
Idea

Interactive

Data Entry/Access

Reference Manual

(ADS)

093-000151-01

For the latest enhancements, cautions, documentation
changes, and other ill/ormatioll all this product, please see
the Release Notice (085-series) supplied with the so./tware.

Ordering No. 093-000151
© Data General Corporation, 1978, 1979
All Rights Reserved
Printed in the United States of America
Revision 01, December 1979
Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Idea
Interactive

Data Entry/ Access
Reference Manual

(AOS)
093-000151

Revision History:

Original Release - August 1978
First Revision - December 1979 (Idea Rev. 3.00)

A vertical bar or an asterisk in the margin of a page indicates substantive change or deletion,
respectively, from revision 00.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks

DAT APREP INFOS NOV ALITE
ECLIPSE NOV A SUPERNOV A

Trademarks

DASHER
DGIL
microNOVA

Preface

This manual describes Data General's Interactive Data Entry and Access (Idea) system as it
operates with the INFOS®fiIe management system under the Advanced Operating System (AOS).

Prerequisite Knowledge
Before you read this manual you should understand both AOS and the INFOS system. We suggest
that you read the following manuals:

• Learning to Use Your Advanced Operating System (069-000018)

• INFOS®System User's Manual (A OS) (093-000152)

System managers should also read the AOS System Manager's Guide, 093-000193.

If you plan to use RCX70 with Idea, you must read the RCX70 Reference Manual A OS, 093-000172.

Audience Definition
If you are a system manager, first read Chapters 1 and 2 for a basic understanding of Idea. Next,
read Chapter 10, "How to Load and Generate Idea." This will tell you where to place Idea system
files and local monitors, and what access privileges your programmers will need. You should also
read Chapter 9 after you have determined your system's printing requirements. This chapter will
show you how to set up Idea for the various printing formats.

If you are a programmer, you should read Chapters 1 through 6 before you begin writing programs.

Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

093-000151-01

Contents
describes the capabilities of the Idea system running with the INFOS system under
AOS. It shows you some of the different screen format types you can use with your
programs, as well as some of the different INFOS file structures available.

walks you through a programming example, from program design through the
implementation steps to program execution.

explains the Idea Format Generator (IFMT), the utility you use to create screen
formats. This chapter describes the full set of IFMT field picture characters and the
full set of attributes to assign to your screen data fields as well as how to design a
I 32-character format using the WIFMT utility.

describes Idea's Field Processing Language (IFPL), which you use to write your
programs.

describes the process for using an INFOS data file with a program.

describes the compilation process.

Licensed Material-Property of Data General Corporation iii

Chapter 7 is a reference section containing a detailed description of each IFPL command
arranged in alphabetical order.

Chapter 8 lists the Idea system utilities.

Chapter 9 describes the printing options available with Idea.

Chapter 10 tel1s the system manager how and where to load Idea. It describes how to create
global and local monitors, and how to invoke a local monitor, the initial process you
need to run a program.

Appendix A tel1s you how to convert ROOS Idea programs to AOS Idea programs, and vice
versa.

Appendix B describes the internal structure of the system COMMON file.

Appendix C describes the internal structure of the system transaction file TRANS.

Appendix 0 gives you listings of several application format/program modules. We provide the
sources of these modules on the system tape.

iv Licensed Material-Property of Data General Corporation 093-0001 51 -01

If you:

Reader, Please Note:

We use these conventions for command formats in this manual:

Where

COMMAND

required

[optionat]

COMMAND required [optionat]

Means

You must enter the command (or its accepted
abbreviation) as shown.

You must enter some argument (such as a filename).
Sometimes, we use:

{ requ~red1 } requlred 2

which means you must 'enter one of the arguments. Don't
enter the braces; they only set off the choice.

You have the option of entering this argument. Don't
enter the brackets; they only set off what's optional.

You may repeat the preceding entry or entries. The
explanation will tell you exactly what you may repeat.

Additionally, we use certain symbols in special ways:

Symbol

o

Means

Press the NEW LINE or RETURN key on your terminal's
keyboard.

Be sure to put a space here. (We use this only when we must;
normally, you can see where to put spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 35 8 •

Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFA CE FOR SYSTEM QUERIESAND RESPONSES.

) is the AOS eLI prompt.

Contacting Data General

• Have comments on this manual -- Please use the prepaid Remarks Form that appears after the
Index.

• Require additional manuals -- Please contact your local Data General sales representative.

• Experience software problems -- Please notify your local Data General systems engineer.

End of Preface

093-0001 51 -01 Licensed Material-Property of Data General Corporation v

Contents

... _ -- .• - .. _-----------------------------------

Chapter 1 - Introduction to Idea

Screen Formats · . 1-1
Scroll Fields · 1-2
Attributes · 1-2

IFPL Program
Compiling and Executing a Format/Program.

· 1-2
·1-3

The File System ·1-3
System Utilities. ·1-4
Templates. ·1-5

Chapter 2 - A Sample Programming Session

Problem Definition2-1
.2-1
.2-2

Defining the Screen Format
Defining the Screen Literals
Defining the Data Fields 2-4
Assigning Attributes. 2-5

Writing the Program. 2-10
Creating Source Text. 2-11
Compiling CHECKBOOK. 2-11

Executing the Program 2-11

Chapter 3 - IFMT -- The Format Generator

Entering IFMT3-1
IFMT Commands .. .3-2
Literals and LITERAL Mode .3-3
Data Fields and FIELD Mode. .. 3-4

Alphabetic Fields 3-4
Alphanumeric Fields. 3-4
Numeric Fields. 3-4

Decimal Point. 3-5
Zero Suppress Character 3-5
Signed Field Character. .. 3-5
Currency Symbol. .. 3-5
Check Protection. 3-5
Comma. 3-5

Restrictions .3-6
The Floating Currency and Sign Characters. 3-6
Examples ... 3-6
The Zero Suppress and Check Protection Character 3-6
Other Combinations 3-6

093-000151-01 Licensed Material-Property of Data General Corporation vii

Fields During Program Execution 3-6
Page and Scroll Mode · 3-6
Overlaying Partial Screens · 3-8
Blinking Screen Text · 3-10
Underscoring Screen Information · 3-11
Size and Number of Fields · 3-12
Att:'ibutes · 3-12
WIFMT -- The Wide Format Utility. · 3-14

How to Use WIFMT 3-14

Chapter 4 - The IFPL Language

Nonexecutable Statements
The PROCESS Statement
The REGISTER Statement .. .
Subroutine Definition Statements.
Table Definition Statements
File Definition Statements

Executable Statements
Data Moves Between Screen and Program.
Arithmetic Functions . .
Internal Considerations.
Signed Values
Control Statements
Data Manipulation Statements.
File Manipulation Statements
Printing Statements
Sending and Receiving Data .
Statements for Tape Logging.
Passing Records to Another Program. .
Miscellaneous Statements ...

Names
Program Names.
Other Names .. .

Length .. .
Delimiters.

Statements That Define Names
Using the RED ESIG NATE Statement.

Data Types
Auxiliary Words .. .
Continuation Lines.

Example
Comments
Sending Control Characters .
Reserved Words.

......................... 4-3

. .. .4-3
.4-4
.4-4
4-4

.4-5

.4-5

.4-5

.4-6

.4-7

.4-7

.4-7

.4-8

.4-8

.4-8

.4-8

.4-9

.4-9

.4-9
· 4-10

. 4-10
· 4-10

. 4-10
· 4-10
· 4-11
· 4-11
· 4-12
· 4-12
· 4-12
· 4-12
· 4-13

. 4-13

..... 4-13

Chapter 5 - Using INFOS Files with Idea Programs

Creating a File
Creating a Program to Build the Database

File Definition Statements in NEWPART.UP
File Manipulation Statements in NEWPART.UP

Creating a Program to Update the Database
File Definition Statements in QUPDA TE. UP
File Manipulation Statements in QUPDATE.UP

viii licensed Material-Property of Data General Corporation

· . 5-1
· .5-4
· .5-4

. .. 5-6
.5-6
. 5-7

. 5-8

093-0001 51-01

Chapter 6 - Compiling the IFPL Program

How the Compiler Works '.' 6-2

Chapter 7 - IFPL Statements

ACCEPT .. 7-6
ADD ... 7-7
COMPARE ... 7-7
COPY .. 7-8
DEFINE SUBINDEX .. 7-9
DESTROY .. 7-10
DISPLAY ... 7-10
DIVIDE .. 7-11
DUPLICATES .. 7-11
ENDSUB .. , 7-11
ENDTABLE ... 7-11
ESTABLISH LINK ... 7-12
FILE .. 7-15
FILE-NEW .. 7-16
FIND BEGINNING .. 7-17
FIND HOLD ... 7-17
FIND NEAREST .. 7-18
FIND NEXT ... 7-18
FIND PREVIOUS .. 7-19
FIND USING .. 7-19
FINISH .. 7-19
GOTO .. 7-20
GO TO USING ... 7-20
IF EQUAL .. 7-20
IF FOUND .. 7-20
IFGREATER .. 7-22
IF IN-RANGE .. 7-22
IF LESS .. 7-22
IF NOT-EQUAL .. 7-22
IF NOT-FOUND .. 7-23
IF OUT-RANGE .. 7-23
INACTIVITY .. 7-23
INCLUDES ... 7-24
INITIATE PRINTING ... 7-27
INVERT ... 7-27
KEY .. 7-28
LEFT ... 7-30
LENGTH ... 7-31
LINK ... 7-32
LOG .. 7-33
LOOKUP ... 7-33
MESSAGE .. 7-34
MOVE .. 7-35
MULTIPLY ... 7-36
NAME .. 7-37
NODE SIZE ... 7-37
ON BACKT AB ... 7-37
ON DISCONNECT ... 7-38
ON END DATA : 7-38

093-000151-01 Licensed Material-Property of Data General Corporation ix

ON ESCAPE ... 7-38
ON FUNCTION ... 7-39
ON-IOERR .. 7-40
ON LINE-ERR .. 7-41
ON LOGOFF ... 7-41
ON MODE CHANGE ... 7-41
ON NO-ACTIVITY ... 7-42
ON-OVERFLOW .. 7-43
ON REPEAT ... 7-43
ON SCREEN ... 7-44
PARAMETERS FOR SUBINDEX 7-44
PARTIAL LENGTH .. 7-45
PASS .. 7-45
PERFORM .. 7-45
PRINT ... 7-46
PRIORITY .. 7-47
PROCESS ... 7-47
QUEUE .. 7-50
QUIT .. 7-50
RANGE .. 7-51
RECEIVE ... 7-52
RECORD ... 7-53
RECORD FOR PASSING 7-53
RECORD FOR PRINTINl 7-54
RECORD FOR TAPE ... 7-54
REDEFINES ... 7-55
REDESIGNATE .. 7-56
REFILE .. 7-56
REGISTER .. 7-57
REINSTATE ... 7-58
RELEASE 7-5B
RELEASE ALL ... 7-58
REMOVE ... 7-58
RESET ... 7-59
RESET USING .. 7-59
RETRIEVE HIGH KEY .. 7-60
RETRIEVE KEY ... 7-61
RESTART ... 7-63
RETURN ... 7-63
RETURN USING .. 7-63
RIGHT ... 7-64
SEND -.. 7-65
STOP .. 7-66
STORE .. 7-66
SUBINDEX .. 7-67
SUBROUTINE .. 7-67
SUBTRACT ... 7-67
TABLE .. 7-68
TERMINATE .. 7-70
VERIFY . 7 -70
VERIFY NEXT ... 7-70
VERIFY PREVIOUS .. 7-70

x Licensed Material-Property of Data General Corporation 093-0001 51 -01

Chapter 8 - Idea System Utilities

ALPHA ... 8-2
CHGEM ... 8-3
DEFCOM. 8-4
ILIB ... 8-5
PALPH 8-7
PFMT .. 8-8

Chapter 9 - Printing

Using PRINTF with a Print Format 9-1
Creating Formats. 9-1
Designing the Records for Printing 9-2
Writing the Program. 9-2
Creating the COMMON File. 9-4
Running the Input Program. 9-4

Using PRINTF ... 9-4
Examples ... 9-4
Printing Scroll Fields .. 9-5
Inserting Your Own Form Feeds 9-5
Printing Headings After Form Feeds 9-5

Printing Screen Snapshots on a DASHER Printer 9-6
Using a DASHER Printer as a Terminal. 9-6
Some Sample Applications .. 9- 7

Printing More Than One Report Per Page 9-7
Generating Two Reports From a Single Idea Format 9-9

Chapter 10 - How to Load and Generate Idea

Before You Load the Tape. 10-1
Loading the Tape .. 10-1
Executing LOADIDEA .. 10-2
After You Load the Tape 10-2
Generating the Idea Monitors 10-2
Examples ... 10-3
The Sysgen Dialog ... 10-3
Bringing Up Global Idea .. 10-5

Changing Tape Logging to Disk Logging 10-5
Supervisory Console Commands 10-6

Using Idea 10-7
System Considerations of the Local Monitor 10-7

Appendix A - Converting Programs Between ADS and RDDS

Converting from RDOS to AOS A-l
Converting from AOS to RDOS A-I

Method 1. .. A-l
Method 2 ... A-2

093-0001 51 -01 Licensed Material-Property of Data General Corporation xi

Appendix B - The COMMON File

The COMMON Print Facility B-2
The COMMON Passing Facility B-S
Inspecting COMMON with Idea B-6

Appendix C - The Transaction File TRANS

Creating TRANS ... C-l
The Structure of TRANS .. C-2
Displaying TRANS Contents C-4

Appendix 0 - Format/Program Module listing

Tables

Table Caption

I-I The System Utilities .. 1-4

3-1 IFMT Command Repertoire (60S3 Terminal) 3-2
3-2 The IFMT Attributes ... 3-13

4-1 IFPL Reserved Words and Their Pictures 4-14

7-1 IFPL Statement Summary 7-1
7-2 BINARY and PACKED INCLUDES 7-26
7-3 BINARY and PACKED Keys 7-29
7-4 Moving Data with the LEFT Statement 7-30
7-S Parameter-Fitting by the MOVE Statement 7-36
7-6 TypicaIOperations .. 7-S1
7-7 Examples of Data Moved with the RIGHT Command 7-64

8-1 The Idea Utilities .. 8-1
8-2 The ILIB Commands .. 8-6

10-1 The Supervisory Commands 10-6
10-2 The Operator Data Entry Special Function Keys 10-8

B-1 Keys Used for Print Records in the COMMON File B-2

C-l The Structure of the TRANS File C-2

0-1 Demonstration Modules 0-1

xii Licensed Material-Property of Data General Corporation 093-000151-01

Illustrations

Figure Caption

I-I A Typical Screen Format as Defined with IFMT I-I
1-2 A Format with a Scroll Area 1-2
1-3 PROCESS Statements Connect Fields to Routines 1-3

2-1 The Initial Screen .. 2-2
2-2 The Literals for CHECKBOOK 2-3
2-3 Literal and Data Field Information for CHECKBOOK 2-4
2-4 The Attribute Query Line 2-5
2-5 The CHECKBOOK Screen: Assigning the EDIT Attribute to

the First Field .2-6
2-6 After You've Assigned Attributes to a Field, IFMT Asks About

the Next one ... 2-7
2-7 IFMT Format Link Option 2-8
2-8 IFMT Puts the New Format Through a Special Program to

Create an Idea-readable .FP File 2-9
2-9 The Source Text of Our Program 2-10

3-1 A Scroll Field Specification .3-7
3-2 The Displayed Scroll Fields 3-8
3-3 The Second Format Contains an Overlay Area 3-9
3-4 The Monitor Overlays the Area Between the Exclamation

Points ... 3-9
3-5 The Words BLINKING SCREEN EXAMPLE Will Blink 3-10
3-6 The System Underlines the Words UNDERSCORE EXAMPLE 3-11
3-7 The Initial WIFMT Screen 3-15

4-1 The Block Structure of an IFPL Program. .4-1
4-2 An IFPL Program .. 4-2

5-1 A Single-Key ISAM File Where the Key IS a Field in the Record 5-2
5-2 A Single-Key ISAM File Where the Key Is NOT Part of the

Record .. 5-2
5-3 Our Dialog with ICREA TE 5-3
5-4 The Screen Format Named NEWPART 5-4
5-5 The Program NEWPAR T 5-5
5-6 The Screen Format Named QUPDATE 5-6
5-7 The Program QUPDATE.UP 5-7

7 -1 Passing and Accepting Programs. 7-6
7-2 A File with Three Index Levels 7-9
7-3 An Index Structure with a Link Between a Key Sequence and a

Subindex .. 7-12
7-4 Using EST ABLISH LINK to Create an Index Structure 7-13
7-5 A File with Inverted Database Records and Unnecessarily

Duplicated Subindexes 7-14

093-0001 51 -01 Licensed Malerial-Properly of Dala Gener,al Corporation xiii

7-6 Figure 7-5 Reconfigured Using ESTABLISH LINK 7-15
7-7 FILE-NEW Example ... 7-16
7-8 The IF FOUND Statements Branch to the Appropriate Routines 7-21
7-9 INCLUDES Example .. 7-24
7-10 A 5-digit PACKED INCLUDES 7-26
7-11 INVERT Example .. 7-27
7-12 A 5-digit PACKED Key 7-29
7-13 The RET AIN Clause Lets You Keep Files Open 7-32
7-14 Logging-off an Inactive Terminal with ON NO-ACTIVITY 7-42
7-15 The Statements for Printing 7-46
7-16 An Example of PROCESS FILLER 7-49
7-17 Use of REDESIGNATE 7-56
7 -18 Retrieving the Highest Key . 7-60
7-19 Name Update ... 7-61

8-1 A Sample ALPHA Dialog 8-2
8-2 The ILIB Screen ... 8-5

9-1 The Printing Program PRINTPROG.UP, the Screen Format
PRINTPROG, and the Printing Format PRINTOUT. 9-3

9-2 Printed Output Produced by PRINTF Using PAGEFMT 9-8
9-3 Printed Report of D ASHD R VR Transaction Produced by Print

Format PAGEFMT ... 9-9
9-4 Summary Report Printed Out Using the Printing Format,

SCRLLFMT .. 9-10

B-1 The ICREATE Parameters Used by DEFCOM B-1
B-2 An IFPL View of COMMON B-3
B-3 COMMON Printing Facility B-4
B-4 The COMMON Passing Facility B-5
B-5 Using SHOWME to Inspect the COMMON File B-6
B-6 Using BIGFOOT and PTITLE B-7

C-l The Contents ofTRANSACTION.FF C-2
C-2 READTRAN .. C-4
C-3 TRANSFILE ... C-ll

D-l DASHJR ... D-2
D-2 DASHDRVR .. D-6
D-3 DASHCOMM ... D-14
D-4 BLUEBEARD and GRAYBEARD D-20
D-5 DASHDIAG .. D-28
D-6 HSPA7.................. D-31
D-7 BIGFOOT................ D-35
D-8 CRAIGS and BARGRAPH D-45

xiv Licensed Material-Property of Data General Corporation 093-0001 51 -01

Chapter 1
Introduction to Idea

The Idea system is designed specifically for programs that display a format on the terminal screen as
a guide for data input and output.

Screen Formats

The first step in writing an Idea program is designing the screen format. The format generator
(IFMT) allows you to type on the screen as though you are typing on a blank piece of paper. You
create data fields on the screen using COBOL-like picture characters -- 9s for numbers, As for
letters, Xs for alphanumeric data, etc. These fields serve as windows through which you enter data
into the program and the program displays data. You can position the cursor anywhere on the screen
to type these fields.

You can also use any keyboard characters (except the exclamation point) as literals -- labels
describing the data fields. For example, Figure 1-1 shows an accounts receivable screen format. The
data fields appear brighter than the literal labels.

8D-01767

Figure 1-1. A Typical Screen Format as Defined with 1FMT

093-0001 51 -01 Licensed Material-Property 01 Data General Corporation 1 -1

Notice that the slashes in the dates are literal characters; each date is composed of 3 numeric fields.
The Zs in the monetary fields are zero suppress characters; you may use them in place of 9s to
eliminate leading zeros. We describe all the picture characters in Chapter 3.

Scroll Fields

Screens can also contain scroll areas. A scroll area is a series of lines that lets you repeat information.
Figure 1-2 shows a screen with scrolled lines.

80-01776

Figure 1-2. A Format with a Scroll Area

Attributes

After you have defined the fields and literals, you assign attributes to the fields. These attributes
define how the program will use the field -- EDIT-only, DISPLAY-only, or both. They also allow
you to control data input with additional options such as SECURE, which displays asterisks when an
operator enters a value into a field.

I FPL Program
The screens are only half the story. Behind each screen may be a program written in Idea's Field
Processing Language (IFPL). The IFPL programs contain PROCESS statements that connect the
screen fields to routines in the program (see Figure 1-3).

1-2 Licensed Malerial-Properly of Oala General Corporation 093-000151-01

----11-1...,....- PROCESS FIELD_1 AT NONE AND ONE

-----1~r-PROCESS FIELD_2 AT NONE AND TWO

_--it--'~- PROCESS FIELD_3 AT NONE AND THREE

80-01727

Figure 1-3. PROCESS Statements Connect Fields to Routines

Compiling and Executing a Format/Program
After you have defined the format and created the program source text, you compile the format and
the program together to form an executable module using the SYNTAX command (described in
Chapter 6). The compiler checks the screen field definitions and PROCESS statements for
one-to-one correspondence. It reports any mismatches in DISPLAY/EDIT type,
numeric/alphabetic/alphanumeric type, and so on. This type of error thus will not occur at runtime.

To execute a format/program module, you call up a local monitor. Your system manager will create
the global and local monitors with the IDEASG command, described in Chapter 10. The global
monitor is invisible; it operates behind the scenes, managing the system functions.

When you call up the local monitor, it asks for the name of the format you wish to use. When you
give the format name, the monitor calls in the format/program module, displays the format on the
screen, and waits to accept input.

In Chapter 2, we walk you through the above procedures, taking a programming session from
problem design through its implementation to its format/program execution.

The File System

Idea uses AOS INFOS system DBAM files, which allow you several options for designing your
database records and index structures. The options include the use of duplicate keys, approximate
keys, generic keys, inverted keys, partial records, and subindexes. The 1NFOS System User's Manual
(AOS), 93-000152, explains these options in detail.

To create a file, use the INFOS system ICREA TE utility. You then define the file and records in a
series of file definition statements within the program. Use file manipulation statements within the
program to load a database, to access a file and its records, and to update a database. We explain this
procedure in Chapter 5.

093-000151-01 Licensed Material-Property of Data General Corporation 1-3

System Utilities
Table 1-1 shows AOS, INFOS, and Idea system utilities and tells where you can find information
about each one.

L1NEDIT

SPEED

ICREATE

IDELETE

ALPHA

CHGEM

DEFCOM

IDEASG

IFMT

ILIB

PAL PH

PFMT

PRINTF

RDOSYNTAX

SYNTAX

WIFMT

1-4

Table 1-1. The System Utilities

AOS (See Learning to Use A OS)

A line-oriented text editor used to create pro~ram source text.
(See AOS LINEDIT Text Editor User's Manual, 093-000218')

A character-oriented text editor, also used to create source text.
(See AOS SPEED Text Editor User's Manual, 093-000197')

INFOS (See INFOS System User's Manual)

Creates data files (see Chapter 5) and the TRANS file (see Appendix C).

Deletes data files and the TRANS file.

Idea

Allows you to define your alphabet. See Chapter 8.

Allows you to change error message and dialog files. See Chapter 8.

Creates the COMMON file. See Chapter 8.

Generates global and local monitors. See Chapter 10.

Creates screen formats. See Chapter 3.

Creates a library of screen formats. See Chapter 8.

Displays current set of alphabetic characters. See Chapter 8.

Prints or displays information about screen formats. See Chapter 8.

Prints contents of printing buffer. See Chapter 8.

Compiles IFPL programs, producing RDOS-executable code.
See Appendix A.

Compiles screen format with program. See Chapter 6.

Creates wide (132 columns) print and hardcopy formats. See Chapter 3.

Licensed Material-Property of Data General Corporation 093-000151-01

Templates
You receive two templates with the Idea documentation. Place these templates over the row of
function keys above the keyboard and number pad.

The larger template is labeled IFMT on one side. Use the function keys labeled by this side when
creating formats to enter FIELD, LITERAL, and ATTRIBUTE modes. These keys also help you
move the cursor within the format, and they allow you to insert and delete lines and characters.

The other side of the larger template is labeled Idea INTERACTIVE OAT A ENTRY AND
ACCESS. Operators use the keys labeled by this template and by the smaller template when
entering data into a screen format.

We explain the IFMT function keys in Chapter 3 and the operator function keys in Chapter 10.

End of Chapter

093-000151-01 licensed Material-Property of Data General Corporation 1-5

Chapter 2
A Sample Programming Session

This chapter introduces you to the basic Idea utilities by taking you through a sample programming
session. Please follow along with the example as we create and run a simple Idea screen
format/program module.

To create and run a program, follow these steps:

1. Define the screen format using IFMT.

2. Write the program source text using one of the AOS text editors.

3. Compile the format and the program together using the SYNT AX utility.

4. Run the program using the local monitor (see Chapter 10).

Problem Definition
We will create a simple Idea format/program to balance a checkbook. The program will accept as
input a starting balance, a deposit, and a withdrawal. It will then add the deposit to the starting
balance, subtract the withdrawal, and display the new balance on the screen.

This program will not use a data file, because it does not store any information.

Defining the Screen Format

Place the larger template with the side labeled IDEA IFMT over the row offunction keys.

To call IFMT, give this command from the CLI:

lFMT)

IFMT will respond:

NEXTFORMAT: _______ _

You answer by typing the name of the format, CHECKBOOK, followed by NEW LINE:

NEXT FORMAT: CHECKBOOK)

IFMT will then ask you for a format type:

TYPE(HOR POR NONE)_

Respond by striking the NEW LINE key to answer NONE. (H and P refer to printing formats; we'll
explain them in Chapter 3.)

093-000151-01 Licensed Material-Property of Data General Corporation 2-1

Defining the Screen Literals

When you first create a screen format, IFMT places you in LITERAL mode and displays a
reminder, MODE:LITERAL, in the lower right-hand corner of the screen, as in Figure 2-1.

In LITERAL mode, you can move the cursor anywhere on the screen to type out descriptive or
instructional information, using any of the graphic keyboard characters (except the exclamation
point) .

SO-01728

Figure 2-1. The Initial Screen

2-2 Licensed Material-Property of Data General Corporation 093-000151-01

The literals don't interact with the program in any way; they are simply labels that you place on the
screen to help operators use the format.

Figure 2-2 shows the literals to type for the CHECKBOOK screen. Just move the cursor to the
desired location with the cursor arrow keys, and type the literals using the terminal keyboard as you
would a typewriter keyboard.

80-01768

Figure 2-2. The LiteralsIor CHECKBOOK

093-000151-01 Licensed Material-Property of Data General Corporation 2-3

Defining the Data Fields
To define data fields in a format, place IFMT in FIELD mode by striking the SHIFT and FIELD
keys. IFMT will then display MODE FIELD in the lower right-hand corner of the screen.

You can shift back and forth between FIELD and LITERAL mode by striking the
LITERAL/FIELD key. IFMT will always display a reminder in the lower right-hand corner about
which mode you are in.

The CHECKBOOK format requires five data fields. The first four are numeric fields. To reserve a
place for a number, type 9 in FIELD mode. To use a decimal point in a numeric field, you type a
period (.) in the place you want the decimal point. For example, to create a numeric field with four
integer places, a decimal point following them, and two decimal fraction places (representing cents
in this example), you would type

9999.99

The fifth field in our example will accept any keyboard character as input, so type one X. Xs signify
alphanumeric data.

Now, in FIELD mode, use the cursor control keys to position to the desired locations, and define
the data fields so that your format looks like Figure 2-3.

80-01769

Figure 2-3. Literal and Data Field h?!ormationfor CHECKBOOK

2-4 Licensed Material-Property of Data General Corporation 093-000151-01

Assigning Attributes

After you've created the labels and defined the screen fields, you assign attributes to the fields. To
begin this process, press the shift key and strike the ATTRIBUTE key.

After verifying the legality of the field definitions, IFMT displays flashing question marks in place of
the first field's picture characters. It also positions you to a series of attribute questions about this
field at the bottom of the screen (see Figure 2-4). To assign an attribute, type the letter Y after the
attribute.

80-01729

Figure 2-4. The Attribute Query Line

093-0001 51 -01 Licensed Material-Property of Data General Corporation 2-5

When you create a new format, its field attributes are all set to N for NO. To leave an attribute as it
is, strike only the NEW LINE key. To change N to Y, type Y and NEW LINE; to change Y to N,
type N and NEW LINE.

You will want to enter data into your program through the first field, labeled ENTER THE
PREVIOUS BALANCE, so give it the EDIT attribute. To do this, skip the DISPLAY attribute by
striking NEW LINE at that position, thus moving to the EDIT attribute. You then type Y in place of
N (see Figure 2-5).

Notice the numerals 01 at the beginning of the attribute line. This tells you that you are at field # 1.

SD-01770

Figure 2-5. The CHECKBOOK Screen: Assigning the EDIT Attribute to the First Field

2-6 Licensed Material-Property of Data General Corporation 093-000151-01

After you assign the EDIT attribute, strike the NEW LINE key for the rest of the attributes; they
are optional. When you've completed the attribute line for the first field, IFMT will display hyphens
in place of that field's picture characters. Then it will flash question marks in the next field, and
display a new set of attribute choices for the second field (see Figure 2-6).

5D-01771

Figure 2-6. After You've Assigned Attributes to a Field, IFMT Asks About the Next One

093-000151-01 Licensed Malerial-Properly of Data General Corporation 2-7

Assign the EDIT attribute to the second and third fields. Next, assign the DISPLA Y attribute to the
fourth field, labeled NEW BALANCE IS, and the EDIT attribute to the fifth. After you finish,
IFMT asks if you want to link to another format, and underlines a space for you to enter the other
format's name. This feature allows you to link the current format to itself so it will run repeatedly,
or to link it to another format/program module that will run after the current one is complete.

We do not want to link the format, so we enter just NEW LINE as in Figure 2-7.

80-01772

Figure 2-7. IFMT Format Link Option

2-8 licensed Material-Property of Data General Corporation 093-000151-01

Next, IFMT displays the message in Figure 2-8.

After IFMT compiles the format, it warns you that the format is not associated with any program.
Then it asks you to specify another format to create or modify.

The example format is now complete, so you can strike NEW LINE. Finally, IFMT returns you to
the CLI, and you're ready to write the program.

50-01773

FiKure 2-8. IFMT Puts the New Format Through a Special Program to Create an Idea-readable .FP File

OQ3·000151·01 Licensed Malerial-Properly of Oala General Corporal ion 2-9

Writing the Program
The sample program in Figure 2-9 will accept a balance, a deposit, and a withdrawal as input from
the format. It will then perform some arithmetic and display a new balance. It will also halt until we
strike any keyboard character; at this point the program will erase the screen and display a fresh
format.

The program consists of routines that perform these tasks and PROCESS statements that connect
the screen fields to the routines (see Figure 2-9).

NAME CHECKBOOK

PROCESS
PROCESS
PROCESS
PROCESS
PROCESS

BALANCE AT NONE AND GETBALANCE
DEPOSITS AT NONE AND GETDEPOSIT
~ITHDRAWALS AT NONE AND GETWITH
NEWBALANCE AT CALCBALANCE AND NONE
FILLER AT NONE AND REPEAT

GETBALANCE:
STORE BALANCE
RETURN

GE TDEPOS IT:

GETWITH:

STORE DEPOSITS
RETURN

STORE WITHDRAWALS
RETURN

CALCBALANCE:

REPEAT:

FINISH

ADD DEPOSITS BALANCE NEWBALANCE
SUBTRACT WITHDRAWALS NEWBALANCE NEWBALANCE
DISPLAY NEWBALANCE
RETURN

RETURN

Figure 2-9. The Source Text a/Our Program

Each PROCESS statement in Figure 2-9 contains the keyword NONE. A PROCESS statement for
an EDIT field contains the phrase,

AT NONE AND routinename

A PROCESS statement for a DISPLA Y field includes the phrase,

AT routinename AND NONE

You can give a field both the EDIT and DISPLAY attributes, in which case the PROCESS
statement will contain the phrase,

AT routinename1 AND routinename2

Note that if the screen data fields have the EDIT and/or DISPLAY attributes, the fields must
correspond exactly to the PROCESS statements. When you run the program, the monitor matches
the first field with the first PROCESS statement, the second field with the second PROCESS
statement, and so forth.

2-10 Licensed Material-Property of Data General Corporation 093-000151-01

Furthermore, you must group the PROCESS statements together with no other statements
between them.

When you run this program, the monitor will wait for you to type a value in the fIrst field. The
monitor will then retrieve this value and pass control to the program routine that is identified by the
tag in the first PROCESS statement. At this routine, labeled GETBALANCE, the program copies
the value in the variable BALANCE and returns control to the monitor. The monitor then repeats
this process for the variables DEPOSITS and WITHDRAWALS.

The statement

PROCESS NEWBALANCE AT CALC BALANCE AND NONE

sends program execution to the routine named CALCBALANCE. Since this routine uses a
DISPLA Y field, the monitor passes control directly to the program without waiting for operator
input. The ADD statement adds the values of DEPOSIT and BALANCE and places the result in the
variable NEWBALANCE. The SUBSTRACT statement subtracts the value of WITHDRAW ALS
from NEWBALANCE and places the result in NEWBALANCE. The DISPLAY statement displays
the result on the screen in the field with the DISPLAY attribute.

The statement

PROCESS FILLER AT NONE AND REPEAT

along with the routine labeled REPEAT, simply delays the end of the program until you type an
alphanumeric character. Without this PROCESS statement and routine, the monitor will clear the
screen immediately after displaying NEWBALANCE; it will then request another format name.

To run the program again, strike the NEW LINE key. To stop the program, press the SHIFT key
and strike the LOG ON-OFF function key (function key O.

Creating Source Text
To create source text for your programs, use one of the AOS text editors, SPEED or LINEDIT. If
you name program files formatname.UP, you can use a simple version of the SYNTAX command
to compile the format and the program. In this example, use CHECKBOOK.UP as the program
filename.

Compiling CHECKBOOK
To compile your program, give this command from the CLI:

SYNTAX CHECKBOOK)

Executing the Program
To execute a format/program module, you must first call up the local monitor, which your system
manager created with the IDEASG command (described in Chapter 10). The default local monitor
name in LIDEA. If the system manager used the default names, you call the local monitor from the
CLI by typing:

X LlDEA)

The monitor will ask for your password. This is optional; you can just type NEW LINE. Then it asks
for the name of the format you wish to use. After you supply this, the monitor asks if you want the
system to tell you the length and data type of each EDIT field. Type Y for yes, NEW LINE for no.

When you've completed the log-on sequence, the monitor displays the format on the screen and
waits for your input to the EDIT fields.

End of Chapter

093-0001 51 -01 Licensed Material-Property of Data General Corporation 2-11

Chapter 3
IFMT --The Format Generator

This chapter describes the Idea Format Generator, IFMT, which you use to create and modify
screen, print, and hardcopy formats. It also describes the Wide Format Generator, WIFMT, which
you use to create and modify wide formats (up to 132 characters across) for output on a line printer
or hardcopy device.

A format consists of the following:

Literals These serve as headings, labels, and dividers for data fields.

Data fields These are pictures of your program variables that set the variable's format location,
format appearance, and data type (numeric, alphabetic, or alphanumeric).

Attributes These define the usage of the data fields.

Scroll areas These are areas in which you roll lines of data.

Partial
screens

These are areas from one format that you overlay onto another format as a literal.

Entering IFMT
To enter IFMT from the CLI, type this command:

IFMT)

IFMT asks for the name of the next format. You may supply a new format name or the name of an
existing format. If you are modifying an existing format, the name can be a path name up to 24
characters long. The filename portion of the pathname must be 10 or fewer characters if you will link
to this format via another format.

If you specify a pathname for an existing format, IFMT will rewrite the format to that pathname
directory. But if you specify an existing format without a pathname, IFMT will retrieve it via the
SEARCHLIST and rewrite it to the working directory.

If the ACL settings limit your file access, or if the format file is currently open, or if the path name
contains an illegal character, you will get this error message:

NAME, ACL, OR IN-USE ERROR

This will occur after you answer the next question, format TYPE.

After you give the format name followed by NEW LINE, IFMT asks for the format type:

TYPE(HOR POR NONE)

093-000151-01 Licensed Material-Property of Data General Corporation 3-1

You can use an IFMT format in one of three ways: in normal Idea monitor operation on a 6053
terminal; to produce formatted line printer output; and in conjunction with a DASHER ™ printing
terminal. Depending on how you want to use the format, enter one of these responses.:

NEW LINE Create a screen format for normal Idea operation on a 6053 terminal. Format length
may be up to 23 lines, the number of lines on the terminal screen minus one line for
messages Wne 24).

P NEW LINE Create a format for line printer operation with the PRINTF utility (described in
Chapter 8). This mode allows formats up to 80 lines long. It also allows you to use the
PREY PAGE and NEXT PAGE keys on the IFMT side of the large template to move
around within the format. It disables the questions about field attributes, but asks you
how long the print format will be.

H NEW LINE Create a format for interactive use with a DASHER printing terminal. As with the P
response, this mode allows formats up to 80 lines long, and lets you use the PREY
PAGE and NEXT PAGE keys.

IFMT Commands
Table 3-1 lists the IFMT commands. Use these commands when creating formats. Remember to
place the large template with the side labeled Idea IFMT over the function keys.

You may escape from an IFMT session any time before you enter ATTRIBUTE mode by striking
the ESC key. IFMT will display the message

INTENTIONAL SCREEN ABOR T

and will return to the NEXT FORMAT question. If you were editing an existing format, the format
files will remain as they were before you began altering them. If you were creating a new format, it
will exist but will contain nothing.

Table 3-1. IFMT Command Repertoire (6053 Terminal)

Command Function

DEL Substitutes space for character to left of cursor.

DELETE CHAR Deletes character at cursor screen location and shifts remaining
characters on the same line left one position.

INSERT CHARS Commences insert mode operation. Inserts characters you type at
cursor. Shifts to the right the remaining characters on the same
line. Deletes the last character on the line. You can cancel insert
mode by a second INSERT CHARS or by vertical cursor
movement.

DELETE LINE Deletes line at cursor screen location and moves remaining lines
up one line.

INSERT LINE Opens line at cursor screen location and moves lower lines down
one line. Last line is deleted.

FIELD Puts IFMT in FIELD mode.

3-2 Licensed Material-Property of Data General Corporation 093-0001 51 -01

Table 3-1. IFMT Command Repertoire (6053 Terminal) (continued)

Command Function

LITERAL Puts IFMT in LITERAL mode.

PRINT Prints screen format on line printer.
(Cursor Pad)

AHRlB Indicates to IFMT that format is complete. IFMT responds by
displaying attribute questions for each format field.

BACK TAB Moves cursor back one field at a time while in ATTRlB mode.
(unmarked key on Use it if you answer the field attribute question incorrectly.
cursor pad)

Cursor Controls Position cursor at any point on the screen.

Printer Format Commands (used with both P- and H-type formats)

Command Function

NEXT PAGE Displays next 20-line page.

PREV PAGE Displays previous 20-line page.

Special Format Characters

Character Function

@ First @ used indicates start of scroll area. Second @ used ends
(Field Mode only) the scroll area. You may use this sequence repeatedly.

! Partial screen delimiter. A pair of exclamation points brackets a
partial screen area.

I IFF I I Form Feed. When used in a printing format, PRINTF will
replace it with a form feed.

I IHEADINGI I For repeated literals in formats used with PR INTF. Use for
current P AG E heading only and current scroll heading if any.
PR INTF will reproduce only "last seen" headings when it
encounters a form feed.

Literals and LITERAL Mode

Vhen you create a new format, IFMT places you in LITERAL mode. In this mode, you can use any
eyboard character (except the exclamation point) to create headings, labels, and dividers. Literals
lon't interact with programs; they serve only as labels.

With a 6053 format, the monitor displays the literals as they appear when you create them. With a P
type format, the PRINTF utility reproduces the literals. With an H type format, the monitor does
not display them.

To change from LITERAL to FIELD mode, strike the SHIFT and FIELD keys. To change from
FIELD to LITERAL mode, strike only the LITERAL key.

093-0001 51 -01 Licensed Material-Property of Data General Corporation 3-3

Data Fields and FIELD Mode
Once you're in FIELD mode, use the following characters to create the data field pictures.

Character

A
9
X

Z
+
$
*

Definition

Alphabetic character
Numeric character
Alphanumeric character
Decimal point
Zero suppress character
Signed field character
Floating currency symbol
Check protection character
Numeric field comma

NOTE: All characters but the A and X are numeric field designators.

You cannot mix Xs, As, and 9s when creating data field pictures. IFMT sees a data field as an
unbroken string of similar characters. Therefore, AAAA is a s.ingle data field, but AA99 defines two
data fields (one alphabetic, one numeric), and AAXX99 defines three data fields. Also, do not space
within a string. For example, XXXX defines one data field, but XX XX defines two.

The characters that delimit data fields are:

• Space
• End of line
• literal Character
• Dissimilar Field Designator

Alphabetic Fields

The picture character A defines a character position as alphabetic. For example, if you define a field
as AAAAA, it will accept up to five alphabetic characters.

The Idea system file AlPHABET.TB defines the set of alphabetic characters. To change this file,
use the ALPHA utility described in Chapter 9. If you don't change them, the legal alphabetic
characters are the letters A-Z and the space.

Alphanumeric Fields

The picture character X defines a character position as alphanumeric. You may enter any graphic
keyboard character in an alphanumeric field.

Numeric Fields

The picture character 9 defines a character position as numeric. For example, if you define a field as
99, it will accept any two digits (0-9). If you define a field using only 9s, you can't enter a decimal
point; if you try to, the system will issue an error message.

3-4 Licensed Material-Property of Data General Corporation 093-000151-01

Decimal Point

Define the field position of a numeric value's decimal point by placing a decimal point in the desired
location of the field's picture. When you enter data into the field, you must explicitly enter the
decimal point for values with decimal fractions. If you don't enter it explicitly, the system assumes
that the value is an integer.

Zero Suppress Character

To suppress leading zeros, place the Z character in the places where you don't want leading zeros to
appear. For example, instead of a numeric picture 9999.99, you could specify ZZZZ.99.

Signed Field Character

To display a signed value (i.e., + or -), you use the sign character (+) in the field picture. You can
place a single + in the rightmost character position of the picture, such as 9999.99+. On output, the
system will display the sign character on the right; for example, 1332.50+ or 0001.00-.

You can also place the + to the left of the numeric picture characters, such as + 9999.99. With such
a picture, the monitor will display the sign on the left but will not suppress leading zeros; i.e.,
-0005.72, or +0423.00. To suppress leading zeros, use mUltiple + signs, such as + + + +9.99. On
output, the monitor will suppress leading zeros and place one sign immediately preceding the
numeric value; for example, + 83.45, or -4729.25.

Currency Symbol

Placing a single dollar sign at the left of a data field picture will display one currency character in that
position; placing a series of dollar signs there will suppress leading zeros and display one currency
symbol. For example, a picture of $99.99 and an entry of 5.43 results in $05.43. A picture of $$$.99
and an entry of 5.43 results in $5.43.

Check Protection

The asterisk picture character replaces a leading zero with an asterisk. It is not a floating character, so
to suppress all leading zeros, use a picture that consists of all asterisks to the left of the decimal
point, such as ******.99.

Comma

Use the comma in field pictures according to its American usage. It will appear on output only when
it's necessary. For example, with a picture $$,$$$.99, an entry of 2000 results in a display of
$2,000.00. An entry of 431.50 results in a display of $431.50. Do not enter the comma explicitly. For
example, type 2000 in a field, not 2,000.

093-000151-01 Licensed Material-Property of Data General Corporation 3-5

Restrictions

You can use the following combinations of characters only if you observe certain res,trictions.

The Floating Currency and Sign Characters

If you use the dollar sign with the sign character, you can use only one of them as a floating
character. Specify the floating character by typing it at least twice. Place the other character outside
the floating one; it becomes fixed in that position.

Examples

+$.99 Both are fixed.

+ $$.99 The dollar sign floats; the sign is fixed.

$+ + .99 The sign floats; the dollar sign is fixed.

WARNING: If you use these characters together, note that you must reserve space for the digits;
the + and $ characters each take up one character position. Therefore, the picture
+$.99 will only allow you to display decimal fractions; it has no spaces for digits to the
left of the decimal point. The pictures $ + +.99 and + $$.99 can only display one digit
to the left of the decimal point, such as $-3.49, or + $2.50. They will both suppress
leading zeros, such as $+ .50, or -$.37.

The Zero Suppress and Check Protection Character

You cannot use the Z and the * together.

Other Combinations

When you use the dollar sign or the signed field character with the zero suppress or the check
protection character, you can only use one dollar sign or sign character in the leftmost position. The
dollar sign or sign character is fixed in that position.

Also, you can't place a $ character to the right of a decimal point.

Fields During Program Execution

During program execution, the system steps through the fields in the order in which they appear on
the screen. It moves from left to right and from top to bottom, unless the program specifically calls
for another order. At each field with the DISPLA Y or EDIT attribute, the system pauses to execute
the program routine associated with that field.

3-6 Licensed Material-Property of Data General Corporation 093-000151-01

Page and Scroll Mode
Up to now, we have used only page mode formats. During program execution, fields defined in page
mode appear only in the positions specified during format creation. Scroll mode fields, however,
allow you to display multiple lines of fields.

To specify scrolled fields, you strike the commercial at (@) key while in FIELD mode; this begins
the scroll area. The first line of the scroll area will be the line containing the fields that follows the @.

A second @ ends the scroll area, returning you to page mode. You place the fields that you wish to
repeat on succeeding lines between the @ signs. For example, Figure 3-1 shows a typical scroll
specification, which contains two numeric fields and a three-line scroll area.

SO-01775

Figure 3-1. A Scroll Field Specification

093-0001 51 -01 Licensed Material-Property of Data General Corporation 3-7

Figure 3-2 shows an operator's console screen during program execution. The program could call
the scroll lines of output to the screen in several ways. It could display the information
automatically, or do it line by line, triggered by an operator entry such as a part number.

SO-01778

Figure 3-2. The Displayed Scroll Fields

Overlaying Partial Screens
In normal operation, the monitor erases an entire format from the screen prior to displaying a new
one. You can retain areas of one format and display them with another format by using partial
screens. You will normally use partial screens for operator reference. Data left from a previous
screen has the status of a literal; i.e., you can't change it.

To overlay an area from one format onto another, you enclose the corresponding area of the second
format in exclamation points (!) in LITERAL mode. When the monitor calls the second format, it
will erase only the portion of the first format that corresponds to the area of the new format within
the exclamation points. It will continue to display the rest of the first format.

For example, Figure 3-3 shows two formats. The second one contains an area marked off by
exclamation points. Figure 3-4 shows what the screen will look like when the monitor loads the
second format.

3-8 licensed Material-Property of Data General Corporation 093-000151-01

In Figure 3-4, the monitor substitutes the CURRENT CHARGES portion of the second format for
the ADDRESS, CITY, and STATE portion of the first format. It leaves the company name and the
customer name on the screen as a literal.

A format may contain any number of overlay areas.

Format 1

line # 1 ACME PARTS
2
3 CUSTOMER NAME: XXXXXXXXXXXXXXXX
4
5 ADDRESS: XXXXXXXXXXXXXX
6
7 CITY, STATE: XXXXXXXXXXXXXX

Format 2

line # 1

50-01777

2
3
4
5
6
7

23

ITEM NO.
99999

CURRENT CHARGES
QUANTITY COST
9999 $999.99

Figure 3-3. The Second Format Contains an Overlay Area

COMPANY

line # 1 ACME
2

PARTS COMPANY

50-01778

093-0001 51-01

3 CUSTOMER NAME:
4
5 ITEM NO.
6

SWIFT, JONATHAN
CURRENT CHARGES
QUANTITY COST

Figure 3-4. The Monitor Overlays the Area Between the Exclamation Points

Licensed Malerial-Property of Dala General Corporal ion 3-9

Blinking Screen Text
You can cause screen literals to blink for special emphasis. While in FIELD mode, surround the
literal area in square brackets.

For example, Figure 3-5 contains an area that will blink when the operator executes the format.

If you accidentally type two consecutive, identical brackets [[or ll, IFMT will give the error message
BRACKET USAGE INY ALID.

IFMT does not check to see that each [has a corresponding 1, but it will automatically end the
blinking at the end of the format. The blinking doesn't carryover to other screens or to messages.

You may use the left and right square brackets as literals; they control blinking only when you type
them in FIELD mode.

Data fields can't blink.

SD-01779

Figure 3-5. The Words BLINKING SCREEN EXAMPLE WillBlink

3-10 Licensed Material-Property of Data General Corporation 093-000151-01

Underscoring Screen Information
IFMT also allows you to underscore screen literals for special emphasis. While in FIELD mode,
surround the area that you want to underscore with parentheses.

For example, Figure 3-6 contains a literal that will be underscored when the operator executes the
format.

If you accidently type two consecutive, identical parentheses « or)) IFMT will give the error
message BRACKET USAGE INVALID.

IFMT does not check to see that each (has a corresponding), but it will automatically end the
underscoring at the end of the format. The underscoring doesn't carryover to other screens or to
messages.

You can't underscore data fields.

SO-01780

Figure 3-6. The System Underlines the Words UNDERSCORE EXAMPLE

093-0001 51 -01 Licensed Material-Property of Data General Corporation 3-11

Size and Number of Fields
A single screen format may contain a maximum of 60 data fields. Each field may be from 1 to 80
characters long, the CRT screen's maximum width.

By using SCROLL mode, you can display more than 60 fields by entering only one line to field
descriptions for each set of scroll lines. The fields described on this one line are the only ones
counted toward the 60 field limit. However, you will lose one field from the maximum of 60 each
time you switch between page and scroll mode.

Another limitation occurs with groups. A group is either a scroll area or a page area, and it can
contain no more than S12 characters (bytes). A scroll group will exceed the S12-byte limit if the
number of lines between the @ signs multiplied by the number offield characters on one scroll line
exceeds S12.

If any group exceeds S12 characters, you must divide it. To divide a scroll group in two, you insert a
pair of @ signs (@ @). Do not place any field specifiers between them.

Inserting the pair of @ signs is equivalent to inserting a nonfunctional page group within the scroll
group. You may also use functional page groups to divide a scroll group.

To divide a page group, you can insert two successive lines containing only single @ signs. Again,
this is equivalent to inserting a nonfunctional scroll group; you may also use functional groups.

Each time you divide a group, remember that it decreases the number of permissible fields by two.
Also, note that you cannot backtab across a group boundary during program execution.

Attributes
After you have set up your screen literals, data fields, and scroll areas, you must assign attributes to
the fields. To begin this process, strike the SHIFT and the ATTRIB key.

IFMT then checks the legality of the field definitions and the use of @ and !. If IFMT finds errors, it
allows you to correct them.

If it finds no errors, IFMT displays the attribute query line at the bottom of the screen, positions the
cursor to the first attribute choice, and identifies the current field by displaying flashing question
marks where that field's descriptors were.

You have four possible responses to each attribute query:

Response

Y)
N)
)
BACKTAB1

Meaning

You want the field to have this attribute.
You do not want the field to have this attribute.
You want the attribute to remain as it is (the automatic default).
You want to return to the previous attribute for a correction.

I The unmarked key on the cursor key pad.

When you use BACKT AB, be sure that you are consistent with the system when choosing your
attributes. For example, IFMT automatically skips the last five attribute choices if you specify a
DISPLA Y -only field, because DISPLAY fields can't have these attributes. However, by using
BACKT AB you can change them.

On a new format, IFMT sets all attributes to N.

3-12 Licensed Material-Property of Data General Corporation 093-0001 51 -01

On a new format, IFMT sets all attributes to N.

If you are editing a previously created format, IFMT will display an attribute line with the old
attributes. It will also display an asterisk after the field number in the attribute query line. You can
retain these old attributes by striking NEW LINE at each one. A field's attributes will remain valid
even if you change the field's size and/or data type. However, if you insert, delete, or move a field
in a format, you may alter the order of processing and thus destroy the validity of the old attributes.
If you are manipulating the fields in this manner, make sure that the attributes are still valid.

If you do not want to display the old attributes, you can delete the formatname.VS file with the CLI
DELETE command before calling up the format with IFMT.

To verify attributes on the line printer, use the PFMT utility (see Chapter 9) or the Idea compiler
(see Chapter 6).

Table 3-2 lists and describes the IFMT attributes.

