporation 093-000065-10

• LIST
0010 FOR J = 1 TO 1000000
0020 LET X = X + 1
0030 NEXT J

• RUN

<ESC>

STOP AT0010
• PRINT J, 10 • X
100 990
*

Dynamic Program Debugging
You can interrupt a running program (using ESC or
programmed STOP statements) at a number of different
program points. You can check the current values of the
variables at those points and make corrections to state
ments or variables in the program, as necessary.

Then use either "RUN line number" or CON to restart
the program at the point of interruption without losing
the values of the variables or the newly inserted values
and statements. Note the following four examples.

1. • RUN

<ESC>
STOP AT 1100
• IF A<>B THEN PRINT B,A
(Command conditionally provides for examination
of A and B.)
.025.5
*

2. The program performs a series of calculations and
prints the results.

• RUN

2.33333
5.41234
8.99999
<ESC>
STOP AT 0570
• READ X1, X2, X3
(Space over the next 3 values in the data block.
Resume program execution at the next statement.)
• CON
3.16524

1.65318

3. • RUN

<ESC>
STOP AT 1100
• ;A
(Print value of variable A.)
o
• A = -1
• C$ = U% OF LOSS"
(Change the value of arithmetic variable A
and string variable C$.)
• RUN 505
(Resume running at statement 505.)

4. • DIM A (14,4)
• RUN

<ESC>
STOP AT 0500
• DIM A (3,5)
(Redimension array A.)

Dimensioning Arrays
One-dimensional arrays are called vectors; two
dimensional arrays are called matrixes. Matrix state
ments also work for vectors wherever the row argument is
optional.

You can dimension arrays with any of the following three
methods:

• Use a DIM statement to declare the number of elements
for a vector or rows and columns for a matrix.

• Include the dimensions in a matrix statement.

• Allow a default size of 10 elements, or 10 rows and 10
columns, by riot specifying dimensions in a DIM or
matrix statement.

Note: A matrix does not have row 0 or column 0; and as
in all BASIC arrays, BASIC stores matrix elements by
row in ascending locations in memory.

A matrix that is dimensioned in a DIM statement is
automatically initialized to all zeros.

093-000065-10 Licensed Material-Property of Data General Corporation 1-7

Matrix statements allow dimensioning and
redimensioning as long as the total number of elements in
the new dimensions does not exceed the total number of
elements of the matrix declared in the original DIM or
other matrix statement.

In the following example, matrix statements 40 and 60
legally redimension matrix A as well as perform matrix
operations (see chapter 3). In each case the total number
of elements does not exceed the number declared in
statement 20.

• 20 DIM A(15, 14)
• 40 MAT A=CON(20,7)
• 60 MAT A=ZER(10, 10)

(210 elements in matrix A)
(140 elements)
(1 00 elements)

File Concepts
The following. sections briefly define files, file devices,
and records; they also present several conventions that
govern record I/O. See chapter 3 for detailed explanations
of the file file I/O statements.

Definition of a File

A file is a collection of related data treated as a unit.
Each file has one or more names (calledfilenames) which
enable both the user and the system to address it. Related
to the manipulation of files are devices.

File Devices

Devices are the physical means for storing and retrieving
information. There are two distinct types of devices:

• Unit record devices. These include card readers, termi
nals, and line printers, which usually transmit and/or
receive only single records. They are used for I/O, data
storage, and retrieval.

• Multifile devices. These include magnetic tape units
and disks, which enable you to read and write more
than one file per device. In particular, the flexibility of
disks enables you to organize a file so you can randomly
read or write individual records.

Creating File Records

A record is a discrete unit of a file; it is what is transmitted
in file I/O.

A single record is the result of a READ FILE or WRITE
FILE statement. You may specify a record size, in bytes,
with an OPEN FILE statement (see the description in
chapter 3). The output of a WRITE FILE statement
with fewer than the specified number of bytes is padded
with nulls to fit the size of the record. Output having

greater than the specified number of bytes causes an
error. If a READ FILE statement transfers fewer bytes
than the record size, the remaining bytes in the record,
including any nulls, are passed over.

If you specify no record size, WRITE FILE does not pad
with nulls, and READ FILE does not pass over any
bytes.

Filenames
The following sections present the rules governing the
composition and use of filenames according to the operat
ing system under which Extended BASIC is running.

DOS and RDOS Disk Filenames
Each disk file created under BASIC in a DOS or RDOS
operating system may have a filename made up of 1-10
characters. Legal characters include

• A-Z

• a-z (converted to uppercase by the operating system)

• 0-9

• $ (dollar sign)

In addition, you may append an optional one- or two
character alphanumeric extension to the filename by
separating it from the filename with a period in the form,
filename.ex.

Unlike RDOS utility programs such as MAC and RLDR,
BASIC dges not recognize any special two-character
alphanumeric extensions. You can create extensions to
suit your needs, for example:

TEST.SR can be a SouRce file.

TEST.CI can be the Core Image file obtained by saving
TEST. SA.

TEST.LS can be a LiSting file output from the program.

DOS and RDOS Reserved Filenames
Unit record devices and magnetic tape devices have
special names without extensions. Devices with reserved
names are listed as follows:

$TTI and $TTI1 Input consoles

$TTO and $TTO 1 Output consoles

$CDR and $CDR 1 Punched card readers

CTn Cassette units (0 < n < 178)

$LPT and $LPT 1 Line printers

MTn Magnetic tape units (0 < n < 178)

1-8 licensed Material-Property of Data General Corporation 093-000065-10

$PLT and $PLT1

$PTP and $PTP 1

$PTR and $PTR 1

aTY:n

Incremental plotters (access via as
sembly language subroutines; see
Appendix B)

Paper tape punches

Paper tape readers

Multiplexor consoles

For a complete list of RDOS reserved filenames, see the
RDOS eLI User's Manual.

AOS and AOS/VS Disk Filenames
Each disk file created under BASIC in an AOS or
AOS/VS operating environment has a filename of 1-31
characters. Legal characters include

• A-Z

• a-z (converted to uppercase by the operating system)

• 0-9

• . (period)

• $ (dollar sign)

• _ (underscore)

You can select any combination of legal characters to
create a filename. A few examples of legal filenames are
as follows:

FILE_NAME. NEW
SAVE.FILE$.SR
LlFE.JAN.S

Unlike operating system utility programs such as MASM
(the macroassembler), BASIC does not recognize any
special alphanumeric extensions. You can create filename
extensions to suit your needs, for example:

TEST.SR can be a SouRce file.

TEST.CI can be the Core Image file obtained by saving
TEST.SR.

TEST.LS can be a LiSting file output from the program.

AOS and AOS/VS Reserved Filenames
Unit record devices and magnetic tape devices have
special names without extensions. Devices with reserved
names are listed as follows:

@CDR,@CDR 1,
@CDR2, ... @CDRn

@CONO,@CON 1 ,
@CON2, ... @CONn

First and succeeding card
readers

First and succeeding console
display /keyboards or asyn
chronous communications
lines

@DPn-DPn17

@LPT,@LPT1,
@LPT2, ... @LPTn

@MTAO-@MTA 17

@MCA,@MCA1

@PLT,@PLT1,
@PLT2, ... @PLTn

@PTP,@PTP 1 ,
@PTP2, ... @PTPn

@PTR,@PTR 1,
@PTR2, ... @PTRn

Moving-head disk units 0
through 7 on the first control
ler, and 10 octal through 17
octal on the second controller.
n is a single alphabetic charac
ter indicating the disk type.
These types are described in
Managing AOS and Manag
ing AOSjVS.

First and succeeding line
printers

Magnetic tape units 0 through
7 on the first controller, and
10 octal through 1 7 octal on
the second controller.

First and second mUltiproces
sor communications adaptor
controllers

First and succeeding digital
plotters

First and succeeding paper
tape punches

First and succeeding paper
ta pe readers

Screen Handling
Extended BASIC offers several methods for explicitly
controlling the position of the cursor. The TAB(X)
function, used in conjunction with the PRINT statement,
enables you to position the cursor to the column designated
by X on the current line. The L WRITE statement
provides both column and line cursor positioning by
allowing the embedding of control characters in strings.
Used together with the PRINT statement, L WRITE with
the appropriate arguments enables full control of the
screen.

For DG-type terminals, the syntax of the L WRITE
statement for controlling the cursor is

LWRITE "<16><column><row>"

where column is a numeric expression or variable in the
range 0-79, and row is a numeric expression or variable
in the range 0-23. The argument <16> is a decimal
value indicating that the next two decimal values are to
be interpreted as row and column positions. (Non-DG
terminals may require other values than <16>.) For
example, the statement

LWRITE "<16><0><0>"

positions the cursor to the leftmost column of the top row
of the screen.

093-000065-10 Licensed Material-Property of Data General Corporation 1-9

The entire string argument to the L WRITE statement
can itself be a string variable. For instance, the statement

LWRITE "<16><39><11>"

positions the cursor to the approximate center of the
screen. The equivalent of this statement, using a string
variable as the argument, is:

0010 DIM A$(3)
0020 LET A$(1 , 1) = CHR$(16)
0030 LET A$(2,2)=CHR$(39)
0040 LET A$(3,3) = CHR$(11)
0050 LWRITE A$

If you add the statement

0060 PRINT "HELLO"

to this example, the string HELLO will be printed at the
approximate center of the screen.

The following five examples further illustrate cursor
positioning.

1. This program prompts you for a string, prints it at
the approximate cen"ter of the screen, then prompts
you for another string. Exit from the program by
pressing ESC.

• LIST
0005 PRINT "<12>"
0006 PRINT "<7>"

0010 INPUT"~ ",X$

! CLEAR SCREEN
! SOUND THE
TERMINAL TONE

0030 LWRITE "<16><36><11>"

0040 PRINT X$
0045 DELAY =5
0050 GOTO 0005

! POSITION THE CURSOR

2. This program clears the sceen, prompts you for a
number, and prints that number at column 0, row
10. The program continues to print the number you
enter at the same column and row position until you
press ESC.

• LIST
0001 LET C$=CHR$(O)
0002 LET R$=CHR$(JO)
0003 LET A$= "<16>",C$,R$
0005 PRINT "<12>"
0010 INPUT"~ ",X
0020 LWRITE A$
0030 PRINT X
0040 GOTO 0010

3. This program allows you to specify dynamically the
row and column position. Note how the string

argument to the L WRITE command is built. If you
enter 0,0 to the prompt, the string HELLO is printed
at the top row, leftmost column. Exit from this
program by pressing ESC.

• LIST
0010 DIM A$(3)
0015 LET A$(I,I)=CHR$(16)
0016 PRINT "<12>"
0020 INPUT "ROW AND COLUMN? ",R,C
0030 GOSUB 9000
0050 PRINT "HELLO"
0060 DELAY=3
0070 GOTO 0016
9000 REM POSITION CURSOR SUBROUTINE
9001 REM R = ROW, C = COLUMN
9005 LET A$(2,2) = CHR$(C)
9010 LET A$(3,3) = CHR$(R)
9020 LWRITE A$
9030 RETURN

4. This program is a more practical application of
cursor positioning. Here a data entry screen labeled
NAME AND ADDRESS FILE is created." As each
item of information is entered and NEW LINE is
pressed, the cursor jumps to the next input field. At
the end the data is displayed. The program can be
altered to loop at the end of each data entry cycle
and to output the data to a file; in this way the
programmer can code useful routines for capturing
and displaying data at specific screen locations.

• LIST
0001 DIM N$(25)
0002 DIM L$(J 5)
0003 DIM S$(15)
0004 DIM C$(15)
0005 DIM A$(50)
0010 PRINT "<12>"
0020 LWRITE "<16><28><1>"
0030 PRINT "<20>NAME AND ADDRESS

FILE<21>" ! UNDERSCORED
0040 LWRITE "<16><0><6>"
0050 PRINT "LAST NAME:"
0060 LWRITE "<16><25><6>"
0070 PRINT "FIRST NAME:"
0080 LWRITE "<16><55><6>"
0090 PRINT "MIDDLE INITIAL:"
0100 LWRITE "<16><0><10>"
0110 PRINT "STREET:"
0120 LWRITE "<16><25><10>"
0130 PRINT "CITY:"
0140 LWRITE "<16><45><10>"
0150 PRINT "STATE CODE:"
0160 LWRITE "<16><65><10>"
0170 PRINT "ZIP:"

1-10 Licensed Material-Property of Data General Corporation 093-000065-10

5.

0180 REM DATA ENTRY
0190 LWRITE "<16><11><6>"
0200 LREAD "",L$,B$
0210 LWRITE "<16><37><6>"
0220 LREAD "",F$,B$
0230 LWRITE "<16><71><6>"
0240 LREAD "",M$,B$
0250 LWRITE "<16><8><10>"
0260 LREAD "",S$,B$

, 0270 LWRITE "<16><31><10>"
0280 LREAD "",C$,B$
0290 LWRITE "<16><57><10>"
0300 LREAD "",SI$,B$
0310 LWRITE "<16><70><10>"
0320 LREAD "",Z$,B$
0330 PRINT
0340 PRINT
0350 REM OUTPUT
0360 LET N$=F$, "D",M$, "D",L$
0370 PRINT N$
0390 PRINT S$
0400 LET A$=C$,",D",SI$,"DD",Z$
0410 PRINT A$
0420 STOP

This program demonstrates the versatility of Extend
ed BASIC's cursor positioning capability. Try it.

* LIST
0005 PRINT "<12>"
0010 LET A=O
0020 LET B= 79
0030 LETC=O
0040 LET D=21
0050 LET Y=O
0060 FOR 1=1 TO 11
0070 FORX=A TOB
0080 GOSUB 1000
0090 NEXT X
0100 LET X=X-l
0110 FOR Y=C TO D
0120 GOSUB 1000
0130 NEXT Y
0140 LET Y= Y-l
0150 FOR X=B TO A STEP-l
0160 GOsuiJ 1000
0170 NEXT X
0180 LET X=X+l
0190 FOR Y=D TO C STEP-l
0200 GOSUB 1000
0210 NEXT Y
0220 LET Y= Y+ 1
0230 LET A=A+l
0240 LET B=B-l
0250 LET C= C+ 1
0260 LET D=D-l

0270 NEXT I
0280 LWRITE "<16><37><10>"
0282 PRINT "<14> The End<15>"

! ENABLE BLINKING
0300 END
1000 REM
1010 LET C$=CHR$(X)
1020 LET R$=CHR$(Y)
1030 LET A$= "<16>",C$,R$
1040 LWRITE A$
1050 PRINT "*,,
1060 RETURN

End of Chapter

1-11

""~ /

Chapter 2
Arithmetic and Strings

Numbers
An Extended BASIC number may range from + or - 5.4
* 10-79 to + or - 7.2 * 1075. Numbers may be expressed
in integer, floating-point, or in exponential form (E-type
notation).

BASIC provides either all single-precision or all double
precision floating-point calculations.

The format of converted numeric data (for example, as
converted by a PRINT statement) depends upon the
BASIC system generated (see Loading and Managing
Extended BAS/C). The least significant digit of any
printed number is always rounded.

Single-Precision' Print Representation

BASIC does not use exponential format for any floating
point or integer number of six digits or less. BASIC
prints a floating-point or integer number that requires
more than six digits in the following E-type notation:

(sign)n.nnnnnE (sign)XX

where: represents:

n.nnnnn An unsigned number carried to five decimal
places with trailing zeros suppressed

E Times 10 to the power of

XX An unsigned exponential value

The following table of values illustrates E-type notation
for single precision:

Number Single-Precision Output
Format

2,000,000 2E+06
108.999 108.999
.0000256789 2.56789E-05
24E10 2.4E+ 11

Double-Precision Print Representation
BASIC does not use exponential form for any floating-
point or integer number of eight digits or less. BASIC

prints a floating-point or integer number that requires
more than eight digits in the following E-type notation:

(sign)n.nnnnnnnE (sign)XX

where: represents:

n.nnnnnfJn An unsigned number carried to seven decimal
places with trailing zeros suppressed

E Times 10 to the power of

XX An unsigned exponential value

The following table of values illustrates E-type notation
for double precision:

Number

.666666666
108.999868
111111111.99

Double-Precision Output
Format

.66666667
108.99987
1.1111111 E + 08

Internal Number Representation

Internally, BASIC stores numbers in a format compatible
with other Data General Corporation software such as
FORTRAN IV and the relocatable assemblers. Single
precision floating point numbers are stored in two consec
utive 16-bit words of the form:

0 1 7 8 15

I s I ~~\~~ C

~~

16 31

SO-01093

Figure 2-1.

093-000065-10 Licensed Material-Property of Data General Corporation 2-1

where: represents:

S The sign of the mantissa: 0 is positive, 1
negative

c The characteristic: an integer expressed in
excess-64 code

Mantissa A normalized six-digit hexadecimal fraction.

Double-precision floating-point numbers add two words
of precision to the mantissa, which can be represented as:

o 7 8 15

s I c I
~,,~

~'\'\
~~

48 63

80-01094

Figure 2-2.

The internal floating-point precision is 6 to 7 decimal
digits for single precision and 13 to 15 decimal digits for
double precision.

There may appear to be a BASIC rounding problem
because of the way floating-point numbers are converted
from their ASCII representation and stored internally.
This restriction is noticed more frequently in single
precision BASIC. With the following code, single preci
sion yields 4960.71, double precision 4960.72 ..

• 10 LET X=6179.92
• 20LETY=1219.2
• 30 PRINT X-V

Floating point numbers are stored internally in binary
with a normalized hexadecimal mantissa. When, for
example, converting ASCII .4 to binary, a slight error is
introduced: .4 is stored as a number slightly smaller than
.4, since the fraction 4/10 cannot be represented exactly
in binary. PRINT USING can be used to override the
PRINT format and display the extra digits, for example:

• 10 INPUT X ! X=A
• 20 Y=X·10000

• 30 Z = INT(Y) ! INT function truncates fractional
portion

• 40 W=ZI 10000

• 50 PRINT X,Y,Z,W ! yields 0440003999 .3999
• 60 PRINT USING "###.###",W ! yields 00400
• 70 STOP

Since the internal representation of noninteger numbers
may not be exact, it is advisable to test for a range of
values when testing for a noninteger. For example, if the
result of computation A was to be 1.0, a reliable test for 1
IS:

IF ABS(A-1.0) < 1.0E-6 THEN ...

If this test succeeds, A is equal to 1 within 1 part in 10T6.
This is approximately the accuracy of single-precision
floating-point calculations.

Because of the method of storage of real numbers, the
PRINT statement prints the value of A=(25.l *10) as
251, even though the actual internal representation of
25.1 * 10 is slightly less than 251. However, the command
PRINT INT(25.1 *10) truncates the final value to 250.
This is due to the truncation of the fractional part by the
INT function.

Numeric Variables
Express the name of a numeric variable (var in formats)
as either a single letter or a single letter followed by a
digit. For example:

Acceptable Variable
Names

A
A3
Z

Z6

Unacceptable Variable
Names

6A
AZ
B14

BASIC also permits string variables (svar); see "String
Variables" later in this chapter.

Arrays
An array represents an ordered set of values. Each
member of the set is called an array element. An array
can have either one or two dimensions. An array name
may be a single letter or a single letter followed by a
digit.

Array Elements

Each of the elements of an array is identified by the
name of the array followed by a parenthesized subscript.

2-2 Licensed Material-Property of Data General Corporation 093-000065-10

A subscript value must be a positive 1 or greater. Array
B3 in the figure below illustrates a one-dimensional array
with six elements.

Each element in a two-dimensional array (or matrix) has
two subscript values. The first subscript number identifies
the row; the second number identifies the column. Array
C in the following figure is a two-dimensional array with
six elements.

ARRAY B

element element element
83(1) 83(2) 83(3)

ARRAY C

C(1,1) C(1,2) C(1,3) J

I 4 I : I : I
C(2,1) C(2,2) C(2,3)

80-01058

Figure 2-3.

Declaring an Array

element
83(6)

An array is typically declared in a DIM statement, which
names the array and sets- its dimensions. You can also
dimension an array in a MAT INPUT, MAT READ,
MAT READ FILE, or MAT assignment statement.
("MAT" is an abbreviation for matrix.)

The bounds of an array are the values that determine the
lowest and highest subscript values. The lower bound of a
dimension is always 1; the upper bound is set in a DIM
statement, as in this example:

• 10 DIM A(15), 81(2,3)

The upper bound of array A is 15; the upper bounds of
matrix Bl are 2 and 3. These statements will also declare
arrays:

• 50 MAT A = CON (4,5)
• 60 MAT READ A (4,5)
• 70 MAT A = 8·C

The upper bounds of array A are determined by the
expressions in the MAT assignment statements and by
the subscripts in MAT READ.

If you do not declare an array, a default upper bound of
10 is assigned to each dimension of the array. Thus, if
you have not dimensioned C, the following statement
creates array C with 10 elements, with the fifth element
set to 1:

• 100 C(5) = 1

If you try in this way to create an array with dimensions
greater tha'n 10 without declaring the array, BASIC
restricts the upper bound(s) to the default and displays
the message ERROR 31- SUBSCRIPT. Thus with the
following statement, C becomes a matrix of 100 elements,
the error message is displayed, and the value 273 is not
stored:

• 200 C(9, 11) = 273

There is no limit on the number of elements in a given
array other than restrictions of available memory. When
you declare storage for an array, it is permanently
allocated. You can redimension an array, which merely
rearranges the initially allocated space. If you try to
redimension an array to a larger size, the error message,
ERROR 28-DIM OVFL appears.

Redimensioning an array using a DIM statement does
not disturb the data in the array, as shown in the following
example:

• LIST
0010 DIM A(J 2)
0020 FOR 1=1 TO 12
0030 LET A(I)=/
0040 NEXT I
0050 DIM A(3,4)
0060 MAT PRINT A
0070 END
• RUN
1 234
5 6 7 8
9 10 11 12

END AT 0070
*
A numeric scalar variable and a numeric array variable
may share the same name. BASIC treats them as distinct
variables, provided you declare the array in a DIM
statement before referring to the scalar variable, as in the
following example. Line 20 refers to the scalar variable
A; line 50 refers to the array A.

093-000065-10 Licensed Material-Property of Data General Corporation 2-3

* 10 DIM A(3,3)
* 20 A=5067
* 30 MAT A=CON
* 40 PRINT A
* 50 MAT PRINT A;
* RUN
5067
111
111
111

END AT 0050
*

Arithmetic Operations
A numeric expression (expr in statement formats) is any
combination of numbers, numeric variables, array vari
ables and functions linked together by arithmetic opera
tors. The operators used in writing numeric expressions
are

Operator Meaning Example

+ Unary plus A+(+B)
Unary minus A+(-B)

T Exponentia tion ATB (A to the B power)
* Multiplication A*B
I Division AlB
+ Addition A+B

Subtraction A-B

Note: You cannot raise a negative number to a fractional
exponent. .

Priority of Arithmetic Operations
BASIC evaluates a numeric expression in the following
order, proceeding from left to right:

1. BASIC evaluates any expression within parentheses
before any unparenthesized expression. When paren
thesized expressions are nested, BASIC evaluates
the innermost expression first.

2. Unary plus and minus

3. Exponentiation. In a series of exponentiations, evalu
ation proceeds from left to right; that is, ATBTC =
(ATBHC.

4. Multiplication and division (equal priority)

5. Addition and subtraction (equal priority)

6. When two operators have equal priority, evaluation
proceeds from left to right.

The following example illustrates the priorities of opera
tors in evaluating an expression.

Z + (-A) + B * CTD

1. A is negated.

2. CTD is evaluated.

3. B is multiplied by the result of step 2.

4. Z is added to the result of step 1.

5. The result of step 4 is added to the result of step 3.

Parentheses
Since BASIC evaluates parenthesized expressions first,
parentheses can change the order of evaluation of an
expression. The following example uses the same variables
as the previous example. Note the differences in the
evaluation steps:

Z-«A + B) * CnD

1. A + B is evaluated.

2. The value from step 1 is multiplied by C.

3. The value from step 2 is raised to the D power.

4. The value from step 3 is subtracted from Z.

Parentheses can clarify the readability of an expression
without affecting its final value. For example, the follow
ing expressions are equivalent, although their orders of
evaluation differ somewhat:

A * BT3/4 + B/C + DT3

«A*BT3)/4) + «B/C) + DT3)

Relational Operators and Expressions
Relational operators compare two expressions in a rela
tional expression (rel-expr in statement formats). A
relational expression has the form:

expr1 relational operator expr2

The relational operators used in BASIC are:

Symbol Meaning Example

Equal A=B
< Less than A<B
<= Less than or equal A<= B
> Greater than A>B
>= Greater than or equal A>= B
<> Not equal A<>B

Relational operators also may compare strings instead of
numeric expressions (see the following section).

2-4 Licensed Material-Property of Data General Corporation 093-000065-10

String Data

String Literals
A string is a sequence of characters that may include
letters, digits, spaces, and special characters. A string
literal, or constant, is a string enclosed within quotation
marks. String literals are often used in PRINT and
INPUT statements as illustrated in the following sample:

* 050 REM THE NEXT STATEMENT PRINTS A STRING
* 100 PRINT "THIS IS A STRING LITERAL"
* 150 REM STATEMENT 200 INCLUDES A
* 160 REM STRING PROMPT
* 200 INPUT "X = ",X

BASIC does not print the enclosing quotation marks
when the string is output to a terminal. You can include
special and non printing ASCII characters in string literals
by enclosing the decimal equivalent of the character in
angle brackets « ». (See appendix D for the decimal
equivalents of ASCII character codes.) The following
program uses the decimal equivalent of a quotation mark
to print it as part of a string:

* 10 PRINT "USE DECIMAL 34 TO PRINT <34>"
* RUN
USE DECIMAL 34 TO PRINT"

END ATOOIO

*

String Variables
Extended BASIC allows string variables as well as string
literals. A string variable name consists of a letter or a
letter and a digit, followed by a dollar sign ($).

Legal String.. Illegal String
Variables Variables

A$
A2$
D6$

A14$
AA$
2$
2C$
Al

BASIC assigns string values to string variables with the
LET, INPUT:READ, and LREAD statements.

Dimensioning String Variables
You may declare the length of a string variable with a
DIM statement. The length of a string must be in the
range 1-32767 characters.

In the following DIM statement, the string A$ has a
maximum length of 25 characters, B3$ a maximum length
of 200.

* 10 DIM A$ (25), 83$ (200)

If you do not declare a string variable in a DIM statement,
BASIC assumes a maximum length of 10 characters and
truncates values longer than 10 characters. Good pro
gramming practice suggests that you dimension all string
variables, regardless of size.

In the following example, note that BASIC has truncated
the string to its assigned dimension: 15 characters,
including spaces.

* 10 DIM A2$(15)
* 20 LET A2$="PRINT A2$ IS TOO LONG"
* 30 PRINT A2$
* RUN
PRINT A2$ IS TO

END AT 0030
*

Substrings
You can select portions of strings, or substrings, in
program statements and functions by using subscripts.
Subscripted variables have the form:

svar [{;,z}]
where: represents:

svar

x

Y,Z

A string variable name

The xth through last character of svar

The yth through zth characters of svar

For example, given string variable A$:

A$

A$(2)

A$(I)

A$(3,7)

A$(I,J)

Refers to the entire string.

Refers to the second through last character
in the string, inclusively.

Refers to character I through the last
character in the string, where I evaluates
to a character position less than or equal to
the string length.

Refers to characters 3 through 7, inclusive
ly.

Refers to characters I through J, where I
<= J.

A$(1 ,1) Refers to only the first character in the
string.

When referring to substrings, y must not be greater than
z, except in the special case where Z equals o.

093·000065·10 Licensed Material-Property of Data General Corporation 2-5

Assignment Extraction

If either x or y is 0, it defaults to If either x or y is 0, it
the current length of the string defaults to 1.
plus 1.

If z is ° and there are fewer If z is 0, z defaults to
characters provided than would the current length of
fill the string to its current or the string.
dimensioned length, no blanks are
padded.

x,y,z must not be greater than
the dimensioned length.

x and y must not be
grea ter than the cur
rent length.

When an assignment provides too many characters,
BASIC truncates the extra characters. When an assign
ment provides too few characters, blanks are added to the
remaining positions. When x or y is more than one
character beyond the current length in an assignment,
BASIC generates an error.

The following examples illustrate the use of substrings:

• LIST
0005 DIM A$(20)
0010 LET A$(1,3) = "SUB"
0020 LET A$(4,IO) = "STRING"
0030 LET A$(II,J7)= "EXAMPLE"
0040 PRINT A$
• RUN
SUBSTRING EXAMPLE

END AT 0040
*
You can use substrings to change the value of a string
variable during a program, for example:

• LIST
0010 LET A$= "ABCDEF"
0020 PRINT A$
0030 LET B$= "I"
0040 LET A$(3,3)=B$
0050 PRINT A$
0060 LET A$(4)=B$
0070 PRINT A$
• RUN
ABCDEF
ABIDEF
ABII

END AT 0070
*

Assigning Values to String Variables

READ and DATA statements can assign values to string
variables. When you include string data in a DATA list,
enclose the string elements in quotation marks.

• LIST
0005 DIM AI$(2),B$(IO),D$(5)
0010 READ A,AI$,B$,C,D$
0015 PRINT A,C,D$
0020 DATA 5, "ABCD", "EFGH",JO, "IJKL"
• RUN
5 10 IJKL

END AT 0020 *
As this example demonstrates, you may mix string data
and numeric data in a DATA list. However, each variable
in the READ statement must correspond to the type
(numeric or string) of its matching element in the DATA
list, or an error message results.

INPUT statements can also input string data to a
program. The response at the INPUT prompt (?) may be
enclosed in quotation marks, which are optional. If the
INPUT statement requests data for more than one string
variable, separate the data entered for each string with a
comma or a carriage return. You may include commas in
an INPUT string by enclosing the entire string in
quotation marks, as in the following example:

• 10 INPUT A$,B$,C,D,E$

• RUN
?ABCD,"EF,GH",2,4,"SIX"

To include quotation marks, enclose 34 in angle brackets.
Exercise caution when you include NULL <0>, FORM
FEED <12>, or CR <13> for RDOSjDOS systems,
or NL <10> for AOS and AOSjVS systems, since
these characters are string delimiters.

If you want to assign exactly what is typed, use the
LREAD statement. LREAD does not strip leading or
trailing blanks, does not use commas for delimiters, and
does not process angle brackets.

Strings in IF-THEN Statements

You can also use strings in the relational expression of an
IF-THEN statement. In this case, BASIC compares
strings character by character on the basis of the ASCII
character value (see appendix D) until it finds a differ
ence. If a character in a given position in one string has a
higher ASCII code than the character in that position in
the other string, the first string is greater. If the characters
in the same positions are identical, but one string has

2-6 Licensed Material-Property of Data General Corporation 093-000065-10

more characters than the other, the longer string is
greater. For example:

• 200 LET A$ =" ABCDEF"
• 300 LET B$="25 ABCDEFG"

• 310 IF A$>B$ GOTO 500(True: transfer occurs.)
• 320 IF A$>B$(4) GOTO 500(False: no transfer.)
• 330 IF A$(1 ,4) = B$(4,7)GOTO 500

(True: transfer occurs.)

String Concatenation
You may concatenate string variables and string literals
on the righthand side of LET statements, using a comma
as the concatenation operator. For example:

• 10 DIM A$(50),B$(50)
• 15 LET A$="@$2.50,PROFIT MARGIN IS 15%"
• 20 LET B$=A$(1,4),"25",A$(7,26),"1%"
• 30 PRINT B$
• RUN
@$2.25,PROFIT MARGIN IS 11 %

String concatenation, therefore, allows the following
statement:

• 10 A$=A$,B$

where A$ is concatenated with B$ to yield a new value of
A$.

Note: When concatenated strings are assigned to a string
variable, the result of the concatenation is calculated
after the assignment is made. Be careful when you use
the same string variable on both sides of an assignment.
For example, the statement

• 10 A$=B$,A$

does not use a temporary string to do the concatenation;
therefore, the value of A$ on the right side of the equal
sign is not the original value, but rather the value after
B$ has been assigned. For example:

• LIST
0003 A$ = "12345"
0006 B$ = "A"
0010 A$=B$,A$
0020 PRINT A$
* RUN
AA

END AT 0020
*

String Arithmetic
You can perform arithmetic on string variables and string
literals. BASIC executes the arithmetic operation, provid
ed the strings (or substrings that begin at the first
character of the string) have legal numeric values. BASIC
ignores any alphanumerics that follow the numeric
substring. If the substring is not a legal number, an error
condition occurs.

Valid String

"123"
"123."
"-123"
"-123.E5"
"-123.E-5FRED"

Invalid String

"FRED"
"123.E+ FRED"
"-+ 123"
"FREDl,23"

Notice that BASIC permits decimal points, signs, and
exponential forma4- in the substring as long as they
conform to the numeric representation described at the
beginning of this chapter.

You may use the operators + ,-, *, and / to link strings
and to create an expression to be evaluated numerically.
Do not use the concatenation character (,) in a string
arithmetic expression.

* LIST
0010 LET A$= "1234GEARS"
0020 LET B$= "5678GEARS"
0030 PRI.NT A$+B$+ "10"
• RUN
6922.

END AT 0030
*
BASIC returns 18 digits of precision when string arithme
tic calculations are made. If any precision is lost, an error
message is output. For example:

• 10 PRINT "123E27"*"1"

causes an error since the result cannot be represented by
18 digits.

End of Chapter

093-000065-10 Licensed Material-Property of Data General Corporation 2-7

Chapter 3
B.ASIC Statements, Commands, and Functions

This chapter is an alphabetical reference for the keywords
of Extended BASIC. Each description indicates the
operating system(s) on which the word may be used;
whether the word can be a statement, command, or
function; the word's general syntactic format; remarks
about the word's use; and one or more examples.

Table 3-1 groups the keywords according to their general
purposes.

093-000065-10

Table 3-1 IExtended BASIC Keywords: Categories of Use (continues)

RDOS Privileged Commands (Execute only at the system terminal.)

ALL

CDIR

CPART

DIR

DISABLE

ENABLE

Editing Commands

.(period)

.A

Functions

ABS(x)

ATN(x)

CHR$(A)

COS (x)

CPU(x)

.C

.E

DEF FNa(d)

EOF(x)

EXP(x)

INT(x)

LEN(x$)

Matrix Manipulation

Addition & DET

subtraction IDN

Assignment INV

CON MAT INPUT

File I/O

CLOSE FILE LWRITE FILE

GPOS FILE MAT INPUT FILE

INPUT FILE MAT PRINT FILE

LREAD FILE MAT READ FILE

FALL

FMSG

FREE

.P

LOG(x)

ORD(X$)

POS(x$,y$,z)

RND(x)

MAT INPUT FILE

MAT PRINT

MAT PRINT FILE

MAT READ

MAT WRITE FILE

OPEN FILE

PRINT FILE

PRINT FILE USING

INIT

KILL

SGN(x)

SIN(x)

SQR(x)

STR$(x)

MAT READ FILE

MAT TINPUT

MAT WRITE FILE

READ FILE

RESET

SPOS FILE

WRITE FILE

Licensed Material-Property of Data General Corporation

MAX

RELEASE

SYS(x)

TAB(x)

TAN (x)

VAL(x$)

Multiplication

TRN

ZER

3-1

Table 3-1 Extended BASIC Keywords: Categories of Use (concluded)

General Commands and Statements

ACL ECHO
AUDIT END
BYE ENTER
CALL ERASE
CARDS ESC
CHAIN FILE
CHAR FN
CHATR FOR-NEXT
CLI GDIR
CON GOSUB
DATA GOTO
DELAY HELP
DELETE IF-THEN
DIM INPUT
DISK LET

AOS, AOS/VS

ROOS, DOS

• (period)
Sends the line in the edit buffer to
working storage.

Format

Remarks

LEVEL
LIBRARY
LIST
LOAD
LOCK
LREAD
LWRITE
MSG
NEXT
NEW
NOECHO
NOESC
NOMSG
ON ERR
ON ESC

1. The period command is a keyboard edit command.
The editing commands work by manipulating state
ments in the edit buffer. BASIC allows you to put
one statement into the buffer, change it, and reinsert
it into the program. You may use the LIST command
at any time to put a line into the edit buffer.

2. The system always inserts the last LIST statement
into the buffer. If a statement merged with ENTER
causes a syntactic error, the system automatically
inserts it into the buffer. If you type a line that
causes a syntactic error, BASIC puts that line into
the edit buffer. Note that BASIC can hold only one
line at a time in the edit buffer.

3. You need only the period command when you use
the .A or .E commands. The .C command automati
cally sends the line back to working storage).

ON GOTO RUN
ON GOSUB SAVE
PAGE SEARCHLIST
PRINT SHARE
PRINT USING SIZE
PUNCH STOP
RANDOMIZE TAB
READ TIME
REM TINPUT
RENAME UNLOCK
RENUMBER UNSHARE
RESTORE USERS
RETRY WHATS
RETURN WHO

Example
• 10 INPUT WHAT IS YOUR CAPITAL?",A
ERROR 2 - Statement or command syntax is invalid
• .E/WHAT I "WHAT I
10 INPUT "WHAT IS YOUR CAPIT AL?",A
*
10 INPUT "WHAT IS YOUR CAPITAL?",A
*

3-2 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS

.A
Appends to the line in the working
storage edit buffer.

Format
.A string

Argument
string A string literal, without quotation marks, that

you want to append to the line

Remarks
1. The .A command is a keyboard edit command. The

editing commands work by manipulating statements
in the edit buffer. BASIC allows you to put one
statement into the buffer, change it, and reinsert it
into the program. You may use the LIST command
at any time to put a line into the edit buffer.

2. The system always inserts the last LIST statement
into the buffer. If a statement merged with ENTER
causes a syntactic error, the system automatically
inserts it into the buffer. If you type a line that
causes a syntactic error, BASIC puts that line into
the edit buffer. Note that BASIC can hold only one
line at a time in the edit buffer.

3. .A appends the string argument to the buffer line,
but it does not send that line into working storage to
be interpreted. Use the period command (.) to send
the line to working storage.

4. .A appends only to the line currently in the edit
buffer. Use the .P command to see what is currently
in the edit buffer.

Example
• 10 LET A=
ERROR 2 - Statement or command syntax is invalid
• .A3
10 LET A=3
* . (Period sends edited line 10 to working storage.)

AOS, AOS/VS

ROOS, DOS

.c
Changes a string in a line in the edit
buffer and passes the line to working
storage.

Format
.[nJC / string 1/ string2

Arguments
string 1

string2

n

Remarks

A string literal, without quotation marks, in
the line in the edit buffer. It is the string you
want to change.

The string literal, without quotation marks,
that is to replace string1

A non-negative number that designates
which stringl you wish replaced by string2.
If n =0, all string 1 's in the buffer are re
placed with string2's

1. The .C command is a keyboard edit command. The
editing commands work by manipulating statements
in the edit buffer. BASIC allows you to put one
statement into the buffer, change it, and reinsert it
into the program. You may use the LIST command
at any time to put a line into the edit buffer.

2. The system always inserts the last LIST statement
into the buffer. If a statement merged with ENTER
causes a syntactic error, the system automatically
inserts it into the buffer. If you type a line that
causes a syntactic error, BASIC puts that line into
the edit buffer. Note that BASIC can hold only one
line at a time in the edit buffer.

3. .C changes the first occurrence of string 1 to string2
and automatically passes the edited line to working
storage to be ihterpreted.

