Idea

Interactive
Data Entry/Access

Reference Manual

(AOS)

093-000151-01

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the sofiware.

Ordering No. 093-000151

© Data General Corporation, 1978, 1979

All Rights Reserved

Printed in the United States of America

Revision 01, December 1979

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Idea
Interactive
Data Entry/Access
Reference Manual
(AOS)
093-000151

Revision History:

Original Release - August 1978
First Revision - December 1979 (Idea Rev. 3.00)

A vertical bar or an asterisk in the margin of a page indicates substantive change or deletion,
respectively, from revision 00.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
DATAPREP INFQS NOVALITE DASHER
ECLIPSE NOVA SUPERNOVA DG/L

microNOVA

Preface

This manual describes Data General’s Interactive Data Entry and Access (Idea) system as it
operates with the INFOS®file management system under the Advanced Operating System (AOS).

Prerequisite Knowledge

Before you read this manual you should understand both AOS and the INFOS system. We suggest
that you read the following manuals:

® Learning to Use Your Advanced Operating System (069-000018)
® [NFOS®System User’s Manual (A0S) (093-000152)
System managers should also read the A0S System Manager’s Guide, 093-000193.

If you plan to use RCX70 with Idea, you must read the RCX70 Reference Manual A0S, 093-000172.

Audience Definition

If you are a system manager, first read Chapters 1 and 2 for a basic understanding of Idea. Next,
read Chapter 10, ‘““How to Load and Generate Idea.”” This will tell you where to place Idea system
files and local monitors, and what access privileges your programmers will need. You should also
read Chapter 9 after you have determined your system’s printing requirements. This chapter will
show you how to set up Idea for the various printing formats.

If you are a programmer, you should read Chapters 1 through 6 before you begin writing programs.

Contents

Chapter 1 describes the capabilities of the Idea system running with the INFOS system under
AOS. It shows you some of the different screen format types you can use with your
programs, as well as some of the different INFOS file structures available.

Chapter 2 walks you through a programming example, from program design through the
implementation steps to program execution.

Chapter 3 explains the Idea Format Generator (IFMT), the utility you use to create screen
formats. This chapter describes the full set of IFMT field picture characters and the
full set of attributes to assign to your screen data fields as well as how to design a
132-character format using the WIFMT utility.

Chapter 4 describes Idea’s Field Processing Language (IFPL), which you use to write your
programs.

Chapter 5 describes the process for using an INFOS data file with a program.

Chapter 6 describes the compilation process.

093-000151-01 Licensed Material-Property of Data General Corporation]

Chapter 7

Chapter 8
Chapter 9

Chapter 10

Appendix A

Appendix B
Appendix C

Appendix D

is a reference section containing a detailed description of each IFPL command
arranged in alphabetical order.

lists the Idea system utilities.

describes the printing options available with Idea.

tells the system manager how and where to load Idea. It describes how to create
global and local monitors, and how to invoke a local monitor, the initial process you

need to run a program.

tells you how to convert RDOS Idea programs to AOS Idea programs, and vice
versa.

describes the internal structure of the system COMMON file.
describes the internal structure of the system transaction file TRANS.

gives you listings of several application format/program modules. We provide the
sources of these modules on the system tape.

Licensed Material-Property of Data General Corporation 093-000151-01

Reader, Please Note:

We use these conventions for command formats in this manual:

COMMAND required [optional] ...

Where Means
COMMAND You must enter the command (or its accepted
abbreviation) as shown.
required You must enter some argument (such as a filename).
Sometimes, we use:
required,
required,

which means you must enter one of the arguments. Don’t
enter the braces; they only set off the choice.

[optional] You have the option of entering this argument. Don’t
enter the brackets; they only set off what’s optional.

You may repeat the preceding entry or entries. The
explanation will tell you exactly what you may repeat.

Additionally, we use certain symbols in special ways:

Symbol Means

) Press the NEW LINE or RETURN key on your terminal’s
keyboard.

O Be sure to put a space here. (We use this only when we must;

normally, you can see where to put spaces.)
All numbers are decimal unless we indicate otherwise; e.g., 355.
Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the AOS CLI prompt.

Contacting Data General
If you:

e Have comments on this manual -- Please use the prepaid Remarks Form that appears after the
Index.

® Require additional manuals -- Please contact your local Data General sales representative.

® Experience software problems -- Please notify your local Data General systems engineer.

End of Preface

093-000151-01 Licensed Material-Property of Data General Corporation Vv

Contents

Chapter 1 - Introduction to Idea

Screen Formats. e 1-1
Scroll Fields e 1-2
AIIDULES. . . . o e 1-2

IFPL Program e 1-2

Compiling and Executing a Format/Program. 1-3

The File System e 1-3

System UtIlities. 1-4

Templates. e 1-5

Chapter 2 - A Sample Programming Session

Problem Definition 2-1
Defining the Screen Format. 2-1
Defining the Screen Literals 2-2
Definingthe DataFields. R, 2-4
Assigning Attributes 2-5

Writing the Program. 2-10
Creating Source Text. e 2-11
Compiling CHECKBOOK. 2-11

Executing the Program 2-11

Chapter 3 - IFMT -- The Format Generator

Entering IFMT 3-1

IFMT Commands e 3-2

Literalsand LITERAL Mode e 3-3

DataFieldsand FIELD Mode 34
AlphabeticFields e 34
AlphanumericFields 34
Numeric Fields e 3-4

Decimal Point. 3-5
Zero Suppress Character 3-5
Signed Field Character. 3-5
Currency Symbol. 3-5
Check Protection. 3-5
Comma 3-5
Restrictions, 3-6
The Floating Currency and Sign Characters. 3-6
Examples 3-6
The Zero Suppress and Check Protection Character. 3-6
Other Combinations. i 3-6

093-000151-01 Licensed Material-Property of Data General Corporation Vil

Fields During Program Execution
Pageand ScrollMode e
Overlaying Partial Screens
Blinking Screen TexXt e e
Underscoring Screen Information
Sizeand Numberof Fields.
At DULES e e
WIFMT -- The Wide Format Utility

Howto Use WIFMT

Chapter 4 - The IFPL Language

Nonexecutable Statements.
The PROCESS Statement. e

The REGISTER Statement.
Subroutine Definition Statements.
Table Definition Statements

File Definition Statements
Executable Statements
Data Moves Between Screen and Program
Arithmetic Functions
Internal Considerations
Signed Values
Control Statements.

Data Manipulation Statements.

File Manipulation Statements
Printing Statements
Sending and ReceivingData,
Statements for Tape Logging
Passing Records to Another Program
Miscellaneous Statements.
Names e
Program Names.
Other Names. e
Length e

Using the REDESIGNATE Statement
Data Types
Auxiliary Words e
Continuation Lines

Example
CommEents,
Sending Control Characters
Reserved Words

Chapter 5 - Using INFOS Files with Idea Programs

Creatinga File
Creating a Program to Build the Database.
File Definition Statements in NEWPART.UP.
File Manipulation Statementsin NEWPART.UP.
Creating a Program to Update the Database
File Definition Statements in QUPDATE.UP.
File Manipulation Statementsin QUPDATE.UP.

Vil Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 6 - Compiling the IFPL Program

How the Compiler Works e 6-2

Chapter 7 - IFPL Statements

ACCEPT 7-6
ADD. .o 7-7
COMPARE.o 7-7
COPY . o oo 7-8
DEFINESUBINDEX\ o o 7-9
DESTROYottt 7-10
DISPLAY oot 7-10
DIVIDE. . . . oo 7-11
DUPLICATES. oo 7-11
ENDSUB . . . o oo R 7-11
ENDTABLE oot 7-11
ESTABLISHLINKo 7-12
FILE . .. o 7-15
FILE-NEW 7-16
FINDBEGINNINGot 7-17
FINDHOLD 7-17
FINDNEAREST 7-18
FINDNEXT . .. oottt 7-18
FINDPREVIOUS.o oot 7-19
FINDUSINGot 7-19
FINISH . ..o 7-19
GOTO . oo oo 7-20
GOTOUSING . .. oo 7-20
IFEQUAL oo o 7-20
IFFOUND oo 7-20
IFGREATER oo 7-22
IFIN-RANGE . . o . oo 7-22
IFLESS . . . o oo 7-22
IFNOT-EQUALo\ oot 7-22
IFNOT-FOUND\t 7-23
IFOUT-RANGEo 7-23
INACTIVITY . . oot 7-23
INCLUDES . . .\ oot 7-24
INITIATEPRINTING o oo oo oo 7-27
INVERT . ..o 7-27
KEY . . .o 7-28
LEFT .. oo 7-30
LENGTH. 7-31
LINK © oo 7-32
LOG .« o oo 7-33
LOOKUP . . . oo 7-33
MESSAGE 7-34
MOVE 7-35
MULTIPLY 7-36
NAME, 7-37
NODESIZEo 7-37
ONBACKTABot 7-37
ONDISCONNECTot 7-38
ONEND DATA S PR 7-38

093-000151-01 Licensed Material-Property of Data General Corporation IX

ONESCAPE . . . 7-38

ONFUNCTION oot 7-39
ON-IOERR . . o oo oo 7-40
ONLINE-ERR oot 7-41
ONLOGOFFot 7-41
ONMODE CHANGE oot 7-41
ONNO-ACTIVITY . . . o o oooo e 7-42
ON-OVERFLOWo o oo 7-43
ONREPEAT . . . oo\ oooe oo 7-43
ONSCREEN . . .o\t 7-44
PARAMETERS FOR SUBINDEX« oo oo 7-44
PARTIALLENGTH . . - o« o o oooe oo 7-45
PASS .+ o o e 7-45
PERFORM . . . o o oo oo et e 7-45
PRINT .« « oo ooe e e e e e e e 7-46
PRIORITY .« . o oooee oo e e e e 7-47
PROCESS . .« . o o oo oo e e e 7-47
QUEUE .« o o oo e e 7-50
QUIT . o o o oo e e e 7-50
RANGE 7-51
RECEIVE 7-52
RECORDo 7-53
RECORD FORPASSINGo 7-53
RECORD FORPRINTINU. i 7-54
RECORDFORTAPE 7-54
REDEFINES 7-55
REDESIGNATE\t 7-56
REFILE oot 7-56
REGISTERo 7-57
REINSTATEo\t 7-58
RELEASE 7-58
RELEASE ALLo 7-58
REMOVE 7-58
RESET. 7-59
RESETUSING oo 7-59
RETRIEVEHIGHKEY 7-60
RETRIEVEKEY.ottt 7-61
RESTART. 7-63
RETURN © ... 7-63
RETURNUSINGot 7-63
RIGHT. oot 7-64
SEND . ..o 7-65
STOP . . .o oo 7-66
STORE . .. oot 7-66
SUBINDEX. . . .o\t 7-67
SUBROUTINE oottt 7-67
SUBTRACT . . . oot 7-67
TABLEo 7-68
TERMINATEo 7-70
VERIFY . . . oot 7-70
VERIFY NEXTottt 7-70
VERIFY PREVIOUSt 7-70

Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 8 - Idea System Ultilities

ALPHA . . 8-2
CHGEM. . . 8-3
DEFCOM 8-4
ILIB . o e 8-5
PALPH . . . 8-7
PEMT . . 8-8

Chapter 9 - Printing

Using PRINTF with a Print Format
Creating Formats
Designing the Records for Printing
Writing the Program
Creatingthe COMMONFile
Running the Input Program

Using PRINTF
Examples.
Printing Scroll Fields
Inserting Your Own FormFeeds
Printing Headings After FormFeeds

Printing Screen Snapshotsona DASHER Printer

Using a DASHER Printerasa Terminal.

Some Sample Applications.
Printing More Than One Report PerPage
Generating Two Reports From a Single Idea Format

Chapter 10 - How to Load and Generate Idea

Before You Loadthe Tape. 10-1
Loadingthe Tape e 10-1
Executing LOADIDEA 10-2
After YouLoadtheTape 10-2
Generating the Idea Monitors. 10-2
Examples 10-3
The Sysgen Dialog 10-3
Bringing Up GlobalIdea 10-5

Changing Tape Logging to Disk Logging. 10-5

Supervisory Console Commands 10-6
UsinglIdea 10-7

System Considerations of the Local Monitor 10-7

Appendix A - Converting Programs Between AOS and RDOS

Converting from RDOSto AOS
Converting from AOStoRDOS
Method 1.
Method 2.

093-000151-01 Licensed Material-Property of Data General Corporation

Xi

Appendix B - The COMMON File

The COMMON Print Facility B-2
The COMMON Passing Facility B-5
Inspecting COMMON withIdea B-6

Appendix C - The Transaction File TRANS

Creating TRANS e C-1
The Structure of TRANS C-2
Displaying TRANS Contents e C-4

Appendix D - Format/Program Module Listing

Tables

Table Caption

1-1

Xii

The System Utilities e 1-4
IFMT Command Repertoire (6053 Terminal). 3-2
The IFMT Attributes. e 3-13
IFPL Reserved Words and Their Pictures 4-14
[FPL Statement Summary. 7-1
BINARY and PACKED INCLUDES 7-26
BINARY and PACKED Keys 7-29
Moving Data with the LEFT Statement 7-30
Parameter-Fitting by the MOVE Statement 7-36
Typical Operations 7-51
Examples of Data Moved with the RIGHT Command. 7-64
The Idea Utilities 8-1
The ILIBCommands. 8-6
The Supervisory Commands 10-6
The Operator Data Entry Special FunctionKeys 10-8
Keys Used for Print Records in the COMMONFile B-2
The Structure of the TRANS File C-2
Demonstration Modules D-1

Licensed Material-Property of Data General Corporation 093-000151-01

IHlustrations

Figure Caption

1-1 A Typical Screen Format as Defined with IFMT. 1-1
1-2 A FormatwithaScroll Area. 1-2
1-3 PROCESS Statements Connect Fieldsto Routines 1-3
2-1 The Initial Screen 2-2
2-2 The Literals for CHECKBOOK 2-3
2-3 Literal and Data Field Information for CHECKBOOK 2-4
2-4 The Attribute Query Line 2-5
2-5 The CHECKBOOK Screen: Assigning the EDIT Attribute to

the First Field e 2-6
2-6 After You’ve Assigned Attributes to a Field, IFMT Asks About

the Nextone e 2-7
2-7 IFMT Format Link Option. 2-8
2-8 IFMT Puts the New Format Through a Special Program to

Create an Idea-readable .FPFile, 2-9
2-9 The Source Text of Qur Program., 2-10
3-1 A Scroll Field Specification 3-7
3-2 The Displayed Scroll Fields 3-8
3-3 The Second Format Contains an Overlay Area 3-9
3-4 The Monitor Overlays the Area Between the Exclamation

PoInts e 3-9
3-5 The Words BLINKING SCREEN EXAMPLE WillBlink 3-10
3-6 The System Underlines the Words UNDERSCORE EXAMPLE 3-11
3-7 The Initial WIFMT Screen. e 3-15
4-1 The Block Structure of an IFPL Program 4-1
4-2 An IFPL Program 4-2
5-1 A Single-Key ISAM File Where the Key IS a Field inthe Record 5-2
5-2 A Single-Key ISAM File Where the Key Is NOT Part of the

Record . . . 5-2
5-3 OurDialog with ICREATE 5-3
5-4 The Screen Format Named NEWPART 5-4
5-5 TheProgram NEWPART 5-5
5-6 The Screen Format Named QUPDATE 5-6
5-7 The Program QUPDATE.UP 5-7
7-1 Passing and Accepting Programs 7-6
7-2 A File with Three Index Levels. 7-9
7-3 An Index Structure with a Link Between a Key Sequence and a

Subindex 7-12
7-4 Using ESTABLISH LINK to Create an Index Structure 7-13
7-5 A File with Inverted Database Records and Unnecessarily

Duplicated Subindexes 7-14

093-000151-01 Licensed Material-Property of Data General Corporation X1
h

7-6 Figure 7-5 Reconfigured Using ESTABLISHLINK 7-15
7-7 FILE-NEW Example. e e 7-16
7-8 The IF FOUND Statements Branch to the Appropriate Routines 7-21
7-9 INCLUDES Example e 7-24
7-10 A S-digit PACKED INCLUDES 7-26
7-11 INVERTExample 7-27
7-12 A S-digit PACKED Key 7-29
7-13 The RETAIN Clause Lets You Keep FilesOpen 7-32
7-14 Logging-off an Inactive Terminal with ON NO-ACTIVITY. 7-42
7-15 The Statements for Printing. 7-46
7-16 An Example of PROCESSFILLER 7-49
7-17 Use of REDESIGNATE. 7-56
7-18 Retrievingthe HighestKey 7-60
7-19 Name Update 7-61
8-1 A Sample ALPHA Dialog, 8-2
8-2 TheILIBScreen. 8-5
9-1 The Printing Program PRINTPROG.UP, the Screen Format

PRINTPROG, and the Printing Format PRINTOUT. 9-3
9-2 Printed Output Produced by PRINTF Using PAGEFMT 9-8
9-3 Printed Report of DASHDRVR Transaction Produced by Print

Format PAGEFMT. 9-9
9-4 Summary Report Printed Out Using the Printing Format,

SCRLLEMT . . . e, 9-10
B-1 The ICREATE Parameters Used by DEFCOM B-1
B-2 AnIFPL Viewof COMMON B-3
B-3 COMMON Printing Facility. B-4
B-4 The COMMON Passing Facility B-5
B-5 Using SHOWME to Inspect the COMMONFile B-6
B-6 Using BIGFOOT and PTITLE B-7
C-1 The Contents of TRANSACTION.FF C-2
C-2 READTRAN . . C-4
C-3 TRANSFILE C-11
D-1 DASHIR . . D-2
D-2 DASHDRVR | D-6
D-3 DASHCOMM. | . . D-14
D-4 BLUEBEARD and GRAYBEARD, . D-20
D-5 DASHDIAG., D-28
D-6 HSPAT . D-31
D-7 BIGFOOT D-35
D-8 CRAIGSand BARGRAPH. D-45

X1V Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 1
Introduction to Idea

The Idea system is designed specifically for programs that display a format on the terminal screen as
a guide for data input and output.