Attribute

DISPLAY

EDIT

DISPLAY and EDIT

AUTO-DUP

REQUIRED

FULL

SECURE

AUTO-ENTRY

Table 3-2 The IFMT Attributes
Function

The field will display data from the program. You cannot use a
DISPLA Y -only field for data entry; see DISPLAY and EDIT.

The field will accept data from the operator and send it to the
program.

The program will use the field as a DISPLAY field the first time it
encounters it; after that, the program uses it as an EDIT field.
This allows the operator to edit data from the program.

Use this attribute for scroll fields where the fields have neither
the EDIT nor DISPLAY attributes (they may have the OUTPUT
attribute). An AUTO-DUP field will repeat the value that an
operator first enters in subsequent scrolls of the field.

CAUTION: Do not backtab to this attribute for fields with
either or both the EDIT and DISPLAY
attributes. If you give this attribute to fields
with EDIT and/or DISPLAY, your program
will not work correctly.

The operator must enter at least one character in the field.

The operator must enter the exact number of characters
specified by the field picture, or enter nothing.

This attribute tells the system to echo asterisks when the
operator enters characters. This ensures privacy when typing
sensitive data.

When full, the field supplies its own NEW LINE.

NOTE: If you designate a field as DISPLA Y only, IFMT skips the last five attributes, since they do not
apply to DISPLAY-only fields.

093-000151-01 Licensed Material-Property of Data General Corporation 3-13

WIFMT -- The Wide Format Utility
To create print and hardcopy formats that are wider than the screen of a 6053 terminal (up to 132
characters wide), use the WIFMT utility.

To use WIFMT, give this command:

WlFMT)

WIFMT will ask you for the name of the next format, and will then ask you for the type, either print
(P) or hardcopy (H).

TYPE(HORP)

Enter H to use a DASHER printing terminal; enter P to use a line printer with PRINTF. We explain
these fully in Chapter 8.

You cannot use the following IFMT capabilities with WIFMT:

• Blinks
• Underlines
• Partial Screens

How to Use WIFMT

WIFMT uses two screen lines to reach the I 32-character width. It uses the 80 characters on the first
line plus characters I to 52 on the second line. The remaining 38 characters on the second line
(positions 53 to 80) are a "dead" area; WIFMT fills it with angle brackets «).

Each two-line screen pair is a one-line unit to WIFMT; to change one line of the output format you
must change both screen lines.

The two-line pairs begin at line 1, the first line of the format. Thus, odd-numbered lines mark the
first 80 characters of the output format, and even-numbered lines mark the partial (52 characters)
lines.

If you disturb a dead area while editing, you must repair it. Use the cursor-control keys to position to
the line, and strike the BACKT AB key (the unmarked key on the cursor pad). If you are on an
odd-numbered line BACKT AB will have no effect; if you are on an even-numbered ·Iine,
BACKT AB will restore the dead area to its original state.

To delete a format line, you must delete both the odd- and even-numbered screen lines. Likewise,
to insert a format line, you must insert a two-line pair.

WIFMT allows you to define formats that are 60 lines long (consisting of 120 screen lines). The
maximum field length is 80 characters, and a field may not cross the 80th column into the 81st
character position.

3-14 Licensed Material-Property of Data General Corporation 093-000151-01

The PFMT utility reports format line numbers and indicates the dead area by printing a series of left
angle brackets « < < < < < < < < < < <).

To convert IFMT formats to WIFMT, you must first insert even-numbered lines. To convert
WIFMT formats to IFMT, you must delete the dead area characters; otherwise, you'll get an error
message ILLEGAL CHARACTER IN FIELD. We recommend that you remake your WIFMT
formats rather than convert them.

Figure 3-7 shows the screen after you give the WIFMT command, the format's name, and the H or
P specification.

80-01730

Figure 3-7. The Initial WIFMT Screen

End of Chapter

093-0001 51 -01 Licensed Material-Property of Data General Corporation 3-15

Chapter 4
The IFPL Language

Each IFPL program begins with a NAME statement and ends with a FINISH statement. Between
these two statements you place groups of nonexecutable statements and groups of executable
statements.

The nonexecutable statements perform the definition tasks for your program variable, subroutines,
tables, and files. They also link the format data fields with the executable statements.
Nonexecutable statements include the PROCESS statement, the REGISTER statement, the
subroutine definition statements (not to be confused with routines), the table definition
statements, and the file definition statements.

The executable statements process the variables, subro!.gines, tables, and files. You organize the
executable statements into routines labeled by tags. ~

PROCESS statements direct the Idea monitor to start executing the IFPL program at these routines.
The routines return control to the Idea monitor by means of RETURN, RESET, or REST ART
statements.

Figure 4-1 shows the block structure of an IFPL program, and Figure 4-2 shows the structure of an
actual program.

NAME STATEMENT

FILE-RELATED STATEMENTS

NONEXECUTABLE STATEMENTS PROCESS STATEMENTS

REGISTER STATEMENTS

COMPILER-DIRECTING STATEMENTS

ROUTINE(S) FOR SCREEN FIELD #1

EXECUTABLE STATEMENTS ROUTINE(S) F.OR SCREEN FIELD #n

SUBROUTINE(S)

NONEXECUTABLE STATEMENT { FINISH STATEMENT

8D-01110

Figure 4-1. The Block Structure of an IFPL Program

093-000151-01 Licensed Material-Property 01 Data General Corporation 4-1

The program in Figure 4-2 uses a stock item's part number (PAR TNO) as a key accessing the record
INVREC in the file INVENTORY. INVREC contains the item's name (PARTNAME). The
program displays this name on the screen and searches the three tables (DEPT A; DEPTB, and
DEPTD) for PARTNO. When the program finds PARTNO, it branches to the appropriate routine
to display the department from which you can reorder the part.

4-2

NA"'E REO~OE;R
FILE IS INVENTOR¥
KEY FOR INVENTOR¥ IS 4 ASCII
RECORD FOR INVENTORY IS INVREC

LENGTH IS 20
INCLUDES PARTNAME 1 20 ASCII

STOP

PROCESS PARTNO AT NONE AND GETPARTNC
PROCESS PART NAME AT OISPLA¥NA~~ AND NONE
PROCESS OEPTNO AT OISPLDEPT AND NON~

TABLE DE PTA
"C330"
"S130"
"CS40"
ENOTABLE

TABLE DEPTB
")(250"
"Y930"
"2280"
ENOTABLE

TABLE DEPTD
"CS30"
""'600"
"E500"
HDTABLE

GETPARHO:

DISPLA¥~AfoIE:

OISPLDEPT:

Dl:

02:

03:

ERRMSG:

FINISH

STORE PARTNO
RETURN

FIND THE INVREC US~~G PARTNO
ON-IOERR ERRMSG
DISPLAY PARTNAME
REFILE INVREC USING PARTNO
ON-IOERR ERRt<JSG
RETURN

LOOKUP IN OEPTA PARTNQ
IF FOUND Dl
LOOKUP IN DEPTB PA~TNO

IF FOUND 02
LOOKUP IN DEPTD PARTNO
IF FOUND 03

" MOVE "DEPT A" TO DEPTNO
DISPLAY DEPTNO
RETURN

MOVE "DEPT B" TO DEPTNO
DISPLAY DEPTNO
RETURN

MOVE "DEPT D" TO DEPTNO
DISPLAY DEPTNO
RETURN

MESSAGE IO-ERROR. CALL SYSTE~ MANAGER.
QUIT

Figure 4-2. An IFPL Program

Licensed Malerial-Properly of Dala General Corporal ion 093-000151-01

Nonexecutable Statements
The nonexecutable statements include the PROCESS statement, the REGISTER statement, the
subroutine definition statements I , the table definition statements, and the file defintion
statements.

The PROCESS Statement
The PROCESS statement controls the execution sequence of an IFPL program. You must have one
PROCESS statement for each DISPLAY or EDIT field. Also, you must place your PROCESS
statements together in a group with no intervening statements.

The compiler links the first DISPLA Y or EDIT field it encounters to the first PROCESS statement,
the second DISPLA Y or EDIT field to the second PROCESS statement, and so forth. The order of
the fields on the screen runs from left to right and from top to bottom. If you mix up this order,
you'll get meaningless program results, since the compiler will link the fields to the wrong routines.

The formal syntax of the PROCESS statement is

!label#] PROCESS variable AT
} tag [AND] NONE ~

I NONE [AND] tag ~

The optional label lets you send program control, via a RETURN statement or some other
statement, to a section of code identified by a PROCESS statement. If you use a label, you must
place a # sign immediately after the label, with no spaces in between the label and the # sign. Labels
can be up to 10 characters long.

variable is the name you want to give to your program variable; it must be unique within the
program. The compiler assigns this variable an area of working storage with characteristics defined
by the field attributes. (At runtime, though, the variable is not connected to the field.)

For a DISPLA Y -only field, use AT tag AND NONE; tag is the label of the routine to which you
want this PROCESS statement to pass execution. For example, the statement

PROCESS PARTNAME AT DISPLAYNAME AND NONE

sends program execution to the routine labeled DISPLA YNAME.

For an EDIT-only field, use AT NONE AND tag. The PROCESS statement

PROCESS PARTNO AT NONE AND GETPARTNO

sends execution to the routine labeled G ETPARTNO.

For a field with both the DISPLAY and EDIT attributes, use AT tag! AND tag2. tag1 is the label of
a routine that will use the field as a DISPLAY field, and tag2 is the label of a routine that will use
the field as an EDIT field. The first time the system encounters the field, it uses the field as a
DISPLA Y field; after that, it uses the field as an EDIT field (unless you change this with a RESET
statement) .

I Strictly speaking, the subroutine definition statements are executable statements, but they must not appear
in an executable block, such as a routine.

093-000151-01 Licensed Material-Property of Data General Corporation 4-3

The REGISTER Statement

The REGISTER statement is another way to declare a program variable. A variable declared by a
REGISTER statement is identical to one defined by a PROCESS statement. You will use
REGISTER-statement declared variables to define temporary storage that is independent of the
screen.

The formal syntax of the REGISTER statement is

REGISTER variable picture {initial value}

where:

variable is the name you want to assign to your program variable. It must be unique within the
program.

picture is a picture of your variable. If you will use this variable with a screen field for storing
or displaying data, this picture must correspond to the picture of the variable that
appears in the screen format.

initial value is optional. If you assign an initial value, it must correspond to the variable's picture;
i.e., you can't assign an initial numeric value if your variable picture is alphabetic.

Subroutine Definition Statements

A subroutine is a group of executable statements that is not connected to a screen field with a
PROCESS statement. To execute a subroutine, give the PERFORM statement.

To define the beginning of a subroutine, use this statement:

SUBROUTINE subroutinename

To end a subroutine, use the statement

ENDSUB

This statement also returns execution to the main program.

Table Definition Statements

Use this statement to define the beginning of a table:

TABLE table name

To end a table, use the statement

ENDTABLE

4-4 licensed Material-Property of Data General Corporation 093-0001 51-01

File Definition Statements

To use a file in an IFPL program,

1. You must create the file using the INFOS utility ICREATE (see Chapter 5), and

2. You include certain file definition statements. These file definition statements are:

FILE [IS} filename
KEY [FOR} filename [IS} length ASCII
RECORD [FOR} filename [IS} recordname
LENGTH [IS} record length
INCLUDES fieldname starting-position length type

STOP

DUPLICATES [ARE} COUNTED [IN} variable
PARAMETERS [FOR} subindexname
NODE-SIZE [IS} value
PARTIAL LENGTH [IS} VALUE

SUBINDEX [FOR} filename [IS} subindexname

DEFINE subindexname USING key ...

Executable Statements
You group the executable statements in routines that you connect to the screen data fields via tags
in the PROCESS statements. Label the first statement in the routine with the same tag that you
used in the PROCESS statement, ending the tag with a colon (:).

Terminate the routine with a LINK, RETURN, RESET, or REST ART statement. The LINK
statement links to another format. RETURN goes to the next PROCESS statement; if the routine
has completed the last PROCESS statement, control passes to the FINISH statement. REST AR T
returns control to the first field, erases all unprotected data, and resets the DISPLAY/EDIT
flip-flop to DISPLAY (for fields with both DISPLAY and EDIT). RESET resets a field with both
DISPLA Y and EDIT to DISPLA Y.

As with other IFPL names, tags must begin with a letter. The remaining characters can be any
combination of letters, numbers, dashes (-), and periods (.)(See the section on "Names" in this
chapter) .

You cannot place a space between the tag and the colon.

E 1: is a legal tag; E2 0: is illegal.

The set of executable statements allows you to perform arithmetic functions, control functions, data
moves between the screen and the program, data manipulation, file manipulation, passing,
sending/receiving, and printing. For each statement's formal syntax, see Chapter 7.

Data Moves Between Screen and Program

The STORE statement takes a value entered in a screen EDIT field and stores it in working storage.
You must give this command to use data entered on the screen in your program.

The DISPLAY statement displays the value of a program variable on the screen in a field that has
the DISPLA Y attribute.

093-000151 -01 Licensed Material-Property of Data General Corporation 4-5

Arithmetic Functions

The arithmetic function statements are ADD, SUBTRACT, MULTIPLY, and DIVIDE. They all
take this form:

operator valuel value2 resultvariable

The operator performs the arithmetic function using valuel and value 2. and places the result in
resultvariable. The SUBTRACT statement subtracts valuel from value 2; the DIVIDE statement
divides valuel by value2.

Be conscious of possible truncation problems when you define your resultvariable. The monitor
will round off decimal fractions and will truncate the left digits of integer values if you haven't
provided enough digits to the left of the decimal point. If such an overflow occurs, the monitor sets
the overflow flag. You can use this flag with the ON-OVERFLOW statement to branch to an
error-handling routine (see ON-OVERFLOW in Chapter 7).

For example, suppose you declared your resultvariable with this picture:

99.99

This addition,

10.1111

+ 1.1171

11.2281

would become 11.23. And this addition,

100.1111

+ 1.1171

101.2282

would become 01.23.

To ensure that you don't lose valuable digits, follow these rules:

ADD Give the resultvariable one more integer place than the larger addend.

SUBTRACT Give the resultvariable one more integer place than the larger of the minuend and
subtrahend.

MUL TIPL Y Give the resultvariable as many integer places as the multiplier plus the
multiplicand.

DIVIDE Give the resultvariable as many integer places as the dividend and as many decimal
places as the divisor.

Licensed Material-Property of Data General Corporation 093-000151-01

Internal Considerations

The monitor will perform arithmetic on up to 18 decimal places. It performs all calculations in real
arithmetic and assumes a decimal point after the right-most digit if you don't specify one. The
decimal point is implicit in all cases; you don't have to provide a character position for it.

Signed Values

You must define your resultvariable as a signed variable, or the sign will be lost. The sign requires
one character position.

Control Statements

The control statements are RANGE, COMPARE, LOOKUP, GO TO, and ON-IOERR.

The RANGE statement checks to see if a value is within a certain range. If it is, you can use the IF
IN-RANGE statement to direct program execution; if it isn't, you use the IF OUT-RANGE
statement.

The COMPARE statement compares two values and sets a flag according to what it finds. The IF
EQUAL, IF NOT-EQUAL, IF LESS, and IF GREATER statements direct program execution
according to the value of the flag.

The LOOKUP statement searches a table for a value and sets a flag. The IF FOUND and IF
NOT -FOUND statements direct program execution according to the flag's value.

The GO TO statement is an unconditinal GO TO; the GO TO USING statement is a conditional GO
TO.

To branch to an I/O error-handling routine, you use the ON-IOERR statement.

You can use 11 other control statements to handle special conditions that may arise during data
entry. For example, the ON BACKT AB statement branches to a routine if the operator strikes the
BACKT AB key (the unmarked key on the cursor pad).

These additional statements are:

ON BACKTAB
ON DISCONNECT
ON END DATA
ON ESCAPE
ON FUNCTION
ON LINE-ERR
ON LOGOFF
ON MODE CHANGE
ON NO-ACTIVITY
ON REPEAT
ON SCREEN

093-000151-01 Licensed Malerial-Properly of Data General Corporation 4-7

Data Manipulation Statements

You can transfer data between memory locations with the MOVE statement, the RIGHT
statement, and the LEFT statement. If you use these statements with tables, be sure that the source
and destination tables have the same data types and sizes. See Chapter 7 for more information on
these statements.

File Manipulation Statements

To locate a file record and bring it into memory, use a variation of the FIND statement.

To enter a new record into the database, use the FILE-NEW statement; to update a record, use the
REFILE statement.

To delete a record permanently, use the DESTROY statement. To delete a record logically, use the
REMOVE statement. To recover a logically deleted record, use the REINSTATE statement.

To lock a record, use the HOLD keyword in the FIND statement. To release a locked record for use
by other programs, use the RELEASE statement. The RELEASE statement also allows you to
unlock all records locked by the program.

To verify that a key will retrieve a record you can use the VERIFY statement. The system will set
the IOERR flag as if a record access was attempted. VERIFY does not, however, retrieve the record.
This is useful for positioning within INFOS system sublevels. You can also use VERIFY NEXT or
VER IFY PREVIOUS to look beyond a record that was locked by another program.

The RETRIEVE key and RETRIEVE HIGH key statements let you place key values in variables.

The EST ABLISH LINK statement sets up a link between a key and a subindex.

The INVERT statement lets you set up an alternate key for a record.

Printing Statements

The printing statements are:

RECORD [FOR] PRINTING [IS] recordname

INITIATE PRINTING USING key

PRINT [THE] record name USING key

TERMINATE PRINTING USING key

We explain these fully in Chapter 8.

Sending and Receiving Data

To send data to another process, use a form of the SEND statement:

SEND {record name [[TO] ipc-portname] }
REQUEST record name

To receive data sent from another process, use:

RECEIVE recordname [[FROM] ipc-portname]

4-8 Licensed Material-Property of Data General Corporation 093-0001 51 -01

YOU may use RCX70 to send and receive data. If you elect this option (see IDEASG in Chapter 10),
Idea will perform several tasks to make such communication simple. The system will set up IPC
headers, split records if they exceed the RCX70 buffer size, and attach a valid RCX70 command
code and address. You must simply place in the record the information that the host expects or
returns.

Statements for Tape Logging

Use these statements for tape logging:

RECORD [FOR} TAPE [IS} record name

LOG [THE} recordname

Passing Records to Another Program

To pass a record to the COMMON area so that a linked program can accept it, use:

RECORD [FOR} PASSING [IS} recordname

PASS record name

To accept a record from the COMMON area, use

RECORD [FOR} PASSING [IS} record name

ACCEPT record name

Miscellaneous Statements

The statement

COPY filename

copies the contents of a file into a program.

The statement

PRIORITY [IS} value

assigns a lower processing priority to the program.

The statement

QUEUE variable

queues a CLI command as a batch job.

093-0001 51 -01 Licensed Malerial-Property of Data General Corporation 4-9

Names

You must follow certain conventions when assigning names to your programs, va'riables, tables,
files, records, and tags,

Program Names

Program names in the NAME statement must begin with a letter; the remaining characters may be
letters, numbers, or periods (.). You may not use the following characters in the NAME statement:

dash
colon
carat
single quote
double quote
angle brackets
parentheses

"
<>
()

Program names can contain any number of characters; however, the first 10 must be a unique
name.

Other Names

Names for variables, tables, files, records, and tags must begin with a letter. The remaining
characters can be letters, numbers, periods, dashes, or other punctuation characters except the
following:

colon
carat
double quote

The colon serves as the tag delimiter. You must place a colon immediately after a tag, and follow the
colon with at least one space or tab. For example,

MYTAG: STORE NAME
RETURN

The carat is the line continuation character, and the double quote encloses literals, such as
"A_LITERAL" .

Length

You can specify any num ber of characters in your names, but the first 10 must be unique.

Delimiters

To separate a name from a keyword or another name, use a space, a tab, or a comma.

4-10 Licensed Material-Property of Data General Corporation 093-000151-01

Statements That Define Names

The following statements define names. The name in each statement is underlined.

NAME program name

FILES filename ...

REGISTER variable picture [initial value]

(filename 1
) PASSING

RECORD FOR) PRINTING IS recordname

(TAPE

TABLE tablename

SUBROUTINE subroutinename

{
tag1 AND NONE 1

PROCESS variable AT
NONE AND tag2

Using the REDESIGNATE Statement

You can use the REDESIGNATE statement to define a name. A register redesignation is
equivalent to a register declaration; the names specified in the redesignation define valid names. For
example,

REGISTER DATE X (8) 00/00/00

REDESIGNATE DATE

MONTH 1 2

DAY 4 2

YEAR 7 2

STOP

In this example, we redesignated a portion of the register DATE as MONTH, a portion as DAY,
and a portion as YEAR. Another possible way to define this register would be

REGISTER MONTH X (2) 00

REGISTER DAY X(2) 00

REGISTER YEAR X(2) 00

STOP

However, the values of MONTH, DAY, and YEAR receive six contiguous bytes of storage when
you REDESIGNATE them. If you declare them as three separate registers (as in the second case),
they aren't stored contiguously.

093-000151-01 Licensed Material-Property 01 Data General Corporation 4-11

Data Types
IFPL has three data types: numeric, alphabetic, and alphanumeric. They are defined by their
character sets:

Numeric: 0-9. + -

Alphabetic: The characters contained in the file ALPHABET.TB. For English-speaking users,
this set will usually consist of the letters A -Z and the space.

To change the alphabet, use the ALPHA utility described in Chapter 9.

Alphanumeric: Any keyboard character.

IFPL allows you to use these data types in registers. It obtains the data for PROCESS variables from
the format field definitions.

Auxiliary Words
You may use the following words in statement lines or you may leave them out. In the statement
descriptions in Chapter 7, we enclose these optional words in square brackets:

AND
ARE
AT
FOR
FROM

IF
IN
IS
JUSTIFY
ON

OF
THE
TO
WITH

You cannot define any of these words as a name.

Continuation Lines
To continue a statement onto another line, end the first line with a "" character (keys SHIFT and 6).
Begin the second line flush left -- the compiler will see a space or a tab as a break between two words.
You may use only one continuation line per statement.

Example

MESSAGE CUSTOMER NO. ALREADY ON FILE,EN""

TER 'R' TO ACCESS RECORD.

(This is incorrect.)

MESSAGE CUSTOMER NO. ALREADY ON FILE,EN""

TER 'R' TO ACCESS RECORD.

(This is the correct form.)

4-12 Licensed Malerlal-Property 01 Data General Corporation 093-0001 51-01

Comments
To place a comment in an IFPL program, begin the comment with an asterisk (*). The compiler
recognizes information following the asterisk as a comment and will not try to interpret it.

You can begin a comment anywhere on a line. However, you may not place a comment in a
MESSAGE statement, since the asterisk is interpreted as being part of the message.

Also, you may not use a comment in a REGISTER statement that defines an alphanumeric or
alphabetic register; the system interprets the asterisk as part of the register's initial value.

You may use a comment in a REG ISTER statement that defines a numeric register; the asterisk
terminates the numeric portion of the register and begins the comment.

Sending Control Characters
You can send control characters directly to a terminal from an IFPL program without filtering or
interpretation by the Idea terminal interface routines. To do this, enclose the angle-bracketed
control characters in exclamation points (!). The first exclamation point disables interpretation, the
second one re-establishes it. .

You can send control characters via the MESSAGE statement, or you can use a nonnumeric
REGISTER statement to set up a register:

MESSAGE !<47> <57>! THIS IS A MESSAGE

REGISTER REGA X (9) ABCDER!<47>!

Each exclamation point occupies one byte of storage. If the output of control characters results in
the loss of the terminal's cursor position, use one of the following sequences to correct the problem:

1. Before turning interpretation back on, send positioning codes to restore the cursor position.

2. Turn the interpreation back on and send the control sequence <375> <320> <row>
<col>.

Note that with the second method, you do not use the exclamation point delimiters. The codes are
not actually sent to the terminal, but are intercepted by the monitor. The initial code <375>
signals this interception. The monitor then reads the codes and positions the cursor.

Reserved Words
Table 4-1 lists the special registers that you may use in IFPL programs. The monitor initializes these
registers every time it enters a program to process a screen field. You must declare all but three of
these registers in the program. You may use them just as you would any register.

093-000151-01 Licensed Material-Property of Data General Corporation 4-13

Table 4-1. IFPL Reserved Words and Their Pictures

BATCH X(3) FUNCTION 9(1) MONTH 9(2)
CHARACTERS 9(2) HOURS 9(2) PASSWORD X(10)
CRT 9(2) INFOS-ERR1 9(3) SECONDS 9(2)
DAY 9(2) IOERR1 9(2) VARIED-KEy2
ENTRy1 9(2) MINS 9(2) YEAR 9(2)
FIELD 9(2)

1 Defined by the compiler. Define all others in REGISTER or PROCESS statements.

2 Takes any picture you specify.

Reserved Word Explanation

BATCH This register contains the batch number
associated with disk and tape logging
systems. The operator supplies this
number in response to a system question
when logging on. If you define the
BATCH register in the program, it gets
this operator-defined value.

CHARACTER This register contains the number of
characters entered in the last EDIT field.
However, it doesn't count NEW LINE as
a character. The system updates this value
after every EDIT field.

CRT This two-byte word returns the AOS
console number of the CRT.

PASSWORD This lO-byte word returns the password
most recently used to log on the terminal
running the program.

MONTH, DAY, YEAR These two-byte words contain the system
month, date, and year.

HOURS, MINS, SECONDS These words return the system hours,
minutes, and seconds. They are updated
at each entry to the program.

FIELD This word contains the physical number
of the current field.

ENTRY The system sets this two-byte register to
the index value of a table element
according to the findings of a LOOKUP
statement. You can then use ENTRY in a
control statement.

4-14 Licensed Material-Property 01 Data General Corporation 093-0001 51-01

Table 4-1. IFPl Reserved Words and Their Pictures <Continued)

Reserved Word Explanation

INFOS-ERR Following a database access or a
SEND/RECEIVE, this register contains
the actual INFOS or AOS error code. The
system updates this register after such
statement.

IOERR Whenever the program attempts to access
a data file, this register receives one of the
error codes listed below.

FUNCTION When the operator strikes one of the
user-defined function keys, the system
places a number in this register. The
numbers are 1, 2, 3, or 4, corresponding
to the number of the function key. (The
numbers run 1-2-3-4 from left to right.)

VARIED-KEY Use this register with RETRIEVE KEY
and RETRIEVE HIGH KEY statements
to accept the value of the key. Give
V ARIED-KEY as many characters as the
largest key you will store in it. The system
will delete spaces in VARIED-KEY so
that it matches the exact length of the key
you retrieve. If you don't specify enough
spaces, the system will truncate the value
to fit the register.

End of Chapter

093-000151-01 Licensed Material-Property of Data General Corporation 4-15

Chapter 5
Using INFOSFiles with Idea Programs

Idea programs use INFOS® system DBAM files. Before you read this chapter you should read the
INFOS System User's Manual (AOS), 093-000152, which explains the various options available with
INFOS system files, such as duplicate keys, generic keys, approximate keys, inverted keys, and
subindexes. It also shows you the best file structure to use for each type of application.

In this chapter, we will demonstrate how to create a single-key DB AM file with the ICREA TE utility,
(You must use this utility to create files; you cannot create a file from within a program.) We will
then use the file with two programs: one to load the database and one to update it. These programs
will demonstrate IFPL's file definition and file manipulation statements.

Creating a File
We will create the simplest type ofINFOS system file used with Idea -- a single-key DBAM file. The
file will consist of records containing two fields: part name and initial quantity. We will use each
part's number as the key. (The key does not have to be a field within the record, as we will
demonstrate.) Each part will have only one part number, so each key will uniquely identify one part
record.

Figure 5-1 shows our file with the key values included as fields within the record. Figure 5-2 shows
the file we will create; the keys are not included within the records.

Notice that an INFOS file consists of two files: a database file containing the records and an index
file containing the key values.

Our file's name will be INVENTOR Y. We will not allow duplicate keys in the index, since each part
number uniquely identifies one part. Also, we will not use partial records or any of the other INFOS
system options.

093-0001 51-01 Licensed Material-Properly of Data General Corporation 5-1

I 5270 1 I 7135 I 11 109
I Index File

/
/

/
1 5270WIDGET 5000 I Database File

/
7135THERBLIG 0 I

/
11109GADGET 300 I

SO-01731

Figure 5-1. A Single-Key ISAM File Where the Key IS a Field in the Record

I
5270 I I 7135 I I 1 109 I

Index File

\ /
\ /

\ /
IWIDGET 5000 I

j
Database File

ITHERBLIG o I

/
IGADGET 300 J

SO-01732

Figure 5-2. A Single-Key ISAM File Where the Key Is NOT Part a/the Record

5-2 Licensed Material-Property of Data General CorDoration 093-000151-01

To create the file, give this command from the eLi:

lICREATE)

This begins a dialog with the system, shown in Figure 5-3.

093-000151-01

NAME OF FILE TO BE CREATED: INVENTORY)
ACCESS METHOD (I:ISAM, O:DBAM) [0]:)

.***** DEFINE INDEX FILE .*****

MAXIMUM NUMBER OF INDI:X LEVELS [2]:)
PAGE SIZE (BYTES) [2048]:)
PARTIAL RECORD LENGTH [0]:)
ROOT NODE SIZE [2042]:)
MAXIMUM KEY LENGTH [255]:)
ALLOW DUPLICATE KEYS IN THIS INDEX? (Y OR [N]):)
ENABLE SPACE MANAGEMENT? (Y OR [N]]:)
ENABLE KE Y COMPRESSION (Y OR IN]):
OPTIMIZE RECORD DISTRIBUTION (Y OR [N]):)

* •• *** DEFINE INDEX VOLUME(S) ******

NUMBER
VOLUME

OF VOLUMES TO DEFINE 11]:)
1 NAME [VOL01]:)

SPECIFY MAXIt-lUM SIZE? (Y OR [N]):)
SPECIFY FILE ELEMENT SIZE? (Y OR [N]):)

****** DEFINE DATABASE FILE ******

DATABASE FILE NAME IINVENTOFlY.DB]:)
PAGE SIZE (BYTES) [2048]:)
ENABLE SPACE MANAGEMENT? (Y OR [N]):)
ENABLE DATA RECORD COMPRESSION (Y OR [N]):)
OPTIMIZE RECORD DISTRIBUTION (Y OR [N]):)

****** DEFINE DATABASE VOLUME(S) ******

NUMBER
VOLUME

OF VOLUMES TO DEFINE [1]:)
1 NAME [VOL01]:)

SPECIFY MAXIMUM SIZE? (Y OR [N]):)
SPECIFy FILE ELEMENT SIZE? (Y OR [N]):)

Figure 5-3. Our Dialog with ICREA TE

Licensed Malerial-Properly of Data General Corporation 5-3

Creating a Program to Build the Database
After creating the file, we will write a program to build the database. We want to enter three values
into the program -- PARTNO, PARTNAME, and QUANTITY -- and use PARTNO as the key to
store PARTNAME and QUANTITY as fields in the record. We also want to restart the program by
entering a Y in response to a screen literal prompt, DO YOU WANT TO ENTER ANOTHER
PART? (TYPE Y OR N, THEN NEW LINE). Thisrequires an extra field.

Figure 5-4 shows the screen named NEWP AR T. We will give all four fields the EDIT attribute since
we will enter values into the program through them.

80-01733

Figure 5-4. The Screen Format Named NEWPART

Figure 5-5 shows the program that will build the database.

File Definition Statements in NEWPART.UP

In Figure 5-5, the statements from FILE IS INVENTORY to STOP define our file, key, and record.
Each IFPL progra01 that uses a file must contain a block of statements similar to the one in our
example.

FILE IS INVENTORY

Gives the name of the file. We use the name that we gave to the file when we created it with
ICREATE.

KEY FOR INVENTORY IS 4 ASCII

Specifies that the key is 4 characters long.

5-4 Licensed Material-Property of Data General Corporation 093-000151-01

NAME NEWPART.UP

FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII

RECORD FOR INVENTORY IS QONHAND
LENGTH IS 20
INCLUDES PARTNAME 1 20 ASCII
INCLUDES QUANTITY 21 0 ASCII

STOP

PROCESS PARTNO AT NONE AND GETPARTNO
PROCESS PARTNAME AT NONE AND GETPARTNAME
PROCESS QUANTITY AT NONE AND GETQUANT
PROCESS NEWSCREEN AT NONE AND NEXTPART

GETPARTNO:

GETPARTNA~E:

GETQUANT:

NEXTPART:

ERRMSG:

FINISH

STORE PARTNO
RETURN

STORE PART NAME
RETURN

STORE QUANTITY
FILE-NEW QONHAND USING PARTNO
ON-IOERR ERRMSG
RETURN

STORE NEI'ISCREEN
RETURN

MESSAGE 110 ERROR. CALL SYSTEM MANAGER.
QUIT

Figure 5-5. The Program NEWPART

RECORD FOR INVENTORY IS QONHAND

Begins the record definition block for the record named QONHAND.

LENGTH IS 26

Gives the overall length of the record QONHAND in bytes (characters).

INCLUDES PARTNAME 1 20 ASCII

Defines the first field in the record, which is named PARTNAME. The number 1 says to begin
PARTNAME at the first character position in the record QONHAND. The number 20 is
PARTNAME's length in bytes. The keyword ASCII indicates that the information is in regular
ASCII character format. This is the most common format; for other options, see the INCLUDES
statement description in Chapter 7.

INCLUDES QUANTITY 21 6 ASCII

Defines the second field in the record, which is named QUANTITY. The number 21 is the starting
position of this field; the number 6 is its length in bytes.

STOP

Ends the record definition block for the record QONHAND.

093-000151-01 Licensed Material-Property of Data General Corporation 5-5

File Manipulation Statements in NEWPART.UP

In a database-loading program, there is only one file manipulation statement -- the FILE-NEW
statement. In this program, the statement

FILE-NEW QONHAND USING PART NO

creates a new QONHAND record that you will access later by using the value now in the variable
PARTNO as the key.

Notice the ON-IOERR ERRMSG statement with the ERRMSG routine shown previously in Figure
5-5. You should place an ON-IOERR statement immediately after each file manipulation statement
in a program to check for errors.

Creating a Program to Update the Database
After we create our database-building program and run it to create our records, we will need another
program to access the database and update it. In our example, we will create a program that will
update the QUANTITY field whenever production releases a batch of parts to inventory.

Figure 5-6 shows the,screen named QUPDATE. This screen, along with the program in Figure 5-7,
will take a part number that we enter, find the corresponding part record, and display the part name
as a check to ensure that we are updating the correct record. Then, we input the quantity of the part
that has arrived from production, The program adds this quantity to the old quantity, updates the
record, and displays the new quantity on hand,

50-01734

Figure 5-6. The Screen Format Named QUPDATE

5-6 Licensed Malerlal-Property of Oala General Corporalion 093-0001 51-01

File Definition Statements in QUPDA TE.UP

In Figure 5-7, the file definition statements in QUPDATE.UP are identical to those in
NEWPART.UP. They didn't have to be; if we hadn't used the PARTNAME field in
QUPDATE.UP, we could have omitted the statement INCLUDES PARTNAME 1.20 ASCII and
simply specified INCLUDES QUANTITY 21 6 ASCII.

093-000151-01

NAME QUPDATE.UP

FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII

RECORD FOR INVENTORY IS QONHAND
LENGTH IS 26
INCLUDES PARTNAME 1 20 ASCII
INCLUDES QUANTITY 21 6 ASCII

STOP

PROCESS PARTNO AT NONE AND GETPARTNC
PROCESS PARTNAME AT DISPLAYNAME AND NONE
PROCESS NEWQUANT AT NONE AND GETQUANT
PROCESS QUANTITY AT DISPQUANT ANO NONE
PROCESS NEw SCREEN AT NONE AND NEXTPART

GFTPARTNOI

DISPLAYNAME:

GETQUANT:

DISPQUANT:

NEXTPART:

ERRMSG:

FINISH

STORE PARTNO
RETURN

FIND AND HOLD THE QONHAND USING PARTNO
ON-IOERR ERRMSG
DISPLAY PARTNAME
RETURN

STORE NEWQUANT
RETURN

ADD NEWQUANT QUANTITY QUANTITY
REFILE QONHAND USING PA~TNC
ON-IOERR ERRMSG
DISPLAY QUANTITY
RETURN

STORE NEWSCREEN
RETURN

MESSAGE 1/0 ERROR. CALL SYSTEM MANAGER.
QUIT

Figure 5-7. The Program QUPDATE. UP

Licensed Material-Property of Data General Corporation 5-7

File Manipulation Statements in QUPDATE.UP
You always need two file manipulation statements in a program that accesses an existing record -­
one to bring the record into the program and one to put it back into the database. To bring a record
into a program, use a form of the FIND statement. In the routine labeled DISPLA YNAME, we
have the statement

FIND AND HOLD THE QONHAND USING PART NO

The keyword HOLD locks the record; this prevents another program from accessing it while your
program is using it. Use the FIND AND HOLD statement whenever you modify any part of a
record.

To replace a record in the database, use the REFILE statement. In the DISPQUANT routine we use
the statement

REFILE QONHAND USING PARTNO

where PARTNO is the key. The REFILE also unlocks the record.

End of Chapter

5-8 Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 6
Compiling the IFPL Program

To compile an IFPL program and its format, give this command from the CLI:

SYNTAX [ILl [IA] [IW] [IN]formatname programname

where:

formatname is the name of a valid format in the current directory.

programname is the name of an IFPL program that exists on your disk. If you use
formatname.UP as your programname, you don't have to include programname
in the command line.

The following command switches are optional:

IL Gives you a line printer listing of the source text.

IA Gives you a line printer listing of the source text plus a listing of the assembly language
statements that the compiler generates.

IW Suppresses nonfatal error messages; we recommend using it only after inital syntaxing.

IN Compiles the program, but doesn't assemble or load it. It also displays error messages on the
terminal screen.

For example,

SYNT AXIL MYPROG

compiles, assembles, and binds the program MYPROG.UP with the format MYPROG. It also sends
a source listing to the line printer.

You can also use this form of the S YNT AX command:

SYNTAX listfllename {:;} formalname programname

where:

listfilename is where you want your source and/or assembly listing to go instead of to the line
printer. Note that you must use a local IL or I A switch with the listfilename.

For example,

SYNTAX MYLIST IL MYPROG

compiles, assembles, and binds the program MYPROG.UP with the format MYPROG. It also sends
a source listing to file named MYLIST instead of to the line printer.

093-0001 51 -01 Licensed Material-Property of Data General Corporation 6-1

How the Compiler Works
When you give the SYNTAX command, the IFPL compiler goes through this sequence:

1. syntactical phase

2. assembly phase

3. link phase

4. Idea monitor loader phase

In the syntactical phase, the compiler outputs an assembly language version of the source program,
named IFPL.SR, where SR stands for source.

In the assembly phase, the assembler uses IFPL.SR to create an object version of the program,
named IFPL.OB.

Next, SYNTAX calls the AOS Link, which outputs the program IFPL.PR (for program). IFPL.PR is
not executable.

Next, the format loader program, FPYUP, produces the executable program formatname.FP,
where the extension .FP stands for field program.

The .FP program is the only one of the intermediate programs that the system retains; it deletes the
others. At runtime, the monitor displays literal data on the screen using the file formatname.FS. It
then loads formatname.FP. IFMT uses the file named formatname only to display the existing
format.

To summarize, we list the following files and their descriptions:

File Description

formatname A file describing the visible, terminal screen image format.

formatname.VS A file containing an evaluation of the format's data fields. (The monitor uses this
file to determine field sequence, attributes, and characteristics')

formatname.FS A file containing an evaluation of the format's literals.

Note that you must set the user search list to include these files, and you must correctly set the files'
access control lists (ACLs).

End of Chapter

6-2 Licensed Material-Property 01 Data General Corporation 093-000151-01

Chapter 7
IFPL Statements

This chapter contains alphabetically listed descriptions of the IFPL statements. Table 7-1 lists the
statements, their syntax, and their acceptable abbreviations.

Table 7-1. IFPL Statement Summary

Statement Syntax Abbreviation

ACCEPT ACCEPT record name

ADD ADD addend1 addend2 sum

COMPARE COMPARE variable1 variable2 COMP

COpy COMP filename

DEFINE DEFINE subindex USING key ...
SUBINDEX

DESTROY DESTROY [THE}recordname USING key ... DEST

DISPLAY DISPLAY { variable }
tablename (pOinter) DISP

DIVIDE DIVIDE dividend divisor quotient DIV

DUPLICATES DUPLICATES [ARE}COUNTED [IN} variable DUPL

ENDSUB ENDSUB

ENDTABLE ENTABLE

ESTABLISH ESTABLISH LINK [IN}filename [TO} key ...
LINK

FILE FILE[S] filename1 {filename2 {filename3 JJ

FILE-NEW FILE-NEW [THE}recordname USING key ...

FIND FIND [THE}recordname BEGINNING [WITH} key ...
BEGINNING

FIND HOLD FIND [AND} HOLD find-statement

FIND NEAREST FIND [THE} record name i-JEAREST key ...

FIND NEXT FIND [THE} NEXT record name

093-0001 51 -01 Licensed Material-Property of Data General Corporation 7-1

Table 7-1. IFPL Statement Summary <Continued)

Statement Syntax Abbreviation

FIND FIND [THE] PREVIOUS recordname
PREVIOUS

FIND USING FIND [THE]recordname USING key ...

FINISH FINISH FINI

GOTO GO [TO] tag

GOTO USING GO [TO]tag1 , ... tagn USING variable

[IF] EQUAL [IF] EQUAL tag

[IF] FOUND [IF] FOUND tag

[IF] GREATER [IF]GREATER tag

[IF] IN-RANGE [IF] IN-RANGE tag

[IF] LESS [IF] LESS tag

[IF] [IF] NOT -EQUAL tag
NOT-EQUAL

[IF] [IF] NOT-FOUND tag
NOT-FOUND

[IF] fIF] OUT -RANGE tag
OUT-RANGE

INACTIVITY INACTIVITY CONSTANT [IS] value

INCLUDES INCLUDES field starting position length type INCL

INITIATE INITIATE PRINTING USING printformatname
PRINTING

IN-RANGE fIF]IN-RANGE tag

INVERT INVERT record name USING key ...

KEY KEY [FOR] {file~ame }
submdexname [IS] length type

LEFT LEFT [JUSTIFY]variable1 [IN]variable2

LENGTH LENGTH [IS] length LEN

LESS [IF] LESS tag

LINK LINK USING variable [RETAINjilej {file2] {file3]]

LOG LOG [THE] record name

7-2 Licensed Material-ProperlY 01 Data General Corporation 093-000151-01

Table 7-1. I FPL Statement Summary <Continued)

Statement Syntax Abbreviation

LOOKUP LOOKUP [IN} table name (pointer) variable

MESSAGE MESSAGE textstring

MOVE MOVE {variable1
tablename1 (poi nter)

} {TO} { variable2 }
tablename2 (pointer)

MUL TIPLY MUL TIPL Y multiplicand multiplier product MUL

NAME NAME programname

NODE SIZE NODE SIZE [IS} value

ION I BACKT AB {ON}BACKTAB tag

[ON}
{ON} DISCONNECT tag

DISCONNECT

fON}END {ON} END {OF} DATA tag
DATA

[O"vjESCAPE {ON} ESCAPE tag

[ON! {ON}FUNCTION tag
FUNCTION

ON-IOERR ON-IOERR tag ON-IO

[ON} LINE-ERR {ON} LINE-ERR tag

[ON / LOGOFF {ON} LOGOFF tag

/ON/MODE
{ON} MODE CHANGE tag

CHANGE

fON}
{ON} NO-ACTIVITY tag NO-ACTIVITY

ON-OVERFLOW ON-OVERFLOW tag

/ON/REPEAT {ON} REPEAT tag

iON/ SCREEN {ON}SCREEN [IMAGE} tag

OUT-RANGE [IF} OUT-RANGE tag

PARAMETERS
PARAMETERS {FOR} subindexname FOR SUBINDEX

PARTIAL
PARTIAL LENGTH [IS}value LENGTH

PASS PASS record name

093-000151-01 Licensed Material-Property of Data General Corporation 7-3

Statement

PERFORM

PRINT

PRIORITY

PROCESS

QUEUE

QUIT

RANGE

RECEIVE

RECORD

RECORD FOR
PASSING

RECORD FOR
PRINTING

RECORD FOR
TAPE

REDEFINES

REDESIGNATE

REFILE

REGISTER

REINSTATE

RELEASE

REMOVE

RESET

RESET USING

RETRIEVE
HIGH KEY

7-4

Table 7-1. IFPL Statement Summary (continued)

Syntax

PERFORM subroutinename

PRINT [THE] record name USING printformatname

PRIORITY [IS] value

{ FILLER}
[label #] PROCESS variable [A T]

QUEUE variable

QUIT

RANGE variablel variable2 variable3

{ tagl [AND] NONE}
NONE [AND] tag2

RECEIVE record name [FROM] [;pc-port-name]

RECORD [FOR] {file~ame } [IS] record name
submdexname

RECORD [FOR] PASSING [IS] record name

RECORD [FOR] PRINTING [IS] record name

RECORD [FOR]TAPE [IS] record name

REDEFINES recordname

REDESIGNATE register

REFILE [THE]recordname USING key ...

REGISTER variable picture !initial-value]

REINSTATE [THE]recordname USING key ...

RELEASE { [THE] record name USING key ... }
ALL HOLDS [IN] filename

REMOVE [THE] recordname

RESET { :~~~I} number

RESET USING variable

RETRIEVE HIGH KEY [FOR] record name [TO]variable

Licensed Malerlal-Property of Data General Corporalion

Abbreviation

PROC

RECD

REG

093-0001 51-01

Statement

RETRIEVE KEY

RESTART

RETURN

RETURN
USING

RIGHT

SEND

STOP

STORE

SUBINDEX

SUBROUTINE

SUBTRACT

TABLE

TERMINATE
PRINTING

VERIFY

VERIFY NEXT

VERIFY
PREVIOUS

093-0001 51-01

Table 7-1. IFPL Statement Summary (continued)

Syntax

RETRIEVE KEY [FOR] record name [TO] variable

RESTART

RETURN { [{tIe numberl }
[labe/}

RETURN USING variable

RIGHT [JUSTIFY]variablel [IN]variable2

SEND { record name [[TO] iPc-port-name]}
REQUEST record name

STOP

STORE variable

SUBINDEX [FOR] {filename } [IS] subindexname2
subindexnamel

SUBROUTINE name

SUBTRACT subtrahend minuend difference

TABLE name

TERMINATE PRINTING USING printformatname

VERIFY [THE] record name USING key ...

VERIFY [THE] NEXT record name

VERIFY [THE] PREVIOUS record name

Licensed Material-Property 01 Data General Corporation

Abbreviation

RET

SBIX

SUB

7-5

ACCEPT

ACCEPT record name

The ACCEPT statement reads a record from the COMMON file into the program variable. To use
ACCEPT, you must have defined the record in a RECORD FOR PASSING statement, and you
must have sent data to the COMMON file by using a PASS statement.

In the following example, we will pass a record named PARAMETERS into the COMMON file
from the program named PROGRAMl. Then, we will use an ACCEPT statement in the program
named PROGRAM3 to read the record from the COMMON file.

Note in Figure 7-1 that we didn't give as many INCLUDES statements in the accepting program as
in the passing program; you can use only the part of the record that you want. Also, notice that both
programs require a RECORD FOR PASSING statement.

NAME PROGRAM1 *PASSING PROGRAM

•
RECORD FOR PASSING IS PARAMETERS

LENGTH IS 110
INCLUDES NAME 1 20 ASCII
INCLUDES ACCOUNTING 21 b ASCII
STOP

PASS PARAMETERS

LINK USING PROGRAM!

FINISH•....••...•......•............. -.....•.•.....••...........................
NAME PROGRAM! *ACCEPTING PROGRAM .

.
RECORD FOR PASSING IS PASSREC

LENGTH IS IIIIl

ACCEPT PASSREC

INCLUDES NAME 1 20 ASCII
STOP

*FIRST 20 CHARACTERS
*PASSED BY PROGRA~l
*ARE NOW AVAILABLE
*TO PROGRAM! IN THE
*VARIABLE NAME

, Figure 7-1. Passing and Accepting Programs

Licensed Malerlal-Properly of Dala General Corporalion 093-000151-01

ADD

ADD addend1 addend 2 sum

This statement adds addend 1 and addend 2, placing the result in sum. It does not change the
values of the addends themselves.

When you define the variable you will use for sum, be careful to include enough digits on both sides
of the decimal point. The ADD statement first aligns the decimal point of the result. It then rounds
and truncates the decimal fraction, and truncates the integer values from the left, if necessary.

If, for example your sum variable has a picture 99.99 and your answer was 3333.8775, your sum
variable would become 33.88.

To ensure that you don't lose valuable digits, give the sum variable one more integer place than the
larger of the two addends.

COMPARE

COMPARE variable1 variable2

The COMPARE statement compares the value of variable1 to the value of variable2 and sets the
EQUAL, NOT EQUAL, LESS, or GREATER flag or flags according to the result. You then use the
IF EQUAL, IF NOT-EQUAL, IF LESS, or IF GREATER statements to branch to a routine
according to the outcome.

NOTE: The flag stays set until the next COMP ARE statement.

The COMPARE statement operates with three types of comparison: numeric, alphanumeric, and
dissimilar.

Numeric Comparison

If both variables are numeric, COMPARE performs a numeric comparison. For example:

Contents of variable,

100.000
746
085.001

093-000151-01

Contents of variable2

0100
98.5412
88

Flag Set

EQUAL
GREATER (and NOT-EQUAL)
LESS (and NOT -EQUAL)

Licensed Material-Property of Data General Corporation 7-7

COMPARE (continued)

Alphanumeric Comparison

If both variables are alphanumeric, COMPARE first checks their lengths. The longer variable is
greater regardless of content. For example:

Contents of variable1

SHORT
SHORT

Contents of variable2

LONGER
LONG

Flag Set

LESS (and NOT-EQUAL)
GREATER (and NOT-EQUAL)

If the two fields are of equal length, COMPAR.E performs a character-by-character comparison. The
letter A is the alphabetic character with the lowest value, and the letter Z has the greatest. Numbers
have smaller values than letters. (The comparison is by the ASCII code of the character.)

For example:

Contents of variable1

UNIT
5347
BTAG

Dissimilar Comparison

Contents of variable2

UNIT
PRICE
ATAG

Flag Set

EQUAL
LESS (and NOT -EQUAL)
GREATER (and NOT-EQUAL)

If you compare two variables of dissimilar data type, the compiler issues warning error message,
unless you are performing a table comparison. Next, it performs an alphanumeric comparison.

In the case of table comparisons, the compiler assumes that you know the data types of the elements
involved, so it won't issue a warning.

COpy

COpy filename

This statement copies the contents of the specified file into your program. To copy a block of
statements, place the COPY statement wherever you want the block of statements to appear.

Use the COPY statement when you have several programs that use an identical sequence of
statements -- a record definition block, for instance. Since the compiler ignores record field
INCLUDES statements that the program doesn't need, you can set up one COpy file and use it in
different programs that require different record fields, without tailoring it to each one.

You may nest up to four COPY statements.

7-8 Licensed Material-Property of Data General Corporation 093-000151-01

DEFINE SUBINDEX

DEFINE subindex USING key ...

Use this statement to define a new subindex below the one that the specified key path points to. For
example, suppose a file has three index levels -- the root node and two subindex levels -- as in
Figure 7-2.

To explicitly define the second subindex level, we would use this statement:

DEFINE SUB2 USING AKEY, BKEY

Use the DEFINE SUBINDEX statement with the PARAMETERS FOR SUBINDEX block to
explicity define subindex parameters.

KEY Root Node

AKEY Subindex SUB1

BKEY Subindex SUB2

Database File

/
record

SD-01735

Figure 7-2. A File with Three Index Levels

093-0001 51-01 Licensed Material-Property of Data General Corporation 7-9

DESTROY

DESTROY [THE] record name USING key ...

This statement physically deletes the specified record. You must use one DESTROY statement for
each key. If you have a structure such as

AKEY
I

BKEY
I

CKEY

you must destroy the structure from the bottom up. You cannot delete the entire structure by
destroying AKEY; you must first destroy CKEY, then BKEY, then AKEY.

DISPLAY

DISPLAY {variable }
table name (painter)

The DISPLAY variable statement displays the current value of variable in the current screen
format DISPLAY field. You must have given the IFMT DISPLAY attribute to the field. If you try
to display a value in an EDIT -only field, the results are unpredictable. Also, you must have
previously declared variable in a PROCESS or REGISTER statement or assigned a literal variable
value to it.

The DISPLAY tablename (pointer) statement displays a value indexed by (pointer) from the table
tablename. For example, suppose we have the following table:

TABLE ERRORCODES
"00"
"10"
"22"
"23"
END TABLE

If the program gives the value 3 to the pointer MPTR, the following DISPLAY statement would
display 22:

DISPLAY ERRORCODES (MPTR)

The DISPLAY will occur when the program executes the RETURN statement associated with the
routine. You can display only one field per field-processing routine.