4. .C changes only the line currently in the edit buffer.
Use the .P command to see what is currently in the
edit buffer. Use the LIST command to put a line in
the edit buffer.

5. The system does not translate lowercase letters into
uppercase letters in string 1 or string2; it considers
lowercase letters distinct from uppercase letters.

093-000065-10 Licensed Material-Property of Data General Corporation 3-3

.c (continued)

Examples
• LIST
0010 LET A=l
0020 FOR 1= 1 TO 31
0030 LET A1 = A
0040 LET A2=A+A1
0050 PRINT A2
0060 LET A1 = A2
0070 NEXT I
• LIST 60
0060 LET A1=A2
• .C/A1/A
0060 LET A = A2
*
You can use .C to change several mistakes in the same
line:

• LIST 40
0040 LET A=A+A
• .CI AI A21
0040 LET A2= A + A
• LIST 40
0040 LET A2= A + A
• .3CI AI A 1 I
0040 LETA2=A+A1

You can also use .C to make several changes at one time,
if they are all the same:

• 0010 REM "THIS IS A CORRECT LINE'
• LIST 10
0010 REM "THIS IS A CORRECT LINE'
• .C/'/"I"
0010 REM "THIS IS A CORRECT LINE"
• .OC/R/ZI
• LIST 10
0010 ZEM "THIS IS A COZZECT LINE"
ERROR 2 - Statement or command syntax is invalid

AOS, AOS/VS

ROOS, DOS

.E
Changes a string in a line in the edit
buffer.

Format
.E I string 1 I string2 I

Arguments
string 1 A string literal, without quotation marks, in

the line in the edit buffer. It is the string you
want to change.

string2 The string literal, without quotation marks,
that is to replace stringl

Remarks

1. .E is a keyboard edit command that performs the
same function as a .C command, without passing
the modified line to working storage.

2. .E changes only the line currently in the edit buffer.
Use the period command (.) to send the edited line
to working storage to be interpreted.

3. The system does not translate lowercase letters into
uppercase letters in stringl or string2; it considers
lowercase letters distinct from uppercase letters.

Example
• LIST 25
0025 DIM A$(35),B$(39)
• .E/35/401
0025 DIM A$(40),B$(39)

3-4 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS

.P
Displays the contents of the edit buffer.

Format
.P

Remarks

1. The .P command is a keyboard edit command. The
editing commands work by manipulating statements
in the edit buffer. BASIC allows you to put one
statement into the buffer, change it, and reinsert it
into the program. You may use the LIST command
at any time to put a line into the edit buffer.

2. The system always inserts the last LIST statement
into the buffer. If a statement merged with ENTER
causes a syntactic error, the system automatically
inserts it into the buffer. If you type a line that
causes a syntactic error, BASIC puts that line into
the edit buffer. Note that BASIC can put only one
line at a time in the edit buffer.

3. Once a line is in the edit buffer, you can edit it using
the .A, .C, .E, or period (.) commands.

4. .P displays only the contents of the ~dit buffer.

Example
• THIS IS MONDAY
ERROR 2 - INVALID SYNTAX
•. P
THIS IS MONDAY
*

AOS, AOS/VS

ROOS, DOS

ABS(X)
Returns the absolute (positive) value of
expr.

Format
ABS(expr)

Argument
expr A numeric expression

Example

• LIST
0010 PRINT ABS(-30)
• RUN
30

END AT0010
*

093-000065-10 Licensed Material-Property of Data General Corporation 3-5

AOS, AOSjVS ffEv
RDOS, DOS c V

F

ACL
Prints a report of, or changes the Access
Control List for a file in your directory.

Format
ACL "filename" {, "userID", "attributes"] ...

Arguments

filename A string literal or string variable that evalu
ates to a filename in your directory

userID A string literal or string variable that evalu
ates to your identification

attributes One or more letter designations for the attrib
utes listed below. An attribute controls the
specified user's access to the named file, in
the manner described below.

R Read Access. The user may only examine
the data in the file.

W Write Access. The user may modify data
in the file.

o Owner Access. The user may change the
Access Control List for the file, delete the
file, or rename the file.

E Execute Access. Without E access, BA
SIC treats the file as an execute-only file.
BASIC generates an error message if the
user tries to open the file, or attempts a
LIST or SAVE after using ENTER or
LOAD on the file.

A Append Access. This attribute has no
meaning for nondirectory files. For direc
tory files, append access permits the user
to make entries in the directory.

Remarks
1. When you create a file in your own directory, the

file automatically has all five attributes, OW ARE,
for your user ID.

2. The ACL command allows you to change the Access
Control List to allow others to have full or partial
access to your file, or to change your own access
privileges.

3. String the file attributes together in the attributes
argument without any delimiting spaces or punctua
tion. You may express them as either string literals
or string variables.

4. The ACL command, followed only by the filename
argument prints the current Access Control List for
filename.

5. For RDOS and DOS systems the CHATR statement
provides a similar facility.

Example
* ACL "PAGE2.2","JOE","REWAO","MARK","RE"
* ACL "PAGE2.2"
JOE,OWARE MARK,RE

In this example, JOE has all access privileges to PAGE
2.2, and MARK is limited to read and execute privileges.

3-6 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS

ALL

~
v

c 11
F

Transmits a message to all active users
who have not disabled message
reception with the CHAR or NOMSG
command.

Format
ALL message

Argument
message The text of the message. Quotation marks are

unnecessary.

Remarks
1. ALL must be executed from the master terminal. In

a single-user system, the master terminal and user
terminal are the same. In multiuser environments,
programs using ALL as a statement do not work
when run from terminals other than the master
terminal.

/"'-' 2. All active users on the system who have not disabled
message reception receive the transmitted message
on their terminals. The message appears as follows:

FROM OPER:message

OPER is the ID associated with the master terminal.

3. No error message appears at the master console if a
user has disabled message reception.

4. Message reception is limited to one line per ALL
command.

Example
If the system operator types

• ALL LINE PRINTER OUTPUT IS READY

the users see displayed on their screens

FROM OPER: LINE PRINTER OUTPUT IS READY

AOS, AOS/VS

ROOS, DOS

ATN(X)
Calculates in radians the angle whose
tangent is: expr (-pi/2 < result < pi/2).

Format
ATN(expr)

Argument
expr A numeric expression

Example
• LIST
0010 REM-CALCULATE ANGLE WHOSE TAN=2
0020 PRINT ATN(2)
• RUN
1.1071487

END AT 0020
*

093-000065-10 Licensed Material-Property of Data General Corporation 3-7

~'" c V
F

AOS, AOSjVS

RDOS, DOS

AUDIT
Copies console input and output to a file
named by argument.

Format
AUDIT [,Jilename"J

Argument
filename An optional string literal or string variable to

represent the audit file that would contain
console input and output

Remarks
1. Using AUDIT as a command allows copying of both

terminal input and output.

2. Only one audit file can be in effect at a time.

3. AUDIT without a filename shuts off the AUDIT
operation.

4. If the audit filename already exists, the new informa
tion is appended to the file.

Example
• LIST
0010 DELETE "COPY.DT" ! DELETE OLD FILE
0020 LET A$ = "COPY.DT"! FORM AUDIT ARG
0030 AUDIT A$! OPEN "COPY.DT" AS AUDIT FILE
0040 LET A = 3 ! ASSIGN A
0050 PRINT -A ! OUTPUT -3 TO CONSOLE
0060 AUDIT! CLOSE AUDIT FILE
0070 END

When this program is run, the file "COPY.DT" will
contain the three ASCII bytes "-3 <012>", which are
output to the terminal.

AOS, AOSjVS

RDOS, DOS

BYE

~"
C "
F

Depending on how your system is
configured, signs off from BASIC and
returns one level, or returns to the Cll,
or logs off.

Format
BYE

Remarks
You can use BYE as a console command or as a program
statement to exit from BASIC.

Example

• BYE
)

3-8 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

BYE

~
v

c V
F

Signs off from the BASIC system and
makes the terminal available to others.

Format
BYE

Remarks

1. You can use BYE as a console command or as a
program statement to log off BASIC.

2. When issued from the master terminal, BYE exits
to the operating system CLI, unless one or more
users are still logged on. In this case, the following
error message is displayed at the master terminal,
and you are not be able to exit from BASIC:

ERROR 64 - System active

Use FALL to inform all active users that you want
to terminate BASIC, then try the BYE command
again.

3. BASIC displays accounting information after you
enter the BYE command.

4. BYE severs telephone connections.

5. The system does not recognize the ESC key until
the messages that follow BYE have been output.

6. Do not disconnect your terminal until the BYE
sequence is complete.

Example
* BYE
xxxx 01/02/83 10:06 SIGN OFF, 04
xxxx 01/02/83 10:06 CPU USED, 206
xxxx 01/02/8310:06 I/O USED, 11, 137

BASIC xx.xx
Ready

The first two lines show that you are using terminal 04
and that you used 206 seconds of CPU time. The third
line shows that you made 11 file I/O calls and 137
BASIC I/O calls.

AOS, AOS/VS

RDOS, DOS

CALL

~
v

c V
F

Calls a subroutine written in assembly
language from an Extended BASIC
program.

Format
CALL subr [,exprJ ...

Arguments
subr A positive integer representing an assembly lan

guage subroutine number

expr As many as eight optional arguments to be passed
to the subroutine. Arguments may be arithmetic or
string variables, or expressions.

Remarks
1. You must initiate all variable arguments passed to

an assembly language subroutine before using them
in a CALL statement; otherwise an error message
occurs.

2. CALL subroutines do not accept arrays, including
dimensioned variables, as arguments, unless they
include subscripts that indicate the one element to
be passed to the CALL.

3. Chapter 4 describes creating assembly language
subroutines that may be called from Extended
BASIC programs.

Example
0005 LET A = 12
0010 LET B = A * 2
0015 CALL 33,A,B

Statement 15 calls subroutine 33, with the values of A
and B as arguments to the subroutine.

093-000065-10 Licensed Material-Property of Data General Corporation 3-9

AOS, AOS/VS

RDOS, DOS

CARDS

~
v'

c v'
F

Transfers and merges BASIC statement
lines in DGC mark-sense card format
from the card reader, other device, or
disk file into your current program
storage area.

Format
CARDS "filename"

Argument
filename A device or disk file, expressed as a string

literal or variable

Remarks
1. If the filename is a disk file, BASIC searches for it

in your directory first. If it is not found, BASIC
searches the library directory for the filename.

2. When a statement line from the device or file has
the same line number as a line in the current
program, BASIC replaces the current statement.

3. CARDS provides a convenient method of entering
statements from Extended BASIC mark-sense cards.
(Use ENTER for statements not in mark-sense card
format.)

4. CARDS permits both 80-column punch cards and
37-column DGC mark-sense cards in the same
BASIC system: on machines with two card readers
or one reader equipped to read both types of cards.
However, you cannot mix 37- and 80-column cards
in the same deck. You may enter mixed programs in
two steps, as shown in the example.

Example
• NEW
• ENTER "$CDR"
• CARDS "$CDR"

BASIC merges statements on 80-column cards with
statements on special DGC mark-sense cards.

AOS, AOS/VS

RDOS DOS

CDIR

~
v

c v'
F

Creates a subdirectory.

Format
CDIR name

Argument
name A string literal or string variable of up to 10

characters

Remarks
1. CDIR must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, any programs using CDIR as a statement do
not work when run from terminals other than the
master terminal.

2. Each user must be assigned to subdirectory, or to a
secondary partition.

3. You may create the subdirectory in the master
directory, or in any other primary or secondary
partition.

Examples
• CDIR "SMITH"
*
Creates SMITH.DR in the current directory

• A$="JOE"
• CDIR A$

Creates JOE. DR in the current directory

3-10 Licensed Material·Property of Data General Corporation 093·000065·10

~
v

c V
F

AOS, AOSjVS

ROOS, DOS

CHAIN
When encountered by the system, runs
the specified separate program.

Format
CHAIN "filename" [THEN GOTO line no.]

Arguments
filename A string variable or string literal that evaluates

to a disk filename or a device

line no. A line number in the program specified by the
filename

Remarks
1. When BASIC encounters a CHAIN statement in a

program, it stops execution of that program, retrieves
the program named in the CHAIN statement from
the specified device or file, and begins execution of
the chained program.

2. If the program is on disk, the system searches your
directory for the filename; if it is not found, the
system searches the library disk directory.

3. If BASIC finds the filename, it clears your current
program from memory and loads the file into
memory. If BASIC does not find the filename, your
current program remains in memory, and an error
message occurs.

4. CHAIN does not change the status of files. Open
files remain open, and current file position pointers
are maintained.

5. A program must be in core image format before it
can be chained, and may have been partially execut
ed before it was saved.

6. By default, BASIC clears all variables from the new
program and runs it from the lowest numbered
statement. If you use CHAIN with THEN GOTO
line no., variables in the main program maintain the
values they had when the program was saved, and
the program runs from the specified line number. If
the line number does not exist in the new program,
BASIC loads the new program but an error message
occurs. Also, when THEN GOTO line no. is used,
the chained program must have been run, then saved,
in order to establish the variable expansions.

Example
0010 READ A
0020 IF A > 5 THEN GOTO 0060
0030 IF A = 5 THEN GOTO 0070
0040 DATA 4,1,6,3,5
0050 GOTO 0010
0060 CHAIN "SERVICE"
0070 CHAIN "SUBR" THEN GOTO 0050

093-000065-10 Licensed Material-Property of Data General Corporation 3-11

~
. 11

c 11
F

AOS, AOS/VS

ROOS, DOS

CHAR
Changes or prints a report of the current
device characteristics.

Format

"ON"
"OFF"
"characteristic"
"LPP", svar
"CPL", svar
"device"

Arguments

"ON"
"OFF"

, "characteristic"
"LPP", svar
"CPL", svar
"device"

svar A string variable or string literal that
represents a numeric value

device The name of a terminal expressed as a
string variable or string literal

characteristic A device characteristic, expressed as a
string variable or string literal. See
"Remarks" for a list of device character
istics.

Remarks
1. If you type the CHAR command without a list of

arguments, BASIC prints a report listing the current
device characteristics on your terminal.

2. The ON and OFF arguments apply only to the
characteristics arguments, not to the device, LPP, or
CPL arguments.

3. When you use the CHAR command, the keyword
ON is in effect until BASIC encounters the keyword
OFF. OFF then remains in effect until BASIC
encounters ON.

4. LPP sets lines per page; CPL sets characters per
line.

5. The CHAR command only changes the device
characteristics specified in the command. It does
not replace the existing device characteristics.

6. The characteristic FKT enables the user function
keys of 6052/6053 DASHER TM display terminals.
Each key generates a two-code sequence (see DASH
ER Display Terminal 6052, 6053 Technical Refer
ence, 014-000077). If FKT is on, the function keys
are recognized as AOS delimiters.

7. Available device names include the following:

40101 (lnfoton) Hardcopy
6012 605x
CRT4-15

8. You cannot set the MOD characteristic (device on a
modem line) on or off with the CHAR command; it
is displayed for your information only.

9. The device characteristics that you can turn ON or
OFF are listed below. Not all characteristics apply
to all devices.

ST
SFF
EPI
WRP
SPO
RAF
RAT
RAC

NAS
OTT
EOl

UCO
IT
FF
EBO
EB1
UlC
PM
NRM
TO
TSP
PBN

ESC
FKT
CM4

Simulate tab settings (eight columns).
Simulate form feed.
Require even parity on input.
Device wraps around when line too long.
Set even parity on output.
Send 21 rubouts after each form feed.
Send 10 rubouts after each tab.
Send 10 rubouts after each carriage return
or NEW LINE.
Device is non-ANSI standard.
Old TTY. Convert 175 and 176 to 33 octal.
Do not execute automatic carriage return-line
feed if CPl is exceeded.
Convert lowercase output to uppercase.
Output 55 nulls upon open and close.
Output a form feed upon open.
Echo all characters.
Echo all characters except control characters.
Input both uppercase and lowercase.
Device is in page mode.
Disable message reception via ?SEND.
Enable time-outs on reads and writes.
Do not suppress trailing blanks (card reader).
Use packed format on binary read (card
reader).
ESC character produces an interrupt.
Enable function keys as delimiters.
Allow conversion of RDOS BASIC 4.XX
programs to AOS BASIC l.XX. (See
"Remarks" in the next entry for cases.)

3-12 Licensed Material-Property of Data General Corporation 093-000065-10

Examples
·CHAR
CRT2 LPP 24 CPL 80
ON STEPl NAS EBO ESC
OFF SFF SPO RAF RAT RAC OTT EOL UCO LT FF
EBl ULC PM NRM MOD TU TSP PBN WRP
·CHAR OFF,ST
·CHAR
CRT2 LPP 24 CPL 80
ON EPI NAS EBO ESC
OFF ST SFF SPO RAF RAT RAC OTT EOL UCO LT
FF EBl ULC PM NRM TO MOD TSP PBN WRP

AOS, AOS/VS

ROOS, DOS ~
v

c V
F

. CHAR
Changes or prints a report of the current
device characteristics.

Format

CHAR r~{"ON" }ll
ff~"OFF"V

Argument

"characteristic" fJ} ...

characteristic A device characteristic, expressed as a
string variable or string literal. See
"Remarks" for a list of device characteris-
tics.

Remarks
1. If you type the CHAR command without a list of

arguments, BASIC prints a report listing the current
device characteristics on your terminal.

2. When you use the CHAR command, the keyword
ON is in effect until BASIC encounters the keyword
OFF. OFF then remains in effect until BASIC
encounters ON.

3. The CHAR command only changes the device
characteristics specified in the command. It does
not replace the existing device characteristics.

4. You cannot set the MOD characteristic (device on a
modem line) on or off with the CHAR command; it
is displayed for your information only.

5. The device characteristics which you can turn ON
or OFF are listed below.

NCR Do not echo carriage return.
OSP Disable spooling.
OLC Disable line feed after carriage return.
XON XON /XOF protocol for $TTR (multiplexor

terminals only)
ONF Disable 20 nulls after form feed.
NOE Do not echo input.
BSP Backspace for rubout.
OTS Disable tab simulation.
ESC Escape character produces interrupt.
NRM Disable message reception from other users.
CM4 Allow conversion of 4.XX programs to 5.XX

programs. (See remark 9 below.)

093-000065-10 Licensed Material-Property of Data General Corporation 3-13

CHAR (continued)
6. For the CLI system console, the NCR, DLC, DNF,

and DTS characteristics are valid only in input mode.

7. Only multiplexor consoles support the XON charac
teristic.

8. It is recommended that CHAR be used rather than
NOECHO, ECHO, NOESC, and ESC.

9. Until you convert your revision 4.XX RDOS Extend
ed BASIC programs to revision 5.XX RDOS Ex
tended BASIC-or to revision I.XX AOS Extended
BASIC-you can use CHAR "CM4" to run your
old programs in the following cases:

a. FOR/NEXT

Revision S.XX or Revision 1.XX

When the FOR/NEXT loop ends, the value of
the control variable is the first value not used.

Revision 4.XX

When the FOR/NEXT loop ends, the value of
the control variable is the last value used.

b. TAB(X)

Revision S.XX or Revision 1.XX

The first column of a line is column 1.

If X is less than 1, then 1 is substituted.

If X is less than the present column number,
printing proceeds at column X on the next line.

If X is 0, and the current column position is 1,
the system does not generate a carriage return.
Each file has its own column counter.

Revision 4. XX

The first column of a line is column 0.

Negative tab arguments are treated as unsigned
integers and evaluated modulo the page size.

If X is less than the present column number, the·
T AB(X) function is ignored.

If X is 0, the system always generates a carriage
return.

If X is 0, the system carriage return is always
returned.

The file column counter is reset to ° at the
beginning of each PRINT FILE statement.

c. Substrings

Revision S.XX or Revision 1.XX

Assignments with too few characters are padded
with blanks in the remaining character positions.

When the first argument in a substring assign
ment is 0, it defaults to current length plus 1.

An error is generated when the first argument of
a substring extraction is the current length plus 1
and the second argument is beyond the current
length.

Revision 4.XX

If an assignment has too few characters, BASIC
truncates the remainder of the string and updates
the current length.

When the first argument in a substring assign
ment is 0, it defaults to 1.

A null character is returned when the first
argument of a substring extraction is the current
length plus 1, and the second argument is beyond
the current length.

To return to revision 5.XX or revision 1.XX, use the
command CHAR "OFF","CM4".

Example
• CHAR
ONXONESC
OFF NCR DSP DLC DNF NOE BSP MOD DTS NRM
• CHAR "ON","BSP"
• CHAR
ON XON BSP ESC
OFF NCR DSP DLC DNF NOE MOD DTS NRM
*

3-14 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS

CHAIR

~
v

c V
F

Changes, adds, or removes the
resolution file attributes assigned to a file
that already exists in your directory.

Format
CHATR "filename", attributes

Arguments
filename

attributes

Remarks

A disk file in your directory, expressed
as a string literal or string variable

File attributes described under
"Remarks"

1. Attributes that you can set with the BASIC CHATR
command are compatible with those of the RDOS
CHATR command.

2. You can string together file attributes in the attrib
utes argument without delimiting spaces or punctua
tion.

3. The attributes given in the BASIC CHATR com
mand replace existing attributes, unless you specify
otherwise.

4. Any attempt to use CHATR on an open file
generates an error condition.

5. The attributes that may be added or removed by the
BASIC CHATR command are:

P Permanent file. You cannot delete or rename the
file.

R Read-protected. You cannot access the file for
reading.

W Write-protected. You cannot alter the file.

H Special BASIC argument to CHATR that speci
fies attributes H, P, and W. Special attribute in
CLI is 1.

E Special BASIC argument to CHATR that makes
a file an execute-only file with attribute E.
BASIC generates an error message if an execute
only file is opened, or if a LIST or SAVE is
attempted on an execute-only file has been
entered or loaded.

o Special BASIC argument to CHATR that makes
a file sharable with attribute H. Other users may
access the file if they know its name and directo
ry.

o Zero removes the current file attributes and adds
the attributes to the right of O. For example,
ORW removes all current file attributes and
replaces them with RW.

• Special BASIC argument to CHATR that pre
serves the current file attributes and adds those
specified. The asterisk may be used only in
conjunction with other attributes in the argu
ment.

+ Plus preserves the current file attributes and adds
those following the plus sign. It is identical to *.

- Minus removes only those attributes following
the minus sign.

Example
• WHATS "TESTFILE"
TESTFILE. D 260
• CHATR "TESTFILE", "WP"
• WHATS "TESTFILE"
TESTFILE. WPD 260
*

093·000065·10 Licensed Material·Property of Data General Corporation 3-15

AOS. AOS/VS

RDOS. DOS

CHR$(A)
Generates the character represented in
the ASCII collating sequence by a
number.

Format
CHR$(expr)

Argument
expr A numeric expression

Remarks
1. The argument of the character string function may

be any numeric expression.

2. BASIC truncates the expression to an integer and
computes the modulus 256 before returning a char
acter.

3. If the expression is negative, BASIC returns an
error message.

Example
• LIST
1000 REM CONVERT LOWER - TO UPPERCASE
1010 FOR I-I TO LEN(A$)
1020 LET A=ORD(A$(I,/))
1030 IF A> =97 THEN IF A < =122 THEN LET

A$(I'/)=CHR$(A-32)
1040 NEXT I

AOS. AOS/VS v ~
.... R_D_O_S_. _D_O_S_-'----' rn
Cli

Provides access to the command line
interpreter without terminating the
BASIC process.

Format
eLi ! command]

Argument
command Any valid CLI command

Remarks
1. If you execute CLI with an argument, the BASIC

process is temporarily suspended until the CLI
command is completed; you are then returned to
BASIC.

2. If you execute CLI without an argument, you remain
at the command line interpreter, where you may
execute a series of commands. To return to BASIC,
type BYE.

3. For CLI to execute, CLI.PR must be in your
searchlist.

Example
• eLi
)TIME
13:25:12
)DUMP @MTO:O - .SR
)BYE
• eLi TIME
13:26:25
*

3-16 Licensed Material·Property of Data General Corporation 093·000065-10

AOS, AOS/VS

ROOS, DOS

CLOSE FILE

ff§1I
c V
F

Dissociates a filename and a file number
so that the file is no longer referred to
and the file number can be reused.

Format

CLOSE ({ ~ILE} ~li

Argument
A synonym for the keyword FILE

file A numeric expression that evaluates to a file number
previously associated with a filename in an OPEN
FILE statement.

Remarks
1. You can use the CLOSE FILE statement to close a

file, and then reopen it with a new mode argument.

2. Used without arguments, CLOSE closes all open
files.

Examples
• 100 CLOSE FILE (1)
• 200 CLOSE FILE (X + 3)
• 300 CLOSE

AOS, AOS/VS

ROOS, DOS

CON
Continues the execution of a program
after a STOP statement in the program
has been executed, after the ESC key has
been pressed, or after an error has
occurred.

Format
CON

Remarks
1. The CON command enables you to continue to

execute a program from the point that it was
interrupted.

2. If you interrupt a program by pressing the ESC key,
CON continues the program with the statement
immediately following the one that was executing
when you pressed ESC.

3. If the system encounters a runtime error within the
program, you may correct the error and issue the
CON command to begin execution from the state
ment following the one in which the error occurred.

093-000065-10 Licensed Material-Property of Data General Corporation 3-17

CON (continued)
Example
• LIST
0010 PRINT "PRINCIPAL INT(%) ";
0020 PRINT "TERM(YRS) TOTAL"
0030 READ P,I, T
0035 IF T=O THEN GOTO 0080
0040 LET A=P*(1+I/100) A T
0050 PRINT P; TAB(12);I;
0055 PRINT TAB(21);T; TAB(32);A
0060 GOTO 0030
0070 DAT A 1000,5.1 0,0,0,0
0080 PRINT
0090 PRINT "CHANGE DATA AT LINE 70"
0100 STOP
0110 GOTO 0010
• RUN

PRINCIPAL INT(%) TERM(YRS) TOTAL
1000 5 10 1628.8946

CHANGE DATA AT LINE 70

STOPAT0100
• 70 DATA 2500,3,10,1459,6,12,0,0,0
• CON
PRINCIPAL INT(%) TERM(YRS)
noo 3 10
1459 6 12

CHANGE DATA AT LINE 70

STOPAT0100
*

TOTAL
3359.7909
2935.7947

AOS, AOS/VS

ROOS, DOS

COS(X)
Calculates the cosine of an angle that is
expressed in radians.

Format
COS(expr)

Argument
expr A numeric expression specified in radians

Remarks
SYS(15), which is assigned the value of pi (3.1416), may
be used in .the argument. For more information see the
SYS(X) function.

Example
• LIST
0010 REM- PRINT COSINE OF 30 DEGREES
0020 LET P=SYS(15)/180
0030 PRINT COS(30*P)
• RUN
.8660254

END AT 0030
*

3-18 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS only

CPARY

~
11

c 11
F

Creates a secondary partition, name.DR.

Format
CPART name, size

Arguments
name A string literal or string variable of up to 10

characters

size The number of contiguous blocks-at least 48

Remarks
1. CPART must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are synonymous. In multiuser environ
ments, any programs using this command as a
statement do not work when run from terminals
other than the master terminal.

2. Each user must be assigned to a secondary partition,
or to a subdirectory.

3. You may create the secondary partition in the master
directory, or in any other primary partition.

4. If the size is not an integer multiple of 16, the
system truncates the size to the next lower multiple.

5. The name argument may be expressed as either a
string variable or a string literal in quotes.

Examples
• CPART "JOE",64

Creates a secondary partition named JOE.DR.

AOS, AOS/VS

ROOS, DOS

CPU(X)
Returns a value equal to the status of a
CPU data switch or the numeric value of
all 16 console switches.

Format
CPU(expr)

Argument
expr An expression that evaluates to the number of a

CPU console switch or -1.

Remarks
1. The value returned is:

o if console switch is down
1 if console switch is up

2. If the expression is -1, the CPU function returns the
decimal value of all 16 console switches. This value
is in the range 0-65535.

3. Each switch corresponds to a bit in a 16-bit word
with the bits nurnbered 0-15, from left to right.

Examples
• 10 IF CPU(O) THEN GOTO 85

Proceed to statement 85 if console switch 0 is up.

• PRINT CPU(-1)
33

Switches 11, 12, 14, and 15 are up.

093·000065·10 Licensed Material·Property of Data General Corporation 3-19

AOS, AOS/VS

RDOS, DOS

DATA
Provides values for variables specified in
a READ statement.

Format

DATA {val } !{,val }/ ...
"str lit" , "str lit"

Arguments
val, str lit Elements that form a list of numeric values

and/or string literals

Remarks
1. You can use more than one DATA statement in a

program.

2. The DATA statement is a nonexecutable statement.
The values appearing in DATA statements form a
single list. The first item in the lowest numbered
DATA statement is the first element of this list. The
last item in the highest numbered DATA statement
is the last item in this list.

3. Both numbers and string literals may appear in a
DATA statement; separate values from each other
with commas.

4. Enclose string literals in quotes.

Example
• 100 DATA 1, 17, "AS,CD", -1.3E-13

See the READ and MAT READ statements for usage
and additional examples.

AOS, AOS/VS

RDOS, DOS

DEF FNa(d)

~ tfuj

Permits you to define as many as 26
different functions that can be referred
to repeatedly throughout a program.

Format
DEF FNa(d)=expr

Arguments

a A single letter from A to Z

d A dummy arithmetic variable that may appear in
expr

expr An arithmetic expression that may contain a vari
able d

Remarks

1. Each function returns a numeric value.

2. BASIC does not relate the dummy variable named
in the DEF statement to variables in the program
with the same name; the DEF statement simply
defines the function and does not cause any calcula
tion to be carried out.

3. In the function definition, the expression may include
other user-defined functions. In AOS and AOS/VS
environments, functions may be nested to a depth of
10. In RDOS/DOS, functions may be nested to a
depth specified by the system manager.

4. Function definition is limited to a single line DEF
statement. Complex functions that require more
than one program statement should be constructed
as subroutines.

Examples

• LIST
0010 DEF FNE(J) = (JT2) + 2*J+ 1
0020 LET Y=FNE(5)
0030 PRINT Y
• RUN
36

END AT 0030
*
Line 10 defines the FNE function. Line 20 refers to the
FNE function and evaluates it using numeric argument
5.

3-20 Licensed Material-Property of Data General Corporation 093-000065-10

You can also redefine a function, as in the following
example:

• LIST
0010 DEF FNA(X)=X"'2
0020 PRINT FNA(2)
0030 DEF FNA(Z)=Z"'3
0040 PRINT FNA(2)
• RUN
4
8
END AT 0040
*
The following example illustrates the nesting of user
defined functions:

• LIST
0005 TAB =16
0010 LET P=SYS(15)
0020 DEF FNR(X)=X*P/180
0030 DEF FNS(X)=SIN(FNR(X))
0040 DEF FNC(X) = COS(FNR(X))
0050 FOR X=O TO 45 STEP 5
0060 PRINT X,FNS(X),FNC(X)
0070 NEXT X .
• RUN

0 0 1
5 8.7155743E-02
10 .17364818 .98480775
15 .25881905 .96592583
20 .34202014 .93969262
25 .42261826 .90630779
30 .5 .8660254
35 .57357644 .81915204
40 .64278761 .76604444
45 .70710678 .70710678

END AT 0070
*

AOS, AOS/VS

RDOS, DOS

DELAY

~
v'

c v'
F

Delays program execution for a specified
amount of time.

Format
DELAY = expr

Argument
expr A numeric expression that represents time in

seconds, to the nearest tenth of a second (e.g., 10
= 10 seconds, 35.2 = thirty-five and two-tenths
seconds).

Remarks
1. You can use D ELA Y to postpone program execution

on an error condition before attempting a RETRY.

2. In AOS and AOSjVS, the maximum number for
the expression is approximately 4,000,000. In RDOS
and DOS, the maximum is approximately 65,000.

Example
0005 ON ERR THEN 100
0010 OPEN FILE (0,2), "THISFILE"
0020 LET 1=0

0100 IF SYS (7) <> 48 THEN 200
(Is anyone else using this file?)
0105 I = 1+ 1
0110 IF I> 10 THEN GOTO 200
(Allows 10 RETRY attempts.)
0120 DELAY=1.0
(One-second delay before retry.)
0125 RETRY
(Returns to statement which caused error.)
0200 STOP

093-000065-10 Licensed Material-Property of Data General Corporation 3-21

AOS, AOS/VS

ROOS, DOS

DELETE

~
v

c 11
F

Removes a file from your directory.

Format
DELETE "filename"

Argument
filename A string literal or string variable that identifies

a file in your directory that is not protected
(see CHATR)

Remarks
1. If DELETE is executed, BASIC searches your

directory and deletes the directory entry for the
filename.

2. BASIC returns an error message if BASIC cannot
find the file, if the file is delete-protected, or if it is
not in your directory.

Example
• DELETE "TEST.SR"

BASIC removes file TEST.SR from your directory and
frees the disk blocks which it occupied.

AOS, AOS/VS

ROOS, DOS ~
11

c v
F

DIM
Defines the size of one or more numeric
variable arrays, or sets the maximum
number of characters in a string.

Format

DIM {:;::/~~) } !{:~~~~;(m) }j ...
array (row,col) ,array (row, col)

Arguments
svar A BASIC string variable name

array A BASIC numeric variable name

n

m

The maximum string length

An expression for the number of elements in a
one-dimensional array

row An expression for the number of rows in the array

col An expression for the number of columns in the
array

Remarks

1. Array Elements

The concept of arrays is described in chapter 2. The
DIM statement can declare the size of an array to
be a number of elements other than the default
upper bound (10) for each dimension. For example:

• 10 DIM A(13),B(7,7),C(20,5)

The initial value of all elements in an array is 0 until
the program assigns other values.

A subscript variable or expression must have a value
between 1 and the upper bound given in the DIM
statement. For example:

• 01 DIM A (5,5)
• 05 X=2
• 10 PRINT A(1,X 2)

If the subscript variable or expression does not
evaluate to an integer, BASIC converts it to an
integer using the INT function.

If a subscript evaluates to an integer larger than the
array's upper bound or smaller than 1, a subscript
error condition occurs.

3-22 Licensed Material-Property of Data General Corporation 093-000065-10

2. Redimensioning Arrays

3.

You can redimension a previously defined array
during execution of a program by declaring the array
in another DIM statement. The total number of
elements of the newly dimensioned array must not
exceed the original total number of elements.

• 100 DIM A(3,3)

• 200 DIM A(2,3)

• 300 DIM A(2,2)

BASIC reassigns the values· of elements in array
A(3,3) to elements in array A(2,3) and then to
elements in array A(2,2) as follows:

123
456
789

A(1,I) = 1
A(I,2) = 2
A(1,3) = 3
A(2,1) = 4
A(2,2) = 5
A(2,3) = 6
A(3,l) = 7
A(3,2) = 8
A(3,3) = 9

123
456

A(1,I) = 1
A(I,2) = 2
A(I,3) = 3
A(2,1) = 4
A(2,2) = 5
A(2,3) = 6

1 2
3 4

A(1,l) = 1
A(1,2) = 2
A(2,l) = 3
A(2,2) = 4

For a discussion on the dimensioning of strings, see
chapter 2.

AOS, AOSjVS

ROOS, DOS

DIR

~
v

c V
F

Displays, sets or stores the pathname of
the current working directory using DIR.

Format
DIR {pathnamej

Argument
pathname An optional directory pathname expressed as

a string variable or string literal

Remarks
1. DIR with no arguments returns the pathname of the

current working directory.

2. If the pathname argument is a string literal or a
non-null string variable, AOS BASIC sets the cur
rent working directory to the pathname specified in
the argument.

3. If the pathname argument is a string variable with a
current length of 0, DIR returns the pathname of
the current working directory and stores this string
in that variable.

Examples
Display the current working directory:

• DIR
:UDD:BASIC

Set the working directory:

• DIR U:UTIL"
• DIR
:UTIL

Set the working directory through a variable:

• A$=u:BASIC"
• DIR A$
• DIR
:BASIC

Store the current working directory in a variable:

• DIR U:UDD:BASIC"
• A$=u"
• DIR A$
• PRINT A$
:UDD:BASIC

093-000065-10 Licensed Material-Property of Data General Corporation 3-23

AOS, AOS/VS

RDOS, DOS

DIR

Et§v
c V
F

Changes the current directory to another
directory in the same or different
partition and prints the name of your
current directory.

Format

[

(primary part [[:secondary part [:subdirectory J} 1
) secondary part [:subdirectoryJ

DIR) subdirectory
~ null-length string variable

Arguments
primary part The target directory. Default: current

directory

secondary part The target subpartition under the pri
mary partition

subdirectory The target subdirectory under a primary
or secondary partition

null-length A string variable name
string variable

Remarks

1. This command is an implementation of the RDOS
CLI DIR command.

2. DIR must be executed from the master terminal. In
~ single-user system, the master terminal and user
terminal are the same. In multiuser environments,
programs using DIR as a statement do not work
when run from terminals other than the master
terminal.

3. DIR without any arguments is not privileged and
returns the current directory.

4. If you do not specify the primary partition, the
directory specified in the command is assumed to be
in the current partition.

5. If necessary, DIR initializes the device or directory
specified in the command if the current directory is
a partition and the specified directory is a subdirecto
ry below it. But if you are in a subdirectory, DIR
does not initialize another subdirectory automatical
ly. You can, however, always initialize another
primary name to be placed in the string variable.

6. A null length string variable as the argument to
DIR causes the current directory name to be placed
in the string variable.

7 . You can express the new directory name as either a
string variable or as a string literal in quotes.

Examples
Change the current directory to subdirectory G HI in
secondary DEF in primary partition DP1:

• DIR "DP 1 :DEF:GHI"

Change the current directory to subdirectory SAM In

primary partition DPO:

• A$= "DPO:SAM"
• DIR A$

3-24 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOSjVS

ROOS, DOS

DISABLE

~" c "
F

Prevents the inadvertent use of the
CTRL-A, CTRL-C, and CTRL-F
(background) RDOS and DOS system
console breaks.

Format
DISABLE

Remarks
1. DISABLE must be executed from the master termi

nal. In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using DISABLE as a statement do
not work when run from terminals other than the
master terminal.

2. If you accidentally type one of the RDOS system
terminal breaks, BASIC abnormally terminates. The
DISABLE command issued at the BASIC master
terminal prevents the recognition of the three control
characters at the RDOS OR DOS system terminal.

/"""- 3. You can cancel the DISABLE command with an
ENABLE command.

4. A DISABLE command executed while BASIC is
running in the foreground inhibits use of CTRL-F
on the background terminal.

Example
• DISABLE

AOS, AOSjVS

ROOS, DOS

DISK

~"
C "
F

Determines the number of 256-word
blocks still available in the partition in
which your directory resides.

Format
DISK

Remarks
In AOS and AOS/VS, this command works only if the
current directory is a control point directory (CPD).

Example
• DISK

USED: 332
LEFT: 193

Of 525 blocks, 193 are still available for use.

093·000065·10 Licensed Material·Property of Data General Corporation 3-25

AOS, AOS/VS

RDOS, DOS

ECHO
Enables character display on input.

Format
ECHO

Remarks
1. ECHO is enabled by default.

2. ECHO is equivalent to the command CHAR
"ON", "EBO" under AOS and AOS /VS, and CHAR
"OFF","NOE" under RDOS/DOS.

3. ECHO is disabled by NOECHO.

Example
• 10 ECHO
• 20 INPUT "~",A
• 30 END
• RUN
~6

END AT 0030
*

AOS, AOS/VS

RDOS, DOS

ENABLE
Cancels a DISABLE command.