Screen Formats

The first step in writing an Idea program is designing the screen format. The format generator
(IFMT) allows you to type on the screen as though you are typing on a blank piece of paper. You
create data fields on the screen using COBOL-like picture characters -- 9s for numbers, As for
letters, Xs for alphanumeric data, etc. These fields serve as windows through which you enter data
into the program and the program displays data. You can position the cursor anywhere on the screen
to type these fields.

You can also use any keyboard characters (except the exclamation point) as literals -- labels
describing the data fields. For example, Figure 1-1 shows an accounts receivable screen format. The
data fields appear brighter than the literal labels.

ACCOUNTS RECEIVABLE

ENTER THE CUSTOMER NUMBER: 9999

LNV eIV IR NV VRS T.V-V.V.V.V.V-V.V.V.V.V.V.V.V.V.V.V.V.V.\
INVOICE DATE WAS: 99/99/99

ENTER DATE OF PAYMENT: 99/99/99

ENTER AMOUNT PAID: $7277,777.99

OUTSTANDING BALANCE IS: $2727,777.99

SD-01767

Figure 1-1. A Typical Screen Format as Defined with [FMT

093-000151-01 Licensed Material-Property of Data General Corporation 1 - 1

Notice that the slashes in the dates are literal characters; each date is composed of 3 numeric fields.
The Zs in the monetary fields are zero suppress characters; you may use them in place of 9s to
eliminate leading zeros. We describe all the picture characters in Chapter 3.

Scroll Fields

Screens can also contain scroll areas. A scroll area is a series of lines that lets you repeat information.
Figure 1-2 shows a screen with scrolled lines.

INVENTORY CHECK

PART NUMBER QUANTITY ON HAND

53210 31,500
26780 5,000

11943 2,000

SD-01776

Figure 1-2. A Format with a Scroll Area

Attributes

After you have defined the fields and literals, you assign attributes to the fields. These attributes
define how the program will use the field -- EDIT-only, DISPLAY-only, or both. They also allow
you to control data input with additional options such as SECURE, which displays asterisks when an
operator enters a value into a field.

IFPL Program

The screens are only half the story. Behind each screen may be a program written in Idea’s Field
Processing Language (IFPL). The IFPL programs contain PROCESS statements that connect the
screen fields to routines in the program (see Figure 1-3).

1 - 2 Licensed Material-Property of Data General Corporation 093-000151-01

©)

—C)—— PROCESS FIELD_1 AT NONE AND ONE

L O—— PROCESS FIELD_2 AT NONE AND TWO

O

PROCESS FIELD_3 AT NONE AND THREE

O

SD-01727

Figure 1-3. PROCESS Statements Connect Fields to Routines

Compiling and Executing a Format/Program

After you have defined the format and created the program source text, you compile the format and
the program together to form an executable module using the SYNTAX command (described in
Chapter 6). The compiler checks the screen field definitions and PROCESS statements for
one-to-one correspondence. It reports any mismatches in DISPLAY/EDIT type,
numeric/alphabetic/alphanumeric type, and so on. This type of error thus will not occur at runtime.

To execute a format/program module, you call up a local monitor. Your system manager will create
the global and local monitors with the IDEASG command, described in Chapter 10. The global
monitor is invisible; it operates behind the scenes, managing the system functions.

When you call up the local monitor, it asks for the name of the format you wish to use. When you
give the format name, the monitor calls in the format/program module, displays the format on the
screen, and waits to accept input.

In Chapter 2, we walk you through the above procedures, taking a programming session from
problem design through its implementation to its format/program execution.

The File System

Idea uses AOS INFOS system DBAM files, which allow you several options for designing your
database records and index structures. The options include the use of duplicate keys, approximate
keys, generic keys, inverted keys, partial records, and subindexes. The INFOS System User’s Manual
(A0S), 93-000152, explains these options in detail.

To create a file, use the INFOS system ICREATE utility. You then define the file and records in a
series of file definition statements within the program. Use file manipulation statements within the
program to load a database, to access a file and its records, and to update a database. We explain this
procedure in Chapter 5.

093-000151-01 Licensed Material-Property of Data General Corporation 1 '3

Table 1-1 shows AOS, INFOS, and Idea system utilities and tells where you can firdd information

about each one.

System Utilities

Table 1-1. The System Utilities

AOS (See Learning to Use AOS)

LINEDIT A line-oriented text editor used to create program source text.

(See AOS LINEDIT Text Editor User’s Manual, 093-000218.)
SPEED A character-oriented text editor, also used to create source text.

(See A0S SPEED Text Editor User’s Manua!, 093-000197.)

INFOS (See INFOS System User’s Manual)
. ICREATE Creates data files (see Chapter 5) and the TRANS file (see Appendix C).
IDELETE Deletes data files and the TRANS file.
Idea

ALPHA Allows you to define your alphabet. See Chapter 8.
CHGEM Allows you to change error message and dialog files. See Chapter 8.
DEFCOM Creates the COMMON file. See Chapter 8.
IDEASG Generates global and local monitors. See Chapter 10.
IFMT Creates screen formats. See Chapter 3.
ILIB Creates a library of screen formats. See Chapter 8.
PALPH Displays current set of alphabetic characters. See Chapter 8.
PFMT Prints or displays information about screen formats. See Chapter 8.
PRINTF Prints contents of printing buffer. See Chapter 8.
RDOSYNTAX Compiles IFPL programs, producing RDOS-executable code.

See Appendix A.
SYNTAX Compiles screen format with program. See Chapter 6.
WIFMT Creates wide (132 columns) print and hardcopy formats. See Chapter 3.

1-4

Licensed Material-Property of Data General Corporation

093-000151-01

Templates

You receive two templates with the Idea documentation. Place these templates over the row of
function keys above the keyboard and number pad.

The larger template is labeled IFMT on one side. Use the function keys labeled by this side when
creating formats to enter FIELD, LITERAL, and ATTRIBUTE modes. These keys also help you
move the cursor within the format, and they allow you to insert and delete lines and characters.

The other side of the larger template is labeled Idea INTERACTIVE DATA ENTRY AND
ACCESS. Operators use the keys labeled by this template and by the smaller template when
entering data into a screen format.

We explain the [IFMT function keys in Chapter 3 and the operator function keys in Chapter 10.

End of Chapter

093-000151-01 Licensed Material-Property of Data General Corporation 1 - 5

Chapter 2
A Sample Programming Session

This chapter introduces you to the basic Idea utilities by taking you through a sample programming
session. Please follow along with the example as we create and run a simple Idea screen
format/program module.

To create and run a program, follow these steps:

1. Define the screen format using IFMT.

2. Write the program source text using one of the AOS text editors.

3. Compile the format and the program together using the SYNTAX utility.

4. Run the program using the local monitor (see Chapter 10).

Problem Definition

We will create a simple Idea format/program to balance a checkbook. The program will accept as
input a starting balance, a deposit, and a withdrawal. It will then add the deposit to the starting
balance, subtract the withdrawal, and display the new balance on the screen.

This program will not use a data file, because it does not store any information.

Defining the Screen Format
Place the larger template with the side labeled IDEA IFMT over the row of function keys.

To call IFMT, give this command from the CLI:

IFMT)

[FMT will respond:

NEXTFORMAT:

You answer by typing the name of the format, CHECKBOOK, followed by NEW LINE:
NEXT FORMAT: CHECKBOOK)

IFMT will then ask you for a format type:

TYPE(H OR POR NONE) —

Respond by striking the NEW LINE key to answer NONE. (H and P refer to printing formats; we’ll
explain them in Chapter 3.)

093-000151-01 Licensed Material-Property of Data General Corporation 2 - 1

Defining the Screen Literals

When you first create a screen format, IFMT places you in LITERAL mode and displays a
reminder, MODE:LITERAL, in the lower right-hand corner of the screen, as in Figure 2-1.

In LITERAL mode, you can move the cursor anywhere on the screen to type out descriptive or

instructional information, using any of the graphic keyboard characters (except the exclamation
point).

MODE: LITERAL

SD-01728

Figure 2-1. The Initial Screen

2" 2 Licensed Material-Property of Data General Corporation 093-000151-01

The literals don’t interact with the program in any way; they are simply labels that you place on the
screen to help operators use the format.

Figure 2-2 shows the literals to type for the CHECKBOOK screen. Just move the cursor to the
desired location with the cursor arrow keys, and type the literals using the terminal keyboard as you
would a typewriter keyboard.

CHECKBOOK

ENTER THE PREVIOUS BALANCE:
ENTER DEPOSIT:

ENTER WITHDRAWAL:

NEW BALANCE IS:

STRIKE NEW LINE TO CONTINUE.LOG ON-OFF TO END:

SD-01768

Figure 2-2. The Literals for CHECKBOOK

093-000151-01 Licensed Material-Property of Data General Corporation 2"3

Defining the Data Fields

To define data fields in a format, place IFMT in FIELD mode by striking the SHIFT and FIELD
keys. IFMT will then display MODE FIELD in the lower right-hand corner of the screen.

You can shift back and forth between FIELD and LITERAL mode by striking the
LITERAL/FIELD key. IFMT will always display a reminder in the lower right-hand corner about
which mode you are in.

The CHECKBOOK format requires five data fields. The first four are numeric fields. To reserve a
place for a number, type 9 in FIELD mode. To use a decimal point in a numeric field, you type a
period (.) in the place you want the decimal point. For example, to create a numeric field with four
integer places, a decimal point following them, and two decimal fraction places (representing cents
in this example), you would type

9999.99

The fifth field in our example will accept any keyboard character as input, so type one X. Xs signify
alphanumeric data.

Now, in FIELD mode, use the cursor control keys to position to the desired locations, and define
the data fields so that your format looks like Figure 2-3.

CHECKBOOK

ENTER THE PREVIOUS BALANCE: 99999.99

ENTER DEPOSIT: 9999.99

ENTER WITHDRAWAL 9999.99

NEW BALANCE IS: 99999.99

STRIKE NEW LINE TO CONTINUE, LOG ON-OFF TO END: X

SD-01769

Figure 2-3. Literal and Data Field Information for CHECKBOOK

2'4 Licensed Material-Property of Data General Corporation 093-000151-01

Assigning Attributes

After you’ve created the labels and defined the screen fields, you assign attributes to the fields. To
begin this process, press the shift key and strike the ATTRIBUTE key.

After verifying the legality of the field definitions, IFMT displays flashing question marks in place of
the first field’s picture characters. It also positions you to a series of attribute questions about this
field at the bottom of the screen (see Figure 2-4). To assign an attribute, type the letter Y after the
attribute.

DISPLAY: N EDIT: N OUTPUT: N AUTO-DUPE: N REQUIRED: N FULL: N SECURE: N AUTO-ENT:N

8D-01729

Figure 2-4. The Attribute Query Line

093-000151-01 Licensed Material-Property of Data General Corporation 2' 5

When you create a new format, its field attributes are all set to N for NO. To leave an attribute as it
is, strike only the NEW LINE key. To change N to Y, type Y and NEW LINE; to change Y to N,
type N and NEW LINE.

You will want to enter data into your program through the first field, labeled ENTER THE
PREVIOUS BALANCE, so give it the EDIT attribute. To do this, skip the DISPLAY attribute by
striking NEW LINE at that position, thus moving to the EDIT attribute. You then type Y in place of
N (see Figure 2-5).

Notice the numerals 01 at the beginning of the attribute line. This tells you that you are at field #1.

CHECKBOOK
ENTER THE PREVIOUS BALANCE: 22?2222
ENTER DEPOSIT: 9999.99
ENTER WITHDRAWAL: 9999.99
NEW BALANCE IS: 99999.99

STRIKE NEW LINE TO CONTINUE, LOG ON-OFF TOEND: X

01 DISPLAY:N EDIT: Y OUTPUT: N AUTO-DUPE: N REQUIRED: N FULL: N SECURE: N AUTO-ENT: N

SD-01770

Figure 2-5. The CHECKBOOK Screen: Assigning the EDIT Attribute to the First Field

2-6 Licensed Material-Property of Data General Corporation 093-000151-01

After you assign the EDIT attribute, strike the NEW LINE key for the rest of the attributes; they
are optional. When you’ve completed the attribute line for the first field, IFMT will display hyphens
in place of that field’s picture characters. Then it will flash question marks in the next field, and
display a new set of attribute choices for the second field (see Figure 2-6).

CHECKBOOK
ENTER THE PREVIOUS BALANCE:
ENTER DEPOSIT: 2222222
ENTER WITHDRAWAL: 99999.99

NEW BALANCE IS: 99999.99

STRIKE NEW LINE TO CONTINUE, LOG ON-OFF TQEND: X

01 DISPLAY:N EDIT:N OUTPUT:N AUTO-DUPE:N REQUIRED:N FULL: N SECURE: N AUTO-ENT: N

SD-01771

Figure 2-6. After You've Assigned Attributes to a Field, IFMT Asks About the Next One

093-000151-01 Licensed Material-Property of Data General Corporation 2 = 7

Assign the EDIT attribute to the second and third fields. Next, assign the DISPLAY attribute to the
fourth field, labeled NEW BALANCE IS, and the EDIT attribute to the fifth. After you finish,
IFMT asks if you want to link to another format, and underlines a space for you to enter the other
format’s name. This feature allows you to link the current format to itself so it will run repeatedly,
or to link it to another format/program module that will run after the current one is complete.

We do not want to link the format, so we enter just NEW LINE as in Figure 2-7.

LINKED FORMAT NAME)

SD-01772

Figure 2-7. IFMT Format Link Option

2 - 8 Licensed Material-Property of Data General Corporation 093-000151-01

Next, IFMT displays the message in Figure 2-8.

After IFMT compiles the format, it warns you that the format is not associated with any program.
Then it asks you to specify another format to create or modify.

The example format is now complete, so you can strike NEW LINE. Finally, IFMT returns you to
the CLI, and you’re ready to write the program.

STARTING FPYUP FOR FORMAT CHECKBOOK

NEW CHECKBOOK FP DOES NOT CONTAIN IFPL PROGRAM. SYNTAX IF NEEDED!

NEXT FORMAT

SD-01773

Figure 2-8. IFMT Puts the New Format Through a Special Program to Create an ldea-readable . FP File

093-000151-01 Licensed Material-Property of Data General Corporation

2-9

Writing the Program

The sample program in Figure 2-9 will accept a balance, a deposit, and a withdrawal as input from
the format. It will then perform some arithmetic and display a new balance. It will also halt until we
strike any keyboard character; at this point the program will erase the screen and display a fresh
format.

The program consists of routines that perform these tasks and PROCESS statements that connect
the screen fields to the routines (see Figure 2-9).

NAME CHECKBOOK

PROCESS BALANCE AT NONE AND GETBALANCE
PROCESS DEPOSITS AT NONE AND GETDEPOSIT
PROCESS WITHDRAWALS AT NONE AND GETWITH
PROCESS NEWBALANCE AT CALCBALANCE AND NONE
PROCESS FILLER AT NONE AND REPEAT

GETBALANCE:
STORE BALANCE
RETURN

GETDEPOSIT:
STORE DEPOSITS
RETURN

GETWITH:
STORE WITHDRAWALS
RETURN

CALCBALANCE:
ADD DEPOSITS BALANCE NEWBALANCE
SUBTRACT WITHDRAWALS NEWBALANCE NEWBALANCE
DISPLAY NEWBALANCE
RETURN

REPEAT:
RETURN 1

FINISH

Figure 2-9. The Source Text of Our Program

Each PROCESS statement in Figure 2-9 contains the keyword NONE. A PROCESS statement for
an EDIT field contains the phrase,

AT NONE AND routinename
A PROCESS statement for a DISPLAY field includes the phrase,
AT routinename AND NONE

You can give a field both the EDIT and DISPLAY attributes, in which case the PROCESS
statement will contain the phrase,

AT routinename1 AND routinename?2
Note that if the screen data fields have the EDIT and/or DISPLAY attributes, the fields must
correspond exactly to the PROCESS statements. When you run the program, the monitor matches

the first field with the first PROCESS statement, the second field with the second PROCESS
statement, and so forth.

2- 1 0 Licensed Material-Property of Data General Corporation 093-000151-01

Furthermore, you must group the PROCESS statements together with no other statements
between them.

When you run this program, the monitor will wait for you to type a value in the first field. The
monitor will then retrieve this value and pass control to the program routine that is identified by the
tag in the first PROCESS statement. At this routine, labeled GETBALANCE, the program copies
the value in the variable BALANCE and returns control to the monitor. The monitor then repeats
this process for the variables DEPOSITS and WITHDRAWALS.

The statement
PROCESS NEWBALANCE AT CALCBALANCE AND NONE

sends program execution to the routine named CALCBALANCE. Since this routine uses a
DISPLAY field, the monitor passes control directly to the program without waiting for operator
input. The ADD statement adds the values of DEPOSIT and BALLANCE and places the result in the
variable NEWBALANCE. The SUBSTRACT statement subtracts the value of WITHDRAWALS
from NEWBALANCE and places the result in NEWBALANCE. The DISPLAY statement displays
the result on the screen in the field with the DISPLAY attribute.

The statement
PROCESS FILLER AT NONE AND REPEAT

along with the routine labeled REPEAT, simply delays the end of the program until you type an
alphanumeric character. Without this PROCESS statement and routine, the monitor will clear the
screen immediately after displaying NEWBALANCE; it will then request another format name.

To run the program again, strike the NEW LINE key. To stop the program, press the SHIFT key
and strike the LOG ON-OFF function key (function key 1).

Creating Source Text

To create source text for your programs, use one of the AOS text editors, SPEED or LINEDIT. If
you name program files formatname.UP, you can use a simple version of the SYNTAX command
to compile the format and the program. In this example, use CHECKBOOK.UP as the program
filename.