If you attempt to display a value that exceeds the DISPLAY field's specification, the monitor will
display a field of asterisks.

7-10 Licensed Material-Property of Data General Corporation 093-0001 51-01

DIVIDE

DIVIDE dividend divisor quotient

This statement divides the value of dividend by the value of divisor and places the result in the
variable quotient.

To ensure that you don't truncate quotient digits, declare your quotient variable with as many
integer digits as dividend and as many decimal places as divisor.

DUPLICATES
DUPLICATES [ARE]COUNTED [IN] variable

Use this statement with files allowing duplicate keys. Place the DUPLICATES statement
immediately after the KEY statement of the subindex allowing duplicate keys.

You must use a REGISTER statement within the program to declare variable as a numeric
variable, or use a PROCESS statement to associate it with a numeric field on the screen.

When the program uses a FILE-NEW, a FIND NEAREST, or a FIND BEGINNING statement, the
compiler places the duplicate count in variable.

ENDSUB
ENDSUB

Place this statement at the end of all subroutines. ENDSUB tells the compiler where the end of the
subroutine is. It also returns program control to the statement following the PERFORM statement
that called the subroutine.

ENDTABLE
ENDTABLE

This must be the last statement in a table definition. It tells the compiler where the end of the table
is.

093-000151-01 Licensed Material-Pr?perty of Data General Corporation 7 -11

ESTABLISH LINK

ESTABLISH LINK [IN]filename [TO] key ...

Use this statement to create alternate key paths to records.

You must first create the keys you wish to use in the ESTABLISH LINK statement. One way to do
this is to define dummy records that use these keys in FILE-NEW statements.

Next, you must position the INFOS system pointer to the level of the existing key path where you
want to create the alternate path. Use a FIND or VERIFY statement to access a record on that level.
This can also be a dummy record, as long as it is on the correct level.

Next, use the ESTABLISH LINK statement to create the alternate key path from that level.

For example, Figure 7-3 shows an index structure with a link. The file is a customer database. The
first index level is for region, the second is for customer name, and the third is for invoice number.
The link we create will use a customer number as a key; through this link we can access an invoice
record by knowing just the customer number and the invoice number.

Figure 7-4 shows the program that will establish the customer number link into the index structure.
Note the use of dummy records; we use them to position to the proper level.

INDEX STRUCTURE

"EAST" "99999"

LINK

"JOHNSON" ~

"1 "

DATABASE

RECA

SO-01113

Figure 7-3. An Index Structure with a Link Between a Key Sequence and a Subindex

7-12 Licensed Material-Property 01 Data General Corporation 093-000151-01

NA/IIE LINK TEST
FILE NFILE
SUBINDEX FOR NFILE IS LEVELl
SUBINDEX FOR LEVELl IS LEVEL2
KEY FOR NFILE IS 11 ASCII
KEY FOR LEVELl IS 11 ASCII
KEY FOR LEVEL2 IS b ASCII

*THE RECORD THAT FOLLO~S CLEVELORECl IS A
*DU~MY RECORD USED TO ~RITE KEY "99999"·

RECCRD FOR NFILE IS LEVE~O~EC
LENGTH IS 0
STOP

*THE RECORD THAT FOLLO~S CLEVELIRECl IS 'A
*DUttMY RECORD USED TO POSITION TO
*H Y "JOHNSON"

D I:

REceRD FOR LEVELl IS LEVEL1REC
LENGTH IS 0
STOP

RECORD FOR LEVEL2 IS LEVEL2REC
LENGTH IS 80
INCLUDES FIELD2 1 ee
STOP

REGISTER FIELD2 XC801
PROCESS FILLER AT 01 AN~ NO~E

*CREATE INTIAL RECORD
FILE-NE~ LEVEL2REC USING "fAST", "JOHNSON" A~D "1"

*CREATE THE UPPER LEVEL OF THE SECO~D KEY PATH
FILE.NE~ LEVELOREC USING "99999"

*POSITION Te SUBINDEX TO BE LIN~ED TO ~QTE
*THAT THE PCSITION IS ABOVE THE KEY TO BE
*USED IN THE NE~ PATH

VERIFY LEVEL1REC USING "EAST" AND "JOHNSON"
*CREATE THE LINK

ESTABLISH LINK IN NFILE TO "99999"
*TRY OUT THE NE~ KEY PATH

D1A:

FIND LEVEL1REC USING "99999" AND "1"
ON-IOERR D1A
~ESSAGE LINK SUBINDEX SUCCESSFUL
QUIT .

~ESSAGE LIN~ SUBINDEX UNSUCCESSFUL
QUIT
FINISH

Figure 7-4. USing ESTABLISH LINK to Create an Index Structure

In the program, we created a dummy record (with length 0) so that we could use the key 99999 in a
FILE-NEW statement, thus creating the key. We also used the VERIFY statement to position to
level I.

The keys you use in the ESTABLISH LINK statement must describe a complete index path; they
cannot contain subindexes. However, the position to which you are linking must have a subindex
below it. Therefore, in our example, we could not link to the record directly; we had to link at the
level above the last key.

You may use any pathway to access any record, regardless of which pathway you used to create it.
For example, suppose you have 100 invoice records for a customer: 50 that you created with the
path EAST,JOHNSON,n (where n is the invoice number), and 50 that you created with 99999,n
(where 99999 is the Johnson Company's number). You can then access any of the records using
either of the paths.

093-000151-01 Licensed Material-Property of Data General Corporation 7-13

EST ABLISH LINK (continued)

Of course, you need to establish a separate link for each customer in the file. WEST,SMITH,n will
have its own customer number link, such as 99998,n. Also, the new key path may be shorter, the
same length, or longer than the original path.

The ESTABLISH LINK statement can save you space. Consider a file that has items filed under
NAME, ACCOUNT, LINEITEMS, and inverted under REGION, ACCOUNT, LINEITEMS. This
creates the large duplicate index structure shown in Figure 7-5.

An ESTABLISH LINK statement can create the structure shown in Figure 7-6, which avoids the
unnecessary overhead of Figure 7-5.

INDEX STRUCTURE

DATABASE

80-01114

Figure 7-5. A File with Inverted Database Records and Unnecessarily Duplicated Subindexes

7-14 Licensed Malerial-Properly of Oala General Corporation 093-000151-01

INDEX STRUCTURE

NAME REGION

ACCOUNT

DATABASE

SO-01115

Figure 7-6_ Figure 7-5 Reconfigured Using ESTABLISH LINK

FILE

FILE[S] filenamel {filename2 {filename3]]

This statement tells the compiler which files the program will use. You may specify a maximum of
three files. You must have previously created the files with ICREATE or with a COBOL program.

Pathnames must consist of 14 or fewer characters.

093-000151-01 Licensed Material-Property of Data General Corporation 7-15

FILE-NEW

FILE-NEW [THE]recordname USING key ...

Use the FILE-NEW statement to write new records into a file. You must define record name in a
record definition block within the program.

For example, the program named INITDEP.UP in Figure 7-7, initializes a file record that keeps a
bank customer's balance; the key is the account number.

7-16

NAME INITDEP
FILE BALANCE

KEY FOR BALANCE IS 4 ASCII
RECORD FOR BALANCE IS BALREC

LENGTH IS 10
INCLUDES OLDBAL 1 10 ASCII

STOP

PROCESS ACCOUNT AT NONE AND GET ACCOUNT
PROCESS OLDBAL AT NONE AND GETBAL

GETACCOUNT: STORE ACCOUNT

GETINITDEP:

ERRMSG:

FINISH

RETURN

STORE OLDBAL
.FILE-NE~ BALREC USING ACCOUNT
ON-IOERR ERRMSG
MESSAGE RECORD ADDED TO DATABASE

RETURN 1

MESSAGE ACCOUNT ALREADY ON FILE'
RETURN 1

Figure 7-7. FILE-NEW Example

licensed Malerlal-Property 01 Data General Corporalion 093-000151-01

FIND BEGINNING

FIND [THE] recordname BEGINNING [WITH] key ...

The FIND BEGINNING statement retrieves the record record name using a generic (partial) key.
You must specify one key for each level of subindexes. However, the last key in the list is the one
that the system uses as a generic key to search for the record.

For example, suppose you have a two-level index. The key for the first level is ACCTNO; the key
for the second level is NAME.

KEY FOR LEVEL 1 IS 5 ASCII

KEY FOR LEVEL2 IS 10 ASCII

FIND THE CUSTREC BEGINNING WITH ACCTNO,NAME

ACCTNO takes you through the first level; it must be an exact key.

NAME searches the second level for a key beginning with whatever is in the NAME field. For
example, if NAME has the value SM and you have records stored under the names SMITH and
SMYTH, the FIND BEGINNING statement will retrieve SMITH's record.

FIND BEG INNING uses the input length of the key as its length; it doesn't use the length specified
for the key in the KEY statement. Therefore, in our example, the key NAME is two bytes long
(SM), even though the KEY statement says that it's 10 bytes.

FIND HOLD

FIND [AND] HOLD find-statement

You may use the phrase [AND] HOLD in any FIND statement. The HOLD keyword locks the record
against access by any other program.

To update a locked record and free it for use by another program, use the REFILE statement. To
free the record for access by other programs, use the RELEASE statement.

093-000151-01 Licensed Material-Property of Data General Corporation 7-17

FIND NEAREST

FIND [THE}recordname NEAREST key ...

FIND NEAREST retrieves the record record name by using an approximate key. The approximate
key must have an ASCII value less than or equal to the key you're looking for.

For example, suppose your records are keyed by PONUMB, and you have two records with the keys
21 and 700, respectively. If you give PONUMB the value 22, and then give this statement:

FIND THE CASHREC NEAREST PONUMB

you will access the record with the key 700.

If the approximate key happens to hit an actual key, the statement will access that key's record.

FIND NEXT

FIND [THE} NEXT recordname

This statement lets you process a database sequentially. First you use a FIND USING, FIND
BEGINNING, or FIND NEAREST statement to position yourself within the database. You can
then use FIND NEXT to retrieve the record immediately following the current one.

For example,

FIND THE CREC USING MASTNO, CUSTNAM

FIND THE NEXT CREC

If MASTNO contains 20 and CUSTNAM contains TAYLOR, the FIND USING statement will
retrieve the record keyed by 20, TAYLOR. If the database contains records with the keys
20,JOHNSON; 20,TA YLOR; 20,ZONIS,; then the FIND NEXT statement will retrieve ZONIS's
record.

7-18 Licensed Material-Property of Data General Corporation 093-000151-01

FIND PREVIOUS
FIND [THE] PREVIOUS record name

Use this statement after a FIND USING, FIND BEGINNING, or FIND NEAREST statement to
scan backwards through the database. For example, given the following statements:

FIND THE AREC USING CUSTNO

FIND THE PREVIOUS AREC

If CUSTNO has the value 38 and the database has records with keys 17, 38, and 40, then the FIND
USING statement will access the record with key 38. The FIND PREVIOUS statement will access
the record with key 17.

FIND USING
FIND [THE] record name USING key ...

This is the primary data-retrieval statement. The INFOS system will locate and retrieve the record
with the specified key (s).

You may use as many as 15 keys with this statement, and you must use one key for each index level
you wish to traverse. The keys cannot be longer than the length specified in the KEY statement. If
you have used binary or packed keys, the system will convert them to ASCII values before using
them. The system will also convert binary or packed record information.

FINISH
FINISH

This must be the final statement in every IFPL program. It tells the compiler that it has reached the
end of the program. A FINISH statement must be the last statement, even if the program ends
somewhere else with a QUIT statement.

093-000151-01 Licensed Malerial-Properly of Dala General Corporation 7-19

GOTO

GO [TO} tag

This is an unconditional GO TO statement; it directs program execution to the routine labeled tag.

GO TO USING

GO [TOitagl, ... tag n USING variable

This is a conditional branching statement. The system checks the contents of variable, which must
be numeric. Its value determines which tag the program will branch to. If variable has the value 1,
the program will branch to the routine labeled by the first tag; if variable has the value 25, the
program will branch to the routine labeled by the 25th tag. You can have 40 arguments with an IFPL
statement, which means you can include 38 tags in a GO TO USING statement. (USING and
variable are the other two arguments.)

If variable has a value less than 1 or greater than the number of tags you've specified, program
control steps to the next program statement.

IF EQUAL

!IF} EQUAL tag

This statement checks the EQUAL flag set by the most recent COMPARE statement. If the flag is
set (meaning that the two COMPAREd values were equal), the EQUAL statement sends program
control to the statement labeled by tag.

IF FOUND

!IFlFOUND tag

Use this statement in conjunction with the LOOKUP statement. If the latest LOOKUP statement
succeeded in finding the table element it was searching for, the compiler sets the flag accordingly,
and the IF FOUND statement will send the program to the routine labeled by tag. Figure 7-8 gives
an example.

7-20 Licensed Malerial-Properly of Dala General Corporalion 093-000151-01

N.~E REOf(D~R
FILE IS I~VE~TORY
KEY FOR INVENTORY IS 4 ASCII
RECORD FOR INVENTORY IS INVREC

LENGTH IS 20
INCLUDES PARTNAME 1 20 ASCfI

STOP

PROCESS P.RTNO AT NONE AND GETPARTNC
PROCESS PARTNAME AT DISPLAYN.~~ AND NONE
PROCESS DEPTNO AT DISPLOEPT AND NONE

UBLE DEPU
"C330"
"S13I11"
"CS4111"
ENDTABLE

TABLE OEPTS
")(2'5111"
"yQ3111"
"228111"
ENDTABlE

TABLE DEPTD
"CS3111"
"~bIll0"
"ESIII0"
HOTABLE

GETPARn.O:

DISPL.¥~At<lE:

DISPLOEPT:

01:

02:

03:

ERR~SG:

FINISH

STORE PART NO
RETURN

FIND THE INVREC US~~G PARTNO
ON-IOERR ERRMSG
DISPLAY PARTN.ME
REFILE INVREC USING PARTNO
ON-IOERR ERR"'SG
RETURN

LOOKUP IN DEPTA PARTNO.
IF FOUND 01
LOOKUP I'" DEPTI:l PAF.TNO
IF FOUND 02
LOOKUP IN DEPTD PARTNO
IF FOUND 03

MOVE "DEPT A" TO DEPTNO
DISPLAY DEPTNO
RETURN

MOVE "DEPT B" TO DEPTNO
DISPLAY DEPTNO
RETURN

MOVE "DEPT 0" TO OEPTNO
DISPLAY OEPTNO
RETURN

MESSAGE IO-ERROR. CALL SYSTE~ MANAGER.
QUIT

Figure 7-8. The IF FOUND Statements Branch to the Appropriate Routines

093-000151-01 Licensed Material-Properly 01 Data General Corporation 7-21

IF GREATER

[IF] GREATER tag

This statement checks the flag set by the most recent COMPARE statement. If it's set to
G REA TER, this statement sends program control to the routine labeled by tag.

IF IN-RANGE

[IF] IN-RANGE tag

This statement checks the IN-RANGE flag set by the most recent RANGE statement. If the flag is
set, the program branches to the routine labeled by tag.

IF LESS

[IF] LESS tag

This statement checks the LESS flag set by the most recent COMPARE statement. If the flag is set,
the IF LESS statement sends program execution to the routine labeled by tag.

IF NOT-EQUAL

[IF] NOT-EQUAL tag

This statement checks the NOT-EQUAL flag set by the most recent COMPARE statement. If the
flag is set, the program branches to the routine labeled by tag.

7-22 Licensed Material-Property of Data General Corporation 093-0001 51 -01

IF NOT -FOUND

[IF] NOT-FOUND tag

This statement checks the flag set by the most recent LOOKUP statement. If the flag is set to 0
(meaning that the LOOKUP didn't find the table element), then the program branches to the
routine labeled by tag.

IF OUT -RANGE

[IF] OUT -RANGE tag

The OUT-RANGE statement checks the OUT-RANGE flag set by the most recently executed
RANGE statement and branches to tag if that flag is set.

INACTIVITY

INACTIVITY CONSTANT [IS] value

This statement sets the length of time, in minutes, that an IFPL program will wait for the operator
to enter data. If the operator doesn't enter data within the specified amount of time, the program
takes appropriate action by using the ON NO-ACTIVITY statement. Therefore, if you use the
INACTIVITY statement, you must also include an ON NO-ACTIVITY statement. See the ON
NO-ACTIVITY statement for more information.

093-0001 51-01 Licensed Material-Property 01 Data General Corporation 7-23

INCLUDES

INCLUDES field startingposition length type

where:

field is defined elsewhere in the program as a register, a PROCESS variable, or a
literal.

starting position is the character position within the record where this particular field begins.

length is the length of the field (in bytes for ASCII or ALPHA).

type is ASCII (or ALPHA), BINARY, OR PACKED.

You can use the INCLUDES statement only within a record definition block. It identifies significant
fields within the record. For example, suppose you have a IS-byte record that contains the
information in Figure 7-9.

1 I 2 I 3 1 4 \ 5
\

6 7 \ 8 \ 9 1101 11 12 1 13 \14 15 1

NAME BALANCE ACCOUNT" CODE

Then the following would define the record:

RECORD FOR FILE1 IS REC1
LENGTH IS 15
INCLUDES NAME 1 6 ASCII
INCLUDES BALANCE 7 5 ASCII
INCLUDES ACCOUNT 12 3 ASCII

STOP INCLUDES CODE 15 1 ASCII

80-01787

Figure 7-9. INCLUDES Example

7-24 Licensed Material-Property of Data General Corporation 093-0001 51 -01

When you access a record, you don't have to use all the variables stored within it. Suppose you
created a record with a program containing this record definition block:

RECORD FOR AFILE IS REC 1

LENGTH IS 106

INCLUDES ELEMENTA 1 4 ASCII

INCLUDES ELEMENTS 5 7 ASCII

INCLUDES ELEMENTS 98 9 ASCII

STOP

Later, you could access only those record elements that you needed in another program:

RECORD FOR AFILE IS REC1

LENGTH IS 106

INCLUDES ELEMENTA 1 4 ASCII

INCLUDES ELEMENTF 5 18 ASCII

INCLUDES ELEMENTQ 238 ASCII

STOP

Remember that you must define your variables in REGISTER or PROCESS statements, or else use
literals. There is one exception: if you use a COpy file to define the record, you do not have to define
every field that appears in the record definition block; you just have to define the fields that you want
to use.

The compiler expands BINARY or PACKED types to ASCII lengths when it accesses them. Table 7-2
shows the lengths to specify in the INCLUDES statement, and the length to which the system will
expand INCLUDES during access.

093-0001 51 -01 Licensed Material-Property 01 Data General Corporation 7-25

INCLUDES (continued)

Table 7-2. BINARY and PACKED INCLUDES

Field Length in INCLUDES
Statement Specification

2

3

4

5

6

7

2

3

4

5

6

7

8

9

10

BINARY

PACKED

Number of Digits in IFPL Register

1-2

3-4

5-6

7-9

10-11

12-14

15-16

2-3

4-5

6-7

8-9

10-11

14-15

16-17

18

The sign in a PACKED field requires one-half of a byte; it is stored in the last half-byte. Figure 7-10
shows how the system stores as-digit PACKED field.

Byte 1 Byte 2 Byte 3-

digit 1 digit 2 digit 3 digit 4 digit 5 sign

80-01788

Figure 7-10. A 5-digit PA CKED 1NCL UDES

7-26 Licensed Material-Property of Data General Corporation 093-000151-01

INITIATE PRINTING

INITIATE PRINTING USING printformatname

This statement marks the beginning of a set of printing records in the COMMON file. You must
specify the printformatname in subsequent PRINT statements.

After you have built the print file with PRINT statements, you mark the end of it with the
TERMINATE PRINTING statement.

INVERT

INVERT record name USING key ...

Use this statement to write an alternative pathway to an existing record. For example, if you have a
database that contains customer records keyed by customer number, you can use the INVERT
statement to build an index pathway that will access the records by customer name. See Figure 7-11
for an example.

FILE AFILE

KEY FOR AFILE IS 5 ASCII

RECORD FOR AFILE IS AREC
LENGTH IS LlI1J

STOP

INCLUDES ACCTNO 1 S ASCII
INCLUDES NAME b 12 ASCII

.. .
FILE-NEw AREC USING ACCTNO
INVERT AREC USING NAME

F-INISH

Figure 7-11. INVERT Example

You will normally use the INVERT statement immediately following a FILE-NEW, FIND, or
REFILE statement. INVERT uses an internal pointer set by those three statements, so you cannot
put another I/O statement between the FILE-NEW, FIND, or REFILE statement and the INVERT
statement.

The LOG statement, however, does not reset the internal pointer. Therefore, you can interpose a
LOG statement between the INVERT and FILE-NEW, FIND, or REFILE.

093-0001 51 -01 Licensed Malerial-Property of Dala General Corporal ion 7-27

KEY

{ filename } r
KEY [FOR} subindexname LIS} length type

where:

length is the length of the key field.

type is either ASCII, BINARY, or PACKED.

This statement defines the key length and type for a file or subindex. You must define the filename
or the subindexname in a FILE or SUBINDEX statement that appears before this statement.

If you use type ASCII, specify the number of characters in the key. The key's register, screen field,
or literal will define the actual key length; the KEY statement defines the maximum length of the
key. Consequently, to access a record created with a key that is eight bytes long, you must use the
full eight bytes. Consider these two program fragments:

PROGRAM 1

REGISTER NAME X(8)
STORE NAME

FILE-NEW AREC USING NAME

PROGRAM 2

REGISTER NAME X(7)
STORE NAME

FIND AREC USING NAME

Program 2 will not be able to access the records created by program 1. This would be true even if
both programs contained the statement KEY FOR AFILE IS 7 ASCII.

For BINAR Y or PACKED types, Idea converts the key value in the given variable to the specified
type. Table 7-3 shows the number of digits to specify for the key's value.

7-28 Licensed Material-Property of Data General Corporation 093-000151-01

Table 7-3. BINARY and PACKED Keys

KEY Statement Specification Size of Variable in Digits

BINARY

1-2

2 3-4

3 5-6

4 7-9

5 10-11

6 12-14

7 15-16

PACKED

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

7 12-13

8 14-15

9 16-17

10 18

The sign in a PACKED key requires one-half of a byte; it is stored in the last half of the byte. Figure
7-12 shows how the system stores a 5-digit PACKED key.

Byte 1 Byte 2 Byte 3

digit 1 digit 2 digit3 digit 4 digit 5 sign

SO-01790

Figure 7-12. A 5-digitPACKEDKey

093-000151-01 Licensed Material-Property of Data General Corporation 7-29

LEFT
LEFT [JUSTIFY]variable1 {IN]variable2

This statement will left-justify a source field in a larger destination field.

The LEFT statement moves data from variable1 to variable2. starting with the left-most character
position in each field and proceeding from left to right. A LEFT move is like an alpha move except
that you can use it on any data type.

LEFT treats blanks in a source field like any other character. It performs no zero- or blank-filling in
the destination. If the destination is longer than the source, the system will retain the excess
destination data.

The system will disregard a decimal point in the source field, but it will display a decimal point in the
destination field if you specify one in the field's picture.

The system performs data transfers with fields of matching data types and size on a
character-position-by-character-position basis. No justification is involved in such moves since
blanks are treated like data.

Table 7-4 shows the results of some example LEFT moves.

Table 7-4. Moving Data with the LEFT Statement

Example Type Initial Values Final Dest Values

Numeric Srce=788 78855
Srce<Dest Dest=55555
No Decimal Point

Numeric Srce=83492 834
Srce>Dest Dest=671
No Decimal Point

Numeric Srce=16.98 169.844
Srce >Dest Dest= 178.544
Decimal Point

Numeric Srce=856.99 85.6
Srce>Dest Dest=28.5
Decimal Point

Alphanumeric Srce=patnum patnumy
Srce<Dest Dest=Vacancy

Alphanumeric Srce=patnum pat
Srce>Dest Dest=Vac

Mixed Srce=858.9 8589ion
Srce<Dest Dest = station

Mixed Srce=sub su
Srce>Dest Dest=6.3

Dest = Destination. Srce(Source) remains unchanged.

7-30 Licensed Material-Property of Data General Corporation 093-0001 51-01

LENGTH

LENGTH [IS] length

where:

length is the length of the record in bytes.

You must place a LENGTH statement after every RECORD statement in a record definition block,
unless the REDEFINES statement is the only statement in the record definition block.

Initializing the Record Buffer

To initialize the record buffer to zero or blank, use a dummy INCLUDES statement that is as long
as the record.

To blank out a buffer, use the following:

RECORD FOR PASSING IS PASSREC

LENGTH IS 200

INCLUDES" " 1 200 ASCII

INCLUDES F1 2 10 ASCII

INCLUDES F2 12 4 ASCII

STOP

To zero out a buffer, use this:

RECORD FOR PASSING IS PASSREC

LENGTH IS 200

INCLUDES "0" 1 200 ASCII

INCLUDES F1 2 10 ASCII

STOP

We recommend that you avoid using literals in records intended to receive data, since literals may
change, producing unexpected results.

093-0001 51-01 Licensed Material-Property 01 Data General Corporation 7-31

LINK

LINK USING variable [RETAIN/ile, [file; {file] JJJ

The LINK statement lets you link to a new format under program control. This is a different means
of linking than the IFMT linking facility.

You can link one program to another with both a LINK statement and a linked format created with
IFMT; neither affects the other.

The variable must be a literal or a variable defined by a REGISTER or PROCESS statement, and it
must contain the name of a valid format.

The RETAIN filel ... file3 argument is an optional clause that allows you to continue using the
named files across linked programs, without the overhead of closing and then opening the files after
linking. See Figure 7-13 for an example.

NAt-'E PROGRAr.1
FILE ~ASTER, INVEhTORY
REGISTE~ PROGl xxxxxxxx PRCGRA~l
REGISTER PROG2 xxxxxxxx PROGRA~2

El: STORE ANS~ER
COMPARE ANSwER YES
IF EQUAL LPRG2
LIN~ USING PROGl RETAIN ~ASTtR

LPRG2: LINK USING PROG2 RETAIN INVENTORY

~<1irlked prOQram
NAt-'E PROGRAMl
FILES UPDATE, ~ASTEP

Figure 7-13. The RETAIN Clause Lets You Keep Files Open

The program named PROGRAM links to the format named PROGRAM1, via the statement LINK
USING PROG 1 RETAIN MASTER. PROGRAM will close the file INVENTORY but keep the file
MASTER open for use with PROGRAMI.

7-32 Licensed Material-Property of Data General Corporation 093-000151-01

tOC
LOG [THE]recordname

Use the LOG statement to write a record to magnetic tape.

The system sends all tape-logging errors to the special register IOERR, so your tape-logging
programs should contain error-handling routines. The error codes sent to IOERR are:

IOERR = 18 Record length longer than the maximum specified with the IDEASG utility.

IOERR = 30 Physical tape error (such as parity).

IOERR = 34 End of tape file.

If any of these conditions occurs, the monitor sends the error code to the reserved word IOERR,
the error log (ELOG), and, possibly, the supervisory console.

LOOKUP

LOOKUP [IN] tablename (pointer) variable

This statement searches a table for a value. If it finds an element whose value is the same as the
value of variable, it places the index number of that table element in (pointer); otherwise, it sets
(pointer) to zero.

The index number is variable's position in the table. The table's first element is 1, the second is 2,
and so forth.

If you don't specify a (pointer), the monitor places the index value in the special register ENTR Y.
You can use ENTR Y anywhere you use a register.

LOOKUP also sets a flag to either 0 or the index number. The FOUND and NOT-FOUND
statements branch to routines depending on the flag's value. (See FOUND and NOT-FOUND')

093-000151-01 Licensed Material-Property of Data General Corporation 7-33

MESSAGE

MESSAGE textstring

The MESSAGE statement sends a message to the operators' consoles. The textstring starts with
the first nondelimiter; you should end the text string with a NEW LINE.

You may use any text string, including spaces, up to 80 characters long. Also, you can send special
control characters (outside the standard set of alphanumerics) by enclosing the 2-character octal
equivalent in angle brackets; e.g., < 07>. You may also enclose the bracketed code in exclamation
points to disable and re-establish interpretation by the IDEA terminal interface routines.

For example:

MESSAGE !<47> <57>! THIS IS A MESSAGE

To send the contents of a variable as a message, surround the variable with brackets, as in this
example:

MESSAGE [OLDBAL]

The variable must be flush left against the bracket, and it must be the only argument; otherwise, the
monitor will send the message verbatim. For example, this message statement

MESSAGE OLD BALANCE IS [OLDBAL]

will display

OLD BALANCE IS [OLDBAL]

on the screen.

7-34 Licensed Malerlal-Properly of Dala General Corporation 093-0001 51-01

MOVE

{
variable, } {variable2 }

MOVE [TO]
tablename, (pointer) tablename2 (pointer)

The MOVE statement has the general form of

MOVE source-variable destination-variable

In all MOVEs the value of the source-variable replaces the value of the destination-variable.
(The value of the source-variable is unchanged.)

MOVE variable, TO variable2

copies the value of variable) into variable2.

MOVE variable, TO tablename (pointer)

copies the value of variable, into the table element referenced by (pointer).

MOVE tablename (pointer) TO variable2

copies the value of the table element referenced by (pointer) into variable 2.

MOVE tablename, (pointer,) TO tablename2 (pointer2)

copies the value of the tablename, element referenced by (pointer,) into the tablename2
element referenced by (pointer2).

The parentheses are part of the command; you must enclose the pointers in parentheses.

The system does not check data types for MOVEs using table elements; it assumes that the source
and destination data types are identical.

If you perform a MOVE with a source-variable that is shorter than the destination-variable, the
compiler pads the destination. With MOVEs involving alphabetic or alphanumeric values, it pads
the destination from the left with blanks. For numeric MOVEs, Idea aligns the decimal point, then
pads from the right and left, as necessary, with zeros.

If you perform a MOVE with dissimilar data types, the compiler issues a warning, performs an
alphabetic MOVE, and deletes the decimal point.

Note that the MOVE statement doesn't round; it truncates. See Table 7-5 for examples.

093-000' 5'-0' Licensed Material-Property of Data General Corporation 7-35

MOVE (continued)

Table 7-5. Parameter-Fitting by the MOVE Statement

Type of MOVE Initial Values Final Dest Values

Numeric Srce=788 00788
Srce<Dest Dest=55555
No Decimal Point

Numeric Srce=83492 492
Srce<Dest Dest=671
No Decimal Point

Numeric Srce= 16.98 016.980
Srce<Dest Dest=178.544
Decimal Point

Numeric Srce=856.99 56.9
Srce>Dest Dest=28.5
Decimal Point

Alphabetic Srce=pathnum patnum
Srce<Dest Dest=vacancy

Alphabetic Srce=patnum pat
Srce>Dest Dest=vac

Mixed Srce=858.9 8589
Srce<Dest Dest = station syntax warning

Mixed Srce=sub su
Srce>Dest Dest=6.3 syntax warning

Dest = Destination. Srce (Source) remains unchanged.

MULTIPLY

MULTIPLY mutiplicand multiplier product

The MUL TIPL Y statement multiplies the contents of multipicand by the contents of multiplier,
and places the result in product.

To avoid losing significant integer digits to truncation, give your product variable as many integer
digits as the multipicand plus the multipier.

7-36 Licensed Material-Property of Data General Corporation 093-000151-01

NAME

NAME program name

The NAME statement assigns a name to your program. It must be the first statement in the
program and must be used only once within the program.

There is no logical connection between programname and the AOS filename you give to the source
text file, but we recommend that you use the same name.

The programname must begin with a letter. The remaining characters can be letters, numbers, or
periods (.) .

Do not use the following characters in program names:

dash
colon
carat
single quote
double quote
angle brackets
parentheses

NODE SIZE

"
<>
()

NODE SIZE [IS1 value

Use this statement within the PARAMETERS FOR SUBINDEX block. NODE SIZE explicitly
defines the node size of a subindex. The value may be either 2042 or 4090 (bytes). The default
value (if you don't use this statement) is 2042.

ON BACKlAB
[ON1 BACKTAB tag

Place the ON BACKT AB statement anywhere among the nonexecutable statements except among
the PROCESS statements. This statement allows the program to take some action if the operator
strikes the BACKT AB key. When this happens, the ON BACKT AB statement transfers program
control to the routine labeled tag.

The BACKT AB key is the unlabeled key on the cursor pad.

093-000151-01 Licensed Material-Property 01 Data General Corporation 7-37

ON DISCONNECT

[ON] DISCONNECT tag

If the operator's dial-up line becomes disconnected, Idea will log the program off, unless it includes
an ON DISCONNECT statement. This statement will send program execution to the routine
labeled tag; it stays there until it encounters a RETURN statement or until the program times out.
Then, the monitor logs the program off.

Place the ON DISCONNECT statement with the nonexecutable statements, but not within a
PROCESS statement block.

ON END DATA

[ON] END [oFlDATA tag

ON END DATA causes the program to branch to tag when the operator strikes the END DATA
function key. This statement also nullifies normal operation of the END DATA key; it places the
key under program control.

Place the ON END DATA statement with the nonexecutable statements, but not within the
PROCESS statement block.

ON ESCAPE

[ON] ESCAPE tag

ON ESCAPE causes the program to branch to tag when the operator strikes the ESC key. If you
don't have an ON ESCAPE statement in the program, the ESC key has the same effect as the
ENTER key.

Place the ON ESCAPE statement with the nonexecutable statements, but not among the PROCESS
statements.

The ESC key only has an effect if the operator is entering a value at an EDIT field.

7-38 Licensed Material-Property of Data General Corporation 093-0001 51 -01

ON FUNCTION

[ON] FUNCTION tag

This statement passes control to tag when the operator strikes any of four function keys, located on
6053 video terminal, while at an operator-entry field. It is nonexecutable.

The function keys are defined only for a 6053 terminal; they are the two right-most keys on the row
of eight function keys. The seventh key from the left is function key 1, the eighth key is function
key 2, SHIFT plus the seventh key is function key 3, and SHIFT plus the eighth key is function key
4.

The function keys act as delimiters and cause immediate exit from the field when struck. In the
absence of an ON FUNCTION statement, they have the affect of a NEW LINE.

The reserved word FUNCTION allows your program to differentiate between the keys. When you
strike a function key, its number is placed in FUNCTION and control passes to your program. It is
up to the routine at tag to distinguish between the various function keys.

The value thus placed into the reserved word FUNCTION will persist until a function key is again
struck.

You should define FUNCTION as a numeric register or as a field of one byte.

For example:

REGISTER FUNCTION 9(1)
ON FUNCTION ACT

ACT: GO TO END,HOOK,RETRY,CHANGE, USING FUNCTION

093-000151-01 Licensed Material-Property of Data General Corporation 7-39

ON-IOERR

ON-IOERR tag

ON-IOERR checks the setting of the file status flag, which reflects the outcome of the most recently
executed I/O statement. If the flag is set (meaning that the I/O statement failed), the program
branches to tag.

The system will not return serious file errors to the program. It will instead log them on the
supervisory console, display a message on the associated operator's terminal advising the operator
of the error, and log the operator off. Idea sends only recoverable errors to the program.

The system writes one of the following recoverable error codes into the reserved word IOERR.

Recoverable Error Codes

Code Meaning

00 No error.

10 End of File/Subindex. The last record in the file or subindex was read by a FIND NEXT or
FIND PREVIOUS statement.

18 Record Length Exceeds Block Size.

22 Duplicate Key. The key used in a FILE-NEW statement duplicates an existing key and duplicates
are not allowed since no DUPLICATES COUNTED statement was specified.

23 Key is defined in the database but no record is associated with it.

24 Key doesn't exist. The key specified in a FIND USING, FIND NEAREST, FIND BEGINNING,
DESTROY, REMOVE, VERIFY, or REINSTATE doesn't exist.

26 Delete denied while other pointers to record exist.

30 Physical Tape Error (such as parity).

34 End of Volume. All volumes have been exhausted.

94 Record locked. The record specified was locked by some other program. The record cannot be
accessed until it is unlocked.

96 Record deleted. The record specified was logically deleted.

7-40 Licensed Material-Property of Data General Corporation 093-0001 51-01

ON LINE-ERR

[ON] LINE-ERR tag

This statement causes the monitor to pass control to tag when it senses excessive (i.e., more than
64) line errors on a user's line.

When line errors are excessive and your program contains no ON LINE-ERR statement, Idea will
log the console off. ON LINE-ERR allows the log-off process to be orderly. The program given
control under this clause will maintain control until it RETURNs or is timed out. The next time
control returns to the monitor, it will log the console off.

When Idea detects a line error and the number of line errors is not excessive, the monitor will send
a message to the console operator. This message will indicate the problem and request that the user
re-enter the character in question. The monitor will display the faulty character as a question mark
and move the cursor to its position.

This statement is nonexecutable.

ON lOGOFF

[ON] LOGOFF tag

To log off, operators strike the LOG ON-OFF key, which initiates a normal log-off procedure.
Instead, by including the ON LOGOFF statement, you can have the program branch to a routine
named by tag when the operator strikes LOG ON-OFF.

Place the ON LOGOFF statement with the nonexecutable statements, but not within the PROCESS
statement block.

If you include no ON LOGOFF statement in your program, the monitor will initiate the normal
log-off sequence when the operator strikes the LOG ON-OFF key.

ON MODE CHANGE

[ON] MODE CHANGE tag

This statement branches to the routine labeled by tag when an operator strikes the CHANGE
MODE function key. The CHANGE MODE key allows the operator to exit from a scroll area.

093-0001 51-01 Licensed Material-Property of Data General Corporation 7-41

ON NO-ACTIVITY

[ON] NO-ACTIVITY tag

This statement passes control to the routine designated by tag when the specified inactivity time has
elapsed. It is up to the program to then take appropriate action.

The inactivity clock is reset to zero when the program reaches each field that requires operator
input. Inactivity time is the time that elapses between initiation of a field for input, and entry of the
field delimiter (NEW LINE, etc.) by the operator.

The program in Figure 7-14 will log off an inactive terminal after waiting 10 minutes for operator
input.

7-42

BUSV:

LOGOFF:

~A~E COFFEETlflE
I~ACTIVITV CO~STA~T IS 1~
ON NO~ACTIVITV LOGOFF

PROCESS FILLER AT NONE lANe BUSV

RETURN

MESSAGE LOGGED OFF BECALSE OF
OPERATOR INACTIVITV

QUIT

Figure 7-14. Logging Off an Inactive Terminal with ON NO-ACTIVITY

Licensed Material-Property of Data General Corporation 093-0001 51-01

ON-OVERFLOW

ON-OVERFLOW tag

If your program performs an arithmetic function that overflows the integer portion of its result
variable, the monitor sets the overflow flag on. The ON-OVERFLOW statement checks this flag
and branches to the routine labeled by tag if the flag is set.

For example:

MULTIPLY VAR1 VAR2 RESULT

ON-OVERFLOW MAKENOTE

MAKENOTE: MESSAGE RESULT VARIABLE OVERFLOWED

QUIT

If the above multiplication resulted in a product of 8456.81 and the variable RESULT had a picture
999.99, the program would branch to MAKENOTE.

ON REPEAT

[ON} REPEAT tag

This statement passes control to tag when the operator strikes the REPEAT P AG E key. It is
nonexecutable.

093-0001 51 -01 Licensed Material-Property of Data General Corporation" 7-43

ON SCREEN

[ON] SCREEN {/MAGEltag

If you use this statement in a program, the operators must be using 6053 terminals equipped with
printing boards, as well as a DASHER printer. We describe this configuration in Chapter 9.

If you have the 6053 printer option, the ON SCREEN statement sends program execution to the
routine labeled by tag when the operator strikes the PRINT key. The routine must contain a
DISPLA Y or MESSAGE statement with control codes. To print all information on the screen, use
the code sequence < 1 0 > < 21 >. To print only the variable screen data, use < 1 0> < 01 >.

This program fragment will print a snapshot of the screen when the operator strikes the PRINT key.

ON SCREEN SNAPSHOT

REGISTER FIELD 99

SNAPSHOT: MESSAGE < 10> <21 >
RETURN USING FIELD

PARAMETERS FOR SUBINDEX

PARAMETERS [FORfsubindexname

This statement begins a subindex definition block. Use it and the DEFINE SUBINDEX statement
to define parameters, other than the defaults, for a subindex.

The subindex definition statements are

NODE SIZE [IS] value

PARTIAL LENGTH {/S]value

The default node size is 2042, and the default partial length is O. To determine the proper
parameters for subindexes, refer to the INFOS System User's Manual (A OS), 093-000152.

7-44 Licensed Material-Property of Data General Corporation 093-0001 51-01

PARTIAL LENGTH

PARTIAL LENGTH {/S]value

This statement specifies the partial record length associated with the subindex.

The value is the number of bytes. The default partial length is o.

PASS

PASS recordname

Use PASS to send a record into the system COMMON file so that you can retrieve the record with
another IFPL program. The other IFPL program uses an ACCEPT statement to read the record
from the COMMON file.

Data that the PASS statement writes to the COMMON file will remain there until you execute
another PASS statement that overwrites it.

PERFORM

PERFORM subroutine name

Use this statement to jump to a subroutine. After the monitor executes the subroutine, program
control returns to the statement following the PERFORM statement.

093-000151-01 Licensed Material-ProperlY of Date General Corporation 7-45

PRINT

PRINT {TH EJ record name USING printformatname

Use this statement to write a printing record to the system COMMON file. You define record name
in a RECORD FOR PRINTING IS record name statement. Define printformatname in an
INITIATE PRINTING USING printformatname statement, which starts a group of printing
records. The program must execute the RECORD and INITIATE statements before it executes the
PRINT statement.

You mark the end of the print file with a TERMINATE PRINTING USING printformatname
statement. The program must execute this statement after it stores all the PRINT statements
associated with the print format.

Figure 7-15 shows a program fragment that demonstrates how these statements fit together. FOUT
is the name of the print format. To create print formats, use IFMT (or WIFMT); give the P
response to the prompt TYPE(H OR P OR NONE).

7-46

f'.4A~E
XXX)C)CXXXXX
INVOICE
@ qqq
@ II

SCREE~ FORMAl

ADDRESS
XXXXXXXX~XXX)CX)CXXXXX

AMOUNT
$qqq.qq

ProcrsITI SeclTlent
RECORD FOR PRJNTI~G IS I~AGE

LENGTH IS 30
INCLUDES NA~E 1 10 ASCII
INCL~DES ADDR 11 20 ASCII
STOP

RECORD FOR PRINTI~G IS I~AGE2
LENGTH IS 1~
INCLUDES INV 1 3 ASCII
INCLUDES A~OUNT 4 7 ASCII
STOP

RECORD FOR PRINTI~G IS ENDSCROLL
LENGTH IS 1
INCLUDES "@" 1 1 ASCII

PROCESS NAME AT NO~E A~D ENA~E
PROCESS ADDk AT NONE A~D EACDRESS
PROCESS INV AT NONE AND EINV
PROCESS AMOUNT AT NONE AND EA~CUNT
PROCESS DONE AT FILLlR AND EDO~E

E~A~E: INITIATE PRINTING ~SI~G FO~T *FOUT IS

STORE NAME
RETURN

EADDR: STORE ADDR
PRINT IMAGE 1 USING FC~T
RETURN

EINV: STORE JNV
RETURN

EAMOUNT: STORE AMQUNT
PRINT IMAGE2 USING FO~T
RETURN

EDONE: PRINT ENDSCROLL USING FOUT
TERMINATE PRI~TING ~SING FOUT
RETURN

*PRINT FORMAT
*'''A~E

Figure 7-15. The Statements/or Printing

Licensed Material-Property of Data General Corporation 093-000151-01

Because of the special nature of scron groups, we must signal the end of the scron group by printing
an @ sign; this requires its own RECORD FOR PRINTING statement.

PRIORITY

PRIORITY [IS} value

Use this statement to assign a relative priority to the execution of the local Idea process under which
your application runs. The legal values are 1, 2, and 3, where 1 is the highest priority.

Each user profile in AOS has a priority established with the Profile Editor (PREDITOR). The
PRIORITY statement can lower this priority, but not raise it.

PROCESS

{/abel#} PROCESS {FILLER} [AT} { NONE[AND}
variable tag1 [AND}

tag2 }
NONE

PROCESS statements regulate the main flow of control in Idea programs by sending program
control to screen-field-related routines. Also, together with the screen-format field pictures, they
declare program variables.

In the format above, variable is the name of a screen field.

If you give the field the EDIT attribute (but not DISPLAY) with IFMT, use a PROCESS statement
of the form

PROCESS variable AT NONE and tag2

where tag2 labels a routine that will process the EDIT -field variable; this routine must contain a
STORE statement.

If you give the field the DISPLAY attribute (but not EDIT), use a PROCESS statement of the form

PROCESS variable AT tag1 AND NONE

where tag 1 labels a routine that will process the DISPLAY-field variable; this routine must contain
a DISPLAY statement.

If you give both the EDIT and DISPLA Y attributes to a screen field, use this form of the PROCESS
statement:

PROCESS variable AT tag1 AND tag2

where tag 1 labels a routine that will use the field as a DISPLA Y field, and tag2 labels a routine that
will use the field as an EDIT field.

093-000151-01 Licensed Material-Property of Data General Corporation 7-47

PROCESS (continued)

FILLER is a reserved word that lets you use variables declared with REGISTER statements or
variables that will never receive a value. We explain this in detail below.

The optionallabellets you direct program execution to the PROCESS statement with a RESET or a
RETURN label statement. You must place a pound sign immediately after the label, with no spaces
in between, such as PAYDAY#. You must place a space or a tab after the pound sign, as in this
PROCESS statement:

PAYDAY# PROCESS WAGES AT NONE AND PAYCHECK

The statement RETURN PA YDA Y will direct program execution to this PROCESS statement,
which directs execution to the routine PAYCHECK to process the variable WAGES.

IFPL programs must contain a PROCESS statement for each logical field in the associated format.
(A logical field has the EDIT and/or the DlSPLA Y attribute.) The monitor orders the screen fields
from left to right and from top to bottom. The PROCESS statements must follow this order; i.e., the
first PROCESS statement must correspond to the first logical screen field, the second PROCESS
statement to the second logical screen field, and sO" on.

Using the reserved word FILLER in a PROCESS statement in place of variable can save you space
in certain instances. Use PROCESS FILLER to display program constants, or in places where you do
not have to allocate space for the variable.

The following program fragment demonstrates the use of REGISTER, PROCESS FILLER, and the
REGISTER variable within a routine.

PROCESS FILLER AT E1 AND NONE

REGISTER AA X(11) CORPORATION

E1: DISPLAY AA
RETURN

In Figure 7-16, we use a dummy field to send program execution to a routine after an operator has
completed a scroll area. The field has no other use, so we don't need to allocate space for it.

In Figure 7-16, we want to pass data from one program to another and then Link to the second
program. We want these things to occur after an operator has completed the scroll area entries. We
don't know ahead of time how many entries the operator will make, and we cannot place the PASS
and LINK statements in the El routine. (We want to send the data after we've finished the scroll
area.) So, using IFMT, we place a dummy field on the screen format (the single X), and give it the
DISPLAY attribute so the monitor will pass control directly to the program without waiting for
operator input. In the program, we use the PROCESS FILLER statement to direct program
execution to the routine 01, which performs the PASS and LINK tasks.

Notice that routine 01 doesn't display any data on the screen.

You may use as many PROCESS FILLER statements in one program as you need, as long as you
maintain the proper correspondence with the screen fields. However, the word FILLER is
meaningless in any other IFPL statement.

7-48 Licensed Material-Property of Data General Corporation 093-000151-01

093-0001 51 -01

Screen
Format

IFPL
Program

INVOICE NO.

@

9999

@

X

QUANTITY

9999

PROCESS COST AT NONE AND E1
PROCESS FILLER AT 01 AND NONE

E1: STORE COST
RETURN

01: PASS PARAMETERS
LINK USING FORMAT2
FINISH

.
Figure 7-16. An Exampleo/PROCESS FILLER

Licensed Material-Property of Data General Corporation

COST

$9999.99

7-49

QUEUE

QUEUE variable

The QUEUE statement lets you queue a batch job from an IFPL program.

The variable is any type of IFPL variable, including a literal. It must be alphabetic or alphanumeric;
it cannot be numeric.

Also, variable can be any eLI command or macro. For example, we will explain what happens
when a program executes the following QUEUE statement:

QUEUE "QPRINT MY_FILE"

Idea first creates a batch job file. It then places the contents of the variable -- which in this case is the
literal QPRINT MY_FILE -- in the batch file. It then queues the batch file. When the batch stream
executes this job, it will execute the eLI command QPRINT MY_FILE.

You can give a series of commands in a QUEUE statement variable by separating the commands
with semicolons (;),

QUEUE "DIR :UDD:JTM:IDEABOOK;SYNTAX/L CHECKBOOK:QPRINT CHECKBOOK.UP"

or you can create a macro that contains a series of commands, and then give the macro's name as
the contents of variable.

The system uses the initial working directory and search list for QUEUE commands. Therefore, be
sure that any files that QUEUE commands will need are within that directory, or are in directories
appearing in the initial search list. Also, remember that the system places any files created by the
QUEUE eLI commands within that directory.

QUIT

QUIT

The QUIT statement terminates a program. When the monitor executes this statement, it closes
any open files and logs the operator off. The QUIT statement does not clear the terminal screen.

7-50 Licensed Material-Property 01 Data General Corporation 093-0001 51-01

RANGE

RANGE variable1 variable2 variable3

RANGE compares the contents of the three specified variables to determine whether the contents
of variable2 lie within the limits of variable1 and variable3. If variable2 is greater than or equal to
variable3. Idea sets the IN-RANGE flag; otherwise is sets the OUT-RANGE flag.

RANGE evaluates fields in a fashion similar to COMPARE; it compares numeric fields numerically
(only), and alphanumeric fields by field length and character. It treats dissimilar fields as
alphanumeric with a SYNTAX warning message. Typical RANGE operations are shown in Table
7-6.

The statements IN-RANGE and OUT-RANGE provide conditional branching depending on the
results of a RANGE statement.

Table 7-6. Typical Operations

variable1 variable2 variable] Flag Set

17 017.0 23.6 IN-RANGE

7 0.7 8.10 OUT-RANGE

AAF DLM XYZ IN-RANGE

SPECNO PTNO IDNO OUT-RANGE

093-0001 51-01 Licensed Material-Property of Data General Corporation 7-51

RECEIVE

RECEIVE recordname [[FROM} ipc-port-name}

This statement gets a record from the specified IPC port. The default IPC port is-the RCX70 port. To
use the RCX70 port, you must have specified this option during the IDEASG dialog (see Chapter
10) .

The ipc-port-name can be a literal or a register that contains the name of an existing port.

To receive a record from another Idea console, you attach that console's number to the keyword
IDEA. For example, to receive a record sent to your Idea console from Idea console 4, you would
use this statement:

RECEIVE ACCTREC FROM "IDEA04"

The program running on Idea console 4 would give a SEND command, such as:

SEND ACCTREC TO "IDEA07"

You can also receive a record from a non-Idea process, such as a COBOL program. However, the
non-Idea process must create a port and give it a name before you can use this name in your
program's RECEIVE statement. You must therefore know what this name is.

You may receive the following errors in the IFPL register IOERR:

Error Code Explanation

54 No outstanding message to be received.

55 SEND error.

56 RECEIVE error.

If there is no message to be received, your program will not wait for one, but will signal an error,
placing the code 54 in IOERR.

You must execute a RECEIVE statement immediately after executing a SEND REQUEST
statement (see the SEND statement).

There are several conditions that can cause errors 55 and 56. They can range from a nonexistent IPC
port to the ACL of the port not allowing you access. To find out the exact error, examine the AOS
error code in the INFOS-ERR register. INFOS-ERR may also receive RCX70 errors; refer to the
RCX70 Reference Manual (A OS).

7-52 Licensed Material-Property of Data General Corporation 093-000151-01

RECORD

RECORD [FOR} {file~ame } [IS} record name
submdexname

This statement associates record name with filename or subindexname. It also starts the record
definition block, which defines the lengths and layouts of fields within the record. You can have
three types of statements within a record definition block: LENGTH, INCLUDES, and
REDEFINES. You must terminate every record definition block with a STOP statement. For
example, the following are typical record definitions.

RECORD FOR STAFF_VIEW IS OFFICE
LENGTH IS 8
INCLUDES OFFICE_NO 1 3 ASCII
INCLUDES TEL_EXT 4 5 ASCII
STOP

RECORD FOR STAFF_VIEW IS FOO
REDEFINES OFFICE
STOP

RECORD FOR PASSING

RECORD [FOR} PASSING [IS} record name

RECORD FOR PASSING defines a record that you may use with a PASS or ACCEPT statement. It
is a special form of the RECORD statement, but it conforms to the format for record descriptions.
(See RECORD.) The word PASSING differentiates between a passing record and a normal
database record.