Format
ENABLE

Remarks
1. ENABLE must be executed from the master termi

nal. In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using ENABLE as a statement do
not work when run from terminals other than the
master terminal.

2. ENABLE restores recognition of the CTRL-A,
CTRL-C, and CTRL-F (background) RDOS or
DOS terminal breaks.

Example
• ENABLE

*

3-26 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

END

~
v

c V
F

Terminates execution of the program
and returns to interactive mode.

Format
END

Remarks
1. Data General's Extended BASIC does not require

an END statement to declare the physical end of a
program. If control passes through the last execut
able statement of the program and if that statement
does not change the flow of control (as with a GOTO
or GOSUB statement), the program transfers con
trol to interactive mode. END is included for com
patibility with BASIC programs written for other
systems.

2. Multiple END statements may appear in the same
program. When BASIC encounters an END state
ment, it terminates execution of the program and
displays a prompt.

3. If BASIC executes an END statement before
reaching a FOR/NEXT terminating condition, it·
prints an error message.

Example
• 20 PRINT "PROGRAM DONE"
• 30 GOTO 60

• 60 END
• RUN
PROGRAM DONE

END AT 0060
*

AOS, AOS/VS

RDOS, DOS ~
v

c V
F

ENTER
Transfers and merges BASIC source
statement lines from a device or disk file
into your current program storage area.

Format

ENTER .. { "filename" }
svar

Arguments
filename A device or disk file, expressed as a string

literal .

svar A string variable representing a filename

Remarks
1. If the filename is not found in the current directory,

BASIC searches the BASIC.DR library directory
(RDOS, DOS) or the searchlist (AOS, AOS/VS)
for it.

2. When a statement line from an entered filename has
the same statement number as a line in the current
program, the entered statement replaces the current
program statement.

3. ENTER does not restore data statements even
though some may exist in the entered program. If
you desire a RESTORE, you must code it explicitly.

4. Although ENTER can be used as a statement, it is a
questionable practice and should be done cautiously.

Example
• NEW
• ENTER "TEST 1.SR"
• ENTER "TEST2.SR"
• LIST "FINAL.SR"

The system clears your storage area and enters and merges
source programs TEST1.SR and TEST2.SR. It then lists
the resultant program to your directory as FIN AL.SR.

093-0000e5-10 Licensed Material-Property of Data General Corporation 3-27

AOS, AOS/VS

RDOS, DOS

EOF(X)
Detects the end of file when transferring
data from a file.

Format
EOF (file)

Argument
file A numeric expression that evaluates to the number

of a file opened for reading in mode 0 or 3.

Remarks
1. The EOF function returns an integer indicating

whether or not the last READ FILE, LREAD, or
INPUT FILE from the file included an end-of-file
delimiter. If an end of file is detected, the function
returns a value of 1; otherwise it returns O.

2. When you use the EOF function in conjunction with
the IF-THEN statement, you can make a conditional
transfer if an end of file is detected.

3. Testing for an end of file should occur immediately
after the INPUT FILE, LREAD, or READ FILE
statement. If the EOF value is 1, ignore the values
assigned to the variables in the INPUT FILE,
READ FILE, or LREAD file. This concept also
applies to matrix file I/O statements.

4. BASIC sets the EOF function if you try to read a
record with a higher number than any already
written to the file. If the next READ FILE is
successful, BASIC resets EOF. However, if you
attempt to read consecutively a record with a number
higher than any in the file, an error occurs. You
may continue processing after an EOF with the
RESET FILE statement.

5. All physical records written to magnetic tape and
cassettes are of a fixed length and padded with
nulls. Therefore, the EOF function is not necessarily
set at the logical end of file; the function is set at the
logical end of file only when it coincides with the
physical end of file.

Example

• LIST
0100 OPEN FILE (1 ,3), "$PTR"
0110 READ FILE(1),A,B,C,D,E
0120 IF EOF(1) THEN GOTO 0200
0130 PRINT A,B,C,D,E
0140 GOTO 0110
0200 CLOSE FILE(1)
*

3-28 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOSjVS

RDOS, DOS

ERASE

~
v

c V
F

Removes statements from a program.

Format
ERASE n1, n2

Arguments
n 1, n2 Line numbers in a program

Remarks
1. ERASE simplifies editing by enabling you to delete

more than one line at a time. Typically, use the
ERASE statement in a program to clear a range of
statements for replacement with the ENTER com
mand, or to remove initialization code which is not
needed during execution.

2. Both line number arguments are necessary.

3. ERASE removes lines nl through n2, inclusively,
from your program, regardless of which of the two
line numbers is the larger. Thus, ERASE 110,250
and ERASE 250,110 both erase lines 110 through
250.

4. If no lines exist in your program within the range n 1
to n2, BASIC outputs an error message to your
terminal. If nl and/or n2 does not exist but there
are lines between n 1 and n2, those lines are erased.

5. The RENUMBER command does not renumber
the arguments to the ERASE statement, since they
most often refer to fixed statement numbers in an
external program file. If you renumber a program,
make certain you change any ERASE statements in
the program to agree with the new line numbers.

Example
Delete lines 1500 through 1900:

• 10 ERASE 1500, 1900

Delete line 200:

• 20 ERASE 200, 200

AOS, AOSjVS

RDOS, DOS

ESC

~
v

c V
F

Enables the ESC key to produce an
interrupt.

Format
ESC

Remarks
1. ESC is enabled by default.

2. ESC· is equivalent to the command CHAR
"ON","ESC".

3. ESC is disabled by NOESC.

Example
• 0005 NOESe
• 0010 FOR I = 1 TO 100
• 0020 PRINT I
• 0030 . IF I = 50 THEN ESC
• 0040 NEXT I
• 0050 END
• RUN
1
2
3

ESC

50

ESC

STOP AT 0020
*
In this example, if I < 50 and the user presses ESC, an
interrupt does not occur. However, when I > 50, pressing
the ESC key causes an interrupt.

093-000065-10 Licensed Material-Property of Data General Corporation 3-29

AOS, AOSjVS

RDOS, DOS

EXP(X)
Calculates the value of e (2.71828) to the
power of a numeric expression.

Format
EXP(expr)

Argument
expr A numeric expression from -178 through 175

Example

• LIST
0010 REM- CALCULATE VALUE OF E T 1.5
0020 PRINT EXP(J .5)
• RUN
4.4816891

END AT 0020
*

AOS, AOSjVS

RDOS, DOS ~
v

c V
F

FALL
Forces the transmission of a message to
all active users.

Format
FALL message

Argument
message The text of the message

Remarks
1. FALL must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using FALL as a statement do not
work when run from terminals other than the master
terminal.

2. FALL overrides use of the CHAR command to
disable message reception.

3. FALL prints the the message at each user's terminal
in the following format, where OPER is the ID
associated with the master terminal:

FROM OPER: message

4. Message length is limited to one line per FALL
command.

5. The message need not be enclosed within quotation
marks.

Example
• FALL ••• SYSTEM GOING DOWN IN 5 MINUTES· • •
·FALL •• ·PLEASE LOG OFF WITHIN 5 MINUTES···
*

3-30 Licensed Material·Property of Data General Corporation 093·000065·10

/-

AOS, AOS/VS

ROOS, DOS

FILE

~
v

c V
F

Prints all the filenames in your directory
that match the template.

Format

l~lE} ("template~]
Arguments
A synonym for the keyword FILE

template Any combination of up to 15 valid characters,
including asterisk (*), dash (-), and plus sign
(+), in accordance with AOS and AOS/VS
template rules. You must express the template
as a string literal or string variable.

Remarks
1. If you omit the template argument, BASIC prints a

list of all files in the directory.

2. The following information follows each filename
printed:

• Type of file

• Date last modified

• Time last modified

• Size of the file, in bytes

Examples
• FILE "-.-"
PAGE2.2 UDF II-MAR-83 11:17:48 78
• FILE "-.SR"
• FILE "-.2"
PAGE2.2 UDF II-MAR-83 11:17:48 78
• A$="-.2"
• FILE A$
PAGE2.2 UDF II-MAR-83 11:17:48 78
*

AOS, AOS/VS

ROOS, DOS

FILE
Prints all filenames in your directory.

Format

Remarks

1. The number sign (#) is a synonym for the keyword
FILE.

2. BASIC prints one filename per print zone.

Example

• FILE
157.
STOP.SR
ON.ES
TIME.
MORSE.
113.
COM.CM
TAB.
115.
PAGE.
PRINT2.SR
PRINT4.SR
107.
*

134.
121.
READ,:SR
FORI.SR
110.SR
TAB.SR
CON.
SUBSTRINGS.
GO TO.
HELLO.SV
109B.
92.
117.

GOSUBl.SR
NEW.
116.
FOR2.SR
FOR4.SR
132A.
110.
CONCAT.
lIlA.
PRINTl.SR
PRINT3.SR
INPUT2.SR
IF3.

093-000065-10 Licensed Material-Property of Data General Corporation 3-31

~" c V
F

AOS, AOS/VS

RDOS, DOS

FMSG
Forces the transmission of a message to a
specific user.

Format
FMSG userlD message

Arguments
userlD A four-character user account identification

message The text of the message

Remarks
1. FMSG must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using FMSG as a statement do not
work when run from terminals other than the master
terminal.

2. FMSG overrides the NOMSG command and the
CHAR command's NRM characteristic, which dis
ables message reception.

3. When you use FMSG, the message is printed at the
user's terminal in the following format, where OPER
is the ID associated with the master terminal:

FROM OPER: message

4. Message length is limited to one line per FMSG
command.

5. The message need not be enclosed within quotation
marks.

6. To enable message reception, use CHAR
"OFF","NRM".

Example
• FMSG JACK PLEASE LOG OFF.

On Jack's terminal:

FROM OPER: PLEASE LOG OFF.

AOS, AOS/VS

RDOS, DOS

FOR and NEXT
Execute a block of statements a specified
number of times.

Format
FOR control var=expr1 TO expr2/STEP expr3]

(Block of statements)

NEXT control var

Arguments
control var The control variable. A nonsubscripted nu

meric variable

expr1

expr2

expr3

A numeric expression that defines the initial
(first) value of the control variable

A numeric expression that defines the limit
ing value of the control variable

An optional numeric expression that defines
the increment added to the control variable
each time the loop is executed. The default
increment is 1.

Block of statements

Remarks
General

Any statements, which may also contain
FOR-NEXT loops

1. A program loop begins with a FOR statement that
provides the specifications for repetition, a block of
statements that BASIC executes during each repeti
tion of the program loop, and a NEXT statement
that denotes the end of the loop.

2. The initial, limiting, and incremental values for the
control variable determine the number of times the
statements contained in a FOR-NEXT loop are to
be executed. The system repeats the loop until the
value of the control variable meets the termination
condition.

3-32 Licensed Material-Property of Data General Corporation 093-000065-10

Rules

1. Every FOR statement must have a matching NEXT
statement; otherwise an error condition occurs, and
BASIC prints an error message.

2. The control variable must not be subscripted.

3. Expressions expr1, expr2, and expr3 may have
positive or negative values; expr3 must not be O.

4. If you omit the STEP argument, expr3 is assumed
to be 1.

5. The termination condition for a FOR-NEXT loop
depends on the values of expr1 and expr3. The loop
terminates if (a) expr3 is positive and the next value
of the control variable is greater than expr2, or (b)
expr3 is negative and the next value of the control
variable is less than expr2.

6. If the value of expr1 (the initial value) meets the
termination condition, the loop is not performed (see
third example below).

7. When the termination condition is met, the loop is
exited; the control variable equals the first value not
used in the loop.

8. You may branch in and out of a FOR-NEXT loop;
but if you enter a loop at a point other than a FOR
statement and the program then encounters a NEXT
statement, an error occurs.

9. If the program begins a FOR-NEXT loop and before
the loop is completed (a NEXT is encountered) the
program encounters an END or the last statement
in the program, BASIC displays an error message:

ERROR 21 at xxxx -- FOR-noNEXT

where xxxx is the program statement number. You
must put any END statement after the completion
of the loop.

Steps in Loop Operation

1. The system evaluates the expressions exprl, expr2,
and expr3. If you omit expr3, it is assumed to be 1.

2. The control variable is set to the value of expr 1.

3. If expr3 is positive and the control variable is greater
than expr2, then the termination condition is satis
fied; control p,:!sses to the statement following the
corresponding NEXT statemen~. The value of the
control variable then equals the first value not used
in the loop; i.e., control variable + expr3.

If expr3 is negative and the control variable is less
than expr2, then the termination condition is satis
fied; control passes to the statement following the
corresponding NEXT statement. The value of the
control variable then equals the first value not used
in the loop; i.e., control variable + expr3.

Otherwise, the syste~ performs the following steps:

4. BASIC executes the statements in the FOR-NEXT
block.

5. When the corresponding NEXT statement is execut
ed, the control variable is set to the value of control
variable + expr3.

6. Control passes to FOR statement. Repeat step 3.

Nesting Loops

1. In AOS and AOSjVS environments, the maximum
number of FOR-NEXT loops is 20. In RDOSjDOS,
you can nest FOR-NEXT loops to the depth speci
fied by the system manager.

2. The FOR statement and its terminating NEXT
statement must be completely contained within the
loop in which they are nested.

Legal Nesting Illegal Nesting

FOR X = ... ~FOR X = .. .

[

FOR Z - .. .

~
FOR Y :: ... FOR Y = .. .

NEXT X
NEXT Z NEXT Y
NEXTY

~-- NEXT X

093-000065-10 Licensed Material-Property of Data General Corporation 3-33

FOR and NEXT (continued)

Examples
• LIST
0010 FOR 1=1 TO 9
0020 NEXT I
0030 PRINT I
• RUN
10
(Control variable I equals first value not used in the
loop.)

END AT 0030
*
• LIST
0040 FOR J=1 TO 9 STEP 3
0050 NEXT J
0060 PRINT J
• RUN
10
(Final value of J when terminating value, expr2, was
exceeded.)

END AT 0060
*
• LIST
0010 FOR 1= 1 TO 3 STEP-l
0020 PRINT "SHOULD NOT ENTER HERE"
0030 NEXT I
0040 PRINT I
• RUN
1

END AT 0040
*

AOS, AOSjVS

RDOS, DOS

FREE

~
v

c V
F

Interrupts execution of the program that
is being processed for the specified user.

Format
FREE userlD

Argument
userlD A four-character user account identification

Remarks
1. FREE must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using FREE as a statement do not
work when run from terminals other than the master
terminal.

2. Normally the user can interrupt program execution
by pressing the ESC key. However, if a program is
locked in an inescapable loop, the user may need
assistance from the system operator.

3. When the system operator executes the FREE
command, the message UNLOCKED BY OPERA
TOR and a prompt are output to the affected user's
terminal.

Example
This program, run by user JOHN, creates an inescapable
loop:

• 10 ON ESC GOTO 20
• 20 ON ERR GOTO 30
• 30 X= 1 /0
• 40 END
• RUN

The command at the system terminal is:

• FREE JOHN

The following message appears at JOHN's terminal:

UNLOCKED BY OPERATOR

3-34 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

GDIR

~
v

c "
F

Prints the name of your directory.

Format
GDIR

Remarks
1. This command is useful at the RDOS system

terminal, particularly when you use the DIR com
mand frequently to change directories.

2. RDOS users at terminals other than the system
terminal may also use this command, but its useful
ness is limited since the users are restricted to their
current directories.

3. The knowledge of your directory name is useful to
other programmers who wish to create a link to your
files that are sharable (see CHATR, attribute 0).

4. You can write files to your own directory, read files
from the library directory BASIC.DR, and read
files from other directories that have the sharable
attribute (0).

Example

• GDIR
JOE
All of your file references are to directory JOE.

AOS, AOS/VS

RDOS, DOS

GOSUB and RETURN
GOSUB directs program control to the
first statement of a subroutine. RETURN
exits the subroutine and returns program
control to the next statement following
the GOSUB statement.

Format

GOSUB line no.

RETURN

Argument

line no. A program line number

Remarks

1. A subroutine is a group of program statements that
the system enters via the GOSUB statement and
exits via the RETURN statement. Instead of repeat
ing the statements each time they are required, you
write the statements into the program only once and
access them by GOSUB statements. The RETURN
statement returns control to the statement following
the last executed GOSUB statement. In this manner,
the program continues at the appropriate place after
the system has executed the subroutine.

2. You must always enter a subroutine by using a
GOSUB statement. Otherwise, the system prints
the RETURN-NO GOSUB error message when it
executes the RETURN statement.

3. You may use more than one RETURN statement in
a subroutine if program logic requires the subroutine
to terminate at one of a number of different places.

4. Although a subroutine may appear anywhere in a
program, it is good practice to place the subroutine
distinctly separate from the main program. To
prevent inadvertent entry to the subroutine by other
than a GOSUB statement, the subroutine should be
preceded by a STOP statement or GOTO statement
that directs control to a line number following the
subroutine.

5. Nesting occurs when a subroutine is called during
the execution of a subroutine. Upon execution of the
first RETURN statement, control passes to the
statement immediately following the last executed
GOSUB statement. The next RETURN statement
causes control to pass to the next to last executed
GOSUB statement, and so on.

093-000065-10 Licensed Material-Property of Data General Corporation 3-35

GOSUB (continued)
6. In AOS and AOSjVS environments, subroutines

may be nested to a depth of 20. In RDOS and DOS,
subroutines may be nested to a depth specified by
the system manager.

Examples

• LIST
0010 LET A=6
0020 GOSUB 0100
0030 LET A=10
0040 GOSUB 0100
0050 STOP
0100 FOR 1= 1 TO A STEP 2
0110 PRINT I;
0120 NEXT I
0130 PRINT
0140 RETURN
• RUN
135
13579

STOP AT 0050
*
• LIST
0010 GOSUB 0040
0020 PRINT "EXAMPLE";
0030 STOP
0040 PRINT "NEST";
0050 GOSUB 0080
0060 PRINT "INE ";
0070 RETURN
0080 PRINT "ED ";
0090 GOSUB 0120
0100 PRINT "ROUT";
0110 RETURN
0120 PRINT" SUB";
0130 RETURN
• RUN
NESTED SUBROUTINE EXAMPLE

STOP AT 0030
*

AOS, AOS/VS

RDOS, DOS

GOIO

~
v

c V
F

Unconditionally transfers control to the
statement with the specified line
number.

Format
GOTO line no.

Arguments
line no. A program statement line number

Remarks
1. If control passes to an executable statement, BASIC

executes that statement and those following.

2. If control passes to a nonexecutable statement (e.g.,
DATA), program execution continues at the first
executable statement that follows the nonexecutable
statement.

3. If the specified line number is not in the program,
an error occurs.

Examples

• LIST
0010 READ X
0020 PRINT X
0030 GOTO 0010
0040 DATAl ,2,3,4,5
0050 DATA 20,21,23
0060 END
• RUN
1
2
3
4
5
20
21
23
ERROR 15 AT 0010 - END OF DATA
*

3-36 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOSjVS

RDOS, DOS

GPOS FILE
Determines the current file pointer
position in an open file.

Format

GPOS {~LE} (liIe). va.

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a file number
previously associated with an OPEN FILE state
ment.

var The name of the variable to which BASIC is to
assign the current byte position value.

Remarks
Note that this statement returns the value, in var, of the
current byte position of the file pointer; this does not
necessarily coincide with the beginning of a record
position.

Example
• 10 GPOS FILE (2), B 1

AOS, AOSjVS

RDOS, DOS

HELP

~
v

c V
F

Displays information about each BASIC
statement and command.

Format
HELP "verb"

Argument
verb The name of a statement, command, or function

expressed as a string literal or string variable

Remarks
To display a list of all statements, commands, and
functions that can be the verb argument, use HELP
either without an argument or with the argument
"HELP".

Example
• HELP "DATA"

DATA TO PROVIDE VALUES FOR VARIABLES
SPECIFIED IN A [MAT] READ STATE
MENT ...

093-000065-10 Licensed Material-Property of Data General Corporation 3-37

AOS, AOS/VS

ROOS, DOS

IF-THEN

~
v

c V
F

Executes a statement on the basis of an
expression or a relational expression's
truth or falsity.

Format

IF {rel-expr} {[THEN] statement}
expr THEN line no.

Arguments
rel-expr A relational expression as defined in chapter

2

expr A numeric expression

statement Any BASIC statement except DATA, DEF,
END, FOR, NEXT, and REM.

line no. A program line number

Remarks
1. If BASIC finds the relational expression (rel-expr)

to be true, it executes the specified statement or
transfers control to the specified line number. If the
expression is false, program execution continues at
the next statement after the IF-THEN statement.

2. You can use a numeric expression (expr) instead of
a relational expression (rel-expr). The numeric ex
pression is considered false if it has a value of 0, and
true if it has a nonzero value.

3. Since the internal representation of noninteger num
bers (see chapter 2) may not be exact (e.g., 0.2
cannot be exactly represented), it is advisable to test
for a range of values when testing for a noninteger.
For example, if the result of computation A was to
be 1.0, then a reliable test for 1 is:

IF ABS (A-1.0)<1.0E-6 THEN ...

If this test succeeds, then A is equal to 1 within 1
part in 10T6. This is approximately the accuracy of
single-precision floating-point calculations.

4. Lines 5, 10, and 20 in the following example are
equivalent variations of the IF-THEN statement:

• 05 IF A=B THEN 100
• 10 IF A=B THEN GOTO 100
• 20 IF A=B GOTO 100
• 30 IF A-B < = 5 THEN C = 0
• 40 IF A· B < 50 THEN GOSUB 300
• 50 IF A B > 100 GOSUB 400

Examples
• LIST
0005 REM - START
0010 LET N=10
0020 INPUT 'X= ",X
0030 IF X THEN GOTO 0050
0040 GOTO 0100
0050 IF X> =N THEN GOTO 0080
0060 PRINT X, 'X IS LESS THAN 10"
0070 GOTO 0020
0080 PRINT X, 'X IS GREATER OR EQUAL TO 10"
0090 GOTO 0020
0100 PRINT X, 'X=O"
0110 END
• RUN
X=5
5 X IS LESS THAN 10
X=7
7 X IS LESS THAN 10
X = 12
12 X IS GREATER OR EQUAL TO 10
X = 10
10 X IS GREATER OR EQUAL TO 10
X=O
o X=O

END ATOII0
*
Note the nested IF statement in the following example:

• LIST
0010 LET X=5
0030 IF X=5 THEN IF A$= "C" THEN PRINT "C"
0040 END
• RUN
C'

END AT 0040
*

3-38 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

INIT

~
tI

c tI
F

Initializes a directory or a device and
thereby permits access to its files.

Format
INIT name

Argument
name The name of a directory or a device to be initialized

Remarks
1. INIT must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using INIT as a statement do not
work when run from terminals other than the master
terminal.

2. In BASIC, you will typically use INIT to initialize
reserved filename devices, such as magnetic tape or
cassette units. You must initialize these devices
before use and use RELEASE on them afterwards.

Example
• INIT "MTO"
• INIT "CT3"
• INIT B$
• INIT "DC3"

AOS, AOS/VS

RDOS, DOS

INPUT

~
tI

c tI
F

Requests data from your terminal and
assigns the values you supply to a list of
variables.

Format

INPUT ["stT lit",] {~:~r} [{:~~~T}] ... !;l

Arguments
var, svar Numeric and string variables separated by

commas

str lit A string literal that serves as a message or
prompt

Remarks
1. You can use the INPUT statement to enter numeric

data, string data, or both to a program.

2. When BASIC executes an INPUT statement, a
question mark is output as a prompt unless INPUT
contains the string literal option; in this case the
string literal is the prompt.

3. Respond to the prompt by typing a list of data,
separating each datum from the next by a comma or
a carriage return. Terminate the list with a carriage
return.

4. If you terminate the data list without supplying a
value for each variable in the INPUT statement,
BASIC outputs a question-mark prompt, indicating
that you must supply more data.

5. Variables in the INPUT statement list may be
subscripted array elements, scalars, or strings.

6. The data input at the prompt must be the same type
(numeric or string) as the variable in the INPUT
statement list for which the data is being supplied.
If the data you input from the terminal does not
match the variable's type, the system outputs \? to
the terminal for the data in error.

7. If you end an INPUT statement's variable list with
a semicolon, the cursor remains at the position
following the last input item (AOS and RDOS).
Otherwise, the system outputs a carriage return-line
feed.

093-000065-10 Licensed Material-Property of Data General Corporation 3-39

INPUT (continued)
8. Numeric variables may include digits, plus and

minus signs, decimal points, and the letter E (expo
nential notation).

9. If you use commas to delimit the data list and you
supply more items than there are variables in the
INPUT list, an error condition occurs. The system
assigns the values you supplied to the variables in
the list and ignores the excess.

Examples
• LIST
0005 INPUT A,R,C,D,E
0010 PRINT A+R,C+D,D+E
• RUN
? 1,2,3,4,5
379

ENDAT0010
*
• LIST
0010 INPUT "A,R,C,D,E= ",A,R,C,D,E
0020 PRINT A+R,C+D,D+E
• RUN
A,R,C,D,E= 1,2? 3,4,5
379

END AT 0020
*
• LIST
0010 INPUT A,R,C;
0020 PRINT" NO RETURN"
• RUN
? A \ ? 1,2,3 NO RETURN

END AT 0020
*

AOS, AOS/VS

RDOS, DOS

INPUT FILE

[ffiv
c V
F

Reads data in ASCII format from a disk
file or device.

Format

INPUT
{

FILE} {(f~le) } ,{var } ,~{var }~ /..
(file, record) svar f 1 svar ~'

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to the
number of a file opened for sequential access
or for random access

record A numeric expression that evaluates to the
number of a record in a file opened for
random access

var, svar Numeric variables and string variables whose
values are read from a file

. Remarks
1. The variable type in the INPUT FILE variable list

must correspond to the data type of the correspond
ing data item being read from the file.

2. Format the data as in the INPUT statement, with
commas separating data items and a carriage return
at the end of a variable list.

3. You can use the EO F function to detect an end of
file in the file that is being read.

4. The first record number in a random-access file is o.

Example
• 40 OPEN FILE (1,3), "$PTR"
• 70 INPUT FILE (1), Z,Y,X,A$,B$

3-40 Licensed Material-Property of. Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS

INT(X)
Returns the value of the largest integer
not greater than the specified
expression.

Format
INT(expr)

Argument
expr A numeric expression

Remarks
The INT function truncates numbers to return integers,
but print formatting rounds numbers for output. There
may appear to be discrepancies, but the internal number
representation does not change.

Examples
Line 30 of the following example demonstrates a tech
nique for rounding real numbers to.the nearest integer:

• LIST
0010 PRINT "INT(15.8)= ";INT(15.8)
0020 PRINT "INT(-15.8)= ";INT(-15.8)
0030 PRINT "INT(15.8+.5)= ";INT(15.8+.5)
• RUN
INT(15.8)= 15
INT(-15.8)= -16
INT(15.8+.5)= 16

END AT 0030
*
The following example illustrates the rounding of PRINT
and the truncation of INT that occurs for numbers that
do not have an exact internal binary representation:

• LIST
0010 INPUT "~ ",X
0020 Y=X*10000
0030 Z= INT(Y)
0040 W=Z/10000
0050 PRINT X,Y,Z,W
0060 PRINT USING "###.###", W
0070 STOP
• RUN
~.4

.4 4000 3999 .3999
0.400

STOP AT 0070
*

AOS, AOS/VS

ROOS, DOS

KILL

~
v

c V
F

Forces a specific user off the system.

Format
KILL userlD

Argument
userlD A four-character user account identification

Remarks
1. KILL must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using KILL as a statement do not
work when run from.terminals other than the master
terminal.

2. When KILL forces a user off the system, accounting
information is displayed on the user's terminal in
the following form:

LOGGED OFF BY OPERATOR
NAME mm/dd/yy hh:mm SIGN OFF,zz
NAME mm/dd/yy hh:mm CPU USED,qq
NAME mm/dd/yy hh:mm I/O USED,rr,ss

Note: zz, qq, rr, and ss are defined in chapter 1.

Example
• KILL JACK

This information is displayed on JACK's terminal:

LOGGED OFF BY OPERATOR
JACK 11/15/83 14:20 SIGN OFF 03
JACK 11/15/83 14:20 CPU USED 9
JACK 11/15/8314:20 I/O USED 3,12

093-000065-10 Licensed Material-Property of Data General Corporation 3-41

AOS, AOSjVS

RDOS, DOS

LEN(X$)
Returns a value equal to the number of
characters currently assigned to the
specified string variable.

Format
LEN(svar)

Argument
svar A string variable

Example
* LIST
0005 DIM A$(80),B1 $(80)
0010 INPUT A$,B1$
0020 LET B= LEN(A$)
0040 IF B > LEN (B1 $) THEN GOTO 0060
0050 GOTO 0100
0060 PRINT "LENGTH OF A$= ";LEN(A$)
0070 PRINT "LENGTH OF B1$=";LEN(B1$)
0080 PRINT "A$ > B1 $"
0090 GOTO 0110
0100 PRINT "B1$ > A$"
0110 END
* RUN
? CHEESE? CAKE
LENGTH OF A$= 6
LENGTH OF Bl$= 4
A$ > Bl$»)

ENDAT0110
*

~" c V
F

AOS, AOSjVS

RDOS, DOS

LET
Evaluates an expression and assigns the
resultant value to the specified numeric
or string variable.

Format

! LETJ{var } = expr
svar

Arguments
var, svar Numeric and string variables

expr An arithmetic or string expression

Remarks
1. The keyword LET is optional.

2. The variable argument may be subscripted.

3. You can assign string expressions to string variables.

4. You can assign more than one variable the same
value by using a multiple LET assignment, valid as
either a statement or a command. See line 40 in the
examples.

Examples
* 10 LET A=A+ 1
Variable A is assigned a value one greater than it was
before.

* 20 A(2,1) = BT2+ 10'
The element in row 2, column 1 of array A is assigned the
value of expression BTl + 10.

* 30 A$=B$,C$
A$ is assigned the concatenated value of B$ and C$.

* 40 LET A, B, C=2
A, B, and C each equal 2.

* 50 LET M(2),A=3
M(2) and A both equal 3.

* 60 IF A=3 THEN LET D,F= 1
This is a conditional multiple LET: if A equals 3, then D
and F are set to 1.

* 70 LET A$=B$+C$
String arithmetic

* 80 LET A$,B$="ABC"
Both strings A$ and B$ equal A.BC.

3-42 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

LEVEL

~
v

c 1/
F

Monitors the priority constant for any
user.

Format
LEVEL [userID] [n]

Arguments
userID A four-character user account identification

n A priority level constant in the range 0 = < n
<= 50

Remarks
1. The default value of n is 25.

2. LEVEL can either raise or lower the priority level of
any user's tasks. The lower the value, the higher the
priority. All users may use LEVEL, but only the
system operator can set priority levels.

3. For equal priority levels, BASIC handles tasks on a
first-in, first-out basis.

Examples
• LEVEL

The system prints the current value of the priority level
constant for the user. Any user can issue this form of the
command to see that user's value of n.

• LEVEL JEFF

This prints the value for the priority level constant for
user JEFF on the master terminal. Any user can issue
this form of the command to determine other users'
priority levels.

• LEVEL JEFF 10

This sets the value for the priority level constant for user
JEFF. Only the system operator can issue this form of
the command.

• LEVEL OPER 30

This sets the system console to a priority lower than the
default.

AOS, AOS/VS

RDOS, DOS

LIBRARY

~
1/

c 1/
F

Prints in the specified directory the
filenames that match the template.

Format

/{

"directory", "temPlate"}j
LIBRARY "directory"

"template"

Arguments
directory Any legal directory path name starting from

the root (:), expressed as a string literal or
string variable

template Any combination of up to 15 valid characters,
including asterisk (*), dash (-), and plus sign
(+), in accordance with AOS and AOSjVS
template rules. The template must be ex
pressed as a string literal or string variable.

Remarks
1. If you omit both the directory and template options,

BASIC prints a list of all files in the BASIC library
directory (:BASIC).

2. If you omit the directory option and specify a
template, BASIC prints a list of all files in the
library directory that matches the template.

3. If you omit the template option and specify a
directory, BASIC prints a list of all files in that
directory.

4. BASIC provides the following information with each
filename printed:

• Type of file

• Date last modified

• Time last modified

• Size of the file, in bytes

5. When completed, LIBRARY returns the user to the
initial working directory.

093-000065-10 Licensed Material-Property of Data General Corporation 3-43

LIBRARY (continued)

Examples
• DIM A$(30)
• A$ = ":UDD:XBASIC"
• LIBRARY A$,"-TAPE-.CLI"
ROOMT APE.CLI TXT 11-APR-83 07:29:06 263
RELEASETAPE0100.CLI

TXT 11-APR-83 07:28:36 368
ROOMTAPE0100.CLI TXT 11-APR-83 07:29:44 407

*
• A$= ":UDD:XBASIC:DUDLEY"
• LIBRARY A$
HOBURG UDF 05-APR-83 08:51:42 106543
MARATHON.BASIC UDF 19-FEB-83 15:14:36 1943

AOS, AOS/VS

RDOS, DOS

LIBRARY

~
v

c V
F

Prints all filenames in the library
directory.

Format
LIBRARY

Remarks
One filename is printed per print zone.

Examples

• LIBRARY
AI.
BACKGAMMON
CASINO.SR
COMPILER.SR
BANK.SR
KILLER.MS
SNOOPY.SR
TEST1.
BATNUM.SR
FISCAL.SR
FISCAL.BT
*

SHOT.SR
SUPERGUESS
SWAP.SV
FCOM.CM
FOOTBALL.SR
K2.
GUESS.SR
HORSERACE.SR
HEMAN.SR
HELLO.SR

SQRT.SR
STOCKS.SR
SNOOP.
BLACK
JACK.SR
BILL
BOARD.SR
MAT.SR
QUEEN.SR
LUNAR.SR
SHOT1.SR
HELLO.SV

3-44 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, ~OS.

LIST
Outputs part or all of your current
program in ASCII to a disk file, device,
by filename, or your terminal.

Format

line n2

["filename"]

Arguments
line nl The line number of the first statement to be

listed

line n2 The line number of the last statement to be
listed

filename A disk file or device expressed as a string literal

Remarks
1. You can use LIST in the following four ways:

2.

LIST

LIST n1

LIST {~O} n2

LIST n 1 {~O} n2

List the entire program
from the lowest numbered
statement.

List only the single state
ment at line number n 1.

List from the lowest num
bered line through line
number n2.

List from line number nl
through line number n2.

When you include the filename argument, LIST
writes the specified lines to the disk file or device in
ASCII format.

3. If the filename is a disk file that already exists in
your directory, BASIC prints the message:

TYPE CR TO DELETE OLD: (RDOS/DOS)

TYPE NL TO DELETE OLD: (AOS,AOS/VS)

This message lets you confirm whether or not the
existing file is to be deleted and replaced by the file,
with the specified lines, named in the LIST com
mand. If you press CR/NEW LINE, BASIC ac
cepts the replacement. If you type anything preced
ing CR/NEW LINE, BASIC cancels your LIST
command.

4. You can read the file created by the LIST command
back into the program storage area with the ENTER
or NEW commands.

Examples
List your current program on your terminal:

* LIST

Output your current program to the line printer:

* LIST "$LPT"

List line number 20 on your terminal:

* LIST 20

List line numbers 700 through 9999 at the terminal:

* LIST 700,9999

Output your current program, in ASCII, to your directory
with the filename TEST.SR:

* LIST "TEST.SR"

TEST.SR replaces any previous file with that name,
provided you press the appropriate line terminator at the
confirmation prompt.

List line numbers 100 through 200 to disk file TEMP:

* LIST 100, 200 "TEMP"

TEMP replaces any previous file of that name, provided
you press the appropriate line terminator at the confirma
tion prompt.

093-000065-10 Licensed Material-Property of Data General Corporation 3-45

AOS, AOS/VS

RDOS, DOS

LOAD
Loads a program into your program
storage area that was previously saved in
core image format.

Format
LOAD "filename"

Argument
filename The name of a core image file created by a

previous SAVE command

Remarks
1. The LOAD command executes an implicit NEW

command (clearing the storage area) and then reads
the specified file into memory.

2. The file may be on disk or it may also be on a binary
input device such as the paper tape reader.

3. If the file is not found, BASIC searches the library
directory (RDOS and DOS) or searchlist (AOS and
AOSjVS) for the filename.

4. After you have loaded a file, you can list, modify, or
run it.

Examples
• LOAD "$PTR"
• LOAD "MATH3"
• LOAD "MTO: 1 "

AOS, AOS/VS

~
v

RDOS, DOS c V
F

LOCK
Gives exclusive access to a record in a
file.

Format
LOCK iden, '~filename" ,start, record-size [,time]

Arguments
iden A numeric expression used to identify a

specific lock or group of locks in a program

filename

start

A disk file in your directory, expressed as a
string literal or string variable

A numeric expression that specifies the
starting byte number of the record to be
locked

record-size A numeric expression that specifies the
number of bytes to be placed in the lock
area

time An optional numeric variable that specifies
a wait time, in seconds, if the record to be
locked is potentially locked by somebody
else

Remarks
1. The lock identifier does not have to be unique for

each lock area of the program.

2. Only the first ten characters of the filename, includ
ing extensions, are uniquely associated with each
particular lock.

3. The record-size should be the actual number of bytes
needed to be locked in the file. The physical record
size with which a file is opened has no effect on the
lock mechanism. The user of LOCK should be
careful with the size and time of locking an area, as
no one else can access this area until it is unlocked.

4. When you omit the optional time variable, an infinite
wait time is defaulted. BASIC suspends the program
until it can satisfy the requested lock.

5. BASIC places the return status from LOCK in the
time variable. The possible returns are:

a. The specified file area has been successfully
locked. BASIC returns a value of-1.

b. The lock request cannot be granted even after
BASIC suspends the program for the specified
time limit. BASIC returns the time variable with
a value of 7.

3-46 Licensed Material-Property of Data General Corporation 093-000065-10

c. The program has already locked the specified
file area. The system returns the time variable
with a value of 6. If the program specifies no
time variable, "ERROR 64 - Attempt to lock
same record twice" is displayed.

You should test the time variable after each return
from LOCK to determine whether the lock was
successful.

6. A keyboard interrupt stops a suspended program
waiting for a lock request to be satisfied. The time
variable then indicates if the lock was successful
before the interrupt (-I). or if the system did not
grant it (7).

7. Whenever BASIC terminates, it unlocks all areas
locked by the user. The NEW command also unlocks
all current locks.

8. LOCK does not physically prevent access to locked
areas. All programs must follow the convention of
requesting a lock and testing the time variable before
accessing a record; this ensures reliable sharing of
file areas under the locking facility.

Examples
* 10 A= 10

,~, (Set a wait time of 10 seconds.)

* 20 LOCK 1, "INVENTORY" ,0, 12B,A
(Lock a 1 28-byte record.)

* 30 IF A=-1 THEN GOTO 60
(If BASIC successfully locks the record, then goto to
0060.)

* 40 IF A=7 THEN GOTO 1000
(If the record is already in use, go to 1000 and do another
routine.)

* 50 IF A=6 THEN STOP
(If this user has already locked the record, then stop. See
5 above.)

* 60 UNLOCK 1
(Release the lock, and allow other users access to the file
area.)

* LOCK 2,A$,A,B,C

* LOCK 3, "FILE" ,1* A,A
(I is the current record number and A is the record size.)