Compiling CHECKBOOK

To compile your program, give this command from the CLI:

SYNTAX CHECKBOOK)

Executing the Program

To execute a format/program module, you must first call up the local monitor, which your system
manager created with the IDEASG command (described in Chapter 10). The default local monitor
name in LIDEA. If the system manager used the default names, you call the local monitor from the
CLI by typing:

X LIDEA)

The monitor will ask for your password. This is optional; you can just type NEW LINE. Then it asks
for the name of the format you wish to use. After you supply this, the monitor asks if you want the
system to tell you the length and data type of each EDIT field. Type Y for yes, NEW LINE for no.

When you’ve completed the log-on sequence, the monitor displays the format on the screen and
waits for your input to the EDIT fields.

End of Chapter

093-000151-01 Licensed Material-Property of Data General Corporation 2' 1 1

Chapter 3
IFMT--The Format Generator

This chapter describes the Idea Format Generator, [FMT, which you use to create and modify
screen, print, and hardcopy formats. It also describes the Wide Format Generator, WIFMT, which
you use to create and modify wide formats (up to 132 characters across) for output on a line printer
or hardcopy device.

A format consists of the following:

Literals These serve as headings, labels, and dividers for data fields.

Data fields These are pictures of your program variables that set the variable’s format location,
format appearance, and data type (numeric, alphabetic, or alphanumeric).

Attributes These define the usage of the data fields.
Scroll areas These are areas in which you roll lines of data.

Partial These are areas from one format that you overlay onto another format as a literal.
screens

Entering IFMT

To enter IFMT from the CLI, type this command:

IFMT)

IFMT asks for the name of the next format. You may supply a new format name or the name of an
existing format. If you are modifying an existing format, the name can be a pathname up to 24
characters long. The filename portion of the pathname must be 10 or fewer characters if you will link
to this format via another format.

If you specify a pathname for an existing format, IFMT will rewrite the format to that pathname
directory. But if you specify an existing format without a pathname, IFMT will retrieve it via the
SEARCHLIST and rewrite it to the working directory.

If the ACL settings limit your file access, or if the format file is currently open, or if the pathname
contains an illegal character, you will get this error message:

NAME, ACL, OR IN-USE ERROR
This will occur after you answer the next question, format TYPE.
After you give the format name followed by NEW LINE, IFMT asks for the format type:

TYPE(H OR P OR NONE)

093-000151-01 Licensed Material-Property of Data General Corporation 3— 1

You can use an IFMT format in one of three ways: in normal Idea monitor operation on a 6053
terminal; to produce formatted line printer output; and in conjunction with a DASHER ™ printing
terminal. Depending on how you want to use the format, enter one of these responses:

NEW LINE Create a screen format for normal Idea operation on a 6053 terminal. Format length
may be up to 23 lines, the number of lines on the terminal screen minus one line for
messages (line 24).

P NEW LINE Create a format for line printer operation with the PRINTF utility (described in
Chapter 8). This mode allows formats up to 80 lines long. It also allows you to use the
PREV PAGE and NEXT PAGE keys on the IFMT side of the large template to move
around within the format. It disables the questions about field attributes, but asks you
how long the print format will be.

H NEW LINE Create a format for interactive use with a DASHER printing terminal. As with the P

response, this mode allows formats up to 80 lines long, and lets you use the PREV
PAGE and NEXT PAGE keys.

IFMT Commands

Table 3-1 lists the IFMT commands. Use these commands when creating formats. Remember to
place the large template with the side labeled Idea IFMT over the function keys.

You may escape from an [FMT session any time before you enter ATTRIBUTE mode by striking
the ESC key. IFMT will display the message

INTENTIONAL SCREEN ABORT
and will return to the NEXT FORMAT question. If you were editing an existing format, the format

files will remain as they were before you began altering them. If you were creating a new format, it
will exist but will contain nothing.

Table 3-1. IFMT Command Repertoire (6053 Terminal)

Command Function
DEL Substitutes space for character to left of cursor.
DELETE CHAR Deletes character at cursor screen location and shifts remaining

characters on the same line left one position.

INSERT CHARS Commences insert mode operation. Inserts characters you type at
cursor. Shifts to the right the remaining characters on the same
line. Deletes the last character on the line. You can cancel insert
mode by a second INSERT CHARS or by vertical cursor

movement.

DELETE LINE Deletes line at cursor screen location and moves remaining lines
up one line.

INSERT LINE Opens line at cursor screen location and moves lower lines down

one line. Last line is deleted.

FIELD Puts IFMT in FIELD mode.

3' 2 Licensed Material-Property of Data General Corporation 093-000151-01

Table 3-1. IFMT Command Repertoire (6053 Terminal) (continued)

Command Function
LITERAL Puts IFMT in LITERAL mode.
PRINT Prints screen format on line printer.

(Cursor Pad)

ATTRIB Indicates to IFMT that format is complete. IFMT responds by
displaying attribute questions for each format field.

BACK TAB Moves cursor back one field at a time while in ATTRIB mode.

(unmarked key on Use it if you answer the field attribute question incorrectly.

cursor pad)

Cursor Controls Position cursor at any point on the screen.

Printer Format Commands (used with both P- and H-type formats)

Command Function
NEXT PAGE Displays next 20-line page.
PREV PAGE Displays previous 20-line page.

Special Format Characters

Character Function
@ First @ used indicates start of scroll area. Second @ used ends
(Field Mode only) the scroll area. You may use this sequence repeatedly.

! Partial screen delimiter. A pair of exclamation points brackets a
partial screen area.

//FF// Form Feed. When used in a printing format, PRINTF will
replace it with a form feed.

//HEADING// For repeated literals in formats used with PRINTF. Use for
current PAGE heading only and current scroll heading if any.
PRINTF will reproduce only “‘last seen’” headings when it
encounters a form feed.

Literals and LITERAL Mode

Vhen you create a new format, IFMT places you in LITERAL mode. In this mode, you can use any
eyboard character (except the exclamation point) to create headings, labels, and dividers. Literals
lon’t interact with programs; they serve only as labels.

With a 6053 format, the monitor displays the literals as they appear when you create them. With a P
type format, the PRINTF utility reproduces the literals. With an H type format, the monitor does
not display them.

To change from LITERAL to FIELD mode, strike the SHIFT and FIELD keys. To change from
FIELD to LITERAL mode, strike only the LITERAL key.

093-000151-01 Licensed Material-Property of Data General Corporation 3-3

Data Fields and FIELD Mode

Once you're in FIELD mode, use the following characters to create the data field pictures.

Character Definition

A Alphabetic character
9 Numeric character
X Alphanumeric character

Decimal point

Zero suppress character
Signed field character
Floating currency symbol
Check protection character
Numeric field comma

*eﬁ_,_N'

NOTE: All characters but the A and X are numeric field designators.

You cannot mix Xs, As, and 9s when creating data field pictures. IFMT sees a data field as an
unbroken string of similar characters. Therefore, AAAA is a single data field, but AA99 defines two
data fields (one alphabetic, one numeric), and AAXX99 defines three data fields. Also, do not space
within a string. For example, XX XX defines one data field, but XX XX defines two.

The characters that delimit data fields are:

Space

End of Line

Literal Character
Dissimilar Field Designator

Alphabetic Fields
The picture character A defines a character position as alphabetic. For example, if you define a field
as AAAAA, it will accept up to five alphabetic characters.

The Idea system file ALPHABET.TB defines the set of alphabetic characters. To change this file,
use the ALPHA utility described in Chapter 9. If you don’t change them, the legal alphabetic
characters are the letters A-Z and the space.

Alphanumeric Fields

The picture character X defines a character position as alphanumeric. You may enter any graphic
keyboard character in an alphanumeric field.

Numeric Fields

The picture character 9 defines a character position as numeric. For example, if you define a field as
99, it will accept any two digits (0-9). If you define a field using only 9s, you can’t enter a decimal
point; if you try to, the system will issue an error message.

3' 4 . Licensed Material-Property of Data General Corporation 093-000151-01
!

Decimal Point

Define the field position of a numeric value’s decimal point by placing a decimal point in the desired
location of the field’s picture. When you enter data into the field, you must explicitly enter the
decimal point for values with decimal fractions. If you don’t enter it explicitly, the system assumes
that the value is an integer.

Zero Suppress Character

To suppress leading zeros, place the Z character in the places where you don’t want leading zeros to
appear. For example, instead of a numeric picture 9999.99, you could specify ZZZ7.99.

Signed Field Character

To display a signed value (i.e., + or -), you use the sign character (+) in the field picture. You can
place a single + in the rightmost character position of the picture, such as 9999.99+. On output, the
system will display the sign character on the right; for example, 1332.50+ or 0001.00-.

You can also place the + to the left of the numeric picture characters, such as +9999.99. With such
a picture, the monitor will display the sign on the left but will not suppress leading zeros; i.e.,
-0005.72, or +0423.00. To suppress leading zeros, use multiple + signs, such as + 4+ + +9.99. On
output, the monitor will suppress leading zeros and place one sign immediately preceding the
numeric value; for example, +83.45, or -4729.25.

Currency Symbol

Placing a single dollar sign at the left of a data field picture will display one currency character in that
position; placing a series of dollar signs there will suppress leading zeros and display one currency
symbol. For example, a picture of $99.99 and an entry of 5.43 results in $05.43. A picture of $$$.99
and an entry of 5.43 results in $5.43.

Check Protection

The asterisk picture character replaces a leading zero with an asterisk. It is not a floating character, so
to suppress all leading zeros, use a picture that consists of all asterisks to the left of the decimal
point, such as ****** 99,

Comma

Use the comma in field pictures according to its American usage. It will appear on output only when
it’s necessary. For example, with a picture $$,$$$.99, an entry of 2000 results in a display of
$2,000.00. An entry of 431.50 results in a display of $431.50. Do not enter the comma explicitly. For
example, type 2000 in a field, not 2,000.

093-000151-01 Licensed Material-Property of Data General Corporation 3' 5

Restrictions
You can use the following combinations of characters only if you observe certain restrictions.

The Floating Currency and Sign Characters

If you use the dollar sign with the sign character, you can use only one of them as a floating
character. Specify the floating character by typing it at least twice. Place the other character outside
the floating one; it becomes fixed in that position.

Examples

+$.99 Bothare fixed.
+8$3.99 The dollar sign floats; the sign is fixed.

$+ +.99 The sign floats; the dollar sign is fixed.

WARNING: If you use these characters together, note that you must reserve space for the digits;
the + and $ characters each take up one character position. Therefore, the picture
+$.99 will only allow you to display decimal fractions; it has no spaces for digits to the
left of the decimal point. The pictures $+ +.99 and +$$.99 can only display one digit
to the left of the decimal point, such as $-3.49, or +$2.50. They will both suppress
leading zeros, such as $+ .50, or -$.37.

The Zero Suppress and Check Protection Character

You cannot use the Z and the * together.

Other Combinations

When you use the dollar sign or the signed field character with the zero suppress or the check
protection character, you can only use one dollar sign or sign character in the leftmost position. The
dollar sign or sign character is fixed in that position.

Also, you can’t place a $ character to the right of a decimal point.

Fields During Program Execution

During program execution, the system steps through the fields in the order in which they appear on
the screen. It moves from left to right and from top to bottom, unless the program specifically calls
for another order. At each field with the DISPLAY or EDIT attribute, the system pauses to execute

the program routine associated with that field.

3"6 Licensed Material-Property of Data General Corporation 093-000151-01

Page and Scroll Mode

Up to now, we have used only page mode formats. During program execution, fields defined in page
mode appear only in the positions specified during format creation. Scroll mode fields, however,
allow you to display multiple lines of fields.

To specify scrolled fields, you strike the commercial at (@) key while in FIELD mode; this begins
the scroll area. The first line of the scroll area will be the line containing the fields that follows the @.
A second @ ends the scroll area, returning you to page mode. You place the fields that you wish to
repeat on succeeding lines between the @ signs. For example, Figure 3-1 shows a typical scroll
specification, which contains two numeric fields and a three-line scroll area.

INVENTORY CHECK

PART NUMBER QUANTITY ON HAND

@

99999 177,779

SD-01775

Figure 3-1. A Scroll Field Specification

093-000151-01 Licensed Material-Property of Data General Corporation 3- 7

Figure 3-2 shows an operator’s console screen during program execution. The program could call
the scroll lines of output to the screen in several ways. It could display the information
automatically, or do it line by line, triggered by an operator entry such as a part number.

INVENTORY CHECK

PART NUMBER QUANTITY ON HAND

53210 31,500
26780 5,000

11943 2,000

8D-01776

Figure 3-2. The Displayed Scroll Fields

Overlaying Partial Screens

In normal operation, the monitor erases an entire format from the screen prior to displaying a new
one. You can retain areas of one format and display them with another format by using partial
screens. You will normally use partial screens for operator reference. Data left from a previous
screen has the status of a literal; i.e., you can’t change it.

To overlay an area from one format onto another, you enclose the corresponding area of the second
format in exclamation points (!) in LITERAL mode. When the monitor calls the second format, it
will erase only the portion of the first format that corresponds to the area of the new format within
the exclamation points. It will continue to display the rest of the first format.

For example, Figure 3-3 shows two formats. The second one contains an area marked off by

exclamation points. Figure 3-4 shows what the screen will look like when the monitor loads the
second format.

3‘8 Licensed Material-Property of Data General Corporation 093-000151-01

In Figure 3-4, the monitor substitutes the CURRENT CHARGES portion of the second format for

the ADDRESS, CITY, and STATE portion of the first format. It leaves the company name and the
customer name on the screen as a literal.

A format may contain any number of overlay areas.

Format 1
line# 1 ACME PARTS COMPANY
(23 CUSTOMER NAME: XXXXXXXXXXXXXXXX
‘é ADDRESS: XXXXXXXXXXXXXX
7

CITY, STATE: XXXXXXXXXXXXXX

Format 2
line# 1
2
3
4 | CURRENT CHARGES
5 ITEM NO. QUANTITY COST
6 99999 9999 $999.99
7
23 ' !
SD-01777
Figure 3-3. The Second Format Contains an Overlay Area
line # 1 ACME PARTS COMPANY

2

3 CUSTOMER NAME: SWIFT, JONATHAN

4 CURRENT CHARGES

5 ITEM NO. QUANTITY COST

6

SD-01778
Figure 3-4. The Monitor Overlays the Area Between the Exclamation Points
093-000151-01

Licensed Material-Property of Data General Corporation 3'9

Blinking Screen Text

You can cause screen literals to blink for special emphasis. While in FIELD mode, surround the
literal area in square brackets.

For example, Figure 3-5 contains an area that will blink when the operator executes the format.

If you accidentally type two consecutive, identical brackets [[or]], IFMT will give the error message
BRACKET USAGE INVALID.

IFMT does not check to see that each [has a corresponding], but it will automatically end the
blinking at the end of the format. The blinking doesn’t carry over to other screens or to messages.

You may use the left and right square brackets as literals; they control blinking only when you type
them in FIELD mode.

Data fields can’t blink.

[BLINKING SCREEN EXAMPLE]

Enter your name: AAAAAAAAAAAAAAAAAAAA

Here is your name: AAAAAAAAAAAAAAAAAAAA

SD-01779

Figure 3-5. The Words BLINKING SCREEN EXAMPLE Will Blink

3' 1 0 Licensed Material-Property of Data General Corporation 093-000151-01

Underscoring Screen Information

IFMT also allows you to underscore screen literals for special emphasis. While in FIELD mode,
surround the area that you want to underscore with parentheses.

For example, Figure 3-6 contains a literal that will be underscored when the operator executes the
format.

If you accidently type two consecutive, identical parentheses ((or)) IFMT will give the error
message BRACKET USAGE INVALID.

IFMT does not check to see that each (has a corresponding), but it will automatically end the
underscoring at the end of the format. The underscoring doesn’t carry over to other screens or to
messages.

You can’t underscore data fields.

(UNDERSCORE EXAMPLE)

Enter your name:. AAAAAAAAAAAAAAAAAAAA

Here is your name: AAAAAAAAAAAAAAAAAAAA

SD-01780

Figure 3-6. The System Underlines the Words UNDERSCORE EXAMPLE

093-000151-01 Licensed Material-Property of Data General Corporation 3- 1 1

Size and Number of Fields

A single screen format may contain a maximum of 60 data fields. Each field may be from 1 to 80
characters long, the CRT screen’s maximum width.

By using SCROLL mode, you can display more than 60 fields by entering only one line to field
descriptions for each set of scroll lines. The fields described on this one line are the only ones
counted toward the 60 field limit. However, you will lose one field from the maximum of 60 each
time you switch between page and scroll mode.

Another limitation occurs with groups. A group is either a scroll area or a page area, and it can
contain no more than 512 characters (bytes). A scroll group will exceed the 512-byte limit if the
number of lines between the @ signs multiplied by the number of field characters on one scroll line
exceeds 512.

If any group exceeds 512 characters, you must divide it. To divide a scroll group in two, you insert a
pair of @ signs (@ @). Do not place any field specifiers between them.

Inserting the pair of @ signs is equivalent to inserting a nonfunctional page group within the scroll
group. You may also use functional page groups to divide a scroll group.

To divide a page group, you can insert two successive lines containing only single @ signs. Again,
this is equivalent to inserting a nonfunctional scroll group; you may also use functional groups.

Each time you divide a group, remember that it decreases the number of permissible fields by two.
Also, note that you cannot backtab across a group boundary during program execution.

Attributes

After you have set up your screen literals, data fields, and scroll areas, you must assign attributes to
the fields. To begin this process, strike the SHIFT and the ATTRIB key.

IFMT then checks the legality of the field definitions and the use of @ and !. If IFMT finds errors, it
allows you to correct them.

If it finds no errors, IFMT displays the attribute query line at the bottom of the screen, positions the
cursor to the first attribute choice, and identifies the current field by displaying flashing question
marks where that field’s descriptors were.

You have four possible responses to each attribute query:

Response Meaning
Y) You want the field to have this attribute.
N) You do not want the field to have this attribute.

You want the attribute to remain as it is (the automatic default).
BACKTAB' You want to return to the previous attribute for a correction.

! The unmarked key on the cursor key pad.

Wh;n you use BACKTAB, be sure that you are consistent with the system when choosing your
attributes. For example, IFMT automatically skips the last five attribute choices if you specify a
DISPLAY-only field, because DISPLAY fields can’t have these attributes. However, by using
BACKTAB you can change them.