You need no FILE statement with RECORD FOR PASSING. The remainder of the record
definition block is the same as for any other type of record; that is, use the LENGTH statement and
INCLUDES statements (terminated by STOP) to indicate the fields that will make up the record.

Use RECORD FOR PASSING, PASS, and ACCEPT to pass the value of variables between two or
more programs running on a single terminal.

If you need to link to another IFPL program via a LINK statement, you may need to transfer
information between the two programs. To accomplish this, use a PASS statement to transfer a
record to the system COMMON file and an ACCEPT statement to accept all or part of the
previously passed data into the current program for processing. As stated above, you must use a
RECORD FOR PASSING statement to define the record being PASSed.

You cannot use record name assigned in a RECORD FOR PASSING statement in any context
other than a PASS or ACCEPT statement.

093-0001 51 -01 Licensed Material-Property 01 Data General Corporation 7-53

RECORD FOR PRINTING

RECORD [FOR] PRINTING [IS] record name

This statement defines a record that you will use to write printing records to the COMMON file for
printing with the PRINTF utility. Record definitions for printing are identical to other record
definitions.

RECORD FOR TAPE

RECORD [FOR]TAPE [IS]recordname

RECORD FOR TAPE is another special form of the RECORD statement; use it to define records
for logging to magnetic tape.

The information you give in the record description block that follows a RECORD FOR TAPE
statement is all that your IFPL program requires for logging records to tape.

7-54 Licensed Malerial-Properly of Data General Corporation 093-000151-01

REDEFINES

REDEFINES record name

This statement allows you to use a record definition block that you created for one record for other
records. The redefined records can be in the same file as the original or in other files. This saves you
time when typing programs.

You do not use a LENGTH statement or INCLUDES statements with REDEFINES. You must,
however, place a STOP statement after each REDEFINES statement.

For example:

RECORD FOR FILE1 IS AREC
LENGTH IS .. .
INCLUDES .. .

STOP

RECORD FOR FILE2 IS BREC
REDEFINES AREC
STOP

RECORD FOR FILE 1 IS CREC
REDEFINES AREC
STOP

Note that you cannot redefine a record that you declare with a REDEFINES statement. For
example, you could not redefine BREC or CREC onto another record; you would have to use
AREC again.

To use an INVERT statement, you must use a REDEFINES statement. (See INVERT.)

093-0001 51 -01 Licensed Material-Property of Data General Corporation 7-55

REDESIGNATE

REDESIGNATE register

REDESIGNATE defines a portion (or portions) of a register so that you may reference it (or
them) separately. You may use only one REDESIGNATE statement per register, and it must
immediately follow the register to which it refers. There is no limit to the number of subregisters
defined for a register and they may overlap in any way. For example, see Figure 7-17.

You may use the redesignated fields in any context suitable for a register. Each subregister requires
two arguments: the first must reference the starting character or byte in the register, and the second
must indicate the length of that subregister. A STOP statement must follow the last subregister
definition.

~EGISTER vATE X(8) ii!I~/00/00

RE:DESIGt-.AH DATE
N~ONTh 1 2 *STARTS AT BYTE CF DATE • 2

*BYTES LONG
"'[;AY u 2 *STARTS AT BYTE /j OF OIlTE. 2

*tH'H:S LONG
r..YFIIR 7 2 *STARTS /IT tlYTE 7 OF DATE. 2

*BYTES LONG
tiCI\TH/DAY 1 S *STARTS lIT BYH GF 011 TE. c;

-BYTES LUNG
STOP

Figure 7-17. Useo/REDESIGNATE

REFILE

REFILE [THE] recordname USING key ...

This statement updates a record. Therefore, the keys should be the same as those used in the FIN D
statement to locate the record.

Also, REFILE automatically releases a locked record when it refiles the record in the database.

7-56 Licensed Material-Property of Data General Corporation 093-0001 51-01

REGISTER variable picture !initial-valuei

The REGISTER statement allows you to create internal variables or constants. There is no limit to
the number of registers that you may define, but each variable must be unique.

The picture field must consist of as many Xs (alphanumerics), As (alphabetics), or 9s (numerics)
as are necessary to define the length of the field. A numeric field may contain a decimal point and/or
a sign indicator (use the letter S) at either end of the field. You may also define a picture by
declaring a character count in parentheses after you declare the string type as A, X, or 9; thus X(6) is
equivalent to XXXXXX.

The initial-value must conform to the data type specified by the picture. If you give no initial-value,
the field will be initialized to blanks (for pictures specified by As or Xs) or Os (for pictures specified
by 9s). For example:

REGISTER A XXXXXX FALSE

assigns the constant FALSE to register A, whereas:

REGISTER ZERO S9(4).9(2)

assigns the value + 0000.00 to a register named ZERO.

The REGISTER statement stores the sign of a signed field on the left or right of the signed value,
depending on where you place the sign designator in the picture.

If you will use the register in a DISPLAY or STORE statement, you must describe the screen field
exactly as you defined the register picture. For example, if your REGISTER statement places the
sign on the right, so must your screen picture. Using PROCESS statements instead of REGISTER
statements removes this concern.

You may place characters not included in the standard set of alphanumerics (that is, ASCII
characters outside the range 408 to 176 8, inclusive) in REGISTER statements. Simply enclose the
code of each such control character in angle brackets; for example, list ASCII code 7 as < 7 >,
< 07>, or < 007> (the system is tolerant of leading zeros).

There is no limit to the number of codes that you can use in a string. The code for a character, plus
the angle brackets that enclose it, are equivalent to one character of data, and any preceding or
trailing blanks are counted in the string. For example, the statement

REGISTER DATA X(S) <7> EXAMPLE

assigns an initial value of <7>EXAMPLE to the register named DATA. The register is eight
characters long. It includes the seven letters in the word EXAMPLE preceded by the single ASCII
character 007.

093-000151-01 Licensed Material-Property of Data General Corporation 7-57

REINSTATE

REINSTATE [THE] record name USING key ...

This statement reinstates a logically deleted record. The REMOVE statement logically deletes
records (see REMOVE).

RELEASE

RELEASE [THE]recordname USING key ...

This statement frees the record record name for access by other programs, but retains the record
for use by your program.

RELEASE All

RELEASE ALL HOLDS [IN] filename

This statement unlocks all records locked by the current program. The current file position is not
changed.

REMOVE

REMOVE [THE] recordname

This statement logically deletes a record; the record exists, but the system erases the pathway to it.
To rebuild the pathway to the record, use the REINSTATE statement.

If you attempt to access a logically deleted record, IOERR is set to 96 (Record Logically Deleted).

7-58 Licensed Mltterlal-Property of Data General Corporation 093-000151-01

RESET

RESET {field number}
label

RESET field number

will reset logical field number n to DISPLA Y mode. (See RESET USING.)

RESET label

will reset the field identified by label to DISPLA Y mode, where label indicates a labeled PROCLSS
statement. (See RESET USING.)

You can use only one RESET statement per field-processing routine. If you use more than one,
only the last one will have an effect.

RESET doesn't reset the field until control passes back to the monitor.

RESET USING

RESET USING variable

This statement tells the monitor to reset to DISPLAY the field whose number is contained in
variable. It has meaning only for fields defined as both DISPLAY and EDIT.

The monitor resets the field to DISPLA Y when it regains control; that is, following the execution of
a RETURN statement. The DISPLAY attribute will take effect the next time that the monitor
processes the designated field.

You can reset only one field at a time. To reset a second field, you must re-enter the program.

Note that RESET's execution does not imply a RETURN.

For example:

PROCESS F1 at D1 and E1

D1: DISPLAY ABC
RETURN USING FIELD

E1: STORE F1
RESET USING FIELD * FIELD WILL BE "DISPLAY" NEXT TIME
RETURN

093-000151-01 Licensed Material-Property of Data General Corporation 7-59

RETRIEVE HIGH KEY

RETRIEVE HIGH KEY [FOR] record name [TO] variable

This statement retrieves the highest key for record name at the current INFOS system level.
"Highest" means the key with the highest ASCII value; for example, ZZZ is higher than AAA, and
AAA is higher than 253. The current INFOS system level means that before you use the
RETRIEVE HIGH KEY statement, you must use a FIND or a VERIFY statement to position to the
index level you want.

RETRIEVE HIGH KEY places the retrieved key value in variable. You can then use variable in
file manipulation statements.

Figure 7-18 illustrates this statement.

To postition to the proper subindex, we use:

VERIFY THE INVOICEREC USING "SMITH", "01"

To retrieve the highest key in the subindex, we then use

RETRIEVE HIGH KEY FOR INVOICEREC TO KEYNUMBER

KEYNUMBER will then contain 77.

If we had specified duplicates with a DUPLICATES statement, the system would place the
duplicates count in the variable we specified in the DUPLICATES statement.

You cannot use RETRIEVE HIGH KEY before using a FIND or VERIFY statement; this will result
in a fatal INFOS system error.

So-01171

7-60

J

LEVEL 0 KEYS

ADAMS
JONES
SMITH
ZOLLO

"SMITH" SUBINDEX

01
02
03

76
77

--CUSTOMERS

--INVOICE NUMBERS

Figure 7-18. Retrieving the Highest Key

Licensed Malarial-Property of Data General Corporation 093-000151-01

RETRIEVE KEY

RETRIEVE KEY [FOR] record name [TO] variable

Use this statement with the FIND BEGINNING and FIND NEXT statements; these do not return
a key or a duplicates count.

RETRIEVE KEY places into variable the last key that was entered in a FIND statement key string.
For example:

FIND THE INVOICEREC USING "SMITH","43"

RETRIEVE KEY FOR INVOICEREC TO CURRENTKEY

CURRENTKEY will contain the value 43.

The system performs any necessary conversions from BINARY or PACKED to ASCII. Also, if it
finds duplicates at the level of the retrieved key, it enters the duplicates count in the variable
specified by the DUPLICATES statement.

You may use the reserved word VARIED-KEY for variable if the keys you want to retrieve have
different lengths.

Figure 7-19 demonstrates the use· of RETRIEVE KEY in a program that updates a database by
deleting unnecessary records. Since the program uses FIND BEGINNING and FIND NEXT
statements, we need the RETRIEVE KEY statement to keep track of the record keys so that we can
use the REMOVE statement on the records.

NAME UPDATE

FILE CLIENTFILE
KEY FOR CLIENTFILE IS 10 ASCII
SUBINDEX FOR CLIENTFILE IS NAMEKEY
KEY FOR NAMEKEY IS 30 ASCII
DUPLICATES ARE COUNTED IN DUPE COUNT
RECORD FOR NAMEKEY IS CLIENTREC

STOP

LENGTH IS 200
INCLUDES NAME 1 30 ASCII
INCLUDES ADDRESS 31 30 ASCII

PROCESS AREAKEY AT NONE AND El
PROCESS PARTIALKEY AT NONE AND E2
PROCESS NAME AT 03 AND NONE
PROCESS ADDRESS AT 04 AND NONE
PROCESS CHOICE AT NONE AND E5

REGISTER DUPE COUNT 9(4)
REGISTER KEYFOUND X(30)

ON ESCAPE ESC

*OPERATOR IS LOOKING FOR SMITH, STANLEY J., 132 WEST 57TH STREET
*OPERATOR ENTRY IS EAST IN FIELD 1, SM IN FIELD 2

U:
STORE AREAKEY

RETURN

Figure 7-19. Name Update

093-0001 51 -01 Licensed Material-Property 01 Data General Corporation 7-61

RETRIEVE KEY {continued1

7-62

E2:

RETURN

STORE PARTIALKEY
FIND THE CLIENTREC BEGINNING ~ITH AREAKEY,PARTIALKEY
ON-IOERR TRYNEWKEY

*THE NEXT FIELD IS THE START OF A SCROLL AREA
*THE CLIENT NAME AND ADDRESS IS DISPLAYED
*THEN THE OPERATOR HAS THE OPTION OF DELETING THE RECORD
*IF THE RIGHT ONE HAS BEEN RETRIEVED, OR OF CONTINUING
*TO SEARCH THE FILE

D3:

RETURN

D4:

RETURN

E5:

DISPLAY NAME

DISPLAY ADDRESS

COMPARE CHOICE JJY" *Y = DELETE
IF EQUAL E5A *GO TO DELETE ROUTINE
FIND THE NEXT CLIENTREC
ON-IOERR TRYNEWKEY

RETURN *TO BEGINNING OF SCROLL AREA

*CONTROL PASSES TO THE NEXT ROUTINE ONLY IF THE OPERATOR HAS
*KEYED IN THE LETTER JJY" IN FIELD 5, SIGNALLING THE
*DELETION OF THE RECORD DISPLAYED IN THE SCROLL AREA

E5A:
RETRIEVE KEY FOR CLIENTREC TO KEYFOUND

*KEY IS NOw IN KEYFOUND, DUPLICATES COUNT IN DUPE COUNT
*THE LENGTH OF THE KEY TO BE RETRIEVED ~UST BE THE
*SAME AS THAT SPECIFIED FOR THE DESTINATION
*VARIABLE (KEYFOUNDl

REMOVE THE CLIENTREC USING AREKEY, KEYFOUND
ON-IOERR E5B
MESSAGE RECORD LOGICALLY DELETED. ENTER NEW KEY TO CONTINUE

RETURN 1

E5B:
MESSAGE UNABLE TO DELETE CURRENT RECORD

RETURN 1

TRYNEWKEY:
MESSAGE NO MORE CLIENTS WITH CURRENT KEYS

RETURN 1

ESC:
RETURN

*ESCAPE ALLOWS OPERATOR TO REFINE THE PARTIAL KEY wITHOUT
*HAVING TO SEARCH THE ENTIRE FILE

FINISH

Figure 7-19. Name Update (continued)

Licensed Material-Property of Data General Corporation 093-000151-01

RESTART

RESTART

REST ART returns the cursor to the first field on the screen, resets the DISPLAY IEDIT flip-flop of
the DISPLAY and EDIT fields to DISPLAY, and erases unprotected data from the screen. It does
not reinitialize program variables.

RETURN

RETURN {{field-numberl}
ftabetl

The RETURN statement is the normal statement you use to return process control to the Idea
monitor so that it can determine the next field to process. Used without field-number or label. it
returns control to the next PROCESS statement. If there isn't another PROCESS statement,
control passes to the FINISH statement.

RETURN field-number

returns control from a routine to the specified field's PROCESS statement. For example, RETURN
3 passes control to the PROCESS statement of the third screen field.

RETURN label

returns control from a routine to the PROCESS statement specified by label. This label must be a
PROCESS statement label, not a tag.

For example, the statement

A1 # PROCESS F1 AT NONE AND E1

shows a PROCESS statement with the label AI. The pound sign (#) is the label delimiter.

RETURN USING

RETURN USING variable

This statement returns to the physical field corresponding to the value of variable. If variable
contains a value which is less than 1 or greater than the number of fields in the format, the system
will ignore the argument and return to the next field.

If you use the reserved word FIELD for variable (RETURN USING FIELD), the system will
return to the field currently being processed.

093-000151-01 Licensed Material-Property of Data General Corporation 7-63

RIGHT

RIGHT [JUSTIFY}variable1 [IN}variable2

This statement will right justify a smaller source field in a larger destination field. It moves data from
variable1 to variable2 starting with the right-most character position and proceeding from right to
left.

The RIGHT statement treats blanks like any other character. It will perform no zero- or blank-filling
in the destination field. If the destination field is longer than the source, the system will retain the
excess destination data.

The system will disregard a decimal point in a source field. It will display a decimal point in a
destination field as it is specified in the field picture.

The system performs transfers of similar data types between fields of equal size on a
character-position-by-character-position basis. No justification is involved in such moves since the
system treats blanks as data.

Table 7-7 shows some examples of data moved using the RIGHT command. In this table, Dest
means Destination and Srce means Source, which remains unchanged.

Table 7-7. Examples of Data Moved with the RIGHT Command

Example Initial Values Final Dest Values

Numeric Srce = 788 55788
Srce < Dest Dest = 55555
No Decimal Point

Numeric Srce = 83492 492
Srce > Dest Dest = 671
No Decimal Point

Numeric Srce = 16.98 171.698
Srce > Dest Dest = 178.544
No Decimal Point

Numeric Srce = 856.99 69.9
Srce > Dest Dest = 78.5
Decimal Point

Alphanumeric Srce = patnum vpatnum
Srce = Dest Dest = vacancy

Alphanumeric Srce = patnum num
Srce > Dest Dest = vac

Mixed Srce = 858.9 sta8589
Srce < Dest Dest = station

Mixed Srce = sub ub
Srce > Dest Dest = 6.3

7-64 Licensed Material-Property of Data General Corporation 093-000151-01

SEND

SEND {recOrdname [[TO] iPc-port-name]}
REQUEST record name

SEND record name [[TO] ipc-port-name]

sends a record to an IPC port. The ipc-port-name must be the name of an existing IPC port. You can
use literals and registers for your port names.

If you are using the RCX70 port, you do not give the phrase

TO ipc-port-name

To use RCX70, you must attach the IIPC switch to the IDEASG command (see Chapter 10).

To send a record from your Idea console to another Idea console, you attach the number of the
receiving console to the keyword IDEA. For example, to send a record to console 7, you would give
this command:

SEND ACCTREC TO "IDEA07"

The program running on console 7 has to issue a RECEIVE statement in order to receive the record:

RECEIVE ACCTREC FROM "IDEA04"

You can also send a rec;ord to a non-Idea process such as a COBOL program. The non-Idea process
must create a port and give it a name. You then use this name in the SEND statement.

The statement

SEND REQUEST record name

is only valid for RCX70 applications. It tells RCX70 that you want to receive a message from the
host machine. (With RCX70, the SEND record name statement means that you do not expect a
reply.) The contents of recordname may be a null (dummy) record, a key for the remote database,
a record for the remote database, or any other convention that the host and local arplications decide
upon.

The program must issue a RECEIVE statement immediately after it issues the SEND REQUEST
statement, so that it will be ready when the host responds. You should loop on the RECEIVE
statement until you receive the message. Use IOERR error code 54 (RECEIVE error -- no message
ready) to loop.

In normal cases, you will receive the record that you requested. If the host does not respond during
the time-out period, you will receive a time-out error message.

You may receive the following error codes in IOERR with any form of the SEND statement:

IOERR Error Code

54
55
56

Explanation

RECEIVE error -- no message ready
SEND error
RECEIVE error

There are several conditions that can cause errors 55 and 56. They range from a named but
nonexistent IPC port to an incorrect ACL for the port. The register INFOS-ERR will contain the
actual AOS error code. You may also receive RCX70 error codes in INFOS-ERR -- refer to the
RCX70 Reference Manual (A OS).

093-0001 51-01 Licensed Material-Property of Data General Corporation 7-65

~:,rop

STOP

STOP ends record description blocks, register redesignations, and parameters for subindex
definition blocks.

To end a record description block, place STOP immediately after the last INCLUDES statement.
STOP must also follow every REDEFINES statement.

STORE

STORE variable

STORE reads input data into memory by taking data entered into the current screen field and
storing it in a register called variable. This is a crucial EDIT field statement.

Before you can manipulate any data entered through the keyboard, you must store it in a memory
location that bears a variable name associated with a PROCESS or REGISTER statement.

Typically, STORE is the first statement in an edit routine, and variable represents sufficient buffer
memory to store any value that the operator keys in. As a result, you usually declare variable with a
PROCESS statement that is associated with the current field at compile time. The variable receives
the buffer-memory storage characteristics you specify in the PROCESS-statement-related screen
field.

For example:

PROCESS ADDRESS AT NONE AND NAME

ENAME: STORE ADDRESS

7-66 Licensed Material-Property of Data General Corporation 093-000151-01

SUBINDEX

{ filename } .
SUBINDEX [FOR] b' d [IS] sublndexname2 su In exname1

This statement specifies the name of the subindex. It also allows the compiler to keep track of the
number of keys required to access a record defined at the given subindex level.

SUBINDEX statements must appear in order, from the lowest level to the highest level. For
example, you must define subindex A of file 1 before you define subindex A2 of subindex A.

SUBROUTINE

SUBROUTINE name

SUBROUTINE must be the first statement in a subroutine. It declares the name of the subroutine.
All following IFPL source statements are part of the subroutine until the ENDSUB statement
appears.

SUBTRACT

SUBTRACT subtrahend minuend difference

SUBTRACT subtracts the contents of subtrahend from the contents of minuend and stores the
result in difference.

To ensure that you don't lose valuable digits by truncation, give the difference one more integer
place than the larger of the minuend and subrahend.

093-000151-01 Licensed Material-Property of Data General Corporation 7-67

TABLE

TABLE name

Use this statement to define tables in your IFPL program. Follow this statement with a list of table
elements and end with the statement ENDT ABLE. Once you define a table, you can use other
statements to perform table lookups and to extract table elements by index.

You may define a maximum of 40 tables within your IFPL program; however, there is no limit to
the number of elements within a table.

The table elements may be any mix of register names, PROCESS variables, or literals. The
elements can have different lengths.

When you access table elements, literals return exactly as you entered them in the table. Registers
and variables return their contents; i.e., the value stored in the register or variable location.

If your program uses a literal from a table and it changes the literal's value in some way, it will then
store the new value in the table.

For example:

TABLE ERRORCODES
"00"
"10"
"22"
"23"
"24"
"94"
"96"
ENDTABLE

defines a table where all of the elements are literals.

TABLE MESSAGES
OKMESSAGE
ENDOFFILE
"22"
NORECORD
KEYTOOBIG
RECDLOCK
DELETED
ENDTABLE

defines a table where elements are a mix of literals and program variables.

7-68 Licensed Material-Property of Data General Corporation 093-0001 51-01

Table elements should be variables or distinctive literals. You should not use dummy literals; for
example,

TABLE DUMMYLITERAL

u"

u"

ENDTABLE

and the statement

MOVE "JANE" TO DUMMYLITERAL (ENTRY)

In this case, the MOVE statement will give the value JANE to the table element pointed to by the
value of ENTRY. But, since the table element names are the same, all the other table elements will
also take on the value, JANE. This would also destroy the space characters as defined by the literal
''~o''. Consequently, a COMPARE involving the literal ''~O'' would compare a value against the
value JANE, not against the two space characters.

Use the LOOKUP statement to search a table. The system sets a flag to the index of the matching
element ifit finds the element. Ifit doesn't find a match, the system sets the flag to O.

You may use the value returned in the LOOKUP pointer to extract table elements via the
DISPLA Y and MOVE statements. For example, suppose that you have this table:

TABLE SSNUMB
"020349912"
"726886990"
"012526722"
"555122223"
"909090909"
ENDTABLE

The statement

LOOKUP IN SSNUMB(MPTR) "012526722"

will locate the third social security number and place the value 03 in the pointer MPTR. You can
then give the statement

DISPLAY SSNUMB(MPTR)

to display the social security number 012526722 in a field with the DISPLA Y attribute.

093-000151-01 licensed Material-Property of Data General Corporation 7-69

1 U~M '\JAn
TERMINATE PRINTING USING printformatname

This statement marks the end of the print format in the COMMON file. It tells the PRINTF utility
that the print format is complete and ready to be printed.

VERI
VERIFY [THE} recordname USING key ...

This statement positions you to the record record name without incurring the overhead of reading
the record (as with the FIND statement).

VERIFY won't tell you whether a record is locked.

VERIFY NEXT
VERIFY [THE} NEXT recordname

This statement positions you to the next record, but doesn't retrieve it. Use it to skip over locked
records.

VERIFY PREVIOUS
VERIFY [THE} PREVIOUS recordname

This statement positions you to the previous record, but doesn't retrieve it. Use it to skip over
locked records.

End of Chapter

7-70 Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 8
Idea System Utilities

In this chapter, we describe the Idea system utility programs. Table 8-1 lists the utilities and their
functions.

Table 8-1. The Idea Utilities

Utility Function

ALPHA Redefines the legal alphabet.

CHGEM Builds new system dialog files.

DEFCOM Defines the COMMON file.

ILiB Builds a format library.

PALPH Prints the current alphabet.

PFMT Prints or displays information about formats.

093-000151-01 Licensed Material-Property 01 Data General Corporation 8-1

ALPHA

Redefines the Alphabet

Use the ALPHA utility to redefine the alphabet. You may wish to do this, for example, to change
the decimal point to a comma for European usage, or to change the currency symbol from the dollar
sign to another symbol.

To use ALPHA, give this command from the CLI:

ALPHA)

ALPHA will display the current decimal character, currency symbol, and alphabetic characters, and
will ask you if you want to change them. If you answer Y (for YES), the system asks you for the new
characters. It then tells you it has created a new ALPHABET.TB file, displays the new characters,
and returns to the CLI. Figure 8-1 shows the entire dialog.

8-2

)ALPHA)

CURRENT ALPHA DA TA IS:
DECIMAL POINT IS.
CURRENCYSYMBOLIS%
A LPHABETIS
DABCDEFGHIJLMNOPQRSTUVXYZ
CHANGE ALPHA DATA? (y OR N) Y
PLEASE ENTER YOUR DECIMAL POINT CHARA CTER
(OR) FOLLO WED B Y A CARRIA GE RETURN.

PLEASE ENTER YOUR CURRENCYSYMBOLFOLLOWEDBY A CARRIAGERETURN.

$

CHARA CTERS VALID FOR ENTR Y INTO AN ALPHABETIC FIELD.
INCLUDE THE SPACE CHARACTER AND YOUR ALPHABET.
PLEASE ENTER ALL OF THESE CHARACTERS TERMINATING WITH A CARRIAGE RETURN

DABCDEFGHIJKLMNOPQRSTUVWXYZ)

FILE ALPHABET. TB HAS BEEN BUILT.
CURRENT ALPHA DA TA IS:
DECIMAL POINT IS.
CURRENCYSYMBOLIS$
ALPHABETIS

DABCDEFGHllKLMNOPQRSTUVWXYZ

Figure 8-1. A Sample ALPHA Dialog

licensed Material-Property of Data General Corporation 093-000151-01

CHGEM

Changes the Dialog Files

To change a system dialog file, you first edit the file with SPEED or LINED IT. Then, you process
the file with the CRGEM utility.

Editing the Source Files

The system messages are in source files with the extensions .AOS.ER. When editing these files,
restrict your changes to the messages themselves. For example, the error-message source file
GIDEA.AOS.ER contains these lines:

CODE 4
.TXT /TOO MANY CHARACTERS ENTERED; RE-ENTER THE COMMAND<012>/

The actual message is

TOO MANY CHARACTERS ENTERED; RE-ENTER THE COMMAND 012

The message field begins with the first nonspace, nontab character following .TXT. The program
uses the first character it encounters as the message delimiter; you can use any graphic character on
the keyboard, except the semicolon and the angle brackets. For example, if you want to use a slash
within the message itself, you can use the question mark or some other character as the delimiter, as
in this message:

.TXT ?TOO MANY KEY/SUBINDEX DEFINITIONS?

You cannot use the semicolon as the delimiter because it begins comment fields. You cannot use
the angle brackets as delimiters because they set off octal control codes.

Do not edit the lines containing the word CODE, nor the characters .TXT(TAB/SPACE).

Processing the Message File with CHGEM

After you have edited the message file, give this command from the CLI:

CHGEM root-error-filename [PRINT})

where:

root-error-filename is the name of the error file minus the .AOS.ER extensions.

You may use angle brackets and other CLI command templates in the CRG EM command line.

The optional argument PRINTsends a copy of the assembled list file and the load map file to the line
printer.

CRG EM uses the root-error-filename.AOS.ER file as input, and outputs the file
root-error-filename.ER.

For example:

CHGEM DIALOG PRINT)

creates the file DIALOG.ER from the source file DIALOG.AOS.ER and sends a copy of the
assembled file to the line printer.

093-000151-01 Licensed Material-Property of Data General Corporation 8-3

DEFCOM

Defines the COMMON File

To create the system COMMON file, give this command:

DEFCOM)

This creates a standard COMMON file. We discuss the structure of COMMON and show you some
ways that you can alter this basic structure in Appendix B.

The COMMON file is blank when you first create it. After you use it with print records and formats,
it contains the print record information.

To delete old print records from COMMON, you run DEFCOM again. The system will tell you that
the COMMON file exists and will ask if you wish to delete it. After you type a D to delete,
DEFCOM creates a new blank COMMON file. You can also use a PRINTF feature that deletes
records as it prints them.

8-4 Licensed Material-Property 01 Data General Corporation 093-000151-01

ILiB

Builds a Format library

Use the ILIB utility to build a library offormats.

To run ILlB, you must be in the same directory as the formats. To use the library, you must specify
the library name during the IDEASG dialog (see Chapter 10). Linking from format to format may
run faster if you use a library.

You may run a format-library local monitor and a non-format-library local monitor under the same
global monitor.

To build your library, give this command:

XEQ ILiB libraryfilename.FPL)

where:

libraryfilename.FPL is the name that the system manager will specify in the IDEASG dialog. The
name must have the suffix .FPL.

ILIB will then display the screen shown in Figure 8-2.

SO-01793

Figure 8-2. The ILlB Screen

093-000151-01 Licensed Malerial-Properly of Dala General Corporation 8-5

IUB (continued)

When you type one of the commands shown in Table 8-2, ILIB will ask you to enter the arguments
that are appropriate for that command.

Table 8-2. The ILiB Commands

Command Description

BUILD Takes all files in the directory with the suffix .FP and places them in the library.

MERGE Searches the working directory for .FP files with the same names as those in the
library. If it finds a match, it replaces the format in the library with the .FP file in
the directory.

ADD Adds a format to the library. Displays an error if the format already exists in the
library or if the library is full (512 formats).

ANALYZE Lists the formats in the library and the dates when each format was added. The
default listfile is @CONSOLE; however, you can change this.

BYE Returns you to the CLI.

DELETE Deletes the specified format from the library.

RENAME Renames a format in the library. You first specify the existing format, and then give
the new name.

REPLACE Replaces the named format with a format bearing the same name.

Executing in Batch Mode

You may run the BUILD or MERGE commands in batch mode. Give this command:

QBATCH XEQ ILiB libraryname.FPL {~~~~E})

Moving the Library

You must create the library in the directory where the formats reside. After you create it, you can
move the library to any directory you choose.

8-6 Licensed Material-Property of Data General Corporation 093-000151-01

PALPH

Prints the Current Alphabet

To print the current alphabet, give this command:

PALPH)

The PALPH utility will respond by asking

WHATDESTINATION FOR PALPH LISTING?

Respond with an acceptable eLl listfile name, such as @LPT for a line printer listing or
@CONSOLE to display it on the screen.

PALPH will then list or display the current alphabetic characters, decimal point character, and
currency symbol.

093-000151-01 Licensed Material-Property of Data General Corporation 8-7

PFMT

Prints or Displays Formats

To print a format, give this command:

PFMT)

PFMT will ask:

NAME LISTINGS DES TINA TION?

Give an acceptable eLI listfile name, such as @LPT or @CONSOLE.

PFMT will then ask for the names of the formats that you want to list. You may use angle brackets
for your format names, such as BANKER<1,2,3>, but don't use templates or expansion forms
that use parentheses.

End of Chapter

8-8 Licensed Material-Property of Data General Corporation 093-0001 51-01

Chapter 9
Printing

The Idea system gives you several options for printing reports. The main method is to create
printing records with a screen format/program module. Printing statements in the program send
print records to the system COMMON file. You then print the records with the PRINTF utility,
which uses a print format that you create with IFMT or WIFMT. The print format can be a copy of
the screen format used to load the COMMON file, or you can tailor the print format to your
specifications.

Another method for printing reports is to set up a DASHER printing terminal as a satellite (or
slave) to the display terminal. The operator caJls up a screen format/program module and completes
the screen EDIT fields. Then, by pressing the PRINT key on the 6053 cursor pad, the operator
sends a snapshot of the screen to the DASHER printer.

A third alternative is to use a DASHER printer as an Idea terminal. This method has some
limitations~ the most obvious is that the DASHER printer cannot print literal information to prompt
the entry operator (although you can use DISPLA Y fields as prompts).

Using PRINTF with a Print Format
To print reports using the PRINTF utility, follow these steps:

1. Create the screen input format and the printing output format.

2. Define the records used with both formats.

3. Write the IFPL program for the screen input format using the printing statements.

4. Compile the screen format and the program together, using the SYNT AX command.

5. Create the COMMON file using the DEFCOM utility.

6. Run the program, filling in the data fields.

7. Use the PRINTF utility with the printing format to print the report.

Creating Formats

To create the screen input format, use IFMT. Give the NONE response (just NEW LINE) to the
prompt TYPE(H OR P OR NONE).

To create the printing format, use IFMT or WIFMT. Give the P response to the prompt TYPE(H
OR P OR NONE). This allows you to use formats up to 80 lines long (60 with WIFMT), as well as to
use the NEXT P AG E and PREY P AG E keys to move around while creating the format. The system
will ask you for the length of the printed form. Regular line-printer paper is 66lines long.

The P response tells the system that you will use the format for printing on a line printer~ it
therefore disables the attribute queries.

093-000151-01 licensed Material-Property of Data General Corporation 9-1

Designing the Records for Printing

When you design printing records, make sure that the record definition statements in the program
match the field specifications in the printing format. This is crucial; the COMMON file has no way of
delimiting fields. Thus, when PRINTF comes to the first field in the printing format, it takes as
many bytes as the format specifies from the record in COMMON. For example, if the first field has
a pictUIe of six characters, PRINTF takes the first six bytes of the record from COMMON and
inserts them on the printing line. It continues this process, field by field and line by line, until it
empties the printing record.

If any field on the format doesn't match the associated field in the record, the fields will get out of
sync. For example, if the first field in the record was only five bytes long and the format asked for
six bytes, PRINTF would take the five bytes of the first field and the first byte of the second. Of
course, this would throw off all following fields.

Writing the Program

The program that sends records to the COMMON file must contain the following statements:

RECORD FOR PRINTING IS recordname

INITIATE PRINTING IN printformatname

PRINT record name USING printformatname

TERMINATE PRINTING USING printformatname

The RECORD FOR PRINTING statement begins a record definition block, just like the regular
RECORD statement. You must include a LENGTH statement and the INCLUDES statements
after the RECORD FOR PRINTING statement, and follow them with a STOP statement.

The INITIATE PRINTING statement begins the creation of the record in COMMON. After you
give this statement, you can begin executing PRINT statements in the program.

The PRINT statement sends the specified record to the specified print format in COMMON, and
the TERMINATE PRINTING statement ends the printing associated with the print format.

You cannot link a screen format to itself or to another format if you are using it to create print
records. Linking can delete the print image if the system hasn't completed it. To repeat a format and
return to a previous field, use a RETURN label statement; this will not log the terminal off like
linking will.

Figure 9-1 shows a printing program and its associated formats.

9-2 Licensed Malerial-Properly of Dala General Corporation 093-000151-01

50-01736

NAME PRINTPROG

RECORD FOR PRINTING IS ACCTREC
LENGTH IS 9
INCLUDES SSNUMB 1 9 ASCII

STOP

PROCESS SSNUMB AT NONE AND GETID

GETID: STORE SSNUMH
INITIATE PRINTING USING "PRINTOUT"
PRINT ACCTREC USING "PRINTOUT"
TERMINATE PRINTING USING "PRINTOUT"
RETURN 1

FINISH

o
o
o
o
o
o

SSNUMBER IS 999999999

Figure 9-1. The Printing Program PRINTPROG. UP, the Screen Format PRINTPROG,
and the Printing Format PRINTOUT

093-000151-01 Licensed Malerial-Properly of Oala General Corporation 9-3

Creating the COMMON File

To create the system COMMON file, give this command:

OEFCOM)

This creates a standard COMMON file. We discuss the structure of COMMON and show you some
ways that you can alter this basic structure in Appendix B.

When you first create COMMON, it is blank. After you use it with print records and formats, it
contains the print record information. To delete old print records from COMMON, run DEFCOM
again. The system will tell you that the COMMON file exists, and will ask if you wish to delete it.
After you type a D to delete, DEFCOM creates a new blank COMMON file.

You can also use the PRINTF/D feature, which deletes records as it prints them.

Running the Input Program

You run the input format/program module from a local monitor, just as with any program.

Using PRINTF
To print the print records from COMMON, use the PRINTF utility. Give this command from the
CLI:

PRINTF/A [ID} [/L = lis (file) printformatname)

where:

printformatname is the name of the format you used with the INITIATE PRINTING, PRINT,
and TERMINATE PRINTING statements. You must give the print format the
P option with IFMT or WIFMT.

IA tells the system to print all records in COMMON regardless of which terminal
supplied them.

ID deletes records from COMMON as it prints them.

/L =lis(file lets you name a listfile other than @LPT.

Examples

PRINTF/A PATREP1)

Prints all records in COMMON using the format PA TREPl.

PRINTF/A/O REPORTS)

Deletes all records as it prints them using the format REPORTS.

PRINTF/A/O/L=MYLIST SAlESREP)

Sends the output to the file named MYLIST. Formats the data using the print format SALESREP.
Deletes all records as it writes them to MYLIST.

9-4 Licensed Malerial-Property of Data General Corporation 093-0001 51 -01

To print only those records created by a specific terminal, give this version. of the PRINTF
command:

PRlNTF [ID] [IL =lisr{tle] printformatname console-number. ..)

To find the console-number, use the 1ST ATUS supervisory statement (see Chapter 10).

PRINTF SALESREP 01)

Prints all COMMON records created on terminal 01.

PRINTF/D CUSTACCT 01,02,05)

Prints and deletes all COMMON records created on consoles 01,02, and 05.

Printing Scroll Fields

Printing scroll areas is a special case. The printing format must contain a pair of commercial at signs
(@) around the scroll area. When PRINTF sees the first @ sign, it knows that it is printing a scroll
area, and it will print scroll lines as long as the program continues to provide them.

However, PRINTF is also looking for the second @ sign to end the scroll area. But it never gets to
the one on the format. Instead, you must supply one to end the scroll area. To do this you must
create a record that contains an @ sign, and then print that record with a PRINT statement. The @

sign value terminates the scroll area.

For example, the program should contain a record such as

RECORD FOR PRINTING IS ENDSCROLL
LENGTH IS 1
INCLUDES "@" 1 1 ASCII

STOP

To terminate the scroll pnntmg, you print the record ENDSCROLL just before giving the
TERMINATE PRINTING statement for the scrolled format.

Inserting Your Own Form Feeds

PRINTF usually places a form feed after it has printed 62 lines. This is based on a 66-line form,
skipping two lines at the top and two lines at the bottom. There are two ways to change this. You can
specify a different form length when you create the printing format, or you can place your own form
feeds in the format. To place your own form feeds within a format, place /lFF/I in the desired
location while you are in LITERAL mode in IFMT.

Printing Headings After Form Feeds

To print headings after each form feed with PRINTF, enclose the heading in paired slashes (! I). For
example,

IIThis is a page headingl I

@IIThis is a scroll heading. The @ sign begins the scroll areal I

To use both page and scroll headings, you must start the printing format in page mode. Also, keep in
mind that subsequent headings nullify previous ones.

PR INTF will print a page heading after each form feed. It will print a scroll heading if the scroll area
runs over the page length. Thus, if your printing format had a form length of 66 lines and you
scrolled 100 lines, PRINTF would print the headings on the second page.

093-0001 51-01 Licensed Material-Property of Data General Corporation 9-5

Printing Screen Snapshots on a DASHER Printer

This form of printing is almost entirely hardware driven. To use it, you need a 6053 terminal with a
printing board and a DASHER printing terminal attached as a satellite (or slave) printer.

To use this form of printing, the operator calls the screen input program, fills in the EDIT fields, and
strikes the PRINT key on the cursor pad. Within the program, you must include a few statements
that will print a snapshot of the screen when the operator strikes the PRINT key. These statements
are:

ON SCREEN tag

REGISTER FIELD 99

tag: MESSAGE < 1 0> < 21 >

RETURN USING FIELD

The statement ON SCREEN tag sends program execution to tag when the operator strikes the
PRINT key. The REGISTER FIELD 99 statement sets up the reserved word FIELD so that you use
it with the RETURN USING statement. The statement MESSAGE < 1 0 > < 21 > prints all data
on the screen. The octal code 10 places the cursor at the home position, and the code 21 prints the
screen.

To print only the variable data, use this MESSAGE statement:

MESSAGE <10><01 >

Using a DASHER Printer as a Terminal
This method has some limitations, but you can work around these problems.

The DASHER printer cannot move its printing head backwards. Consequently, you can't display
literals, and you can't use statements such as RETURN label. Also, you must be very careful when
you send messages to a DASHER printer; the MESSAGE statement sends the printing head to line
24, and it can't get back from there.

So, to print label data for operator prompts, just use literal variables with DISPLAY fields and
statements.

To repeat a program, link the format to itself instead of using a RETURN label, RETURN USING,
or REST ART statement.

Another problem is that the DASHER doesn't know how long forms are. It uses a free-form length.
You can set an artificial form length in page mode, by placing a dummy field on the next to the last
line. For example, you would place a field at line 65 for a 66-line form.

Unfortunately, there is no similar method to use for scroll fields; you have to count the lines.

The fact that dummy fields will print on the form is another disadvantage. To make sure that the
DASHER doesn't print anything at a dummy field, use zero suppress characters (Zs) for numeric
dummy fields, or use Xs, which use the blank as the default character.

9-6 licensed Material-Property of Data General Corporation 093-000151-01

Some Sample Applications
We list the programs and formats discussed below in Appendix D.

Printing More Than One Report Per Page

PROBLEM:

How to output two or more print images to each printed page.

SOLUTION:

1. Link the printing format to itself.
2. Suppress the form feed on linking ..
3. Make the format "form length" a multiple of the format length.

LISTINGS:

Screen format/program module DASHJR, DASHJR.UP. Output formats PAGEFMT and
SCRLLFMT.

To print two PAGEFMTs per page we make PAGEFMT 31 lines long, link it to itself, and suppress
the form feed on linking.

When creating P AG EFMT, we set the form length to 66 lines. If we set the length at anything less
on a 66-line printer -- at 33 lines, for example -- PRINTF would issue a form feed to the printer as
soon as it reached 33 lines. The printer would respond by going to the top of the next form, and this
would leave the lower half of the form blank.

We derive the length of the format -- 31 lines -- with this formula:

format length = (form length-4)/ # reports per page

If you know the format length, use this formula to find the form length:

form length = (# reports per page X format length) + 4

Find the number of reports per page by dividing the usable form length by the format length and
discarding any fraction in the quotient. If the format length is 10 lines, then you can print 6 of them
on one 66-line page, which contains 66 minus 4, or 62, usable lines. The form length specification
should be (6 times 10) plus 4, or 64 lines.

When printing, PRINTF will issue a form feed when it uses up 64 lines. This keeps the printed
reports in synchronization with the 66 lines of the form.

The figure 4 in the formulas reserves space for the two lines on the top and the two lines on the
bottom of the form.

You can't do two-up printing by repeating the desired format on the lower half of the format; that is,
by asking PRINTF to write one image on the top half of the format and a second on the bottom half.
This violates its rule of having the data and the format end synchronously.

Figure 9-2 shows the output from our format PAG EFMT.

093-000151-01 Licensed Malerial-Properly of Dala General Corporation 9-7

9-8

*****************~************************************ *****************
************.*.*********.**

PURCHASE ORDER NUMBER 3

CUSTOMER'S NAMEs

PAUL PROTEUS
THE WORKS
ILIUM, NY

ITEMS IDEA SYSTEM
UNIT PRICE: 5Q,000
QUANTITY: TWO (2)
Af-10UNT: 58,000

TOTAL AMOUNT THIS INVOICE:

DATA GENERAL CORPORATION
Q400 COMPUTER DRIVE

WESTBORO, MASSACHUSETTS

INVOICE NUMBER 000000
DATE: 05/12177

58,000

TERMS: 3 X TEN DAYS NET 30

*****.***********.***

PURCHASE ORDER NUMBER Q

CUSTOMER'S NAME:

ELIOT ROSEWATER
GENERAL DELIVERY
ROSEWATER, IN

ITEM: IDEA SYSTEM
UNIT PRICE: 5Q,000
QUANTITY: TWO (2)
AMOUNT: 58,000

DATA GENERAL CORPORATION
4400 COf-1PUTER DRIVE

WESTBORO, MASSACHUSETTS

INVOICE NUMBER 000000
DATE: 05/12177

TQTAL AMOUNT THIS INVOICE: 58,000

TERMS: 3 X TEN DAYS NET 30

**********************~******************************* *****************

Figure 9-2. Printed Output Produced by PRINTF Using PAGEFMT

Licensed Material-Property of Data General Corporation 093-000151-01

Generating Two Reports From a Single Idea Format

PROBLEM:

How to produce two different printed reports from the same Idea program.

SOLUTION:

1. Produce single-page reports of each transaction.
2. Produce a scrolled summary report of the terminal session.
3. Use a single print image for the entire terminal session covering all print records for both

reports.

LISTING:

DASHDRVR, DASHDRVR.UP, PAGEFMT, SCRLLFMT

If you have more data than will fit on the printing format, you will trigger an error condition.
PRINTF's default action for this error is to issue a form feed and restart the format. You can use
this default to build different print reports in the same program.

The programs described below contain two reports. The first is a simple transaction report identical
to that produced by DASHJR. The second is a summary report of the terminal session. It uses
excerpts from each transaction to produce a scrolled summary of all transactions that were processed
at the terminal session. Figures 9-3 and 9-4 contain these reports .

•••
•••

DATA GENERAL CORPORATION
4400 CO~PUTER DRIVE

WESTBORO, ~ASSACHUSETTS

INVOICE NUMBER 000138
DATE: 05/12177

PURCHASE ORDER NUMBER 000138

CUSTOMER'S NAME:

JEREMIAH JONES
33 SOUTH STREET
MISSOULA, MONTANA

ITEM: IDEA SYSTEM
UNIT PRICE: 5125,000
QUANTITY: TWO (2)
AMOUNT: 5250,000

TOTAL AMOUNT THIS INVOICE:

TERMS: 3 X TEN DAVS NET 30

5250,000

•• *

Figure 9-3. Printed Report of DASH DR VR Transaction Produced by Print Format PAGEFMT

093-0001 51 -01 Licensed Material-Property 01 Data General Corporation 9-9

DATA GENERAL CORPORATION

DGC DAllY INVOICE RECORD

05/12177

COPIES: ACCOUNTING, PURCHASING, LEGAL, MANUFACTURING, MARKETING, FILE

INVOICE NO. CUSTOMER'S NAME

000138
000139
000140
000141

JEREMIAH JONES
WENTWORTH PETERSON
TALLULAH BANKHEAD
VINCENT MALONE

ADDRESS

33 SOUTH STREET
111 MAIN STREET
1 VINE STREET, APT
27 CHEROKEE lANE

CITY, STATE, ZIP

MISSOULA, MONTANA
T~IN FORKS, MAINE

3 HOLLYWOOD, DAHlING
DULUTH, MINNESOTA

0/0/0/0/0/0/0/0/00/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/01010101010101010

INVOICE
000175
000176
000177
000178

DGC DAILY INVOICE RECORD
NO. CUSTOMER'S NAME ADDRESS

GEORGE JAMES 222 TURNPIKE ROAD
FRANCES MALONE 37 WASHINGTON ST.
GANDALF THE WHITE RIVER RUNNING
FREDERICK JONES ROUTE 33

CITY, STATE, ZIP
SILVER FALLS, MD.
BOSTON, MASS.
MIDDLE EARTH
ORANGE COUNTY, CA.

10/010/0/0/0/0/0/0/01

•••
•• * •••••••••••••••• * •••

Figure 9-4. Summary Report Printed Our Using the Printing Format, SCRLLFMT

In order to produce a scrolled summary report, you must leave the print image open for the entire
session. To keep it open, postpone the execution of the TERMIN ATE PRINTING statements for
both reports until you log off. You must also remain within the program for the entire session; that
is, you must repeat the screen with a RETURN 1, not by linking or RESTARTing. The latter two
actions will restart the print image.

You cannot terminate the DASHJR-type transaction prematurely. To do so will reset the counter
used by the print facility to supply the bottom keys of the print records in COMMON; i.e., both
printing formats depend on the same counter. If you execute the associated print statements
alternately, the print records for a particular format will have bottom keys that are either all odd or
all even. This arrangement does not confuse PRINTF, which requires only that they be in ascending
order. Both formats will be in ascending order if the print image is left open.

The printing format for the summary report, SCRLLFMT, uses the repeated heading facility of
IFMT so that a page heading and a scroll heading repeat on each page of the report.

In order to use both page and scroll formats, you must include a field of page variable data at the
beginning of the report. This initiates the format in page mode.

PAGEFMT prints the page records; this format is identical to the printing format for DASHJR.
Here, however, the records print out one to a form. (For DASHJR, they print out two to a form.)
This is a consequence of using a single huge print image for each terminal session. Thus, when the
printing format PAGEFMT is satisfied, there is data left in the print image. PRINTF, therefore,
takes its standard default for such a condition. That is, it issues a form feed and restarts the format.

9-10 licensed Material-Property of Data General Corporation 093-0001 51-01

You then use a single PRINTF command to print all records created during a terminal session, as
well as all records created for the SCRLLFMT format. SCRLLFMT is linked to PAG EFMT via
IFMT. So, when you tell PRINTF to print the SCRLLFMT records, it does so. Then it links to the
page format and prints all the page records.

Be sure that you don't link PAGEFMT to itself. Such linking will disable the format for use by more
than one terminal. Thus when SCRLLFMT prints out the summary report for a particular terminal
and links to PAGEFMT, the latter prints out all the transaction reports for that terminal. If
P AG EFMT is unlinked, PRINTF then looks for the next terminal. But if it is linked and the
command PRINTF/A was issued, PRINTF will print out all PAGEFMT reports from all terminals
before printing out the next SCRLLFMT summary report.

End of Chapter

093-0001 51 -01 Licensed Material-Property of Data General Corporation 9-11

Chapter 10
How to Load and Generate Idea

This chapter shows how to load the Idea system tape and how to generate the system. It also
describes how to run a program from the local monitor.

If you are a system manager, you must complete steps 1, 2, 3, and 4 below. If you are a programmer,
you may want to generate your own monitors for users (step 3). You will also bring up the local
monitor to run your programs (step 5).

To get Idea up and running, you must perform the following tasks:

1. Load the tape containing the Idea system into the proper AOS directories.

2. Set the user search lists and the ACLs of these directories so that your users have access to
them.

3. Generate your global and local Idea monitors with the IDEASG command.

4. Bring up the global monitor with the IDEA_UP command.

5. Bring up the local monitor, and run your program.

Before You Load the Tape
Before you load the tape containing the Idea system, you must:

1. Position yourself to the root directory (:).

2. Make sure that you are running under PID 2.

3. Set SUPERUSER ON.

Loading the Tape
The tape that contains the Idea system also contains a macro to help you bring up the Idea system.
To load this macro, give the following command from the CLI (throughout this chapter we assume
that you are using tape drive 0):

LOADIV @MTAO:O LOADIDEA.CLI)

To load Idea, you then execute the LOADIDEA.CLI macro.

093-000151-01 Licensed Material-Property of Data General Corporation 10-1

Executing LOADIDEA
The LOAD IDEA macro gives you two options when you create your Idea system. The default
option creates a directory named :IDEASYSGEN and loads the contents of tape file
IDEA_SYSGEN.DF into it. It also loads the contents of tape file IDEA_UTIL.DF into the :UTIL
directory, and gives you the alternative of loading tape file IDEA_DIALOG.DF into :UTIL.
IDEA_DIALOG.DF contains Idea's error messages and other dialogs.

The second option allows you to create and name two directories: one to contain
IDEA_SYSGEN.DF and the other to contain IDEA_UTIL.DF and IDEA_DIALOG.DF.

To take the default option, give this command from the CLI:

LOADIDEA/DEF @MTAO:O}

To take the second option, creating your own directories, give this command:

LOADIDEA @MTAO:O directoryname1 directoryname2 }

Where:

directoryname1 receives IDEASYSGEN.DF.

directoryname2 receives IDEA_UTIL.DF and IDEA_DIALOG.DF.

After You Load the Tape
No matter which of the two LOADIDEA options you chose, you must set the ACLs of the two
directories to allow all users READ and EXECUTE access (+ ,RE).

You must also make sure that all users have access to the local and global monitors. You can move
the monitors to directory :UTIL, or you can include the two directories in the users' search lists. If
you use the default directories, for instance, each user seach list must contain :UTIL and
:IDEASYSGEN.

Generating the Idea Monitors
After you've loaded the tape, you generate the local and global monitors. The global monitor
performs various supervisory functions for the system. It is a swappable process that usually uses
few system resources. It is not attached to any console, but it does communicate with one design ted
console via system calls. This allows the supervisory console to perform other tasks as well.