* UNLOCK
(Unlock all earlier locks.)

AOS, AOS/VS

RDOS, DOS

LOG(X)
Calculates the natural logarithm of an
expression.

Format
LOG (expr)

Argument
expr A numeric expression with a value greater than 0

Example
* LIST
0010 REM- CALCULATE THE LOG OF 959
0020 PRINT LOG(959)
* RUN
6.8658911

END AT 0020
*

093-000065-10 Licensed Material-Property of Data General Corporation 3-47

AOS, AOSjVS

RDOS, DOS

LREAD

my

Cy
F

Reads a string, terminated by either a
null, form feed, or carriage return (NEW
LINE) from the terminal.

Format
LREAD ["str lit",] svar [,svarl] [;]

Arguments
str lit A string literal supplying a message or prompt

svar A string variable that is assigned the value of the
string read from your terminal

svarl A string variable that is assigned the value of the
delimiter for the string read. Valid delimiters are
null, form feed, carriage return (NEW LINE)
and function keys under AOS and AOSjVS if
the characteristic FKT is on.

Remarks
1. LREAD is specifically intended to process text

where commas and quotes are input characters, not
delimiters.

2. If LREAD contains the string literal option, the
string literal appears an initial prompt; otherwise a
question mark appears as the prompt.

3. The maximum string length allowed for svar is 133,
which includes the delimiter. If a response to the
LREAD prompt is longer than 133 characters, the
length of svar 1 is set to 0 and the value of svar is
terminated at 133 characters. If svar is dimensioned
smaller than the record being read, svar is set to its
dimensioned size, and svar 1 is set to zero.

4. If a response to the LREAD prompt is shorter than
133 characters, the length of svarl is 1 and it contains
the delimiter. Under AOS and AOSjVS, if a
function key is the delimiter, the length of svarl is 2
and it contains the 2-byte function key sequence.

5. If you end an LREAD statement variable list with a
semicolon, the cursor remains at the position follow
ing the last item read. Otherwise, the system outputs
a carriage return-line feed (NEW LINE).

Examples
• LREAD A$,B$
? ABCEDF
• PRINT A$
ABCEDF
• PRINT B$

AOS, AOSjVS

RDOS, DOS

LREAD FILE

~
y

C Y
F

Reads a string from a record, in either a
random- or sequential-access file, that
has a null, form feed, or carriage return
(NEW LINE) terminator.

Format

LREAD {FILE} {(file) } ,svar [,svarl]
(file,record)

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a file
number previously associated with an OPEN
FILE statement

record A numeric expression that evaluates to the num
ber of a record in a file opened for random access

svar A string variable to which BASIC assigns the
value of the string read from the file

svarl A string variable to which BASIC assigns the
value of the delimiter for the string read. Valid
delimiters are null, form feed, and carriage return
(NEW LINE).

Remarks
1. LREAD is specifically intended to process text

where commas and quotes are input characters, not
delimiters.

2. The maximum string length allowed for svar is 133
characters, which includes the delimiter. If the
record read is longer than 133 characters, BASIC
sets the length of svarl to 0, and truncates the value
of svar at 133 characters.

3. If the record read is shorter than 133 characters, the
length of svar 1 is 1, and svar 1 contains the delimiter.

4. If svar is dimensioned smaller than the record being
read, svar is set to its dimensioned size, and svarl is
set to zero.

5. The number of the first record in a random-access
file is O.

6. You can use the EOF function to detect the end of
the file being read.

3-48 Licensed Material-Property of Data General Corporation 093-000065-10

.. ~

Example
* LIST
0010 DIM A$(60}
0020 REM THIS ROUTINE USES TESTFILE1
0030 REM CREATED IN LWRITE FILE EXAMPLE.
0040 OPEN FILE(0,3}, "TESTFILE1"
0050 FOR I = 1 TO 3
0060 LREAD FILE(O},A$,B$
0065 PRINT B$
0070 PRINT A$
0080 NEXT I
0090 CLOSE
*RUN

MONDAY

WEDNESDAY

FRIDAY

END AT 0090
*

[ffi'" c 11
F

AOS, AOS/VS

RDOS, DOS

LWRITE
Writes a string to your terminal.

Format
LWRITE svar [,svar1]

Arguments
svar A string variable whose value is written to the

terminal

svar 1 A string variable that is the value of the delimiter
for the string written

Remarks
1. If the argument list includes svarl, and its length is

1, BAS I C assumes svar 1 is one of the valid delimiters
and outputs it as the string terminator.

2. If the length of svarl is 0, no delimiter is output.

3. If the argument list does not·include svarl, a null is
output as the string terminator.

4. L WRITE allows direct output of control characters
to the terminal. For example, L WRITE does not
insert a line feed after a carriage return; and it can
instruct that no extraneous string terminators are to
be output.

5. You must use LWRITE when you write data (e.g.,
terminal cursor position addresses) that would other
wise be interpreted as delimiters. If you do not use
L WRITE, the system tries to use certain characters
as delimiters, which will probably produce undesir
able results.

Examples
* A$ = "ABCDEFGH"
* A1$=""
* LWRITE A$,A 1$
ABCDEFGH*
* LWRITE A$
ABCDEFGH*

093-000065-10 Licensed Material-Property of Data General Corporation 3-49

AOS, AOSjVS

RDOS, DOS

LWRITE FILE

~
v

c V
F

Writes a string to a record into either a
random- or sequential-access file.

Format

L WRITE {FILE} {(file) } ,svar [,svar 1 J
(file,record)

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a file
number previously associated with an OPEN
FILE statement

record A numeric expression that evaluates to the num
ber of a record opened for random access

svar A string variable whose value BASIC writes to a
file

svar1 A string variable that contains the value of the
delimiter for the string written

Remarks
1. L WRITE is e~pecially useful for creating records

with nonstandard delimiters or for creating records
in small "pieces" to be read later in larger "chunks."

2. If you include svarl in the argument list, and set its
length to 1, BASIC then assumes svarl is one of the
valid delimiters, and outputs it as the string termina
tor.

3. If you set the length of svarl to 0, BASIC outputs
no delimiter.

4. If you do not include svar 1 in the argument list,
BASIC outputs a null as the string terminator.

5. You must use LWRITE when you write data that
the system will otherwise interpret as delimiters. If
you do not use L WRITE FILE, the system tries to
use the data as a delimiter, which produces undesir
able results.

Example

• LIST
0010 DIM A$(60)
0020 LET Z$= "<13>"
0030 LET A$= "MONDAY WEDNESDAY FRIDAY"
0040 OPEN FILE(l,l), "TESTFILE1"
0050 LET A=l
0060 LET J=10
0070 LET K=10
0080 FOR 1=0 TO 2
0090 LWRITE FILE(1),A$(A,J),Z$
0100 PRINT A$(A,J)
0110 LET A=A+K
0120 LET J=J+K
0130 NEXT I
0140 CLOSE
·RUN
MONDAY
WEDNESDAY
FRIDAY

ENDAT0140
*

3-50 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

ROOS, DOS ~
11

c 11
F

Matrix, Addition and Subtraction
Perform the scalar addition or
subtraction of two matrixes.

Format
MAT mvar 1 = mvar2

Argument
mvar A matrix variable name

Remarks
1. Arithmetic is performed on an element-by-element

basis of mvar2 and mvar3 with the result assigned to
the element of mvarl.

2. Matrixes mvar2 and mvar3 must have the same
dimensions.

3. Matrix mvarl may appear on both sides of the equal
sign.

Example

• LIST
0010 DIM A(3,2),B(3,2),C(3,2)
0040 MAT READ B,C
0050 MAT A=B+C
0060 DATA -2,-5,3,4,.5,.1,6,4,-2,15,1.5,
0070 MAT PRINT B
0075 PRINT
0080 MAT PRINT C
0085 PRINT
0090 MAT PRINT A
• RUN

-2 -5
3 4
.5 .1

6 4
-2 15
1.5 4

4 -1
1 19
2 4.1

END AT 0090
*

AOS, AOS/VS

ROOS, DOS ~
11

c 11
F

Matrix, Assignment
Copies the elements of matrix mvar2 into
matrix mvar1.

Format
MAT mvar 1 = mvar2

Argument
mvar A matrix variable name

Remarks
In the matrix assignment statement matrix mvarl as
sumes the identical dimensions and values of matrix
mvar2, provided the storage space allocated to mvarl is
sufficient to accommodate the current dimension of
mvar2. If mvar 1 has not been dimensioned, it is dimen
sioned by an assignment.

Example

• LIST
0010 DIM A (2, 2)
0020 LET A(1,l)=5
0030 LET A(1,2)=10
0035 MAT PRINT A-
0040 MAT B=A
0045 PRINT
0050 MAT PRINT B
• RUN
5 10 (Matrix A)
o 0

5 10 (Matrix B)
o 0

END AT 0050
*
Line 40 assigns matrix B the same dimensions as matrix
A and assigns each value in matrix A to the corresponding
element in matrix B. Therefore, B(1, 1) = 5 and B(1,2)
= 10.

093-000065-10 Licensed Material-Property of Data General Corporation 3-51

~" c tI
F

AOS, AOS/VS

ROOS, DOS

Matrix, Determinant (DEI)
Obtains the determinant of the last
matrix inverted by an INV statement.

Format
var = OET(X)

Arguments
var A numeric variable

X A dummy argument, which is necessary but not
used

Remarks
The value of the determinant calculated for the matrix is
assigned to the numeric variable.

Example

• LIST
0020 DIM A (2,2)
0030 MAT READ A
0040 DATA 1,2,3,4
0050 MAT PRINT A
0080 MAT A=INV(A)
0085 PRINT
0090 MAT PRINT A
0100 LET B=DET(X)
0120 PRINT
0130 PRINT "DETERMINANT= ";B
• RUN
1 2
3 4

-2 1
1.5 -.5

DETERMINANT=-2

ENDAT0130
*

AOS, AOS/VS

ROOS, DOS ~" c "
F

Matrix, Identity (ION)
Sets each element of the major diagonal
of the matrix to 1 and each remaining
element to O.

Format
MAT mvar = ION [([row,jcol)]

Arguments
mvar A matrix variable name

row The number of rows in the matrix

col The number of columns in the matrix, or elements
in a vector

Remarks
1. The major diagonal starts at the last element of the

array and runs diagonally upward until it encounters
the first row or first column.

2. For previously dimensioned matrixes, use the form

MAT mvar = ION

3. If the matrix was not previously dimensioned or if
the matrix is to be redimensioned, use the form

MAT mvar = ION([row,jcol)

3-52 Licensed Material-Property of Data General Corporation 093-000065-10

Examples
• LIST
0050 DIM A(4,4)
0100 MAT A=IDN
0150 MAT PRINT A
• RUN
1 000
o 1 0 0
001 0
000 1

ENDAT0150
*
• LIST
0010 DIM B(4,3)
0015 MAT PRINT B
0020 PRINT
0025 MAT B=IDN(2,3)
0030 MAT PRINT B
• RUN
000
000
000
000

o 1 0 (Matrix B after line 25.)
001

END AT 0030
*

093-000065-10

~" C "
F

AOS, AOS/VS

RDOS, DOS

Matrix, Inverse (INV)
Provides a matrix inversion of mvar2 and
assigns the resultant matrix element
value to mvar1.

Format
MAT mvar1 = INV(mvar2)

Argument
mvar A matrix variable name

Remarks
1. An inverse matrix is defined such that the product

of a matrix and the inverse of the matrix is the
identity matrix (see "Matrix, Identity").

2. Matrix mvar2 must be a square matrix.

3. Matrixes may be inverted into themselves (i.e.,
mvarl equals mvar2 before the assignment in the
matrix INV statement).

4. If the message ERROR 08 - SINGULAR MATRIX
appears, mvar2 is singular or nearly singular, and
DET(X) will be o. In the same light, if DET(X) is
very small in absolute value relative to the elements
of mvar2, you should consider mvar2 to be singular
or nearly singular and use the result, mvarl, with
discretion.

5. The arithmetic of matrix inversion requires a knowl
edge of matrix determinants and of matrix cofactors.
For further information on these subjects, consult a
mathematics text.

licensed Material-Property of Data General Corporation 3-53

Matrix, Inverse (INV) (continued)

Examples
• LIST
0010 DIM A(2,2)
0015 MAT READ A
0020 DATAl ,2,3,4
0030 MAT A=INV(A)
0040 MAT PRINT A
• RUN
-2 1
1.5 -.5

END AT 0040
*
This example may be analyzed as follows:

I ~ ~ 1 = matrix A

Then:

1
4 -2/ -3 1 = cofactor of matrix A I: : I ~ (I *4) - (2*3) ~ -2 ~ determinant of matrix A

INV(A) = (1/-2) 1
4 -21 = 1-2 1 I
-3 1 1.5 -.5

When the original matrix is multiplied by its inverse,

/
1 21 * 1-2 ,1 1
3 4 .5 -.5

the result is the identity matrix:

I ~ ~ I

AOS, AOS/VS

RDOS, DOS ~
11

c 11
F

Matrix, Multiplication
Multiplies a matrix by a numeric
expression or another matrix.

Format
MAT mvar 1 = {mvar2} * mvar3

(expr)

Arguments
mvar A matrix variable name

expr Any numeric expression enclosed in parentheses

Remarks
1. Matrix mvarl may not be the same as either matrix

mvar2 or mvar3 if you are multiplying the two
matrixes. Otherwise, mvarl and mvar3 can be the
same if you are multiplying by a scalar, as in the
statement:

MAT mvar1 = (expr) • mvar3

2. If matrixes mvar2 and mvar3 are mUltiplied, the
number of columns in mvar2 must equal the number
of rows in mvar3. The resultant matrix (mvarl) has
the same number of columns as mvar3, and the
same number of rows as mvar2.

3. If a matrix is multiplied by a numeric expression, a
scalar multiplication is performed on each element
of the matrix.

4. To obtain the product of mvar2 * mvar3, the
elements of each row in mvar2 are multiplied by the
elements of each column in mvar3. Each row /column
set is added together to provide the resultant value
of the matrix element in mvarl.

3-54 Licensed Material-Property of Data General Corporation 093-000065-10

/"'-.

Examples
• LIST
0001 REM-MATRIX MULTIPLICATION
0010 DIM A(2,2),B(2,2)
0020 MAT READ B
0030 MAT A=(5)*B
0040 DATA -.5,.8,1.5,-1
0050 MAT PRINT B
0055 PRINT
0060 MAT PRINT A
• RUN
-.5 .8
1.5 -1

-2.5 4
7.5 -5

END AT 0060
*
• LIST
0001 REM-PRODUCT OF TWO MATRIXES
0010 DIM A (3, 2),B(3, 2), C(2,2)
0020 MAT READ B,C
0030 MAT PRINT B
0035 PRINT
0040 MAT PRINT C
0050 MAT A=B*C
0055 PRINT
0060 MAT PRINT A
0070 DATA 2,3,1,5,0,4,-1,-2,7,8
• RUN
2 3
1 5
o 4

-1 -2
7 8

19 20
34 38
28 32

END AT 0070
*
Matrix A is calculated as shown below:

AOS, AOSjVS

RDOS, DOS ff§,,; C ,;

F

Matrix, Transposition (TRN)
Transposes matrix mvar2 and assigns the
resultant element values to mvar'l.

Format
MAT mvar 1 = TRN (mvar2)

Argument
mvar A matrix variable name

Remarks
I. Transposing a matrix reverses the row and column

assignments of the matrix elements.

2. Variable names mvarl and mvar2 cannot be the
same in a TRN statement.

3. BASIC redimensions the resultant matrix, mvarl,
to the reversed row and column dimensions of mvar2.

Example
• LIST
0020 DIM B(3,4)
0030 MAT READ B
0040 DATA 4,5,7,9,0,0,0,0,1,3,5,7
0050 MAT PRINT B
0060 PRINT
0080 MAT A=TRN(B)
0090 MAT PRINT A
• RUN
4 5 7 9
o 0 0 0
135 7

401
503
705
907

END AT 0090
*

[B(1,1)*C(1,I) + B(1,2)*C(2,1)] [B(1, l)*C(1 ,2) + B(1,2)*C(2,2)]

[B(2, l)*C(1, 1) + B(2,2)*C(2,1)] [B(2,1)*C(1,2) + B(2,2)*C(2,2)]

[B(3,1)*C(1, 1) + B(3,2)*C(2,1)] [B(3,1)*C(1 ,2) + B(3,2)*C(2,2)]

[2*(-1)+3*7]

[1 *(-1)+5*7]

[0*(-1)+4*7]

093-000065-10

[2*(-2) + 3*8]

[1*(-2)+5*8]

[0*(-2) +4*8]

19

34

28

20

38

32

Licensed Material-Property of Data General Corporation 3-55

AOS, AOS/VS

RDOS, DOS ~
v

c V
F

Matrix, Unit (CON)
Sets the value of each element in a matrix
to 1.

Format
MAT mvar = CON [([row,jcol)]

Arguments
mvar A matrix variable name

row The number of rows in the matrix

col The number of columns in the matrix, or elements
in a vector

Remarks
1. For previously dimensioned matrixes, use the form

MAT mvar = CON

2. If the. matrix was not previously dimensioned or if
the matrix is to be redimensioned, use the form

MAT mvar = CON (frow,jcol)

3. All matrix elements are set to 1 regardless of any
previously assigned values.

Example
• LIST
0010 DIM A(2,5)
0020 READ A(J,l),A(J ,2),A(J ,5)
0030 DATA 8,9,10,11,12
0040 MAT PRINT A
0045 PRINT
0050 MAT A=CON(2,4)
0060 MAT PRINT A
• RUN
8 9 0 0 10
o 0 0 0 0

1 1 1 1 (Matrix A after line 50.)
111 1

END AT 0060
*
In line 50 matrix A is redimensioned, and all elements of
the matrix are assigned a value of 1.

AOS, AOS/VS

RDOS, DOS ~
v

c V
F

Matrix, Zero (ZER)
Sets the value of each element in a matrix
to o.

Format
MAT mvar = lER [([row,jcol)]

Arguments
mvar A matrix variable name

row The number of rows in matrix

col The number of columns in matrix, or number of
elements in a vector

Remarks
1. For previously dimensioned matrixes, use the form

MAT mvar = lER

2. If the matrix was not previously dimensioned or if
the matrix is to be redimensioned, use the form

MAT mvar = lER (frow,jcol)

3. All matrix elements are set to 0 regardless of any
previously assigned values.

Example
• LIST
0010 DIM A(3,4)
0020 LET A(J,2)=6
0030 LET A(3,4)=10
0040 MAT PRINT A
0045 PRINT
0050 MAT A=ZER(3,3)
0060 MAT PRINT A
• RUN
060 0
o 0 0 0
o 0 0 10

000
o 0 0 (Matrix A after line 50.)
000

END AT 0060
*
In line 50 matrix A is redimensioned, a.nd all elements
are assigned a value of o.

3-56 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOSjVS

RDOS, DOS ~
11

c 11
F

MAT INPUT
Reads values from your terminal and
assigns them to the elements of a matrix
or list of matrixes.

Format
MAT INPUT ["str lit",] mvar [([row,]col)J

[,mvar [([row,] col) J J ...

Arguments
mvar A matrix variable name

row The number of rows in the matrix

col The number of columns in the matrix, or elements
in a vector

str lit A string literal supplying a message or prompt

Remarks
1. You can dimension or redimension a matrix with a

MA T INPUT statement.

2. Enter data values, separated by either a comma or a
carriage return, for each element of the matrix.
Terminate the list with a carriage return.

3. If you do not supply enough data to fill the matrix
before typing the carriage return, the program
continues to prompt for data until each element of
the matrix has been filled.

Example

• LIST
0010 MAT INPUT X(2,3)
0015 PRINT
0020 MAT PRINT X
• RUN
? 2,4,6
? 77,7,9

246
77 7 9

END AT 0020
*

AOS, AOSjVS

RDOS, DOS

MAT INPUT FILE
Reads a record of matrix data in ASCII
format from a file.

Format

MAT INPUT {FILE} {(file) } ,mvar [,mvarJ ...
(file, record)

Arguments

file

A synonym for the keyword FILE

A numeric expression that evaluates to the num
ber of a file opened for sequential or random
access

record A numeric expression that evaluates to the num
ber of a record in a file opened for random access

mvar A matrix array whose values are read from a
record in a sequential- or random-access file

Remarks
1. You may list previously dimensioned matrix arrays

in the statement by name only. Matrix arrays that
have not been dimensioned must be dimensioned in
a MAT INPUT FILE statement.

2. BASIC reads data items from the file sequentially
and assigns them to the array elements by row.

3. You must separate data items in the file with a
comma or carriage return.

4. You may use the EOF function to detect an end of
file in the file that is being read.

5. The first record in a random-access file is O.

Example
• 05 DIM Y(7 ,6),Z(13,2)
• 10 OPEN FILE (2,3), "XX.AA"
• 50 MAT INPUT FILE (2),X(5,5),Y,Z

093-000065-10 Licensed Material-Property of Data General Corporation 3-57

AOS. AOS/VS

RDOS. DOS

MAT PRINT

SE]" c "
F

Prints the values of the elements of a
matrix or list of matrixes to your terminal.

Format

Arguments
mvar A matrix variable name

Remarks
1. Use a DIM statement or other matrix statement to

dimension a matrix before using it in a MAT PRINT
statement.

2. A semicolon after a variable name in the MAT
PRINT statement indicates the matrix is to be
printed in compact format. A comma or carriage
return after the variable name indicates the matrix
is to be printed in zone format.

3. The system prints column vectors (arrays) one value
per line.

Example
* LIST
0010 DIM A(J O,J 0)
0020 READ N
0030 MAT A=CON(N,N)
0050 FOR 1=1 TO N
0060 FORJ=l TON
0070 LET A (I,J) = 1/(I+J-1)
0080 NEXT J
0090 NEXT I
0130 MAT PRINT A
0190 DATA 3
* RUN
1 .5 .33333333
.5 .33333333 .25
.33333333 .25 .2

SE]" c 11
F

AOS. AOS/VS

RDOS. DOS

MAT PRINT FILE
Writes a record of matrix data in ASCII
format into a sequential- or
random-access file.

Format

MAT PRINT {FILE} {(f~le) }' mvar ~{,}mvar ... {,}t 7
(flle,record) i l; ; V

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to the num
ber of a file opened for sequential or random
access

record A numeric expression that evaluates to the num
ber of a record in a file opened for random access

mvar A matrix whose values are written into a record
of a random- or sequential-access file

Remarks
1. Use this statement for outputting to an ASCII

deviCe, such as a line printer, or to a disk file for
off-line printing.

2. A semicolon after a matrix variable, rather than a
comma or carriage return, indicates that the matrix
immediately preceding the semicolon is printed in
compact format rather than zone format.

3. The first record number in a random-access file is O.

4. Do not use the MAT INPUT FILE statement to
input data that the MAT PRINT FILE has output;
MA T PRINT FILE does not output delimiters
between matrix elements. Use the MAT WRITE
FILE statement to output data that will be reinput
later using the MAT READ statement.

Example
* 05 DIM 8(20,20)
* 10 OPEN FILE (0, 1), "NUHROK"
* 20 MAT PRINT FILE (0), 8

3-58 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

MAT READ

~.
v

c V
F

Reads values from the data-list and.assigns
them to the elements of the matrix or
matrixes listed in the MAT READ
statement.

Format
MAT READ mvar [([row,}col)J [,mvar[([row,}col)JJ ...

Arguments
mvar A matrix variable name

row The number of rows in the matrix

col The number of columns in the matrix, or elements
in a vector.

Remarks
If a matrix has not been previously dimensioned, a MAT
READ statement dimensions it.

Example
• LIST
0010 MAT READ M(5,6)
0020 DATA 0,2,4,6,8,10,-9,-8,-7,-6,-5
0030 DATA -4,-3,-2,-1,0,1,3,5,7,9,11
0040 DATA .1,0,.5,7,-8,15,-15,35,41,13,18
0050 MAT PRINT M
• RUN
024

-9 -8 -7
-3 -2 -1
5 7 9
.5 7 -8

6 8
-6 -5
o 1
11 .1
15 -15

END AT 0050
*

10
-4
3
o
35

This example reads values from the data list into the
30-element matrix dimensioned as 5 by 6 in the MAT
READ statement.

AOS, AOS/VS

RDOS, DOS ~
v

c V
F

MAT READ FILE
Reads a data record from a sequentially
or randomly accessed file, in binary
format, for the elements of matrix arrays.

Format

MAT READ {FILE} {(file) }, mvar [,mvarJ ...
(file, record)

Arguments

file

A synonym for the keyword FILE

A numeric expression that evaluates to the num
ber of a file opened for random or sequential
access

record A numeric expression that evaluates to the num
ber of a record in- a file opened for random access

mvar A matrix that is assigned values read sequentially
from a randomly or sequentially accessed record

Remarks
1. The number of the first record in a random-access

file is O.

2. You may list previously dimensioned matrix arrays
in the statement by name only. You must dimension
matrix arrays that have not been dimensioned in the
MAT READ FILE statement.

3. In randomly accessed files, records that have not
been written into contain all zeros when read.

4. The system reads data items from the record sequen
tially and assigns them to the array elements by
row.

5. You can use the EO F function to detect an end of
file in the file that is being read.

6. The amount of data to be read must not exceed the
record size specification for files opened for random
access.

Example
• 10 DIM A(7,3), 8(12,7)
• 30 OPEN FILE (1,3), "MATRIXA"
• 40 MAT READ FILE (1), A, 8, C(3,4), D(5)

093-000065-10 Licensed Material-Property of Data General Corporation 3-59

AOS, AOS/VS

ROOS, DOS

MAT TINPUT

[lEv
c V
F

Reads values from the terminal and
assigns them to the elements of a matrix
or list of matrixes, within a prescribed
time.

Format
MAT TINPUT [(line [,time]),] ["str lit",]

mvar [([row,] co I)] [,mvar[([row,]col)JJ ...

Arguments
line A valid statement line number

time A numeric expression that evaluates to an integer
and represents time, in seconds

str lit A string literal supplying a message or prompt

mvar A matrix variable name

row The number of rows in the matrix

col The number of columns in the matrix, or elements
in a vector

Remarks
The remarks for the MAT INPUT and TIN PUT state
ments apply to the MAT TINPUT statement.

AOS, AOS/VS

ROOS, DOS ~
v

c V
F

MAT WRITE FILE
Writes a record of matrix data in binary
form into a sequentially or randomly
accessed file.

Format

MAT WRITE {FILE} {(file) },mvar [,mvar] ...
(file,record)

Arguments

file

A synonym for the keyword FILE

A numeric expression that evaluates to the num
ber of a file opened for random or sequential
access

record A numeric expression that evaluates to the num
ber of a record in a file opened for random access

mvar A matrix whose values are written into a record
of a randomly or sequentially accessed file

Remarks
1. The number of the first record in a random-access

file is O.

2. Matrix arrays listed in the MAT WRITE FILE
statement must be previously dimensioned.

Example
• 50 OPEN FILE (0,1), "AAA"
• 80 MAT WRITE FILE (O),B,C,X

3-60 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOSjVS

ROOS, DOS

MAX
Establishes a limit for the number of
active users.

Format
MAX [val]

Argument
val Any number from 0 to 33

Remarks
1. MAX must be executed from the master terminal.

In a single-user system, the master terminal and
user terminal are the same. In multiuser environ
ments, programs using MAX as a statement do not
work when run from terminals other than the master
terminal.

2. The initial value for MAX is 33.

3. You may set MAX to a value smaller than the
current number of active users.

4. If the number of active users exceeds the current
MAX value, a user attempting to log on receives the
following message and is denied access to the system:

MAXIMUM USERS

5. A user can log on successfully if the number of
active users is less than the current value of MAX.

6. If you use MAX without an argument, the system
returns the current value of MAX.

Examples
• MAX = 7
• MAX
7
*

AOS, AOSjVS

~" ROOS, DOS Cv
F

MSG
Transmits a message from your terminal
to another user or to the system operator.

Format

MSG "processname" ,
{

Pid }
"message"

"console name"

Arguments
pid The process identification of the receiving

user

processname A process name expressed as a string
literal or string variable

console name A console identification (e.g., @CONI)

message The text of the message, expressed as a
string variable or string literal

Remarks
1. Message length is limited to one line per MSG

command.

2. Quotation marks are necessary if you express the
message as a string literal.

3. MSG without arguments turns the message receive
flag on, in case it has been turned off by NOMSG.

4. If the transmission succeeds, BASIC prints your
process identification number and message at the
receiving terminal, in the following format:

5.

6.

FROM PID XXX: message

If a receiving user is not on line, the transmission
fails, and BASIC prints an error message at your
terminal.

If a receiving user has disabled message reception
by using CHAR with the NRM argument, or
NOMSG, the transmission fails, and BASIC prints
an error message.

Example
• MSG 11,"RSVP"

093-000065-10 Licensed Material-Property of Data General Corporation 3-61

AOS, AOSjVS

RDOS, DOS

MSG

~
v

c V
F

Transmits a message from your terminal
to another user or to the operator.

Format
MSG [userID message]

Arguments
userID The identification of the receiving user

message The text of the message

Remarks
1. The system operator's userID is OPER.

2. Message length is limited to one line per MSG
command.

3~ Quotation marks are not necessary in the message.

4. MSG without arguments turns the message receive
flag on, in case it has been turned off by NOMSG.

5. If the transmission succeeds, BASIC prints your
identification and message at the receiving terminal,
in the following format:

FROM sendersID: message

6. If a receiving user is not on line, the transmission
fails and BASIC prints an error message at your
terminal.

7. If a receiving user has disabled message reception
by using CHAR with the NRM argument, or
NOMSG, the transmission fails, and BASIC prints
an error message.

Example
UserID JACK types:

• MSG OPER MOUNT MY CASSETTE-THANKS

The master terminal receives:

FROM JACK: MOUNT MY CASSETTE-THANKS

AOS, AOSjVS

RDOS, DOS

NEW

~
v

c V
F

Clears the program and variables
currently stored in the program storage
area and closes any open files.

Format
NEW ['filename"]

Argument
filename A string literal or string variable for an ASCII

listing file of a BASIC program

Remarks
1. Clearing your storage area with NEW before enter

ing a new program, prevents the intermixing of lines
from previous programs with the new program.

2. If you make NEW an executable statement in a
program, the program clears itself from memory
when BASIC executes NEW, and does not issue a
STOP or END message.

3. You can combine the ON ESC or ON ERR
statements with NEW to prevent unauthorized
access to a program.

4. NEW closes any files left open by previously execut
ed programs.

5. Using the filename argument is equivalent to the
following pair of commands (or statements):

NEW
ENTER "FILENAME"

The NEW command clears the storage area even if
the filename does not exist.

Example

• LIST
0100 READ A,B,C,D
0110 LET E=A*23
0115 LET F=C*A
01.20 PRINT E;F
0130 NEW
0135 DATA 1,2,3,4
• RUN
233
• LIST
ERROR 05 - LINE NUMBER
*

3-62 Licensed Material-Property of Data General Corporation , 093-000065-10

AOS, AOS/VS

ROOS, DOS

NEXT
Changes the value of the control variable
in a FOR-NEXT statement.

Format
NEXT control var

Argument
control var A nonsubscripted numeric variable

Remarks
See the description for FOR and NEXT.

AOS, AOS/VS

ROOS, DOS ~
v

c v'
F

NOECHO
Disables character display on input.

Format
NOECHO

Remarks
1. NOECHO is equivalent to the command CHAR

"OFF","EBO" under AOS and AOSjVS, and
CHAR "ON","NOE" under RDOS and DOS.

2. NOECHO is disabled by ECHO.

3. Input delimiters are not echoed when NOECHO is
on, or both device characteristics EBO and EB 1 are
off, and progra:r'1 input is required.

Example

• LIST
0010 NOECHO
0020 INPUT "-/',A$
0030 ECHO
0040 INPUT "~",B$
0050 ; A$;" ";B$
0060 END
• RUN
~ (Character display is suppressed.)
~ TURNBULL
DREW TURNBULL

END AT 0060
*

093-000065-10 Licensed Material-Property of Data General Corporation 3-63

[tE" c "
F

AOS, AOS/VS

RDOS, DOS

NOESC
Disables the ESC key from producing an
interrupt.

Format
NOEse

Remarks
1. NOESC is equivalent to the command CHAR

"OFF","ESC".

2. ESC cancels the effect of NOESC.

Example
0005 NOESC
0010 FOR 1= 1 TO 100
0020 PRINT I
0030 IF 1= 50 THEN ESC
0040 NEXT I
0050 END
• RUN
1
2
3

ESC

50

ESC

STOP AT 0020
*
In this example, if I < 50 and the user presses ESC, an
interrupt does not occur. However, once I > 50, pressing
the ESC key causes an interrupt.

~" c "
F

AOS, AOS/VS

RDOS, DOS

NOMSG
Disables receipt of messages at the
terminal from which the command or
statement is issued.

Format
NOMSG

Remarks
1. NOMSG is equivalent to the command CHAR

"ON","NRM".

2. On RDOS, NOMSG is overridden by the FMSG
command.

Example
• WHO
PID: 20 DREW:020
• NOMSG
• MSG 20, "HELLO DREW"
I/O ERROR 100 - MESSAGE RECEIVE DISABLED
*
In this example, the user attempts to send a message to
himself. Because the NOMSG command has been issued,
the message is disabled.

3-64 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

ON ERR THEN
Directs program control to an
error-handling routine in your program
instead of the BASIC system error
handler.

Format

ON ERR {THEN line no. }
[THEN] statement

Arguments
statement Any BASIC statement except those listed

under "Remarks"

line no. A program statement line number

Remarks
1. Do not use the following BASIC statements as the

statement argument: FOR, NEXT, DEF, END,
DATA, or REM.

2. Normally, when a BASIC error occurs, BASIC
interrupts any operation in progress, prints an error
message at the terminal, and places the terminal in
interactive mode. If the system encounters an ON
ERR THEN statement during execution of your
program, any subsequent error causes the statement
argument to be executed, or control to be transferred
to the specified line number.

3. Place the ON ERR statement at the beginning of
your program if you want all system errors handled
by your error routine. If you place the ON ERR
statement anywhere else in your program, BASIC
executes your error routine only for errors that occur
after it encounters the ON ERR statement.

4. If the statement argument is a GOSUB, after the
subroutine is finished (RETURN), control passes to
the statement following the one that caused the error.
Do not use a RETRY statement in the body of the
subroutine.

5. If the statement argument is other than STOP,
GOTO, or GOSUB, BASIC executes the argument
and passes program control to the statement follow
ing the one in which the error occurs.

6. You can restore the normal handling of errors by
including the following statement in an appropriate
place in your program:

ON ERR THEN STOP

7. The keyword THEN is optional if a statement is
specified; it is required if you specify line no.

8. Beware of getting into an infinite loop with an ON
ERR-GOTO statement. If an error occurs in the
error handling routine specified by the GOTO
statement, looping could occur.

Example
0010 ON ERR THEN GOTO 1000
0020 OPEN FILE (0,0), ''X''
0030 ON ERR THEN STOP

1000 OPEN FILE (0,0), "y"
1010 GOTO 30

093-000065-10 Licensed Material-Property of Data General Corporation 3-65

AOS, AOS/VS

RDOS, DOS

ON ESC THEN
Directs program control to an
escape-handling routine in your program
instead of the BASIC system escape
handler.

Format

ON ESC {THEN line no. }
[THEN] statement

Arguments
statement Any BASIC statement except those listed

under "Remarks"

line no. A program statement line number

Remarks
1. Do not use the following BASIC statements as the

statement argument: FOR, NEXT, DEF, END,
DATA, REM

2. Normally, when you press the ESC key, you inter
rupt any operation in progress and place the terminal
in interactive mode to wait for your next command.
If BASIC encounters an ON ESC THEN statement
while executing a program, pressing the ESC key
causes the statement represented by the argument
in the ON ESC THEN to be executed.

3. Place the ON ESC statement at the beginning of
your program if you want your routine to handle all
escapes. Place the ON ESC statement anywhere
else in your program and BASIC executes your
routine only for escapes that occur after it encounters
the ON ESC statement.

4. If the statement argument is a GOSUB, after the
subroutine is finished (RETURN), control passes
back to the point of interruption.

5. Since ESC is not an error condition, do not use the
RETR Y statement in association with an ON ESC
statement.

6. If the statement argument is other than STOP,
GOTO, or GOSUB, then BASIC executes the
statement argument and passes program control
back to the point of interruption.

7. You can restore the normal handling of ESC by
including the following statement in an appropriate
place in your program:

ON ESC THEN STOP

8. The keyword THEN is optional if you specify a
statement; it is required if you specify a line number.

Examples
0100 ON ESC THEN PRINT X,Y,Z

0140 PRINT X
0141 Y=Z

In this example, when you press the ESC key during
program execution, control passes to the statement on
line 100 and the values of X, Y, and Z are printed. After
BASIC executes line 100, the program continues from
the point of interruption. Therefore, if BASIC had
completed line 140 when you pressed ESC, it would
execute line 100 followed by line 141.

0010 ON ESC THEN GOSUB 0500
0020 DIM X(2500)
0021 LET A=O
0022 LET B=O
0023 LET C=O
0030 FOR 1= 1 TO 2500
0040 LET X(I)=A*r'2+B*I+C
0050 NEXT I
0060 STOP
0500 PRINT I,X(I)
0510 INPUT "CONTINUE (0), NEW INPUT (J)",D
0520 IF D=O THEN RETURN
0530 INPUT "NEW VALUES FOR A,B,C= ",A,B,C
0540 RETURN

In this example, a RETURN from line number 520 or
540 positions you to the line after the last executed line
when the ESC key is pressed, not to line 20.

3-66 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

ON-GOIO and ON-GOSUB
Transfers control to one of several lines
in a program, depending on the value of
an expression at the time BASIC executes
the statement.

Format
ON expr {GOTO }Iine no. [,line no.] ...

GOSUB

Arguments
expr A numeric expression evaluated to ah. integer

line no. A list of line numbers in the current program
whose positions in the argument list are num
bered from 1 through n

Remarks
1. The system evaluates the expression, ignoring any

fractional portion.

2. The program transfers control to the line number
whose position in the argument list corresponds to
the computed value of the expression.

3. If the expression evaluates to an integer that is
greater than the number of entries given in the
argument list or that is less than or equal to zero,
BASIC ignores the ON statement and passes control
to the next statement.

4. ·The ON-GOSUB statement must contain an argu
ment list whose entries are the first line of subrou
tines within the current program.

Examples
• 10 ON M-5 GOTO 500,75, 1000

If M-5 evaluates to 1, 2 or 3, control passes to statement
500, 75, or 1000, respectively. If M-5 evaluates to any
other value, control passes to the next statement in the
program.

• lOON (SGN(M-5) + 2) GOTO 100, 200, 300

The above statement is equivalent to the following three
statements.

• 10 IF M-5<0 THEN GOTO 100
• 20 IF M-5 = a THEN GOTO 200
• 30 IF M-5>0 THEN GOTO 300

AOS, AOS/VS tffi", RDOS, DOS C ",

F

OPEN FILE
Assigns a file number and access mode
to a filename for future referencing in
file 1/0 statements in your program.