On a new format, IFMT sets all attributes to N.

3- 1 2 Licensed Material-Property of Data General Corporation 093-000151-01

On a new format, IFMT sets all attributes to N.

If you are editing a previously created format, IFMT will display an attribute line with the old
attributes. It will also display an asterisk after the field number in the attribute query line. You can
retain these old attributes by striking NEW LINE at each one. A field’s attributes will remain valid
even if you change the field’s size and/or data type. However, if you insert, delete, or move a field
in a format, you may alter the order of processing and thus destroy the validity of the old attributes.
If you are manipulating the fields in this manner, make sure that the attributes are still valid.

If you do not want to display the old attributes, you can delete the formatname.VS file with the CLI
DELETE command before calling up the format with IFMT.

To verify attributes on the line printer, use the PFMT utility (see Chapter 9) or the Idea compiler
(see Chapter 6).

Table 3-2 lists and describes the IFMT attributes.

Table 3-2. The IFMT Attributes
Attribute Function

DISPLAY The field will display data from the program. You cannot use a
DISPLAY-only field for data entry; see DISPLAY and EDIT.

EDIT The field will accept data from the operator and send it to the
program.
DISPLAY and EDIT The program will use the field as a DISPLAY field the first time it

encounters it; after that, the program uses it as an EDIT field.
This allows the operator to edit data from the program.

AUTO-DUP Use this attribute for scroll fields where the fields have neither
the EDIT nor DISPLAY attributes (they may have the OUTPUT
attribute). An AUTO-DUP field will repeat the value that an
operator first enters in subsequent scrolls of the field.

CAUTION: Do not backtab to this attribute for fields with
either or both the EDIT and DISPLAY
attributes. If you give this attribute to fields
with EDIT and/or DISPLAY, your program
will not work correctly.

REQUIRED The operator must enter at least one character in the field.

FULL The operator must enter the exact number of characters
specified by the field picture, or enter nothing.

SECURE This attribute tells the system to echo asterisks when the

operator enters characters. This ensures privacy when typing
sensitive data.

AUTO-ENTRY When full, the field supplies its own NEW LINE.

NOTE: If you designate a field as DISPLAY only, IFMT skips the last five attributes, since they do not
apply to DISPLAY-only fields.

093-000151-01 Licensed Material-Property of Data General Corporation 3- 1 3

WIFMT -- The Wide Format Utility

To create print and hardcopy formats that are wider than the screen of a 6053 terminal (up to 132
characters wide), use the WIFMT utility.

To use WIFMT, give this command:

WIFMT)

WIFMT will ask you for the name of the next format, and will then ask you for the type, either print
(P) or hardcopy (H).

TYPE(HOR P)

Enter H to use a DASHER printing terminal; enter P to use a line printer with PRINTF. We explain
these fully in Chapter 8.

You cannot use the following IFMT capabilities with WIFMT:

® Blinks
® Underlines
® Partial Screens

How to Use WIFMT

WIFMT uses two screen lines to reach the 132-character width. It uses the 80 characters on the first
line plus characters 1 to 52 on the second line. The remaining 38 characters on the second line
(positions 53 to 80) are a ‘‘dead’’ area; WIFMT fills it with angle brackets (<).

Each two-line screen pair is a one-line unit to WIFMT; to change one line of the output format you
must change both screen lines.

The two-line pairs begin at line 1, the first line of the format. Thus, odd-numbered lines mark the
first 80 characters of the output format, and even-numbered lines mark the partial (52 characters)
lines.

If you disturb a dead area while editing, you must repair it. Use the cursor-control keys to position to
the line, and strike the BACKTAB key (the unmarked key on the cursor pad). If you are on an
odd-numbered line BACKTAB will have no effect; if you are on an even-numbered -line,
BACKTARB will restore the dead area to its original state.

To delete a format line, you must delete both the odd- and even-numbered screen lines. Likewise,
to insert a format line, you must insert a two-line pair.

WIFMT allows you to define formats that are 60 lines long (consisting of 120 screen lines). The

maximum field length is 80 characters, and a field may not cross the 80th column into the 81st
character position.

3- 1 4 Licensed Material-Property of Data General Corporation 093-000151-01

The PFMT utility reports format line numbers and indicates the dead area by printing a series of left
angle brackets (K < < << << << <L),

To convert IFMT formats to WIFMT, you must first insert even-numbered lines. To convert
WIFMT formats to IFMT, you must delete the dead area characters; otherwise, you’ll get an error
message ILLEGAL CHARACTER IN FIELD. We recommend that you remake your WIFMT
formats rather than convert them.

Figure 3-7 shows the screen after you give the WIFMT command, the format’s name, and the H or
P specification.

LI L<L

LI L<

<L CLCLCLCL

<L L

<< <KL CLCLCLKL

(<L« <«<

(< ddd << <<

CCC <LK
o

SD-01730

Figure 3-7. The Initial WIFMT Screen

End of Chapter

093-000151-01 Licensed Material-Property of Data General Corporation 3' 1 5

Chapter 4
The IFPL Language

Each IFPL program begins with a NAME statement and ends with a FINISH statement. Between
these two statements you place groups of nonexecutable statements and groups of executable
statements.

The nonexecutable statements perform the definition tasks for your program variable, subroutines,
tables, and files. They also link the format data fields with the executable statements.
Nonexecutable statements include the PROCESS statement, the REGISTER statement, the
subroutine definition statements (not to be confused with routines), the table definition
statements, and the file definition statements.

The executable statements process the variables, subroutines, tables, and files. You organize the
executable statements into routines labeled by tags.

PROCESS statements direct the [dea monitor to start executing the IFPL program at these routines.
The routines return control to the Idea monitor by means of RETURN, RESET, or RESTART
statements.

Figure 4-1 shows the block structure of an IFPL program, and Figure 4-2 shows the structure of an
actual program.

NAME STATEMENT
|
FILE-RELATED STATEMENTS
|
NONEXECUTABLE STATEMENTS J PROCESS STATEMENTS
|
REGISTER STATEMENTS
]
COMPILER-DIRECTING STATEMENTS

) [
ROUTINE(S) FOR SCREEN FIELD #1

1
EXECUTABLE STATEMENTS < ROUTINE(S) FOR SCREEN FIELD #n

[
SUBROUTINE(S)
- [

NONEXECUTABLE STATEMENT { FINISH STATEMENT

SD-01110

Figure 4-1. The Block Structure of an IFPL Program

093-000151-01 Licensed Material-Property of Data General Corporation 4-1

The program in Figure 4-2 uses a stock item’s part number (PARTNO) as a key accessing the record
INVREC in the file INVENTORY. INVREC contains the item’s name (PARTNAME). The
program displays this name on the screen and searches the three tables (DEPTA; DEPTB, and
DEPTD) for PARTNO. When the program finds PARTNO, it branches to the appropriate routine

to display the department from which you can reorder the part.

NAME REOKDER
FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII
RECORD FOR INVENTORY IS INVREC
LENGTH IS 20
INCLUDES PARTNAME 1 20 ASCII
STOP

PROCESS PARTNO AT NONE AND GETPARTNC
PROCESS PARTNAME AT DISPLAYNAME AND NONE
PROCESS DEPTNO AT DISPLDEPT AND NCONE

TABLE DEPTA
"C33e"
"§130"
*Ccs4o"
ENDTABLE

TABLE CEPTSB
"x250"
"yq3a"
"z2280"
ENDTABLE

TABLE DEPTD
"cs3a"
"vVeBO"
"gsee"
ENDTABLE

GETPARTNO: STORE PARTNO
RETURN

DISPLAYNAME: FIND THE INVREC USING PARTNG
ON=JOERR ERRMSG
DISPLAY PARTNAME
REFILE INVREC USING PARTNO
ON=IOERR ERRMSG
RETURN

DISPLDEPT: LOOKUP IN DEPTA PARTNO
IF FOUND D1i
LOOKUP IN DEPTE PARTNO
IF FOUND D2
LOOKUP IN DEPTD PARTNG
IF FOUND D3
[

D1: MOVE "DEPT A" TO DERTNO
DISPLAY DEPTNO
RETURN

De: MOVE "DEPT B" TO DEPTNO
DISPLAY DEPTNO
RETURN

D3: MOVE "DEPT D" TO DEPTNO
DISPLAY DEPTNO
RETURN

ERRMSG: MESSAGE I10~ERROR. -CALL SYSTEM MANAGER,
QUIT

FINISH

Figure 4-2. An IFPL Program

4- 2 Licensed Material-Property of Data General Corporation

093-000151-01

Nonexecutable Statements

The nonexecutable statements include the PROCESS statement, the REGISTER statement, the
subroutine definition statements', the table definition statements, and the file defintion
statements.

The PROCESS Statement

The PROCESS statement controls the execution sequence of an IFPL program. You must have one
PROCESS statement for each DISPLAY or EDIT field. Also, you must place your PROCESS
statements together in a group with no intervening statements.

The compiler links the first DISPLAY or EDIT field it encounters to the first PROCESS statement,
the second DISPLAY or EDIT field to the second PROCESS statement, and so forth. The order of
the fields on the screen runs from left to right and from top to bottom. If you mix up this order,
you’ll get meaningless program results, since the compiler will link the fields to the wrong routines.

The formal syntax of the PROCESS statement is

Stag [AND] NONE I
[label#]PROCESS variable AT) , ’ $
NONE /[AND/ tag

The optional /label lets you send program control, via a RETURN statement or some other
statement, to a section of code identified by a PROCESS statement. If you use a label, you must

place a # sign immediately after the label, with no spaces in between the label and the # sign. Labels
can be up to 10 characters long.

variable is the name you want to give to your program variable; it must be unique within the
program. The compiler assigns this variable an area of working storage with characteristics defined
by the field attributes. (At runtime, though, the variable is not connected to the field.)

For a DISPLAY-only field, use AT tag AND NONE; tag is the label of the routine to which you
want this PROCESS statement to pass execution. For example, the statement

PROCESS PARTNAME AT DISPLAYNAME AND NONE

sends program execution to the routine labeled DISPLAYNAME.

For an EDIT-only field, use AT NONE AND tag. The PROCESS statement

PROCESS PARTNO AT NONE AND GETPARTNO

sends execution to the routine labeled GETPARTNO.

For a field with both the DISPLAY and EDIT attributes, use AT tagl AND tag2. tag1 is the label of
a routine that will use the field as a DISPLAY field, and tag2 is the label of a routine that will use
the field as an EDIT field. The first time the system encounters the field, it uses the field as a

DISPLAY field; after that, it uses the field as an EDIT field (unless you change this with a RESET
statement).

! Strictly speaking, the subroutine definition statements are executable statements, but they must not appear
in an executable block, such as a routine.

093-000151-01 Licensed Material-Property of Data General Corporation 4' 3

The REGISTER Statement

The REGISTER statement is another way to declare a program variable. A variable declared by a
REGISTER statement is identical to one defined by a PROCESS statement. You will use
REGISTER-statement declared variables to define temporary storage that is independent of the
screen.

The formal syntax of the REGISTER statement is

REGISTER variable picture [initial value]

where:

variable is the name you want to assign to your program variable. It must be unique within the
program.

picture is a picture of your variable. If you will use this variable with a screen field for storing

or displaying data, this picture must correspond to the picture of the variable that
appears in the screen format.

initial value is optional. If you assign an initial value, it must correspond to the variable’s picture;
i.e., you can’t assign an initial numeric value if your variable picture is alphabetic.

Subroutine Definition Statements

A subroutine is a group of executable statements that is not connected to a screen field with a
PROCESS statement. To execute a subroutine, give the PERFORM statement.

To define the beginning of a subroutine, use this statement:
SUBROUTINE subroutinename
To end a subroutine, use the statement

ENDSUB

This statement also returns execution to the main program.

Table Definition Statements

Use this statement to define the beginning of a table:
TABLE tablename
To end a table, use the statement

ENDTABLE

4-4 Licensed Material-Property of Data General Corporation 093-000151-01

File Definition Statements

To use a file in an IFPL program,
1. You must create the file using the INFOS utility ICREATE (see Chapter 5), and

2. Youinclude certain file definition statements. These file definition statements are:

FILE [IS]filename

KEY [FOR] filename [IS]/length ASCII

RECORD [FOR]/ filename [IS] recordname
LENGTH [IS/recordlength

INCLUDES fieldname starting-position length type

STOP

DUPLICATES [ARE]COUNTED /IN]/variable
PARAMETERS [FOR] subindexname
NODE-SIZE [IS] value

PARTIAL LENGTH [IS/]VALUE

SUBINDEX [FOR] filename [IS] subindexname

DEFINE subindexname USINAG key...

Executable Statements

You group the executable statements in routines that you connect to the screen data fields via tags
in the PROCESS statements. Label the first statement in the routine with the same tag that you
used in the PROCESS statement, ending the tag with a colon (2).

Terminate the routine with a LINK, RETURN, RESET, or RESTART statement. The LINK
statement links to another format. RETURN goes to the next PROCESS statement; if the routine
has completed the last PROCESS statement, control passes to the FINISH statement. RESTART
returns control to the first field, erases all unprotected data, and resets the DISPLAY/EDIT
flip-flop to DISPLAY (for fields with both DISPLAY and EDIT). RESET resets a field with both
DISPLAY and EDIT to DISPLAY.

As with other IFPL names, tags must begin with a letter. The remaining characters can be any
combination of letters, numbers, dashes (-), and periods (.) (See the section on ‘‘Names’’ in this
chapter).

You cannot place a space between the tag and the colon.

El: isalegaltag; E20: isillegal.

The set of executable statements allows you to perform arithmetic functions, control functions, data
moves between the screen and the program, data manipulation, file manipulation, passing,
sending/receiving, and printing. For each statement’s formal syntax, see Chapter 7.

Data Moves Between Screen and Program
The STORE statement takes a value entered in a screen EDIT field and stores it in working storage.
You must give this command to use data entered on the screen in your program.

The DISPLAY statement displays the value of a program variable on the screen in a field that has
the DISPLAY attribute.

093-000151-01 Licensed Material-Property of Data General Corporation 4' 5

Arithmetic Functions

The arithmetic function statements are ADD, SUBTRACT, MULTIPLY, and DIVIDE. They all
take this form:

operator value, value, resultvariable

The operator performs the arithmetic function using value, and value,, and places the result in
resultvariable. The SUBTRACT statement subtracts value, from value ,; the DIVIDE statement
divides value, by value,.

Be conscious of possible truncation problems when you define your resultvariable. The monitor
will round off decimal fractions and will truncate the left digits of integer values if you haven’t
provided enough digits to the left of the decimal point. If such an overflow occurs, the monitor sets

the overflow flag. You can use this flag with the ON-OVERFLOW statement to branch to an
error-handling routine (see ON-OVERFLOW in Chapter 7).

For example, suppose you declared your resultvariable with this picture:
99.99
This addition,
10.1111
+1.1171
11.2281
would become 11.23. And this addition,
100.1111
+ 11171
101.2282
would become 01.23.
To ensure that you don’t lose valuable digits, follow these rules:
ADD Give the resultvariable one more integer place than the larger addend.

SUBTRACT Give the resultvariable one more integer place than the larger of the minuend and
subtrahend.

MULTIPLY Give the resultvariable as many integer places as the multiplier plus the
multiplicand.

DIVIDE Give the resultvariable as many integer places as the dividend and as many decimal
places as the divisor.

4"6 Licensed Material-Property of Data General Corporation 093-000151-01

Internal Considerations

The monitor will perform arithmetic on up to 18 decimal places. It performs all calculations in real
arithmetic and assumes a decimal point after the right-most digit if you don’t specify one. The
decimal point is implicit in all cases; you don’t have to provide a character position for it.

Signed Values

You must define your resultvariable as a signed variable, or the sign will be lost. The sign requires
one character position.

Control Statements
The control statements are RANGE, COMPARE, LOOKUP, GO TO, and ON-IOERR.

The RANGE statement checks to see if a value is within a certain range. If it is, you can use the [F
IN-RANGE statement to direct program execution; if it isn’t, you use the IF OUT-RANGE
statement.

The COMPARE statement compares two values and sets a flag according to what it finds. The IF
EQUAL, IF NOT-EQUAL, IF LESS, and IF GREATER statements direct program execution
according to the value of the flag.

The LOOKUP statement searches a table for a value and sets a flag. The IF FOUND and IF
NOT-FOUND statements direct program execution according to the flag’s value.

The GO TO statement is an unconditinal GO TO; the GO TO USING statement is a conditional GO
TO.

To branch to an I/0 error-handling routine, you use the ON-IOERR statement.

You can use 11 other control statements to handle special conditions that may arise during data
entry. For example, the ON BACKTARB statement branches to a routine if the operator strikes the
BACKTAB key (the unmarked key on the cursor pad).

These additional statements are:

ON BACKTAB

ON DISCONNECT
ON END DATA
ON ESCAPE

ON FUNCTION
ON LINE-ERR

ON LOGOFF

ON MODE CHANGE
ON NO-ACTIVITY
ON REPEAT

ON SCREEN

093-000151-01 Licensed Material-Property of Data General Corporation 4' 7

Data Manipulation Statements

You can transfer data between memory locations with the MOVE statement, the RIGHT
statement, and the LEFT statement. If you use these statements with tables, be sure that the source
and destination tables have the same data types and sizes. See Chapter 7 for more information on
these statements.

File Manipulation Statements

To locate a file record and bring it into memory, use a variation of the FIND statement.

To enter a new record into the database, use the FILE-NEW statement; to update a record, use the
REFILE statement.

To delete a record permanently, use the DESTROY statement. To delete a record logically, use the
REMOVE statement. To recover a logically deleted record, use the REINSTATE statement.

To lock a record, use the HOLD keyword in the FIND statement. To release a locked record for use
by other programs, use the RELEASE statement. The RELEASE statement also allows you to
unlock all records locked by the program.