The loealmonitor executes your programs. It exists as a process for each terminal running Idea. The
local monitor consists of 24 shared pages and 2 unshared pages of memory. These figures do not
take into account any format/program modules.

To create your global and local monitors, give this command from the CLI:

lDEASG [/DIALOG] [IIPC] [monitornamelS] [loadmapname.LMIL] }

This command begins a dialog with the system. To create the global and local monitors you must
answer the various questions with numbers and uppercase letters. You may escape from this dialog
by striking the ESC key.

If you give the default command IDEASG (NEW LINE), the system creates a global monitor
named IDEA.PR and a local monitor named LIDEA.PR, as well as a globalloadmap IDEA.LM and
a localloadmap named LIDEA.LM.

10-2 licensed Material-Property of Data General Corporation 093-000151-01

You have the option of specifying your own monitorname. your own loadmapname. or both. These
names must each contain 25 or fewer characters" You must specify the .LM extension with
loadmapname.

The IDIALOG switch lets you save the IDEASG dialog in a file named monitorname.DL. You can
then display the setting of the global monitor by using the ISYS command described in this chapter
under "Bringing Up Global Idea."

The IIPC switch specifies that you want to use RCX70 as the IPC with SEND and RECEIVE
statements. You must answer R to the IDEASG dialog question

DEFAULTPORTNAME(R = RCX70. NONE = NEWLINE)

Examples
IDEASG)

This command creates a global monitor named IDEA.PR and a local monitor named LIDEA.PR. It
also creates a global load map IDEA.LM and a local load map LIDEA.LM.

IDEASG TOMSMON/S)

This command creates a global monitor TOMSMON.PR, a local monitor LTOMSMON.PR, a global
load map IDEA.LM, and a local load map LIDEA.LM.

IDEASG CRAIGSMAP.LM/L)

This command creates a global monitor IDEA.PR, a local monitor LIDEA.PR, a globalloadmap
CRAIGSMAP.LM, and a localloadmap LCRAIGSMAP.LM.

IDEASG SAMSMON/S SAMSMON.LM/L)

This command creates a global monitor SAMSMON.PR, a local monitor LSAMSMON.PR, a global
loadmap SAMSMAP.LM, and a localloadmap LSAMSMAP.LM.

The Sysgen Dialog

The IDEASG command begins a dialog in which you must answer the following questions. Use
uppercase characters only.

TRANSACTION LOGGING (DISK = D. TAPE = T. NONE = N):

Answer D to log to disk, T to log to tape, or N for no logging.

NUMBER OF ACTIVE TERMINALS (DEFA ULT IS 32):

Enter the maximum number of terminals that you want to run concurrently. The system maximum
is 84.

FORMAT LIBRAR Y NAME (NONE = NEW LINE):

Enter the name of the format library if you wish to use one. You don't have to add the .FPL
extension; IDEASG will do that automatically. If you specify a library, then you may use the
formats in the library with this monitor only.

MAXIMUM PROGRAM SIZE (J TO 8 BLOCKS):

A block is lK words; enter a number large enough to contain your largest program. If you are using
a format library, the largest program allowed is 7K.

093-000151-01 licensed Material-Property of Data General Corporation 10-3

TIME-OUT CONSTANT IN SECONDS (DEFAULT IS ZERO)

This feature stops infinite loops. The time-out constant is the amount of time that the monitor will
allow an IFPL program for continuous execution. Timing begins when the monitor gives control to
the program, and ends when the program returns control to the monitor. The program passes
control to the monitor after each field transaction. If the program spends more than the amount of
time you specify on a field transaction, the monitor will stop the program. If you select 0, timing is·
not done.

INITIAL FORMAT NAME (CAN BE OMITTED):

Specify an initial format name if you want the system to activate the format when an operator logs
on. This is useful if you want to display an initial menu format at log on. The format name must be
10 or fewer characters long.

RECORD PASSING TYPE (D = DISK, C = CORE):

Core passing is faster, but it will pass a maximum of 512 bytes. To pass longer records, specify disk
passing, which allows records up to 2040 bytes.

WILL YOU BE USING THE COMMON FILE (y = YES, N = NO):

IDEASG asks this only if you specified CORE passing. Answer Y if you plan to use the COMMON
file for printing or for any other purpose.

DEFAULTPORTNAME(R =RCX70,NONE=NEWLlNE):

IDEASG asks this only if you specify the /IPC switch in the command line.

If you answered T for tape logging to the TRANSACTION LOGGING question, the system will ask
the following questions:

NUMBER OF VOLUMES (J TO 9)

This is the number of tape reels. The maximum is nine; there is no default.

LABEL TYPE (ANSI = A, IBM = J)

If you specify ANSI labels, the system sets the level number to 3. If you specify IBM labels, the
system sets the level number to 2.

OWNER ID (CAN BE OMITTED)

An answer to this question is optional. By answering, you can assign an identification to each reel of
tape.

VOLUMENAME(WnLBENAMEOFALLVOLUME~

The system recognizes tape reels by their volume name, not their tape drive destination. This name
can be from 1 to 6 characters long.

AOS OPERATOR MESSAGE

This lets you include instructions to the AOS operator, who will mount the tape when you start up
the global monitor.

10-4 Licensed Material-Property of Data General Corporation 093-000151-01

FILENAME

Logging goes to a tape file named volume:filename. You specify filename, which can be I to 7
characters long.

MAXIMUM RECORD BYTE LENGTH (MAXIMUM 4096)

Idea will write fixed length records of the length you specify here.

BLOCK SIZE (MUST BE A MUL TIPLE OF RECORD SIZE)

Specify a block size that is a precise multiple of the record length you specified.

NUMBER OF BUFFERS

You must specify at least one buffer. By specifying two buffers you will improve response time, but
you then run the risk of losing some of the log records if the system fails.

Bringing Up Global Idea
The next step is to bring up the global Idea process. Give this command:

{Z;:~} [g[obaLmonitorname @CONx[IL}[IAPPEND11)

The optional switch IRES lets you bring up the global monitor as a resident process. The optional
switch IPRE lets you bring up the global monitor as a preemptible process.

x is the number of the console you have designated as the system supervisory console. The global
monitor will send various system messages to the supervisory console.

The IL switch sets LIST mode on; the global monitor will then display all ELOG messages as they
reach the supervisory console.

The I APPEND switch will append new ELOG errors to the existing log rather than deleting the old
log when you bring up the global monitor.

Note that you may use both the IL and I APPEND switches.

If you don't specify monitorname and console number in the command line, the system will ask for
them.

Changing Tape Logging to Disk Logging

You may log records to a disk file instead of a tape file. To do this, you must first specify T for tape
logging in the IDEASG dialog. Then, give the command

from the CLI. The system will then ask you for the global monitor name, and for the number of the
supervisory console. To the question

WHAT IS GLOBAL MONITOR NAME?

give a name with the switch IO=pathname attached. The pathname will be the logging file. You
give the supervisory console number just as you would with any form ofIDEA_UP.

093-000151-01 Licensed Material-Property of Data General Corporation 10-5

For example,

WHAT IS GLOBAL MONITOR NAME? GIDEA/D= :UDD:BILL:RECLOG)

WHA TCONSOLESHOULD OUTPUTGO TO?04)

If you do not specify a full pathname, the system will place the file in :PER.

Supervisory Console Commands

You can give these Idea commands from the supervisory console: IABORT, IBYE, IELOG,
lEN ABLE, IHELP, IINHIB, ILIST, IMESSAGE, IKMSG, ISTATUS, ISYS. Table 10-1 lists these
commands.

Table 10-1. The Supervisory Commands

Command Action

IABORT nn Shuts down the local Idea monitor specified by nn (to determine nn,
give the 1ST A TUS command).

IBYE Shuts down the Idea system if there are no local Idea monitors running.
If local Idea processes are present, the system displays a message, and
the global monitor does not terminate.

IELOG nn Displays the most recent nn entries to ELOG. If nn is larger than the
number of lines in ELOG, the system displays the entire contents.

IENABLE nn Enables the local Idea log-on process at the console numbered nn. To
enable all consoles, specify + for nn.

IHELP Displays a list of all global Idea commands; i.e., those listed here.

IINHIB nn Inhibits the local Idea log-on process at the console numbered nn (the
opposite of IENABLE). To inhibit the log-on process at all terminals,
specify + for nn.

ILiST arg Specify ON, OFF, or ? for argo ON sets list mode on, OFF sets it to off,
and? displays the current setting. Iflist mode is set ON, then the
system displays all ELOG messages as it receives them.

IMESSAGE Displays the next line that you type on line 24 of all local Idea consoles.

IKMSG Cancels a message sent with IMESSAGE.

ISTATUS Returns a list of logged-on local Ideas, as well as a list of currently
inhibited console numbers.

ISTATUS nn Returns complete log-on statistics for the local Idea process at console
nn (if it exists), as well as a list of inhibited console numbers.

ISTATUS + Returns complete log-on statistics for all active local Idea processes, as
well as a list of inhibited console numbers.

ISYS Displays the characteristics of the current global monitor if you
specified the IDIALOG switch in the IDEASG dialog.

10-6 Licensed Material-Property of Data General Corporation 093-000151-01

Using Idea
It' \ l'lI ~I'e~'iried that you will be using the COMMON file, you must create it with DEFCOM before
\l'lI rlln the kKal monitor. To run the local monitor, give this command from the CLI:

X localmonitorname { [IRES]})
[IPRE]

The optional switches allow you to bring up the monitor as resident (IRES) or preemptible (lPRE).
(Be sure you are privileged for this option -- the system will not generate an error message if you are
not.)

For example, if you generated Idea with the default names, you would give this command:

X LlDEA)

The local monitor will ask for an ID (optional). Then, if the person who generated the system
specified an initial format, the local monitor will display that format. If not, the local monitor asks
for the name of the desired format.

After you give the format name, the monitor asks if you would like to see the data type of the
current screen field. Type Y NEW LINE for yes; type NEW LINE for no.

The monitor then displays the format on the screen, ready to accept input into the EDIT fields.

System Considerations of the Local Monitor

If you are operating in an environment with a small number of terminals, you will probably want the
operators to run their monitors as described above, from the CLI.

If you are in a production environment, however, this method can cause system overhead
problems, since each monitor will be an AOS process. In such an environment, you may want to set
up the local monitor as the initial AOS process, called up when the operator logs on the AOS system.
To do this, use the AOS Profile Editor (PREDITOR). You may create one Idea user profile for all
operators, or you may create a separate profile for each. The latter method uses the AOS file
protection facilities.

When you edit the user's profile, change the initial program from its current setting (the default is
:CLI.PR) to the full pathname of the local monitor. For example:

PROGRAM [:CLI.PR] CHANGE (YOR NO Y)

NEW 0-63 CHARS): : UTIL:LIDEA.PR)

If you want the local monitor as the initial process and also want it to be resident or preemptible, you
must change the user profile's INITIAL IPC. You must give a complete path name to file
SLASH RES for resident or to file SLASHPRE for preemptible. SLASHRES and SLASHPRE both
assume that you are using the default local monitor name LIDEA, so you must edit the files if you
give your monitor another name.

Table 10-2 lists the functions performed by the function keys, which are labeled by the templates
(the side marked Idea). Operators can use these functions when entering data.

093-000151-01 Licensed Material-Property of Data General Corporation 10-7

Table 10-2. The Operator Data Entry Special Function Keys

Function Key Meaning

LOG OFF Logs operator off.

END DATA Ends screen input to current screen. Links to format named in IFMT, if
any; otherwise, asks for a new format.

REPEAT Deletes operator entries to EDIT fields; then, redisplays current
PAGE format.

CHANGE Terminates scroll mode.
MODE

ERASE Erases entry in current EDIT field.
FIELD

DUP FIELD Duplicates field in scroll line from corresponding field on previous line.

BACK TAB Moves cursor back to first character of current field. Then, moves
(Unmarked successively back to first character of preceding fields.
key on 6053
cursor pad)

NEGATE Makes a signed number negative.
SIGN

MINUS Makes a signed number negative and enters it.
ENTER

ENTER Enters data (works just like NEW LINE).

End of Chapter

10-8 licensed Material-Property of Data General Corporation 093-000151-01

Appendix A
Converting Programs Between AOS and RDOS

Converting from RDOS to AOS
To convert programs developed under RDOS to AOS, follow these steps:

1. Under RDOS, dump the formats to tape using this command:

DUMPIV MTO:O formatname.<,VS,FS>

2. Under RDOS, dump the programs to tape using this command:

DUMPIV MTO:1 programname.UP

(Note that you should use different tape files for the formats and the programs.)

3. Use the AOS utility RDOS to load the tapes. For the formats, use

XEQ RDOS LOADIV @MTAO:O

Do not use the IC switch for the formats. However, you must use the IC switch with the
program files, as in the following:

XEQ RDOS LOADIV @MTAO:O +/C

The IC switch converts carriage returns to NEW LINEs.

4. Compile your formats and programs.

Converting from AOS to RDOS
There are two methods to do this.

Method 1

1. Dump the format files and program files to tape, using the AOS utility RDOS. Attach the IC
switch to all program files.

2. Compile the formats and programs.

Formats created with IFMT revision 2.00 or later will not work. Also, AOS programs with more
than 40 fields will not work.

093-0001 51 -01 Licensed Material-Property of Data General Corporation A-1

Method 2

1. Use the RDOSYNT AX command to compile the formats and programs.

The syntax of the RDOSYNT AX command is

RDOSYNTAX [IL] [IA} [IW} [IN}formatname programname

Where:

formatname is the name of a valid format in the current directory.

programname is the name of an IFPL program that exists on your disk. If you use
formatname.UP as your programname, you don't have to include
program name in the command line.

IL

IA

IW

IN

Gives you a line-printer listing of the source text.

Gives you a line-printer listing of the source text plus a line-printer listing of
the assembly language statements that the compiler generates.

Suppresses nonfatal error messages; we recommend that you use this only
after initial syntaxing.

Compiles the program, but doesn't assemble or load it. It also displays error
messages on the terminal screen.

2. Dump the files to tape using the AOS utility RDOS. Don't use IC with the screen format files;
do use IC with the program files.

3. Call the monitor and run the program.

End of Appendix

A-2 Licensed Material-Property of Data General Corporation 093·000151·01

Appendix B
The COMMON File

The Idea system COMMON file is a three-level INFOS file. When you create it using the Idea
utility, DEFCOM, it has the parameters of the ICREATE dialog shown in Figure B-1.

ICREATE/T=COMMONER

****** INFOS FILE CREATION 5/22/79 13134:7 ******

NAME OF FILE TO BE CREATED: COMMON
ACCESS METHOD (I=ISAM, D=D6AM) [0]:

****** DEFINE INDEX FILE ******

MAXIMUM NuMBER OF INDEX LEVELS [2]: 3
PAGE SIZE (BYTES) [2048):
PARTIAL RECORD LENGTH [0):
ROOT NODE SIZE [2042):
MAXIMUM KEY LENGTH [255): 13
ALLOW DUPLICATE KEYS IN T~IS INDEX? (Y OR [N):
ENABLE SPACE MANAGEMENT? (Y OR [N):

****** OEFINE INDEX VOLUME(S) ******

NUMBER OF VOLUMES TO DEFINE [1):
VOLUME 1 NAME [VOL01):

SPECIFY MAXIMUM SIZE? (Y OR [N):
SPECIFY FILE ELEMENT SIZE? (YOR [N):

****** DEFINE DATASASE FILE ****~*

DATABASE FILE NAME [COMMON.DB]:
PAGE SIZE (BYTES) [2048]:
ENABLE SPACE MANAGEMENT? (Y OR [N):

****** DEFINE DATABASE VOLUMECS) ******

NUMBER OF VOLUMES TO DEFINE [lJ:
VOLUME 1 NAME [VOL01):

SPECIFY MAXIMUM SIZE? (Y OR [N):
SPECIFY FILE ELEMENT SIZE? (Y OR [N]):

Figure B-1. The 1CREATE Parameters Used by DEFCOM

You can customize COMMON for a particular installation by using ICREATE to create an index file
named COMMON and a database file named COMMON.DB. To do this, you must delete the
existing COMMON file with this command:

lDELETE COMMON.DB)

093-000151-01 Licensed Material-Property of Data General Corporation 8-1

The COMMON Print Facility
Each execution of a PRINT statement in an IFPL program generates a record in the COMl\10~ file.
The record thus generated corresponds to the record description block referenced in the IFPL
program. The record is indexed by three keys, as shown in Table 8-1.

A print image consists of a set of n records whose level-two binary count runs from 1 to 11, but whose
level-zero key, level-one key, and duplicates count are identical. You can initiate such a print image
with an INITIATE PRINTING statement and terminate it with a TERMINATE PRINTING
statement. Multiple print images with identical print formats and CRTs are distinguished by the
duplicates count at level one.

You may output print images that are in COMMON to a line printer by issuing a properly formatted
PRINTF command to the CLI.

Table 8-1. Keys Used for Print Records in the COMMON File

level Key length Type Explanation

0 KEYNAME \-13 ASCII KEYNAME is the name of the print format.

1 CRT #, 2 ASCII CRT # is the system # assigned to the CRT
duplicates that executed the print statement.
allowed

2 binary count 2 binary Binary count starts at 1 and increments I for
each additional print statement that is
executed under a particular duplicate count
at level 1.

Figure 8-2 shows what COMMON looks like to an IFPL program. At the top level (level 0), the key
type is ASCII with a maximum length of 13 bytes or characters. The key value used at this level is
the print format name; that is, the actual format name that you will use with a CLI command of the
following type to obtain line printer output:

PRINTF/A format)

No record is associated with level O.

At the second level (level 1), the key type is again ASCII with a maximum length of two bytes. In
this case, duplicate occurrences are permitted. The key value used is the system number of the
terminal from which the print statement is executed. A record is associated with this level; it is
discussed below.

At the third level (level 2), the key type is binary with a length of two bytes. The third-level key
values in a print image comprise a series from 1 to n.

8-2 Licensed Material-Property of Data General Corporation 093-0001 51 -01

'FILE DESCRIPTION

FILE COMMON
KEY FOR COMMON IS 13 ASCII
SUBINDEX FOR COMMON IS LEVEL 1
KEY FOR LEVEL IS 2 ASCII
DUPLICATES ARE COUNTED IN DUPCOUNT
SUBINDEX FOR LEVEL 1 IS LEVEL2
KEY FOR LEVEL2 IS 2 BINARY
RECORD FOR LEVEL 1 IS LEVEL 1 REC

LENGTH IS 2
INCLUDES PRINTFLAG 1 2 BINARY
STOP

RECORD FOR LEVEL2 IS LEVEL2REC
COpy RECORD

STOP

"RECORD IS THE RECORD FOR PRINTING DESCRIPTION
"IN THE USER IFPL PROGRAM

Figure B-2. An IFPL View o/COMMON

When an IFPL program at a particular CRT executes an INITIATE PRINTING statement, it
initiates a print image. Such an execution supplies two keys: the format name from the INITIATE
PRINTING USING key statement (the format name is the key), and the CRT number, which
IMON maintains as a system value.

If such execution is the first to use those two keys since COMMON was defined with DEFCOM,
the system assigns a duplicates count of 0 to the CRT number. The system will key the next
PRINT statement that the program executes using the same print format by format, crt #, 1; the
second by format, crt #, 2; and so on.

The execution of a TERMINATE PRINTING statement, resets the binary count at level 2. The
subsequent execution of an INITIATE PRINTING statement will increment the duplicates count
at level 1. Level-two records written out under the new duplicates count will again range from 1 to
n.

This arrangement permits the existence in COMMON of multiple print images with keys that are
identical except for the duplicates count. Levell contains a 2-byte binary record which is used as a
print flag. It is keyed by the print format name and the CRT number that generated it, together
with its duplicates count. An INITIATE PRINTING statement will set this record to O. A
TERMINATE PRINTING statement will rewrite the record so that it equals the number of records
in the print image. A 0 in this record may thus be a flag that means "print image being built". A
nonzero number means "print image is ready to output". PRINTF will again rewrite this record,
setting it to - 1 to indicate the record has been printed.

093-000151-01 Licensed Material-Property of Data General Corporation 8-3

You can delete COMMON print records which you no longer need by using either the ID switch
on PRINTF (which deletes records as they are printed) or DEFCOM (which deletes everything in
the file and rebuilds it).

The COMMON printing facility is presented graphically in Figure B-3.

INDEX STRUCTURE

PRINTKEY

FORMAT1
TO I

FORMAT2 LEVEL 0
TO I

LEVEL 1

LEVEL 1 FORMAT3

CJNO

Cf=J
DUPCOUNT

LEVEL 1

TO I
0

I
DATABASE TO LEVEL 2 1 I 1 TO

2 TO LEVEL 2 DATABASE

I I

I
RECNO

1

2 - LEVEL 2

....--- 3

DATABASE

I~ I~I~ (PRINT FLAG) I I (IMAGE IS READY 3
FOR PRINTING)

3-RECORD PRINT IMAGE

Notes:

1. A nonzero record count at level 1 indicates that a complete print image exists on level 2.

2. A zero record at level 1 indicates a print image at level 2 that is not suitable for printing.

3. A 1 record at level 1 indicates a print image at level 2 that has already been printed.

4. The duplicates count at level 1 distinguishes print images with otherwise identical keys.

80-01125

Figure B-3. COMMON Printing Facility

8-4 Licensed Material-Property of Data General Corporation 093-0001 51-01

The COMMON Passing Facility
The passing facility uses the same INFOS file as the printing facility; its structure is shown in Figure
8-4. Passing uses only two levels and does not use duplicates. Recapping the previous description,
the top level of COMMON has an ASCII key with a maximum length of 13 characters. The
level-one key is also ASCII and has a maximum length of two bytes.

Normally, you create COMMON with DEFCOM, the Idea utility. DEFCOM sets up 32 blank
records for passing. At the top level, the system writes the key ??PASSING?? when you create the
file; there is no record at this level. At the second level (level 0, the terminal number of each
terminal defined in the system is written as an ASCII key at file creation time. Whenever the system
executes a PASS statement, it performs a file rewrite at levell, using the key ??PASSING?? and
the terminal number of the program that is executing the PASS statement. The record that is
rewritten is the one named in the PASS statement and described in the associated RECORD FOR
PASSING description block. It may be a maximum of 1016 bytes long.

If you use the passing records for any other purpose than passing, then you must describe
COMMON in your program. The IFPL description of COMMON, as used for passing, is as follows:

FILES COMMON
KEY FOR COMMON IS 13 ASCII
SUBINDEX FOR COMMON IS LEVEL 1
KEY FOR LEVEL 1 IS 2 ASCII
RECORD FOR LEVEL 1 IS PASSREC
LENGTH IS 15
INCLUDES POINTER 1 6 ASCII
STOP

LEVEL 0

Max. Key Length - 13 Chars
No Duplicates Allowed

LEVEL 1

Key Length - 2 Chars
Duplicates Permitted
(But Not Used)

DATABASE

00

RECORD
PASSED

SO-01126

??PASSING??

01

RECORD
PASSED

Figure B-4. The COMMON Passing Facility

093-0001 51 -01 Licensed Material-Property of Data General Corporation

(l2

RECORD
PASSED

8-5

-'

Inspecting COMMON with Idea
You use an Idea screen to see the structure of the COMMON print file. Such a screen can read the
file and present both contents and keys in a single coherent display. The screen SHOWME,
illustrated in Figure B-5 and B-6, is such a display; it will read any COMMON print record.

SHOWME has effectively doubled the Idea scroll buffer capacity, 504 bytes, by leaving scroll mode
and immediately re-entering it. It accomplishes this by using adjacent scroll area delimiters, @ signs,
on the screen. Of course, only the second area actually scrolls; however, in this application, that is
sufficien t.

PRINTOFFORMAT: SHOWME

SHO WME READS PRINT RECORDS FROM THE COMMON FILE

x

ENTER TOP KEY XXXXXXXXXXXXX X
CRT# IS 99 OCCURRENCE COUNT IS ZZZ9 PRINT FLAG IS ZZZ9

INITIAL 3'LEVEL KEY IS XXXXXXXXXXXXX. 99 (DUPCOUNT = ZZZ9). ZZZZ

REC# RECORD (FIRST 70 BYTES ONLY OF THE LEVEL 2 RECORD)
@ZZZZ XXXXXXXXXXXXXXXXXHXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X

@ @ ZZZZ XXXXXXXXXXXXXXXXX//XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X

@ANOTHERPRINTIMAGE? X ANOTHER TOP KEY? X

16:24:4408/11177
PRINTOFFORMAT: SHOWME

Field # Description Disp Edit Output Auto- Req. Full Auto- Sec
Dupe Entry Field Entry

I I X(J) *
2 2 X(J3) *
3 3 X(J) *
4 4 9(2) *
5 5 9(4)
6 6 9(4) *
7 7 X(J3)
8 8 9(2) *
9 9 9(4) *
10 10 9(4)
11 11 9(4)
12 12 X(70) *
JJ JJ X(J)
14 14 9(4)
15 15 X(70) *
16 16 X(J)
17 17 y(J)
18 If! X(J) *

FORMAT NOT LINKED
FIRST LINE USED: 1
LAST LINE USED: 231

FigureB-5. Using SHO WME to Inspect the COMMON File

8-6 Licensed Material-Property of Data General Corporation 093-000151-01

Suppose that a program exists which writes the name BIGFOOT to COMMON in oversize
characters, and uses FTITLE as the printing format. If the writing terminal has the system value 01
and if this is the first time the program has been used on that terminal and if the print image has not
been printed with PRINTF, then the SHOWME display will be as shown in Figure B-6.

SHO~ME READS PRINT RECORDS FRO~ THE CO~~ON FILE

ENTER TOP KEY PTITLE
CRT • IS 01 OCCURRENCE COUNT IS 0 PRINT FLAG IS q

INITIAL 3-LEVEL KEY IS PTITLE,01 (DUP COUNT = 0),

RECIII
1 BBBBBB
2 BB BB
3 BB BB
/I BBBSS
5 BB BB
6 BB BB
7 BBBBB
8 il
q 07/11178

093-000151-01

RECORD
IlIIIII

II
II
II
II
II

II II III

(FIRST 70
GGGGG

GG GG
GG
GG GGGG
GG GG
GG GG

GGGGG

BYTES ONLY
FFFFFFF
FF
FF
FFFFF
FF
FF
FF

OF THE LEVEL 2 RECORD)
000 000 ;TTTTTT

00 00 00 00 TT
00 00 00 00 TT
00 00 00 00 TT
00 00 00 00 TT

00 00 00 00 TT
000 000 TT

ANOTHER PRINT IMAGE? • ANOTHER TOP KEY?

Figure B-6. Using BIGFOOT and PTITLE

End of Appendix

Licensed Material-Property 01 Data General Corporation 8-7

Appendix C
The Transaction File TRANS

The transaction logging file TRANS is a multilevel INFOS file. Any format can use TRANS with or
without an associated program. TRANS accepts the contents of any screen field with the OUTPUT
attribute.

To use TRANS, you must use a local monitor with the DISK LOGGING attribute specified during
the IDEASG dialog.

The monitor writes fields to TRANS after it completes a page or scroll group. Each such writing
constitutes a record.

The transaction buffer is 200 bytes long. This, then, is the maximum number of data characters with
the OUTPUT attribute that a screen group can contain.

Creating TRANS
To create the TRANS file, give this command from the CLI:

ICREATE/B=TRANSACTION.FF}

We have supplied the INFOS trail file, TRANSACTION.FF, with the system tape. Figure C-l
shows its contents.

To get rid of old TRANS values, you must delete the TRANS file. You then give the
ICREA TE/B = TRANSACTION .FF command to build a new, blank one.

To delete TRANS, give this command from the CLI:

IDELETE TRANS.DB}

093-000151-01 Licensed Material-Property of Data General Corporation C-1

NAME OF FILE TU BE CREATED: TRANS
ACCE;)S ~IE THOD (I=I;)AM, v=DdAM) [0]: D

****** DEFINE INDEX FILE ******

MAXli"IUI~ NUMBER OF INDEX LEVEL.S [2]: 5
PAGE SIlE (d'fTES) [2048]:
PARTIAL RECORD LENGTH [0]:
ROOT NODE SIZE [20112]:
MAX1MUM Kt.Y LENGTH [255]: 14
ALLO~ DUPLICATE KEYS IN THlS INDEX? (Y OR [N»:
ENABLE SPACE MANAGEMENT? (Y O~ [~]):

****** vEFI~E INvEX VOLU~E(S) ******

NUMBE.R OF VQLU,VlES TO DEFINE [11:
VOLUME 1 NAME [vOLOll:

SPECIFY MAXII>WM SIlE? (Y OR [N]):
SPECIFY FILE ELEMENT SIZE? (Y OR [N]):

****** DEFINE DATABASE FILE ******

DATABASE FILE NAME [TRANS.DB]:
PAGE SIZE (li'fTES) [2048]:
ENABLE SPACE MANAGEMENT? (Y OR [N]):

****** DEFINE DATABASE VOLUME(S) ******

NUMBER OF vOLUMES TO DEFINE [1]:
VOLUME. 1 NAI~E [vOLO II :

SPECIFY r-'lAXIMUM SIZE? (Y OR [N]):
SPECIFY FILE ELE.MENT SlZE? (y OR [N]):

Figure C-I. The Contents of TRA NSA CTlON. FF

The Structure of TRANS
Table C-l shows the internal structure of TRANS.

Table C-l. The Structure of the TRANS File

Key Formats Records

Level Key Length Type Contents Length Type

0 Crt! 2 B Yr/MolDay6 6 A

1 Batch2 3 A Hr/Min/ID7 14 A

2 Format3 10 A (none)8

3 1O,20,10(n)4 2 B Group Header9 10 B

4 10,20,10(n)5 2 B Transaction 10 1-200 A

A - ASCII B - binary

Notes:

l. The terminal number; corresponds to the reserved word, CRT.

2. The batch value entered by the operator when logging on the Operator's Console;
corresponds to the reserved word, BATCH.

C-2 Licensed Material-Property of Data General Corporation 093-0001 51 -01

Table C-1. The Structure of the TRANS File <Continued)

Notes (continued):
3. The name of the format used for data logging, left-justified and blank-filled as

necessary to get a 1O-byte key.

4. The Group Header key. The key sequence starts at 10 for a particular format, and is
incremented by 10 for each group header encountered; i.e., for each change from
page mode to scroll mode and vice versa. The system continues this sequence by
incrementing the last key used by 20 each time a format is re-executed.

Before the format is re-executed, the system writes a dummy record to TRANS to
separate the two groups of records. Its key is 10 more than the last key used before
the format was re-executed; i.e., it continues the key sequence unbroken.

5. The bottom key for the transaction record. The key sequence starts at 10 and is
incremented by 10 for each transaction record written. The sequence starts at 10
each time the group changes.

6. The system year, month, and day. They correspond to the reserved words, YEAR,
MONTH, and DAY.

7. The system time and the operator's identification. The system time corresponds to
the reserved words, HOURS and MINS. The operator's ID corresponds to the
reserved word, PASSWORD.

8. No record is written here. The only item of interest, the format name, is already
contained as the value of the key.

9. This record is a modified format of the group header contained in the format.VS
file. The meaning of its 10 binary bytes is as follows:

Byte # Contents

Mode (Page = 0, Scroll = 12810)

2 Entries. This is the number of fields in the group, irrespective of whether
they have the OUTPUT attributes.

3,4 Sum of field lengths in the group, irrespective of whether they have the
OUTPUT attributes.

5,6 Starting row for the group. Only meaningful for scroll groups.

7 Group sequence number (the number of the group on the screen); starts
at O. The system increments it by 1 each time it encounters a group header,
and resets it to 0 each time the format is executed.

8 Total number of rows; only meaningful for a scroll group. It tells the
monitor when to start scrolling.

9,10 TRANS record length. It is the sum of all output field lengths in the
format.

The dummy header record that stands at the end of any header sequence and
separates sequences caused by format re-execution is laid out as above; the first
two full words (four bytes) are set to -1 and the other words are set to O.

10. This is the TRANS record. It contains all the fields designated as OUTPUT in one
page group or one scroll line.

093-000151-01 Licensed Material-Property of Data General Corporation C-3

Displaying TRANS Contents
You can display the contents of the TRANS file with an Idea format and program. The format and
program shown in Figure C-2, READTRAN, will read any TRANS file and display its contents.

12:32:08 03/10178
PRINT OF FORMAT: READTRAN

TRANSACTIOIll DISPLAY

CRT : 99

BATCH XXX 99:99

FORt<!AT : XXXXXXXXXX (DEFAULT IS TI<AIIlSFILE)

GROUP : 9'1 ENTRIES :
HEADER SUM OF Flt:.LDS :
HY TRAN RECORD LE~GTH

GROUP NU~BER :

5TRIKEANY KEY TO SEE NEXT REtOI<D:)(
@

99-9'1-99

10: XXXXXXXXXX

q
+++9

ZZq
zzzq

PART 1)(X)()(XXXXXXXXXXXXXXXXXXXX~XX)(XXXX~)(X)(XXXXXXXXX
PART 2
PART 3
PART 4
PART 5
@

STRIKE ANY KEY TO SEE NEXT GROUP: X

••• * ••••• *.** •••••••••••••• * •••••••••••••••• * ••••••••••••••••••••••••••••••••••
**.* ••••••• *.* •• *.* •• * ••• * ••••••••••••••••• * ••••••• * •••••••••••••••••••••••••••

P~INT OF FOHMAT~ READTRAN
PHYS./LOG. AUTO- REG. FULL AUTO-

FIELD# DESCRIPTIOI\ DISF HIT O~TPUT DUPE E~lRY FIELD ENTRY SEC
1 1 9(2) • •
2 2 9(2) •
3 3 9(2) •
4 4 9(2) •
5 5)((3) • •
b b 9(2) •
7 7 9(2) •
8 8 X(l~) *
9 9 x (10) •
112! 1111 9(2) •
11 11 9(1) •
12 12 59(3) •
13 13 9(3) * 14 14 9(4) ..
15 15 X(1) • •
lb lb X(4S) •
17 17 X(l) • •

FCR"AT I\OT LINKED
FIRST LINE USED: 1
LAST LII\E USED: 22

Figure C-2. READTRAN

C-4 Licensed Matarlal-Property of Data General Corporation 093-000151-01

J

~QS SY~TAX REV 01.01 READTR~~.VS Rl~DTR~N.UP 12133:4 3/10178

1 N~ME READTR~~.UP
2
3 " 4 " ThE PURPOSl OF THIS PROGR~~ IS TO DISPL~Y THE
5 " CONTENTS OF ~N IDE~ TRANS FILl.
0 " 7 " ThE MAK~UP OF Thl TRANS FILE CA~ BE
8 " SEEN BY INSPECTING T~E I~CEX STRLCTU~E,
9 * KEYS, AND RECORD FOR~ATS SHC~~ BELO~.
10 " 11 * T~E PROGRAM IS INITIALIZlC TO READ
12 " TRANS RECORDS ~RITTlN bY THE FO~~AT

13 * Tl<ANSFILE. THIS CAN BE OvERRIDDEN BY
14 * TrE OPERATOR TO READ ANY TR~NS ~ILl
is * REc'ORD.
10 * 17 ~ILE TRANS
18
19 SU8INDt.x FOR TRAt.S IS BATCH
20 SUBINDEX FOR BATCH IS ~ORM~T
21 SUBINDEX FOR FORMAT IS GROLP
22 SUBINDEX FOR GROUP IS LINE
23
24 KlY FOR TRANS IS 2 BINARY
25 KEY FOR SA TCH IS 3 ASC 11
20 KEY FOR ~ORMAr 15 10 ASCII
27 KEY FOR GROUP IS 2 BINARY
28 KlY FOR LINE IS 2 bINARY
29
30
31 R~CORD FOR TRANS IS DAY.REC
32 LENGTH IS 0
33 It-.lCLUDlS YRS 1 2 ASCII
34 INCLUDES MH 3 2 ASCII
35 INCLUDES DYS '5 2 ASCII
30 STOP
37
38 RlCQRD FOR BATCH IS TlME.REC
39 LE.NGTH IS 14
40 INCLUDES HRS 1 2 ASCII
41 INCLUDES MINL TES 3 2 ASCH
42 INCLUDES IDH,T 5 10 ASCII
43 STOP
44
45 RECORD FOR GROUP IS GROUP.~EAD
1.10 LENGTH IS 10
1.17 INCLUDlS ENTRIES 2 1 IH~ARY
48 INCLUDES SUM.FL 3 2 BINARY
49 INCLUDlS TRAlf\.L~ 9 2 Blf\~RY
50 INCLUDES GROLP.NO 7 1 BINARY
51 STOP
52
53 RECORD FOR LINE IS TRAN.Rle
54 LENGTH 201/1
55 INCLUDES PART1 1 '10 ASCII
50 INCLUDES PAHT2 41 40 ASCII
57 INCLUDES P~R'T3 81 1.10 ~SCII

56 INCLUDES PART" 121 40 '~SCII
59 INCLUDES PART5 101 40 'A SC I I
00 STOP
01

Figure C-2. READTRAN (continued)

093-0001 51 -01 licensed Malerial-Property of Data General Corporation C-5

b2
03
bll
b5
bb
b7
b8
eq
70
71
72
73
711
75
7b
77
78
H
80
81
82
83
811
85
8e
87
ee
eq
90
ql
92
93
qll
q5
qb
q7
98
qq
100
101
102
1 III 3
1011
105
10b
1IIl7
10e
10q
110
111
112
113
1111
115
I1b
117
118
11q
1211l
121
122
123
1211
125
12b
127

C-6

RECORD FOR FORMAT IS NO.R~C
L~NGTH IS 0
STOP

REGISTER PARTS
REGlSTER COUNTER
REGISnR GRP
REGISTER LNNO
REGISTER TEN
REGISnR NOREC
REGISTER NO. ENTRY
REGISTER SPACE
REGISTER PART2
REGISTER PART3
REGISTER PARTII
REGISTER PARTS
REGISTER ZERO
REGISTER FLAG
REGISTER FlELD 9q

Sq9q
9
99
99
qq
q9
XXX
X (Ie)
)(110)
X(40)
X(1I0)
X (1I1n
q
q(2)

Itl
lflI
1 III
23

A1' PROCESS CRT.NO AT NlNE ANC EC
A2' PROCESS YRS AT DY A~D NONl
A!. PROCESS MTH AT DM AND NONE
All. PROCESS DYS AT DO ~~D NONE
AS. PROCESS BATCH. NO AT NONE AND EB
Ab. PROCESS HRS AT DH ~~D NO~E
A7. PROCESS MINUTES AT OMI AND NONE
A8. PROCESS IDENT AT 01 AND NONE
Aq. PROCESS FMT.NAME AT OF AND [F
A10. PROCESS FILLER AT OG AND NO~E
All' PROCESS ENTRIES AT DE AND ~CNl
Al'. PROCESS SUM.FL AT DSFL AND NONE
Al3' PROCESS TRAN.LN AT DTLN AND NONE
AlII. PROCESS GROUP.NO AT DGN AND NONE
A15_ PROCESS FILLER AT ~ONE AND DL
Alb. PROCESS PART1 AT OP1 AND ~DNE
A17# PROCESS FILLER AT NONE AND ~EXT

* A1

EC: STORE CRT.NO

MOVE "Illn FLAG

* ~2

FIND DAY.k~C USING CRT.N~
ON-IOEHR NO.CRT
RETUHN

DY: DISPLAY YRS
RETURN

* A3

OM: DISPLAY MTH

RETURN

* All

DO: DISPLAY DYS

RETUHN

Figure C-2. READTRAN (continued)

Licensed Material-Property of Data General Corporation 093-0001 51-01

128
12'<
130
1 3 1
132
133
I3Ll
135
136
137
138
139
lLl0
1 Ll 1
lLl2
lLl3
HILl
lLl5
146
147
148
149
150
151
152
153
15Ll
155
156
157
158
159
lb0
161
162
163
ltLl
165
166
167
168
16'<
170
171
172
173
17Ll
175
17b
177
178
179
180
181
182
183
184
185
186
187
188
IS'<

093-000151-01

","", '" '"
• A5

"'."''''
~B:

*"'.'"
'" At
"'''''''''' DH:

"'''''''*
'" A7
",*",,,,
D~I:

• AS
*"'**
01:

"'''''''''' '" Aq

"'''''''''' OF:

EF:

EF1:

"'*"'**
'" A10

"'''''''*''' DG:

"''''.'''*
'" All
"''''''''''''' DE:

STORE BATCH.NO
COMPARE eATC~.NO ~C.E~TRY
IF EQUAL ~Cl

FIND TIME.REC USI~G CRT.~O,BATCH.NO
ON-IOERR NO. BATCH
RETURN

DISPLAY HRS
RETURN

DISPLA'f MIr-.U1ES
RETURN

DISPLAY IDENT
RETURN

DISPLA'f "TRANSFILf "
RETURN USING FIELD

STORE F/o',T .NAME
COMPARE F~T.NA~E SP~CE

IF EQUAL NBI
VERIFY NO.REC USING CRT,NO 8ATCH.NO FMT.~AME
ON-IOERR NO.FORt-'AT

MOVE TEN GRP
FIND GROUP. HEAD USING CR1.NG BATCH.NO Ft-'T.NA~~ G~P
ON-IOERR NO. GROUP
RETURN

DISPLAY GRP
RETURN

COMPARE E~TRIES ZERC
IF EQUAL NO. TRANS

DISPLAY ENTRIES
RETURN

Figure C-2" READTRAN (continued)

Licensed Material-Property of Data General Corporation C-7

19~

191
192
ICJ3
194
195
19b
197
198
199
2e~
2fll
2e2
203
2~4

2e5
2eo
2e7
2e8
209
210
211
212
213
214
215
210
217
218
21CJ
220
221
222
223
224
225
220
227
228
22CJ
23~
231
232
233
234
235
23b
237
238
239
2413
241
242
243
244
245
240
247
248
249
250
251
252
253
254
2SS

C-8

*'***
* A12

OSFl. :

* A13

DTLI'i:

* A14

DGI'i:

* illS

*'***
OL:

DUd:

GE HEXT:

-"
it Alb
*'*it*
OP I :

DISPLAY SUM.FL
R~TURN

DISPLAY TFcAIIo.LIII
RETURN

DISPLAY GROUP.IIoO
RETURN

MOVE SPACE TO PART!
MOvE SPACE TO FART2
MOVE SPACE. TO PART3
MUVE SPACE TO PART4
r-OVE SPACE TO PARTS
COfl/,PARE. FLAG "iii"
AUD " 1 " FLAG HAG.
If' NOT-EQUAL GETIIoE:xT

~lNO TRAN.REC USING CFcT.NG,BATCH.NO,FMT.~A~E,GRP,LNNO
UN-IUEkR NO.TRAIIoS

MOVE TRAN.LN PARTS
MOVE ZERO CUUNTER
RETURN

fINO NEXT TRAN.PEC
ON-IOERR IIoO.TRA~S
GO TO DLNI

ADD COUIIoTER "1" CO~~TER
GO TO Pl,F2,P3,f4,PS USING CCUIliTER
GO TU EIIoU.uF.TRAN

PI: DISPLAY PARTI
GO TO TO PO

P2: DISPLAY PART2
GO TO TO Po

P3: DISPLAy PART]
GO TO TO Pb

P4: DISPLAY PART4
GO TO TO Po

Figure C-2. fiEADTRAN (continued)

Licensed Material-Property of Data General Corporation 093-0001 51 -01

25b
257
258
259
2b0
2bl
2b2
2b3
2t:4
2b5
2bb
2b7
2b8
2b9
270
271
272
273
274
275
27b
277
278
279
280
281
282
283
284
285
28b
287
288
289
290
291
292
.293
294
295
29b
297
298
299
31/10
301
302
303
304
305
30b
307
308
309
310
311
312
313
314
315

093-000151-01

P5: DISPLAY PARTS

Pb: SUBTR~CT "40" P~RTS PARTS
COMPAR~ PARlS "1"
IF LESS E~D.OF.lRA~
R~TURN

EfooD.OF.TRAN:

*'***
* A17
'*"*
NEXT:

RETURN A15

MOVE """ FLAb
RETURfoo A10

**.* •••••••••
* Bf;ANCH COD~
••• ***.*,.**.
NO.CRT:

MESSAGE NO TRANSACTIONS FRO~ THIS CRT

NC1: R~TURN A1

NO.eATCH:
MESS.AGE BATCH t-IOT ~.I\ TERED FOR AtlCVE CRT

NB1: RESET A9
RETURN AS

IIlO.FORMAT:
COMPARE IOERR IIlOREC
IF EQUAL EFl
MESSAGE FOPMAT I\OT EIllTEREC FOR ABO~E BATC~
RETUkN USI~G FIELD

NO. GROUP:
MESSAGE NO TRANSACTIONS FOR ABOVE FOR~AT
RETURN USING FIELO

NO.TRANS:
ADD GRP lEN GRP
FIND GROUP.hEAD USl~G CRT.NC,BATCH.NO,F~T.NAME,GRP
ON-IOERR NTl
COMPARE SU~.FL ZERO * SEE NOTE BELO~
IF LESS NO. TRANS
RETURN Al7

NTl: MESSAGE END OF TRANSACTIONS ABOVE FORMAT
RESET A9
RETURN Al

* NOTE. THE FINAL GHOUP HEADER IS ·A DUMMY
• RECORD IN WHICH THE FIRST T~O ~ORCS ARE SET TO
• MINUS ONE. SUM.FL IS THE SECOND SUCH WORD.
* T~E CODE SHOWN SKIPS SUCH RECORDS.
* FINISH

Figure C-2. READTRAN (continued)

Licensed Material-Property of Data General Corporation C-9

FORMAT NOT LINKED

RE/lDTRA~

FIELD PI'IYS./LOG. AUTO- REG. FULL AUTO-
NAME FIELD" DESCRIPTlUN OISF EDIT OI.TPUT DUP!:. Efo;TRY FIELD ENTRY SEC

CRT.NO 1 1 9(2) * * 'fRS 2 2 9(2) * fiTH 3 3 9(2) * DYS 4 4 9(2) * BATCH.NC 5 5 X(3) * * I'IRS b b 9(2) *
~INUTES 7 7 9(2) *
IOE~T 8 8 X (10) * FfiT.NAfiE 9 9 X (10) * * FlLLER 10 10 9(2) * Efo;lRIES 11 11 9(1) •
SliM.FL 12 12 S9(3) * TRAN.LN 13 13 9(3) * GROUP.NO 14 14 9(4) * FlLLER 15 15 X (1) * •
PARTl lb lb X(4S) * FILLER 17 17 X(1) * *

Figure C-2. READTRAN (continued)

C-10 Licensed Material-Property of Data General Corporation 093-0001 51 -01

You can exercise READTRAN by writing to TRANS with a format such as TRANSFILE, as shown
in Figure C-3.

12:55:55 03/10/78
PkiNT OF FORMAT: TRANSFILE

PART

"'*"''''''''''*'''''''''*''''''*.'''''''''*'''*.* •• ''''''.'''''' ••• **'''.'''*.*'''''' •••• *
• TRAt-.SFlLE •
'" 111111111111111111 *
'" THIS SCREEN ~RITES RECORDS TO THE TRANS FILE ••
* THERt IS NO PROGRA~ ASSOCIATED ~ITH IT. •
"'*"'''''''*'''.''''''''' •• '''.''''''''''''**'''**.''''''.**.* •• ***''''''.****''' •• *

XXXXXXXXXXXXXXXXJXXXXXXXXXXXXXXXXXXXXXXX

PART 2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXX

PART 3

PART 4

PART 5

XX

XXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXX

PRl~T OF FORMAT: TRANSFILE
PHYS./LOG. AUTO- REG. FULL AUTO-

FIELD# DESCRIPTION Dl5P ECIT OUTPUT DUPE ENTRY FIELC ENTRY SEC
1 0 X (40) * '"
2 0 X (40) • *
3 0 X (40) • *
4 0 X (40) '" '"
5 0 X (40) *

FOR~AT NOT LINKED
FIRST LINE vSED: 1
LAST LINE USED: 20

Figure C-3. TRANSFILE

End of Appendix

093-000151-01 Licensed Malerial-Properly of Dala General Corporalion C-11

Appendix D
Format/Program Module Listing

. "._.*-_._----------------------------

Table 0-1. Demonstration Modules

Formats IFPL Program
Printing

Use
Formats

L DASHJR DASHJR.UP PAGEFMT A simple printing format

2. DASHDRVR DASHDRVR.UP PAGEFMT DASHDRVR creates two print images'
SCRLLFMT simultaneously -- the first a transaction-by-

transaction copy of the terminal session, the
second a scrolled summary of the session's
activity. DASHDRVR also writes the
transactions to the database, from which
point other demonstration programs can read
them.

3. DASHCOMM DASHCOMM.UP This pair of formats simulates PRINTF by
DASHLINK DASHLlNK.UP producing DASHER printouts of COMMON

print images.

4. BLUEBEARD BLUEBEARD.UP This pair of formats produces DASHER
GRAYBEARD GRAYBEARD. UP output from the database records written

by DASHDRVR. It utilizes the Idea
Inactivity Constant to remain on-line when
there are no records to print without using
significant system resources.

5. DASHDIAG DASHDIAG.UP DASHDIAG is a video display used in
conjunction with BLUEBEARD. Its job is
to reset record flags and the record counter
when printing records more than once.

6. HSPA7 HSPA7.UP This is a format from a hospital system.
It demonstrates printing on a satellite
DASHER.

7. BIGFOOT BIGFOOT.UP PTITLE This is a format for generating large-character
print images.

8. CRAIGS CRAIGS.UP This pair of formats displays (in bar graph
BARGRAPH BARGRAPH.UP form) data commonly found in company

annual reports.

093-000151-01 Licensed Material-Property of Data General Corporation 0-1

13:00:41 02/03/78
P~l~T OF FOH~AT: DASHJR
X

~~***********************
* XXXXXXXXXXXXXXXXXXXX *
* NAME *

INIIOlc.ES

*~*********************** *************** •• * ••• * ••
* XXXXXXXXXXXXXXXXXXXX •
• ACDR~SS •
. ••••• ****.* ••••• ***.*

P.O. xxxxxx

•••••••••• * ••••••• *.* •••••
.XXXXXXXXXXXXXXXXXXXX •
* CITY, STATE, ZIP •
* ••••• * •• * ••••••••• * •• * •••

AGAIN X

* •• * •• ****-*****.********.*.* •• * •••••••• * •••••• *.** ••• *** •••••••••• ** ••••••••• *
DASHJR IS A SIMPL~ PRINTING PROGRA~. IT ~HITES THE ENTIRE CONTENTS OF
T~E SCHEEN AS A SINGL~ PAGE RlCORD TO THE COMMON PRINT FILE. WHEN THIS
IS DONE A TERMINATE PRINTlNG SNITEMEI'1T ;15 EXECUTED, CLOSING OUT THE
PRII'1T IMAGE. wHEN PRI~TING, THIS HECORC IS ALLOTTED A~ ENTIkE FORM.
THIS ARRAI'1GEMENT SATlSFI~S THE DESIGN INTENT OF PRINTF, ~HICH THINKS OF
PHINT I~AGE5 AS THAT AMOU~T OF DATA T~AT ~ILL FILL ONE FORM.