Format

OPEN {:ILE} (iile,mode), "filename" I,record size I jile size] /1

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a
number from 0 through 7 for ,RDOS and
DOS, or 0 through 15 for AOS and
AOS/VS. BASIC uses this number to sim
plify the reference to "filename" in other
file I/O statements.

mode A numeric expression that evaluates to a
number from 0 to 3, 'or 7. This number
specifies the access mode of the file. See
"Remarks" for a description of modes.

filename A string.1iteral or string variable that evalu
ates to a valid filename

record size An optional numeric expression that evalu
ates to a fixed length (in bytes) for each
record in a file. A record size may be any
value from 1 to 32768. In mode 0, the system
assigns a default value of 128 bytes per
record.

If the output of a WRITE FILE statement
has fewer than the specified number of
bytes, the output is padded with nulls until
it reaches the specified record length. If the
output has more than the specified number
of bytes, an error occurs.

file size An optional numeric expression that evalu
ates to the maximum number of records in
the file, and thereby limits its size. This
argument is used only on RDOS and DOS,
and only in conjunction with record size, to
create a contiguously organized file. "Error
34 - Function Argument" results if the size
of the last two numerical arguments in the
OPEN statement is 224 (16,777,216) bytes
or more. You cannot have a contiguous file
with variable length records.

093-000065-10 Licensed Material-Property of Data General Corporation 3-67

OPEN FILE (continued)

Remarks
1. If the filename argument is a string literal value, the

filename must be explicitly terminated with a NULL
«0», carriage return «13», form feed
« 12», or a space «32».

2.· Calculate record length as follows:

• Numeric Data

Single-precision: 4 bytes per data item
Double-precision: 8 bytes per data item

• String Data

One byte per character in string, plus one byte for
string delimiter

• Arrays

(No. of rows)*(No. of columns) * (precision)

Note: precision is 4 for single-precision, 8 for
dOll ble-precision.

2. The following paragraphs define modes 0-3 and 7:

Mode O-Open random-access file for input/output.
The file is exclusively opened under AOS and
AOS/VS, and sharable under RDOS and DOS.
You may only open disk files in random mode for
reading and writing. If a disk file is named and it
does not exist in your directory, BASIC creates it.
Record length is fixed by the record size argument
or by the default value (128 bytes).

Mode I-Create a new output file. You can open
either a disk file or an appropriate output device in
mode 1. BASIC opens the file exclusively and
permits only writes. The system creates a new file,
initialized with 0 length. If the filename already
exists in your directory, BASIC deletes the previous
copy from the disk. In RDOS and DOS only, the
system does not check to insure that only writes are
used; use the CHATR command to prevent input
use of an output file.

Mode 2-Append output to an existing file. You
can use this mode to open any file previously opened
in mode 1 or mode 2. When you open an existing file
in mode 2, the file pointer moves to the end of the
file so that subsequent data written to the file extends
it. If the file does not exist in your directory, it is
created. The file is exclusively opened, and only
writes are permitted. In RDOS and DOS only, the
system does not check to insure that only writes are
used; use the CHA TR command to prevent input
use of an output file.

Mode 3-0pen input file for reading only. You can
open either a disk file or appropriate input device in
mode 3. If you open a disk file in this mode, the file
must already exist. Only reads are permitted from a
file opened in mode 3, and the file is not exclusively
opened. If BASIC does not find the file in your
directory, BASIC searches for it in the library
directory.

Mode 7-0pen sharable random-access file for
input/output. For RDOS and DOS, mode 7 is
identical to mode O. As in mode 0, BASIC can
perform input and/or output processes, and the
default record length is 128 bytes. AOS and
AOS /VS users who want to share files should use
mode 7 and record locking. Such mode 7 users share
all pages of data accessed from the file. As long as
the same rec~rds are not updated, simultaneous use
of the file does not lose updates. Without record
locking, however, you have no protection from other
users who might access the same record. You must
take care, moreover, that the file already exists and
that the file element size is a multiple of 4. If either
of these is not true for the file, a program exception
occurs.

The following tables summarize the characteristics
of the file open modes for the given operating
systems.

3-68 Licensed Material-Property of Data General Corporation 093-000065-10

.---

~

~

File Open Modes on RDOS and DOS

Mode Type 1/0 Access

0 Sharable I/O Random

'-7 1 Exclusive write I/O Random or sequential
Sharable read

2 Exclusive write I/O Random or sequential
Sharable read

~'3 Sharable I Random or sequential

7 Sharable I/O Random

File Open Modes on AOS and AOS/VS

Mode Type 1/0 Access

0 Exclusive I/O Random

'---/1 Exclusive 0 Random or sequential

2 Exclusive 0 Random or sequential

3 Nonexclusive I Random or sequential

7 Shared I/O Random

3. Default value for the mode argument is 0. OPEN
FILE (1) is the same as OPEN FILE (1,0).

Examples
• 100 OPEN FILE (1,1), "NETSAK.JR"

This statement opens file 1, named NETSAK.JR, as an
output file.

• 100 OPEN FILE (2,0), "RESSEHC.TO",20

This statement opens the file named RESSEHC.TO as
file number 2. Mode ° specifies random access read or
write. Records are 20 bytes long.

Rule

Create file if it does not exist.

Create file.

Append to existing file or create file.

File must exist.

Create file if it does not exist.

Rule

Create file if it does not exist.

Create file. pk:::[,&:"'r(::-~ (t.1~· (;. t!.1 C(_>

Append to existing file or create file.

File must exist. .

File must exist.

093-000065-10 Licensed Material-Property of Data General Corporation

.

3-69

AOS, AOSjVS

RDOS, DOS

ORD(X$)
Represents the ordinal position of a
character in the ASCII collating
sequence.

Format

ORO { ~~~~:!it") }
Argument
svar A string variable

str lit A string literal

Remarks
1. The argument of the ordinal function may be any

string expression.

2. If the argument of the ordinal function is not a
string of length 1, BASIC returns an error message.

Example
• LIST
0005 REM CONVERT UPPER- TO LOWERCASE
0010 LET A$= "LOWER CASE"
0020 FOR 1= I TO LEN(A$)
0030 LET A=ORD(A$(I'/))
0040 IF A>=65 THEN IF A<=90 THEN LET
A$(I'/) = CHR$(A + 32)
0050 NEXT I
0060 PRINT A$
0070 STOP
• RUN
lower case

STOP AT 0070
*

AOS, AOSjVS

RDOS, DOS m" c "
F

PAGE
Sets the right margin of your terminal.

Format
PAGE=expr

Argument
expr An arithmetic expression evaluating to a number

between 15 and 132, inclusive, and not less than
the current TAB setting. For AOS and AOS/VS
systems, the expression evaluates to a number
between 14 and n, where n can be as high as 255,.
depending on the system.

Remarks
1. BASIC uses a default value of 80 as the maximum

line width.

2. Strings may be as large as 32767 bytes. However, if
a string is longer than the PAGE value, it cannot be
printed and BASIC outputs an error message. To
examine the entire string, you must print substrings
of lengths smaller than or equal to the PAGE value.

Example
• LIST
0010 PAGE =30
0020 FOR 1= I TO 25
0030 PRINT I;
0040 NEXT I
• RUN
123 4 5 6 789
10 II 12 13 14 15 16
17 18 19 20 21 22 23
24 25

END AT 0040
*

3-70 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

POS(X$,Y$,Z)
Determines the position of a substring in
a string.

Format

pos{(SVar1) }"{(SVar2) }, (expr)
("str lit 1 ") ("str lit2")

Arguments

svar A string variable

str lit A string literal

expr A numeric expression

Remarks
1. Starting at position expr in a string (svarl or str

lit!), BASIC searches for the specified substring
(svar2 or str lit2).

2. The POS function returns the first position of the
substring in the string. If the substring cannot be
found in the string, the POS function returns a
value of o. If the value of the expression is less than
0, an error message occurs.

3. If the expression is greater than the length of the
string, the POS function returns a value of O.

4. If the expression is equal to 0, the search begins at
the first position of the string.

Example
* LIST
0005 DIM A$(25)
0010 LET A$= "AMNOPFGHIJKLMNOPQRS"
0020 LET A = POS(A$, "MNOP",6)
0030 PRINT A
* RUN
13

END AT 0030
*
In this example, the program searches for "MNOP",
starting from the sixth character (F) in string A$. It
finds a match that begins at character 13 in string A$.
POS, therefore, returns a value of 13, which is assigned
to variable A. Had the expression equaled 1, POS would
have found the first MNOP and assigned a value of 2 to
A.

AOS, AOS/VS

RDOS, DOS

PRINT

~
v

c 11
F

Performs print operations at your
terminal.

Format

{ PRINT}0::~ ~fl'}{::~ V~·· fl'V . l "str lit"~ . "str II·t" . , , ,
T AB(n) T AB(n)

Arguments
; (first) A synonym for the keyword PRINT

svar

expr

str lit

A string variable

A numeric or string expression

A message or prompt

T AB(n) Tabulates to column n

Remarks
The following PRINT operations are possible:

1. Print the result of a computation.

2. Print verbatim the characters in a string literal or
string variable.

3. Print a combination of operations 1 and 2.

4. Print a blank line, i.e., skip a line.

Zone Spacing of Output
The print line on a terminal is divided into print zones.
The width of a print zone is determined by the TAB
statement. The default value for TAB is 14 and is used in
the following examples. The first column on a line is
column 1.

14 15 28 29 42 43 56 57 70 71 80

14 14 14 14 14 10

columns columns columns columns columns columns

50-01092

Figure 3-1.

093-000065-10 Licensed Material-Property of Data General Corporation 3-71

PRINT (continued)
A comma (,) between items in the PRINT statement list
prints the next item in the leftmost position of the next
printing zone. If there are no more printing zones on the
current line, printing continues in the first zone on the
next line. If an item requires more than one print zone,
BASIC prints the next item at the beginning of the next
free print zone (see the first example).

Before each item is printed, its length is compared with
the space remaining on the line. If insufficient space
remains on the current line, the item is moved to the next
line. If the length of the item is greater than the width of
the page (see PAGE), BASIC issues an error message.

Compact Spacing of Output

A semicolon (;) between items in the PRINT statement
list, prints the next item at the next character position.
Note that the system reserves a space for the plus (+)
sign, even though it is not printed (see second example),
and there is always a trailing space.

Spacing to the Next Line

When BASIC prints the last item in a print list, it outputs
a carriage return and line feed, unless the last item in the
list is followed by a comma or semicolon. The carriage
return and line feed are not output after commas or
semicolons because of their punctuation function.

However, if the comma or semicolon would cause the
next item to be printed beyond the allowable line width
(see PAGE), a carriage return and line feed are output.

Printing Blank Lines

A PRINT statement with no list of print items or
punctuation outputs a carriage return and line feed (see
fourth example).

For more printing versatility, you can use the TAB(X)
function and the TAB, PAGE, and PRINT USING
statements.

The TAB(n) argument to the PRINT command allows
you to print at the nth column position (see fifth example).

Examples
Column numbers are marked below examples.

* LIST
0010 LET X=25
0020 PRINT "SQUARE ROOT OF X IS; ",SQR(X)
* RUN
SQUARE ROOT OF X IS: 5

END AT 0020
*
T T
1 15

* LIST
0010 LET X=5

T
29

0020 PRINT X;(X*2) T6;X*2;(X*2)T4;
0030 PRINT X-25;(X*2) T8;X-100»)
* RUN
5 1000000 10 10000-20 1Eto8

-95

END AT 0030
*
T 1 T T
1 3 11 14

* LIST
0005 PAGE =70
0010 LET X=5

T T
20 23

0020 PRINT X(X*2) T6,
0030 PRINT X T 4
0040 PRINT "FIN"
* RUN
5 1000000

FIN

END AT 0040
*
T
1

T
14

625

T
29

Notice that the trailing comma in line 20 causes the
value of XT4 in line 30 to be printed in zone 3 instead of
zone 1 of the next line.

* LIST
0010 LET X=5
0020 PRINT X;(X*2) T6,X*2
0030 PRINT X-25;(X*2) T8
0040 PRINT X-100

3-72 Licensed Material-Property of Data General Corporation 093-000065-10

0050 PRINT
0060 PRINT "DONE"
* RUN
5 1000000 10
-20 1EtoS
-95

DONE

END AT 0060
*
T T
1 4

T
15

In line 20, the comma and semicolon spacing characters
are both used. Line 50 outputs a blank line before printing
"DONE".

* 0010 PRINT "ABCDEFG";
* 0020 PRINT TAB(S);"HIJK"
* RUN
ABCDEFGHIJK

END AT 0020
*

* 0010 PRINT "ABCDEFG";
* 0020 PRINT TAB(3);"HIJK"
* RUN
ABCDEFG

HIJK

END AT 0020
*

Note that if the current column is greater than TAB(n),
printing continues on the next line.

AOS, AOS/VS

~s '"
ROOS, DOS

C '"
F

PRINT FILE
Writes data in ASCII format into a
sequential- or random-access file.

Format

{ } { } { } {

expr J PRINT # (file) , var
; FILE (file,record) svar.

"str lit"

Arguments
; (first)
.

file

record

A synonym for the keyword PRINT

A synonym for the keyword FILE

A numeric expression that evaluates to the
number of a file opened for sequential or
random access

A numeric expression that evaluates to the
number of a record in a file opened for random
access

expr, var, svar,
and str lit... A list of one or more numeric

Remarks

expressions, numeric variables, string vari
ables, and string literals, whose values are
written into a file

1. This statement is intended for outputting to an
ASCII device, such as a line printer, or to a disk file
for later off-line printing.

2. Separate each item in the expression list from the
next by a comma, semicolon, or carriage return.
Output formatting is identical to that discussed in
"Remarks" for the PRINT statement.

3. If an INPUT FILE statement will subsequently read
the data written by PRINT FILE as numeric data,
then it is necessary to print the comma (data
separator) as a string literal between expressions, as
shown in line 300 of the first example below.

4. The first record number in a random-access file is O.

093·000065·10 Licensed Material·Property of Data General Corporation 3-73

PRINT FILE (continued)

Examples
• 010 OPEN FILE(3, 1), "$LPT"
• 100 PRINT FILE(3), "OUTS"
• 200 PRINT FILE(3),"X=";X,"X SQUARED=";X 2
• 300 PRINT FILE(3),A;",";8;",";C
• 400 CLOSE

• 0 1 0 OPEN FILE(3, 1), "$LPT", 80
• 100 FOR I = 1 TO 10000
• 110 PRINT FILE(3),I;
• 120 NEXT I
• 130 CLOSE

AOS, AOS/VS

~" ROOS, DOS c 11
F

PRINT FILE USING
Outputs the values of the expressions in
the PRINT FILE USING statement to a
previously opened file in the format
specified.

Format

{
PRINT} {# } (file [,recordj),USING format,expr [,exprj ...
; FILE '.

Arguments

file

record

format

expr ...

Remarks

A synonym for the keyword PRINT

A synonym for the keyword FILE

A numeric expression that evaluates to the
number of a previously opened file (see
PRINT FILE)

A numeric expression that evaluates to the
number of a record in a file.

A string literal or string variable that speci
fies the output format (see "Remarks") for
items in the expression list

A list of one or more numeric expressions,
numeric variables, string variables, and string
literals whose values are to be written into a
file

The remarks listed for the PRINT FILE statement and
the argument descriptions in the PRINT USING state
ment apply to PRINT FILE USING.

3-74 Licensed Material-Property of Data General Corporation 093"000065-10

m" c "
F

AOS, AOS/VS

ROOS, DOS

PRINT USING
Outputs the values of expressions in the
PRINT USING statement list using the
format specified.

Format

PRINT USING format, expr ~{;expr ... }j f ~ ,expr

Argument
format A string literal or string variable that specifies

the format for printing the items in the expression
list. See "Remarks."

expr A numeric or string expression

Remarks
1. BASIC ignores all normal PRINT formatting con

ventions for TAB, comma, and semicolon in a
PRINT USING statement, except when you use a
semicolon or comma at the end of a statement to
inhibit a carriage return.

2. The format argument may have more than one
format field. A format field may include string
literals and the following special characters, which
are used for formatting numeric output:

#·+-$,T

Remarks 3-10 describe the actions of these special
formatting characters.

Note: In the following descriptions, a box (D) is used to
clarify the presence of a blank space.

3. Digit Representation (#)

For each number sign (#) in the format field, a digit
(0 to 9) is substituted from the expression argument
(see Table 3-2).

Table 3-2. Representing Digits by Number Signs

Format Expr BASIC Remarks
Outputs

25 0025 Digits are right-
justified in the field
with leading
blanks.

-30 0030 Signs and other
nondigits are ig-
nored.

1.95 002 Only integers are
represented; the
number is rounded
to an integer.

598745 • * •• If the number in
expr has more dig-
its than specified
by format, all as-
terisks are output.

4. Decimal Point Representation (.)

Use the decimal character (.) to place a decimal
point in the fixed position in which it appears in the
format. Digit (#) positions that follow the decimal
point are filled; no blank spaces are left in these
digit positions. When expr contains fewer fractional
digits than the format specifies, Os are output to fill
the positions. When expr contains more fractional
digits than the format allows, the fraction is rounded
to the limits of format (see Table 3-3).

5. Fixed Sign Representation (+ and -)

A fixed sign character appears as a single plus sign
(+)or minus sign (-) in either the first or last
character position in the format field.

A fixed plus sign is used to print the sign (+ or -) of
the expression in the position in which the fixed plus
sign is placed in the format.

Table 3-3. Decimal Point Representation

Format Expr BASIC Outputs Remarks

####.## 20 0020.00 Fractional digit positions are filled with zeros.

####.## 29.347 0029.35 Rounding off occurs on fractions.

####.## 789012.34 • * •• * •• When expr has too many significant digits to the left of a
decimal point, a field of all all asterisks is output.

093·000065·10 Licensed Material-Property of Data General Corporation 3-75

PRINT USING (continued)
Table 3-4. Fixed Sign Representation

Format Expr BASIC Outputs Remarks

+##.## 20.5 +20.50 Fractional digit positions are filled with zeros.

+##.## 1.01 + 0 1.01 Blanks precede the number.

+##.## -1.236 -01.24 Rounding off occurs on fractions.

+##.## -234.0 Too many digits occur to the left of the decimal point.

###.##- 20.5 020.500 Decimal digit positions are filled.

###.##- 000.01 000.010 One leading zero is printed before the decimal point.

###.##+ 1.236 001.24+

###.##- -234.0 234.00-

Table 3-5. Floating Sign Representation

Format Expr BASIC Outputs

---.## -20 -20.00

---.## -200 •••• * • *

+++.## 2 0+2.00

---.## 2 --2.00

A fixed minus sign is used to print a minus sign for
negative values of an expression or a blank space for
positive values of an expression in the position in
which the fixed minus sign is placed in the format.

When a fixed sign is used, any leading Os appearing
in the expression are replaced by blanks, except for
a single leading 0 preceding a decimal point (see
Table 3-4).

6. Floating Sign Representation (+ + and - -)

A floating sign appears as two or more plus or minus
signs at the beginning of the format field.

The floating plus sign prints a plus or minus sign
immediately before the value of the expression with
no separating blank spaces as occur with fixed signs.
A floating minus prints either a minus or blank (for
plus) immediately preceding the value.

When you use floating signs, BASIC treats the
second and subsequent signs in the format as number

Remarks

The second and third minus signs are treated as # signs
on output.

Too many digits occur in expr to the left of the decimal
point.

Blanks between the sign and digit are suppressed.

signs (#). BASIC replaces them with numbers from
the expression as necessary (see Table 3-5).

Note: A format may include either a floating plus or
minus sign or a floating $ sign (see remark 8), but
not both.

7. Fixed Dollar Sign Representation ($)

When you use a dollar sign ($) as either the first or
second character in the format field, BASIC prints
a dollar sign ($) in that position. If the dollar sign
($) is in the second position, it must be preceded by
a fixed sign (+ or -). A fixed dollar sign ($) causes
leading Os in the value of the expression to be
replaced by blanks (see Table 3-6).

Table 3-6. Fixed Dollar Sign Representation

Format Expr BASIC Outputs

-$###.## 30.512 0$030.51

$###.##+ -30.512 $030.51-

3-76 Licensed Material-Property of Data General Corporation 093-000065-10

Table 3-7. Floating Dollar Sign Representation

Format Expr BASIC Outputs Remarks

+$$$#.## 13.20 +00$13.20 Extra $ signs may be replaced by digits, as with floating
+ and - signs.

$$##.## -1.00 0$01.00- Leading zeros are not suppressed in the # part of the
field.

Table 3'-8. Separator Representation

Format Expr BASIC Outputs

+$#,###.## 30.6 +$00030.60

+$#,##.## 2000 +$2,000.00

++##,### 00033 0+00,003

8. Floating Dollar Sign Representation ($$)

A floating dollar sign appears as two or more dollar
signs, beginning at either the first or second charac
ter in the format field. I[the dollar signs start in the
second position, they must be preceded by a fixed
sign (+ or -).

When you use a floating dollar sign BASIC prints a
dollar sign immediately before the first digit of the
expression value (see Table 3-7).

Note: A format may include either a floating dollar
sign ($$) or a floating plus or minus sign (see remark
6), but not both.

9. Separator Representation (,)

When you use a comma separator (,) in a string of
digits (#) in the format field, BASIC prints a comma
in the fixed position in which it appears.

If a comma is output in a field of suppressed leading
Os (blanks), then a blank space is output in the
position for the comma (see Table 3-8).

10. Exponent Representation. <TnT)
Use four consecutive up-arrows or circumflexes
<TnT) to indicate an exponent field in format. BASIC
outputs the four up-arrows as E+nn, where each n
is a digit.

I[the exponent field in the format does not have

Remarks

Space printed for comma.

Comma is printed when leading zeros are not suppressed.

exactly four up-arrows, a runtime error results (see
Table 3-9).

Table 3-9. Exponent Representation

Format Expr BASIC Outputs

+##·##TTTT 170.35 + 17.04E+01

+##·##TTTT -.2 -20.00E-02

+ +##·##TTTT 6002.3e +600.24E+01

11. A format expression may include more than one
format field and may include string literals in
addition to the special formatting characters. BASIC
assigns values of the expression argument list sequen
tially to format fields.

BASIC differentiates format fields from string liter
als by the characters that appear in format fields.
For example:

"TWO FOR $1.25"

"TWO FOR $$$.##"

"ANSWER IS -85"

"ANSWER IS -###"

$1.25 is part of the
string literal.

$$$.## is a format field
in the format expres
sion.

-85 are characters of
the string literal.

-### is a format field in
the format expression.

093-000065-10 Licensed Material-Property of Data General Corporation 3-77

PRINT USING '(continued)
12. You may specify a format expression by referring to

a previously defined string variable, for example:

• 05 DIM S$(10)
• 10 LET S$="##.##"
• 20 PRINT USING S$, 1.5, 2

13. You must delimit the format fields in a format
expression from each other by using any nonspecial
formatting character after each format field. Howev
er, if the format expression in the PRINT USING
statement is a string literal, you cannot use quotation
marks (" ") as a field delimiter. BASIC treats
delimiters as string literals and prints them on
output.

field deli meter field delimeter

~/
TDTD~

format string format
field literal field

DG·25446

Figure 3-2.

14. String literals may appear in the expression argu
ment list of the PRINT USING statement; they are
superimposed on a format field in the following
manner:

a. Each character of the string literal replaces a
single format field character, which may be any
of the special format characters ($ # A + - . ,).

b. Strings are left-justified in the format field, and
filled with spaces if necessary.

c. If the number of characters in the string is
greater than the number of characters in the
format field, BASIC truncates the string to fit
the field. For example:

• 5 PRINT USING
"#,###.##","TEST","CHARACTER"

• RUN
TESTO 0 0 0 CHARACTE

15. When there are more items in the expression argu
ment list than format fields; BASIC uses the format
fields repetitively. For example, in the following
format argument, there are three format fields and
two string literal fields. The string literal fields
delimit the format fields.

"####O@$###.##OPERO###"

BASIC matches the expressions with the format
fields in the following order:

Format Field

$###.##

Order of Expressions

First, fourth, seventh, etc.
Second, fifth, eighth, etc.
Third, sixth, ninth, etc.

The following statement yields output that may
include two format fields and two string literals:

0100 PRINT USING "A(#)O = O##.#",I,A(I)

RUN
A(1)0 = 017.9

With the following statement the format expression
is repeated as necessary for each item in argument
list:

0100 PRINT USING "###.##0",I,A,8

RUN
001.000017.900025.770

16. When the number of characters on a line exceeds
the page size, printing continues on the next line.
When a literal is printed to a terminal, the literal
must be shorter than the current PAGE width.

3-78 Licensed Material·Property of Data General Corporation 093·000065·10

AOS, AOS/VS

ROOS, DOS

PUNCH
Outputs part or all of the current
program in ASCII to the terminal punch.

Format

PUNCH {~O} line n2 [I line nl I]
line nl {T~} line n2

Arguments
line nl The first statement to be punched

line n2 The last statement to be punched

Remarks
1. A leader of null characters precedes the punched

listing, and a trailer of null characters follows the
listing.

2. The number of null characters punched as leader
and trailer equals the number defined as the page
width (see PAGE.) This represents eight inches of
leader for an 80-character line.

3. The PUNCH command does not turn on the termi
nal punch. The following procedure is required:

a. Type the desired PUNCH command followed
by a carriage return, and immediately press the
ON button on the terminal punch.

b. The machine punches a null leader, followed by
a listing of the desired lines of the current
program, followed by a null trailer.

c. When you have completed punching, press the
OFF button on the punch.

4. The variations of the PUNCH command are de
scribed as follows:

PUNCH

PUNCH n1

PUNCH {T~} "2

PUNCH"1 {~o} "2

Example
• PUNCH 200 TO 500

Punch the entire program
starting at the lowest num
bered statement.

Punch only the single
statement at line number
nl.

Punch from the lowest
numbered line through line
number n2.

Punch from line number
n 1 through line number
n2.

Punch line numbers 200 through 500 of the current
program.

093-000065-10 Licensed Material-Property of Data General Corporation 3-79

AOS, AOS/VS

RDOS, DOS

RANDOMIZE

ftav
c V
F

Causes the random number generator to
start at a different point in the sequence
of random numbers generated by the
RND function.

Format
RANDOMIZE

Remarks
1. RANDOMIZE resets the random number generator

based on the time of day, thereby producing different
random numbers each time you run a program using
the RND function.

2. Without RANDOMIZE, the RND function gener
ates the same sequence of random numbers each
time you run a program. This feature is useful for
debugging programs. When the program runs suc
cessfully, include the RANDOMIZE statement in
the program before the first occurrence of an RND
function if you desire different starting points in the
sequence.

Examples
This program prints a different value each time it is run:

• 10 RANDOMIZE
• 20 FOR 1= 1 TO 3
• 30 PRINT RND(O);
• 35 PRINT
• 40 NEXT I
• RUN
.619604
.298047
.698036

END AT 0040
• RUN
.776468
7. 84348E-02
.603916

END AT 0040
• RUN
.784302
.117651
.800002

END AT 0040
• RUN
.956853
.98038
9.41276E-02

END AT 0040
• RUN
.10981
.760783
6.31819E-06

END AT 0040
*

3-80 Licensed Material·Property of Data General Corporation 093·000065-10

AOS, AOS/VS

RDOS, DOS

READ

ff§v
c V
F

Reads values from DATA statements and
assigns them to variables.

Format

READ
{

var } [{ ,var }]
svar ,svar

Arguments
var, svar Numeric and string variables separated by

commas

Remarks
1. Always use READ statements in conjunction with

DATA statements.

2. The variables listed in the READ statement may be
subscripted or nonsubscripted, numeric or string.

3. The order in which variables appear in the READ
statement is the order in which the system retrieves
values for the variables from the DATA list.

4. The system moves a data element pointer to the next
available value in the DATA list as values are
retrieved for variables in READ statements. If the
number of variables in the READ statement exceeds
the number of values in the DATA list, BASIC
prints an END OF DATA error message.

5. The type of variable (numeric or string) in the
READ statement must match the type of the
corresponding DATA value, or BASIC prints a
READ/DATA TYPES error message.

6. You can use the RESTORE statement to reset the
data element pointer to the first item of the lowest
numbered DATA statement or to the first item of a
specific DATA statement.

Examples
* LIST
0010 READ A,B,C
0020 READ D(1),D(2),D(3)
0030 PRINT C A 2,D(2) A2
0040 READ E
0050 PRINT E
0060 READ F$
0070 PRINT F$
0080 DATA 1,2,3,4,5,6,7, "ABC"
0090 END
* RUN
9 25
7
ABC

END AT 0090
*
In this example, the values are assigned to the variables
as follows:

Variable Value

A

B

C

D(1)

D(2)

D(3)

E

F$

1

2

3

4

5

6-

7

ABC

093-000065-10 Licensed Material-Property of Data General Corporation 3-81

AOS, AOSjVS

RDOS, DOS

READ FILE

~
v

c V
F

Reads data in binary format from a
sequentially or randomly accessed file.

Format

READ {FILE} {(file) } ,{var } [, {svvaarr}.] ...
(file, record) svar

Arguments
An abbreviation for the keyword FILE

file A numeric expression that evaluates to the
number of a file opened for random or sequen
tial access

record A numeric expression that evaluates to the
number of a record in a file opened for random
access

var, svar Numeric variables and string variables that
are assigned values read sequentially from a
randomly or sequentially accessed record

Remarks
1. The type of variable in the READ FILE variable

list must correspond to the data type of the corre
sponding data item being read from the record.

2. The number of the first record in a random-access
file is O.

3. In random-access files, records that have not been
written to contain all Os when read. An attempt to
read a record that is after the last record written
causes an end-of-file condition. You can use RESET
FILE to continue processing.

4. BASIC sets the EOF(X) function if you try to read
a record with a higher number than any already
written to the file. If the next READ FILE is
successful, BASIC resets EOF(X) to O. However, if
you attempt to read consecutively from a record
with a higher number than any in the fiJe, an error
occurs.

5. You may use the EOF function to detect an end-of
file condition in the file that is being read.

Examples
• LIST
0001 REM READ FILE
0005 TAB =10
0010 DIM B(3,4}
0020 OPEN FILE(1 ,OJ, "TESTFILE",20
0030 FOR 1=1 TO 12
0040 LET 11 =INT((I-l}/4} + 1
0050 LET Jl = 1-(4*(11-1}}
0060 READ FILE(J,/},B(I1,Jl}
0070 NEXT I
0080 MAT PRINT B
0090 CLOSE
• RUN
36 33 30 27
24 21 18 15
12 9 6 3

END AT 0090
*
Note: This program uses the file TESTFILE, which was
created in the program example provided with the
WRITE FILE statement.

3-82 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

RELEASE

~
11

c 11
F

Prevents further I/O access to a
previously initialized directory or
device.

Format
RELEASE name

Argument
name The name of a directory or a device expressed as

either a string variable or a string literal

Remarks
1. RELEASE must be executed from the master

terminal. In a single-user system, the master termi
nal and user terminal are the same. In multiuser
environments, programs using RELEASE as a state
ment do not work when run from terminals other
than the master terminal.

2. Use this BASIC version of the CLI command
primarily to release mag tape and cassette units.
When you release these devices, the system automat
ically rewinds tapes mounted on them (see INIT).

3. You may also release directories and disks; you must
release a disk before removing any disk pack.

4. Release p,artitions and subdirectories in the order
they are nested.

5. You do not need to release line printers or card
readers.

Examples
• OIR "OP 1 :JOE:MARY"
• RELEASE "MARY"
• RELEASE" JOE"
• RELEASE "OP1"

AOS, AOS/VS

RDOS, DOS

REM
Inserts explanatory remarks within a
program.

Format
REM [message]

Argument
message Text comment

Remarks
1. REM statements do not affect program execution.

BASIC stores them with a program and outputs
them with each listing.

2. If control is transferred to a REM statement from a
GOTO or GOSUB statement, execution continues
with the next executable statement. If no executable
statement follows the REM statement, the program
ends, and control returns to interactive mode.

3. You can add trailing comments to any BASIC
statement by using a comment sign (!) (see second
example).

Examples
• LIST
0010 REM REMARKS IN A PROGRAM.
0020 REM HELPS EXPLAIN THE PURPOSE OF
0030 REM STATEMENTS. LINES 10,20,30
0040 REM AND 40 AREN'T EXECUTED.
0050 PRINT "END"
• RUN
END

END AT 0050

• LIST
0010 LET P=6l.9
0020

! P IS THE PRICE
! IN CENTS PER UNIT.

093-000065-10 Licensed Material-Property of Data General Corporation 3-83

AOS, AOS/VS

ROOS, DOS

RENAME

~
v

c V
F

Renames a file in your directory.

Format
RENAME "oldfilename", "newfilename"

Arguments
oldfilename A string literal or string variable that

identifies a disk file in your directory

newfilename A string literal or string variable that
identifies a new filename

Remarks
1. BASIC searches your directory for the "old" file; if

the system finds it, BASIC changes its name to the
new filename.

2. BASIC prints an error message at your terminal if:

• The old filename does not exist.

• The new filename already exists.

• The old filename is attribute-protected.

Example
• RENAME "TEST.SR", "A.SR"

File TEST.SR is renamed A.SR. Any future references
to TEST.SR will fail.

AOS, AOS/VS

RDOS, DOS

RENUMBER
Renumbers the statements in the current
program.

Format

RENUMBER

Arguments

line nl The line number in the current program when
renumbering is to begin

n2 The new increment between line numbers

Remarks

1. The variations of RENUMBER act as follows:

RENUMBER

RENUMBER n1

RENUMBER STEP n2

Renumber the current
program starting with de
fault line number 0010,
with a default increment
of 10 between line num
bers.

Renumber the current
program starting with
line number n 1 and by
incrementing line num
bers by nl.

Renumber the current
program starting with de
fault line number 0010
and incrementing line
numbers by n2. You may
use a comma instead of
STEP.

RENUMBER n 1 STEP n2 Renumber the current
program starting with
line number n 1 and incre
menting line numbers by
n2. You may use a comma
instead of STEP.

2. Line numbers are limited to four digits. If a RE
NUMBER command causes a line number to exceed
9999, BASIC re-executes the command as:

RENUMBER 1 STEP 1

3-84 Licensed Material-Property of Data General Corporation 093-000065-10

3. The RENUMBER command modifies the line num
bers specified in IF-THEN, GOTO, and GOSUB
statements to agree with the new line numbers.

4. BASIC changes to 0000 line numbers that cannot
be resolved and then prints an error message.

5. The RENUMBER command does not renumber
the arguments of ERASE and CHAIN statements.

Examples

• LIST
0010 TAB =5
0015 DIM A (3,4)
0020 LET A(1,2) =6
0025 LET A(3,4)=10
0030 MAT PRINT A
0035 MAT A=ZER(3,3)
0037 PRINT
0040 MAT PRINT A
• RENUMBER' 10 STEP 5
• LIST
0010 TAB =5
0015 DIM A(3,4)
0020 LET A(1,2)=6
0025 LET A(3,4)=10
0030 MAT PRINT A
0035 MAT A=ZER(3,3)
0040 PRINT
0045 MAT PRINT A
*

AOS, AOS/VS

ROOS, DOS

RESET FILE

~
v

c V
F

Positions the file pointer to the
beginning of a file.

Format

RESET/{ :ILE } ~lj
Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a file number
previously associated with an OPEN FILE state
ment

Remarks
1. You can use the RESET FILE statement to reset

the position of the file pointer to the beginning of a
file without having to close and reopen the file.

2. Using RESET without an argument repositions the
file pointers for all open files in your program to the
beginning of their files.

093-000065-10 Licensed Material-Property of Data General Corporation 3-85

RESET FILE (continued)

Examples
• ENTER "RESET"
• LIST
0010 DIM B(3,4}
0020 OPEN FILE (1,0), "TESTFILE",20
0030 FOR 1=1 TO 12
0040 LET Il=INT((I-1}/4}+1
0050 LET J1 = 1-(4* (Il-1})
0060 READ FILE (1,/},B(Il,J1)
0065 NEXT I
0070 GPOS FILE (1},B1
0080 PRINT B1;
0086 RESET FILE (1)
0087 GPOS FILE (1},B1
0088 PRINT B1
0090 CLOSE
0095 PRINT
0100 MAT PRINT B

• LIST "RESET"
TYPE CR TO DELETE OLD:
• RUN
2480

36 33 30 27
24 21 18 15
12 9 6 3

ENDAT0100
• AUDIT

AOS, AOS/VS

ROOS, DOS

RESTORE

~
v

c V
F

Resets the position of the data element
pointer.

Format
RESTORE [line no.]

Argument
line no. A DATA statement line number

Remarks
1. If you use RESTORE without a line number argu

ment, the system resets the data element pointer to
the beginning of the data list.

2. If you use RESTORE with a DATA statement line
number argument, the system moves the data ele
ment pointer to the first value in the DATA state
ment line.

3. If the line number argument is not a DATA
statement, the data element pointer will point to the
first DATA statement following that line number.
If the line number does not exist in the program, an
error occurs.

3-86 Licensed Material-Property of Data General Corporation 093-000065-10

.. ~ ..

Example
• 05 READ A,B,C
• 10 READ D,E,F
• 15 RESTORE 50
• 20 READ G,H,I
• 25 RESTORE
• 30 READ J,K,L
• 40 DATA 2,4,6
• 50 DATA 8,10,12

In the above example the value assigned to the variables
are as follows:

Variable Values Variable Value

A 2 G 8

B 4 H 10

C 6 12

D 8 J 2

E 10 K 4

F 12 L 6

AOS, AOSjVS

RDOS, DOS

RETRY
Repeats a statement that causes an error.

Format
RETRY

Remarks
1. You can use the RETRY statement in conjunction

with the ON ERR statement to return control to the
statement causing the error, and then attempt to
re-execute that statement.

2. For the RETRY statement to work properly, an
error condition must have occurred. If no error
condition has occurred, a line-number error results.

Example
• 005 ON ERR THEN 100
• 010 OPEN FILE (0,2), "TEST"
(If statement 10 causes an error, RETRY directs the
program to repeat the statement.)

• 100 RETRY

Note: If statement 10 causes an error, the program will
loop indefinitely between statements 10 and 100. The
program should, therefore, include some provision for
exiting from the RETR Y statement after a certain
number of failures.

093-000065-10 Licensed Material·Property of Data General Corporation 3-87

AOS, AOSjVS

RDOS, DOS

RETURN
Returns program control to the
statement following the last GOSUB
statement executed.

Format
RETURN

Remarks
See "GOSUB and RETURN."

AOS, AOSjVS

RDOS, DOS

RND(X)
Produces a pseudorandom number n,
such that 0 <= n < 1.

Format
RND(expr)

Argument
expr A numeric expression, required but not used

Remarks
1. The RND function requires a numeric argument

(expr), although the argument does not affect opera
tion of the function.

2. Each time the RND function is called, it provides a
pseudorandom number n, such that 0 < = n < 1.
The sequence of these numbers is fixed. The se
quence repeats starting at the 58384th value. (The
58383rd value is 0.) The sequence is the same for all
systems, but the values in a double-precision system
are output to more significant digits.

3. Each occurrence of the RND function in a program
yields the value of the next random number in the
list.

4. Each time you issue a NEW, CHAIN, or RUN,
BASIC returns to its original starting place in the
sequence of random numbers. Because the sequence
is fixed and the starting place is the same for each
RUN, the RND function provides the same numbers
each time you execute your program. The capability
of reproducing the sequence can be a useful debug
ging aid.

5. To alter the starting place in the sequence, use the
RANDOMIZE statement. RANDOMIZE resets
the starting place based on the time of day.