To verify that a key will retrieve a record you can use the VERIFY statement. The system will set
the IOERR flag as if a record access was attempted. VERIFY does not, however, retrieve the record.
This is useful for positioning within INFOS system sublevels. You can also use VERIFY NEXT or
VERIFY PREVIOUS to look beyond a record that was locked by another program.

The RETRIEVE key and RETRIEVE HIGH key statements let you place key values in variables.
The ESTABLISH LINK statement sets up a link between a key and a subindex.

The INVERT statement lets you set up an alternate key for a record.

Printing Statements

The printing statements are:

RECORD [FOR]PRINTING [IS]recordname
INITIATE PRINTING USING key

PRINT [THE]recordname USING key
TERMINATE PRINTING USING key

We explain these fully in Chapter 8.

Sending and Receiving Data

To send data to another process, use a form of the SEND statement:

SEND { recordname [[TO] ipc-portname] }
REQUEST recordname

To receive data sent from another process, use:

RECEIVE recordname [[FROM] ipc-portname]

4-8 Licensed Material-Property of Data General Corporation 093-000151-01

You may use RCX70 to send and receive data. If you elect this option (see IDEASG in Chapter 10),
Idea will perform several tasks to make such communication simple. The system will set up IPC
headers, split records if they exceed the RCX70 buffer size, and attach a valid RCX70 command
code and address. You must simply place in the record the information that the host expects or
returns.

Statements for Tape Logging

Use these statements for tape logging:
RECORD [FOR]TAPE [IS]recordname

LOG [THE] recordname

Passing Records to Another Program
To pass a record to the COMMON area so that a linked program can accept it, use:

RECORD [FOR]PASSING [IS] recordname
PASS recordname

To accept arecord from the COMMON area, use
RECORD [FOR]PASSING [IS]recordname

ACCEPT recordname

Miscellaneous Statements

The statement

COPY filename

copies the contents of a file into a program.

The statement

PRIORITY [IS]value

assigns a lower processing priority to the program.
The statement

QUEUE variable

queues a CLI command as a batch job.

093-000151-01 Licensed Material-Property of Data General Corporation 4'9

Names

You must follow certain conventions when assigning names to your programs, variables, tables,
files, records, and tags.

Program Names

Program names in the NAME statement must begin with a letter; the remaining characters may be
letters, numbers, or periods (.). You may not use the following characters in the NAME statement:

dash -
colon :
carat

single quote
double quote
angle brackets < >
parentheses 0

~
k)

LX)

Program names can contain any number of characters; however, the first 10 must be a unique
name.

Other Names

Names for variables, tables, files, records, and tags must begin with a letter. The remaining
characters can be letters, numbers, periods, dashes, or other punctuation characters except the
following:

colon
carat
double quote

~

LRl

The colon serves as the tag delimiter. You must place a colon immediately after a tag, and follow the
colon with at least one space or tab. For example,

MYTAG: STORE NAME
RETURN

The carat is the line continuation character, and the double quote encloses literals, such as
“A_LITERAL”.

Length

You can specify any number of characters in your names, but the first 10 must be unique.

Delimiters

To separate a name from a keyword or another name, use a space, a tab, or a comma.

4- 1 0 Licensed Material-Property of Data General Corporation 093-000151-01

Statements That Define Names

The following statements define names. The name in each statement is underlined.
NAME programname
FILES filename...

REGISTER variable picture [initial value]

‘filename

RECORD FOR I PASSING IS recordname

PRINTING
TAPE

TABLE tablename

SUBROUTINE subroutinename

tag1 AND NONE
PROCESS variable AT

NONE AND tag2

Using the REDESIGNATE Statement

You can use the REDESIGNATE statement to define a name. A register redesignation is
equivalent to a register declaration; the names specified in the redesignation define valid names. For

example,

REGISTER DATE X (8) 00/00/00
REDESIGNATE DATE

MONTH 1 2

DAY 4 2

YEAR 7 2

STOP

In this example, we redesignated a portion of the register DATE as MONTH, a portion as DAY,

and a portion as YEAR. Another possible way to define this register would be

REGISTER MONTH X (2) 00
REGISTER DAY X(2) 00
REGISTER YEAR X(2) 00

STOP

However, the values of MONTH, DAY, and YEAR receive six contiguous bytes of storage when
you REDESIGNATE them. If you declare them as three separate registers (as in the second case),

they aren’t stored contiguously.

093-000151-01 Licensed Material-Property of Data General Corporation

Data Types

[FPL has three data types: numeric, alphabetic, and alphanumeric. They are defined by their
character sets:

Numeric: 0-9. + -

Alphabetic: The characters contained in the file ALPHABET.TB. For English-speaking users,
this set will usually consist of the letters A-Z and the space.

To change the alphabet, use the ALPHA utility described in Chapter 9.
Alphanumeric: Any keyboard character.

IFPL allows you to use these data types in registers. It obtains the data for PROCESS variables from
the format field definitions.

Auxiliary Words

You may use the following words in statement lines or you may leave them out. In the statement
descriptions in Chapter 7, we enclose these optional words in square brackets:

AND IF OF
ARE IN THE
AT IS T0
FOR JUSTIFY WITH
FROM ON

You cannot define any of these words as a name.

Continuation Lines

To continue a statement onto another line, end the first line with a ™ character (keys SHIFT and 6).
Begin the second line flush left -- the compiler will see a space or a tab as a break between two words.
You may use only one continuation line per statement.

Example
MESSAGE CUSTOMER NO. ALREADY ON FILE,EN™

TER ‘R’ TO ACCESS RECORD.

(This is incorrect.)

MESSAGE CUSTOMER NO. ALREADY ON FILE,EN™
TER ‘R’ TO ACCESS RECORD.

(This is the correct form.)

4- 1 2 Licensed Material-Property of Data General Corporation 093-000151-01

Comments

To place a comment in an IFPL program, begin the comment with an asterisk (*). The compiler
recognizes information following the asterisk as a comment and will not try to interpret it.

You can begin a comment anywhere on a line. However, you may not place a comment in a
MESSAGE statement, since the asterisk is interpreted as being part of the message.

Also, you may not use a comment in a REGISTER statement that defines an alphanumeric or
alphabetic register; the system interprets the asterisk as part of the register’s initial value.

You may use a comment in a REGISTER statement that defines a numeric register; the asterisk
terminates the numeric portion of the register and begins the comment.

Sending Control Characters

You can send control characters directly to a terminal from an IFPL program without filtering or
interpretation by the Idea terminal interface routines. To do this, enclose the angle-bracketed
control characters in exclamation points (!). The first exclamation point disables interpretation, the
second one re-establishes it. ’

You can send control characters via the MESSAGE statement, or you can use a nonnumeric
REGISTER statement to set up a register:

MESSAGE !<47> <57 >!THIS IS A MESSAGE

REGISTER REGA X (9) ABCDER!<47>!

Each exclamation point occupies one byte of storage. If the output of control characters results in
the loss of the terminal’s cursor position, use one of the following sequences to correct the problem:

1. Before turning interpretation back on, send positioning codes to restore the cursor position.

2. Turn the interpreation back on and send the control sequence <375> <320> <row>
<col>.

Note that with the second method, you do not use the exclamation point delimiters. The codes are
not actually sent to the terminal, but are intercepted by the monitor. The initial code <375>
signals this interception. The monitor then reads the codes and positions the cursor.

Reserved Words

Table 4-1 lists the special registers that you may use in IFPL programs. The monitor initializes these
registers every time it enters a program to process a screen field. You must declare all but three of
these registers in the program. You may use them just as you would any register.

093-000151-01 Licensed Material-Property of Data General Corporation 4' 1 3

Table 4-1. IFPL Reserved Words and Their Pictures

BATCH X(3)
CHARACTERS 9(2)
CRT 9(2)
DAY 9(2)
ENTRY' 9(2)
FIELD 9(2)

2 Takes any picture you specify.

FUNCTION 9(1) MONTH
HOURS 9(2) PASSWORD
INFOS-ERR' 9(3) SECONDS
IOERR' 9(2) VARIED-KEY?
MINS 9(2) YEAR

' Defined by the compiler. Define all others in REGISTER or PROCESS statements.

9(2)
X(10)
9(2)

9(2)

Reserved Word

Explanation

BATCH

CHARACTER

CRT

PASSWORD

MONTH, DAY, YEAR

HOURS, MINS, SECONDS

FIELD

ENTRY

This register contains the batch number
associated with disk and tape logging
systems. The operator supplies this
number in response to a system question
when logging on. If you define the
BATCH register in the program, it gets
this operator-defined value.

This register contains the number of
characters entered in the last EDIT field.
However, it doesn’t count NEW LINE as
a character. The system updates this value
after every EDIT field.

This two-byte word returns the AOS
console number of the CRT.

This 10-byte word returns the password
most recently used to log on the terminal
running the program.

These two-byte words contain the system
month, date, and year.

These words return the system hours,
minutes, and seconds. They are updated
at each entry to the program.

This word contains the physical number
of the current field.

The system sets this two-byte register to
the index value of a table element
according to the findings of a LOOKUP
statement. You can then use ENTRY in a
control statement.

4-14

Licensed Material-Property of Data General Corporation

093-000151-01

Table 4-1. IFPL Reserved Words and Their Pictures (continued)

Reserved Word

Explanation

INFOS-ERR

IOERR

FUNCTION

VARIED-KEY

Following a database access or a
SEND/RECEIVE, this register contains
the actual INFOS or AOS error code. The
system updates this register after such
statement.

Whenever the program attempts to access
a data file, this register receives one of the
error codes listed below.

When the operator strikes one of the
user-defined function keys, the system
places a number in this register. The
numbers are 1, 2, 3, or 4, corresponding
to the number of the function key. (The
numbers run 1-2-3-4 from left to right.)

Use this register with RETRIEVE KEY
and RETRIEVE HIGH KEY statements
to accept the value of the key. Give
VARIED-KEY as many characters as the
largest key you will store in it. The system
will delete spaces in VARIED-KEY so
that it matches the exact length of the key
you retrieve. If you don’t specify enough
spaces, the system will truncate the value
to fit the register.

093-000151-01

End of Chapter

Licensed Material-Property of Data General Corporation

4-15

Chapter 5
Using INFOS Files with Idea Programs

Idea programs use INFOS® system DBAM files. Before you read this chapter you should read the
INFOS System User’s Manual (A0S), 093-000152, which explains the various options available with
INFOS system files, such as duplicate keys, generic keys, approximate keys, inverted keys, and
subindexes. It also shows you the best file structure to use for each type of application.

In this chapter, we will demonstrate how to create a single-key DBAM file with the ICREATE utility,
(You must use this utility to create files; you cannot create a file from within a program.) We will
then use the file with two programs: one to load the database and one to update it. These programs
will demonstrate IFPL’s file definition and file manipulation statements.

Creating a File

We will create the simplest type of INFOS system file used with Idea -- a single-key DBAM file. The
file will consist of records containing two fields: part name and initial quantity. We will use each
part’s number as the key. (The key does not have to be a field within the record, as we will
demonstrate.) Each part will have only one part number, so each key will uniquely identify one part
record.

Figure 5-1 shows our file with the key values included as fields within the record. Figure 5-2 shows
the file we will create; the keys are not included within the records.

Notice that an INFOS file consists of two files: a database file containing the records and an index
file containing the key values.

Our file’s name will be INVENTORY. We will not allow duplicate keys in the index, since each part
number uniquely identifies one part. Also, we will not use partial records or any of the other INFOS
system options.

093-000151-01 Licensed Material-Property of Data General Corporation 5- 1

5270

7135

1109

Index File

\

5270WIDGET

Database File

7135THERBLIG

1109GADGET

300

$D-01731
Figure 5-1. A Single-Key ISAM File Where the Key IS a Field in the Record
Index File
5270 7135 1109
WIDGET 5000
/ Database File
THERBLIG 0
GADGET 300
$D-01732
Figure 5-2. A Single-Key ISAM File Where the Key Is NOT Part of the Record
5' 2 Licensed Material-Property of Data General Corporation 093-000151-01

To create the file, give this command from the CLI:

)ICREATE)

This begins a dialog with the system, shown in Figure 5-3.

NAME OF FILE TO BE CREATED: INVENTORY)
ACCESS METHOD (I=1SAM, D=DBAM) (D]:)

aakkxk DEFINE INDEX FILE saxkkxwn

MAXIMUM NUMBER OF INDEX LEVELS (2]:)

PAGE SIZE (BYTES) [20u48):)

PARTIAL RECORD LENGTH [@]%)

ROOT NODE SIZE [2042):)

MAXIMUM KEY LENGTH [255):)

ALLOW DUPLICATE KEYS IN THIS INDEX? (Y OR [N]):)
ENABLE SPACE MANAGEMENT? (Y OR ([N]):)

ENABLE KEY COMPRESSION (Y OR ([N]):

OPTIMIZE RECORD DISTRIBUTION (Y OR [N]):)

*xakxx DEFINE INDEX VOLUME(S) axsxxx

NUMBER OF VOLUMES TO DEFINE [1):)

VOLUME 1 NAME [VOL®1]3)
SPECIFY MAXINMUM SIZE? (Y OR (N]):)
SPECIFY FILE ELEMENT SIZE? (Y OR [N1)3)

xkxxkkx DEFINE DATABASE FILE axxxxx

DATABASE FILE NAME [INVENTORY.DBJ?)

PAGE SIZE (BYTES) ([2048]:)

ENABLE SPACE MANAGEMENT? (Y OR (N]):)
ENABLE DATA RECORD COMPRESSION (Y OR™ [N]):)
OPTIMIZE RECORD DISTRIBUTION (Y OR (N1):)

#aaxkx DEFINE DATABASE VOLUME(S) axxkux

NUMBER OF VOLUMES YO DEFINE (11:)

VOLUME 1 NAME ([vOL@1]:¢
SPECIFY MAXIMUM SIZE? (Y OR (Nl):)
SPECIFY FILE ELEMENT SIZE? (Y OR [NJ):)

093-000151-01

Figure 5-3. Our Dialog with ICREATE

Licensed Material-Property of Data General Corporation

5-3

Creating a Program to Build the Database

After creating the file, we will write a program to build the database. We want to enter three values
into the program -- PARTNO, PARTNAME, and QUANTITY -- and use PARTNO as the key to
store PARTNAME and QUANTITY as fields in the record. We also want to restart the program by
entering a Y in response to a screen literal prompt, DO YOU WANT TO ENTER ANOTHER
PART? (TYPE Y OR N, THEN NEW LINE). This requires an extra field.

Figure 5-4 shows the screen named NEWPART. We will give all four fields the EDIT attribute since
we will enter values into the program through them.

NEW PART SCREEN
ENTER THE PART NUMBER: 9999

ENTER THE PART NAME: V-V V. V. V- V.V-V.V.V.V.V.V-V.V-V.V.V-.V.

ENTER THE INITIAL
QUANTITY ON HAND 177,779

STRIKE ANY KEY AND NEW LINE TOENTER ANOTHER PART:

STRIKE THE LOG OFF KEY TO STOP X

8D-01733

Figure 5-4. The Screen Format Named NEWPART

Figure 5-5 shows the program that will build the database.

File Definition Statements in NEWPART.UP

In Figure 5-5, the statements from FiLE ISINVENTORY to STOP define our file, key, and record.
Each IFPL program that uses a file must contain a block of statements similar to the one in our
example.

FILE IS INVENTORY

Gives the name of the file. We use the name that we gave to the file when we created it with
ICREATE.

KEY FOR INVENTORY IS 4 ASCII

Specifies that the key is 4 characters long.

5"4 Licensed Material-Property of Data General Corporation 093-000151-01

- NAME NEWPART,.UP

FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII

RECORD FOR INVENTORY IS QONHAND
LENGTH IS 26
INCLUDES PARTNAME | 2@ ASCII
INCLUDES QUANTITY 21 6 ASCII
STOP

PROCESS PARTNO AT NONE AND GETPARTNO
PROCESS PARTNAME AT NONE AND GETPARTNAME
PROCESS QUANTITY AT NONE AND GETQUANT
PROCESS NEWSCREEN AT NONE AND NEXTPART

GETPARTNO: STORE PARTNO
RETURN

GETPARTNAME: STORE PARTNAME
RETURN

GETQUANT: STORE QUANTITY

FILE-NEW OONHAND USING PARTNO
ON=IOERR ERRMSG

RETURN

NEXTPART: STORE NEWSCREEN
RETURN

ERRMSG: MESSAGE 1/0 ERROR, CALL SYSTEM MANAGER,
QUIT

FINISH

Figure 5-5. The Program NEWPART

RECORD FOR INVENTORY IS QONHAND

Begins the record definition block for the record named QONHAND.

LENGTH IS 26

Gives the overall length of the record QONHAND in bytes (characters).

INCLUDES PARTNAME 1 20 ASCII

Defines the first field in the record, which is named PARTNAME. The number 1 says to begin
PARTNAME at the first character position in the record QONHAND. The number 20 is
PARTNAME’s length in bytes. The keyword ASCII indicates that the information is in regular
ASCII character format. This is the most common format; for other options, see the INCLUDES
statement description in Chapter 7.

INCLUDES QUANTITY 21 6 ASCII

Defines the second field in the record, which is named QUANTITY. The number 21 is the starting
position of this field; the number 6 is its length in bytes.

STOP

Ends the record definition block for the record QONHAND.

093-000151-01 Licensed Material-Property of Data General Corporation 5‘5

File Manipulation Statements in NEWPART.UP

In a database-loading program, there is only one file manipulation statement -- the FILE-NEW
statement. In this program, the statement

FILE-NEW QONHAND USING PARTNO

creates a new QONHAND record that you will access later by using the value now in the variable
PARTNO as the key.

Notice the ON-IOERR ERRMSG statement with the ERRMSG routine shown previously in Figure
5-5. You should place an ON-IOERR statement immediately after each file manipulation statement
in a program to check for errors.

Creating a Program to Update the Database

After we create our database-building program and run it to create our records, we will need another
program to access the database and update it. In our example, we will create a program that will
update the QUANTITY field whenever production releases a batch of parts to inventory.