THE PRII'1Tll'1G FOHMAT FUR DASHJR IS "PAGEFMT".
********************.* ••• ***** •• ** •••••• * ••••• * •• * •••••••••••••••••••••••••••••
13:00:41 02/03/78
P~l~T OF FORMAT: DASHJH

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELC. DESCHIPTIO~ DISP EDIT OUTPUT DUPE ENTRY FIELD ENTRY SEC

1 1 X(I) *
2 2 9(2) •
3 3 9(2) •
q q 9(2) *
5 5 X(b) •
b b X (20) *
7 7 X (21:1) *
8 8 X (20) •
q 9 X(1) *

FOR~AT ~OT LII'1KED
FIRST LINE USED: 1
LAST LI~E USED: 23
AOS SYI'1TAX ~EII 01.01 DASHJR.IIS CASHJR.UP 13:1:5 2/3/78

FigureD-i. DASHJR

0-2 Licensed Material-Property of Data General Corporation 093-0001 51-01

1
2
3
4 NA~~ DASHJR
S *DASHJR IS AN EXAMPL~ OF A SI~PLE IF~L PRINTING PROG~A~
6 *PLEAS~ SEE NOTES AT THE E~C FOR AN EXPLANATION.
7
8 R~CCRD FOR PRINTING IS PAGE~EC
9 LENGTH IS 78
10 INCLUDtS INVNO 1 6 ASCII
11 INCLUDES MONTH 7 2 ASCII
12 INCLuDES DAY 9 2 ASCII
13 INCLUDES YEAR 11 2 ASCII
14 INCLUDES PO 13 6 ASCII
15 INCLUDES NAME 19 2~ ASCII
16 INCLUDES ADDRESS 39 20 ASCII
17 INCLUDES CITY S9 20 ASCII
18 STOP
19
20 REGISTER INVNO 9(6) 0
21
22
23
24
25 PROCESS FILLER AT 01 AND ~O~E
26 PROCESS MONTH AT D2 A~D NONE
27 PROCESS DAY AT D3 A~D NONE
28 PROCESS YtAR AT D4 'AND NO~E
29 PROCESS PO AT NONE 'AND ES
30 PROCESS NAME AT NONE AND E6
31 PROCESS ADDRESS AT MNE AND E7
32 PROCESS CITY AT NONE AND E8
33 PROCESS FILLER AT NONE AND E9
34
35
36 Dl~
37 INITIATE PRINTING USI~G "PAGEFMT"
38 RETURN
39
40 D2:
41 DISPLAY MONTH
42 RETURN
43
44 03:
£IS DISPLAY DAY
46 RETURN
47
£18 D4:
49 DISPLAY Y~AR
50 RETURN
51
52 tS:
53 STORE PO
54 RETURN
5S
50 Eo:
57 STORE NAME
58 RETURN
59
60 E7:
01 STORE ADDRESS
02 RETURN
03

Figure D-l. DASHJR (continued)

093-000151-01 Licensed Material-Property of Data General Corporation 0-3

bl.l
bS
bb
b7
b8
bq

7~
71
72
73
71.1
7')
7b
77
78
]q

80
81
82
83
81.1
tiS
80
87
£18
8q
ql:l
ql
q2
q3
ql.l
qS
qb
q7
qt!
qq
1 o III
1~1

102
IIrl3
ll:ll.l
I~S
leb
un
~ORMAT

DASHJR

F-IELD
NAME

FlLLER
~GNTH

DAY
VlAR
PC
NA~E

IICDRESS
CI TV
FILLER
11.I:3q:1.I3
PRINT OF

0-4

E8:
STORE ClTY
PRINT PAGEREC USING "PAGEFMT"
TERMINATE PRINTING USING "PAGEF~T"
MESSAGE ONE PAGE GHOUP (=1 PRINT I~AGE) nRITtEN TO CC~~CN
RETURN

Eq:
ReTURN 1

*DASHJR IS DESIGNED TO SATISFY THE REQUIREMENTS OF THE IFPL
*PRINTING FACILITY IN THE SIMPLEST POSSIBLE nAY. THE PROGRA~
*~RITES II SINGLE PAGE-FOR~AT RECORD TO COMMON. IT THEN TER~INATES
*PRINTING, MAKlNG THE RECORD AND THE PRINT IMAGE COTERMINOUS.
*THAT IS, EACH PRINT IMAGE CONTAINS EXACTLY ONE RECORU. FUTHERMDRE,
iON PRINTOUT, EACH RECORD FILLS A PAGE. THIS SATISFIES THE DESIG~
*INTeNT OF THE PRINT FACILITY, ~HICH IS THAT A PRINT IMAGE SHOULD
*FIlL EXACTLY ONE FORM.
* *THE RECORDS THUS nRITTlN TC CO~MCN CAN BE PRINTED OUT TnO TO A FCR~.
*ThiS IS DONE BY CREATING A PRINTING FORMAT 31 L~NES LONGJ BY L~NKI~G
*IT TO ITSeLF; AND BY SUPPRESSING THE FOR~ FEED ON LINKING.
* *WhEN CREATING THE PRINTING FORMAT, THE DEFAULT IS TAKEN ON THE FOR~
*LE~GTH, ~AKING IT bb LlNES LONG. IF THE LENGTH IS SET AT ANY
*THING LESS ON A bb-LINE PRINTER -- SAY, 33 LINES -- PRINTF
*wllL ISSUE A FOR~ FEED TO. THE PRINTER "HEN 33 L~NES HAVE BEEN
*REACHED. THE PRINTER ~ILL RESPO~D BY GOING TO THE TOP OF THE N~~T
*FORM, AND THE LOWER HALF OF THE FORM "ILL BE LEFT BLANK.
*FORM LENGTHS THUS CANNGT BE LESS T~A~ THAT OF THE PRINTER BEING
*USED. THEY CAN, HU~EVER, BE MONE.
* *31 LINES EQUALS (bo-I.I)/2

*
*T~O-UP PWINTING CANNOT BE CONE BY REPEATING THE FOR~AT ON THE
*LU~ER HALF OF THE FOR~ -- THAT IS, BY ASKI~G PRI~TF
*TO ~RITE ONE RECORD ON THE TOP HALF AND A SECOND ON THE
*BOTTOM HALF. THIS VIOLATES ITS RLLE OF hAVING THE DATA AND THE
*FORMAT eND SYNCHRUNUU5L'.
* FINISH
NOT LINKED

PHYS./lOG. AUTO- ~EC. FULL ·AUTO-
FIELD# DESCRIPTION DISF EDIT OUTPUT DUPE ENTRY FIELD ENTRY SEC

1 1 X (1) * 2 2 q(2) *
3 3 q(2) * 4 1.1 q(2) * S 5 X(b) * b b X(20) * 7 7 X(20) * 8 8 X(2fc1) *
q q X (1) * 02102178

FORMAT: PAGEFMT

Figure D-l. DASHJR (continued)

Licensed Material-Property of Data General Corporation 093-000151·01

DATA Gb~ERAL CORPORATION
15 TURt<oPIH ROAD

WESTBORG, MASSACHUSETTS

IhVGltE hU~~ER qqqqqq
DATE: qqlqqlqq

PURCHASE ORDER NUMBER XXXXXX

CUSTOMER'S NAME:

XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX

ITEM: IDEA SYSTEM
UNIT PRICE: $125,~0~
QUANTITY: TWO (2)
AMCU~T: $250,00~

TOTAL AMOUNT THIS INVUICE" S2~~,0~0

TE~MS: 3 X TEN DAYS NET 3e

•• * •• * •••••• *.* ••••••••• * •• *****.**

Figure D-l. DASHJR (continued)

093-000151-01 Licensed Material-Property of Data General Corporation 0-5

14:39:43 02/02/78
PRINl OF FORMAl: PA~EFMT

PHYS./LOG. AUTO- REG. FULL AUTO-
FItLD# DESCRIPlIO~ DISF EeIT OLTFUT DUPE E~TRY FIELD ENTRY SEC

1 ~ 9(0)
2 0 9(2)
3 0 9(2)
4 0 9(2)
5 0 X(o)
o 0 X(20)
7 0 X(20)
8 0 X(20)

FOR~Al ~OT LINKED
FIRST LINE USED: 1
LAST LI~E USED: 31
13:03:57 02/03/78
P~I~T OF FORMAT: DASHDRVR
X IN~OICES

""""*""*""**'**** * XXX)(XXXXXXXXXXXXXXXX'
, N A ME ,
"""""*'**'**'***"*' "",.,"""""*"*'"

, XXXXX~XXXXXXXXXXXXXX ,
* ACDRESS ,
"'***""""'*""""

P.O. XXXXXX

""""""""""""" , 'XXXXXXXXXlt)()(XXX~XXXX ,
, CITY, STATE, ZIP ,
""*"*""""""'*""

AGAIN X

"**"""""""""""""""""""""*""'""""""""""""'"
CASHDR~R IS THE ADULT VERSION OF DASHJR. T~E SCREEN FOR~AT FOR THE'
T~O MODULES IS THE SAME. BUT DASHORVR CREATES TwO PRINT I~AGES
SIMULTANEOUSLY -- THE SIMPLE SCREEN I~AGE OF OASHJR, PLUS A SCROLLED
SUMMARY OF THE ENTIRE TER~INAL SESSIO~.

I~ ADDITION, DASHDRVR wRITES A kECO~D REFLECTING EACH TR~NSACTION
TC THE CATABASE FILE INVOICES.

T~E PRI~T I~AGES OF DASHDRVR AkE ~EAD OUT ~IT~ THE PRINTING
FORMATS "PAGEFMT" AND "SCRLLF~T".

"**"""'**""*'*'*""""*"***'*'*""""*'*'""**'*"""*"""'*"'*

Figure D-2. DASHDR VR

0-6 Licensed Material-Property 01 Data General Corporation 093-000151-01

13:03:57 02/03/78
P~I~T OF FORMAT: DASHDRVR

PHVS./LOG.
FIELD# DESCRIPTIO~

I I XCI)
2 2 9(2)
3 3 9(2)
4 4 9(2)
5 5 XCb)
b b X(20)
7 7 X(20)
8 8 X(20)
9 9 XCI)

FOR~AT ~OT LINKED
FIRST LI~E USED: I
LAST LI~E USED: 23

DISP ELIT
*
•
•
*

*
'" •
'"
'"

AOS SY~TAX REV 01.01 DASHDRVR.VS

1
2
3

NAME DASHDRVR

AUTO· ~EQ. FULL /lUT(,-
OUTPUT DUPE ENTRY FIELD ENHY

DASHDRvR.UP 13:4:28 2/317E

4
5
b

*DASHDRVRIS THE ADULT VERSION OF THE PRINTI~G PROGRAM, DASHJR.
*IT PRINTS T~O TYPES OF REPCRTS _. CNE CO~SISTI~G OF
*ALL THE INVOICES ENTERED INTO THE DATABASE DURI~G THE DAY, 7

8
9
11<1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3il
31
32
33
34
35
36
37
38
39

*THE DTHER CDNSISTING DF A CO~UENSE~ SUM~ARY REPO~T OF THE CAY'S
*ACTIVITIES. THESE ARE KEYED BY "FAGEFMT" AND "SCRLLFMT" RESPECTIVELY.

093-000151-01

* *DASHDRVR IS ALSO THE DRIVING PROGRAM FOR A SET OF PROGRAMS THAT
*UTILIZE THE DASHER FOR PRINTING. THESE INCLUDE
* •
•
*

8LUEBEARD
DASHDIAG

*~LUEBEARD OUTPUTS OATA8ASE RECORDS ON THt DASHER TERMINAL, SETTING
*A FLAG ON THE RECORD TO INDICATE IT HAS BEEN PRINTED. THIS FLAG
*CAN BE RESET WITH THE CRT TERMINAL P~OGRAM DASHDIAG.

*FURTHER DETAILS ON PRINTING ~ITH DASHDRVR ARE GIVEN BELOW ,ADJACENT
*TO THE FINISH STATEMENT.

FILE INVOICES
KEY FOR INVOICES IS 6 ASCII
RECCRD FOR INVOICES IS INVREC

LENGTH IS 79
INCLUUES INVNO 1 6 ASCII
INCLUDES MONTH 7 2 AscII
INCLUDES UAY 9 2 ASCII
JNCLUDES YEAR 11 2 ASCII
INCLUDES PO 13 6 ASCII
INCLUDES NAME 19 20 ASCII
INCLUDES ADDRESS 39 20 ASCII
INCLUDES CITY S9 20 ASCII
INCLUDES PRTFLG 79 1 ASCII
STOP

Figure D-2. DASHDR VR (continued)

Licensed Material-Property of Data General Corporation D-7

40 RECORD FOR PRINTING IS PAGEREC
41 LENGTH IS 78
42 INCLUDES INVNO 1 b ASCII
43 INCLUDES MONTH 7 2 ASCII
44 INCLUDES DAY 9 2 ASCII
45 INCLUDES YEAR 11 2 ASCII
4b INCLUDES PO 13 b ASCII
47 INCLUDES NAME 19 20 ASCII
48 INCLUDES ADDRESS 39 2~ ASCII
49 INCLUDES CITY 59 2~ ASCII
50 STOP
51
52
53 RECORD FOR PRINTl~G IS DATEREC
54 LENGTH IS 8
55 INCLUDES DATE 1 8 ASCII
5b STOP
57
58 RECORD FOR PRINTING IS SCROLLREC
59 LENGTH IS bb
b0 INCLUDES INVNO 1 b ASCII
b1 INCLUDES NAME 7 2~ ASCII
02 INCLUDES ADDRESS 27 20 ASCII
b3 INCLUDES CITY 47 20 ASCII
04 STOP
b5
bb
07 RECGRD FUR PRINTING IS ENDSCROLL
08 LENGTH IS 1
09 INCLUDES "@" 1 1 ASCII
70 STOP
71
72 REGISTER PRTFLG 9(1) 0
73 REGISTER DATE X(8) 00/00/00
74 REDESIGNATE DATE
7S MONTH 1 2
7b DAy 4 2
77 YEAR 7 2
78 STOP
79 REGISTER KEYKOUNT 9(2) ~
80 REGISTER INVNQ 9(b) 0
81
82
83 ON END OF DATA END
84 ON LOGOFF END
85

PROCESS FILLER AT 01 AND NOH
Alii PROCESS FILLER AT 02 AND ~O~t

PROCESS FILLER AT 03 AND "'ONE

80
87
88
89
90
91
92
93
911
9S
90
97
98

PROCESS FILLER AT 04 AND NO,.,E
P,RUCESS PO AT ~ONE 'AND E5
PROCESS NAME AT NONE AND Eb
PROCESS ADDRESS AT ~O~E A~D E7
PROCESS CITY AT NO"'~AND E8
PROCESS FILLER AT NONE AND ~9

01:
99 INITIATE PRINTI~G USING "SCRLLF~T"
100 INITIATE PRINTI~G USING "PAGEFMT"
101 PRINT DATEREC USING "SCRLLFMT"
102 RETURN
1~3
104

Figure D-2. DASHDR VR (continued)

0-8 Licensed Malerial-Properly of Dala General CorporallOn 093-000151-01

11115
11110
11117
11118
leq
11111
111
112
113
111l
115
110
117
118
llq
120
121
122
123
121l
125
120
127
128
12q
13i1l
131
132
133
131l
135
130
137
138
IH
1110
1 Il 1
1112
1£13
lila
las
lao
1117
1118
1£19
150
151
152
153
151l
155
150
157
158
159
Ib0
Ib1
lb2
Ib3
Ibll
Ib5
Ibb
Ib7

093-000151-01

02:

03 :

Oil:

E5:

Eb:

E7:

E8:

E8A:

E8B:

E8C:

E8D:

E8E:

E8G:

DISPLAY ~Ot.Tt1
RETURN

DISPLAY DAY
RETURN

DISPLAY YHR
RETURN

STORE PO
RETURN

STORE NA"'E
RETURN

STORE ADDRE:SS
RETURI\;

SlORE CITY
VERIFY INVREC USlt.G "e0111001"
ON-IOERR E8D

RETRIEVE t11Gt1 ~EY FOR I~VREC TO INVI\;O
ADD "1" It.VNO II\;Vt.O
FILE-t.E~ II\;VREC USIt.G II\;VNO
ON-IOERR E8C

PRINT PAGEREC USING "PAGEFMT"
PRINT SCROLLREC USING "SCRLLF~T"
MESSAGE ONE PAGE GROUP ANC ONE SCROLL LINE WRITTEN TO COM~ON
RETURN

ADD "1" ~EY~OUI\;T ~EYKOUI\;T
CO,.,PARE KEYKOU~T "10"
IF GREATER E8G
GO TO E:8A

MOVE "1" INVt.O
FILE-t.E~ I~VREC USI~G ~~VNO
ON-IOERR E8E:
GO TC E8B

~ESSAGE FATAL ~RITE ERRCR ON INITIAL RECORD
QUIT

MESSAGE FATAL ~RITE ERROR.
QUIT

RETURt. Al

Figure D-2. DASH DR VR (continued)

Licensed Material-Property of Data General Corporation 0-9

Ib8 EfoIO:
Ib9 TERMINATE PRINTING USlfoIG "PAGEF~T"
170 PRINT lNDSCROLL USING "SCRLLF~1"
171 TERMINATE PRINTING USING "SCRLLFMT"
172 M~SSAGE PRlfoITlfoIG USING "PAGEF~T" AfoIC "SCRLLFMT" TERM~~ATED. T
173 PROGRAM LOGGED OFF.
174
175 QUIT
170
177 *
178 *PRINTF HAS A DEFAULT '~OR A~ ERROR CO~DITION THAT CONSISTS OF HAVING ~ORE
179 *DATA THAN ~ILL FIT THE P~I~TING ~O~MAT. THE DE~AULT IS ThAT IT DCES ,A
180 *FO~M FEED AND A RESTA~T OF Th~ FC~~AT. THIS DEFAULT hAS B~EN UTILIZED IN
181 *THIS PROGRAM TO BUILD T~O ~EFORTS SI~ULTANEOUSLY.
182 *
183 *DASHDRVR UTILIZES A SIfoIGLE PPINT I~AGE PER KEYBOARD SESSIO~ FOR
184 *EACH OF THE T~O PRI~TING FCR~ATS IT DRIVES. IT tOES THIS EY INITIATING
185 *PRINTING IN A DU~MY FIELD AT LOG O~, AND NEVEH RETURNING TO THAT FIELD.
ISb *T~RMINATE PRINTING STATE~E~TS ARE EXECUTED ONCE ONLY, AT LCG OFF.
un *
188 *CO~MON USES A SINGLE RECORD COUNTER FOR BOTH PRINT FORMATS BEING
189 *~RITTEN TO. IN THE DASHDRVR CODE,A SINGLE SCROLL FORMAT RECORD
190 *IS ~RIT1EN AT LOG Ofol. THEREAFTER, THE PROGRA~ALTERNATELY ~RITES
191 *RECORDS TO EACH OF THE T~O PRINTING FORMATS, STARTING ~ITH THE PAGE FORMAT.
192 *A KEYBOARD SESSION THUS ~RITES TO CO~MON SCROLL RECORDS ~HOSE BOTTC~ KEYS
193 *ARE 1,3,5 ••• AND ~hOSE eOTTO~ FAGE KEYS ARE 2,4,b • •• THIS IS
194 *~OT CONFUSING TO PHINTF, ~hICH ONLY REQUIRES T~AT THE NUMBERS FOR
195 *EACH SET BE IN ASCENDIfolG O~DER, &UT THE PAGE RECORDS COULD NOT BE
19b *TERMINATED ASYNCHRO~OUSLY ~ITH ThE SCROLL RECORDS. THAT IS, THE SCROLL
197 *IMAGE CANNOT BE LEFT OPEN ,AFTER THE PAGE I~AGE HAS BEEN CLOSED. ~ERE THIS
198 *10 HAPPEN, THE NEXT SCROLL RECORC ~RITTEN ~OULD HAVE A DUPLICATE KEY
199 *ERROR, SINCE TERMINATING ThE PAGE IMAGE RESETS THE RECORD COUNTER ~HICH
200 *SUPPLIES KEYS TU BOTH IMAGES.
211!1 *
211!2 *ANCTHER REQUIREMENT FOR BUILDING DUAL IMAGES AS 'ABOVE IS THAT IT ~UST
203 *ALL Bl DONE wITHOUT LEAVING THE PROGRAM. ThAT IS, RETURNS MUST BE BY
204 *RETURN STATEMENTS, foIOT BY LINKING. THE LATTER ~NCREMENTS THE DUF~ICATES
2eS *COUNT AND RESETS THE RECORt COUNTER. NEIThER ACTION'IS ~ELCOMEhERE.
20b *~hEN PRI~TING OUT, PRINTF FERFOR~S AS THOUGH EACH PAGE RECORD HAC SEEN
207 *ASSOCIATED wITH ITS O~N EXCLUSIVE PRINT IMAGE.
208 I<

209 *THE PRINTING FORMAT. FOR THE SCROLL ,RECORDS, "SCRLLFMT", USES REPEATED
210 *HEAOINGS, BOTH PAGE AfoID SCROLL. PRINTF ALLO~S ONE OF EACH TYPE.
211 *ThE FORMAT MUST, HO~EVER, BE lfoIIT~ATED IN FAGE ~CDE FOR THIS. THIS
212 *IS ACCO~PLlSHED BY PRINTING A Sl~GLE fIELD OF FAGE DATA ON THE ~IRST
213 *FORM OF TH~ SCROLL SERIES. ~ITHGLT THIS FIELD, T~E fORMAT ~~ULD BE
214 *ENTERED IN SCROLL MODE; ALL REPEATEC LITERALS ~OULD SE TR~ATED AS
215 *SCROLL HEAOI~GS; A~D OfolLy THE LAST GIVEN ~OULD BE PRINTED.
21b *
217 *THE PAGE RECORDS WRITTEN TCCOMMON WITH DASHDRV~ ARE PRINTED wITh THE
218 *IDENTICAL FORMAT USED FOR tASHJR. ~~RE, HO~EVER, THEY PRINT OUT
219 *ON~ TO A FORM. THIS IS BlCAUSE, ~~EN THE FOR~AT IS SATISFIED,
220 *THERE IS DATA LEFT. FRINTF THlN lAKES ThE DEFAULT MENTIONED ABO~E,
221 *ANC ISSUES A FOR~ FEED TO ThE LINE PRINTER.
222 *
223 *THE SCROLL FORMAT IS LINKED TO THE PAGE FOR~AT. IF PRINTF IS TOLD
224 *TO PRINT OUT THE SCROLL RECORDS, IT ~lLL DO SO, AND THEN PRINT
225 *OUT ALL THE PAGE RECORDS ~hEN IT LINKS.
22b *
227 FINISh

Figure D-2. DASHDR VR (continued)

0-10 Licensed MaterIal-Property of Data General Corporation 093-000151-01

FORMAT NOT LINKE 0

DASHDRIIR

FIELD PHYS./LOG. AUTO- REQ. FULL AUTO-
NAME FIELD* DESCRIPTION DISP EDIT OUTPUT DUPE E~TRY FIELD E.NTRY SEC

FILLER 1 1 X (1) * FILLER 2 2 (H2) * FILLER 3 3 q(2) * FILLER 1.1 1.1 q(2) * PC 5 5 X(o) * NAME b b X(20) * ADDRESS 7 7 X(20) * ClTY 8 8 X(20) It

FILLER 9 9 X (1) * 11.1:1.10:rn 02102178
PRINT OF FORMAT: SCRLLF"'T

Figure D-2. DASH DR VR (continued)

093-000151·01 Licensed Material-Property of Data General Corporation 0-11

DATA G~~E~AL CO~PORATIOh

IIDGC DAILY INVOICE RECORDII

lCXlCUXlCX

COPIES: ACCOUNTING, PURCHASING, LEGAL, ~ANUFACTURING, ~ARKETING, FILE

ill/INVOICE hOe CUSTOMER'S NAME

999999 XXXXXXXXXXXXXXXXXXlClC

14:40:07 02/02/78
PRINT OF FORMAT: SCRLLFMT

ADDRESS

XXXXXXXlCXXXXXXXlCXXXX

CITY, STATE, ZIPI/

XXXXXXXXXXXX~~~XXXXX

PHYS./LOG. AUTO- REO. FULL AUTO-
FIELC* D~SCRIPTION OISP EDIT OUTPUT DUPE E~TRY FIELD ENTRY SEC

1 0 X(8)
2 0 9(b)
3 0 X(20)
4 0 X(20)
5 0 X(20)

LINKED TO FOR~AT: PAGEFMT
FIRST LINE ~SED: 1
LAST LfhE USED: 27
14:39:43 02/02/78
P~INT OF FORMAT: PAGEFMT

0-12

Figure D-2. DASH DR VR (continued)

Licensed Material-Property of Data General Corporation 093-000151-01

DATA Ge~ERAL CORPORATIO~
15 TURNPIKE ROAD

WESTBORO, ~ASSAC~LSETTS

INVOICE ~U~BER qqqqqq
DATE: qqlqqlqq

PURCHASE ORDER NUMBtR XXXXXX

CUSTOliER'S NA~E:

XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX

ITE~: IDEA SYSTE~
UNIT PRICE: S125,00~
QUANTITY: TWO (2)
A~OUNT: 5250,000

TOTAL AMOUNT THIS INvOICt: 5250,000

TER~S: 3 X TEN DAYS NET 30

**
14:3q:43 02/02/78
P~lNT OF FORMAT: PAGEF~T

PHYS,/LOG. AUTO- REQ, FULL AUTO-
FIELD' DESC~lPTIOh DIS~ ECIT OU1FUT DUPE E~TRY FIELD ENTRY SEC

1 0 q(b)
2 0 q(2)
3 0 q(2)
4 0 q(2)
5 0 X(b)
b 0 X(20)
7 0 X(20)
8 '" X(20)

FOR~AT ~OT LINKED
FIRST LINE USED: 1
LAST L~hE USED: 11

093·000151-01

Figure D-2. DASHDR VR (continued)

Licensed Malerlal-Properly of Data General Corporallon 0-13

13:07:23 02/03/78
P~INT OF FORMAT: UASHCOM~
)(

*****"*""""""""""*****'*********'*******'******"'******************
"*"*'*'**'*"**""*,',**"*'*******'*'*'****"*"'**'**'***'****************
13:07:23 ~2/03/78
P~INT OF FORMAT: DASHCOM~

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELD* DESCRIPTIO~ ~ISP EDIT OUTPUT D~PE ~NTRY FIELD ENTRY SEC

1 1 X(lJ *
FOR~AT NOT LINKED
FIRST LINE USED: 1
LAST LINE USED: 1
~CS SYNTAX REV 01.01 DASHCUMM.VS DASHCO~M.UP 13:7:49 2/3/78

1
2
3
4 NA~E DASHCOMM
5 *
6 'THE PURPOSE OF DASHtO~M AND ITS CO~PANION PROGRA~, "DASHLDNK,"
7 'IS TO SIMULATE THE ACTION OF PRINTF -- THAT IS, TO OUTPUT PRINT
8 'RECORDS FROM THE COMMON FILE TO A PRINT~R.
9 *DASHCOMM AND DASHLINK RUN ON THE OGC DASHER TER~INAL.
10 *THEY REAO THE PRINT RECORDS ~RITTEN TO THE CO~MON FILE
11 *BY THE PROGRAMS "PAGEFMT" AND "DASHJR," AND PRODUCE A HARDCOPY PRINTOUT.
12 *
13 *THESE PROGRAMS ARE NOT AS SOPHISTICAT~D AS PRINTF. THEY DISREGARC THE
14 'PRINT FLAG, NEIT~tR READING NOR ~RITING IT. NOR CAN THEY DELETE
15 *RECORDS AS THEY ARE PRINTED.
16 ,
17 'THE PURPOSE O·F DASHCOMM IS TO INIllALlZE PASSING VARIABLES USED
18 *BY DASHLINK.
19 *
20 RECORD FOR PASSING IS PASSREC
21 LENGTH IS 10
22 INCLUDES CRTND 1 2 ASCII
23 INCLUDES DUPES 3 4 ASCII
24 INCLUDES RECNO 7 4 ASCII
25 STOP
2b REGISTER CRTNO 9(2) 0
27 REGISTER DUPES 9(4) 0
28 REGISTER RECNO 9(4) 1
29 REGISTER Ll X(8) DAS~LIN~
30 PROCESS FILLER AT 01 A~D NONE
31
32 D 1 :
33 PASS PASSREC
34 LINK USING Ll
35
36 FINISH

Figure D-3. DASHCOMM

0-14 Licensed Material-Properly 01 Data General Corporation 093-0001 51 -01

FORMAT NOT LINK~D

DASHCO""

P~YS./LOG. AUTO- REO. FULL 'AUTO-FI~LD
NAME FIELD. DESCRIPTION DISF EDIT OvTPUT DUPE E~TRY FIELD ENTRY SEC

FILLER 1 1 X(il -
13:10:03 02/03/78
PRINT OF FO~MAT: DASHlINK
ZZZZZZ
99/99/99
PO xxxxxx
NAME XXXXXXXXXXXXXXXXXXXX
ADDRESS XXXXXXXXXXXXXXXXXXXX
CITY XXXXXXXXXXXXXXXXXXXX

x X

---*********-**

Figure D-3. DASHCOMM (continued)

093-000151-01 Licensed Material-Property 01 Data General Corporation D-15

--*****-_._-***-*-*******-**********************.******************************
13:10:03 02/03/78
PRINT OF FOR~AT: DASHLINK

P~YS./LOG. AUTO- REQ. FULL AUTO-
FIELC* DESCRIPTION DISP EDIT OUTFUT DUPE ENTRY FIELD ENTRY SEC

1 1 9(&) *
2 2 9(Z) *
3 3 9(2) *
4 4 9(2) *
5 5 X(&) *
& & X(20) *
7 7 X (20) *
8 8 X(20) *
9 9 X(I) *
10 10 X(l) *

FOR~AT NOT LINKED
FIRST LINE USED: 1
LAST L~NE USED: &5
AOS S¥NTAX REV 01.01 DASHLINK.VS DAS~LINK.UP 13:10:39 2/3/78

1
2
3
4 NA~E DASHLINK
5 *
& -THE PURPOSE OF T~IS PROGRA~ IS TO PRODUCE A PRINTED COpy
7 -OF THE "PAGEFMT" PRINT RECORDS ftRITTEN TO COM~ON BY THE PROGRA~S
8 *"DASHJR" AND "DASHDRVR." IT IS RUN ON A DGC DASHER TERMDNAL.
9 *IT IS NOT ENTERED DIRECTLY, BUT T~ROUGH "DASHCO~~,"
10 *ftHICH SERVES TO INITIALIZE PASSING VARIABLES.
11 *
12 *
13 *DASHLINfo. LINIC.! TO ITSELF fa CONTINUE, DOING SO ON SUCH A
14 *LDNE THAT IT SI~ULATES A FOR~ FEED.
15 *
1& FILES COMMON
17 KEY FOR COMMON IS 13 ASCII
18 SUBINDEX FOR COMMON IS LEVELl
19 IC.EY FOR LEVELl IS 2 ASCII
20 DUPLICATES ARE COUNTED IN DUPES
21 RECORD FOR LEVELl IS LEVELIREC
22 LENGTH IS 2
23 INCLUDES IMAGES 1 2 BINARY
24 STOP
25 SUBINDEX FOR LEVELl IS LEVEL2
26 KEY FOR LEVEL2 IS 2 BINARY
27 RECORD FOR LEVEL2 IS PRINTREC
28 LENGTH IS 78
29 INCLUDES INVNO 1 6 ASC~I
30 INCLUDES IMDNTH 7 2 ASOII
31 INCLUDES IDAY 9 2 ASOII
32 INCLUDES IYEAR 11 2 ASCII
33 INCLUDES PO 13 6 ASCII
34 INCLUDES NA~E 19 20 ABClI
35 INCLUDES ADDRESS 39 20 ASCII
3& INCLUDES CiTY 59 20 ASC~I
37 STOP
38 RECORD FOR PASSING IS PASSREC
39 LENGTH IS 1~
40 INCLUDES CRTNO 1 2 ASCII
41 INCLUDES DUPES 3 4 ASCII
42 INCLUDES RECNO 7 4 ASCII
43 STOP
44

Figure D-3. DASHCOMM (continued)

0-16 Licensed Material-Property 01 Data General Corporation 093-0001 51-01

45
4b
47
48
4"
50
51
52
53
54
55
Sb
57
58
5q
b0
bl
b2
03

REGISTER
REGISTER
REGISTER
REGISTEH
REGISTER

PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS

DUPES
CRTNO
RECNO
Ll
IMAGES

INVNO
IMONTH
IOAY
IYEAR
PO
NAME
ADDRESS
CITY
FILLER
FILLER

q(4)
q(l)
q(4)

X(8) OASHLlNI<
q(4)

AT 01 AND NONE
AT 02 AND '"'ONE
AT D3 AND ~ONE
AT 04 AND NONE

AT 05 AND foIONE
AT 00 A,",D NONE
AT 07 AM) NONE
AT 08 AN[) NONE
AT Dq AND NONE
AT 010 AND NONE

b4 *THIS PROGRAM LOOKS FOR A PRINTREC USING AS THE LEVEL 0 KEY THE AOR'AT
b5 *NA~E "PAGEFMT". IT LOOKS FIRST FOR A RECORD WITH KEYS "PAGEFMT",
bb *"00", "0001", DUPLICAT~ COLNT : 0. THE LEVELl ~EY IS THE CRT NU~eER.
b7 *THE LEVELl KEY IS THE PRINT RECORD NUMBER.
b8
bq *AFTER THE PRINT RECORDS ARE EXHAUSTED WITH THE ABOVE KEYS, THE
70 *DUPLICATES COUNT IS INCRE~ENTED BY "1" AND ALL PRINT RECORDS
71 *ASSOCIATED WITH THE NE~ ~EY SPECl~ICATIONS ARE PRINTED.
72
73 *WHEN THERE ARE NO ~ORE DUPLICATES, THE CRT NUMBER IS INCRE~ENTED
74 *BY A FIND NEXT STATEMENT LOOKING FOR THE NEXT PRI~T FLAG
75 *(LEVEL1REC). WHEN TH~RE AR~ ~Q MORE PRINTFLAGS, THE PROGRA~
70 *TERMINATES.
77
78 *FORM FE-EDS ARE SIMULATED BY EXECUT,ING A DU~~Y FIELD ON LINE
7q *bo OF THE FORMAT.
80
81
82 01:
83 ACCEPT PASS~EC
84 D1FIND:
85 FIND THE PRINTREC NEAREST "PAGEFMT",CRTNO,RECNO
80 ON-IOERR D1A *NO MORERECNO'S. TRY
87 .ANOTHER DUPLICATE.
88 RETRIEVE KEY FOR PRINT~E(TO RECNO
eq DISPLAY INVNO
q0 RETURN
ql
q2 *THIS CODE DOESN'T WORK. DUPES DOES~'T SEEM TO BE UPDATED.
q3 *D1A:
q4 FIND THE LEVEL1REC NEAREST "PAGEFMT",CRTNO
q5 ON-IOERR D1C
qb COMPARE RECNO "0"
q7 IF EQUAL D1B
qa FIND THE NEXT LEVEL1REC
qq ON-IOERR D1C
100
101 *018:
102 RETRIEVE KEY FOR LEVEL1REC TO CRTNO
103 MOVE "~" RECNO
104 GO TO D1FIND
105

Figure D-3. DASHCOMM (continued)

093-000151-01 Licensed Material-Property of Data General Corporation 0-17

0-18

10b
107
108
109
110
111
112
113
114
115
11 b
117
118
119
12'"
121
122
123
124
125
12b
127
128
129
130
131
132
133
134
135
13b
137
138
139
140
141
142
It13
14t1
It15
It1b
!tI7
148
It19
150
151
152
153
154
155
15b
1~7
158
159
Ib0
Itll
Itl2
Itl3
Ibtl
FO~M~T

D~SHLINI<

DlA:

018:

ADD "1" DUP~S DLPES
FIND LEVELl~EC USING ·P~GEFMT", CHT~O
ON-IOERR DIB ~~O MORE PRINTRECS. TRY

MOVE "1" RECNO
GO TO DIFIND

MOVE "0~ DUPES

jtlj1NOTHtRCRT.

ADD "1" CRTNO CHTNO
FIND THE LEVELIREC ~EAREST "PAGEF~T",CRTNO
ON-IOERH Ole
RETRIEVE ~EY FOR LEVELIREC TO CRTNO

*DUPES IS NO~ SET TO "0" .

DIC:

02:

03:

OS;

Db:

07:

08:

au:

FINISH
NOT LINKED

MOVE "1" RECNO
GO TO DIFINO

RETURN 10

DISPLAY lfo:Ot-iTH
RETURN

I)lSPLjI,{ IDAY
RETUPr.

DISPLAY lYEAR
RETURfli

DISPLAY PO
RETURN

DISPLAY' NAH
RETURfIi

DISPLAY ADDRESS
RETURN

DISPLAY CITY
RETURN

AD~ "1" RECfIIO ~EC~D
PASS fjlSSRH
LINK USING Ll

MESSAGE NO ~ORE RECORes
QUll

Figure D-3. DASHCOMM (continued)

Licensed Materia'l-Property of Data General Corporation 093-000151·01

FIELD PI-YS./LOG. AUTO- REG. FULL AUTO-
NAME t'IELDIl DESCRIPTION DISF EDlT OlJTPUT DUPe ENTRY FIELD ENTRY SEC

INVNO 1 1 9(&) *
I~ONTH 2 2 9(2) * IDAY 1 1 9(2) * HEAR 4 4 9(2) * PC 5 5 X(&) * t'UME & & X(2f1l) * ACDRESS 7 7 X(2f1l) * CITY 8 8 X(20) * F-lLLER 9 q X (1) * FILLER 10 10 X(1) *

Figure D-3. DASHCOMM (continued)