3-88 Licensed Material-Property of Data General Corporation 093-000065-10

Examples

• LIST
0005 TAB =13
0010 FOR 1= 1 TO 4
0020 PRINT RND(I)
0030 NEXT I
• RUN
.21176298
.26666685
.5411776
.90979748

END AT 0030
*
Running the above program a second time will produce
the same five random numbers.

• LIST
0001 RANDOMIZE
0005 TAB =13
0010 FOR J= 1 TO 4
0020 PRINT INT(10*RND(I))
0030NEXTJ
• RUN
2
2
5
9

END AT 0030
*
This program produces four random integers in the range
0-9. Each time the program runs, it generates different
random integers.

AOS, AOS/VS

RDOS, DOS

RUN
Executes a program either from the first
line or from a specified line.

Format

RUN ~{~~n.e no. "t 7 f ~ :filename fj
Arguments
line no. The line in the current program from which

execution is to begin

filename The name of a disk file or device

Remarks
The variations of the RUN command act as follows:

RUN

RUN n

Clear all variables; undimension all
arrays and strings; do a RESTORE;
initialize the random number genera
tor; and then run the current program
from the first line number.

R UN from line n. This form of the
R UN command allows program exe
cution to resume while retaining cur
rent values of all variables and pa
rameters. You can use it after a
STOP or after an error, and can
incorporate any alterations you make
to the program after the STOP or
error occurred.

RUN "filename" If the file is on disk, BASIC first
searches your directory and then the
library directory for the filename.
When it finds the filename, the com
mand executes aNEW, clearing the
current program area, and then loads
and executes program identified by
the filename.

Examples

• RUN
• RUN "$PTR"
• RUN 250
• RUN "MATH3"
• RUN "MT 1 :0"

093-000065-10 Licensed Material-Propert~ of Data General Corporation 3-89

AOS, AOSjVS

RDOS, DOS

SAVE

~
v

c V
F

Writes the current program and data in
binary format to the specified device or
disk file.

Format
SAVE "filename"

Argument
filename The name of a disk file or a device, expressed

as a string literal or string variable

Remarks
1. If you specify a disk filename, the system checks to

see if the file already exists in your directory. If it
does, and you have entered SAVE as an immediate
command, BASIC prints the following message:

TYPE CR TO DELETE OLD: (RDOS/DOS)

TYPE NL TO DELETE OLD: (AOS,AOS/VS)

This message lets you confirm whether or not the
existing file is to be deleted and replaced by the file
named in the SA VE command. If you press
CR/NEW LINE, BASIC accepts the replacement.
If you type anything preceding CR/NEW LINE,
BASIC cancels the SAVE command.

2. You can use LOAD, CHAIN, or RUN on a saved
program.

3. When you save a program, BASIC stores the current
values of all variables with the program, as well as
the point where the program stopped last. Therefore,
you can load the saved program and use CON or
RUN line no. as if no interruption had occurred.
Note that file status is not preserved when you save
a program.

4. A saved program may not run under all
configurations of BASIC. In particular, if the preci
sion of the floating-point representation in the RUN
environment differs from that of the SAVE environ
ment, you can not load the program.

Examples
Commands:

• SAVE "FA.Be"
• SAVE "$PTP"
• SAVE S$(1,7)

Statements:

• 10 SAVE"OURSHIP"
• 20 SAVE B$

3-90 Licensed Material-Property of Data General Corporation 093-000065-10

AOS. AOS/VS

ROOS. DOS ~
11

c 11
F

SEARCHLIST
Displays, sets, or stores the searchlist
setting. The current searchlist specifies
which directories, in addition to the
working directory, are searched for file
references, other than DELETE.

Format
SEARCHLIST

Arguments

{
[pathname] }
pathname [,pathname .. .j

pathname Any valid directory pathname, or group of
pathnames, expressed as a string variable or
a string literal

Remarks
1. SEARCHLIST with no arguments displays the

current searchlist.

2. Used with arguments, SEARCHLIST sets the
search list to the directories specified by the path
name arguments.

3. A single pathname argument, whether a string
variable or literal, can contain one or more directory
pathnames, separated by commas.

4. BASIC on AOS and AOS/VS allows 0 to 7
pathnames in a searchlist setting.

5. If the pathname argument is a single string variable
with a current length of 0, BASIC returns the current
searchlist setting and stores it at the variable speci
fied by the pathname argument.

Examples
Set the searchlist with a string literal:

* SEARCHLIST u:UDD,:UTIL",":BASIC"

Display the current searchlist:

* SEARCHLIST
: UDD,:UTIL,:BASIC

Use a variable to set the searchlist:

* A$=u:UTIL,:"
* SEARCHLIST A$
* SEARCHLIST
:UTIL,:

Set the searchlist using both variables and literals:

* SEARCHLIST u:UDD:BASIC,:HELP", U:BASIC" ,A$
* SEARCHLIST
: UDD:BASIC,:HELP,:BASIC,:UTIL,:

Store the searchlist in a variable:

* SEARCHLIST ":UTIL,:"
* A$=u"
* SEARCHLIST A$
* PRINT A$
:UTIL,:

093-000065-10 Licensed Material-Property of Data General Corporation 3-91

AOS, AOS/VS

RDOS, DOS

SGN(X)
Returns a value that represents the sign
of an expression. -

Format
SGN(expr)

Argument
expr A numeric expression

Remarks
The value returned is:

1
o
-1

if positive
if 0
if negative

Example
• LIST
0010 LET A=-3
0020 PRINT SGN(A)
• RUN
-1

END AT 0020
*

AOS, AOS/VS

RDOS, DOS ~
v

c 11
F

SHARE
Adds the resolution file attribute H
(sharable) to a file that already exists in
your directory.

Format
SHARE "filename"

Argument
filename A disk file in your directory, expressed as a

string literal or string variable

Remarks
1. SHARE is equivalent to CHATRfilename, +0.

2. Any attempt to share an open file generates an error
'message.

Example
• WHATS "COMMON"
COMMON. DP ...

• SHARE "COMMON"
COMMON. DPH .. ,

3-92 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

SIN(X)
Calculates the sine of an angle that is
expressed in radians.

Format
SIN(expr)

Argument
expr A numeric expression specified in radians

Remarks
SYS{l5) is assigned the value of pi (3.1416). See the
SYS(X) function for more information.

Example
• LIST
0010 REM - PRINT SINE OF 30 DEGREES
0020 PRINT SIN(30*SYS(I5)/180)
• RUN
.5

END AT 0020

*

AOS, AOS/VS

RDOS, DOS ~
v

c V
F

SIZE
Prints the number of bytes and pages
used by the program, and the total
number of bytes and pages that are still
available.

Format
SIZE

Remarks
1. BASIC breaks down the number of bytes used into

two groups: the number of bytes used for the program
segment· (P), and the number of bytes used for the
data segment (D).

2. The system reports the number of pages used and
pages left. One page equals 2048 bytes.

3. BASIC reports the total number of bytes left.

Example
• SIZE
USED: O(P), O(D) BYTES
LEFT: 40658 BYTES

1 (P), 1 (D) PAGE(S)
18 PAGE(S)

093-000065-10 Licensed Material-Property of Data General Corporation 3-93

AOS, AOSjVS

RDOS, DOS ~"
c "
F

SIZE
Prints the number of bytes and pages
used by the program, and the total
number of bytes and pages that are still
available.

Format
SIZE

Remarks
1. BASIC breaks down the number of bytes used into

two groups; the number of bytes used for the program
segment (P), and the number of bytes used for the
data segment (D).

2. If the RDOSjDOS Extended BASIC system uses
swapping or extended memory, the system reports
the number of pages used and left. One page equals
512 bytes.

3. BASIC reports the total number of bytes left.

Examples
On a swapping system:

• SIZE
USED: 14850 (P), 312 (D) BYTES 8 (P), 1 (D) PAGE(S)
LEFT: 29594 BYTES 13 PAGE(S)

On a non swapping system:

• SIZE
USED: 3793 (P), 2821 (D) BYTES
LEFT: 8077 BYTES
*
From a total of 14,691 bytes of memory available for
program and data storage, the program occupies 3793
bytes, data occupies 2821 bytes, and 8077 bytes remain
unused.

~" C "
F

AOS, AOSjVS

RDOS, DOS

SPOS FILE
Moves the file pointer to the byte
position specified by expr.

Format

SPOS {~ILE} (file),expr

Arguments
A synonym for the keyword FILE

file A numeric expression that evaluates to a file number
previously associated with an OPEN FILE state
ment

expr A numeric expression that evaluates to the number
of a byte position in a file

Remarks
SPOS FILE moves the file pointer to a byte position, and
not necessarily to a record position. Therefore, you must
be certain that the value of the expression argument is
indeed the calculated position at which you intend to
place the file pointer.

Examples
• 100 SP~S FILE (1), 1+ 132

3-94 Licensed Material-Property of Data General Corporation 093-000065-10

AOS, AOS/VS

RDOS, DOS

SQR(X)
Com putes the square root of an
expression.

Format
SQR(expr)

Argument
expr A nonnegative numeric expression

Example

• LIST
0010 LET A=5
0020 PRINT SQR(AT2+75)
• RUN
10

END AT 0020

AOS, AOS/VS

RDOS, DOS

STOP
Terminates execution of the current
program and returns control to
interactive mode.

Format
STOP

Remarks
1. You can place STOP statements anywhere in the

program to terminate execution. When BASIC
encounters STOP, it prints the following message on
your terminal, where xxxx is the line number of the
STOP statement:

STOP AT xxxx

2. After resumption of interactive mode, you can
modify the program if you wish. To restart the
program from the beginning, use RUN; to continue
from the STOP statement, use CON or RUN line
no.

Example

• LIST
0010 REM-TERMINATE PROGRAM BY STOP
0020 INPUT A
0030 IF A < 0 THEN GOTO 0050
0040 GOTO 0020
0050 STOP
• RUN
? 1
?3
? -5

STOP AT 0050
*

093-000065-10 Licensed Material-Property of Data General Corporation 3-95

AOS, AOS/VS

RDOS, DOS

STR$(X)
Converts the numeric value of an
expression to a string.

Format
STR$(expr)

Argument
expr A numeric expression

Remarks
1. Converting numerics to strings with no leading or

trailing spaces permits string manipulation by other
string-handling functions and statements.

2. This function is useful for combining numbers when
you do not want spaces between them.

Example
• LIST
0010 READ A
0015 IF A=O THEN STOP
0020 LET A$=STR$(A)
0030 IF A$(4,6) = "222" THEN GOTO 0050
0040 GOTO 0070
0050 PRINT A;" -THIS IS MODEL 222"
0060 GOTO 0010
0070 PRINT A;" -THIS ISN'T OUR MODEL"
0080 DATA 111222,212222,123456,0
0090 GOTO 0010
• RUN
111222 -THIS IS MODEL 222
212222 -THIS IS MODEL 222
123456 -THIS ISN'T OUR MODEL

STOPAT0015
*

AOS, AOS/VS

RDOS, DOS

SYS(X)
Returns system information based on the
value of an expression that is evaluated
to an integer from 0 to 19.

Format
SYS(expr)

Argument
expr A numeric value or expression, between 0 and 19

Remarks
The values returned by the SYS function are listed below:

SYS(O) The time of day in seconds after midnight
SYS(1) The day of the month (1 to 31)
SYS(2) The month of the year (1 to 12)
SYS(3) The year in four digits (e.g., 1983)
SYS(4) The multiplexor line number (-1 if it is the

SYS(5)

SYS(6)

SYS(7)
SYS(8)

SYS(9)
SYS(10)
SYS(11)
SYS(12)
SYS(13)
SYS(14)

SYS(15)
SYS(16)
SYS(17)
SYS(18)

SYS(19)