Figure 5-6 shows the.screen named QUPDATE. This screen, along with the program in Figure 5-7,
will take a part number that we enter, find the corresponding part record, and display the part name
as a check to ensure that we are updating the correct record. Then, we input the quantity of the part
that has arrived from production. The program adds this quantity to the old quantity, updates the
record, and displays the new quantity on hand.

PRODUCTION QUANTITY UPDATE
ENTER THE PART NUMBER 9999
PART NAME IS: AAAAAAAAAAAAAAAAAAAA

ENTER THE AMOUNT THAT HAS
ARRIVED FROM PRODUCTION 177,779

QUANTITY ON HAND IS NOW 177,779

STRIKE ANY KEY AND NEW LINE TO UPDATE ANOTHER PART QUANTITY;
STRIKE LOG OFF KEY TO STOP. X

SD-01734

Figure 5-6. The Screen Format Named QUPDATE

5-6 Licensed Material-Property of Data General Corporation 093-000151-01

File Definition Statements in QUPDATE.UP

In Figure 5-7, the file definition statements in QUPDATE.UP are identical to those in
NEWPART.UP. They didn’t have to be; if we hadn’t used the PARTNAME field in
QUPDATE.UP, we could have omitted the statement INCLUDES PARTNAME 1.20 ASCII and

simply specified INCLUDES QUANTITY 21 6 ASCIL.

NAME QUPDATE,UP

FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII

RECORD FOR INVENTORY IS GONHAND
LENGTH IS 26
INCLUDES PARTNAME 1 2@ ASCII
INCLUDES QUANTITY 21 6 ASCII
ST10P

PROCESS PARTNO AT NONE AND GETPARTNO
PROCESS PARTNAME AT DISPLAYNAME AND NONE
PROCESS NEWGQUANT AT NONE AND GETQUANT
PROCESS QUANTITY AT DISPQUANT AND NONE
PROCESS NEWSCREEN AT NONE AND NEXTPART

GETPARTNO: STORE PARTNO
RETURN
DISPLAYNAME: FIND AND HOLD THE QONHAND USING PARTNO

ON=IOERR ERRMSG
DISPLAY PARTNAME

RETURN
GETQUANT: STORE NEWGUANT
RETURN
DISPQUANTS ADD NEWQUANT QUANTITY QUANTITY

REFILE QONHAND USING PARTNO
ON=I0ERR ERRMSG
DISPLAY QUANTITY

RE TURN.

NEXTPART: STORE NEWSCREEN
RETURN

ERRMSG: MESSAGE I/0 ERROR, CALL SYSTEM MANAGER,
QUIT

FINISH

Figure 5-7. The Program QUPDATE.UP

093-000151-01 Licensed Material-Property of Data General Corporation

File Manipulation Statements in QUPDATE.UP

You always need two file manipulation statements in a program that accesses an existing record --
one to bring the record into the program and one to put it back into the database. To bring a record
into a program, use a form of the FIND statement. In the routine labeled DISPLAYNAME, we

have the statement
FIND AND HOLD THE QONHAND USING PARTNO

The keyword HOLD locks the record; this prevents another program from accessing it while your
program is using it. Use the FIND AND HOLD statement whenever you modify any part of a

record.

To replace a record in the database, use the REFILE statement. In the DISPQUANT routine we use
the statement

REFILE QONHAND USING PARTNO

where PARTNO is the key. The REFILE also unlocks the record.

End of Chapter

5"8 Licensed Material-Property of Data General Corporation 093-000151-01

Chaptér 6
Compiling the IFPL Program

To compile an IFPL program and its format, give this command from the CLI:

SYNTAX [/L] [IA] [/W] [IN] formatname programname

where:

formatname is the name of a valid format in the current directory.

programname is the name of an IFPL program that exists on your disk. If you use
formatname.UP as your programname, you don’t have to include programname
in the command line.

The following command switches are optional:

/L Gives you a line printer listing of the source text.

/A Gives you a line printer listing of the source text plus a listing of the assembly language
statements that the compiler generates.

/W Suppresses nonfatal error messages; we recommend using it only after inital syntaxing.

/N Compiles the program, but doesn’t assemble or load it. It also displays error messages on the
terminal screen.

For example,
SYNTAX/L MYPROG

compiles, assembles, and binds the program MYPROG.UP with the format MYPROG. It also sends
a source listing to the line printer.

You can also use this form of the SYNTAX command:

/
SYNTAX listfilename {/; } formatname programname

where:

listfilename is where you want your source and/or assembly listing to go instead of to the line
printer. Note that you must use a local /L or /A switch with the listfilename.

For example,
SYNTAX MYLIST/L MYPROG

compiles, assembles, and binds the program MYPROG.UP with the format MYPROG. It also sends
a source listing to file named MYLIST instead of to the line printer.

093-000151-01 Licensed Material-Property of Data General Corporation 6‘ 1

How the Compiler Works
When you give the SYNTAX command, the IFPL compiler goes through this sequence:

1. syntactical phase

2. assembly phase

3. link phase

4. Idea monitor loader phase

In the syntactical phase, the compiler outputs an assembly language version of the source program,
named [FPL.SR, where SR stands for source.

In the assembly phase, the assembler uses IFPL.SR to create an object version of the program,
named IFPL.OB.

Next, SYNTAX calls the AOS Link, which outputs the program IFPL.PR (for program). IFPL.PR is
not executable.

Next, the format loader program, FPYUP, produces the executable program formatname.FP,
where the extension .FP stands for field program.

The .FP program is the only one of the intermediate programs that the system retains; it deletes the
others. At runtime, the monitor displays literal data on the screen using the file formatname.FS. It
then loads formatname.FP. IFMT uses the file named formatname only to display the existing
format.

To summarize, we list the following files and their descriptions:

File Description

formatname A file describing the visible, terminal screen image format.

formatname.VS A file containing an evaluation of the format’s data fields. (The monitor uses this
file to determine field sequence, attributes, and characteristics.)

formatname.FS A file containing an evaluation of the format’s literals.

Note that you must set the user search list to include these files, and you must correctly set the files’
access control lists (ACLs).

End of Chapter

6'2 Licensed Material-Property of Data General Corporation 093-000151-01

Chapter 7

IFPL Statements

This chapter contains alphabetically listed descriptions of the IFPL statements. Table 7-1 lists the
statements, their syntax, and their acceptable abbreviations.

Table 7-1. IFPL Statement Summary

| FIND NEAREST

FIND NEXT

FIND [THE] recordname NEAREST key...

FIND [THE]NEXT recordname

Statement Syntax Abbreviation
ACCEPT ACCEPT recordname
ADD ADD addend; addend, sum
COMPARE COMPARE variable, variable; COMP
COPY COMP filename
gﬁgllrr\f)ex DEFINE subindex USING key...
DESTROY DESTROY [THE] recordname USING key... DEST
DISPLAY DISPLAY { ‘t/:l;iéﬁlaeme (pointer)} DISP
DIVIDE DIVIDE dividend divisor quotient DIV
DUPLICATES DUPLICATES [4RE]JCOUNTED [IN] variable DUPL
ENDSUB ENDSUB |
ENDTABLE ENTABLE
Eo oS ESTABLISH LINK [IN] filename [TO] key...
FILE FILE[S] filename; [filename, [filename;]]
FILE-NEW FILE-NEW [THE] recordname USING key...
FIND FIND [THE] recordname BEGINNING [WITH] key...
BEGINNING
FIND HOLD FIND [AND/HOLD find-statement

093-000151-01

Licensed Material-Property of Data General Corporation

7-1

Table 7-1. IFPL Statement Summary (continued)

Statement Syntax Abbreviation
FIND FIND [THE] PREVIOUS recordname
PREVIOUS
FIND USING FIND [THE] recordname USING key...
FINISH FINISH FINI
GO Td GO [TO] tag
GO TO USING GO [TO] tag; ,...tag, USING variable
[IFJEQUAL [IFJEQUAL tag
[IF]FOUND [IF]FOUND tag
[IF] GREATER [IF] GREATER tag
[IF]IN-RANGE [IF]IN-RANGE tag
(IF]LESS [IF]LESS tag
I{JIS]T-EQUAL [IFINOT-EQUAL tag
gg/T_FOUND [IFJNOT-FOUND tag
ngT_RAN oE [IF] OUT-RANGE tag
INACTIVITY INACTIVITY CONSTANT /IS/ value
INCLUDES INCLUDES field startingposition length type INCL
'F[‘IF;'T,\IIA}ITSG INITIATE PRINTING USING printformatname
IN-RANGE [IF]IN-RANGE tag
INVERT INVERT recordname USING key...
KEY KEY [FOR] { :Leb"ii:j":xname } [1S] length type
LEFT LEFT [JUSTIFY] variable; [IN] variable;
LENGTH LENGTH [IS/length LEN
LESS [IF]LESS tag
LINK LINK USING variable [RETAIN file, [fle,] {file;]
LOG LOG [THE] recordname
7'2 Licensed Material-Property of Data General Corporation 093-000151-01

Table 7-1. IFPL Statement Summary (continued)

Statement Syntax Abbreviation
LOOKUP LOOKUP /[IN] tablename (pointer) variable
MESSAGE MESSAGE textstring
variabley variable;
MOVE MOVE { tablename; (pointer) } fro] { tablename; (pointer) }
MULTIPLY MULTIPLY multiplicand multiplier product MUL
NAME NAME programname
NODE SIZE NODE SIZE [IS] value
[ON]BACKTAB [ON]BACKTAB tag
[ON]
DISCONNEGT [ON]DISCONNECT tag
[ON]END TA
DATA [ON]JEND [OF]DATA tag
[ONJESCAPE [ON]ESCAPE tag
[ON] ION
FUNGCTION [ONJFUNCTION tag
ON-10ERR ON-I0OERR tag ON-10
[ON/LINE-ERR [ON]LINE-ERR tag
[ON/LOGOFF [ON] LOGOFF tag
[ON/MODE
CHANGE [ON]MODE CHANGE tag
[ON]
NO-ACTIVITY [ON]NO-ACTIVITY tag
ON-OVERFLOW | ON-OVERFLOW tag
[ON]REPEAT [ON] REPEAT tag
[ON] SCREEN [ON] SCREEN [IMAGE] tag
OUT-RANGE [IF] OUT-RANGE tag
PARAMETERS .
FOR suBINDEx | PARAMETERS [FOR] subindexname
PARTIAL
LENGTH PARTIAL LENGTH /IS/value
PASS PASS recordname
093-000151-01 Licensed Material-Property of Data General Corporation 7'3

Table 7-1. IFPL Statement Summary (continued)

Statement Syntax Abbreviation
PERFORM PERFORM subroutinename
PRINT PRINT /[THE] recordname USING printformatname
PRIORITY PRIORITY [IS] value
FILLER tag; [AND/ NONE
PROCESS [label #] PROCESS { variable } [AT] { NONE [AND] tag, } PROC
QUEUE QUEUE variable
QUIT QUIT
RANGE RANGE variable, variable; variable;
RECEIVE RECEIVE recordname [FROM] [ipc-port-name]
RECORD RECORD [FOR] { filename [1S] recordname RECD
subindexname
RECORD FOR RECORD [FOR] PASSING [IS] recordname
PASSING
RECORD FOR RECORD [FOR]PRINTING IS/ recordname
PRINTING
?ESSRD FOR RECORD [FOR] TAPE [IS] recordname
REDEFINES REDEFINES recordname
REDESIGNATE REDESIGNATE register
REFILE REFILE [THE] recordname USING key...
REGISTER REGISTER variable picture [initial-value] REG
REINSTATE REINSTATE [THE] recordname USING key...
[THE] recordname USING key...
RELEASE RELEASE { ALL HOLDS /IN] filename }
REMOVE REMOVE [THE] recordname
RESET RESET { e } number ,
RESET USING RESET USING variable
RETRIEVE .
HIGH KEY RETRIEVE HIGH KEY [FOR] recordname [TO] variable
7"4 Licensed Material-Property of Data General Corporation 093-000151-01

Table 7-1. IFPL Statement Summary (continued)

Statement

Syntax

Abbreviation

RETRIEVE KEY

RETRIEVE KEY [FOR]recordname [TO] variable

RESTART RESTART
RETURN RETURN { [filenumber] RET

[label]
RETURN .
USING RETURN USING variable
RIGHT RIGHT [JUSTIFY] variable, [IN] variable,

recordname [[TO] ipc-port-name]
SEND SEND { REQUEST recordname
STOP STOP
STORE STORE variable
filename .
SUBINDEX SUBINDEX [FOR] {subindexname1 } [I1S] subindexname, SBIX
SUBROUTINE SUBROUTINE name
SUBTRACT SUBTRACT subtrahend minuend difference suB
TABLE TABLE name
TERMINATE .
PRINTING TERMINATE PRINTING USING printformatname
VERIFY VERIFY [THE] recordname USING key...
VERIFY NEXT VERIFY [THE]NEXT recordname
ggg{;gus VERIFY [THE]PREVIOUS recordname
093-000151-01 Licensed Material-Property of Data General Corporation 7-5

ACCEPT
AGCCEPT recordname

The ACCEPT statement reads a record from the COMMON file into the program variable. To use
ACCEPT, you must have defined the record in a RECORD FOR PASSING statement, and you
must have sent data to the COMMON file by using a PASS statement.

In the following example, we will pass a record named PARAMETERS into the COMMON file
from the program named PROGRAMI1. Then, we will use an ACCEPT statement in the program
named PROGR AM3 to read the record from the COMMON file.

Note in Figure 7-1 that we didn’t give as many INCLUDES statements in the accepting program as
in the passing program; you can use only the part of the record that you want. Also, notice that both
programs require a RECORD FOR PASSING statement.

NAME PROGRAM} *PASSING PROGRAM

RECORD FOR PASSING IS PARAMETERS
LENGTH IS 4@
INCLUDES NAME 1 20 ASCII
INCLUDES ACCOUNTING 21 6 ASCII
STOP

PASS PARAMETERS

LINK USING PROGRAM3

FINISH

NAME PROGRAM3 *ACCEPTING PROGRAM

RECORD FOR PASSING IS PASSREC
LENGTH IS 40
INCLUDES NAME 1 2@ ASCII
STOP

ACCEPT PASSREC *FIRST 2@ CHARACTERS
*PASSED BY PROGRAM1
*ARE NOW AVAILABLE
*T0 PROGRAM3 IN THE
*VARIABLE NAME

. Figure 7-1. Passing and Accepting Programs

7’ 6 Licensed Material-Property of Data General Corporation 093-000151-01

ADD
ADD addend; addend, sum

This statement adds addend; and addend,, placing the result in sum. It does not change the
values of the addends themselves.

When you define the variable you will use for sum, be careful to include enough digits on both sides
of the decimal point. The ADD statement first aligns the decimal point of the result. It then rounds
and truncates the decimal fraction, and truncates the integer values from the left, if necessary.

If, for example your sum variable has a picture 99.99 and your answer was 3333.8775, your sum
variable would become 33.88.

To ensure that you don’t lose valuable digits, give the sum variable one more integer place than the
larger of the two addends.

COMPARE

COMPARE variable, variable,

The COMPARE statement compares the value of variable, to the value of variable, and sets the
EQUAL, NOT EQUAL, LESS, or GREATER flag or flags according to the result. You then use the

IF EQUAL, IF NOT-EQUAL, IF LESS, or IF GREATER statements to branch to a routine
according to the outcome.

NOTE: The flag stays set until the next COMPARE statement.

The COMPARE statement operates with three types of comparison: numeric, alphanumeric, and
dissimilar.

Numeric Comparison
If both variables are numeric, COMPARE performs a numeric comparison. For example:

Contents of variable, Contents of variable, Flag Set
100.000 0100 EQUAL
746 98.5412 GREATER (and NOT-EQUAL)
085.001 88 LESS (and NOT-EQUAL)

093-000151-01 Licensed Material-Property of Data General Corporation 7- 7

COMPARE (continued)

Alphanumeric Comparison

If both variables are alphanumeric, COMPARE first checks their lengths. The longer variable is
greater regardless of content. For example:

Contents of variable, Contents of variable, Flag Set
SHORT LONGER LESS (and NOT-EQUAL)
SHORT LONG GREATER (and NOT-EQUAL)

If the two fields are of equal length, COMPARE performs a character-by-character comparison. The
letter A is the alphabetic character with the lowest value, and the letter Z has the greatest. Numbers
have smaller values than letters. (The comparison is by the ASCII code of the character.)

For example:

Contents of variable, Contents of variable, Flag Set
UNIT UNIT EQUAL
5347 PRICE LESS (and NOT-EQUAL)
BTAG ATAG GREATER (and NOT-EQUAL)

Dissimilar Comparison
If you compare two variables of dissimilar data type, the compiler issues warning error message,
unless you are performing a table comparison. Next, it performs an alphanumeric comparison.

In the case of table comparisons, the compiler assumes that you know the data types of the elements
involved, so it won’t issue a warning.

COPY
COPY filename

This statement copies the contents of the specified file into your program. To copy a block of
statements, place the COPY statement wherever you want the block of statements to appear.

Use the COPY statement when you have several programs that use an identical sequence of
statements -- a record definition block, for instance. Since the compiler ignores record field
INCLUDES statements that the program doesn’t need, you can set up one COPY file and use it in
different programs that require different record fields, without tailoring it to each one.

You may nest up to four COPY statements.

7‘8 Licensed Material-Property of Data General Corporation 093-000151-01

DEFINE SUBINDEX
DEFINE subindex USING key...
Use this statement to define a new subindex below the one that the specified key path points to. For

example, suppose a file has three index levels -- the root node and two subindex levels -- as in
Figure 7-2.

To explicitly define the second subindex level, we would use this statement:
DEFINE SUB2 USING AKEY, BKEY

Use the DEFINE SUBINDEX statement with the PARAMETERS FOR SUBINDEX block to
explicity define subindex parameters.

KEY Root Node
\
AKEY Subindex SUB1
|
BKEY Subindex SUB2

Database File

/

record

SD-01735

Figure 7-2. A File with Three Index Levels

093-000151-01 Licensed Material-Property of Data General Corporation 7- 9

DESTROY
DESTROY [THE]recordname USING key...