093-000151-01 Licensed Material-Property 01 Data General Corporation 0-19

13:13:1q 02/03/78
PRINT OF FORMAT: BLUEBEARD

x
~~~*~***~~~.~******~**~****~~~~****~*******~***********~~~*****~***~~~*~*****~* 
~*******~********************************************************************** 
13:13:1q ~2/03/78 
~RINT OF FORMAT: BLUE BEARD 

PHYS./LOG. AUTO· REG. FULL AUTO-
FIELD# DESCRIPTION DISP EeIT OUTPUT DUPE ENTRY FIELD ENTRY SEC 

1 1 X(1) * 
FOR~AT NOT LINKED 
FIRST LINE USED: 1 
LAST LI~E USED: &1 
AOS SYNTAX REV ~1.01 BLUEBEARD.VS BLUEBEARD.UF 13:13:4q 2/3/78 

1 NAME BLUE6EARD 
2 * 
3 *BLLEBEARD AND ITS COMPANIO~ FROG~A~, "GRAYBEARD," 
4 *ARE DASHER PRINTING PROG~A~S THAT PRINT ~HEN THEY ARE 
5 *NEEDED, AND REMAIN INACTIVE BUT ALERT "HEN NOT. hHILE 
b *INACTIVE, THEY SCAN THE DATA BASE LOOKING FOR RECORDS 
7 *TO PRINT. THE ADDITION OFA RECORD TO THE DATA I!'~SE 
8 *SIGNALS THEM TO RESUME ~OR~. 

q * 
10 *THEY ARE NAMED AFTEk THE LEGENDARY GER~A~ HERO, ELUEBEARD, 
11 *~HO SLEPT IN HIS MOU~TAIN FAST~ESS FOR A HUNDRED YEARS AT 
12 *A TIME. HE THEN SALLIED FORTH TO SEE IF HIS COU~TRY 
13 *NEEDED HIM. IF SO, HE HELPED OUT. OTHER~ISE HE ~ENT BACK TO 
14 *SLEEf.'. 
15 * 
1& *BLLEBEARD THE DASHER PROG~AM DEPENDS ON THE INACTIVITY 
17 ~CONSTANT OF THE IDEA SYSTE~, "HICH IS SET NOT BY LEGEND BUT BY THE 
18 *~RITER OF THE IFPL PROGRA~. ITS UNITS ARE ~INUTES RATHER THAN Y~ARS. 
1 q * 
20 *THE T"O PROGRA'MS •• BLUEBEARD AN[; GRAY&EARD •• PI'INT 
21 *OUT ON THE DGC DASHER TERMINAL THE DATA PASE RECORDS 
22 *~R1TTEN TO THE FILE, "INVOICES," BY THE PROGRA ... , 
23 *"DASHORVR." SEE THE LISTING OF GRAYBEARD FOR DETAILS. 
211 * 
25 *BLUE8EARD SERVES TO SIMULATE AN INITIAL FORM FEED 
2& *TO ALIGN THE PRINT HEAD PRIOR TO P~I~TING. IT ALSO 
27 *INITIALIZES THE RECORD FOR PASSI~G IF THIS HAS ~CT 
28 *ALREADY BEEN DONE. 
2q * 
30 RECORD FOR PASSING IS POINTEREC 
31 LENGTH IS 15 .. 
32 INCLUDES POINTER 1 & Ase 11 
33 INCLUDES SIGNATURE 7 q ASCII 
311 STOP 
35 REGISTER SIGNATURE XCq) 
3& REGISTER POINTER qC&) 
37 REGISTER L1 XCq) GkAY8EARD 
38 PROCESS FILLER AT C1 AND ~D~E 
H 
lllt' 01: 
41 ACCEPT POINTEREC 
42 COMPARE SIGNATURE "SIGNATURE" 
43 IF EQUAL D1A 
44 MOVE "SIG~ATURE" SIGNATURE 
115 MOVE "1" POINTER 
llb PASS POINTEREC 
117 

Figure D-4, BL UEBEARD and GRA YBEARD 

0-20 Licensed Material-Property of Data General Corporation 093-0001 51-01 



118 D1A: 
4q LINK USING L1 
50 
51 FINISH 

FORMAT NOT LINKED 

BLUE BEARD 

P~YS./LOG. AUTO- REG. FULL AUTO-FIELD 
NAME FIELD# DESCRIPTION DISP EDIT OUTPUT DUPE ENTRY FIELD ENTRY SEC 

~lLLER 1 1 XCl) * 
16102:16 02/03/78 
PRINT OF FORMAT: GRAYBEARD 
X X X X X X X X X X X X X X X X X X X X 

AAAAAAAAAAAAAAAAAAAAAAAA 

xxxxxxxxxxxzzzzzz 

AAAAAAAAAAAA 

XXXXXXXXXXXXX XXXXXX 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

093-0001 51-01 Licensed Material-Property of Data General Corporation 0-21 



x x 

•••• ******.***.**************************************************************** 
••• ******.****.******************************************'********************* 
1&:02:1& 02/03/78 
PRINT OF FORMAT: GRAYBEARD 

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELO* DESCkIPTION DISP EeIT OUTPUT DUPE ENTRY FIELD ENTRY SEC 

1 1 X(1) * 
2 2 X(1) * 
3 3 X(I) * 
q q X(1) * 
5 5 X(1) * 
& 6 X(1) * 
7 7 X(1) * 
8 8 X(1) * 
q q X(1) * 
1~ 10 X(1) * 
11 11 X(l) * 
12 12 X(1) * 
13 13 X(1) * 
1q 1q X(I) , 
15 15 X(1) * 
16 16 XU) * 
17 17 X(I) * 
18 18 XCI) * 
19 19 XU) 
20 20 X(1) • 
21 21 A(2q) * 
22 22 X(11l * 
23 23 9(6) * 
2q 2q A(12) * 
25 2~ 9(2) * 
26 26 9(2) * 
27 27 9(2) * 
28 28 X(13) * 
29 29 XC&) * 
30 30 X(20) * 
31 31 X(20) * 
32 32 X(20) * 
33 33 XCI) * 
34 34 X(1) * 

FOR~AT ~OT LINKED 
FIRST LINE USED: 1 
LAST LI~E USED: &5 
AOS SYNTAX REV 01.01 GRAYB~ARO.VS GRAYBEARD.UP 16f3:3 2/3/78 

1 
2 
3 

0-22 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

Licensed Malerial-Properly of Dala General Corporalion 093-000151-01 



" NAME GRAYBEARD 
5 * 
t *GRAYBEARD IS A CASHER P~OG~A~. IT READS T~E INFOS FILE "~~VOICES" A~D OUTPUTS 
7 *THE CONTENTS OF ITS RECO~DS AS HA~C COPY. THE RECORDS IN INVOICES ARE wRITTE~ 
B *BY TI1E PROGRA~ "DASHDRVR". THE RECORDS THHSELVES CONTAIN 'A PRINT FLAG. IT I 
9 *INITIALLY SET TO "0". ~hE~ A RECORD HAS BEEN PRINTED, GRAYBEARD SETS THE 
le *PRINT FLAG TO "1" TO PRfVE~T FURT~ER PRI~TING. 

11 * 
12 *INVOICE RECORDS ARE FILED ~ITH A SINGLE KEY. ThE KEYS ARE A SET OF 
13 *SEQUENTIAL NUMBE~S FPOM 1 TO 99Q,QQq. wHE~ SEARCHING FOR RECORDS TO 
14 *F~INT, GRAYBEARC STARTS AT RECORD 'NO.1, FINDS IT, PRINTS iI' 
15 *IF TI1E PRlt.T FLAG IS nRO, ThEN ~OVE5 TO RECORD M. 2 A.ND RfPEATS 
1& *T~E PROCESS. 
17 * 
18 *G~AYBEARD hAS A ~O~ OF DU~~Y FIELDS THAT E~ABLES THE DASHER 
1Q *TERMINAL TO STAY ON-LINE BUT INACTIVE, ~AITING FOR RECDR~ fO PRINT. 
2~ *GRAYBEARD GOES TO THIS RO~ OF DU~~Y FIELDS wHENEVER IT HAS 
21 *E~HAUSTED THE AVAILABLE RECORDS. IT ~4ITS THERE UNTIL ANOTHER 
22 *RECORD HAS BEEN ADDED.IT THEN RESU~E~ PRINiING. 
23 * 
24 *GRAYBEARD'S INERT MODE TAKES ADVANTAr~ OF THE INACTIVITY 
25 *FEATURE OF THE IDEA ~O~ITOR. THE PR~'RAM SITS r~ERT AT A~ EDIT 
2~ *FIELD FOR At. INTERVAL ~EASLRED BY THE I~ACTIVIT~ CONSTANT. AT 
27 *THE END OF THE I~TERVAL, THE MONITOR SENDS THE P~OGRAM TO THE TAG 
?8 *SPECIFIED BY THE ON NO-ACTIVITY CLAU~E. AT ThE TAG, THE PROGRA~ 
29 -READS THE FILE AND DECIDES WHEThER TO RESU~E PRINTING OR 
30 *tONTINUE ~AITING. 

* 
* 

31 
32 
l3 
311 
35 
36 
37 
38 
39 
4" 
41 

* *******~************~**** 
* * * 
* * TC USE: * 
* * ENTEFi TI1IS PROG"A" * 
* * FI<O~ HE COf.1PANICN * 
* * PI<OGRA~ "BLUEBEARD" * 
* * * 
* **~*****************-***. 
* 

42 FILE INVOICES 
43 KEY FOR INVOICES 15 b ASCII 
44 REtORD FOR INVOICES IS INV~EC 
45 LENGTH IS 79 
4b INCLUDES 1 NVNO 1 6 'ASC 11 
47 INCLUDES IMO~TH 7 2 ASCII 
4e lNCLUDES I~AY Q 2 ASCII 
4~ INCLUDES IYEAP 11 2 ASCII 
50 INCLUDES ~o 13 6 ASCII 
51 INCLUDES NAME 19 20 ASCII 
52 INCLUDES ADDRESS 3q 20 ASCII 
53 INCLUDES CITY 59 20 A5tlI 
5~ INCLUDES P~TFLG 7q 1 ASCII 
55 STOP 
56 RECORD FOR PASSING IS PDINTEREt 
57 LENGTH IS 15 
5~ INCLUDES PUIN'eR 1 & ASCII 
59 INCLUDES SIGNATURl 7 Q ASCII 
Le STOP 
el 
e2 
63 
64 
b5 
66 
67 
6e 
&If 

PROCESS 
PRUCESS 
PROCE.SS 
PROCeSS 
PROCESS 
PROC~SS 
PROCESS 

FILLt:H 
FILLER 
FILLER 
FILLER 
FILLER 
FILL~R 
FILLER 

AT 01 AND MjNE 
AT NCNE AND ROUTINE 
AT NONE AND ROUTIt-;E 
AT NONE AND "OUTINE 
AT NCNE AND ROUTINE 
AT NONE AND ROUTINE 
AT NONE AND ROUTINE 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

093-000151-01 Licensed Material-Property 01 Data General Corporation D-23 



Hi 
71 
72 
73 
71.l 
7') 
76 
77 
78 
79 
80 
HI 
82 
83 
81.l 
85 
86 
87 
8il 
89 
90 
91 
92 
93 
91.l 
95 
96 
97 
98 
99 
HI 1/1 
101 
Hl2 
103 
Ull.l 
HIS 
l1tl6 
107 
108 
11!9 
1 II! 
1 11 
112 
113 
1111 
115 
lib 
117 
118 
119 
120 
121 
122 
123 
124 
125 
12b 
127 
128 
129 
131/1 
131 
132 
133 
131.l 
135 

D-24 

PROCESS FILLtR AT ~G~E AND ROUTINE 
PROCESS FILLER AT ~ONE AND ROUTINE 
PROCESS FILLER AT NONE AN~ ROUTINE 
PROCESS FILLER AT NONE A~D ROUTINE 
PROCESS FILLER AT NONE A~D ROUTINE 
PRUCESS FILLER AT NONE AND ROUTINE 
PROCESS FILLER AT ~CNE AND ROUTINE 
PROCESS FILLER AT NONE A~D ROUTINE 
PROCESS rILLER AT ~CNE AND ROUTINE 
PROCESS FILLER AT ~ONE AND ROUTINE 
PROCESS FILLER AT ~CNE AND ROUTINE 
PROCESS FILLER AT NCNE AND ROUTINE 
PROCESS FILLER AT E20 AND NONE 

A3# PROCESS FILLER AT D21 AND ~ONE 
PROCESS FILLER AT D22 AND NCNE 
PROCESS INVNO AT D23 ~ND NO~E 
PROCESS ~ILLER AT 024 AND ~ONE 
PROCESS I~ONTH AT 025 A~D NONE 
PROCESS IDAY AT D2b AND NONE 
PROCESS IYEAR AT 027 AND ~ONE 
PROCESS FILLER AT D28 AND ~ONE 
PROCESS PO AT 029 AND ~ONE 

PROCESS NA~E AT 030 AND NONE 
PROCESS ADDRESS AT D31 AND NONE 
PROCESS CITY AT D32 AND NO~E 

A2# PROCtSS FILLER AT D33 A~D NONE 
Al# PROCESS FILLER AT 034 AND NONE 

REGISTER POINTER 9(6) 
REGISTER SELF A(9) GRAY~EARD 

REGISTER PPTFLG 9 
REGISTER SIGNATURE A(9) 
PRIORITY IS 3 
UN ESCAPE LOGOFF 
INACTIVITY CONSTA~T IS 
UN NO-ACTIVITY ROUTINE 

*FIELD ONE IS A DISPLAY FIELD. T~IS ALLO~S ALL 
*AVAILABLE RECORDS TO BE PROMPTLY PRINTED OUT BEFORE 
*T~E INACTIVITY FEATURE OF IDEA IS INVOKED. 

Dl: 

ABORT: 

ACCEPT POINTEREC 
COMPARE SIGNATU~E "SIGNATURE" 
IF EQUAL ROUTINE 

MESSAGE PLS ENTER VIA BLUEBEARD. POSITION PRINTHEAC t 
AT ROw 1 COLUMN 1 AND LOG O~ AGAIN. 

(,IUIT 

*FIELDS 2-19 ARE EDIT FIELDS LSED FOR ~AITING VIA THE 
*INACTIVITY FEATURE. IF T~ERE IS NCTHING TO PRINT BY 
*THE TIME FIELD 20 IS kEAC~ED, T~E PROGRA~ OUTPUTS A 
*Sl~ULATED FORM FEED (AT A2) AND ST~RTS O~ER. 

E20: 
RETURN A2 

*T~E NEXT FIELD ~ARKS T~E START OF PRINTI~G. THE RECORD 
*HAS ALRE~DY BEE~ FUUND AT "RCUTI~E". HERE IT IS REFILED ~ITH 
*THE PRINT FLAG SET, AND A Ll~E DF LITERAL ~EADING INFORMATION 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

Licensed Material-Property of Data General Corporation 093-000151 -01 



13b * IS PRINTED. 
137 
138 021: 
139 MOVE "1" PRlFLG 
1110 REFIlE INVREC USING POINTE~ 

1111 ADD "1" POINTER POI~TER 
1112 PASS POINHREC 
1113 DISPLAY "DATA GENERAL CORPORATION" 
111., RETURN 
1115 
Il1b 022: 
1117 DISPLAY "INVOICE NC." 
1118 RETURiIl 
1119 
150 023: 
151 DISPLAY IIIiVNCJ 
152 RETURN 
153 
1511 0211: 
155 DISPLAY "INVOICE DAH" 
15b RETURN 
157 
158 025: 
159 DISPLAY I~ONTH 
160 RETURN 
161 
162 o2b: 
163 DISPLAY IoAY 
lell RHURIIi 
le5 
16b 027: 
1e7 DISPLAY IYEAR 
le8 RETURN 
1b9 
170 028: 
171 DISPLAY "CUS10~E~ F.O." 
172 RETURN 
173 
1711 029 I 
175 DISPLAY PO 
17b RETURN 
177 
178 030: 
179 DISPLAY NAME 
lE"'! RETURN. 
181 
182 031: 
183 DISPLAY ADDRESS 
1811 RETURN 
185 
18e 032: 
187 DISPLAY CITY 
188 RETURN 
189 
190 
191 033: 
192 LIN~ USIiIlG SELF RElAIIIi INVOICES 
lq3 
1911 0311: 
195 MESSAGE GRAYBEARD LeGGED OFF BY DASHER OPERATOR 
19b QUIT 
197 
198 
199 LOGOFF: 
200 RETURN Al 
201 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

093-0001 51 -01 Licensed Malerial-Property of Data General Corporation 0-25 



202 
203 
204 
205 
20t1 
207 
208 
209 
210 
211 
212 
213 
214 
21S 
216 
217 
218 
219 
220 
2~1 
222 
22.3 
224 
US 
226 
227 
228 
229 
230 
231 
232 
23.3 
23lf 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 

FORMAT 

0-26 

* ******* 
* ROUTINE 
* ******* 
*ROUTINe IS eXECUTED ON ENT~Y TO THE PRUG~A~ AND EACH TIME 
*THE INACTIVITY CONSTANT IS US~D LP. THE PROG~A~ HAS BEEN 
*hAITING AT THE FIRST U~USEC CATABASE RECORD KEY. HERE 
*IT CHECKS TO SEe IF THE KEY HAS BEEN USED. IF IT HAS, 
*THE PRUGRAM READS THE RECO~D TO SEE IF IT HAS ALREADY BEE~ PRINTED. 
*IF NOT, CONT~OL PASSES TO THE PRINT IN' ROUTINE AT A3. 
*IF THE RECORO HAS AL~EADY BEeN P~INTED, THE ~ROGRAM CHECK~ 
*THE NEXT HIGHER KEY. 
* *IF THE PROGRAM FINDS A KE' UNUSED, IT RETURNS TO ITS ~AIT~~G 
*~OCE. 

* *ROUTINE ALSO CONTAINS A LOCP THAT ENABLES THE PROGRAM TO 
*SEARCH THROUGH ANY NUMBER OF PRINTED RECORDS ~ITHOUT USING 
*AN' PRINTEH PAPE~. THUS THE OPERATOR CAN I~ITIATE THE 
*PROGRAM'S POINTE~ AT "1" A~D LET T~E PROGRAM FIND ITS 
*O~N PLACE IN THE FILE. 
* *DURING THE ABOVE-MENTIONED ~OOP THE PROGRA~ PASSES THE POINTER 
*RECORD ONCE FOR EACH UNSUCCESSFUL SEARCH. ~HILE PERHAPS 
*A BIT FREE AND EASY wITH S'STEM RESOURCeS, THIS SERVES A PURPOSE, 
*wHICH IS TO ALLOn MONITORING OF THE POINTER (~ITH DASHDIAG) 
*AFTER THE SEARCH HAS ENDED wITH THE POINTER AT AN UNUSED KEY, 
*ANC ~ITH THE PROGRAM hAITI~G OUT ITS INACTIVITY CONSTANT. 

ROUTINE: 

RET: 

PRINTIT: 

FIND INVREC USING PCI~TER 
ON-IOERR RET 
COMPARE PRTFLG "1" 
IF NOT-EQUAL PRINTIT 
ADD "1" PCINTE~ POI~TER 
GO TO ROUTINE 

PASS POINHREC 
RETURN 

RETURN A3 

FINISH 
NOT LINKED 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

Licensed Material-Property of Data General Corporation 093-0001 51 -01 



GRAYBEAI'O 

FIELD PI'IYS./LOG. AUla- IiEG. FULL ~UTO-
NAME FIELOII OESCPIPTIO~ OISF EDIT GLTPUT CUFf ENTRY FIELD ENTRY SEC 

FILLER 1 1 X (1) * FILLER 2 2 X<1 ) * FILLER 3 3 x(1 ) * FILLER 1.1 " X (1) * FILLER 5 5 X (1) * FILLER 6 6 )(<1) * FILLER 7 7 X (1) * FILLER 8 8 X ( 1) * FILLER 9 9 )( (1) * FILLER 10 HI X (1) * FILLER 11 11 X (1) * FILLER 12 12 X(1) * FILLER 13 13 X(1 ) * FILLER 11.1 11.1 X (1) * 
~ILLER 15 15 X(1) * FILLER 16 1t1 X(1 ) * FILLER 17 17 )C (1) * FILLER 18 18 X(1) , * 
FILLER 19 19 X (1) * FILLER 20 20 X (1) * FILLER 21 21 X(24) * F ILLE.R 22 22 x (11) * I~Vt-<O 23 23 9(6) * F 1L LER 24 24 X (12) * 
I~Ot-<TI'I 25 25 9(2) * ICAY 26 26 9(2) * IYEAR 27 27 9(2) * FILLE.R 28 28 X(13) * PO 29 29 X(6) * ~;Mo1E 3~ 30 X(20) * 
~DORESS 31 31 X(20) * (ITY 32 32 X(20) * FILLER H 33 x (1) * FILLER 31.1 34 X (1) * 

Figure D-4. BL UEBEARD and GRA YBEARD (continued) 

093-0001 51 -01 Licensed Material-Property of Data General Corporation 0-27 



13:19:Sq 02/~3/78 
PRI~T OF FOR~AT: OASHOIAG 

****************** 
* 999999 * 
* INVOICE ~U~BER * 
**********-******* 

************************ * XXXXXXXXXXXXXXXXXXXX * 
. * NAffE * 
******.***************** 

************ 
* q9 99 99 * 
* DATE * 
************ 

************************ * XXXXXX~XXXXXXXXXXXXX * 
* ACDRESS * 
************************ 

********** 
* XXXXXX * 
* PO * 
********** 

************************ * XXXXXXXXXXXXXXXXXXXX * 
* CITY STATE ZIP * 
************************ 

PRINT FLAG ***** 
(1 :) RECORD HAS * 9 * 

ALREACY BEEN PRINTED) ***** 

*********** 
* 999999 * 
* POI~TER * 
*********** 

************ 
* AGAIN X * 
************ 

******************************************************************************* 
******************************************************************************* 
13:19:SQ 02/~1/78 
PRINT OF FORMAT: DASHOIAG 

PHYS./LOG. ·AUTO- REG. FULL AUTO-
FIELOM DESCRIPTIO~ DISP EOIT OUTPUT DUPE E~TRY FIELD ENTRY SEC 

1 1 9(E1l * 
2 2 9(2) * 
3 3 9(2) * 
Q 4 9(2) * 
5 5 X(o) * 
o 0 X(20) * 
7 7 X (20) * 
8 8 X(20) * 
9 9 9(1) * * 
10 10 9(0) * * 
11 11 XU) * 

FOR~AT ~OT LINKED 
FIRST LINE uSED: 1 
LAST Ll~E USED: 23 
AOS SY~lAX REV 01.01 DASHOIAG.VS DASHDIAG.UP 13:20:Q0 2/3/78 

1 
2 
3 
4 ~A~E DASHDIAG 
5 * 
6 *DASHDIAG IS USED FOR "DIAG~OSING" THE GROUP OF PROGRAMS 
7 *USED FOR PRI~TING ON THE DGCDASHER TER~INAL. IT READS 
8 *THE "INVOICES" DATA SASE RECORe ~RITTEN BY "DASHCRVR" AND 
9 *DISPLAYS THE DATA FOU~D THERE. THIS INCLUOES THE PRINT 
10 *FLAG. THE PROGRA~ GIVES T~E OPERATOR THE OPTICN OF 
11 *CHANGING THE PRINT FLAG. THUS IF THE FLAG HAS THE VALUE 
12 *OF "1" AND THE OPERATOR ft~~TS TO REPRINT T~E RECORD, 
13 *lHE VALUE MAY BE SET TO "en. 
lQ * 

FigureD-5. DASHDIAG 

0-28 Licensed Material-Property 01 Data General Corporation 093-000151-01 



15 *T~E PROGRAM ALSO READS THE COMMO~ FILE FOR THE RECORD FOR 
lb *PASSING USED BY THE DASHER TERMIhAL USI~G "DASHPRNT". FOR ·THE 
17 *PU~POSES OF TH~ PRESE~T PRCGRA~, T~E DAS~ER'S Lr~E NUMBER IS 08. 
18 *THUS, THE DASHER PASSING RECORD IS FILED U~DER THE KEYS 
19 *??FASSING??, 08. THE DASHE~ LSES ITS RECOR~ FOR PASSING 
20 *TO KEEP ITS PLACE AMONG T~E DAlA BASE RECORDS IT IS 
21 *PRINTING. THIS RECORD FO~ PASSI~G ~AY BE ~ESET TO 
22 *"1" TO ALLOW THE PROG~AM IC REPRI~T RECORDS ALREADY PRI~TED. 

23 * 
2~ FILES INVOIC~S, COMMGN 
25 KEY FOR INVOICES IS b ASCII 
ib RECCRD FOR INVOICES IS INV~EC 
27 LENGTH IS 79 
i8 INCLUDES INVNO 1 b ASCII 
29 INCLUDES IMONT~ 7 2 ASCII 
30 INCLUDES IDAY 9 2 ASCII 
31 INCLUDES IYEAR 11 2 ASCII 
32 INCLUDES PO 13 b ASCII 
33 INCLUDES NAME 19 20 ASCII 
3~ INCLUDES ADDRESS 39 20 ASCII 
35 INCLUDES CITY 59 20 ASCII 
3b INCLUDES PRTFLG 79 1 ASCII 
37 STOP 
38 
39 ~EY FOR COMMON IS 13 ASCII 
~0 SUBINDEX FOR COMMON IS LEVELl 
~1 KEY FOR LEVELl IS 2 ASCII 
42 RECCRD FOR LEVELl IS PASSREC 
~3 LENGTH IS 15 
~~ INCLUDES POI~lER b ASCII 
~5 STOP 
~b 

~7 PROCESS INVNO AT NONE A~D El 
~8 PROCESS IMONTH AT 02 A~D NOhE 
~9 PROCESS IDAY AT 03 AND NO~E 
50 PROCESS IYEAR AT D~ AND NONE 
51 PROCESS PO AT 05 AND NONE 
52 PROCESS NAME AT Lb AND NO~E 
53 PROCESS ADDRESS AT 07 AND NONE 
5~ PROCESS CITY AT 08 AND NO~E 
55 PROCESS PRTFLG AT 09 AND E9 
5b PROCESS POINTER AT D10 ANt E10 
57 PROCESS FlLLER AT NONE ANO Ell 
58 
59 
b0 REGISTER FIELD 9(2) 
bl REGISTER SELF A(8) DASHDIAG 
b2 
b3 
b~ t1: 
b5 STORE INVNO 
bb FIND INVREC US~NG INVNC 
b7 ON-IOERR D1B 
b8 RETURN 
b9 
70 
71 018: 
72 MESSAGE NO RECORD OF INVOICE. TRY AG~IN. 
73 RETURN USING FIELD 
7~ 
75 02: 
7b DISPLAY IMONJH 
77 RETURN 
78 

FigureD-5. DASHDIAG (continued) 

093-000151-01 Licensed Material·Property of Data General Corporation 0-29 



79 03: 
80 
81 
82 
83 04: 
84 
85 
8b 
87 05: 
88 
89 
90 
91 Of!: 
92 
93 
94 
95 07: 
9b 
97 
98 
9CJ 08: 
100 
101 
102 
103 091 
U4 
U5 
10b 
107 ECJ: 
U8 
109 
110 
111 
112 0101 
113 
114 
115 
11b 
117 E1fII: 
118 
119 
120 
121 
122 Ell: 
123 
124 
125 FINISH 

FORMAT NOT LINKED 

DASHDIAG 

DISPLAY IDAY 
RETURN 

DISPLAY IYEAR 
RETURN 

DISPLAY PO 
RETURN 

DISPLAY NAft.E 
RETURN 

DISPLAY ADDRESS 
RETURN 

DISPLAY CITY 
RETURN 

DISPLAY PRTFLG 
RE1URN USING FIELD 

STORE PRTFLG 
REFILE INVREC USING INV~O 
RETURN 

FIN~ THE PASSRlC USING "??PASS1NG??", "08" 
DISPLAY POINTER 
RE1URh USING FIELO 

STORE POINTER 
REFILE PASSREC USING "??PASSING??", "08" 
RETURN 

LINK USING SELF AND RETAIN INVOICES, CO~~ON 

fInD PI1YS./LOG. AUTO" REQ. FULL IAUTO .. 
NA~E FIELO. DESCRIPTION DUP EDIT OLJTPUT DUPE ENTRY FIELD ENTRY 'SEC 

INVNO 1 1 9(0) ,. 
I'-ONTH 2 2 9(2) ,. 
IDAY 3 3 9(2) ,. 
IYEAR 4 4 9(2) ,. 
PO 5 5 X(b) ,. 
NAME b b X(20) ,. 
ADDRESS 7 7 X(C!0) ,. 
CITY 8' 8 X(20) ,. 
PRTFLG q 9 q (1) ,. ,. 
POINTER 10 1I:l 9(b) ,. ,. 
FI~LER 11 11 X (1) ,. 

FigureD-5. DASHDIAG (continued) 

0-30 Licensed Malerial-Property 01 Data General Corporation 093-000151-01 



13:25:01 02/~3/78 
PRINT OF FORMAl: ~SPA7 

PATIE~T ~l~BER PAT1~NT ~A~E 

9999 XXXXXXXXXXXXXXXXXXXX 

NUMBER OF CHARGES ZZZ9 AMOU~T OF CHARGES 

PATlE'~T TYPE 

A 

.•........•........ --_ ........... -..... _ ..... -....... ---.. -.... __ .... -......... . 
ci1 

Dt:PT II 

99 

CHARliE " 

99 

l.OST CI::.SCRIPT'IUN DATE 

t5559.99 XXXXXXXXXXXXXXXXXXXX 99/99/99 

•....•.•...•.........•.•...•.................•.... -....... -.-.-.. -... _-.... _._.-
CHARGES ADDED AMOUNT 

ZZZ9 tSSSSi9.99 
HiT AL CHARGES 

ZZZ9 
TOTAL ·AMOUNT 
tUSSS9.99 

IF YOU HAVE MORE CHARGES STRI~E THE RETURN KEY, 
OTHERwISE ST~l~E ANY KEY AND THE RETURN KEY. 

X 

******************************************************************************* 
**.********.*.**.********.*.***** •• ******************************************** 
******************'**.*********************************************~*********** 
***'*'*******'*'***'*********************************************************** 
131Z5:01 01103/78 
PRINT OF FORMAT: HSPA7 

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELC. DESCRIPTION DISP ECIT OUTPUT D~PE ENTRY FIELD ENTRY SEC 

1 1 9(4) * 
Z Z X(20) * 
3 3 A(l) * 
4 4 9(4) * 
5 5 59(5).9(2) * 
b b 9(Z) * * 
7 7 9(2) * * 
8 8 59(3).9(2) * * 
9 9 X(20) * 
10 10 9(Z) * 
11 11 9(Z) * 
12 lZ 9(2) * 
13 13 9(2) * 
14 14 9(2) , 
15 15 9(4) * 
lb lb 59(5).9(2) * 
17 17 9(4) * 
18 18 59(5).9(2) * 
19 19 X(l) * 

'LINKED TD FO~MAT: H~ENU 
FIRST LlNE USED: 1 
LAST Ll~E USED: 23 
AOS SYNTAX REV 01.01 H5PA7.VS ~SPA7.~F 13:Z5:3b 2/3/78 

Figure D-6. HSPA 7 

093-0001 51 -01 Licensed Material-Property of Data General Corporation 0-31 



0-32 

1 
2 
3 
1I 
5 
b 
7 
e 
9 
10 
11 
12 
13 
III 
15 
Ib 
17 
18 
19 
20 
21 
22 
23 
211 
25 
2b 
27 
28 
29 
30 
31 
32 
33 
311 
35 
3b 
37 
38 
39 
40 
41 
1I2 
1I3 
1I4 
45 
4b 
1I7 
48 
49 
50 
51 
52 
53 
54 
55 
5b 
57 
58 
59 
be 
bl 
62 
tl3 
bll 
b5 

IIIA~E HSFA7.LP 
FILE HSPCB,HSPF~,HSFCH 

SUBI~DEX FOK HSPDS IS AFILE 
KEY FOR AFILE IS 4 ASCII 
KEY FOR HSPP~ IS 1I ASCII 
KEY FOR Hspec IS 1 ASCII 
KEY FOR HSPCH IS 1I ASCII 
DUPLICATES ARE COU~TED IN DUPI 
RECORD FOR HSPP~ IS PATREC 
BUFFER LE~GTH IS 10b 

I~CLUDES PATNO 1 
INCLUDES FATNAM 19 
INCLUOES PATTYP 7b 
INCLUDES PTCH~G 82 
INCLUDES PTCS~~ 8b 

4 ASC II 
20 ASCII 

1 ASCII 
1I ASC II 
8 ASCII 

STOP 
RECORD FOR AFILE IS DPTREC 
LENGTH IS 31 

INCLUDES DtPT 1 2 ASCII 
INCLUDES CHRG. 3 2 ASCII 
INCLUDES COST 5 b ASCII 
INCLUDES DESCRP 11 20 ASCII 

STOP 
RECORD FOR HSPCH IS CI"ARGE 
LENGTH IS 45 

INCLUDES PATNO 1 1I ASCI! 
INCLUDES DEFT 5 2 ASCII 
INCLUOES CHfiG. 7 2 ASCII 
INCLLJOES COST 9 b ASCII 
INCLUDES DESCRP 15 
INCLUDES ~Ofo<TH 35 
INCLUDES DAY 37 
INCLUDES YE'AR 39 
INCLUDES HOLRS 41 
INCLUDES ~INS 1I3 
INCLUDES PATTYF liS 

STOP 
UN SCREEN PRINT 
REGISTER DUMFLD X(lI) ABCD 
REGISTER FIELD 99 
,UGISTER ONE 9 1 
wEGISTER DUPI 9999 
REGISTER HOLD 9999 
REDESIGNATE HOLD 

DEPT 1 2 
CHRG# 3 2 

STOP 
REGISTER ZERO 9 
REGISTER tlLANK X 
REGISTER ( X C 

20 ASCII 
2 ASCII 
2 A'SC II 
2 ASCII 
2 ASCII 
2 ASCII 
1 ASCII 

REGISTER HMENU XXXXX HMENU 
*************************************** 
PROCESS PATNO AT NO~E AND Al 
PROCESS PATfo<AM AT A2 AND fo<O~E 
PROCESS PATTYP AT A! AND NOfo<E 
PROCESS PTCHRG AT All AND ~O~E 
PROCESS PTCSU~ AT AS AIIID ~O~E 

PROCESS FILLtfi AT I\(NE AND -AS 
PROCESS FILLER AT NCNE ANe ,A9 
PROCESS COST AT A10 AND A10A 
PROCESS DESCRP AT All AND NONE 
PRUCESS MONTH AT AliA AND NCNE 
PROCESS DAY AT Aile AND NONE 
PROCESS YEAR AT AIIC AND ~ONE 
PROCESS HUURS AT All0 AND NONE 

Figure D-6. HSPA 7 (continued) 

Licensed Material-Property of Data General Corporation 093-0001 51-01 



ee 
e7 
ee 
6Cl 
70 
71 
72 
71 
74 
75 
7C 
77 
78 
79 
8i1 
81 
82 
83 
84 
85 
8e 
87 
88 
89 
ClI/J 
91 
Cl2 
93 
94 
95 
ge 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
12b 
127 
128 
129 
130 

093-000151-01 

PROC~SS MINS ~T Ali~ ANU ~O~E 
PROCESS NuMl AT A12 A~O NO~E 
PROCESS A~T AT A13 AND NO~E 
PROCESS CHARG AT A14 AND NONE 
PROCESS NUM3 ~T A15 AND NONE 
PROCESS ANS1 AT NONE ~ND A16 
***************************************** 
Al: STOR~ PATNC 

FINO AND ~OLD PATREC USING PATNO 
ON-IOERR ~SGI 
RETURN 

A2: DISPLAY PAT~A~ 
RE TUR~J 

A3: DISPLAY PATTYF 
RETURN 

A4: DISPLAY P1C~RG 
RETURN. 

A5: DISPLAY PTCSU~ 
MOVE ZfRO A,..T 
MovE ZH'O C~ARG 
RETURN 

A8: STORE DEPT 
COMPARE DEPT "0S" 
lF EQUAL RN.15 
RETURfII 

A9: SlORE CHRG# 
FINO DPTREC uSING C,HOLD 
ON-IOERR ~SG2 
RETURN 

A10: DISPLAY COSl 
RETURN 

AISA: STORE COST 
ADO COST A~T A~T 
ADO ONE CHARG CHARG 
RETURN 10 

All: DISPLAY DESCRP 
·RETUR",8 

AIlA: DISPLAY MONT~ 
RETURN 

AIIB: DISPLAY DAY 
RE1URN 

AIIC: DISPLAY YEAR 
RETURN 

AllO: DISPLAY HOURS 
RETuRN 

A1lE: DISPLAY MINS 
FILE-NE~ C~ARGE USING PATNO 
ON-IOERR ~SG3 
RE.TURN 

A12: DISPLAY CHARG 
ADO CMARG PTCHRG PTCHRG 
RE1URN 

A13: DISPLAY A~T 
ACD AMT PTC5U'" PTCSuM 
RETURN 

A14: DISPLAY P1C~RG 
RETURN 

A15: DISPLAY PTCSU'" 
REFILE PATREC USI~G PATNO 
ON-IOERR ,..SG4 
RETURN 

Al6: STORE ANS1 
COMPARE ANSlaLANK 
IF EQUAL NEXT 
LINK USING ~MENU RETAIN HSPOB,HSPPM,HSPCH 

Figure D-6. HSPA 7 (continued) 

Licensed Material-Property of Data General Corporation 0-33 



131 ~5Gl: CO~PARE IOERR "9U" 
132 IF EQUAL Fetec 
133 ~ESSAGE c7> PATIE~T t-IOT O~ FILE 
134 FlTN1: RETURN 1 
135 RLOC: ~ESSAGE <7> RECORD I~ USE-- T~Y L'ATER. 
130 GO TO ~H.l 

137 ~5G2: ~E55AGE c7> DEPART~ENT-CHARGE NU~BER NOT Oh FILE 
138 RETURN 0 
139 MSG3: f'~5SAGE c7> C~ARGE FILE E~ROR CALL SUPERVISOR 
140 QUIT 
141 M5G4: ft'E55AGE c7> PATIE~T ~ASTER REFILE E~ROR - OALL SUPE'RVISDR 
142 QuIT 
143 RTN15: RETURN 15 
lU4 NEXT: RESTART 
145 PIHNT: ~E55AGE <10><21> 
1/10 RETURN USING FIELD 
147 FINISH 

FORMAT LINI<ED TO MME~U 

H5PA7 

FIELD PHYS./LOG. AUTO- RECI. FULL AUTO-
r-.Afo!E FIELD. DESCRIPTION OISP EDIT OLTPUT DUn ENTRY FIELD ENTRY SEC 

PATNO 1 1 9(11) It 

PATNAM 2 2 X(20) It 

PATTYP 3 3 x (1) It 

PTCHRG 4 /I 9(4) It 

PTC5UM 5 5 59(5).9(2) It 

FILLER 0 b 9(2) * It 

FILLER 7 7 9(2) It It 

COS1 8 8 59(3).9(2) It It 

DESCRP 9 9 X-( 20) It 

MONTH 10 10 9(2) * DAY 11 11 9(2) It 

YE loR Ie? 12 9(2) It 

HCURS 13 13 9(2) * MIN5 14 111 9(2) * t.l;fwi 1 15 15 9(4) * A"T 16 10 59(5).9(2) * Ct1ARG 17 17 9(4) * 
~UM3 18 18 S9{5).9(2) It 

ANSI 19 19 X (1) It 

Figure D-6. HSPA 7 (continued) 

0-34 Licensed Material-Property of Data General Corporation 093-0001 51 -01 



lb:2~:33 02/03/78 
PRI~T OF FORMAT: BIGFOOT 

LARG~-L~TTtR DISPLAY 

f>'ESSAGE xxxxxxxx 

~ XX.XXX.XXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXX,XXXXXXX.XX •••• XXXXXXXXXXXXXX~. 

~~lER "Y" FUR LI~£ Fkl~TER CUTPLT 

*****************.* ••••••• *.***************************************** •• ** •• * ••• 
BIGFOOT 
* •••• ** 

BIGFOOT ACC~PTS AN OP~RATUR MESSAG~ A~D SCROLLS IT AS A ~ARG~-LETTER 
DISPLAY. IT ~ILL PRODUCE LI~E PRINTER OUTPUT OF T~E LARGE-LETTER 
f>'ESSAGE AT THE OPTION OF THE OPERATOR. 

KeY TO FIELOS 
*** •• * •• *** •• 

1. ACCEFTS INPUT FROM THE KEYB0ARD. 
CHECKS ·IhPUT AGAINST ALPHABET AVAILABLE: I~ BIGFOOT REFERTOIRE. 
~HEN IhPUT IS ACCEPTABL~, INITIATES PRI~TI~G AND IhITIALIZES 
SCROLL VARIABLES. 

2. SCROLLS f>'ESSAGE IN LETTERS 7 LI~ES HIGH 

3. TIDIES UF PRINTING RECORDS IN A OISPLAY ROUTINE. 
RETURNS TD SE~ ~HETH~R TO ORDER LIN~ PRINTER OUTFUT 
QUEU~S CLI COM~AND TU GPRINT IF SO ORDERED • 

• *.*.**.* •• *** ••••••• * •• **.* •••••••• * •••• *** ••• * •••• * •••••••• *.*** ••• * •• *** •• *. 
16:20:33 02/03/78 
PRINT OF FORMAT: BIGFOOT 

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELC# DESCRIPTION DISP EOIT OUTFUT DUPE ENTRY FIELD ENTRY SEC 

1 1 X(8) • 
2 2 X (70) • 
3 3 A(IJ •• 

LINKED TO FCRMAr: ~IGFOOT 
FIRST LINE LSED: 1 
LAST LINE USED: 20 
ADS SYNTAX REV 01.01 BIGFOOT.VS BIGFOOT.UP 16:22:20 2/3/78 

Figure D-7. BIGFOOT 

093-000151-01 Licensed Material-Property of Data General Corporation D-35 



1 ************** 
2 NA~E BIGFOOT * 
3 ************** 
II 
5 RECORD FOR PRINTING IS PRINTREC 
b LENGTH IS 70 
7 INCLUDES MESSAGE 70 ASCII 
8 STOP 
9 RECORD FOR PRINTING IS DATEREC 
10 LENGTH 15 8 
11 INCLUDES DATE 8 ASCII 
12 STOP 
13 RECORD FOR PRINTING IS ENDSCROLL 
111 LENGTH IS 1 
15 INCLUDES "i" 1 ASCII 
1b SlOP 
17 
18 ******************** 
19 * REGISTER SECTION * 
20 ******************** 
21 
22 REGISTER SCRLLKNT 9(1) 
23 REGISTER FLDPTR 9(1) 
211 REGISTER LETTER X(l) 
25 REGISTER FIELD 9(2) 
2b REGISTER PTR 9(3) 
27 REGISTER DATE XeS) 00/00/00 
28 REDESIGNATE DATE 
29 MONTH 1 2 
30 OAY II 2 
31 YEAR 7 Z 
32 STOP 
33 REGISTER PTITLE X(b) P~I1LE 
311 REGISTER CLI X(Z0) XEQ PRINTF PTITLE 99 
35 REDESIGNATE CLI 
3b CRTNO 19 Z 
37 STOP 
38 REGISTER CRT 9(Z) 
39 COpy ALPHASOUP 
110 *RDCS FILE ALPHASOUP 
111 REGISTER MESSAGE X(70) 
liZ *USED TO SCROLl A DISPLAY CF LARGE LETTERS 
113 REDESIGNATE MESSAGE 
1111 FLDl 1 7 
115 FLD2 10 7 
lib FLD3 19 7 
117 FLDII 28 7 
118 FLD5 37 7 
49 FLDb 4b 7 
50 FLD7 55 7 
51 FLD8 bll 7 
52 STOP 
53 
511 REGISTER JERRYHALL X(8) 
55 REDESIGNATE JERRYHALL 
5b Ll 1 1 
57 LZ 2 1 
58 L3 3 1 
59 L4 II 1 
b0 L5 5 1 
b1 Lb b 1 
b2 L7 7 1 
b3 L8 8 1 
bll STOP 

Figure D-7. BIGFOOT (continued) 

0-36 Licensed Material·Property of Data General Corporation 093-000151·01 



CIS 
6b HBLE LETTERS 
b7 *USED TO COLLECT I~PUT FOR LARGE-C~ARACTER 
b8 *"ESSAGEJ AS, 'STORE Ll' 
b9 
70 Ll 

.71 L2 
72 L3 
73 L4 
74 L5 
75 L6 
76 L7 
77 L8 
78 ENOTABLE 
79 
80 TABLE DISPFLD 
81 *USED TO ASSEMBLE VALUES FOR A SCROLL LINE 
82 
83 FLDl 
84 FLD2 
85 FL03 
8b FL04 
87 FLOS 
88 FL06 
89 FL07 
90 FL08 
91 ENOTABLE 
92 
93 
94 TABLE ALPHABET 
95 *USED TO LOOK UP INPUT CHARACTERS F.OR MESSAGE 
96 
97 
98 " " *ALPHl 
99 "0" dLPH2 
100 "1" *ALPH3 
101 "2" dLPH4 
le2 "3;0 *ALPH5 
103 "4" *ALPt16 
104 "5" *ALPH7 
105 "b" *ALPH8 
106 "7" *ALPH9 
107 "8" dLPH10 
108 "9" *ALPHll 
109 "A" *ALPH12 
110 "B" *ALPHll 
111 "C" *ALPH14 
112 "0" *ALPH15 
113 "E" *ALPH16 
114 "F" *ALPH17 
115 "G" .*ALPH18 
116 "11" dLPH19 
117 "I" dLPH20 
118 "J" *ALPH21 
119 "K" *ALPH22 
120 "L" *ALPH-23 
121 "~" dLPH24 
122 "N" *ALPH25 
123 "0" *ALPH2b 
124 "P" dLPH27 
125 "Q" *ALPH28 
12b "R" *ALPH29 
127 "S" dLPH30 
128 "T" *ALPH31 
129 "U" dLPH32 
130 "V" *ALPH33 

Figure D-7. BIGFOOT (continued) 

093-000151-01 Licensed Material-Property of Data General Corporation 0-37 



131 
132 
133 
134 
13S 
130 
137 
136 
139 
1110 
1111 
142 
1113 
1411 
IllS 
1110 
1117 
1118 
ll1q 
IS0 
151 
152 
153 
IS11 
155 
150 
157 
158 
lSq 
101rl 
101 
102 
103 
1011 
105 
100 
107 
108 
10q 
170 
171 
172 
173 
1711 
175 
170 
177 
178 
179 
180 
181 
182 
183 
1811 
185 
180 
187 
188 
18q 
1q0 
lql 
lq2 
lq3 

0-38 

"1\" *ALPH311 
")(" *ALPH3S 
"y" *ALPH30 
"z" *ALPH37 
"." *ALPH38 
ENDTABLE 
TABLE ALPHALPHA 

" 
" 
" 
" 
" 

" 
000 " 

o 0 
o Id 0 

"0 0 0 
"0 0 0 
"0 0 
" 001d 
" 11111 
" 1 11 
" 11 
" 11 
" 11 
" 11 
"1111111" 
" 22222 " 
"22 22" 
" 22" 
" 22 
" 22 
" il2 
"2222222 

333333 
33 

33 
33 

33 
33 33 

,53333 
1111 1111 

"1111 114 
"1111 411 
"411111141111 
" 44 
" 411 
" 44 
"5555555 
"55 
"55 
" 55555 
" 55 
"5 55" 
" 55S55 " 
" 600bo " 
"66 6b" 
"b6 " 
"bbbb60 " 
"00 60" 
"c6 .&0" 
" bbb60 " 

Figure D-7. BIGFOOT (continued) 

LiceAMd Malerlaf-Property of Data General Corporation 093-0001 51-01 



1'~4 "7777777" 
1'~5 " 77" 
19b " 77" 
197 " 77 " 
198 " 77 " 199 " 77 " 
200 "77 " 
201 " 88888 " 
202 "8b 88" 
203 "88 88" 
204 " 88888 " 
205 "88 88" 
200 "88 88" 
207 " 88888 " 
208 " 99999 " 
209 "99 99" 
210 "99 99" 
211 " qq9999" 
21~ " 99" 
213 "99 99" 
214 " 99999 " 
215 " AAA " 
21b " 1111 AA " 
217 "1111 AA" 
218 "IIAAAIIAA" 
219 "AA AA 
220 "AA AA 
221 "IIA AA 
222 "BBBStiS 
223 "Btl BS 
224 "BB BB 
225 "BBBBBB 
22b "BB BB 
227 "BB BB 
228 "BBBBBB " 
229 " eee " 
230 " ee ee" 
231 "ee 
232 "ee 
233 nee ee 
234 " ee ee 
235 " ecce 
23b "00000 
237 "DO 00 
238 "DO DO 
239 "DO DO 
240 "DO DO" 
241 "DO DO " 
242 "00000 " 
243 "EEEEEEE" 
244 "EE " 
245 "EE " 
24b "HHE " 
247 "EE " 
2118 "EE " 24q "EEEEEEE" 
250 "FFFFFFF" 
251 "FF " 
252 "FF " 
253 "FFFFF " 
254 "FF " 
255 "FF " 
250 "FF " 

Figure D-7. BIGFOOT (continued) 

093-000151-01 Licensed Material-Property 01 Data General Corporation 0-39 



257 " GGGGG " 
258 "GG GG" 
259 "IIG " 
2b" "GG GGGG" 
2b1 "GG GG" 
2b2 "GG GG" 
2b3 " GGGGG " 
264 "HH HH" 
2b5 "HH HH" 
2bb "HH HH" 
267 "HHHHHHH" 
268 "HH HH" 
269 "HH HH" 
270 "HH HH" 
271 "IlIlll " 
272 " II " 
273 " II " 
274 " 11 " 
275 " II " 
276 " II " 
277 "IIIIlI " 
278 " JJJJJJ" 
279 " JJ " 
280 " JJ " 
2n " JJ " 
282 "JJ JJ " 
2el " JJJJ " 284 " JJ " 
285 "KK KK" 
286 "KI< KK " 
287 "KK KK . " 
288 "KI<KI< " 
289 "KK KK " 
290 "KK KK " 
291 "I<K 1<1<" 
292 "ll " 
293 "Ll " 
294 "lL " 
295 all " 
296 all " 
2en "ll " 298 "LllLLll" 
299 "~M 101,.," 
300 "M,., 101M" 
3e1 ",., ~ M ,.," 
302 "M M M" 
303 ,,~ M M" 
304 ",., M" 
31/J5 "M III" 
386 "N N" 
307 "NN N" 
31/J8 "N Pi N" 
309 "N N N" 
3U1 "N N N" 
311 "N NN" 
312 "N N" 
311 " 000 • 
314 " 00 00 • 
315 "00 00" 
31b "00 00" 
317 "00 00" 
318 " OC; 00 " 
319 " 000 " 

Figure D-7. BIGFOOT (continued) 

0-40 Licensed Material-Property of Data General Corporation 093-000151-01 



320 "pppppp " 
321 "pp PP" 
322 "PP PP" 
323 "PPPPPP " 
324 "PP " 
325 "PP " 
320 "PP " 
327 " QQQ " 
328 " Q Q " 
329 "g Q" 
330 "Q Q" 
331 "Iii Q Q" 
332 " Q QQ " 
333 " GQQ Q" 
334 "RRRRRR " 
335 "RR RR" 
330 "RR RR" 
337 "RRRRR " 
338 "RR RR " 
339 "RR RR " 
31.10 "RR RR" 
31.11 " SSSSS " 
342 "SS 55" 
31.13 " SS " 
31.11.1 " 55 " 
31.15 " 55 " 
31.10 "SS 55" 
31.17 " SSSSS " 
31.18 "TTTTTTT" 
31.19 " TT " 
350 " TT " 
351 " TT " 
352 " TT H 

353 " TT H 

351.1 " TT " 
355 "uu UU" 
350 "uu UU" 
357 "UU UU" 
358 "UU UU" 
359 "UU UU" 
300 "UU UU" 
3bl " Ul/UUU " 
3b2 "VV VV" 
303 "VV VV" 
301.1 H VII VV " 
305 " VII VV " 
3bb " VVV " 
3b7 " V " 
3b8 " V " 
3b9 "w w" 
370 "w wH 

371 "w w wIt 
372 "1\ W WH 

373 "w 1\ W w" 
371.1 "1\1\ wW" 
375 "1\1\ ww" 
37b "XX XX" 
377 " XX xx " 
378 " XXX " 
379 " X " 
380 " XXX " 
381 " XX XX " 
382 "XX XX" 
383 "VY VY" 

Figure D-7. BIGFOOT (continued) 

093-000151-01 Licensed Material-Properly 01 Data General Corporation 0-41 



384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
1114 
415 
41& 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
1141 
442 
443 
1144 

0-42 

"VYVY" 
" y y " 
" y " 
" Y " 
" Y " 
" Y n 

"ZZZZZZZ" 
" ZZ" 
" i.Z" 
" ZZ " 
"ZZ " 
"ZZ " 
"ZZZZZZZ" 
" " 
" 
" 
" 
" 
"PPP 
"PPF 
ENOTABLE 

" 
" 
" 
" 
" 
" 

******************* 
* P~OCESS SECTION * 
******************* 

PROCESS FILLE~ AT hGNE ANC El 
P~OCESS fILLER AT 02 AND NONE 

A3* PROCESS CO~MANO AT C3 AND £3 

********************** 
* EXECUTABLE SECTION * 
*******************.*. 

El: 

EU: 

STORE JER~YHALL 
MOVE "1" FLDPT~ 

MOVE LETTERS (FLDPT~) TO LETTER *CHECK ~ESSAGE AGAI~ST 

NG: 

E1B: 

LOOKUP IN ALPHABET LETTE~ *LEGITl~ATE ALPhABET 
COMPARE ENTRY "00" 
IF EQUAL NG 
ADD "1" fLDPTR FLCPT~ 
CO~PARE FLDPTR "8" 
IF GREATER E1B *~ESSAGE IS NOW IN 'LETTf~S' 
GO TO E1A *(SEE 'ALPHASOUP') 

MESSAGE CHAPACTE~ hOT IN CU~RENT ALPHABET. PLEASE RE.ENTE~. 
PETURN 1 

MOVE "1" SCRLLKNl .INITIALIZE SC~OLL VA~lABLEE 
MOVE "1" FLDPT~ 
INITIATE P~INTING USING PTITLE 
RElURN *GO TO SC~OLL FIELD 

Figure p-7. BIGFOOT (continued) 

Licensed Mateolal-Property of Data General Corporation 093-0001 51 -01 



1145 
44b 
447 
448 
44q 
450 
451 
452 
453 
454 
455 
456 
457 
458 
4Sq 
460 
461 
462 
4b3 
464 
4b5 
4bl:> 
467 
4b8 
4b9 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
4e~ 

D2: 

D2A: 

03: 

U: 

MOVE LETTERS (FLDPTI<) TO 
LOUKUP ALPHABET LETTER 
SUBTRACT "1" ENTRY PTR 
MULTIPLY PTR "7" PTI< 
ADD SCRLLKNT PTI< PTI< 

MOvE ALPHALPHA (PH) TO 

ADD "1" FLDPlR FLDPTR 
COMPARE FLDPTR "q" 
If LESS 02 

DISPLAY I-IESSAGE 

LETTER 

DISFFLD 

PRINT PRINTREC USI~G PTITLE 
ADD "1" SCRLLKNT SCI<LLKNT 
COMPARE SCRLLKNT "7" 
IF GREATER D2A 
RETURN 

RETURN A3 

PRINT ENDSCROLL USING PTITLE 
PRINT DATEREC USING PTITLE 
TERMINATE PRINTING USING PTITlE 
RETURN USING FIELD 

STORE CO""iAND 
COMPARE COMI-IAND "yo 
IF NOT-EQUAL f3A 
MOVE CRT CRTNO 

't 

-THE SC~CLL FIELD 

-SYNCHRONIZE 'SUBSCRIPTS' FCR 
*2-D ARRAY LOOKUP A~D 
*RETRIEVE PART OF LETTER 

(HDPTR) 

*LOOP TER~INATION LOGIC 
*STEP PO~NTER THROUGH 8 FIELDS 
*OF DISPLAY 

*SCROLL 7 LINES OF DISPLAY 
*AND ~RITE TO PRINT FILE 

*FIELD A3 IS OUTSIDE 
*THE SCRCLL AREA 

*NE~TEN UP, YOU'RE OUl 
*OF THE SCROLL AREA 

.DOES THIS GUY ~ANT 

*LI~E PRINTER OUTPUT OR NCT? 

** •• ~ARNING--FIELDS OF INCOMPATIBLE TYPE. ALP'hA FU~CTlON 'ASSU~ED 

4el QUEUE CLI 
462 E3A: 
483 RETURN *RESTARTS USING FOR"AT LD~K 
484 
485 FINISH 

FORMAT LINKED TO BIGFOOT 

BIGFOOT 

PhYS./lOG. AUTO- PEG. FULL AUTO-rIElD 
NA~E FIELD~ DESCRIPTION DISF EDIT CLTPUT DUFE E~TRY FIELD ENTRY SEC 

FILLER 
FIllER 
CCM~AND 

14:40:32 
PRINT OF 

1 1 
2 2 
3 3 

xes) 
X(7r.l) 
X (1) 

02nl2178 
FO"MAT: PTITLE 

• 
* 

* 

* 

i XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX~XXXXXXXXXXXxXXX~X 

Figure D-7. BIGFOOT (continued) 

093·000151-01 Licensed Material-Property of Data General Corporation D-43 



DAn xxxxxxxx 

IDEA INTERACTI~E DATA ENTRY-ACCESS 
14:40:32 02/02/78 
PRlNT OF FORMAT: PTITLE 

PHYS./LOG. AUTO- REG. FULL AUTO-
FlELD_ DESCRIPTION DISP EDIT OUTFUT DUPE ENTPY FIELD ENTRY SEC 

1 '" X(70) 
2 0 X(8) 

FOR~AT ~OT LINKED 
FIRST LINE USED: 1 
LAST L~~E USED: 38 

0-44 

Figure D-7. BIGFOOT (continued) 

Licensed" Malerlal-Property of Data General Corporation 093-000151-01 



1b125:48 02/03/78 
P~I~T OF FORMAT: CRAIGS 

E.XA~PLE FCR.,AT 

DATA GENERAL CU~ULATIVE CO.,PUTER SHIPM~~TS 
DATA COLLEClIO~ 

GRAPHIC CHARACTERS : )XX) 

TITLE CENTERED bET~EEN C~RETS S~O~N bELO~ 

XX)XXXXXXXXXXXXXXXXX)XXXXXXXXXX))XXXXXXXXXXXXXX 

" l' 

ENTER 0 YEARS ON FIRST LINE BELO~ T~E DOTS, THEN DATA FOR EACH YEAR . . . . . ... . . . . 
ZZZq ZZZq ZZZq 

ZZZ,ZZ9 ZZZ,ZZ9 ZZZ,ZZ9 

HIGHEST NU.,BER TO APPEAR ON THE GRAPH 

.... 
lZZq 

ZZZ,ZZq 

ZZZ,ZZ9 

zzzq 
zzz,zzq 

ZZZq 

ZZZ,ZZq 

******************************************************************************* 
******************************************************************************* 
16:25:48 02/~3/78 
PRINT OF FORMAT: CRAIGS 

PHYS./LOG. AUTO- REG. FULL AUTO-
FIELD. DESCRIPTIO~ DISF ELIT OLTFUT DUPE ENTRY FIELD ENTRY SEC 

1 1 X(4) * * * 
2 2 X (47) * 
3 3 '1(4) * * 
4 4 '1(4) * * 
5 5 '9(4) * * 
o 0 9(4) * * 
7 7 9(4) * * 
8 8 9(4) * * 
CI 9 CI(o) * * 
10 10 CI(o) * * 
11 11 9(0) * * 
12 12 CI(o) * * 
13 13 CI(o) * * 
14 14 9(b) * * 
15 15 9(0) * * 

LINKEO TO FO~MAT: BARGRAPH 
FIRST LINE USED: 1 
LAST L~~E USED: 23 
AOS SYNTAX REV 01.01 C~AIGS.VS CRAIGS.UP 10:20:20 2/3/78 

Figure D-8. CRAIGS and BAR GRAPH 

093-000151-01 .. 
Licensed Material-Property of Data General Corporation D-45 



1 
2 
3 * II * 5 * 0 * 7 * 8 * 9 
10 
11 
12 
13 
111 
15 
10 
17 
18 
19 
20 
21 
22 
23 
211 
25 
20 
27 
28 
29 
30 
31 
32 
33 
311 
35 
30 
37 
38 
39 
110 
111 
112 
113 
1111 
115 
110 
117 
118 
49 
50 
51 
52 
53 
511 
55 
50 
57 
58 
59 
00 
01 
02 
03 

D-46 

THIS PROGRA~ COLLECTS DATA FOR THE BARGRAPH PROGRA~ AND T~EN 

LINKS TO n 

NAME GRAPHDATA 

REeD FOR PASSING IS PASS-REC 
LENGTH IS 129 

STOP 

INCL YEAR-1972 1 0 ASCII 
INel YEAR-1973 8 0 ASCII 
I~CL YEAR-19711 15 0 ASCII 
INCL YEAR-1975 22 0 ASCII 
INCL YEAR-1970 29 0 ASCII 
INeL YEAR-1977 30 0 ASCII 
INCL TITLE 113 117 ASCII 
INCL GRAPHIC 90 II ASCII 
INCL MAX 94 0 ASCII 
INCL YEAR 1 1~~ II ASCII 
INCL YEAR2 105 II ASCII 
INCL YEAR3 110 II ASCII 
INCL YEARII 115 II ASCII 
INCL YEARS 120 II ASCII 
INCL YEARo 125 II ASCII 

PRoe FILLER AT DGRAPHleAND EGRAPHIC 
PROC TITLE AT NONE AND ETITLE 
PRoe YEAR1 AT NONE AND EYEAR1 
PRoe YEAR2 AT NONE AND EYEAR2 
PRoe YEAR! AT N~NE AND EYEAR3 
PRoe YEARII AT NONE AND EYEARII 
PRoe YEARS AT NONE AND EYEAR5 
PROC YEARo AT NONE AND EYEARo 
PRoe FILLER AT 01972 AND E1972 
PRoe FILLER AT 01973 AND £1973 
PRoe FILLER AT D19711 AND £19711 
PRoe FILLER AT 01975 AND E1975 
PRoe FILLER AT D197b AND E1970 
PRoe FILLER AT 01977 AND E1977 
PROC FILLER AT DHIGh AND EHIGh 

REG DATA-VALUt 9(0) 
REG MAX (/(b) 

REGISTER GRAPHIC X(4) **** 
REGISTER FIELD 9(2) 

REGISTER YEAR-1972 !feb) 5500 
REGISTER YEAR-1973 9(0) 11000 
REGISTER ~EAR-19711 ~l( 0) lq3~0 

REGISTER YEAR-1975 'Ho) 25500 
REGISTER VEAR-1970 9(0) 33900 
REGISTER YEAR-1977 9(0) 44500 

Figure D-8. CRAIGS and BAR GRAPH (continued) 

Licensed Material·Property of Data General Corporation 093-0001 51 -01 



bll 
b5 
bb 
b7 
b8 
b9 
70 
71 
72 
73 
711 
75 
7b 
77 
78 
H 
80 
81 
82 
83 
811 
85 
8b 
87 
88 
89 
90 
91 
92 
93 
911 
95 
9b 
97 
98 
99 
100 
101 
102 
103 
1011 
105 
10b 
107 
108 
109 
110 
111 
112 
113 
1111 
115 
lib 
117 
118 
119 
120 
121 
122 
123 
1211 
125 
12b 
127 

093-000151-01 

* * THE PROCESSING IS TO STORE THE DATA IN T~E PASSING RECO~D 

* 
ETITLE: STORE TITLE 

RETURN 

DGRAPHIC: 
DISPLAY GRAPHIL 
RETURN USING FIELD 

EGRAPHIC: 

EYEARl: 

EYEAR2: 

EYEAR3: 

EYEARII~ 

EYtAR5: 

EYEARb: 

STORE GRAPHIC 
RETURN 

STOFIE YEARI 
RETURN 

SlORE YEAR2 
RETURN 

STORE YEAR3 
RETURN 

SlORE YEAI<II 
RETURN 

SlORE YEAR~ 
RETURN 

STORE YEARb 
RETURN 

01972: DISPLAY YEAR-1972 
RETURN USING FIELD 

E1972: STORE YEAR-1972 
MOVE YEAR-1972 TO ~AX 
RETURN 

D1973: DISPLAY YEAR-1973 
RETURN USING FIELD 

E1973: STORE YEAR-1973 
MOVE YEAR-1973 TO D~TA-VALUE 
PERfORM SETrvAX 
RETURN 

019711: DISPLAY YEAR-19711 
RETURN USING FIELD 

E19711: SlURE YEAR-19711 
MOVE YEAR-19711 TO DAlA-VALUE 
PERFORM SElMAX 
RETURN 

01975: DISPLAY YEAR-1975 
RElURN USING FJELD 