Example

CLI console in RDOS, the console number
in AOS.)
CPU time used, in seconds to the nearest
tenth
I/O usage (numbers of file I/O statements
executed)
The error .code of the last runtime error
The number of the file most recently
referred to in a file I/O statement
Page size
Tab size

~~~~~es} current time of day 
Seconds 
Seconds remaining before expiration of 
timed input 
pi (3.14159) 
e (2.71828) 
1/10 second clock (not applicable to AOS) 
Total number of BASIC I/O calls (EN
TER, LIST, etc.) 
Line number of the last error 

• PRINT SYS (0) 
63736 
• PRINT SYS( 1 );SYS(2);SYS(3) 
31 10 1983 

3-96 Licensed Material-Property of Data General Corporation 093-000065-10 



~
.11. 

c 11 
F 

AOS, AOS/VS 

RDOS, DOS 

TAB 
Sets the zone spacing between the data 
output by PRINT statements. 

Format 
TAB=expr 

Argument 
expr An arithmetic expression in the range: 1 < = expr 

< = page width (see PAGE) 

Remarks 
1. The default zone spacing is 14 columns. 

2. Since the maximum range of zone spacing depends 
upon the PAGE command setting, it is'good practice 
to set the page width first and then the zone spacing. 

Example 

• LIST 
0010 PAGE =50 
0020 TAB =10 
0030 FOR 1=1 TO 25 
0040 PRINT I, 
0050 NEXT I 
• RUN 
12345 
6 7 8 9 10 

11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 

END AT 0050 
* 

AOS, AOS/VS 

RDOS, DOS 

TAB(X) 
Tabulates to the column number set by 
the expression. 

Format 
TAB(expr) 

Argument 
expr An expression that is evaluated to an integer 

Remarks 
1. Use the TAB function only in conjunction with 

PRINT statements. You cannot use it with any other 
BASIC statement. More than one T AB(X) function 
may appear in a PRINT statement. The system 
prints the next item in the print list at position X. 

2. The first column on a line is column 1. The column 
number specified by the expression is always relative 
to column 1. The position at which BASIC prints an 
item in the print list depends on the value of the 
expression and on the PRINT statement punctuation 
(; or ,) following the T AB(X) function. 

3. If the expression evaluates to a column number less 
than the present column number, printing proceeds 
at that position on the next line. 

4. If the expression evaluates to a column number 
greater than the page length, the expression is 
reduced modulo the page length and positioning 
proceeds as in 2. 

5. The TAB(X) function must assume that each char
acter output on the same line prior to the T AB(X) 
occupies one space on the output line. If characters 
that violate this rule are used-such as the tab 
character «9», new line « 10», or nonprinting 
control characters-you must compensate for the 
missing or extra character positions by adjusting the 
argument of the T AB(X) function. 

093-000065-10 Licensed Material-Property of Data General Corporation 3-97 



T AB(X) (continued) 

For example, in 

• PRINT "AB< 10>CD"; 
• PRINT TAB(8);"EF" 

even though there is a new line imbedded in the first 
string literal, TAB(8) generates two blanks instead 
of five so that the output is 

AB 
CDOOEF 

instead of 

AB 
CDOOOOOEF 

Example 
• LIST 
0005 LET A=-6 
0010 LET B=5 
0015 PRINT T AB(B);A; T AB(2*B);2* A 
0020 END 
• RUN 
00000-600000-12 

END AT 0020 
* 
Note that in line 15 the semicolon after A prevents spacing 
to the next print zone and passing position 2*B (column 
10). 

AOS, AOS/VS 

RDOS, DOS 

TAN(X) 
Calculates the tangent of an angle that is 
expressed in radians. 

Format 
TAN(expr) 

Argument 
expr A numeric expression specified in radians 

Example 
• LIST 
0010 REM - PRINT TANGENT OF X DEGREES 
0020 INPUT 'X DEGREES ",X 
0030 LET P=SYS(15)/180 
0040 PRINT TAN(X*P) 
• RUN 
X DEGREES 45 
1 

END AT 0040 
* 

3-98 Licensed Material·Property of Data General Corporation 093·000065-10 



AOS, AOS/VS 

RDOS, DOS 

TIME 

~
11 

c 11 
F 

Establishes the time limit for timed input 
(TINPUT) operation. 

Format 
TIME=expr 

Argument 
expr A numeric expression that represents time in 

seconds, to the nearest tenth of a second. In AOS, 
the maximum number is approximately 4,000,000. 
In RDOS/DOS, the maximum is approximately 
65,000. 

Remarks 
1. Assigning a value to TIME sets the SYS(14) 

function to the value of expr. 

2. The value of SYS( 14) is decremented at the clock 
tick rate (1 I 10 of a second per tick) from the time a 
TIN PUT statement is executed. 

3. Decrementing of SYS(14) stops when you respond 
to the TINPUT prompt. Decrementing of SYS(14) 
is resumed when the next TINPUT is executed. 

4. If you do not respond to the TINPUT prompt before 
the SYS( 14) function has decremented to 0, the 
system prints an error message and the program 
stops (unless an ON ERR THEN statement is 
executed in your program). 

5. You can reset TIME to another value; it appears as 
often as the program logic requires. 

Examples 

• LIST 
0010 DIM A$(50) 
0020 PRINT "LET'S TEST YOUR RECALL SPEED" 
0030 PRINT 
0040 TIME = 10 
0050 TNPUT "WHAT COLOR ARE YOUR 

MOTHER'S EYES?", A$ 
0060 GOSUB 0140 
0070 TINPUT "WHAT'S YOUR SOCIAL SECURITY 

NUMBER?", A$ 
0080 GOSUB 0140 
0090 TINPUT "HOW OLD IS YOUR FATHER?", A$ 
0100 GOSUB 0140) 
0130 GOTO 0190 
0140LETI=I+1 
0150 LET A (I) = (lO-SYS(l4)) 
0160 PRINT "TIME USED-",A(I); "SECONDS" 
0170 TIME = 10 
0180 RETURN 
~0190FORJ = 1 TOI 
0200 LET B = B + A(J) 
0210 NEXT J 
0220 LET C = BII 
0230 PRINT "AVERAGE RESPONSE TIME= "; 

C;"SECONDS" 
0240 END 
·RUN 
LET'S TEST YOUR RECALL SPEED 

WHAT COLOR ARE YOUR MOTHER'S EYES? 
BROWN 
TIME USED - 6.8 SECONDS 
WHAT'S YOUR SOCIAL SECUTIRY NUMBER? 
11234567 
TIME USED - 9.2 SECONDS 
HOW OLD IS YOUR FATHER? 65 
TIME USED - 5.5 SECONDS 
AVERAGE RESPONSE TIME = 7.1666667 SEC
ONDS 

END AT 0240 
* 

093-000065-10 Licensed Material-Property of Data General Corporation 3-99 



AOS, AOS/VS 

~
v' 

RDOS, DOS 

TINPUT 

c v' 
F 

Assigns to a list of variables, within a 
prescribed time, the values supplied by 
input from the terminal. 

Format 
TINPUT [(line no. [, time]),] [Hstr lit",] {var }U,var ~ ... [;] 

svar ~svar~ 

Arguments 
line no. 

time 

A program line number 

A numeric expression that evaluates to an 
integer representing time, in seconds, to the 
nearest tenth of a second 

var, svar Variables separated by commas, or carriage 
returns or new lines 

str lit A message or prompt 

Remarks 
1. The remarks for INPUT apply to TINPUT. 

2. Use TINPUT with the (line no. [,time],) arguments 
or in conjunction- with TIME and the SYS( 14) 
function. TIME sets SYS{l4) to the value, in 
seconds, allowed for your response to the TINPUT 
prompt. 

3. If TINPUT has a 'line number argument and you do 
not respond to its prompt before the SYS( 14) 
function decrements to 0, the program branches to 
that statement number. If TIN PUT has no line 
number argument, and SYS( 14) decrements to 0, 
BASIC prints an error message, and the program 
stops (unless an ON ERR THEN statement in the 
program has previously executed). 

4. A TIN PUT time argument only applies to that 
specific TINPUT statement; it does not affect 
SYS{l4). This argument only sets a time limit for 
the response; it does not determine the amount of 
time taken to respond. 

Example 
0005 ON ERR GOTO 300 
0010 TINPUT (100, 25), "ENTER:", A$ 

The program branches to line 100 if there is no response 
to the ENTER prompt within 25 seconds. The line number 
argument overrides the ON ERR statement. 

AOS, AOS/VS 

RDOS, DOS 

UNLOCK 

~
s 11 
c v' 
F 

Frees locked areas for use. 

Format 
UNLOCK [iden] 

Argument 
iden A numeric expression that identifies a specific lock 

or group of locks in a program 

Remarks 
1. An UNLOCK on a particular identifier frees all file 

areas associated with that identifier. UNLOCK with 
no identifier unlocks all areas previously locked by 
the user (see LOCK). 

2. UNLOCK is always successful. Specifying an un
known identifier causes UNLOCK to be ignored. 

3. Whenever BASIC terminates, it unlocks all locks. 
The NEW command also unlocks all areas currently 
locked by the user. 

Example 
• 10 LOCK 1, "INVENTORY" ,0, 128,A 
This locks a 128-byte record. 

• 20 UNLOCK 1 
This releases the lock. 

3-100 Licensed Material-Property of Data General Corporation 093-000065-10 



ADS, AOS/VS 

RODS, DOS ~
s v' 
c v' 
F 

UNSHARE 
Removes the resolution file attribute H 
(sharable) from a file that already exists 
in your directory. 

Format 
UNSHARE "filename" 

Argument 
filename A disk file in your directory, expressed as a 

string literal or a string variable 

Remarks 
1. UNSHARE is equivalent to CHA TR filename, -0. 

2. Any attempt to use UNSHARE on an open file 
generates an error message. 

Example 
• WHATS "COMMON" 
COMMON DPH ... 

• UNSHARE "COMMON" 
COMMON DP ... 

ADS, AOS/VS 

RODS, DOS 

USERS 

~
v 

c V 
F 

Prints a status report of all active users. 

Format 
USERS [user/D] 

Argument 
user/D A user identification 

Remarks 
1. When you include the optional userID, BASIC prints 

the status of that user only. 

2. The status report contains the following information: 

\ 

093-000065-10 Licensed Material-Property of Data General Corporation 3-101 



USERS (continued) 

3-102 

Heading 
NAME 

STATUS 

Meaning 
Four-character user identification; OPER is the system manager's identification name. 

Four hexadecimal digits. Four Os mean idle terminal. 

Hexadecimal Meaning 
1 RUN equals on, EDIT equals off. 

2 

4 

8 

10 

20 

80 

400 

800 

1000 

2000 

8000 

eLI console doing [MAT] INPUT 

(does not echo carriage return). 

Swap in progress or swapped out 

Program storage has been changed. 

Do not allow messages. 

Execute-only file is in use. 

BYE in progress 

Timed input ill progress 

No subdirectory is associated with this user. 

Terminal input in progress 

Delay in progress 

Special mark-sense card translation 

For example, OOOD means: 

0008 Program storage has been changed. 

0004 Swap in progress or swapped out 

0001 Run mode 

OOOD 

Licensed Material-Property of Data General Corporation 093-000065-10 



Heading 

DIRECTORY 

LINE 

SWAPS 

DATA 

PROG 

PRI 

OVLY 

FILES 

CPU 

Example 

NAME 

0000 

TREK 

JERR 

OPER 

093-000065-10 

Meaning 

The name of the directory assigned to NAME, from the BASIC.ID file 

QTY or ALM line number (0 to 31). Master terminal is line-1. 

The number of accesses to the BASIC swapping file a user has made. 

Two numbers. The first number is the core block address of the data; the second number 
is the number of data blocks in use for this user. An ellipsis ( ... ) indicates BASIC has 
swapped the data out of main memory. 

Two numbers. The first number is the core block address of the program; the second 
number is the number of program blocks in use for this user. An ellipsis ( ... ) indicates 
BASIC has swapped the program out of main memory. 

The current priority level is set by LEVEL. 

The number assigned to the current overlay in the queue or execute area. -1 means no 
overlay is in use. 

Number of files opened at this time by this user 

N umber of seconds of CPU time used by this user 

STATUS DIRECTORY LINE SWAPS DATA PROG PRI OVLY FILES CPU 

0041 USERO 0 9 32 4 25 -1 0 3.7 

104C TREK 1 1 4 4 25 -1 1 .1 

0041 JERRY 2 7 32 4 25 -1 0 1.8 

0044 BASIC 3 5 32 4 25 9 0 11.7 

0000 4 

Licensed Material-Property of Data General Corporation 3-103 



AOS, AOS/VS 

RDOS, DOS 

VAL(X$) 
Returns the numeric representation of a 
string value. 

Format 

VAL { (svar) } 
("str lit") 

Arguments 
svar, str lit A string beginning with a number 

Remarks 
1. The string variable or string literal argument to the 

VAL function must begin with a number, or else the 
system outputs an error message. The number may 
include digits, plus and minus signs, decimal points, 
and the letter E (scientific notation). BASIC ignores 
any nonnumeric characters that appear after the 
number portion of the string, for example: 

"+35.5E-03ABCD7N" 

BASIC returns substring "+ 3S.SE-03" as a numeric 
value and ignores substring "ABCD7N". 

2. Misplaced signs terminate the input scan in a similar 
fashion: 

"123 + 47 - 17" 

BASIC returns substring "123" as a numeric value 
and ignores "+47-17". 

Example 

• LIST 
0010 LET A$= "12345ABCD" 
0020 LET B=54321 
0030 LET C= VAL(A$) 
0040 LET D=B+C 
0050 PRINT D 
• RUN 
66666 

END AT 0050 
* 

AOS, AOS/VS 

RDOS, DOS 

WHATS 
Determines the status of a specified file. 

Format 
WHATS "filename" 

Argument 
filename The name of a file in your directory or in the 

library directory, expressed as a string literal 

Remarks 
1. BASIC searches your directory for the filename; if 

it is not found, BASIC searches the library directory. 

2. The differences in output for the operating systems 
are shown in the examples. 

Examples 
RDOS and DOS: 

• WHATS "ABC" 

ABC P 2039 06/14/82 09:15 (1/8/83) 00 
T T T T T T T 

filename I length date time date last in use 
attribute in bytes created created used count 

AOS and AOS/VS: 

• WHATS "PHASE4" 

PHASE4 UDF 01-MAY-78 16:20:34 
T T T T 

filename type date last time last 
modified modified 

690 
T 

length 
in bytes 

3-104 Licensed Material-Property of Data General Corporation 093-000065-10 



ADS, AOSjVS 

RODS, DOS 

WHO 

[ffiv 
c V 
F 

Identifies other people on the system or 
determines your own identification. 

Format 
WHO processID 

"processname" 

Arguments 
processID A process identification number 

processname A process name, assigned by AOS, ex-
pressed as a string variable or string literal 

Remarks 
1. You can identify other people using the system by 

using the WHO command with either process identi
fication numbers or process names. BASIC responds 
to the command by printing both the process identifi
cation number and the process name. 

2. Without an argument, WHO prints your process 
identification number and process name on your 
terminal. 

Example 
• WHO 7 
PID: 7 XBASIC:007 
* 

ADS, AOSjVS 

RODS, DOS 

WRITE FILE 

~
v 

c V 
F 

Writes a record of data in binary format 
into a sequential- or random-access file. 

Format 

WRITE {~LE} {~::::~ reCOrd)} 

·mf~liJ !{~~LJJ 
Arguments 
# A synonym for the keyword FILE 

file A numeric expression that evaluates 
to the number of a file opened for 
random or sequential access 

record A numeric expression that evaluates 
to the number of a record in a file 
opened for random access 

expr, var, svar, 
and str lit... A list of one or more numeric expres

sions, numeric variables, string vari
ables and literals whose values are 
written as a record into a sequential 
or random-access file 

Remarks 
1. The first record number in a random-access file is O. 

2. READ FILE-but not INPUT FILE state
ments--can access data files created by WRITE 
FILE statements. 

3. When a string is written, the number of bytes written 
is equal to the current length of the string plus one 
byte for a null byte terminator. 

4. A single record is the result of a single READ FILE 
or WRITE FILE statement; When you specify a 
record size (or use the mode 0 default) in an OPEN 
FILE statement, the output of a WRITE FILE with 
fewer than the specified number of bytes is padded 
with nulls to fit the size of the record. Output having 
more than the specified number of bytes causes an 
error. If you specify no record size, WRITE FILE 
does not pad with nulls. 

093-000065-10 Licensed Material-Property of Data General Corporation 3-105 



Examples 

* LIST 
0001 REM-FILE WRITE 
0010 DIM A(3,4) 
0020 FOR 1=1 TO 3 
0030 FOR J=1 TO 4 
0040 LET A(I,J)=((1-1)*4tJ)*3 
0050 NEXT J 
0060 NEXT I 
0070 MAT PRINT A 
0080 PRINT 
0090 OPEN FILE(1,0),"TESTFILE",20 
0100 FOR 11=1 TO 3 
0110 LET 1=4-11 
0120 FOR J1=1 TO 4 
0130 LET J=5-J1 
0140 LET R=(3-1)*4t(5-J) 
0150 WRITE FILE(1,R),A(I,J) 
0160 PRINT A(I,J), 
0170 NEXT J1 
0180 PRINT 
0190 NEXT 11 
0200 CLOSE 
* RUN 
3 6 9 12 
15 18 21 24 
27 30 33 36 

36 33 30 27 
24 21 18 15 
12 9 6 3 

END AT 0200 
* 

3-106 

End of Chapter 

Licensed Material-Property of Data General Corporation 093-000065-10 



Chapter 4 
Calling an Assembly Language Subroutine from 

Extended BASIC 

You can call a subroutine written in assembly language 
from an Extended BASIC program. The format of the 
BASIC call is: 

CALL sub# [, A b ... ' Ani 

where: 

sub# is a numeric expression evaluating to a 
positive integer, from 0 to 32767, rep
resenting the subroutine number. 

are optional arguments to be passed to 
the subroutine; n must be in the range 
1 to 8. They may be arithmetic vari
ables or expressions, or string variables 
or expressions. Dimensioned numeric 
variable names should include sub
scripts. Statement numbers are not 
permitted as arguments. 

Character String Storage and 
Definitions 

You must refer to the following information if you wish 
to handle character strings in a called subroutine. BASIC 
keeps a count of the number of characters currently 
defined in each string variable, referred to as the current 
length of the string variable. BASIC stores the current 
length as part of the header immediately preceding the 
contents of each string variable (see Figure 4-1). You 
must update the current length each time characters are 
added to or taken away from the string variable. 

Current Length { 

Character 

80-01059 

Current Length 

Character 1 Character4 

Character2 Character5 

Character3 Characters 

Increasing 
memory 

addresses 

I 
Figure 4-1. String Variable Storage 

A substring is any contiguous part of a string variable. 
For example, A$(2,4) and A$ are substrings of A$ (that 
is, A$ is wholly contained in itself). 

The current length of a substring is the number of defined 
characters within the substring. For example, if only 
A$(4,4) and A$(5,5) are defined, the current length of 
A$( 4,7) is 2. 

The maximum length of a substring is the number of 
character positions within the substring. For example, 
the maximum length of substring A$(4,7) is 4. 

Linking the Assembly Language 
Subroutine 

Improper use of assembly language subroutines, system 
calls, or task calls can crash the system. 

You must submit assembly language subroutines to the 
system manager at system load time. BASIC inputs the 
subroutines in a file named SBRTB.RBto the relocatable 
loader when it creates the BASIC system save file. You 
must include a subroutine table with your subroutines. 
The table must have the entry point SBR TB . 

. The subroutine table is a list of all assembly language 
subroutines available to a BASIC program. For each 
assembly language subroutine, BASIC requires a four
word list in the table containing the following: 

093-0000S5-10 Licensed Material-Property of Data General Corporation 4-1 



• Subroutine number 

• Subroutine entry point 

• N umber of arguments 

• Argument control word 

Terminate the table by using a subroutine number of -1. 

BASIC uses the argument control word to check runtime 
errors on the types of arguments. The control word is 
divided into eight two-bit fields for the eight possible 
arguments A l ... An. The value of the two-bit field deter
mines the allowable argument: 

00 Argument may be any string expression. 
01 Argument must be a string variable. 
10 Argument may be any numeric expression. 
11 Argument must be a numeric variable. 

You must write the argument control word in an assembly 
language program so that the arguments are connected 
by a plus sign (+), as described in Figure 4-2. 

octal value 
of bit field 
(3=numeric 
variable) 

80·01060 

bit field 
0,1 

bit field 
2,3 

bit field 
4,5 

Figure 4-2. Argument Control Word 

If you use an argument to return a value to the calling 
program, you must set the argument's flags to either a 01 
(for string) or 11 (for numeric). 

BASIC calls the assembly language subroutines by the 
sequence: 

LDA 2,.+2 ;AC2 POINTS TO TOP 
;OF ADDRESS LIST 

JMP <SUB>; JMP TO ASSEteL Y 

ADLST 

ADLST: <arg A 1> 
<arg A2> 

<arg An> 
JMP 

;LANGUAGE SUBROUTINE 

BASIC ;RETURN TO BASIC 
; INTERPRETER 

If An is a substring of a string variable or the whole string 
variable, the address list contains the address of the string 
descriptor words that contain the following information: 

Word 1 Byte address of the first character of the 
substring 

Word 2 Current length of the substring 

Word 3 Maximum length of the substring 

Word 4 Word address of the current length of the string 
variable 

If An is a string expression, the address list contains the 
address of the string descriptor words that contain the 
following information: 

Word 1 Byte address of the first character of the string 

Word 2 Length of the string 

If An is a numeric variable, the address list contains the 
storage address of the variable. (BASIC represents all 
numeric variables in standard floating-point format.) 

If An is a numeric expression, the address list contains 
the storage address of the value of the expression. 

Figure 4-3 shows calls to a subroutine, the subroutine 
table, and the subroutine itself. The argument list in a 
BASIC call to a subroutine must match the argument 
control word specified in the subroutine table. 

An illegal CALL results from an attempt to pass a 
variable in the CALL that does not have a previously 
assigned value. You must have assigned values to all 
variables passed in the CALL even if their current value 
will not be used in the called subroutine. 

4-2 Licensed Material-Property of Data General Corporation 093-000065-10 



Several subroutines are available in BASIC to help you 
manipulate numbers and character strings. The pointers 
to the routines are in page 0 and should be declared as 
displacement externals. 

On AOS and AOS/VS, SBRTB.SR should be assembled 
to produce SBRTB.OB. You should edit the bind com
mand line LOAD.CL (LOADSP.CL for single
precision), to include SBRTB and execute it to incorpo
rate the assembly language routines. The routines .MPY, 
.MPY A, .DVD, and .DVDI (supported by RDOS Extend
edBASIC) do not exist in AOS and AOS/VS Extended 
BASIC, since single ECLIPSE instructions can be used 
in their place. 

~RR: 

JSR 

RDOS BASIC Multiuser 
If you use multiuser RDOS BASIC assembly language 
subroutines, they must be reentrant or interlocked (see 
Figure 4-3). To make reentrant programs easier to write, 
the system saves and restores temporary registers (TRO 
to TR 15 in page zero) for each user or task switch. You 
can access these registers as displacement externals (see 
.MOST, Table 4-1). 

If your subroutine performs I/O to or from the user 
program or data area, you must prevent extended memory 
remapping during I/O. You can do this if you enter 
single-task mode, with the S.lNG subroutine, before the 
system call. After you finish your I/O, use the M. UL T 
subroutine to reenter multitask mode, for example: 

@?SING ; ENTER SINGLE-TASK MODE 
. SYSTEM ; SYSTEM CALL WHICH READS DIRECTLY 
.RDS 77 ; INTO THE USER DATA SEGMENT 
JSR 
JSR 

JSR 

ERR ; ERROR RETURN 
@?MULT ; GOOD RETURN, RE-ENTER MULTI-TASK MODE 

@?MULT ; RE-ENTER MULTI-TASK MODE IF ERROR 
; ERROR PROCESSOR 

The pointers ?SING and ?MUL T are in page zero and 
should be declared as displacement externals. 

The routines in Table 4-1 are helpful when linking your 
assembly language subroutines. In systems having 
floating-point hardware, BASIC stores the floating-point 
number and returns it in the Floating-Point Accumulator 
(FPAC) rather than in ACO-ACI. 

093-000065-10 Licensed Material-Property of Data General Corporation 4-3 



4-4 

·TITLE SBRTB ; BASIC ASSEMBLY LANGUAGE SUBROUTINES 
.ENT SBRTB ; ENTRY POINT : SBRTB 
. NREL ; NORMAL RELOCAT ABLE CODE 

; SUBROUTINE TABLE 

SBRTB: 

SUB1: 

1 
SUB1 
2 
3B1 + 3B3 

-1 

; CALLING SEQUENCE: CALL 1,A,B 

; SUBROUTINE NUMBER 
; SUBROUTINE ENTRY POINT 
; NUMBER OF ARGUMENTS 
; ARGUMENT CONTROL WORD, BOTH ARGS ARE 
; NUMERIC VARIABLES 
; END OF TABLE 

; THIS ROUTINE IS THE EQUIVALENT OF LET B = A 
; THIS ROUTINE IS REENTRANT 

STA 2,TRO 
LOA 3,0,2 
LOA 3,0,3 
LOA 2,1,2 
STA 3,0,2 
LOA 2, TRO 
LOA 3,0,2 
LOA 3,1,3 
LOA 2,1,2 
STA 3,1,2 
LOA 3,TRO 
JMP 2,3 
.E 

; SAVE ADDRESS LIST 
; ADDRESS OF ARG 1 
; WORD 1 OF ARG 1 
; ADDRESS OF ARG 2 
; WORD 1 OF ARG 1 TO WORD 1 OF ARG 2 
; ADDRESS LIST 
; ADDRESS OF ARG 1 
; WORD 2 OF ARG 1 
; ADDRESS OF ARG 2 
; WORD 2 OF ARG 1 TO WORD 2 OF ARG 2 
; ADDRESS LIST=RETURN ADDRESS -2 
; RETURN TO BASIC (2=N0. OF ARGS) 

Figure 4-3. Example of an Assembly Language Subroutine 

Licensed Material·Property of Data General Corporation 093-000065-10 



Routines 

.FIX 

.FLOT 

.ADDF FO+F1 

.SUBF FO-F1 

.MPYF FO*F1 

.DIVF FO/F1 

.MPY A1 *A2 
AO,A1 
.MPYA AO+A 1 * 
A2 AO,A1 

.DVD (AO,A 1) 
I A2 A1,AO 
. DVDI A1 I A2 
A1,AO 

.MOST 

093-000065-10 

Table 4-1. Subroutine Conversion Routines 

Result 

Converts floating-point number in ACO-ACI (or floating-point ACO in the case of hardware 
floating-point support) to an integer in ACO-ACI. If there is overflow, the largest possible 
integer is returned in ACO-ACl. Bit 0 of ACO is the sign of the number. Bit 0 of ACI is 
a significant bit. There are two returns from .FIX: 

Return 1: overflow 
Return 2: OK 

Converts an integer in ACO-ACI to floating-point format in ACO-ACl. 

Arithmetic routines to perform floating-point add, subtract, multiply, divide. In each 
routine, ACO-ACI initially contains the floating-point value of Fl and AC2 contains the 
address of the value of FO. The result is returned in ACO-ACl. 

Underflow returns a zero result; overflow results in error number 16. 

In the integer multiply routines, ACI contains the unsigned integer multiplicand and AC2 
contains the unsigned integer multiplier. The result is a double length product with 
high-order bits in ACO and low-order bits in ACl. Contents of AC2 are unchanged. The 
difference between the routines is that .MPY A adds the result of the multiplication to the 
contents of ACO. 

In the integer divide routines the dividend is an ACI (single-length) or in ACO and ACI 
(double-length with high-order bits in ACO). The divisor is in AC2 and the result is left 
with the quotient in ACI and the remainder in ACO. Contents of AC2 are unchanged . 

Moves the character string described by the string descriptor words in ACO, ACI to the 
substring described by the string descriptor words in the page 0 memory locations labeled 
TR3, TR4, and TR5. Before a JSR to .MOST, these accumulators and memory locations 
should be loaded as follows: 

ACO Byte address of the first character of the source string 

ACI Length of the source string 

TR3 Byte address of the destination substring 

TR4 Maximum length of the destination substring 

TR5 Word address of the current length of the destination string. Bit 0 should be on if 
the destination string is a substring and you desire blank padding. 

You should declare TR3, TR4, and TR5 as displacement externals in the assembly 
language subroutine .. MOST automatically updates the current length of the destination 
string variable .. MOST returns the address of the next byte of the destination string in· 
TR3 and the number of bytes left to be filled in the destination string in TR4 (not counting 
blanks padded onto substrings). 

End of Chapter 

Licensed Material-Property of Data General Corporation 4-5 





Appendix A 
Error Messages 

Extended BASIC error messages are printed as two-digit 
codes, followed by a brief explanatory message. The 
following categories of errors may occur under Extended 
BASIC. 

1. Errors recognized by BASIC during program input 
(Table A-I) 

a. If BASIC detects an error in a statement input 
from a terminal, the error message refers to the 
last statement typed. 

b. If the statement in error is input from a file or 
other input device, BASIC prints the incorrect 
statement followed by the-error message. 

c. BASIC recognizes all syntax errors during pro
gram input. 

d. The form of the error message is: 

ERROR xx text 

where: 

xx is a two-digit decimal error code. 

text is a brief description of the error. 

2. Runtime errors, except file I/O (Table A-I) 

BASIC system runtime errors cause displays of error 
messages in the following form: 

ERROR [xx AT yyyy J text 

where: 

xx is a two-digit decimal error code. 

yyyy is the line number at which the error occurred, 
if used in a statement. 

text is a brief description of the error. 

3. RDOS/DOS Extended BASIC File I/O errors 
(Table A-2) 

The format for file I/O error messages is as follows: 

I/O ERROR xx [AT yyyyJ text 

where: 

xx is a two-digit decimal error code. 

yyyy is the line number at which the file I/O error 
occurred, if used in a statement. 

4. AOS and AOS/VS Extended BASIC File I/O 
errors. See the AOS or AOS/VS Programmer's 
Manual for I/O error messages. 

093-000065-10 Licensed Material-Property of Data General Corporation A-1 



Table A-1. BASIC Error Messages (continues) 

Code AOS Text RDOs/DOS Text Meaning 

00 Invalid operator Format Unrecognizable statement format 

01 Character not Character Illegal ASCII character or unex-
recognized pected character 

02 Illegal statement Syntax Invalid syntax or argument type 
syntax 

03 Data types don't match READ/DATA READ specifies a different data 
types type than DATA statement. 

04 Hardware or software System Hardware or software malfunction 
fault 

05 Missing or illegal line Line number Statement number not in the range 
number 1 < = n < = 9999 

06 348 variables have al- Excessive Attempt to declare too many vari-
ready been defined variables abIes 

07 Keyword not valid as Command Attempt to execute an illegal com;. 
command mand 

08 Singular matrix - can- Singular matrix Attempt to invert a singular matrix 
not be inverted 

09 File cannot be loaded (Not used) Core image file incompatible with 
- wrong revision system 

10 Illegal attribute Attribute Attempt to assign an illegal attri-
bute to a file 

11 Unmatched Parenthesis Parentheses in an expression are not 
parenthesis paired properly. 

12 Mantissa overflow (Not used) Hardware or software malfunction 

13 Arithmetic underflow (Not used) Result of arithmetic expression is 
too small. 

14 Program overflow Pgm ovfl Not enough storage to ENTER 
source program 

15 End of DATA End of data Not enough DATA arguments to 
satisy READ 

16 Arithmetic Arithmetic Value too large or too small to 
evaluate, or a divide by 0 

17 Arithmetic overflow (Not used) Result of arithmetic expression too 
large 

18 Gosub nesting GOSUB nesting More nested GOSUBs than speci-
fied at BASIC system generation 

19 RETURN - no GOSUB RETURN - no RETURN statement encountered 
GOSUB without a corresponding GOSUB 

20 FOR nesting FOR nesting More nested FORs than specified 
at BASIC system generation 

21 FOR - no NEXT FOR - no NEXT Unexecutable FOR-NEXT loop; 
FOR without a NEXT 

A-2 Licensed Material-Property of Data General Corporation 093-000065-10 



Table A-1. BASIC Error Messages (continues) 

Code AOS Text RDOs/DOS Text Meaning 

22 NEXT - no FOR NEXT - no FOR NEXT statement encountered with-
out a corresponding FOR 

23 Data overflow Data ovfl Not enough storage left to assign 
space for variables 

24 Attempt to divide by Attempt to divide by 0 
zero 

24 Directory empty No files in your directory 

25 Feature not available Option Feature specified not available 

26 (Not used) (Not used) 

27 Illegal file number File number Invalid file designation in an I/O 
statement 

28 Upward re-dimension DIM ovfl An array or string exceeds its origi-
nal dimenslOns. 

29 Expression is too com- Expression An expression is too complex for 
plex for evaluation evaluation. 

30 Illegal file mode MODE Invalid mode designation in an I/O 
statement 

31 Subscript out of Subscript Subscript exceeds array's dimen-
bounds sions. 

32 Undefined function Undefined func- Attempt to use a function never 
tion defined by DEF 

33 Function nesting Function nesting User function nesting exceeds BA-
SIC system generation specifica-
tion. 

34 Function argument Function argu- Argument range out of bounds 
ment 

35 Illegal mask Illegal mask PRINT USING format is illegal. 

36 Cannot execute com- No commands An ENTER file has a command 
mands now now instead of a statement. 

37 User routine not found User routine CALL statement specifies a user 
routine not in storage. 

38 (Not used) (Not used) 

39 Duplicafe matrix Dup matrix Same matrix appears on both sides 
of a MAT multiply or the transpose 
statement. 

40 Matrixes are not the Matrixes sizes Matrixes have different sizes. 
same size 

41 Undimensioned vari- Undimensioned Attempt to use an undimensioned 
able variable matrix. 

42 (Not used) (Not used) 

43 Matrix not square Matrix not square Attempt to invert a nonsquare ma-
trix 

,',....---. ... , 44 (Not used) (Not used) 

45 Data is greater than Data> Irecl ex- Logical record length limit 
specified record size ceeded 

093-000065-10 Licensed Material-Property of Data General Corporation A-3 



Table A-l. BASIC Error Messages (continues) 

Code AOS Text RDOS/DOS Text Meaning 

46 More data supplied Input Too many responses to [MAT] IN-
than requested PUT 

47 Checksum Buffer empty File did not load correctly. Attempt 
to use BASIC editing commands on 
an empty buffer 

48 Not a core image file A filename not created by SAVE 
was specified in a LOAD, RUN, or 
CHAIN command. 

48 Specified string String you attempted to find with 
not found the BASIC editing commands does 

not exist in the line in the buffer. 

49 (Not used) No room for direc- A FILE or LIBRARY command 
tory cannot find 256 words in your pro-

gram storage area to read the disk 
directory. 

50 Illegal edit function (Not used) Attempt to use illegal command 
with BASIC editing commands 

51 Edit buffer empty Attempt to use BASIC editing com-
mands on an empty buffer 

51 User not active Attempt to send message to an inac-
tive or nonexistent user 

52 Specified string not String you attempted to find with 
found the BASIC editing commands does 

not exist in the line in the buffer 

52 User in nomsg Attempt to send message to user 
state whose terminal is in NOMSG state 

53 (Not used) (Not used) 

A-4 Licensed Material-Property of Data General Corporation 093-000065-10 



Table A-1. 'BASIC Error Messages (concluded) 

Code AOS Text RDOs/DOS Text Meaning 

54 Generated statement Statement length A statement exceeded 132 charac-
is greater than 132 ters in either internal or ASCII 
bytes format, when expanded 

55 Execute-only Execute-only Attempt to examine a program orig-
inating from a file with the execute-
only attribute 

56 Range Range Attempt to refer to a random record 
beyond 262,144 

58 Incompatible core im- Incompatible core Attempt to load a core image file 
age file image saved under a different version of 

BASIC 

59 Zero step Zero step FOR-NEXT with step 0 

60 Keyboard response Time-out Timed input decremented to O. 
not in time 

61 Invalid decimal string Invalid decimal Attempt to perform string arithme-
string tic with nonnumeric characters 

62 String arithmetic over- STAR ovfl The result of string arithmetic re-
flow quires more than 18 digits for preci-

sion representation. 

63 Attempts to issue (Not used) You cannot use lock/unlock if RLS 
lock / unlock with RLS is not running. 
not running. 

64 Attempt to lock same The same user cannot lock the same 
record twice. record twice. 

64 System active Attempt by system manager to exe-
cute a BYE command while people 
are still on system. 

65 RLS out of memory RLS is full and cannot lock any 
more files. See the system manager 
if this is a serious problem. 

65 Device timeout Attempt to reference an off-line 
device. If device not found, time-out 
occurs within ten seconds. 

093-000065-10 Licensed Material-Property of Data General Corporation A-5 



Table A-2.' RDOS/DOS Extended BASIC File I/O Error Messages 

Code Text Meaning 

01 Illegal filename A to Z, 0 to 9 and $ are only valid characters 

02 Illegal system com- Command not defined in operating system 
mand 

03 Illegal command for INIT "$PTR", WRITE to $CDR, etc. 
device 

04 Not a core image file File not in SAVE format 

06 End of file Attempt to read beyond EOF marker 

07 Read protected file Attempt to read from a read-protected file 

08 Write protected file Attempt to write to a write-protected file 

09 File already exists Attempt to create an existent file 

10 File not found Attempt to refer to a nonexistent file 

11 Permanent file Attempt to alter a permanent file 

12 Attribute protected Attempt to change file attributes when file 
is protected with RDOS attribute A 

13 File not opened Attempt to refer to an unopened file 

14 Swapping disk data Disk error on swapping file 
check 

15 Revision check Object file of LOAD or CHAIN not creat-
ed by this revision of BASIC 

16 Checksum Disk error 

17 Channel not avail- Open two files with the same file number, 
able or attempt to open too many files. Operat-

ing system file pool overflowed. 

18 Line limit Line limit exceeded on read or write line 

20 Parity Parity error on read line 

23 No file space Out of disk space. Delete files to make 
more room. 

24 Read error File read error 

25 Select status Unit is not ready or is write-protected. 

29 Different directories Files specified on different directories 

30 Illegal device code Device not in system or illegal device code 

31 Illegal overlay This is an unexpected system software 
error. If it occurs, please notify your local 
Data General representative. 

37 Device already ini- IN IT has been used on the device. 
tialized 

38 Insufficient contigu- Insufficient number of free contiguous disk 
ous blocks blocks. Reorganize partition. 

39 Simultaneous I/O to Attempt by more than one user to read 
aTY and/or write I/O to the same QTY line 

41 No more DCB's Attempt to open more devices or directories 
than are configured in the operating system 

A-6 Licensed Material-Property of Data General Corporation 093-000065-10 



Table A-2. RDOS/DOS Extended BASIC File I/O Error Messages 

Code Text Meaning 

42 Illegal directory Illegal directory specifier 
specifier 

43 Unknown directory Directory specifier unknown 
specifier 

44 Directory too small Directory is too small (operator only). 
Minimum directory size is 48 blocks. 

45 Directory de~th Directory depth exceeded (operator only) 

46 Directory in use Attempt to release a directory in use by 
another program 

47 Link depth Link depth exceeded 

48 File in use Contact system operator if file is in your 
directory. 

52 File position Attempt to read out of bounds 

54 Directory not initial- Directory / device not initialized 
ized 

58 Directory shared No file space left 

69 Disk is full No file space left 

89 Character overrun The system failed to remove one character 
from the buffer before it input another. 
This error reflects a hardware condition. 

90 Character framing System failed to recognize a START or 
STOP bit in the buffer. This error reflects 
a hardware condition. 

End of Appendix 

093-000065-10 Licensed Material-Property of Data General Corporation A-7 





Appendix B 
Programming on Mark-Sense Cards 

STATEMENT rORMUL.A 

o STATEMOO lET 0 lIT I] 111'1] I] '0 0 AI] aO el] DO rO FO el] 110 I\1 I] I] (0 ~ <0 (0 tl] '0 I] 0 0 I] 0 0 DOl] l]eOIT 
\] lUMBER GOTO I llPUTI LE I] I] -I] I] JI] KI] LI] MI] III] 01] PI] 01] Ril I] I] JI] $I] *t1 ~ ;1] ttl I] I] I] I] I] I] I] I] I] I]THEN J! 

sl) slJ sl) sQ I) READ IJ EIIO IJ ~ eQ IJ ilJ sl.) TIJ ulJ vO 'I,J xO YI) zl] 1.1 IJ 'll tU %~J-t1 >I,1?\J g g gOg D g g eg 17 I 
II] I \) II] II] %RN I] DATA I] EIIltRI] I] II] I] II] I] I] I] I] I] 11 IJ I] I] I] I] 11 IJ 11 I] I] I] II I] I] I] I] I] I] II] 9 

21] 21] 21] 21] FOR I] PEN I] atRYI] I] 21] I] 1]11] I] I] I] I] U I] I] I] 1]11] 0 IJ IJ IJ 11 =0 I] I] I] 11 0 0 I] 21] i 
31] 31] 31] 31] NEXT 11 ClOSE\] OAD I] I] 31] I] '1] I] II] I] IJ I] 11 I] I] I] I] I] II] I] I] 0 I] I]'I¥\] I] I] I] I] I] I] 31] 
40 41] 41] 41] If I] IRlTfI] SAVEl] I] 41] 11 I] I] 1]11] I] I] fJ I] I] IJ I] I] 1]11] 0 0 I] 0 D@D I] 0 I] I] 0 41] ~ ~i 
50 51] 51] 50 011 I] CIIAIII] SIZE I] I] 51] I] IJ IJ 0 1]11] I] I] 0 I] I] 0 0 0 010 I] IJ IJ 0 I] '0 I] 0 0 I] 50 1 ~ i 
eOel]el]el] STOP\] CALLI] NEIl] 1]61] I] I] I] I] 0 1111] I] I] Ill] I] 0 I] I] 1]11] 0 I] 0 I] 0=1] 0 0 060 ~:z 
71] 11] 10 11] f \] ~REI] LIST I] I] 71] I] 0 0 0 I] I] 1]11] I] I] 11 \] I] I] 0 I] 010 0 0 \] 0 I] uO 0 n 71] ~ ~ 
al] al] a\] al] DIM 11 :-1] RUII I] I] 81] I] 11 I] I] I] I] I] 1]11] I] 11 1]11]I\]II]II]II]II]II]II]IIJII]IOIO 0 0 80 • 
sl] sl] sl] 91] AT IJ M I]~] I] 91] I] IJ I] I] I] I] I] I] I] II] I] I] I] I] IJ IJ IJ I] I] I] I] I] 11 I] I] IJ 90 ., 

80-01061 

Figure B-1. Data General Extended BASIC Mark-Sense Programming Card 

You may write BASIC programs on Data General's 
Extended BASIC mark-sense programming cards for 
input to the mark-sense card reader. 

You may mark a stack of cards to include an entire 
BASIC program and input your stack to the card reader 
as a batch job. Your system manager will know about 
any special cards your system may require. 

The mark-sense reader has an option that permits either 
markings or punches. If your card reader can read 
punches, it can also read marks, so you can mix marks 
and punches on a 37 column card. You cannot, however, 
intermix 37- and 80-column cards. If you want to use 
both types of cards on the same system, you must put 
them in separate stacks and process the 37-column cards 
with the CARDS command; use ENTER for the 80-col
umn cards. Use a No.2 pencil to mark cards. 

A Data General Extended BASIC mark-sense card has 
37 columns, as shown in Figure B-1. The first four 

columns assign statement numbers; the next three assign 
the BASIC statement keyword. You may write a single 
BASIC statement or part of a statement on each card. 

The BASIC statement field of the mark-sense card is 
three columns, which allows all possible combinations of 
statement keywords. Mark the cards in the appropriate 
column(s); for example, Figure B-2 shows the statement 

450 GOTO 200 

The formula section of the card is 29 columns long and 
12 rows deep. Proceed from the leftmost column to the 
right, for up to 29 characters. The CONT box on the far 
right allows you to continue your statement on the next 
card. 

You must fill out the formula section of each card in 
Hollerith code. Each Data General mark-sense card 
contains a Hollerith code key (the black squares in the 
formula section), which indicates the lines to mark for 
each character. On all mark-sense cards, numbers are 

093-000065-10 Licensed Material-Property of Data General Corporation 8-1 



~ORMULA 

o STATEMEIT lET 0 lIT I] IIGI] I] '0 0 AD sO cD DO Ej] FO el] "0 I/] 11 11 cO ·0 <I] (I] tl] !O 0 0 I] 0 11 11 0 0 0 11 COlT 

o lUMBER GOTO lpuTI lE I] I] -I] I] JI] KI] ll] III] -0 01] pO 01] RI] I] I] JI] ~] *11 ~ iU tll I] 11 I] I] I] I] I] I] 0 OTKEI 
sl) sQ sl) " I) READ IJ EID I) 0 B' 'II) sl,J TIJ ulJ vO wlJ xij YI] zl] 1.1 IJ \t1·tl %0-1.1 >IJ?tJ t1 g g U D D g ~ Bg 17 

II] II] II] II] ~RN I] DATA I] ENTERI] I] II] I] II] \] 11 I] I] IJ I] f) \] U IJ I] I] I] I] I] I] I] I] I] I] I] 0 U I] 1\] 
21] 21] 21] 21] FOR I] PEN I] ~RYI] 121] I] 1]11] I] I] I] I] I] I] [I I] 1]11] I] I] IJ I] I] ::ll I] I] I] U 0 0 I] 20 
31] 3\] 31] 31] NEXT I] (105£1] OAD I] I] 31] I] I] I] III I] IJ I] II I] I] I] 0 I] II] I] I] 0 0 I] HI] I] I] I] 0 I] 0 31] 
41] 41 41] 41] IF I] 'RITE\] SAVEl] I] 41] I] I] I] 1]11] 11 I] fJ I] I] I] I] I] 1]11] I] 0 11 0 O@O I] I] 0 I] n 41] ~ ~i 
50 51] 51 50 011 IJ CIIAIIIJ SIZE I) IJ 51] I] I] I] U 1]11] I] 0 II IJ I] U I] 0 011] I] U 0 D I] '0 I] I] 0 I] 51] 1 ~ i 
60 606060 STOP I] CAlli] NEI I] I] 61] 0 0 0 0 0 Dill I] I] I] IJ I] I] I] I] 1]11] I] I] IJ I] I] =0 0 0 U 60 ~ ~~ 
11] 11] 11] 11] F I] ~I] LIST n I] 11] I] I] I] 0 IJ 0 1]11] I] I] I] I] I] I] IJ I] 1]10 0 I] I] 0 I] "0 0 I] 10 ~ ~ 
allel] al] el] DIM I] :-1] RUN I] I] al] I] I] I] I] I] I] I] 1]11] I] I] 1]11]11]11]11]11]11]11]11]11]11]11]11] IJ I] al] U .. 

90 90 90 91] AT 0 M IJ ~ I] 91] I] IJ I] 0 I] I] I] I] I] II] 0 I] I] 0 0 0 0 I] I] I] IJ I] 11 I] 11 IJ sl] .. 

80-01062 

Figure B-2. 450 GOTO 200 

marked directly in the appropriate rows, without reference 
to the key. Letters require two marks in a row; special 
characters require either two or three marks. 

To mark a card, find the character column and the 
character you want to mark. Figure B-3a indicates the 
first column with an arrow and the letter V as the 
character to be marked. Mark the rectangle at the 
intersection of the two arrows, as shown. 

Next, find any black boxes directly under the character; 
see the circled box under the V in Figure 3-Bb. (Some 
characters have more than one box below them.) Again, 
mark the rectangle at the intersection of the arrows, as 
shown in Figure B-3b. The first column now contains the 
completed markings for the character V, as shown in 
Figure B-3c. 

Move over one column and repeat this process for your 
next character. Note: Do not draw the arrows on the 
mark-sense cards, as BASIC will try to interpret them. 

If you use cards without a key, fill them out according to 
the Hollerith character set in Appendix C. The mark
sense card key and the Hollerith character set work 
exactly the same way; you may use whichever you find 
easier. If you use the Hollerith code set, the top horizontal 
line is number 12, the second from the top is number 11, 
and the other lines are numbered from 0 through 9. To 
indicate 4, put a mark on line 4; to indicate an asterisk 
(*), put marks on lines 11, 4, and 8; to indicate a number 
sign (#), put marks on lines 3 and 8. 

On any card, you can continue a statement to the next 
card by marking the CONT box in the upper right-hand 
corner. Continue the statement on the following card in 
the FORMULA section. 

To write an IF statement, mark IF in the statement 
section, mark the test expression in the formula section, 
and mark the THEN box in the upper right-hand corner 
of the card. Begin the next card in the statement section. 

Figure B-4 further illustrates the use of mark-sense cards; 
the card shows the code for 

10 IF V$ = "CAT" THEN 

8-2 Licensed Material-Property of Data General Corporation 093-000065-10 



80-01063 

STATEMENT I" ,,"ORMlJLA 

D STATEIlOO LET I) ~NTI] ~IIGI] '0 D AD eD cD °D rI] FO el] "O~] I] I] (\] -I] <I] (I] tl] !I] 0 0 I] I] ODD 0 0 o con 
I] lUMBER GOlO I] NpuTIJ FILE I] I~t-O I] JI] KI] LO ~] 10 01] PI] 01] RI] I] I] JI] ~] *I] ~ ;0 tll I] I] I] I] 0 0 0 0 0 OTHEI 