This statement physically deletes the specified record. You must use one DESTROY statement for
each key. If you have a structure such as

AKEY

BKEY

|
CKEY

you must destroy the structure from the bottom up. You cannot delete the entire structure by
destroying AKEY; you must first destroy CKEY, then BKEY, then AKEY.

DISPLAY

DISPLAY {variable }

tablename (pointer)

The DISPLAY variable statement displays the current value of variable in the current screen
format DISPLAY field. You must have given the IFMT DISPLAY attribute to the field. If you try
to display a value in an EDIT-only field, the results are unpredictable. Also, you must have
previously declared variable in a PROCESS or REGISTER statement or assigned a literal variable
value to it.

The DISPLAY tablename (pointer) statement displays a value indexed by (pointer) from the table
tablename. For example, suppose we have the following table:

TABLE ERRORCODES
AlOO!Y

AI-I OYV

1(2211

Al231|

END TABLE

~ 1f the program gives the value 3 to the pointer MPTR, the following DISPLAY statement would
display 22:

DISPLAY ERRORCODES (MPTR)

The DISPLAY will occur when the program executes the RETURN statement associated with the
routine. You can display only one field per field-processing routine.

If you attempt to display a value that exceeds the DISPLAY field’s specification, the monitor will
display a field of asterisks.

7 - 1 O Licensed Material-Property of Data General Corporation 093-000151-01

DIVIDE
DIVIDE dividend divisor quotient

This statement divides the value of dividend by the value of divisor and places the result in the
variable quotient.

To ensure that you don’t truncate quotient digits, declare your quotient variable with as many
integer digits as dividend and as many decimal places as divisor.

DUPLICATES
DUPLICATES [ARE]COUNTED [IN] variable

Use this statement with files allowing duplicate keys. Place the DUPLICATES statement
immediately after the KEY statement of the subindex allowing duplicate keys.

You must use a REGISTER statement within the program to declare variable as a numeric
variable, or use a PROCESS statement to associate it with a numeric field on the screen.

When the program uses a FILE-NEW, a FIND NEAREST, or a FIND BEGINNING statement, the
compiler places the duplicate count in variable.

ENDSUB
ENDSUB

Place this statement at the end of all subroutines. ENDSUB tells the compiler where the end of the
subroutine is. It also returns program control to the statement following the PERFORM statement

that called the subroutine.

ENDTABLE
ENDTABLE

This must be the last statement in a table definition. It tells the compiler where the end of the table
is.

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 1 1

ESTABLISH LINK
ESTABLISH LINK [IN] filename [TO/ key...

Use this statement to create alternate key paths to records.

You must first create the keys you wish to use in the ESTABLISH LINK statement. One way to do
this is to define dummy records that use these keys in FILE-NEW statements.

Next, you must position the INFOS system pointer to the level of the existing key path where you
want to create the alternate path. Use a FIND or VERIFY statement to access a record on that level.
This can also be a dummy record, as long as it is on the correct level.

Next, use the ESTABLISH LINK statement to create the alternate key path from that level.

For example, Figure 7-3 shows an index structure with a link. The file is a customer database. The
first index level is for region, the second is for customer name, and the third is for invoice number.
The link we create will use a customer number as a key; through this link we can access an invoice
record by knowing just the customer number and the invoice number.

Figure 7-4 shows the program that will establish the customer number link into the index structure.
Note the use of dummy records; we use them to position to the proper level.

INDEX STRUCTURE

“EAST” “99999"
‘ LINK l
“JOHNSON" 1

}

;4—4—-4—4—-4—-

wyn

!

' DATABASE

v

RECA

SD-01113

Figure 7-3. An Index Structure with a Link Between a Key Sequence and a Subindex

7- 1 2 Licensed Material-Property of Data General Corporation 093-000151-01

NAME LINKTEST
FILE NFILE
SUBINDEX FOR NFILE IS LEVEL1
SUBINDEX FOR LEVEL1 IS LEVELZ2
KEY FOR NFILE IS 13 ASCII
KEY FOR LEVEL1 IS 13 ASCII
KEY FOR LEVELZ IS 6 ASCII
*THE RECORD THAT FOLLOWS (LEVELOREC) IS A
*DUVMMY RECORD USED TO WRITE KEY "99699n
RECCRD FOR NFILE JS LEVELOREC
LENGTH IS ©
STOP
*THE RECORD THAT FOLLOWS (LEVELIREC) IS A
*DUVMMY RECORD USED TO POSITION TO
*KEY "JOHNSON"
RECCRD FOR LEVEL1 IS LEVELIREC
LENGTH IS ©
STOP
RECORD FOR LEVEL2 IS LEVEL2REC
LENGTH IS 80
INCLUDES FIELD2 1 8¢
STOP
REGISTER FIELD2 X(80)
PROCESS FILLER AT D1 AND NCANE
D1:
*CREATE INTIAL RECORD
FILEeNEW LEVEL2REC USING "EAST", "JOHNSON" AND "1"
*xCREATE THE UPPER LEVEL OF THE SECOND KEY PATH
FILE*NEW LEVELOREC USING "99999"
*POSITION TC SUBINDEX TO BE LINKED TO NCTE
xTHAT THE PCSITION IS ABOVE THE KEY T0 BE
*USED IN THE NEW PATH
VERIFY LEVELIREC USING "EAST" ANC "JOHNSON"
*CREATE THE LINK
ESTABLISH LINK IN NFILE TO "99999"
*xTRY OUT THE NEW KEY PATH
FINC LEVELIREC USING "99999" AND "1"
ON<IOERR D1A
MESSAGE LINK SUBINDEX SUCCESSFUL
GUIT

D1A:
MESSAGE LINK SUBINDEX UNSUCCESSFUL

QUIT
FINISH

Figure 7-4. Using ESTABLISH LINK ro Create an Index Structure

In the program, we created a dummy record (with length 0) so that we could use the key 99999 in a
FILE-NEW statement, thus creating the key. We also used the VERIFY statement to position to
level 1.

The keys you use in the ESTABLISH LINK statement must describe a complete index path; they
cannot contain subindexes. However, the position to which you are linking must have a subindex
below it. Therefore, in our example, we could not link to the record directly; we had to link at the
level above the last key.

You may use any pathway to access any record, regardless of which pathway you used to create it.
For example, suppose you have 100 invoice records for a customer: 50 that you created with the
path EAST . JOHNSON.n (where nis the invoice number), and 50 that you created with 99999.n
(where 99999 is the Johnson Company’s number). You can then access any of the records using
either of the paths.

093-000151-01 Licensed Material-Property of Data General Corporation 7- 1 3

ESTABLISH LINK (continued)

Of course, you need to establish a separate link for each customer in the file. WEST,SMITH.n will
have its own customer number link, such as 99998 ,n. Also, the new key path may be shorter, the
same length, or longer than the original path.

The ESTABLISH LINK statement can save you space. Consider a file that has items filed under
NAME, ACCOUNT, LINEITEMS, and inverted under REGION, ACCOUNT, LINEITEMS. This

creates the large duplicate index structure shown in Figure 7-5.

An ESTABLISH LINK statement can create the structure shown in Figure 7-6, which avoids the
unnecessary overhead of Figure 7-5.

INDEX STRUCTURE

NAME

REGION

v

v

ACCOUNT

ACCOUNT

Z

\

-

/ DATABASE

TO RECORDS

TO RECORDS

SD-01114

Figure 7-5. A File with Inverted Database Records and Unnecessarily Duplicated Subindexes

7-14

Licensed Material-Property of Data General Corporation

093-000151-01

INDEX STRUCTURE

NAME REGION

4—4——4——4——*

ACCOUNT

DATABASE

R1 R2 R3]°***|RN

SD-01115

Figure 7-6. Figure 7-5 Reconfigured Using ESTABLISH LINK

FILE
FILE[S] filename, [filename, [filename;]]

This statement tells the compiler which files the program will use. You may specify a maximum of
three files. You must have previously created the files with ICREATE or with a COBOL program.

Pathnames must consist of 14 or fewer characters.

093-000151-01 Licensed Material-Property of Data General Corporation 7' 1 5

FILE-NEW

FILE-NEW [THE] recordname USING key...

Use the FILE-NEW statement to write new records into a file. You must define recordname in a
record definition block within the program.

For example, the program named INITDEP.UP in Figure 7-7, initializes a file record that keeps a
bank customer’s balance; the key is the account number.

NAME INITDEP
FILE BALANCE
KEY FOR BALANCE IS 4 ASCII
RECORD FOR BALANCE IS BALREC
LENGTH IS 10
INCLUDES OLDBAL 1 10 ASCII
STOP

PROCESS ACCOUNT AT NONE AND GETACCOUNT
PROCESS OLDBAL AT NONE AND GETBAL

GETACCOUNT: STORE ACCOUNT
RETURN
GETINITDEP: STORE OLDBAL

FILE=NEW BALREC USING ACCOUNT

ON=IOERR ERRMSG

MESSAGE RECORD ADDED TO DATABASE

RETURN 1

ERRMSG: MESSAGE ACCOUNT ALREADY ON FILE-

RETURN 1

FINISH

7-16

Figure 7-7. FILE-NEW Example

Licensed Material-Property of Data General Corporation

093-000151-01

FIND BEGINNING
FIND [THE] recordname BEGINNING [WITH] key...

The FIND BEGINNING statement retrieves the record recordname using a generic (partial) key.
You must specify one key for each level of subindexes. However, the last key in the list is the one
that the system uses as a generic key to search for the record.

For example, suppose you have a two-level index. The key for the first level is ACCTNO:; the key
for the second level is NAME.

KEY FOR LEVEL1 1S 5 ASCII

KEY I;OR LEVEL21S 10 ASCII

FIND .THE CUSTREC BEGINNING WITH ACCTNO,NAME

ACCTNO takes you through the first level; it must be an exact key.

NAME searches the second level for a key beginning with whatever is in the NAME field. For
example, if NAME has the value SM and you have records stored under the names SMITH and
SMYTH, the FIND BEGINNING statement will retrieve SMITH’s record.

FIND BEGINNING uses the input length of the key as its length; it doesn’t use the length specified
for the key in the KEY statement. Therefore, in our example, the key NAME is two bytes long
(SM), even though the KEY statement says that it’s 10 bytes.

FIND HOLD
FIND /AND]HOLD find-statement

Y ou may use the phrase [AND/HOLD in any FIND statement. The HOLD keyword locks the record
against access by any other program.

To update a locked record and free it for use by another program, use the REFILE statement. To
free the record for access by other programs, use the RELEASE statement.

7-17

093-000151-01 Licensed Material-Property of Data General Corporation

FIND NEAREST
FIND [THE]recordname NEAREST key...

FIND NEAREST retrieves the record recordname by using an approximate key. The approximate
key must have an ASCII value less than or equal to the key you’re looking for.

For example, suppose your records are keyed by PONUMB, and you have two records with the keys
21 and 700, respectively. If you give PONUMB the value 22, and then give this statement:

FIND THE CASHREC NEAREST PONUMB
you will access the record with the key 700.

If the approximate key happens to hit an actual key, the statement will access that key’s record.

FIND NEXT

FIND [THE]NEXT recordname

This statement lets you process a database sequentially. First you use a FIND USING, FIND
BEGINNING, or FIND NEAREST statement to position yourself within the database. You can
then use FIND NEXT to retrieve the record immediately following the current one.

For example,

FIND THE CREC USING MASTNO, CUSTNAM

FIND THE NEXT CREC

If MASTNO contains 20 and CUSTNAM contains TAYLOR, the FIND USING statement will
retrieve the record keyed by 20, TAYLOR. If the database contains records with the keys
20,JOHNSON; 20,TAYLOR; 20,ZONIS,; then the FIND NEXT statement will retrieve ZONIS’s
record.

7' 1 8 Licensed Material-Property of Data General Corporation 093-000151-01

FIND PREVIOUS
FIND [THE]PREVIOUS recordname

Use this statement after a FIND USING, FIND BEGINNING, or FIND NEAREST statement to
scan backwards through the database. For example, given the following statements:

FIND THE AREC USING CUSTNO

FIND THE PREVIOUS AREC

If CUSTNO has the value 38 and the database has records with keys 17, 38, and 40, then the FIND
USING statement will access the record with key 38. The FIND PREVIOUS statement will access
the record with key 17.

FIND USING
FIND [THE]recordname USING key...

This is the primary data-retrieval statement. The INFOS system will locate and retrieve the record
with the specified key (s).

You may use as many as 15 keys with this statement, and you must use one key for each index level
you wish to traverse. The keys cannot be longer than the length specified in the KEY statement. If
you have used binary or packed keys, the system will convert them to ASCII values before using
them. The system will also convert binary or packed record information.

FINISH
FINISH

This must be the final statement in every IFPL program. It tells the compiler that it has reached the

end of the program. A FINISH statement must be the last statement, even if the program ends
somewhere else with a QUIT statement.

093-000151-01 Licensed Material-Property of Data General Corporation 7- 1 9

GOTO
GO [TO] tag

This is an unconditional GO TO statement; it directs program execution to the routine labeled tag.

GO TO USING
GO [TO] tag,, ...tag, USING variable

This is a conditional branching statement. The system checks the contents of variable, which must
be numeric. Its value determines which tag the program will branch to. If variable has the value 1,
the program will branch to the routine labeled by the first tag; if variable has the value 25, the
program will branch to the routine labeled by the 25th tag. You can have 40 arguments with an IFPL
statement, which means you can include 38 tags in a GO TO USING statement. (USING and

variable are the other two arguments.)

If variable has a value less than 1 or greater than the number of tags you’ve specified, program
control steps to the next program statement.

IF EQUAL

[IFJEQUAL tag
This statement checks the EQUAL flag set by the most recent COMPARE statement. If the flag is

set (meaning that the two COMPARE(values were equal), the EQUAL statement sends program
control to the statement labeled by tag.

IF FOUND
[IF]FOUND tag

Use this statement in conjunction with the LOOKUP statement. If the latest LOOKUP statement
succeeded in finding the table element it was searching for, the compiler sets the flag accordingly,
and the IF FOUND statement will send the program to the routine labeled by tag. Figure 7-8 gives
an example.

7 - 2 O Licensed Material-Property of Data General Corporation 093-000151-01

NAME REOKDER
FILE IS INVENTORY
KEY FOR INVENTORY IS 4 ASCII
RECORD FOR INVENTORY IS INVREC
LENGTH IS 20
INCLUDES PARTNAME 1 20 ASCII
STOP

PROCESS PARTNO AT NONE AND GETPARTNC
PROCESS PARTNAME AT DISPLAYNAME AND NONE
PROCESS DEPTNO AT DISPLDEPT AND NONE

TABLE DEPTA
"C33e"
"§130"
*Cs4o"
ENDTABLE

TABLE CEPTB
"xese"
"yqia"
nz280"
ENDTABLE

TABLE DEPTD
"cs3e"
"VeBO"
"gsSee"
ENDTABLE

GETPARTNQO: STORE PARTNO
RETURN

DISPLAYNAME: FIND THE INVREC USING PARTNO
ON=JOERR ERRMSG
DISPLAY PARTNAME
REFILE INVREC USING PARTNO
ON=IOERR ERRMSG

RETURN
DISPLDEPT: LOOKUP IN DEPTA PARTNO
IF FOUND D1
LOOKUP IN DEPTB PARTNO
IF FOUND D2
LOOKUP IN DEPTD PARTNO
IF FOUND D3
D1 MOVE "DEPT A" TO DERTNO
DISPLAY DEPTNO
RETURN
ve: MOVE "DEPT B"™ TO DEPTNO
DISPLAY DEPTNO
RETURN
D3: MOVE "DEPT D" TO DEPTNO
DISPLAY DEPTNO
RETURN
ERRMSG? MESSAGE 10=-ERROR. CALL SYSTEM MANAGER.
QUIT
FINISH
Figure 7-8. The IF FOUND Statements Branch to the Appropriate Routines
093-000151-01 Licensed Material-Property of Data General Corporation 7 - 2 1

IF GREATER
[IF] GREATER tag

This statement checks the flag set by the most recent COMPARE statement. If it’s set to
GREATER, this statement sends program control to the routine labeled by tag.

IF IN-RANGE
[IF]IN-RANGE tag

This statement checks the IN-RANGE flag set by the most recent RANGE statement. If the flag is
set, the program branches to the routine labeled by tag.

IF LESS
[IFJLESS tag

This statement checks the LESS flag set by the most recent COMPARE statement. If the flag is set,
the IF LESS statement sends program execution to the routine labeled by tag.

IFNOT-EQUAL
[IFINOT-EQUAL tag

This statement checks the NOT-EQUAL flag set by the most recent COMPARE statement. If the
flag is set, the program branches to the routine labeled by tag.

7 = 2 2 Licensed Material-Property of Data General Corporation 093-000151-01

IFNOT-FOUND
[IF]NOT-FOUND tag

This statement checks the flag set by the most recent LOOKUP statement. If the flag is set to 0
(meaning that the LOOKUP didn’t find the table element), then the program branches to the

routine labeled by tag.

IF OUT-RANGE
[IF] OUT-RANGE tag

The OUT-RANGE statement checks the OUT-RANGE flag set by the most recently executed
RANGE statement and branches to tag if that flag is set.

INACTIVITY
INACTIVITY CONSTANT /IS/value

This statement sets the length of time, in minutes, that an IFPL program will wait for the operator
to enter data. If the operator doesn’t enter data within the specified amount of time, the program
takes appropriate action by using the ON NO-ACTIVITY statement. Therefore, if you use the
INACTIVITY statement, you must also include an ON NO-ACTIVITY statement. See the ON
NO-ACTIVITY statement for more information.

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 2 3

INCLUDES
INCLUDES field startingposition length type

where:

field is defined elsewhere in the program as a register, a PROCESS variable, or a

literal.

startingposition is the character position within the record where this particular field begins.

length is the length of the field (in bytes for ASCII or ALPHA).

type is ASCII (or ALPHA), BINARY, OR PACKED.