Figure D-8. CRAIGS and BAR GRAPH (continued) 

Licensed Material-Property of Data General Corporation D-47 



0-48 

128 
129 
130 
131 
132 
133 
134 
135 
130 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
lO4 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 

E197S: STORE YEA~-J975 
MOVE YEAR-1975 TO DATA-VALUE 
PERFORM SE1MAX 
RETURN 

01970: ~ISPLAY 'EAR-1970 
RETUkN USING FIELD 

E1970: STURE YEAR-1976 
MOVE YEAR-1976 TO DA1A-VALUE 
HRFORM SETMAX 
RETURN 

01977: DISPLAY YEAR-1977 
RETURN USING FIELD 

E1977: STORE YEAR-1977 
MOVE YEAR-1977 TO DATA-VALUE 
PERFURM SETMAX 
RETURN 

SUBROUTINE SETMAX 

COMPARE DATA-VALUE ~AX 
IF LESS ENDSETMAX 

MOVEDATA : 
MOVE DATA~VALUE TO ~AX 

ENDSETMAX: 

DHIGH: 

EHIGH: 

ENDSUB 

DISPLAY MAX 
RETURN USING FIELD 

STOkE DATA-VALUE 
COMPARE MAX DATA-VALUE 
IF GREATER BAD-DATA 
COMPAkE DATA-VALUE "20" 
IF GREATER LINK-A~AY 
MOVE "20" TO UATA-~~LUE 

LINK-AwAY: 
MOVE DATA-VALUE TO ~AX 
PASS PASS-REC 
RETURN 

BAO-UATA.: 
MOVE MAX TO DATA-VALUE 
GO TO LINK-AWAY 

****"FINISH" NOT FOUNO--INSERTING "FINISH" 

FORMAT LINKED TO BARGRAPH 

Figure D-8. CRAIGS and BAR GRAPH (continued) 

Li~ensed Material-Property of Data General Corporation 093·0001~1 01 



CRAIGS 

FIELD PI'IYS./LOG. AUTO- REG. FULL AUTO-
NAME F IELDII DESCRIPTION DISP EDIT OUTPUT DUPE E,NTRY FIELD ENTRY SEC 

FILLER 1 1 X(Q) * * * TITLE 2 2 X(Q7) * YEARl 1 ! 9(4) * * YEAR2 4 4 9(4) * * HAR! 5 5 9(4) * * YEAR4 0 0 9(4) * * YEARS 7 7 9(4) * * YEARo 8 8 9(4) * FILLER 9 9 9(0) * * FILLER 10 10 9(0) * * FILLE.R 11 11 9(0) * * FILLER 12 12 9(0) * * FILLER 13 13 9(0) * * FILLER 14 14 9(0) * * FILLE.R 15 15 9(0) * * 10:29:1113 02103178 
PRINT OF FORMAT: BARGRAPH 
ciI llZ,Zll XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX~XXXXXXXXX ZZZ,ZZZ 

Gi lZl,lZZ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ZZZ,ZZZ 

ii lZZ,llZ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX~XXXXXXXXX ZZZ,ZZZ 

i ZZZ,ZZ9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ZZZ,ZZ9 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 'X 

Figure D-S. CRAIGS and BAR GRAPH (continued) 

093-0001 51 -01 Licensed Material-Property of Data General Corporation 0-49 



******************************************************************************* 
******************************************************************************* 
1b:29:03 02/03/78 
PRI~T OF FORMAT: BARGRAP~ 

P~YS.II.0G. AUTO.. kEG. FULL AUTO-
FIELD_ DESCRIPTIO~ DISP EDIT OUTPUT DUPE E~TRY FIELD ENTRY SEC 

1 1 9(b) * 
2 2 X(52) * 
3 3 9(b) * 
4 4 9(b) * 
5 5 X(52) * 
b b 9(b) * 
7 7 9(b) * 
8 8 X(52) * 
9 9 9(b) * 
10 10 9(b} * 
11 11 X(52) * 
12 12 9(b) * 
13 13 X(52) * 
14 14 X(1) * _ 

FOR~AT ~OT LINKED 
FIRST LINE USED: 1 
LAST LI~E USED: 23 
AOS SY~TAX REV 01.01 BARGRAF~.VS BARGRAPH.UP 1b:29141 2/3/78 

1 
2 
3 
4 
5 
b 
7 
8 
9 
1111 
11 
12 
13 
14 
15 
1b 
17 
18 
149 
20 
21 
22 
23 
24 
25 
2b 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0-50 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*' 
* 
* 

************************************ 
* * * STAN DURLAND'S BA~ GRAP~ PROGRA~ * 
* * ***********'************************* 

THIS PROGRAM IS SUPPOSED TV ~AKE T~E BAR GRAPH IN THE 
IDEA CONCEPTS ~ANUAL. USERS ASKED FOR IT, THEY GOT IT. 

NAME BARGRAPH 

ON END OF DATA QUIT"FCR~AT 

REGISTER GRAPH X(52) 

REOESIGNA1E GRAPH 

HEAD 5 47 
YEAR1 5 4 
YEAR2 13 4 
YEAR! 21 4 
YEAR4 2'1 4 
YEARS 37 4 
YEARb 45 4 

STOP 

Figure D-8. CRAIGS and BAR GRAPH (continued) 

Licensed Material-Property 01 Data General Corporation 093-000151-01 



30 
37 
38 
39 
110 

R~GlSTER H~AULI~E )(47J DATA GENERAL •• CU~ULATIVE COMPUTER SHIP~I 

R~GISTER AST~RISKS )(11) •••• 

REGISTER DASHES X(Sb) ••••••••••••••••••••• --- ••••••••••••••••• , 
41 --•••••••••• 
112 
113 
1111 
45 
110 
117 
118 
119 
50 
51 
52 
53 
511 
55 
50 
57 
58 
59 
00 
01 
02 
03 
oil 
05 
00 
07 
08 
09 
70 
71 
72 
73 
711 
75 
70 
77 
78 
79 
80 
81 
82 
83 
811 
85 
80 
87 
88 
89 
9111 
91 
92 
93 
911 
95 
90 
97 
98 
99 

093-0001 51 -01 

REGISTER SHIPME~TS 9(&) 50000 

REGI 
REGI 
REGI 
REGI 
REGI 
REGI 

REGI 
REGI 
R~GI 
REGI 
REGI 
REG! 

RECD 

STOP 

REGI 
REG I 
REGI 
REGI 
REGI 
REGI 

Y1 X(II) 
Y2 X(II) 
Yl X(II) 
YII X(II} 
Y5 X(II) 
Yo )(4) 

ST1972 
5T1973 
5T1974 
5T1975 
5T197b 
STl977 

1972 
1973 
1974 
1975 
1916 
1977 

9(&) 
9(b) 
9(&) 
9(b) 
9(&) 
9(0) 

5500 
11000 
19300 
25500 
33900 
114500 

FOR PASSI~G ACCEPT·YE~R·DATA 
LEN 129 
I~CL ST1972 1 0 ASCII 
INCL 5T1973 8 0 ASCII 
INCL 5T19711 15 0 ASCII 
INCl ST1975 22 0 ASCII 
INCL ST1970 29 0 ASCII 
INCL S11977 3b 0 ASCII 
INCL HEAOLI~~ 113 117 ASCII 
INCL ASTERISKS 90 4 ASCII 
INCL SHIP~E~TS 94 0 ASCII 
INtL Y1 100 II ASCII 
INCL Y2 105 II ASCII 
INCL Y3 11~ II ASCII 
INCL YII 115 " ASCII. 
INCL Y5 120 4 ASCII 
INCL Yb 125 " ASCII 

51972 
S1973 
S19711 
51975 
S197b 
S1977 

9(b) 
9(0) 
9(0) 
9(0) 
9(0) 
9(6) 

REG FLOP 9(1) 0 

REGI DEllA- 9(5) 

REGI HOELTA 9(5) 

REGI SCROLLKT 9(2) 

REG BLANKS X(52) 

REG TEMP 9(6) 

Figure D-B. CRAIGS and BAR GRAPH (continued) 

Licensed Material-Property of Data General Corporation 0-51 



1"'''' 
1IIll 
1"'2 
103 
1"'4 
US 
U6 
107 
1"'8 
109 
11'" 
111 
112 
113 
114 
115 
116 
117 
118 
11 q 
12'" 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 

0-52 

* 
* 
* 
* 
* 
PU 
P2" 
P311 
P4" 
PS# 
PbtI 
PH 
PS" 
P9" 
Pl0* 
P1U 
P12" 
P 1311 
P14" 

* 
* 
* 
01: 

02: 

03: 

03A: 

04: 

05: 

06:, 

07: 

08: 

THESE ARE THE PROCESS STATE~E~TS. NOTE T~AT THERE A~E 
14 F1ElOS IN THE FO~~AT, se THERE ~~ST BE 14 CORRESPONDI~G 
PROCESS STATEMENTS 

PROC FILLEk AT 01 AND NC~E 
PROC FILLER AT 02 AND hO~E 
PROC FILLER AT 03 AND hC~E 
PROC FILLER AT 01 AND ~C~E 
PROC FILLER Al 02 AND ~O~E 
PROC FILLER AT D4 A~D hGhE 
PROC FILLER AT 01 AND hO~E 
PROC FILLER AT 02 AND ~ChE 
PROC FILLER AT 05 AND ~O~E 
PROC FILLER AT Db AND ~O~E 
PROC FILLER AT 07 AND ~O~E 
PROC FILLER AT OS AND ~C~E 
PROC FILLER AT 09 AND ~O~E 
PROC FILLER AT hOhE AND Eli!! 

NEXT COME THE IFPL LA~G~AGE STATE~EhTS FOR PROCESSI~G EAC~ FIELD 

ADD "1" SCROLL~T SCROLLKT 
PERFORtt1 UPDATE 
DISPLAY SHIPMENTS 
RETURN 

DISPLAY GRAPH 
RETURN 

DISPLAY SHIPMENTS 
GO TO D3A,03A,C3A,C3A,D3A,D3A USING SCROLLKT 
MOV "0" SCROLL~T 
RETURN Pli 

RETU 

DISP SHIPMENTS 
GO D3A,D3A,D3A,D3A,D1A,D1A USING SCROLLKT 
MOV "0" TO SCROLLKT 
RETURN TO P7 

OISP SHIPMENTS 
GO D3A,D3A,D3A,D3A,C3A,D3A uSING SCROlLKT 
MOV "0" SCROlLKT 
RETURN TO PU 

MOV "0" TO SHIPMENTS 
MOV DASHES TO GRAPH 
DISPLAY THE SHIPMEhTS 
RETURt.I 

OISP GRAPH 
RETURN 

OISP.lAY SHIPMENTS 
RETURN 

Figure D-B. CRAIGS and BAR GRAPH (continued) 

Licensed Material-Property of Data General Corporation 093-000 Hi 1-0 1 



lb3 D9: MOVl BLANKS TO GRAP~ 
lbll MOV Y1 TO YlARl 
lb5 MOV Y2 TO YEAR2 
16b MOV Y3 TO nAR3 
167 MOV YII TO YEAR4 
lb8 MOV Y5 TO YlAR5 
169 MOV YO TO YEARo 
170 DISPLAY GRAPH 
171 RETURN 
172 
173 E10: LINK USI~G "BAkGRAP~DATA" 

1711 
175 
170 QUIl-FORMATa 
177 QUIT 
178 
179 
180 SUBr< UPDATE 
181 
182 COMPARE DELTA "0" 
le! IF NOT-E TIIG72 
1811 ACCEPT ACClPT-YlAR-tATA 
185 DIV SHIPMENTS "20" CELTA 
186 ADD DELTA SHIP~~NTS TEMP 
187 MOV "0" TO SHIPMENTS 
188 MOV HEADLINE TO HEAt 
189 DIV DELTA "2" HDELTA 
190 ADD HDELTA ST1972 S1972 
191 ADD HDELTA ST1973 S1973 
192 ADD HDELTA ST1974 S1974 
193 ADD HDELTA ST1975 51975 
1911 ADD HDELTA ST1976 S197b 
195 ADD HDELTA ST1977 S1977 
19b GO TO END3 
197 
198 
199 TAG72: MOVE 8LANKS GRAPH 
200 SUB DELTA TEMP TE~P 
201 MOV TEMP SHIPME~TS 
202 COMPARE S1972 SHIP~ENTS 
203 LES TAGH 
204 MOV ASTERISKS TO YtAR1 
205 
200 TAG73: COM S1973 ShIPMENTS 
207 LES TAG711 
2"B MOV ASTERISKS YlAFi2 
209 
210 TAG711: tOM S1974 SHIPMENTS 
211 LES TAG75 
212 MOV ASTERISKS YEAR3 
213 
2111 TIIG75: LOM 51975 SHIP"~NTS 
215 LES TAG7b 
210 MOV ASTERISKS T~ Y~ARII 
217 
218 TAG76: COM S197b SHIPMENTS 
219 LES TAG77 
220 MOV ASTERISKS n AR5 
C2l 
222 TAG77: tOM S1977 SHIPt-:HTS 
223 LES ENDl 
2211 MOV ASTERISKS YEARb 
225 

Figure D-8. CRAfGS and BAR GRAPH (continued) 

093-000151-01 Licensed Material-Property of Data General Corporation 0-53 



22b E~Ol: CO~ FLOP "0" 
227 EQ END2 
228 MOV "0" S~IPME~lS 
22'1 
230 E~D2: SUB FLOP "1" FLOP 
231 
232 END3: 
233 ENDSUB 
234 
235 FINISH 

FOR"IAT ~OT LINKED 

BARGRAPI; 

FIELD P,"YS./LOG. AUlO- REG. FULL ~UTO-
N~ME FIELD. DESCRIPTION DISP EDIT Ol:TPUT DUPE ENTRY FIELD ENTRY SEC 

FILLER 1 1 q(b) '" FILLER 2 2 X(52) '" FILLER 3 3 q(b) '" FILLER I.j 4 q(b) '" FILLER 5 5 X(S2) '" FILLER b b q(b) '" FILLER 7 7 Ci(b) '" FILLER 8 8 X(52) '" FILLER 'I 'I 9(b) '" FILLER 10 10 q(b) '" FILLER 11 11 X(52) '" FILLER 12 12 q(b) '" FILLE.R 13 13 X(S2) '" FILLER 14 14 X ( 1 ) '" '" 

Figure D-S. CRAIGS and BAR GRAPH (continued) . 

End of Appendix 

0-54 Licensed Material-Property of Data General Corporation 093-000151-01 



Index 

Within this index, the letter "r' means "and the 
following page"; "ff" means "and the following 
pages". Also, primary references are listed first. 

! 3-3,3-8 
" 4-10, 7-37 
# 4-3 
$ 3-4 
, 4-10, 7-37 
o 3-11,4-10, 7-37 
) prompt v 
* 3-4,3-13,4-13 
+ 3-4f 
, 3-4 
- (dash) 4-10, 7-37 

in names 4-5 
. (period) 3-4 

in names 4-5 
: 4-5,4-10, 7-37 
< > 3-14,4-10,7-34, 7-37 
? 2-5 
@ 3-3,3-7,3-12,9-5 
[] 3-10 
'" 4-10, 7-37 
9 character 1-1,2-4,3-4, 7-57 

A 

A character 1-1,3-4, 7-57 
ACCEPT 7-6,4-9, 7-1, 7-45, 7-53 
access control list 6-2, 10-Iff 
access record 4-8, 7-25 
ACL 3-1,6-2, 7-65, 10-Iff 
ADD command 8-6 

statement 7-7,7-1,4-6 
addend 7-7 
align decimal point 7-7 
ALL HOLDS, RELEASE 7-58 
ALPHA type 7-24f,7-28 

utility 8-2,3-4,4-12,8-1 
alphabet 1-4 

print current settings 8-7, 8-1 
redefine 8-2, 8-1 

ALPHABET.TB 3-4,4-12,8-2 
alphabetic characters 8-2 

comparison 7-8 
data type 4-12 
field 3-4, 3-1, 7-57 

alphanumeric comparison 7-8 
data type 4-12 
field 3-4, 2-4, 3-1, 7-57 

alternate key path 7-12, 7-27 
AN AL YZE command 8-6 
AND 4-12 
angle brackets 3-14,4-10,7-34, 7-37 
AOS iii, A-I 

.AOS.ER 8-3 
CLIprompt v 
error codes 7-52 
file protection 10-7 
filename 7-37 
INFOS system 1-3 
profile editor 10-7 
text editors 2-11 
to RDOS conversion A-I 
utilities 1-3f 
utility RDOS A-I 

appearance of fields 3-1 
/ APPEND switch with IDEA_UP 10-5 
application programs iv 
approximate keys 1-3, 5-1, 7-18 
ARE 4-12 
area 

dead 3-14 
scroll 3-1 

arithmetic 
functions 4-6, 4-5 
internal considerations 4-7 
operators 4-6 

ASCII code 7-8 
key type B-2 
type 7-24f, 7-28, 7-61 
value 7-18 

assembled list file 8-3 
load map file 8-3 

assembly phase 6-2 
assign name to program 7-37 

priority 4-9, 7-47 
assigning attributes 1-2,2-5,3-12 
asterisk 3-4,3-13,4-13 
AT 4-12 
ATNONEANDroutinename 2-10 
AT routinename AND NONE 2-10 
at sign 3-3, 3-12, 9-5 
ATTRIB key 3-3,3-12 

093-000151-01 Licensed Material-Property of Data General Corporation Index-1 



attribute 3-12,1-2,2-5,3-1 
line 2-7 
mode 1-5 
query line 3-12f 
settings, new format 3-12 
verification 3-13 

audience definition iii 
AUTO-OUP attribute 3-13 
AUTO-['NTRYattribute 3-13 
auxiliary words 4-12 

BACKT AB 7-37 
back tab key 3-3, 10-8 

B 

on attribute line 3-12 
BARGRAPH D-l 
BARGRAPH.UP D-l 
batch job, with QUEUE 7-50 
BATCH reserved word 4-14 
BEGINNING, FIND 7-17 
BIGFOOT D-l 
BIGFOOT.UP D-l 
BINARY type 7-24ff,7-61 
blinking screen areas 3-10, 3-14 
block structure, program 4-1 
BLUEBEARD D-l 
BLUEBEARD.UP D-l 
branch to I/O error handler (see ON-IOERR 
statement) 4-7 
bringing up global monitor 10-5 
buffer 

initialize record 7-31 
transaction C-l 

build a database 5-4 
BUILD command 8-6 
BYE command 8-6 
bytes, 200 (transaction buffer) C-l 

call local monitor 2-11 
calling IFMT 2-1, 3-1 

c 

cancel message from supervisory consOle 10-6 
care.t 4-10,4-12,7-37 
causing 

blinking screens 3-10 
underscoring 3-11 

change dialog and error files 8-3, 1-4 
CHANGE MODE key 7-41 
change tape logging to disk 10-5 
character used for currency 8-2 

decimal place 8-2 
character-oriented editor 1-4 
characteristics of global monitor 10-6 
CHARACTERS reserved word 4-14 
characters 

in names 4-1 ° 
keyboard 1-1 
picture 1-1 

check protection and zero suppress 3-6 

check protection character 3-4f 
checkbook program 2-1 
CHGEM 8-2,1-4,8.-1 
CLI 8-2 

listfile 8-7 
command from program 7-50,4-9 
prompt v 

close a file with QUIT 7-50 
CO BO L picture characters 1-1 

program 7-15, 7-65 
colon 

in names 4-10,7-37 
in tags as delimiter 4-5 

comma 3-4f 
command 

conventions v 
formats v 

comments, in programs 4-13 
commercial at sign 3-3,3-7,3-12,9-5 
COMMON file B-1, v, 1-4,7-6, 7-45, 7-53 

creation 8-4, 8-1 
delete records with DEFCOM 8-4 
passing facility B-5 
printing 9-1, 7-46, 7-70, B-2, B-5 
standard 9-4 

compare range values 7-51 
COMPARE statement (see IF EQUAL. 
NOT-EQUAL, LESS, GREATER) 7-7,4-7,7-1, 7-20, 

7-22 
comparison 

alphabetic 7-8 
alphanumeric 7-8 
dissimilar 7-8 
numeric 7-7 

compilation 6-1, iii 
compile 

format/program 1-3,1-4,9-1 
to produce RDOS code 1-4 

compiler 3-13, 7-11 
compiler-directing statements 4-1 
compiling a program 6-1 
compiling CHECKBOOK 2-11 
conditional GO TO (see GO TO statement) 7-20,4-7 
console 

enable 10-6 
list of logged on users 10-6 
statistics 10-6 
status 10-6 

constant, internal 7-57 
contents of manual iii 
contiguous storage, variables 4-11 
continuation lines 4-12 
control characters 4-13 

codes 7-44 . 
cursor 3-3 
functions 4-5 
send 7-34 
statements 4-7 

conventions v 

Index-2 Licensed Material-Property of Data General Corporation 093-000151-01 



convert 
from AOS to RDOS A-I, iv 
from RDOS to AOS A-I, iv 
IFMT format to WIFMT 3-14 
program to other system A-I 

COPY 7-8,4-9, 7-1, 7-25 
COpy file 7-25 
COUNTED keyword 7-11 
CRAIGS D-1 
CRAIGS.UP D-1 
create 

alternate key path 7-12 
batch job file 7-50 
COMMON file 8-4, 1-4,8-1 
data or TRANS file 5-1, 1-4 
formats 1-4, 3-1 
library offormats 8-5,1-4 
monitors 10-Uf, iv, 1-4 
print formats 9-1, 7-46 
record 4-8 
source file 1-3,4-4, 7-15 
wide formats 1-4 

creating a file 5-1 
creating COMMON 9-4 
creating source text 2-11 
CRT reserved word 4-14 
currency symbol 3-4f, 8-2 
cursor 1-1 

controls 3-3 

o 
ID with PRINTF B-4 
dash 4-10, 7-37 
DASHDIAG D-1 
DASHDRVR D-1 
DASHDRVR.UP D-1 • 
DASHER printer as terminal 9-6,3-2,3-14 
dashes in names 4-5 
DASHHDIAG.UP D-1 
DASHJR D-1 
DASHJR.UP D-1 
data 

entry 10-8 
field delimiters 3-4 

fields 1-1,2-4,3-1,3-4,3-12 
input to program 7-66 

manipulation 4-5 
manipulation statements 4-8 

moves, screen/program 4-5 
privacy 3-13 
retrieval 7-19 
type 3-1,4-12 
type, screen field 2-11 
send/receive 4-8 

database 
building program 5-4 
file 5-1 
processing, sequential 7-18 
records 1-3 

DAY reserved word 4-14 
DBAM files 1-3,5-1 
dead area 3-14 
decimal 

character 8-2 
places with arithmetic 4-7 
point 3-4, 3-5 

DEFCOM 8-2,1-4,8-1,9-1,9-4, B-1, B-4 
define 

alphabet 1-4 
COMMON file 8-4,8-1 
files 4-1 
key length 7-28 
name, REDESIGNATE 4-11 
printing records 9-1 
record 7-6 
subroutines 4-1 
tables 4-1 
variable 4-1, 7-25 

DEFINE SUBINDEX 7-9,4-5,7-1,7-44 
defining 

data fields 2-4 
literals 2-2 

definition statements, file 5-1,4-5 
DEL key 3-2 
delete a data or TRANS file 1-4 
DELETE CHAR 3-2 
DELETE command (ILIB) 8-6 
delete COMMON print records B-4 
DELETE LINE 3-2 
delete 

print records 9-4 
record 

logically 7-58,4-8 
permanently 7-10,4-8 
in COMMON 8-4 

deleted record, restore 7-58 
delimit data field 3-4 
delimiters 

name 4-10 
tag 4-10 

DESTROY 7-10,4-8, 7-1 
dial-up line, DISCONNECT 7-38 
/DIALOG 10-3 
dialog files, revise 8-3, 8-1 
difference, subtraction 7-67 
directory 3-1 
DISCONNECT 7-38 
disk logging C-1 
DISPLAY 

attribute 1-2,2-8,3-13, 7-10, 7-47 
statement 7-10,4-6, 7-1 

093-000151-01 Licensed Malerlal-Property of Dala General Corporal ion Index-3 



display 
alphabet 1-4 
ELOG entries 10-6 
format information 8-8,8-1 
global monitor information 10-6 
help messages 10-6 
message 10-6 
multiple lines of fields 3-7 
TRANS contents C-4 

dissimilar characters as delimiters 3-4 
dissimilar comparison 7-8 
DIVIDE 7-ll, 4-6, 7-1 
dividend 7-11 
dividers, data 3-1 
dividing a group 3-12 
divisor 7-ll 
dollar sign 3-4 
double quote 4-10, 7-37 
dummy INCLUDES 7-31 
DUP FIELD 10-8 
duplicate field 10-8 
duplicate keys 1-3,5-1,7-11, B-5 
DUPLICATES 7-ll, 4-5, 7-1 

E 
EDIT 

attribute 1-2,2-8,3-13,7-47 
field 2-10, 7-38, 7-66 
with erase 10-8 

with STORE statement 4-5 
editing message files 8-3 
editor, profile 10-7 
editors, text 1-4, 2-11 
element index number 7-33 
ELOG 7-33 

messages 10-5 
enable console 10-6 
END DATA 7-38, 10-8 
end of line 3-4 
end record description block 7-66 
end redesignations 7-66 
end screen input 10-8 
end scroll mode 10-8 
end subindex definitions 7-66 
ENDSUB 7-ll, 4-4, 7-1 
ENDTABLE 7-ll, 4-4, 7-1, 7-68 
ENTER 10-8 
enter and negate a number 10-8 
enter new record 4-8 
entering data 1-5 
entering IFMT 3-1 
ENTR Y reserved word 4-14 
EQUAL, IF 7-7,7-2,7-20 
.ER 8-3 
erase current EDIT field entry 10-8 
ERASE FIELD 10-8 

Index-4 

error 
codes 

recoverable· 7 -40 
SEND/RECEIVE 7-52, 7-65 

log 7-33 
message files, revise 8-3, 8-1 

ESC key 7-38 
with IFMT 3-2 

ESCAPE 7-38 
escape from IFMT 3-2 
ESTABLISH LINK 7-12,4-8,7-41 
excessive line errors 7-41 
exclamation point 3-3, 3-8 
executable statements 4-1, 4-5 
execute a format/program 1-3, 2-11 
executing LOADIDEA 10-2 
execution, fields during 3-6 
extract table elements 7-69 

/ /FF/ / 3-3,9-5 
FIELD key 3-2, 7-63 
FIELD mode 1-5,2-4,3-4 
field order 3-6 
FIELD reserved word 4-14 
field restrictions 3-5 
field usage 3-1 
fields 

during execution 3-6 
40 limit A-I 
data 1-1,3-1 
number of A-I 

FILE 7-15, 7-1, 7-28 
file 

creation 5-lff, 1-3, 7-15 
definition 4-lff, 5-4, 5-7 
management iii 
manipulation 4-5, 4-8, 5-6, 5-8 
names 4-10 
protection, AOS 10-7 

FILE statement 4-11, 5-4f 
file statements 5-1 
file status flag 7-40 
file system 1-3 
FILE-NEW 7-16,4-8,5-5, 7-1, 7-ll, 7-27 
filename 

AOS, program 7-37,3-1 
INFOS 7-53 

files with programs 5-1 
FILLER 7-47f 
final statement (FINISH) 7-19 
FIND 7-27, 4-8, 5-8 

BEGINNING 7-17,7-1,7-11, 7-18f 
HOLD 7-17,5-8, 7-1 
NEAREST 7-18f, 7-1, 7-ll 
NEXT 7-18, 7-1 
PREVIOUS 7-19,7-2 
USING 7-19f, 7-2 

Licensed M~terial-Property of Data General Corporation 093-000151-01 



FINISH 7-19,4-1,7-2 
flashing question marks 2-5 
floating currency and sign characters 3-6 
floating currency symbol 3-4 
FOR 4-12 
form feed 3-3, 9-5 
form length 

DASHER printer 9-6 
printed 9-1 

formal syntax of statements 4-5 
format 

appearance of fields 3-1 
conversion, IFMT to WIFMT 3-14 
file 3-1 
generator 1-1, 3-1 
hardcopy 3-2 
information, print/display 8-8, 8-1 
library 8-4f, 8-1 
loader 6-2 
location of fields 3-1 
printing 3-2, 7-46, 9-1 
screen 1-1 
type 2-1,3-1,9-1 
wide 032-column) 3-14, iii, 1-4 

formatname 6-lf 
formatname.VS 3-13 
FOUND 7-20, 7-2 
.FP files 6-2, 8-6 
.FPL library file 8-5 
FPYUP 6-2 
free locked record 7-17, 7-58 
FROM 4-12 
.FS file 6-2 
FULL attribute 3-13 
FUNCTION 7-39 
function keys 1-5, 7-39, 10-8 
FUNCTION reserved word 4-14,4-15 

G 
generate and load Idea 10-1 
generate monitors 1-4 
generic keys 1-3, 5-1, 7-17 
get record from port 7-52 
global monitor iv, 1-3, 1-4, 10-2 

executing 10-5 
information 10-6 

GO TO 7-20,4-7, 7-2 
GO TO USING 7-20,4-7,7-2 
GRAYBEARD D-l 
GRAYBEARD.UP D-l 
GREATER 7-22,7-2,7-7 
groups 3-12 

division 3-12 
size limit 3-12 

grouping PROCESS statements 2-11 

H 

H character 2-1 
hardcopy formats 1-4,2-1, 3-lf, 3-14 
headers, IPC 4-9 
headings, format 3-1 
headings, printing 9-5 
HELP 10-6 
HOLD keyword 4-8,5-8, 7-17 
HOLD, FIND 7-17 
HOURS reserved word 4-14 
HSPA7 D-l 
HSPA7.UP D-l 
hyphens 2-7 

110 errors 4-7 
IABORT 10-6 
IBYE 10-6 
ICREATE 5-1,1-3,1-4,4-4,7-15, B-1, C-l 
ID 10-7 
Idea compiler 3-13 

Field Processing Language 4-1, iii, 1-2 
Format Generator iii 
monitor 4-1 
loader phase 6-2 
operation 10-7 
system iii 
shut down 10-6 
template 1-5 
utilities 1-3, f. 

IDEASG 1O-lff, 1-3, 1-5, 7-33, C-l 
dialog 1O-3ff 

IDEASG, /IPC switch 7-65 
IDEA_DIALOG.DF 10-2 
:IDEASYSGEN 10-2 
IDEA_SYSGEN.DF 10-2 
IDEA_UP 10-1, 10-5 
IDEA_UTIL.DF 10-2 
IDELETE 1-4, B-1, C-l 
IELOG 10-6 
lEN ABLE 10-6 
IF auxiliary word 4-12 
IF EQUAL (see COMPARE; IF NOT-EQUAL, LESS, 
GREATER) 7-20,4-7,7-2,7-7 
IF FOUND (see LOOKUP, IF NOT-FOUND) 7-20, 

7-2,4-7 
IF GREATER (see COMPARE; IF EQUAL, 
NOT-EQUAL, LESS) 7-22,4-7,7-2,7-7 
IF IN-RANGE (see RANGE, IF OUT-RANGE) 7-22, 

4-7,7-2,7-51 
IF LESS (see COMPARE; IF EQUAL, NOT-EQUAL, 
GREATER) 7-22,4-7,7-2,7-7 
IF NOT-EQUAL (see COMPARE; IF EQUAL, LESS, 
GREATER) 7-22,4-7,7-2,7-7 

093-000151-01 Licensed Material-Property of Data General Corporation Index-5 



IF NOT-FOUND (see LOOKUP, IF FOUND) 7-23, 
4-7, 7-2 

IF OUT-RANGE (see RANGE, IF IN-RANGE) 7-23, 
4-7,7-2,7-51 

IFMT 3-1, iii, 1-1, 1-4,2-1, 7-46 
conversion to WIFMT 3-14 
escaping from 3-2 
function keys 1-5 
linking 7-32 
printing formats 9-1 
revision 2.00 A-I 
template 1-5 

IFPL 4-1, iii, iv 
names 4-5 
program 1-2 
program, comments 4-13 
register IOERR 7-52 

IFPL.FP 6-2 
IFPL.OB 6-2 
IFPL.PR 6-2 
IFPL.SR 6-2 
IINHIB 10-6 
IKMSG 10-6 
ILIB 8-5,1-4,8-1 
ILIST 10-6 
illegal pathname character 3-1 
IMESSAGE 10-6 
IN 4-12 
IN-RANGE 7-22, 7-2, 7-51 
INACTIVITY CONSTANT 7-42 
inactivity time 7-42 
INCLUDES 7-24,4-5,5-5, 7-2, 7-6, 7-53, 7-55 
index 

file 5-1 
levels 4-8 
number of element 7-33 
structures 1-3 

INFOS system 5-1, iii, 1-3,7-19,7-44 
file (COMMON) B-1, B-5 
ICREATE 5-1,4-4,1-3 
levels 4-8 
pointer 7-12 
System User's Manual 1-3 
utilities 1-3f 

INFOS-ERR reserved word 4-14f, 7-52, 7-65 
initial value of a register 4-4, 7-57 
initial working directory 7-50 
initialize record buffer 7-31 
INITIATE PRINTING 7-27,4-8,7-2, 7-46, 9-2, B-2f 
input data in memory 7-66 
input format 9-1 
input-output errors 4-7 
INSER T CHAR 3-2 
INSER T LINE 3-2 
inserting form feeds 9-5 
inspecting COMMON with Idea B-5 
internal considerations 4-7 
internal constant 7-57 
internal pointer, INVERT 7-27 

internal structure, TRANS C-2 
internal variable 7-57 
introduction to Idea 1-1 
INVERT 7-27, 7-2 

with REDEFINES 1'-55 
inverted keys 1-3,5-1 
invoking a local monitor iv 
IOERR reserved word 4-14f, 7-33, 7-52, 7-65 
IPC 10-7 

headers 4-9 
IIPC 10-3 
port 7-52, 7-65 

IS 4-12 
ISTATUS 10-6 
ISYS 10-6, 10-3 

jump to subroutine 7-45 
JUSTIFY 4-12 

LEFT 7-30 
RIGHT 7-64 

KEY 7-28, 7-2 
key, function 10-8 
key, record 5-1, 7-60f 

alternative path 7-27 
approximate 7-18 
generic 7-17 
length 7-28 
link to subindex 4-8 
partial 7-17 

K 

path, alternative 7-27 
RETRIEVE HIGH statement 4-8 
RETRIEVE statement 4-8 

KEY statement 7-28,7-2,7-11,5-4 
key, unlabeled 10-8 
keyboard characters 1-1 

l 

IL switch with IDEA_UP 10-5 
label data, DASHER printer 9-6 
label, PROCESS statement 4-3, 7-48 
labels (literals) 1-1,2-3,3-1 
LEFT 7-30,4-8, 7-2 
left-justify 7-30 
legal alphabet 1-4 
LENGTH 7-31,4-5,5-5, 7-2, 7-53, 7-55 
length 

of key 7-28 
of names 4-10 
of printed form 9-1 
of screen field 2-11 

LESS 7-22, 7-2, 7-7 
letters in names 4-5 
levels, index 4-8 
library of formats 8-4ff, 1-4, 8-1 
library, moving 8-6 
LIDEA 2-11,10-7 

Index-6 Licensed Materiel-Property 01 Data General Corporation 093-000151-01 



limit on group size 3-12 
line errors 7-41 
line printer paper 9-1 
line, continuation 4-12 
LINE-ERR 7-41 
line-oriented editor 1-4 
LINEDIT 1-4,2-11,8-3 
LINK 7-32,4-5,7-2,7-53 
LINK, AOS 6-2 
link 

ESTABLISH LINK 7-12 
fields and routines 4-1 
key and subindex 4-8 
phase 6-2 

linking,IFMT 7-32 
list file 8-3 
list of logged on consoles 10-6 
listfile, CLI 8-7 
literal character, as a delimiter 3-4 
LITERAL mode 1-5,2-2,3-3,3-8 
literals I-I, 2-2, 3-1 
load and generate Idea 10-1 
load map file 8-3 
load system tape 10-1 
loader, format 6-2 
LOADIDEA.CLI macro 10-1 
loading Idea iv 
loadmapname 10-3 
local monitor iv, 1-3, 1-4, 10-lf, 10-6f 

shutdown 10-6 
locate record 4-8 
location of fields 3-1 
lock a record 4-8, 5-8, 7-17 
locked record, skip over 7-70 
LOG 7-33,4-9,7-2,7-27 
LOG OFF 10-8 
LOG ON-OFF key 7-41 
log operator off 10-8 
log records to disk 10-5 
log-on sequence 2-11 
logging to tape 7-54 
logically deleted record, restore 7-58 
LOGOFF 7-41 
LOOKUP statement (see IF FOUND, IF NOT 
FOUND) 7-33,4-7,7-3,7-20,7-23,7-69 
lower priority 4-9 

M 

making blinking screens 3-10 
making underscores 3-11 
manipulation 

data 7-66, 4-8 
data and files 4-5,4-8 
statements, file 5-1 

manual form feeds 9-5 
maximum width 3-12 
MERGE command 8-6 
MESSAGE 7-34,7-3 
message, from supervisory console 10-6 

MINS reserved word 4-14 
minuend 7-67 
MINUS ENTER 10-8 
MODE CHANGE 7-41 
mode 

FIELD 3-2 
LITERAL 2-2, 3-3 

monitor 4-1 
monitorname 10-3 
MONTH reserved word 4-14 
MOVE 7-35,4-8,7-3 
move, LEFT 7-30 
move, RIGHT 7-64 
moving data between screen and program 4-5 
moving library 8-6 
multiple lines of fields 3-7 
mUltiplicand 7-36 
mUltiplier 7-36 
MUL TIPL Y 7-36,4-6, 7-3 

N 

NAME 7-37,4-1, 4-10f, 7-3 
name table 7-68 
names 4-10 

IFPL 4-5 
NEAREST, FIND 7-18 
NEGATE SIGN 10-8 
nest COpy statements 7-8 
new format attribute settings 2-6, 3-12 
new record, FILE-NEW 7-16 
NEXT (keyword) 4-8 
NEXT, FIND 7-18 
NEXT, VERIFY 7-70 
NEXT PAGE key 3-2f 
NO-ACTIVITY 7-23, 7-42 
NODE SIZE 7-37,4-5,7-3,7-44 
nonexecutable statements 4-3,4-1 
NOT-EQUAL 7-22,7-2, '7-7 
NOT-FOUND 7-2,7-23 
number 

in names 4-5 
of characters, name 4-10 
offields 3-12, A-I 

numerals on attribute line 2-7 
numeric comma 3-4 
numeric comparison 7-7 
numeric data type 4-12, 1-1,2-4,3-4,7-57 
numeric field 2-4,3-1,3-4,7-57 

.OB file 6-2 
OF 4-12 
ON 4-12 

o 

ON BACKT AB 7-37,4-7, 7-3 
ON DISCONNECT 7-38,4-7,7-3 
ON END DATA 7-38,4-7,7-3 
ON ESCAPE 7-38,4-7,7-3 
ON FUNCTION 7-39,4-7,7-3 
ON LINE-ERR 7-41,4-7,7-3 

093-000151 -01 Licensed Material-Property of Data General Corporation Index-7 



ON lOGOFF 7-41,4-7,7-3 
ON MODE CHANGE 7-41,4-7,7-3 
ON NO-ACTIVITY 7-42,4-7,7-3,7-23 
ON REPEAT 7-43,4-7,7-3 
ON SCREEN 7-44,4-7,7-3 
ON statements 4-7 
ON-IOERR 7-40,4-7,5-5,7-3 
ON-OVERFLOW 7-43,7-3 
operating Idea 10-7 
operator function keys 1-5 
operator template 1-5 
operator, arithmetic 4-6 
operator, log off 10-8 
order of fields 3-6 
OUT-RANGE 7-23, 7-2f, 7-51 
output format 9-1 
overflow integer 7-43 
overflow, with arithmetic 4-6 
overlay a partial screen 3-1, 3-8 
overlay area 3-1, 3-8 

P 2-1 
P format type 9-1 
PACKED 7-24ff, 7-28f, 7-61 
page heading 3-3 
page mode 3-7 
PAGEFMT D-I 
PAlPH 8-7,1-4,8-1 
PARAMETERS FOR SU8INDEX 7-44,4-5,7-3, 7-9, 

7-37 
paren theses 

with names 4-10, 7-37 
with underscoring 3-11 

partial key 7-17 
PARTIAL lENGTH 7-45,4-5,7-3,7-44 
partial records 1-3 
partial screen delimiter 3-3 
partial screens 3-1, 3-8, 3-14 
PASS 7-45,4-5,4-9,7-3, 7-6, 7-53, 8-5 
pass data from program to program 7-48 
passing 

records 4-5,4-9, 7-45, 7-53 
state men ts 4-9 

passing, COMMON during 8-5 
PASSWORD reserved word 4-14 
pathname 3-1,7-15 
:PER 10-6 
PERFORM 7-45, 7-4 
perform arithmetic functions 4-5 
periods in names 4-5 
PFMT utility 8-8, 1-4,3-13,8-1 
phases of compiler 6-2 
physically delete record 7-10 
picture characters I-I 

9 3-4 
A 3-4 
X 3-4 
decimal 3-5 

picture of register 4-4, 7-57 

pictures 3-1 
place key value in variable 4-8 
pointer 

INFOS system 7-10,7-12,7-35 
INVERT 7-27 

position INFOS system pointer 7-12 
position within database 7-70 
pound sign 4-3 
,PR file 6-2 
IPRE 10-5 
PREDITOR 7-47,10-7 
preemptible process, global monitor 10-5 
PREV PAGE key 3-2f 
PREVIOUS keyword 4-8 
PREVIOUS, FIND 7-19 
PREVIOUS, VERIFY 7-70 
PRINT 7-46,3-3,4-8,7-4,7-27,9-2,8-2 
print 

contents of printing buffer 1-4 
current alphabet 8-7, 8-1 
data about formats (PFMT) 8-8, 1-4, 8-1 
formats 3-1f, 3-14 
records from COMMON 9-4 

PRINT key 7-44 
with 6053 terminal 9-1 

printer, DASHER 9-6 
PRINTF 9-4, 1-4, 3-2, 7-54, 7-70, 8-4, 9-1, 8-2ff 
PRINTF/D to delete records 9-4 
printformatname 7-27,7-46,7-70 
printing Chapter 9, 7-46 

6053 terminal 7-44 
COMMON during 8-2 
DASHER satellite 7-44 
formats for 3-1f, 3-14 
headings after form feeds 9-5 
INITIATE 7-27 
program for 9-2 
records 9-1,7-54,9-2 
screen snapshot 9-6 
scroll fields 9-5 
statements for 4-8, 7-46 
terminal, DASHER 3-2,3-14,9-1 
TERMINATE 7-27 
two reports from one format 9-7 
two reports on page 9-7 

PRIORITY 7-47,4-9,7-4 
privacy of screen data 3-13 
PROCESS 7-25,7-47, 1-2f, 2-10f, 4-1, 4-3, 4-5, 4-11, 

7-4,7-18,7-66 
product 7-36 
Profile Editor 7-47,10-7 
program 1-2, 4-1 

block structure 4-1 
execution and fields 3-6 
names 4-10,6-1, 7-37 
to build a database 5-4 
perform CLI command 4-9 
printing 9-2 
running a 10-1 
screen data moves 4-5 

Index-8 Licensed Material-Property of Data General Corporalion 093-000151-01 



programmer 10-1 
programming 2-1 
program name 4-10,6-1,7-37 
PTITLE D-l 

Q 
QBA TCH with ILlB 8-6 
question mark 2-5 
QUEUE 7-50,4-9,7-4 
queue batch job 7-50 
QUIT 7-50,7-4,7-19 
quotient 7-11 

R 

RANGE statement (see IF IN-RANGE, IF 
OUT-RANGE) 7-51,4-7,7-4, 7-22f 
RCX70 4-9,7-52,7-65, 10-3 

port 7-52 
RDOS A-I 

compile 1-4 
convert to AOS A-I 
utility A-I 

RDOSYNT AX 1-4, A-2 
READ access 10-2 
read record from COMMON 7-6 
RECD 7-5 
RECEIVE 7-52,4-8,7-4, 7-65 
receive data 4-8f 
receiving 4-5 
RECORD 7-53,4-5, 7-4 

FOR PASSING 7-53,4-9,4-11,7-4,7-6 
FOR PRINTING 7-54,4-8,4-11,7-4, 9-1ff 
FOR TAPE 7-54,4-9,4-11, 7-4 

record 
access 7-25 
buffer, initialize 7-31 
definition block 7-16,7-24,7-53 
deletion 

logical 7-58 
physical 7-1 ° 

description block 4-5, 7-66 
locking 4-8 
names 4-10 
statements 4-5,4-8[,4-11, 5-5 
update 7-56 
write new 7-16 

recover logical deletion 4-8 
recoverable error codes 7 -40 
redefine alphabet 8-2, 8-1 
REDEFINES (see INVERT 7-27) 7-55, 7-4, 7-31, 

7-53 ' 
REDESIGNATE 7-56,4-11,7-4 
redesign at ions 7-56, 7-66 
REFILE 7-56,5-8,7-4,7-17,7-27 
REGISTER 7-57, 4-3f, 4-11, 7-4, 7-25, 7-66 
register 

initial value 4-4 
picture 4-4 

regular prin ter paper 9-1 
REINST ATE 7-58,4-8, 7-4 
relative priority 7-47 
RELEASE 7-58,4-8, 7-4, 7-17 
RELEASE ALL HOLDS 7-58 
release locked record 7-56, 7-58 
REMOVE 7-58,4-8, 7-4 

with REINST ATE 7-58 
RENAME command 8-6 
REPEAT 7-43 
repeat a print input format 9-2 
REPEAT PAGE key 7-43,10-8 
REPLACE command 8-6 
replace record in database 5-8 
REQUEST 7-65 
REQUEST keyword 4-8 
REQUIRED attribute 3-13 
IRES 10-5 
reserved word FIELD 7-63,4-13 
reserved word FILLER 7-48 
reserved words 4-13 
RESET 7-59,4-1,4-5,7-4 
RESET USING 7-59,7-5 
resident process, global monitor 10-5 
RESTART 7-63,4-1,4-5,7-5 
restrictions with field characters 3-5 
result variable 4-6 
RETAIN 7-32 
retain files 7-32 
retrieve data 7-19 
RETRIEVE HIGH KEY 7-60,4-8,7-5 
RETRIEVE KEY 7-61,4-8,7-5 
RETURN 7-63,4-1,4-5,17-5 

label with print formats 9-2 
RETURN USING 7-63, 7-5 
revise dialog and error message files 8-3, 8-1 
RIGHT 7-64,4-8,7-5 
root(:) 4-5,4-10,7-37 
root directory 10-1 
root node 7-9 
routine names 2-10,4-3,4-5,4-10 
routine tags 4-5 
routine termination 4-5 
routines 2-10,4-1 
run a program 10-1 

s 
sample programming session 2-1 
SBIX 7-5 
SCREEN 7-44 
screen 

data privacy 3-13 
format I-I, 3-1 
input format 9-1 
literals 2-2 
partial 3-8 

screen to program data moves 4-5 
SCRLLFMT D-I 

093-000151-01 Licensed Material-Property of Data General Corporation Index-9 



scroll 
area 1-2,3-1,3-3 
fields, printing 9-5 
heading 3-3 
mode 3-7,3-12 

scrolled summary report 9-8 
search list 6-2, 7-50, 10-Iff 
search table 7-33, 7-69 
SEA RCHLIST 3-1 
SECONDS reserved word 4-14 
SECURE attribute 1-2,3-13 
semicolon 7-50 
SEND 7-65, 4-8f, 7-5, 7-52 

REQUEST 7-52 
send 

contents of variable 7-34 
control characters 4-13 
data 4-8f, 7-52, 7-65 
data to COMMON with PASS 7-45, 7-6 
message 7-34 

from supervisory console 10-6 
record to COMMON WITH PASS 7-45 

sequential database processing 7-18 
set ACLs and search lists 10-Iff 
setting attributes 2-6 
SHIFT A TTRIB keys 3-12 
shut down Idea system 10-6 
shut down local monitor 10-6 
sign and floating currency characters 3-6 
sign, PACKED key 7-29 
signed field 3-4f,7-57 

character ( +) 3-4f 
signed number, make negative 10-8 
signed values 4-7 
significant digits 7-36 
similar characters 3-4 
single quote 4-10, 7-37 
single-key DBAM 5-1 
size of fields 3-12 
skip locked record 7-70 
SLASHPRE 10-7 
SLASHRES 10-7 
snapshot printing 9-6 
source file 6-2 
source text 2-11 
space 3-4 
special control characters, send 7-34 
SPEED 1-4, 2-11, 8-3 
square brackets for blink 3-10 
.SR file 6-2 
standard COMMON file 9-4 

statement syntax 7-Iff,4-5 
statements 

control 4-7 
executable 4-1,4-5 
file definition 4-5 
file manipulation 5-1 
IFPL 7-1 
name 4-11 
nonexecutable 4-1 
passing 4-9 
printing 4-8 
tape logging 4-9 

status of consoles 10-6 
STOP statement 7-66,4-5,5-5, 7-5, 7-53, 7-55, 7-66 
STORE 7-66, 7-5 
STORE statement with EDIT field 4-5 
structure of a program 4-1 
structure of TRANS C-2 
SUBINDEX 7-67,4-5, 7-5, 7-28 
subindex 1-3,5-1, 7-13 

DEFINE 7-9 
definition block 7-44, 7-66 
length 7-45 
levels 7-9 
link to key 4-8 
NODE SIZE 7-37 

subindex name 7-53 
SUBROUTINE 7-67,4-4,4-11, 7-5 
subroutine definition 4-1 

statements 4-3f 
subroutine, ENDSUB 7-11 
subroutine, PERFORM 7-45 
SUBTRACT 7-67,4-6, 7-5 
subtrahend 7-67 
sum 7-7 
summary report, scrolled 9-8 
SUPERUSER 10-1 
supervisory console 10-5-
syntactical phase 6-2 
SYNTAX 6-1,1-3,1-4,3-13,9-1 
SYNT AX CHECKBOOK 2-11 
syntax of statement 4-5 
sysgen dialog 10-3ff 
system 

COMMON file B-1, iv, 7-53 
files 8-3 
manager iv, 10-1 
TRANS file iv, C-l 
transaction file iv, C-l 
utilities 8-1, iv 

Index-10 Licenaed Material-Property of Data General Corporation 093-000151-01 



T 
TABLE 7-68,4-4,4-11, 7-5 
table 7-64, 4-8 
definition 4-lff, 7-11 
LOOKUP 7-33 
names 4-10,7-10,7-35 
search 7-69 
tags 4-3,4-5,4-10 
TAPE 7-54 
tape logging 7-33 

statements 4-9 
templates 1-5 
terminal 

6053 7-39 
DASHER printing 3-14 

TERMINATE PRINTING 7-70,4-8,7-5,7-27,7-46, 
9-2, B-2f 

terminate 
program 7-50 
record definition 7-53 
routine 4-5 
scroll mode 10-8 

text editors 1-4, 2-11 
textstring 7-34 
THE 4-12 
three-levellNFOS file B-1 
TO 4-12 
trail file TRANSACTION.FF C-l 
TRANS C-l, iv, 1-4 

display contents C-4 
structure C-2 

transaction buffer size C-l 
transaction file C-l, iv 
TRANSACTION.FF C-l 
transfer data 4-8 
truncate, with DIVIDE 7-11 
truncation 7-7 

with ADD 7-7 
with arithmetic 4-6 
with MOVE 7-35 
with MUL TIPL Y 7-36 
with SUBTRACT 7-67 

type 
ALPHA 7-28 
ASCII 7-28,7-61 
BINARY 7-28,7-61 
format 2-1,3-1 
PACKED 7-28,7-61 

U 
unconditional GO TO (see GO TO USING 
statement) 7-20,4-7 
underscores 3-14 
underscoring screen areas 3-11 
unlabeled key on pad 7-37,10-8 
unlock locked record 7-58,4-8, 5-8 

update 
database 5-6, 5-8 
locked record 7 -17 
record 4-8,7-56 

usage of fields 3-1 
USING, FIND 7-19 
using Idea 10-7 
using IFMT formats 3-2 
using PRINTF 9-4 
:UTIL 10-2 
utilities, system 8-1, iv 

variable 3-1 
as MESSAGE 7-34 
definition 4-1 
names 4-1 ° 
internal 7-57 

v 

with PROCESS 4-3 
with REG ISTER 4-4 
with STORE 7-66 

VARIED-KEY reserved word 4-14[,7-61 
VERIFY 7-70,4-8,7-5,7-13 
VERIFY NEXT 7-70,4-8,7-5 
VERIFY PREVIOUS 7-70,4-8, 7-5 
verifying attributes 3-13 
VS file 6-2,3-l3 

w 
wide format generator 3-14, 3-1 
wide formats 1-4 
WIFMT 3-14, iii, 1-4,3-1, 7-46 

printing formats 9-1 
WITH 4-12 
working directory 3-1, 7-50 
WRITE access 10-2 
write alternate key path 7-27 
write new record 7-16 
write record to tape 7-33 
writing the program 2-10 

x 
X character 1-1, 2-4, 3-4, 7-57 
X LIDEA 2-11, 10-7 

y 

YEAR reserved word 4-14 

z 
Z character 1-2,3-4f 
zero suppress and check protection 3-6 
zero suppress character 1-2,3-4ff 

093·000151·01 Licensed Material~Property of Dat8 General Corporation Index-11 





t. DataGeneral 
Software Documentation Remarks Fotm 
I 
How Do You Like This Manual? 

Title ____________________________________ No. _________ _ 

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you 
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few 
minutes to respond. 

If you have any comments on the software itself, please contact your Data General representative. If you wish to 
order manuals, consult the Publications Catalog (012-330). 

EDP Manager (LIS( II/ order: J = I'nll/a/T lise) 

Introduction to the product 
Reference 

Senior System Analyst 

Analyst/Programmer 

Operator 
Other _________________________________ . 

What programming language(s) do you use? 

Yes Somewhat No 
0 0 0 Is the manual easy to read? 

0 0 0 Is it easy to understand? 

0 0 0 Is the topic order easy to follow? 

0 0 0 Is the technical information accurate? 

0 0 0 Can you easily find what you want? 

0 0 0 Do the illustrations help you? 

Tutorial Text 

Operating Guide 

0 0 0 Does the manual tell you everything you need to know? 

(Please /lorc pagc /lillI/bel' a/ld paragraph "'here applicable.) 



~·)LD DOWN FIRST FOLD DOWN 

---------------------------------------------------------------------------------------------, 

BUSINESS REPLY MAIL 
No Postage Necessary if Mailed in the United States 

Postage will be paid by: 

Data General Corporation 
Southboro, Massachusetts 01772 

ATTENTION: Software Documentation 

FOLD UP SECOND 

FIRST 
CLASS 
PERMIT 
No. 26 

Southboro 
Mass. 01772 

FOLD UP 



~. Data General 

Installation Membership Form 

Name _________________ Position _______________ Date _____ _ 

Company, Organization or School __________________________________ _ 

Address ________________ City ____________ State ___ Zip _____ _ 

Telephone: Area Code ______ No. __________ Ext. ___________________ _ 

1. Aeeouat 
Catesqr, 

2. HardW.,e 

M/oOO 

C/350, Cf330, Cf300 

5/250.5/230.5/200 
SI130 

APf130 

CS Series 

N3/D 

OthetNOVA 

micro'NOVA 

Other 
(Specify) 

3. Software 

o OEM 

o End User 

o System House 

o Government 

Qty. Installed I Qty. On Order 

o AOS o RDOS 

o DOS o RTOS 

o SOS o Other 

Specify ____ _ 

o Algol o Assembler 

o DG/L o Interactive 

o Cobol 0 Fortran 

o ECLIPSE Cobol 0 RPC; II 

o Business BASIC 0 PUI 

o BASIC 0 Other 

Specify ______ _ 

5. Modeof 
Operation 

6.Communieations 

7. Appli~tion 
DeSCription 

8. Purellase 

9. Users Group 

o Batch (Central) 

o Batch (Via RJE) 

o On-Line Interactive 

o RSTCP o CAM 

o HASP o 4025 

o RJE80 o Other 

o SAM 

Specify 

0 ________ _ 

From whom was your machine(s) 
purchased? 

o Data General Corp. 

o Other 
Specify _____ _ 

Are you interested in joining a 

special interest or regional 
Data General Users Group .) 

0 ________ _ 

~., Data General 
Data General Corporation, Westboro. Massachusetts 01581. (617) 366·8911 



FOLD 

STAPLE 

FOLD 

II II I 

BUSINESS REPLY MAIL 
FIRST CLASS - PERMIT NO. 26 SOUTHBORO. MA. 01772 

Postage will be paid by addressee 

~. Data General 
ATTN: Users Group Coordinator 

Southboro, Massachusetts 01772 

FOLD 

STAPLE 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 