II) '0 II) '0 ~Il READ I] END IJ , ,.IJ 'IJ sl,~ ll~ ~I@IJ xO vi) zl] I,] IJ '0 ,tl %tl-n >~1?1l U IJ I] U g g g g 90 -':--';'- ". 

II] II] II] II] RE- I] DATA I] ENTER\] OIl] 1]11] I] I] 0 0 I] I] I] nUl] 0 0 0 0 I] 0 Il I] I] 0 001] 1]10 TURN 'i' 

21] 21] 21] 21] fOR I] OPEN I] ~RYIl 1]21] I] 1]11] 0 I] I] I] U I] [II] Ill\] 0 I] I] \] 1]411] I] I] U D I] 1]21] j 
31] 31] 3\J 31] NEXT I] ClOSE I] DAD I] I] 31] I] I] \)11] I] IJ I] II I] [I I] I] 1]111 I] I] I] I] 1]4] I) 0 I] 0 0 031] 
40 41] 41] 41] IF I] 'RlTEI] SAVEl] 1]41]-1) 0 0 010 0·1] U 0 I] 0 I] 0 010 0 0 0 0 O@O 0 DOD 1) 40 ~ ;;(§ 

51] 50 50 50 01 I] CHAIIIJ SIZE I] 051] I] 0 0 0 DID I] I) U I] IJ 0 I] I] 010 I) ODD I) ~ I) I) D 050 g ~~ 
o zo 
@ &&.1::1 

eO el] el] el] STOP 0 CALLI] lEI I] I]el] I] I] I] I] 0 OIl] 0 d I] 0 I] 0 0 I] 010 0 I] 0 0 1]=1] I] I] 060 ... 0; 
~ tc( 

11] 10 11) 10 ~ I] ~I] LIST I] I]~] I] 0 0 I) 0 I] 010 0 I] I] I] I] 0 0 0 010 0 0 0 0 0"0 0 010 t ~ 
all all al] al] 0111 0 ~:-I] RUI I] 1] 80 0 0 0 000 0 OIl] 0 I] 01011]1010101011]10101011]10 0 080 

8 Q 

• sl] sl] sl] sl] ~AT 0 ~II IJ ~ I] 91] I] I] I] I] 0 I] 0 I] 1]11] 0 I] I] 0 I] 0 D I] 0 U I] 0 11 I] 0 I] 90 ., 
I I I I 'I 1 'I 1 '1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

STA~M~ ,,"ORMlJLA 

D STATEIlOO LET I] NT I] IIGO '0. D AD eD cD DO rI] rO el] "0 ~ I] I] (I] ~ <0 (I] tl] !I] 0 0 0 0 ODD 0 0 geollT 
I] lUMBER GOlO lPUlI LE I I] -0 I] JI] KI] Lj] wi] I 01] pO 01] RI] I] I] JI] ~ *I] ~ ;0 'll 0 I] 0 ODD D D I] OTHER ~ 

II) '0 II) '0 I) READI) EIO IJ 9Q IJ II) slJ TI) ul, vO IJ xO vi) zl) 1.1 IJ '0 ,tl %u-n· >t1?1l U U g U g g g g 90". I 
II] II] II] 1\] %RN I] DATA I] ENTER\] I \] I] II] \] I] I] I . I] I] I] \] I] I] I] Il I] I] I] I] I] I] I] I] I] 0 I] \] 1\] 'i' 

2\J 21] 21] 20 fOR I] PEN I] ~RYIl 21] I] 1]11] I] 0 II 1I I] [I 0 Ill\] 0 I] I] I] I] ::ll II I] I] U D D D 21] I 
31] 311 31] 3\] MEn I] ClOSED AD I] 31] I] I] I] 10 I] I] I] I] I] 11 0 1110 0 I] n I] 1]4] I] 0 I] 0 D 0 31] 
40 4041] 41] IF 0 'RlTEI] SAVEO 41] I] I] \] I]I\] I] U I] I] I] I] I] 1]11] 0 00 0 D@D 0 0 0 0 0 40 ~ ~I 
50 50505\1 01 D CHAIII] SIZE I] II] I] 0 I] I] ODD DOli] 0 ODD 0 to 0 I) 0 0 50 g ~: 
sO eO el] eO STOP I] cml] NEil] I] el] I] 0 0 0 0 1]11] I] Ij I] I] 0 0 ·0 0 011] 0 0 0 0 0 =1] D 11 0 eO ~ :1 
11] 10 10 10 I] ~I] LIST 0 I] 11] 0 0 0 0 0 11 \]10 I] I] I] 0 I] 0 0 I] 010 0 0 0 0 0"0 0 0 10 ~ :c 
al] al] al] al] 0111 I] :-1] RUI I] I] 81] I] I] I] I] I] I] I] 1]111 I] I] 1]11]11]1\]11]11]11]11]11]1\111]1010 0 1] 80 u ~ 
sO sO sO sl] AT I] II 0 ~ \J 91] I] 0 I] \J 0 I] 0 0 \]11] U 11 I] 11 0 0 DOD 0 0 11 11 I] 11 \190 ., 

STATEMENT ""0 R M lJ L A 

D STATEIlOO LET D NTll 11'1] n'. 0 AD eO cO DO rI] FO el] "0 ~ I] I] (I] ~ <0 (0 to !O 0 D I] 0 DOD 0 0 0 COIIT 
lUMBER GOTO lPUlI LE I I] -0 I] JI] KI] Lj] wi] 110 01] pO al] RIl I] 0 JI] ~1 *I] ~ ;1] 'll 0 11 0 I] 0 0 11 11 0 OTHEI ~ 

II) '0 'I) '0 I] READ 0 EIO IJ '9Q IJ II) sQ TIJ ulJ YQ 'I.J xO vi) zl) 1.1 IJ 't1 ,I] %U-1.1 >1.1 ?ll U IJ g U g g g g 90". i 
II] I I] II] I I] ~RN 11 DATA 11 EllTERIl 0 II] \]11] \] I] I] I] I), I] IJ \] IJ Il Il I] I] I] I] I] \] 11 \] I] \] 0 0 I] II] 'i' 

21] 20 21] 20 FOR I] PEN I] I-RYIl I] 21] I] I]I\] I] 11 Ill] \] 11 [I I] IlII1 0 0 I] 0 I] ::ll I] I] \] U D D I] 20 j 
3\] 31] 31] 31] NEXTI] SEll OAD I] I] 31] I] I] 1]10 I] 11 I] 0 11 I] IJ I] 1)11] 11 I] n 0 I] 4] 0 0 I] I] 0 0 31] 
40 404040 IF 0 'RlTEI] SAVED 041] I] I] I] Illl] 0 I] rJ I] I] I] 0 I] 1]10 0 \] 0 0 D@O 0 0 0 0 11 40 ~_ ~i 
51] 50 51] 50 01 0 aul] SIZE I] 151] I] \] I] 0 1]11] 11 0 Q I] 0 0 I] 0 0 II] I] ODD I] to 0 0 0 0 50 1 ~ i 
sO el] sO eO STOP I] mil lEU I] \]eO 0 0 0 11 I] 1]11] I] 0 I] 0 I] 0 0 11 1]11] 0 11 11 0 0=1] 11 D 060 ~:z 
11] 10 10 10 I] ~I] lI5f nOlo 0 0 0 I) 0 11 I] II] 0 I] I] 0 Il 0 0 I] 0 I 0 0 0 0 0 0"0 0 0 10 ~ ~ 
al] aO al] al] 0111 I] :-1] RUM I] I] al] I] Il I] 0 11 I] 11 1]11] I] I] 1]11]11)11]11]11]11]11]11]1\11111010 0 0 aD • 
sO s\1s\1sl] AT 0 0 ~ \J 911 I] I] I] 0 0 I] 0 0 1]11] U 11 I] 0 DOD \1 \1 U 0 0 11 Il 0 \190 .. 

Figure B-3, Marking the Letter V 

093-000065-10 Licensed Material-Property of Data General Corporation 8-3 



o STATEMOO 
I] NUMBER 

sl) slJ sl) " 
II] IIJ 1111] 
21] 21] 21] 21] 
31] 31] 31] 31] 
40 41] 41] 41] 
50 50 51] 50 
60 61] 60 60 
11] 10 10 11] 
al] al] al] al] 
sO 91] 91] 91] 
j j j I 

80-01064 

8-4 

STATEMENT ""OR MlJLA 

lETlJ 

GOTO I] 

~Il 
RE- IJ TURN 
FOR I] 

NEXT I] 

IF I 
011 I] 
STOP I] 

OEF IJ 
DIM I] 

~AT I] 
I I 

PRINT I] ~INGI] 0'0 0 AI el eO DO EO fO tI] "O~] I] IJ (0 ·0 <0 (0 to '0 0 0 I] 0 0 0 0 0 0 
INPUT I] fllE IJ I] -I I] JI] KI] LO III] NI] 01] pi] 01] RIJ I] I] JI] ~]~] ~ iO 'll I] IJ I] I] 0 0 0 I] 0 
READ I] END I] I al] IJ II] sl] TI ul vI] wI] xl] vI] zl] I] 11 \1] ,I] ~ol]-I] >I]?I] I] I] I] I] 0 0 0 0 ell r----.i-

~Ir ~I~ ~I~ j I] ~ d IJ fi 0 fi U I] ~ ~ 0 ~ 0 ~ ~ 0 ~ ~ n ~ ~ ~I~ DATA I] 
~PEN I] u- 11 

BRARY • 1]21] I] 011] 0 0 IJ IJ I] IJ IJ 0 011] 0 IJ I] IJ O~ I] 0 IJ 0 0 0 020 
ClOSE I] OAD I] IJ 31 I] I D II I] IJ I] I] IJ I] I] IJ I] II] I] I] I] I] I]~] 0 0 I] I] 0 I] 31] 
'RITEIJ SAVE IJ 1]41] I] I] 0 010 IJ IJ I] 0 0 IJ IJ 0 OIl] I] I] 0 I] O@O 0 0 0 0 041] 
CllAliln SIZE I] 150 I] I] 0 I] DID I] I] I] IJ I] 0 I] 0 010 I] I] I] I] I] ~ 0 I] 0 1] 50 
cml] HEI I] 060 1 0 0 0 0 OIl] I] d 11 IJ 0 I] 0 I] OlD I] I] 0 I] 0=1] 0 I] 060 
~REI] LIST IJ D~ 0 0 0 0 0 0 010 0 0 IJ 0 000 0 010 0 0 0 0 0"0 0 070 
~:-I] RUN I] 1] 81 I IJ IJ IJ IJ IJ 0 OIl] IJ 0 1]1011]10101011)1011)11)101010 0 l)aO 
~EM IJ R~J I] 91] I] I] I] 0 I] I] IJ IJ IJ II] I] 0 I] 0 I] 0 0 I] IJ I] I] I] 11 I] I] 0 90 
I II I 111111111 I I I I I I I III I I I I I I I I I I 

Figure B-4. 10 IF V$ = CAT THEN 

End of Appendix 

Licensed Material-Property of Data General Corporation 

OeOHl 
ITHEII 

'11 

9 

~ 
N ..... 

~ c(: 
g ffi; 
a zo 
@ ",:! 
~ of 
~ c( 
a: l-
t c( 
8 Q 

• ., 
11 

093-000065-10 



Character 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

A 
B 
C 
D 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 

093·000065·10 

Appendix C 
Hollerith Character Set 

Lines Character Lines 

0 - - 12 3 
1 - - < 12 4 
2 - - ( 12 5 
3 - - + 12 6 
4 - - ! 12 7 
5 - - ] 11 2 
6 - - $ 11 3 
7 - - * 11 4 
8 - - ) 11 5 
9 - - ; 11 6 

12 1 - T 11 7 
12 2 - / 0 1 
12 3 - \ 0 2 
12 4 - , 0 3 
12 5 - (comma) 
12 6 - % 0 4 
12 7 - ~ 0 5 

12 8 - > 0 6 
12 9 - ? 0 7 
11 1 - 2 8 
11 2 - # 3 8 
11 3 - ~ 4 8 
11 4 - 5 8 
11 5 - (apos.) 
11 6 - = 6 8 
11 7 - " 7 8 
11 8 - & 12 -
11 9 - - 11 -
0 2 - (minus) 
0 3 -
0 4 -
0 5 -
0 6 -
0 7 -
0 8 -
0 9 -
12 2 8 

End of Appendix 

Licensed Material·Property of Data General Corporation 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

8 
-
8 
8 

8 
8 

8 
8 
-
-
-
-

-
-
-
-

C-1 





Appendix D 
ASCII Character Set 

To find the octal value of a character, locate 
the character, and combine the first two digits at the 
top of the character's column with the third digit in 
the far left column. 

Character code in octal at top and left of charts. 

legend: 

End of Appendix 

093-000065-10 Licensed Material-Property of Data General Corporation 

9 

< 

> 

? 

x 

y 

z 

(TILDE) 

DEL 
(RUBOUT) 

1 means CONTROL 

0-1 





Appendix E 
Statement, Command and Function SumDlary 

The following table lists alphabetically, and summarizes 
briefly, the statements, commands, and functions of 
Extended BASIC. The RDOS and DOS privileged com
mands are indicated with a P in the column for the 

Formats and Descriptions 

ABS(expr) 

The absolute value of an expression. 

ACL "filename" [, "UserID", "attributes"] ... 

Prints a report of, or changes, the access control list for a file. 

ALL message 

Sends a message to all active users. 

ATN(expr) 

The arctangent of an angle. Result expressed in radians. 

AUDIT [''filename''l 

Audits your terminal's input and output. 

BYE 

Sign-off command. 

CALL subr [,expr] ... 

Calls an assembly language subroutine. 

CARDS "filename" 

Enters program in mark-sense card format. 

CDIR name 

Creates a subdirectory. 

CHAIN "filename" [THEN GOTO line no.] 

Transfers control to the program named in the statement. 
-

fN" ~-rON" 1 "OFF" "OFF" 
CHAR "characteristics" • "characteriStiCS) ... 

"LPP", svar "LPP", svar 
"CPL", svar "CPL", svar 
"device" "device" - -

operating system. These commands can be executed only 
at the system terminal. 

G-UJi:f.> 

S C F AOS RDOS 
AOS/VS DOS 

y • • • 

--- • • • 
P 

• • • 

• • • 

• • • • 

• • • • 

\/ 
! • • • • 

-" • • • 
P 

~ -.~~~.-. • • • 

• • • • 

• • • 

Prints a report of, or changes, the current device characteristics. 

093-000065-10 Licensed Material-Property of Data General Corporation E-1 

y 

'I 
e 
N 

E 



Formats and Descriptions S C F AOS RDOS 
'(c 

AOS/VS DOS 

CHAR [[ f~;',} ] "characteriStiCs'/.JJ ... • • • 
Prints a report of, or changes, the current device characteristics. 

CHATR "filename", attributes 
• • • "" 

Changes file attributes. 

CHR$(expr) 
• • • Generates the character represented in the ASCII collating sequence by a number. 

CLI [command! 
,----,. • • • Provides access to the CLI without terminating the BASIC process. 

CLOSE[{ ~LE} (file)] • • • • 
Closes an open file or files. 

CON 

'! • • • Continues execution of a stopped program. 

COS(expr) " / '\. \( • • • The cosine of an angle expressed in radians. 

CPART name,size P 
• • • 1;2 

Creates a secondary partition. 

CPU(expr) 

• • Returns a value (0 or 1) equal to the status of a CPU console switch. 

DATA {~::r lit"} [, {~::r lit'}] ... • • • '" 
Defines data to be used by READ and MAT READ. 

DEF 
V • • • 

Used with FNa(d) function to define a user function. \ 
y 

DELAY=expr ----- • • • • Delays program execution for a specified amount of time. 

DELETE "filename" 
\ • • • • 

Deletes a file from your directory. 

rar(n) Htsvar(n) } J DIM array(m) .array(m) ... 
array(row,col) . array(row. col) • • • • 

Specifies the size of string variables and numeric arrays. 

DIR [pathname! 
/~ ); • • • Displays, sets or stores the pathname of the current working directory. 

[ rrimary part {f:secondary part [:SUbdirectorYJJ } 1 P 
secondary part [:subdirectory J 

DIR subdirectory • • • null-length string variable 
E 

Changes the directory and prints the name of the current directory. 

DISABLE P 
"'-

Prevents the use of system console breaks. • • • 

E-2 Licensed Material-Property of Data General Corporation 093-000065-10 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

DISK /: 

Prints the number of blocks used and the number available in the partition in which • • • • E 
your directory resides. 

ECHO 
• • Enables the display of characters on input. • • E 

ENABLE P 
I • • • I 

Cancels a DISABLE command. 
y 

END 
• • • Stops program execution. 

ENTER {"filename"} 
svar • • • • N 

Merges the program named into the current program. 

EOF (file) 

• • • Returns a 1 if an end of file is detected, otherwise, O. 

ERASE nl, n2 
! i -" • • • • Deletes statements from a program. i 

IV 

ESC 
i • • • • Enables an ESC interrupt condition. 

E 

EXP(expr) 
• • • The value of e to the power of an expression. 

y 

FALL message P 
--- • • • Forces a message to all active users. 

{~ILE} ["template"] 

• • • 
Prints the names of files in your directory that match the template. 

{~ILE} • • • 
Prints the filenames in your directory. 

FMSG user ID message P 
• • • Forces a message to a specific user. 

FNa(d) 

• • • A user function which is defined in a DEF statement and returns a value. 

FOR control var = exprl TO expr2 [STEP expr3] . ! 

! • • • Begins a FOR-NEXT loop and defines the number of times the loop is executed. 
y 

FREE userID P 

Interrupts execution of userID's program. • • • 

093-000065-10 Licensed Material-Property of Data General Corporation E-3 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

GDIR • • • • 
Verifies the name of your directory. 

GOSUB line no. 
• • • Transfers program control to the first statement of a subroutine. 

y 

GOTO line no. 
• • • Transfers program execution to a specified line. 

y 

GPOS {;ILE} (file), var 
'\ ''>, • • • • 

Determines the current file pointer position in an open file. 

HELP "verb" 
- ~~--.-. • • • • y 

Displays information about each BASIC statement and command. 

IF {rel-expr} {[THEN[ statement} 
expr THEN line no. • • • • y 

Executes a statement based on whether an expression is true or false. 

INIT name P 
• • • . Initializes a directory or device for accessibility. E 

INPUT ["str lit",] {"ar }[{var }] ... {.j 
svar ,svar • • • • y 

.Accepts data for variables from the terminal. 

INPUT {FILE} fme> }, {var}, [{ var}}-# (flle,record) svar svar • • • • 
Reads data in ASCII from a sequential-access file. 

INT(expr) 
• • • • The largest integer not greater than the expression. 

KILL userID P 
• • • Forces a specific user off the system. 

c 
LEN(svar) 

! • • • Returns the number of characters currently assigned to a string variable. 

[LET] { svar} ~ expr 
var • • • • y 

Assigns values or solutions to formulas to a variable. 

LEVEL [userIDj 
--~ ..• -- • • • Monitors the priority constant for any user. 

LIBRARY 
[ rirectorY~: "temPlate"} 1 

directory 
"template" • • • 

Prints the names of files in the BASIC library directory that match the template. 

E-4 Licensed Material-Property of Data General Corporation 093-000065-10 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

LIBRARY • • • 
Prints the filenames in the library directory. 

[r
nenJ I LIST 

{ ~O} line n2 
["filename"] 

line nl {~O } line n2 • • • • 'y 

Outputs part or all of the current program to the terminal or other ASCII device. 

LOAD "filename" ",I • • • Loads a previously saved program into the program storage area. I 

LOCK iden, "filename", start, record-size [,time] 
~-,~~---- • • • Gives exclusive access to a record in a file. 

LOG(expr) 
• • • The natural logarithm of an expression. 

LREAD ["str lit",] svar [,svar] 

Reads a string that is terminated by either a null, form feed, or carriage return • • • • N 
(NEW LINE) from the terminal., ( ; 

LREAD {FILE} {(file) } ,svar [,svarl] -# (file, record) • • • • Reads a string from a record in either a random- or sequential-access file that is IV 
terminated by either a null, form feed, or carriage return (NEW LINE). 

L WRITE svar [,svar 1 ] 

Writes a string to your terminal that is delimited by either a null, form feed, or • • • • N 

carriage return (NEW LINE). 

LWRITE {FILE} {(file) } , svar [,svar 1 ] 
# (file, record) 

• • • • Writes a string to a record into either a random- or sequential-access file which will 
be terminated by either a null, form feed, or carriage return (NEW LINE). 

MA T mvar 1 = mvar2 
• • • • Assigns the dimensions and values of mvar2 to mvarl. 

i 

MA T mvar 1 = mvar2 t±l !mvar ! • • • • Performs matrix addition or subtraction. 

MAT mvarl = {mvar2} * mvar3 
(expr) • • • • 

Multiplies a matrix by a numeric expression or another matrix. i 

MAT mvar = CON [([row,jcol)] i 

• • • • Sets the value of each matrix element to 1. 
". 

MAT mvar = IDN [([row,jcol)] 

Sets the elements of the major diagonal of a matrix to Is and all other elemenits to • • • • 
Os. 

093-000065-10 Licensed Material-Property of Data General Corporation E-5 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

MAT mvarl = INV (mvar2) 
• • • • Performs matrix inversion. / 

/ 

MAT mvarl = TRN (mvar2) (/ • • • • Transposes matrix mvar2. 

MA T mvar = ZER ([row,] col) / 

• • • • Sets the value of each matrix element to O. 

MAT INPUT ["str lit"] mvar [([row,]col)J[,mvar[([row,]col)Jj ... 

Specifies matrixes for which you enter data from the terminal when the state- • • • • 
ment is executed. 

MAT INPUT {FILE }{(file) },mvar [,mvarJ ... 
# (file,record) • • • • 

Reads a record of matrix data in ASCII format from a file. I 

MAT PRINT mvar[N mvar] ... [{ Jl ) • • • • 
Prints the contents of the specified matrixes. 

MA T PRINT {FILE}{(file) }' mvar [{;} mvar ... {; }] / # (flle,record) , , • • • • 
Outputs matrix file data to an ASCII device. 

MAT READ mvar [([row,]col)J[,mvar[([row,]col)]j. .. 
i 

Reads data into the specified matrixes from the data list defined by ~AT A • • • • 
statement(s). ) ., 

MAT READ {FILE}{(file) },mvar [,mvarj. .. 
# (file,record) • • • • 

Reads matrix data in binary format from a file. 

MAT TINPUT [(line no. [,time]),] ["str lit",] mvar 
[([row,] col)] [,mvar [([row,]col)]j. .. 

• • • • Reads values from your terminal and assigns them to the elements of a matrix or 
list of matrixes, within a prescribed time. 

MAT WRITE {FILE}{(fiIe) } ,mvar [,mvarJ. .. 
# (file,record) • • • • 

Writes matrix data in binary format to a file. 

MAX [val] P 
• • • Sets the limit for a number of active users. 

td 

t MSG "processname" , "message" -----~" 

"console name" j • • • 
Transmits a message from your terminal to another programmer or to the system 
operator. 

MSG user ID message 

Transmits messages to other users or the operator or cancels NOMSG. • • • 

E-6 Licensed Material-Property of Data General Corporation 093-000065-10 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

NEW ["filename"} )! • • • • 
Clears your storage area. 

NEXT control var y 
• • • • "-

The last statement in a FOR-NEXT loop; changes the value of the control variable. 

NOECHO 

Disables character echoing on input. 
/ • • • • E 

I 

NOESC 
• • • • Disables ESC interrupt handling. j / 

NOMSG 
: 

• • • • Prevents receipt of messages. 
/"' 

ON ERR {THEN line no. } 
[THEN} statement r'i • • • 

Directs the program to an error-handling routine when an error occurs. 

ON ESC {THEN line no. } (? , I, 

[THEN} statement / • • • f::; 
Directs the program to a user-handling routine when ESCape is pressed. 

ON expr {GOTO } line no. [,line no.} ... 
GOSUB 

'" • • • Transfers program control to a line number whose position in the argument list 
is computed from an expression. 

OPEN {:ILE} (file,mode),"filename" [,recordsize [,Jilesizej] 
/ • • • • 

Opens a file which can then be referred to by other file I/O statements. 

ORD(expr) ~2:~ 
'/r/ • • • Represents the ordinal position of a character in the ASCII collating sequence. 

PAGE = expr 
• • • • Sets the right margin of the terminal. 

POS {(SVarl) },{(SVar2) }' (expr) 
("str lit 1 ") ("str lit 2") • • • y 

Locates the position of a substring in a string. 

{P~INT}[{ ~;:it"}[{ ~} F;:it" III [{ ~}] • • • • 
TAB(n) TAB(n) 

Prints specified data. 

~ expr } [o{ ~:!:. }l· [{: }] PRINT FILE (file) var 
{; }{ # }{ (fiIe,reCOrd)}' (~~:: lit" V • • • • "str ht" I 

Outputs data to an ASCII device. 

093-000065-10 Licensed Material-Property of Data General Corporation E-7 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

{PRINT}{FjLE} (file,[recordj), USING format, expr[,expr] ... 

• • • • 
Formats output to files. 

PRINT USING format, expr fexpr } ... 
,expr • • • • 

Formats printed output. 

fne nl l] 
PUNCH 

{~O} line n2 

line nrorne n2~ • • N 

Outputs part or all of the current program to the terminal punch. 

RANDOMIZE 
• • , • Resets the random number generator. 'I 

READ {var } [{.var }y 
svar ,svar • • • • 

Reads data from DATA statements. 

READ {FILE}{(file) } {var }[ {var }] ... 
# (file, record) , svar ' svar • • • • 

Reads data in binary format from a file. 

RELEASE name P 
• • • Prevents further I/O access to a previously initiaIJzed directory or device. 

REM [message] 
• • • Inserts explanatory comments into a program. 

RENAME "oldfilename", "newfilename" 
• • • • Renames files. 

[~ line nl ~l {STEP} 'n2 
RENUMBER , I t line nl {~TEP} n2 j • • • 

Renumbers statements in the current program. 

RESET [WLE} (file) ] 
• • • • 

Positions the file pointer to the beginning of a file. 

RESTORE [line no.] 

Moves the data element pointer to the beginning of a data list or DATA statement • • • • 
line. 

RETRY Repeats the statement which caused an error. • • • -

E-8 Licensed Material-Property of Data General Corporation 093-000065-10 



Formats and Descriptions 

RETURN Y 
Last statement of a subroutine; returns program control to statement following last 
GOSUB statement executed. 

RND(expr) 

Random number n, such that 0 < = n < 1. 
y 
i 

RUN· [{;~~:~me"}J y 
Executes a program either from the first line or from a specified line. 

SA VE "filename" 'y 
W rites the current program into your directory or to a device in binary format. 

SEARCHLIST {[pathnameJ } 
pa thname [,pat hname J 

Displays, sets or stores the searchlist setting. The current searchlist specifies which 
directories, in addition to the working directory, are searched for file references 
other than DELETE. 

SGN(expr) 

The algebraic sign of an expression. 

SHARE "filename" 

Adds the resolution file attribute H (sharable) to a file that already exists in your 
directory. 

SIN(expr) 

The sine of an angle expressed in radians. 

SIZE 

Provides program and data storage usage information. 

SPOS {;ILE} (file), expr 

Moves the file pointer to the byte position specified by expr. 

SQR(expr) 

. The square root of an expression. 

STOP 

Stops program execution. 

STR$(expr) 

Converts a numeric expression to its string representation. 

SYS(O) 

The time of day (seconds past midnight). 

SYS(1) 

The day of the month. 

SYS(2) 

The month of the year. 

y 

\y 
I 

\/ 
I 

093-000065-10 Licensed Material-Property of Data General Corporation 

S 

• 

• 

• 

• 

• 

• 

• 

c F AOS RDOS 
Aos/vs DOS 

• • 

• • • E 

• • • 7' 

• • • y 

• • y 

• • • y 

• • 

• • • 

• • • 

• • • 

• • • 

• • 

• • • 

• • · ~ 
• • • t:; 

• • • 

E-9 



Formats and Descriptions S C F AOS RDOS 
AOS/VS DOS 

SYS(3) 
• • • 

The year. 

SYS(4) 
• • • The multiplexor line number or terminal number (-I for operator's terminal). 

SYS(5) 
• • • 

CPU time used, in seconds. 

SYS(6) 

The number of file I/O statements executed. • • • 
SYS(7) 

• • • The error code of the last runtime error. 

SYS(8) 
• • • The number of the file most recently opened. 

SYS(9) 
• • • 

Page size. 
, 

SYS(IO) 
• • • Tab size. 

SYS(1I) 
• • • Hour of the day. 

SYS(12) 
• • • Minutes past last hour. 

SYS(13) 
• • • Seconds past last minute. 

SYS(14) 
• • • Seconds remaining on timed input. 

SYS(15) 
• • • The constant PI (3.14159). 

SYS(16) 
• • • 

The constant e (2.71828). 

SYS(17) 
• • • 

1 / 10 second clock. 

SYS(18) 
• • • 

Total number of BASIC I/O calls. 

SYS(19) 
• • • Line number of the last error. 

TAB=expr 
~/ 

Sets the zone spacing for PRINT statements. • • • • E 

E-10 Licensed Material-Property of Data. General Corporation 093-000065-10 



Formats and Descriptions S C F AOS RDOS 
Aos/vs DOS 

TAB(expr) 
! • • • 

Function used with PRINT for tabulating to a column. 

TAN(expr) 
y • • • The tangent of an angle expressed in radians. 

y 

TIME = expr 
• • • • Establishes the time limit for timed input operation. 

TINPUT [(line no. I, time]).} {"str lit",] {var } [{var }] ... [;] 
svar ,svar • • • • E 

Sets a time limit for programmer response. 

UNLOCK [idenJ 
---..-. • • • Frees locked areas for use. 

UNSHARE "filename" 

Removes the resolution file attribute H (sharable) from a file that alrea.sl~ __ . 
exists in your directory. 

• • • E 

USERS [userIDJ 
• • • Prints a status report of all active users. 

VAL {(svar) } 
("str lit") • • • 

Returns decimal representation of a string. 

var = DET(X) 
-.. __ .- • • • • Obtains the determinant of the last matrix inverted by an INV statement. 

WHA TS "filename" 
• • • • Prints attributes and other information relating to a file . 

. WHO [{~rocess/D ,,} J --process name • • • • 
Identifies others on the system or provides your own identification. 

rxpr }[ expr }] WRITE FILE (file) var var {# }{ (file,reCOrd)}, sva r ' {svar ... y • • • • "str lit" . "str lit" 

Writes data in binary format to a file. 

093-000065-10 Licensed Material-Property of Data General Corporation E-11 





Appendix F 
Checklist of Operating System Incompatibilities 

Generally differences between RDOS-DOS and AOS
AOS/VS are not syntactical but products of different 
operating environments. This appendix documents many 
of these differences, as well as some similarities. 

1. For both RDOS-DOS and AOS-AOS/VS operating 
environments, the nesting limits are identical: 20 for 
FOR-NEXT and GOSUB statements, and 10 user
defined functions. 

2. SAVE file formats are different. Thus, when con
verting programs from one operating system to 
another, you must transfer the programs in source 
format. If your programs are in SAVE format, they 
must first be loaded and then listed to disk files. 
This converts the SAVE format to source format. 
You can then enter the source files in the destination 
BASIC, and resave them. 

3. AOS and AOS/VS' diskettes are incompatible with 
both RDOS and DOS diskettes. RDOS and DOS 
diskettes are accessible under AOS by using the 
CLI utility RDOS. 

4. Logon procedures are different. An RDOS user must 
press either ESC or the DEL key to begin logging 
on, and can logon to the CLI only from the system 
terminal. Other RDOS users logon directly to BA
SIC. AOS users press NEW LINE to begin logging 
on, and may have access to the CLI from any console 
before invoking BASIC. 

5. Unlike RDOS, AOS-AOS/VS BASIC provides no 
system accounting data at logoff. 

6. RDOS BASIC saves the user's workspace upon a 
forced logoff caused by line drop (but not operator 
kill), while AOS-AOS/VS BASIC has no such 

. facility. 

7. I/O involving strings can produce different results 
because standard delimiters for data-sensitive 'I/O 
under RDOS are CR, FF, and NULL, while under 
AOS they are CR, NL,FF, and NULL. 

• L WRITE FILE and WRITE FILE append a 
NULL to strings on output, and are compatible 
between RDOS and AOS BASIC. 

• READ FILE terminates string input upon detec
tion of the NULL delimiter only, and is compatible 
between RDOS and AOS BASIC. 

• LREAD FILE and INPUT FILE terminate string 
input by the delimiters CR, FF, and NULL in 
RDOS BASIC, and by CR, FF, NL, and NULL 
in AOS BASIC. In this case,RDOS ignores the 
character NL on input, since these two statements 
use the .RDL system call, which ignores NL. 

• When a CR is imbedded in a string and is output 
to a terminal using L WRITE or PRINT, the CR 
produces a carriage return/line feed in RDOS, 
but only a carriage return in AOS. 

• Terminal input (INPUT or LREAD) is delimited 
by a CR or FF under RDOS, and by CR, NL, or 
FF in AOS. Terminals on a RDOS multiplexor 
line recognize the NL character as a delimiter, but 
convert the NL to a CR before passing the 
delimiter to BASIC. 

8. The ACL statement is restricted to AOS. 

9. Unlike RDOS, an execute-only BASIC program 
cannot be generated for AOS. 

10. In RDOS, BYE deactivates the terminal from which 
it is issued. If issued from the system terminal,BYE 
brings the system down if no users are logged on. 

11. AOS BASIC does not accept mark sense cards in 
BASIC's abbreviated format. 

12. Characteristics for the statement CHAR differ 
somewhat between AOS and RDOS. For example, 
the RDOS characteristic NOE (no echo of input) 
becomes EBO (echo all characters) and EB 1 (echo 
all characters except control characters) under AOS . 
The RDOS characteristic XON is not found in AOS. 
And, the AOS characteristic FKT (enable function 
keys as delimiters) does not exist under RDOS. 

13. The CHATR (change file attributes), SHARE, and 
UNSHARE statements are restricted to RDOS. 
Under AOS and 'AOS/VS, their functions are 
performed by a combination of the ACL (BASIC) 
and PERM (CLI) statements. 

093-000065-10 Licensed Material-Property of Data General Corporation F-1 



14. The command CLI is restricted to AOS and 
AOS/VS BASIC. 

15. The maximum time interval for the DELAY state
ment is 65000 under RDOS, and approximately 
4,000,000 in AOS. 

16. RDOS Extended BASIC always reports the user's 
disk space. AOS and AOS/VS Extended BASIC 
sometimes generates the message "ERROR 517 -
File is not a control point directory." 

17. The command FILE in AOS accepts a template; 
under RDOS, it does not. This makes a difference to 
programs that combine FILE and AUDIT to build 
lists of filenames. The output in RDOS is a con
densed display of filenames only, while the output in 
AOS is equivalent to the command CLI 
FILESTATUS / AS. 

18. The syntax LET A=B=C is accepted by AOS 
only, while the syntax LET A,B=C is accepted by 
both AOS and RDOS. 

19. The LEVEL statement exists in RDOS BASIC only. 

20. In AOS, the LIBRARY statement accepts filename 
template and directory name arguments, and pro
duces detailed output equivalent to the command 
CLI FILE/AS. The RDOS version accepts no 
arguments, and produces a condensed tabular dis
play of filenames only. 

21. The LOCK statement exists in AOS BASIC only. 

22. Programs that construct messages and select mes
sage targets cannot be run under RDOS BASIC. 

23. Under RDOS, the page width is 15 to 132; under 
AOS, it is 8 to 255. The page width cannot be set 
under AOS BATCH because it is considered a 
console characteristic. 

24. The PUNCH statement exists in RDOS BASIC 
only. 

25. When the SAVE command requests user confirma
tion to delete an existing file of the same name, the 
user must press CR under RDOS, NEW LINE 
under AOS. 

26. The SEARCHLIST statement exists in AOS BA
SIC only. 

27. The SHARE statement exists in RDOS BASIC 
only. 

28. The maximum value of the argument to the TIME 
statement is approximately 65,000 under RDOS and 
4,000,000 under AOS. 

29. The UNLOCK statement exists in AOS BASIC 
only. 

30. The UNSHARE statement exists in RDOS BASIC 
only. 

31. The results of the WHA TS statement differ between 
AOS and RDOS. AOS does not provide the date 
created or the date last used, and does not display 
the current use count. 

32. The function CPU exists in RDOS BASIC only. 

33. SYS{l7) exists only in RDOS BASIC. AOS returns 
the message "ERROR 25 - Feature not available," 
which halts the program. 

34. The lists of reserved filenames differ between RDOS 
and AOS. 

35. The OPEN FILE statements differ: 

• The maximum file number is 15 for AOS, 7 for 
RDOS. 

• The file size argument is syntactically accepted in 
both RDOS and AOS, but is ignored in AOS 
BASIC. 

• The file I/O mode numbers in RDOS and AOS 
differ in interpretation and results: 

Mode RDOS AOS 

o Sharable I/O Exclusive I/O 

Exclusive output Exclusive write only 
Sharable input 

2 Exclusive output Exclusive write only 
Sharable input 

3 Shared input only Nonexclusive input only 

7 Sharable I/O Shared I/O 

36. The assembler subroutine support routines .MPY. 
MPY A, .DVD, .DVDI do not exist in AOS and 
AOS/VS Extended BASIC because single 
ECLIPSE instructions can be used in their place. 

37. In RDOS multiuser BASIC, the program must enter 
single-task mode to perform I/O to or from program 
variables. 

38. File I/O error messages and their numbers differ 
between AOS and RDOS. For example, the RDOS 
message "I/O Error 10 - File not found" is "I/O 
Error 21 - File does not exist" in AOS. Such 
inconsistency prevents intelligent error handling by 
programs that are RDOS-AOS compatible. 

Note the following distinctions between error mes
sages: 

F-2 Licensed Material-Property of Data General Corporation 093-000065-10 



f"""'~ 

Number AOS,AOS/VS RDOS/DOS 

09 File cannot be loaded -
wrong revision 

12 Mantissa overflow 

13 Arithmetic underflow 

17 Arithmetic overflow 

24 Attempt to divide by zero Directory empty 

47 Checksum Edit buffer empty 

48 Not a core image file String not found (edit) 

49 No room for directory 

50 Illegal edit function 

51 Edit buffer empty User not active (MSG) 

52 Specified string not found User in NOMSG state 

63 Attempt to issue lock / un-
lock with RLS not running 

64 Attempt to lock same re- System active 
cord twice 

65 RLS out of memory Device timeout 
/~ 

End of Appendix 

093-000065-10 Licensed Material-Property of Data General Corporation F-3 





! comment symbol 1-1 

$ 

$ in filename 1-8 

prompt 1-1 

. editing command 3-2 

. in filename 1-9 

.A command 3-3 

.C command 3-3 

.E command 3-4 

.P command 3-5 

A 

abbreviations 1-1 
ABS function 3-5 
absolute value of expression 3-5 
access control list, change or display 3-6 
account name 1-2 
ACL 1-3,3-6 
Advanced Operating System (AOS) 1-1 
Advanced Operating System/Virtual Storage 
(AOS /VS) 1-1 

CLI 1-3 
logging off BASIC 1-5 
logging on BASIC 1-3 
CLI 1-3 
logging off BASIC 1-5 
logging on BASIC 1-3 

ALL 3-7 
arguments, abbreviations 1-1 
arithmetic operations 2-4 
arithmetic operators 2-4 

Index 

priorities 2-4 
array 2-2 

bounds 2-3, 3-22 
declaration 2-3 
dimensioning 1-7, 2-3, 3-22 
elements 2-2, 3-22 
one-dimensional 1-7 
redimensioning 1-8, 2-3, 3-22 
subscripts 2-2, 3-22 
two-dimensional 1-7 

ASCII character, numeric representation 3-16 
assembly language subroutine 4-1 

argument control word 4-2 
available from BASIC 4-3 
BASIC call sequence 4-2 
conversion routines 4-3 
illegal CALL 4-2 
interlocked 4-3 
multiuser (RDOS) 4-3 
reentrant 4-3 
support routine differences F-2 
table 4-1 

assignment 3-42 
asterisk prompt 1-1 
A TN function 3-7 
AUDIT 3-8 

B 

backarrow 1-2 
backslash 1-3 
BATCH 1-1 
blank spaces 1-2 
brace, format convention pref. 
bracket, format convention pref. 
BYE 1-4, 1-5 

AOS and AOS /VS 3-8 
RDOS and DOS 3-9 
system differences F-l 

c 
calculations 1-6 



using program values 1-6 
CALL 3-9, 4-1 

illegal use 4-2 
card format 3-10 
CARDS 3-10 
carriage return 1-1 
cassette 1-1 
CDIR 3-10 
CHAIN 3-11 

effect on RND 3-88 
CHAR 1-3 

AOS and AOS/VS 3-12 
RDOS and DOS 3-13 
system differences F-l 

CHATR 1-3,3-15 
CHR$ function 3-16 
CLI 3-16 
CLOSE FILE 3-17 
column 

cursor positioning 1-9 
in array 1-7 

command 1-1, 1-2, 1-5 
command line interpreter, access from BASIC 3-16 
comments in programs 1-1, 1-3 
communicating with system operator 1-5, 3-61, 3-62 
CON 1-7,3-17, 3-56 

after STOP 3-95 
console switches 3-19 
control, transfer of 3-35, 3-36, 3-66 
core image via SAVE 1-3 
COS function 3-18 
cosine of angle 3-18 
CPART 3-19 
CPU function 3-19 
CPU time, returning value of 3-96 
CR key 1-1 
CTRL-x keys 3-25, 3-26 

o 
DATA 1-5,3-20,3-80 

string variables 2-6 
with RESTORE 3-86 

data element pointer 3-86 
data switch 3-19 
date, returning value of 3-96 
debugging programs 1-7 
decimal point representation (.) 3-75 
DEF 1-5, 3-20 
D EF function 3-20 
definition of a file 1-8 
DEL key 1-2, 1-3 
DELAY 1-4, 3-21 

system differences F-2 
DELETE 3-22 
DET 3-52 
devices 1-8, 1-9 

initializing of 3-39 
releasing of 3-83 
characteristics 3-12, 3-13 
independence 1-5 

digit representation (#) 3-75 
DIM 1-7,3-22 

arrays 2-3 
string variables 2-5 

dimensioning arrays 1-7, 2-3, 3-22 
string arrays 3-22 

dimensioning string variables 2-5 
DIR 

AOS and AOS/VS 3-23 
RDOS and DOS 3-24 

directory 
current 3-23, 3-24 
deleting 3-21 
displaying of 3-23, 3-24 
in searchlist 3-91 
initializing of 3-39 
library 3-43, 3-44 
listing of files in 3-31 
printing name of 3-35 
releasing of 3-83 
renaming files in 3-84 
setting of 3-23, 3-24 

DISABLE 3-25 
DISK 3-25 
disk, filenames 1-8, 1-9 
disk blocks 3-25 
Disk Operating System (DOS) 1-1 

logging off BASIC 1-4 
logging on BASIC 1-2 

diskette, incompatibility F-l 
dollar sign in filename 1-8 
dollar sign representation ($) 

fixed 3-76 
floating 3-77 

double-precision calculation 2-1 
dynamic program debugging 1-7 

E 

e, returning value of 3-96 
e (2.71828) 3-30 
E-type notation 2-1 
ECHO 3-26 
editing 

append to buffer line 3-3 



buffer 3-2 
change buffer line 3-3, 3-4 
display buffer 3-5 

editing commands 1-4, 3-1 
ellipses, format convention 2 
ENABLE 3-25, 3-26 
END 1-5, 3-27 
end of file 3-28 
ENTER 1-4, 1-4, 3-27 
EO F function 3-28 

with READ FILE 3-82 
ERASE 1-4,3-29 
erasing characters 1-2 
error, returning line number of 3-96 
error handling 

by program routine 3-65 
with RETRY 3-87 

error messages A-I 
categories of A-I 
system differences F-2 

ESC 1-4, 3-29, 3-63 
ESC key 1-2, 1-3, 3-34, 3-66 

enabling of 3-29 
escape handling, by program routine 3-65 
exclusive record access 3-46 

unlocking 3-100 
execution 3-89 

continue from interruption 3-17 
delay of 3-21 
interruption of 1-4, 3-29, 3-34 
terminating 3-27, 3-95 

EXP function 3-30 
exponent representation ("''''''AA) 3-77 
exponential format 2-1 

in strings 2-7 
expression 

numeric 2-4 
relational 2-4, 2-6 
string 2-6, 2-7 
use of parentheses 2-4 
value of sign 3-92 

extension to filename 1-8, 1-9 

F 

FALL 3-30 
FILE 1-4 

AOS and AOS/VS 3-31 
file 

RDOS and DOS 3-31 
records 1-8 

_,""- access modes 3-67 
system differences F -2 

core image 1-3 
definition 1-8 
I/O 1-5 
number 3-67 
removing sharable attribute (H) 3-101 
sharable attribute (H) 3-92 
size 3-67 
source 1-8, 1-9 

file access attributes 3-6 
file I/O commands and statements 3-1 
file number, returning value of 3-96 
file pointer 3-37, 3-85, 3-94 
filenames 1-8 

AOS and AOS/VS 1-9 
AOS and AOS/VS reserved 1-9 
extensions 1-8, 1-9 
RDOS/DOS 1-8 
RDOS/DOS reserved 1-8 

floating point 2-1 
FMSG 3-32, 3-64 
FN a function 3-20 
FOR 1-5, 3-32 
FOR and NEXT 3-32 

revision conversions 3-14 
nesting limit F-l 

format conventions 2 
FREE 3-34 
functions 1-1, 3-1 

defining 3-20 

G 

GDIR 3-35 
general commands and statements 3-1 
GOSUB 1-5, 3-35 

nesting limit F-l 
GOTO 1-5, 3-36 

with ON ERR THEN 3-65 
GPOS FILE 3-37 

H 

HELP 3-37 
Hollerith character set C-l 
Hollerith code B-1 

I/O calls, returning value of 3-96 
IDN 3-52 
IF-THEN 3-38 

use of strings 2-6 



with EOF function 3-28 
INIT 3-39 
INPUT 1-4, 3-39 

punctuating string responses 2-6 
input 

disable display 3-63 
from file 3-40, 3-48, 3-57, 3-59, 3-82 
from program 3-20, 3-59, 3-81 
from terminal 3-39, 3-48, 3-57, 3-60, 3-99 

INPUT FILE 3-40 
effect with WRITE FILE 3-105 
with PRINT FILE 3-73 

INT function 3-41 
internal number representation 2-1 
interruption, telephone line 1-5 
INV 3-53 

K 

keyword 1-1 
KILL 3-41 

L 

LEN function 3-42 
LET 3-42 

system differences F-2 
LEVEL 3-43 
LIBRARY 1-4 

AOS and AOS/VS 3-43 
RDOS AND DOS 3-44 
system differences F-2 

library directory 3-43, 3-44 
line number 1-1 

renumbering 3-84 
line number of error, returning value of 3-96 
LIST 1-2, 1-3, 1-4,3-45 
LOAD 1-3, 3-46 
LOCK 3-46 
LOG function 3-47 
logging off, system differences F-l 

BASIC (AOS, AOS/VS) 1-5 
BASIC (RDOS, DOS) 1-4 

logging on, system differences F-l 
BASIC (AOS, AOS/VS) 1-3 
BASIC (RDOS,DOS) 1-2 

loops 3-32 
control variable 3-63 
nesting 3-33 

lowercase 1-3 
LREAD 1-4, 2-6, 3-48 
LREAD FILE 3-48 
L WRITE 1-9, 3-49 
LWRITE FILE 3-50 

M 

magnetic tape units 1-5, 1-8 
mantissa 2-1 
margin on terminal 3-70 
mark-sense cards B-1 

AOS restriction F-I 
MAT INPUT 1-4,3-57 
MAT INPUT FILE 3-57 
MAT PRINT 1-4,3-58 
MAT PRINT FILE 3-58 
MAT READ 3-59 
MAT READ FILE 3-59 
MAT TINPUT 3-60 
MAT WRITE FILE 3-60 
matrix 

addition 3-51 
assignment 3-51 
determinant (DET) 3-52 
dimensioning of 3-56,3-57,3-58,3-59,3-60 
identity (IDN) 3-52 
inverse (lNV) 3-53 
multiplication 3-54 
redimensioning of 3-56, 3-59 
subtraction 3-51 
transposition (TRN) 3-55 
unit (CON) 3-56 
zero (ZER) 3-56 

matrix commands and statements 3-1 
MAX 3-61 
message 

disabling reception of 3-64 
overriding message suppression 3-32 
transmitting to terminals 3-7, 3-30, 3-32, 3-61, 3-62 

modem 1-2, 1-5 
MSG 

AOS and AOS/VS 3-61 
RDOS and DOS 3-62 

multifile devices 1-8 
multiplexor line number, returning value of 3-96 

N 

natural logarithm 3-47 
NEW 3-62 

effect on RND 3-88 
new line 1-1 
NEW LINE key 1-1 
NEXT 1-5, 3-32, 3-63 
NOECHO 3-63 
NOESC 3-29, 3-64 
NOMSG 3-64 
nonprinting characters 2-5 



number of users, setting maximum 3-61 
numeric data format 2-1 
numeric expression 2-4 

converting to string 3-96 
use of parentheses 2-4 

numeric variable 2-2 
in called subroutine 4-1 

o 
ON 1-5 
ON ERR THEN 3-65 

with NEW 3-62 
with RETRY 3-87 

ON ESC THEN 3-66 
with NEW 3-62 

ON-GOSUB 3-67 
ON-GOTO 3-67 
OPEN FILE 3-67 

system differences F-2 
operators 2-4 

in strings 2-7 
ORD function 3-70 
ordinal position in collating sequence 3-70 
output 

to file 3-60, 3-73, 3-74, 3-105 
to punch 3-79 

p 

PAGE 3-70 
with PRINT 3-72 

page size, returning value of 3-96 
page width, system differences F-2 
parentheses, format convention 2 
partition, secondary 3-19 
password 1-2 
pathname 3-23 

in searchlist 3-91 
period in filename 1-9 
pi, returning value of 3-96 
pointer 

data element 3-86 
file 3-37, 3-85, 3-94 

port number 1-5 
POS function 3-70 
PRINT 1-3, 3-71 
PRINT FILE 3-73 
PRINT FILE USING 3-74 
print formats 3-58, 3-74, 3-75 
print representation 

double-precision 2-1 
single precision 2-1 

PRINT USING 3-75 
overriding PRINT format 2-2 

print zones 3-71, 3-97 
priority constant 3-43 
process 

display of identification number 3-105 
display of name 3-105 

program 
bytes and pages available 3-93, 3-94 
bytes and pages used 3-93, 3-94 
clearing from storage area 3-62 
debugging 1-7 
example 1-5 
listing of 3-45 
loading of 3-46 
saving of 3-90 

program execution 3-89 
terminating 3-95 

program interruption 1-4, 3-17, 3-29 
disabling "ESC 3-64 

program loops 3-32 
control variable 3-63 
nesting 3-33 

program subroutine 3-35 
prompt 

asterisk 1-1 
CLI 2 
Extended BASIC 2 
string 1-1 

pseudorandom number 3-88 
PUNCH 3-79 

R 

random number generator 3-80 
RANDOMIZE 3-80 
RDOS 

logging off BASIC 1-4 
logging on BASIC 1-2 

RDOS privileged commands 3-1 
READ 3-81 

string variables 2-6 
READ FILE 3-82 
Real-time Disk Operating System (RDOS) 1-1 
Real-Time Operating System (R TOS) 1-1 
record 

exclusive access 3-46 
length 3-67 
unlocking exclusive access 3-100 
writing to 3-50, 3-105 

redimensioning arrays 2-3, 3-22 
relational expression 2-4, 3-38 
relational operators 2-4 



RELEASE 3-83 
REM 1-1, 1-5,3-83 
remarks within program 3-83 
RENAME 3-84 
RENUMBER 1-4, 3-84 

and ERASE statements 3-29 
reserved filenames F -2 

AOS and AOS/VS 1 
RDOS and DOS 1 

RESET FILE 3-85 
with READ FILE 3-82 

resolution file attributes 3-15 
RESTORE 3-86 
RETRY 1-5, 3-87 
RETURN 1-5, 3-35, 3-88 
RND function 3-80, 3-88 
RUBOUT key 1-3 
RUN 1-2,3-89 

after STOP 3-95 
effect on RND 3-88 

running a program 1-2 
runtime error code, returning value of 3-96 

s 
SAVE 1-3,3-90 

file format differences F-l 
system differences F-2 

scalar 2-3 
screen, writing to 3-49 
SEARCH LIST 3-91 
secondary partition 3-19 
semicolon, synonym for PRINT 1-6 
separator representation (,) 3-77 
SGN function 3-92 
sharable attribute (H) 3-92 

removing 3-100 
SHARE 3-92 
sign representation (+ and -) 

fixed 3-75 
floating 3-76 

signing off BASIC 3-8, 3-9 
SIN function 3-93 
sine of angle 3-93 
single-precision calculations 2-1 
SIZE 

AOS and AOS/VS 3-93 
RDOS and DOS 3-94 

source code 
comments within 3-83 
deleting statements 3-29 
listing of 3-45 
merging 3-27 

saving of 3-90 
transferring 3-27 

SPOS FILE 3-94 
statement 1-1, 1-1 
sta tus report 

of file 3-104 
of users 3-101 

STOP 1-5, 3-95 
with ON ERR THEN 3-65 
with ON ESC THEN 3-66 

STR$ function 3-96 
string, numeric representation of 3-104 
string arithmetic 2-7 
string concatenation 2-7 
string data 2-5 

constants 2-5 
in called subroutine 4-1 
literals 2-5 
substring 2-5 
system differences on I/O F-l 
variable names 2-5 
variables 2-5 

string literal 1-2 
including non printing characters 2-5 

string variable 
assigning values 2-6 
dimensioning 2-5, 3-22 
length 2-5, 3-42 

subdirectory, creation of 3-10 
subroutine 

argument control word 4-2 
available from BASIC 4-3 
BASIC call sequence 4-2 
calling assembler routine 3-9, 4-1 
conversion routines 4-3 
illegal CALL 4-2 
in program 3-35 
interlocked 4-3 
multiuser (RDOS) 4-3 
nesting 3-35 
reentrant 4-3 
support routine differences F-2 
table 4-1 

substring 
assignment 2-5 
extraction 2-5 
in called subroutine 4-1 
position in string 3-70 
revision conversions 3-14 

SYS function 3-96 
with TIME 3-99 
with TINPUT 3-100 



T 

TAB 3-97 
with PRINT 3-72 

TAB function 3-71, 3-97 
revision conversions 3-14 

tab size, returning value of 3-96 
TAN function 3-98 
tangent of angle 3-7, 3-98 
telephone line interruption 1-5 
terminal, port number 1-5 
terminating a user 3-41 
terminology 1-1 
TIME 3-99 

system differences F-2 
with TINPUT 3-100 
time, returning value of 3-96 

timed input 3-59, 3-99 
returning amount remaining 3-96 
setting limit of 3-99 

TIN PUT 3-100 
transferring control 3-35, 3-36, 3-65, 3-66 
TRN 3-55 

u 
underscore in filename 1-9 
unit record devices 1-8 
UNLOCK 3-100 
UNSHARE 3-101 
uppercase 1-3 
USERS 3-101 

v 
VAL function 3-104 
variable 

array 2-2, 3-22 
assignment 3-42 
name 2-2, 2-5 
numeric 2-2 
numeric scalar 2-3 
shared name 2-3 
subscripted array 2-3 

w 
WHATS 3-104 

system differences F-2 
WHO 3-105 
WRITE FILE 3-105 

z 
ZER 3-56 





· reader comment: farm 

Extended BASIC Reference Manual 093-000065-10 

Your comments will help us Improve the quality of this publication. They will be carefully reviewed by the writers. Please 
refer to page numbers If appropriate. 

DID YOU FIND THE MATERIAL: 
YES NO 

• Useful? 
D 

• Complete? D 

• Accurate? D 

• Well organized? D 

COMMENTS: 

HOW DID YOU USE THIS PUBLICATION? 

D As an introduction to the subject 

D For information about operating procedures 

D To instruct in a class 

D 

D 

D 

D 

YES NO 

• Well illustrated? D D 

• Well written? D D 

• Easy to read? D D 

• Easy to understand? D D 

D As a student in a class 

D As a reference manual 

D Other (please explain ): 

Name ______________________________________________ __ Title __________________ _ 

Firm ________________________________________________ _ Date _____________________________ __ 

Street ________________________________ _ State _________________ __ 

City ____________________________________________ _ Zip ________________________________ _ 



------------------- First fold -----------------------------

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 WESTBORO, MASS 01580 

POSTAGE WILL BE PAID BY ADDRESSEE: 

t., Data General 
A TIN: SDD Documentation 
62 Alexander Drive 
Research Triangle Park, NC 27709 
USA 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

----------------------------Secondmld-----------------------------------------~ 





Data General Corporation, Westboro, MA 01580 
093-000065-10 