You can use the INCLUDES statement only within a record definition block. It identifies significant
fields within the record. For example, suppose you have a 15-byte record that contains the

information in Figure 7-9.

1 2 3 4 5 6 7 8 9 | 10| 11 121 13 | 14 | 15
NAME BALANCE ACCOUNT" CODE
Then the following would define the record:
RECORD FOR FILE1 IS REC1
LENGTHIS 15
INCLUDES NAME 1 6 ASCIl
INCLUDES BALANCE 7 5 ASCI
INCLUDES ACCOUNT 12 3 ASCIl
STOP INCLUDES CODE 15 1 ASCIi
SD-01787
Figure 7-9. INCLUDES Example
7‘24 Licensed Material-Property of Data General Corporation 093-000151-01

When you access a record, you don’t have to use all the variables stored within it. Suppose you

created a record with a program containing this record definition block:

RECORD FOR AFILE IS REC1
LENGTH IS 106
INCLUDES ELEMENTA 1 4 ASCII

INCLUDES ELEMENTB 5 7 ASCII

INCLUDES ELEMENTS 98 9 ASCII

STOP

Later, you could access only those record elements that you needed in another program:

RECORD FOR AFILE IS RECH1
LENGTH IS 106

INCLUDES ELEMENTA 1 4 ASCII
INCLUDES ELEMENTF 5 18 ASCII
INCLUDES ELEMENTQ 23 8 ASCI|I

STOP

Remember that you must define your variables in REGISTER or PROCESS statements, or else use
literals. There is one exception: if you use a COPY file to define the record, you do not have to define
every field that appears in the record definition block; you just have to define the fields that you want

to use.

The compiler expands BINARY or PACKED types to ASCII lengths when it accesses them. Table 7-2
shows the lengths to specify in the INCLUDES statement, and the length to which the system will

expand INCLUDES during access.

093-000151-01 Licensed Material-Property of Data General Corporation

7-25

INCLUDES (continued)

Table 7-2. BINARY and PACKED INCLUDES

Field Length in INCLUDES Number of Digits in IFPL Register
Statement Specification
BINARY
1 1-2
2 3-4
3 5-6
4 7-9
5 10-11
6 12-14
7 15-16
PACKED
1 1
2 2-3
3 4-5
4 6-7
5 8-9
6 10-11
7 12-13
8 14-15
9 16-17
10 18

The sign in a PACKED field requires one-half of a byte; it is stored in the last half-byte. Figure 7-10
shows how the system stores a 5-digit PACKED field.

Byte 1 Byte 2 Byte 3-

digit1 digit2 | digit3 digit4 | digit5s sign

SD-01788

Figure 7-10. A 5-digit PACKED INCLUDES

7- 2 6 Licensed Material-Property of Data General Corporation 093-000151-01

INITIATE PRINTING
INITIATE PRINTING USING printformatname

This statement marks the beginning of a set of printing records in the COMMON file. You must
specify the printformatname in subsequent PRINT statements.

After you have built the print file with PRINT statements, you mark the end of it with the
TERMINATE PRINTING statement.

INVERT
INVERT recordname USING key...

Use this statement to write an alternative pathway to an existing record. For example, if you have a
database that contains customer records keyed by customer number, you can use the INVERT
statement to build an index pathway that will access the records by customer name. See Figure 7-11
for an example.

FILE AFILE

KEY FOR AFILE IS S ASCII

RECORD FOR AFILE IS AREC
LENGTH IS 40
INCLUDES ACCTNO 1 S ASCII
INCLUDES NAME 6 12 ASCII

STOP

FILE=NEW AREC USING ACCTNO
INVERT AREC USING NAME

FINISH

Figure 7-11. INVERT Example

You will normally use the INVERT statement immediately following a FILE-NEW, FIND, or
REFILE statement. INVERT uses an internal pointer set by those three statements, so you cannot
put another [/O statement between the FILE-NEW, FIND, or REFILE statement and the INVERT
statement.

The LOG statement, however, does not reset the internal pointer. Therefore, you can interpose a
LOG statement between the INVERT and FILE-NEW, FIND, or REFILE.

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 2 7

KEY

filename

KEY [FOR] {Subindexname

} [IS] length type

where:
length is the length of the key field.

type iseither ASCII, BINARY, or PACKED.

This statement defines the key length and type for a file or subindex. You must define the filename
or the subindexname in a FILE or SUBINDEX statement that appears before this statement.

If you use type ASCII, specify the number of characters in the key. The key’s register, screen field,
or literal will define the actual key length; the KEY statement defines the maximum length of the
key. Consequently, to access a record created with a key that is eight bytes long, you must use the
full eight bytes. Consider these two program fragments:

PROGRAM 1 PROGRAM 2

REGISTER NAME X(8) REGISTER NAME X(7)
STORE NAME STORE NAME

FILE-NEW AREC USING NAME FIND AREC USING NAME

Program 2 will not be able to access the records created by program 1. This would be true even if
both programs contained the statement KEY FOR AFILE IS 7 ASCILI.

For BINARY or PACKED types, Idea converts the key value in the given variable to the specified
type. Table 7-3 shows the number of digits to specify for the key’s value.

7 - 2 8 Licensed Material-Property of Data General Corporation 093-000151-01

Table 7-3. BINARY and PACKED Keys

KEY Statement Specification Size of Variable in Digits

BINARY

1 1-2

2 3-4

3 5-6

4 7-9

5 10-11

6 12-14

7 15-16
PACKED

1 1

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

1 12-13

8 14-15

9 16-17

10 18

The sign in a PACKED key requires one-half of a byte; it is stored in the last half of the byte. Figure
7-12 shows how the system stores a 5-digit PACKED key.

Byte 1 Byte 2 Byte 3
digit1 digit2 | digit3 digit4 | digit5s sign

SD-01790

Figure 7-12. A 5-digit PACKED Key

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 2 9

LEFT
LEFT [JUSTIFY] variable, [IN]variable,

This statement will left-justify a source field in a larger destination field.

The LEFT statement moves data from variable, to variable,, starting with the left-most character
position in each field and proceeding from left to right. A LEFT move is like an alpha move except
that you can use it on any data type.

LEFT treats blanks in a source field like any other character. It performs no zero- or blank-filling in
the destination. If the destination is longer than the source, the system will retain the excess
destination data.

The system will disregard a decimal point in the source field, but it will display a decimal point in the
destination field if you specify one in the field’s picture.

The system performs data transfers with fields of matching data types and size on a
character-position-by-character-position basis. No justification is involved in such moves since
blanks are treated like data.

Table 7-4 shows the results of some example LEFT moves.

7-30

Table 7-4. Moving Data with the LEFT Statement

Example Type Initial Values Final Dest Values
Numeric Srce=788 78855
Srce<Dest Dest=55555
No Decimal Point
Numeric Srce=83492 834
Srce>Dest Dest=671
No Decimal Point
Numeric Srce=16.98 169.844
Srce >Dest Dest=178.544
Decimal Point
Numeric Srce=856.99 85.6
Srce>Dest Dest=28.5
Decimal Point
Alphanumeric Srce=patnum patnumy
Srce<Dest Dest=Vacancy
Alphanumeric Srce=patnum pat
Srce>Dest Dest=Vac
Mixed Srce=858.9 8589ion
Srce<Dest Dest=station
Mixed Srce=sub su
Srce>Dest Dest=6.3
Dest = Destination. Srce(Source) remains unchanged.

Licensed Material-Property of Data General Corporation

093-000151-01

LENGTH
LENGTH /IS] length

where:
length is the length of the record in bytes.

You must place a LENGTH statement after every RECORD statement in a record definition block,
unless the REDEFINES statement is the only statement in the record definition block.

Initializing the Record Buffer

To initialize the record buffer to zero or blank, use a dummy INCLUDES statement that is as long
as the record.

To blank out a buffer, use the following:

RECORD FOR PASSING IS PASSREC
LENGTH IS 200
INCLUDES “ " 1 200 ASCII
INCLUDES F1 2 10 ASCII

INCLUDES F2 12 4 ASCII

STOP

To zero out a buffer, use this:

RECORD FOR PASSING IS PASSREC
LENGTH IS 200
INCLUDES “0” 1 200 ASCII

INCLUDES F1 2 10 ASCII

STOP

We recommend that you avoid using literals in records intended to receive data, since literals may
change, producing unexpected results.

093-000151-01 Licensed Material-Property of Data General Corporation 7-3 1

LINK
LINK USING variable /[RETAIN file, [file, [file;]]]

The LINK statement lets you link to a new format under program control. This is a different means
of linking than the IFMT linking facility.

You can link one program to another with both a LINK statement and a linked format created with
IFMT; neither affects the other.

The variable must be a literal or a variable defined by a REGISTER or PROCESS statement, and it
must contain the name of a valid format.

The RETAIN file,...file; argument is an optional clause that allows you to continue using the
named files across linked programs, without the overhead of closing and then opening the files after
linking. See Figure 7-13 for an example.

NAVE PROGRAM

FILE MASTER, INVEMNTGRY

REGISTER PROG! XXXXXXXX PRCGRAM1
REGISTER PROG2 XXXXXXXX PROGRAMZ

El: STCRE ANSWER
COMPARE ANSWER YES
IF EQUAL LPRGZ
LINK USING PROG! RETAIN MASTER

LPRG2: LINK USING PROG2 RETAIN INVENTORY

xlinked proaram
NAME PROGRAM1
FILES UPDATE, MASTER

Figure 7-13. The RETAIN Clause Lets You Keep Files Open

The program named PROGR AM links to the format named PROGRAMI, via the statement LINK
USING PROG1 RETAIN MASTER. PROGR AM will close the file INVENTORY but keep the file
MASTER open for use with PROGRAMI.

7-3 2 Licensed Material-Property of Data General Corporation 093-000151-01

LOG
LOG [THE] recordname

Use the LOG statement to write a record to magnetic tape.

The system sends all tape-logging errors to the special register [OERR, so your tape-logging
programs should contain error-handling routines. The error codes sent to IOERR are:

IOERR = 18 Record length longer than the maximum specified with the IDEASG utility.
IOERR = 30 Physical tape error (such as parity).
IOERR = 34 End of tape file.

If any of these conditions occurs, the monitor sends the error code to the reserved word IOERR,
the error log (ELOG), and, possibly, the supervisory console.

LOOKUP
LOOKUP [IN] tablename (pointer) variable

This statement searches a table for a value. If it finds an element whose value is the same as the
value of variable, it places the index number of that table element in (pointer); otherwise, it sets
(pointer) to zero.

The index number is variable’s position in the table. The table’s first element is 1, the second is 2,
and so forth.

If you don’t specify a (pointer), the monitor places the index value in the special register ENTRY.
You can use ENTRY anywhere you use a register.

LOOKUP also sets a flag to either 0 or the index number. The FOUND and NOT-FOUND
statements branch to routines depending on the flag’s value. (See FOUND and NOT-FOUND.)

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 3 3

MESSAGE
MESSAGE textstring

The MESSAGE statement sends a message to the operators’ consoles. The textstring starts with
the first nondelimiter; you should end the text string with a NEW LINE.

You may use any text string, including spaces, up to 80 characters long. Also, you can send special
control characters (outside the standard set of alphanumerics) by enclosing the 2-character octal
equivalent in angle brackets; e.g., <07 >. You may also enclose the bracketed code in exclamation
points to disable and re-establish interpretation by the IDEA terminal interface routines.

For example:

MESSAGE !<47> <57>!THIS IS A MESSAGE

To send the contents of a variable as a message, surround the variable with brackets, as in this
example:

MESSAGE [OLDBAL]

The variable must be flush left against the bracket, and it must be the only argument; otherwise, the
monitor will send the message verbatim. For example, this message statement

MESSAGE OLD BALANCE IS [OLDBAL]
will display
OLD BALANCE IS [OLDBAL]

on the screen.

7'34 Licensed Material-Property of Data General Corporation 093-000151-01

MOVE

variable, variable,
MOVE [TO]

tablename, (pointer) tablename; (pointer)

The MOVE statement has the general form of
MOVE source-variable destination-variable

In all MOVEs the value of the source-variable replaces the value of the destination-variable.
(The value of the source-variable is unchanged.)

MOVE variable, TO variable,

copies the value of variable, into variable,.

MOVE variable, TO tablename (pointer)

copies the value of variable, into the table element referenced by (pointer).
MOVE tablename (pointer) TO variable,

copies the value of the table element referenced by (pointer) into variable ,.
MOVE tablename; (pointer,) TO tablename; (pointer,)

copies the value of the tablename;element referenced by (pointer;) into the tablename,
element referenced by (pointer,).

The parentheses are part of the command; you must enclose the pointers in parentheses.

The system does not check data types for MOVEs using table elements; it assumes that the source
and destination data types are identical.

If you perform a MOVE with a source-variable that is shorter than the destination-variable, the
compiler pads the destination. With MOVEs involving alphabetic or alphanumeric values, it pads
the destination from the left with blanks. For numeric MOVEs, Idea aligns the decimal point, then
pads from the right and left, as necessary, with zeros.

If you perform a MOVE with dissimilar data types, the compiler issues a warning, performs an
alphabetic MOVE, and deletes the decimal point.

Note that the MOVE statement doesn’t round; it truncates. See Table 7-5 for examples.

093-000151-01 Licensed Material-Property of Data General Corporation 7'35

MOVE (continued)

Table 7-5. Parameter-Fitting by the MOVE Statement

Type of MOVE initial Values Final Dest Values
Numeric Srce=788 00788
Srce<Dest Dest=55555
No Decimal Point
Numeric Srce=83492 492
Srce<Dest Dest=671
No Decimal Point
Numeric Srce=16.98 016.980
Srce<Dest Dest=178.544
Decimal Point
Numeric Srce=856.99 56.9
Srce>Dest Dest=28.5
Decimal Point
Alphabetic Srce=pathnum patnum
Srce<Dest Dest=vacancy
Alphabetic Srce=patnum pat
Srce>Dest Dest=vac
Mixed Srce=858.9 8589
Srce<Dest Dest=station syntax warning
Mixed Srce=sub su
Srce>Dest Dest=6.3 syntax warning
Dest = Destination. Srce (Source) remains unchanged.

MULTIPLY
MULTIPLY mutiplicand multiplier product

The MULTIPLY statement multiplies the contents of multipicand by the contents of multiplier,
and places the result in product.

To avoid losing significant integer digits to truncation, give your product variable as many integer
digits as the multipicand plus the multipier.

7'36 Licensed Material-Property of Data General Corporation 0983-000151-01

NAME
NAME programname

The NAME statement assigns a name to your program. It must be the first statement in the
program and must be used only once within the program.

There is no logical connection between programname and the AOS filename you give to the source
text file, but we recommend that you use the same name.

The programname must begin with a letter. The remaining characters can be letters, numbers, or
periods(.).

Do notuse the following characters in program names:

dash -
colon :
carat

single quote
double quote
angle brackets < >
parentheses 0

~

k)

A

NODE SIZE
NODE SIZE [IS]value
Use this statement within the PARAMETERS FOR SUBINDEX block. NODE SIZE explicitly

defines the node size of a subindex. The value may be either 2042 or 4090 (bytes). The default
value (if you don’t use this statement) is 2042.

ON BACKTAB
[ON]BACKTAB tag

Place the ON BACKTARB statement anywhere among the nonexecutable statements except among
the PROCESS statements. This statement allows the program to take some action if the operator
strikes the BACKTAB key. When this happens, the ON BACKTAB statement transfers program
control to the routine labeled tag.

The BACKTAB key is the unlabeled key on the cursor pad.

093-000151-01 Licensed Material-Property of Data General Corporation 7 ‘3 7

ON DISCONNECT
[ON]DISCONNECT tag

If the operator’s dial-up line becomes disconnected, Idea will log the program off, unless it includes
an ON DISCONNECT statement. This statement will send program execution to the routine
labeled tag; it stays there until it encounters a RETURN statement or until the program times out.

Then, the monitor logs the program off.

Place the ON DISCONNECT statement with the nonexecutable statements, but not within a
PROCESS statement block.

ON END DATA
[ON]END [OF] DATA tag
ON END DATA causes the program to branch to tag when the operator strikes the END DATA

function key. This statement also nullifies normal operation of the END DATA key; it places the
key under program control.

Place the ON END DATA statement with the nonexecutable statements, but not within the
PROCESS statement block.

ON ESCAPE
[ON]ESCAPE tag

ON ESCAPE causes the program to branch to tag when the operator strikes the ESC key. If you
don’t have an ON ESCAPE statement in the program, the ESC key has the same effect as the
ENTER key.

Place the ON ESCAPE statement with the nonexecutable statements, but not among the PROCESS
statements.

The ESC key only has an effect if the operator is entering a value at an EDIT field.

7 - 3 8 Licensed Material-Property of Data General Corporation 093-000151-01

ON FUNCTION
[ON]FUNCTION tag

This statement passes control to tag when the operator strikes any of four function keys, located on
6053 video terminal, while at an operator-entry field. It is nonexecutable.

The function keys are defined only for a 6053 terminal; they are the two right-most keys on the row
of eight function keys. The seventh key from the left is function key 1, the eighth key is function

key 2, SHIFT plus the seventh key is function key 3, and SHIFT plus the eighth key is function key
4.

The function keys act as delimiters and cause immediate exit from the field when struck. In the
absence of an ON FUNCTION statement, they have the affect of a NEW LINE.

The reserved word FUNCTION allows your program to differentiate between the keys. When you
strike a function key, its number is placed in FUNCTION and control passes to your program. It is
up to the routine at tag to distinguish between the various function keys.

The value thus placed into the reserved word FUNCTION will persist until a function key is again
struck.

You should define FUNCTION as a numeric register or as a field of one byte.

For example:

REGISTER FUNCTION 9(1)
ON FUNCTION ACT

ACT: GO TO END,HOOK,RETRY,CHANGE, USING FUNCTION

093-000151-01 Licensed Material-Property of Data General Corporation 7-39

ON-1OERR

ON-IOERR tag

ON-IOERR checks the setting of the file status flag, which reflects the outcome of the most recently
executed I/0 statement. If the flag is set (meaning that the I/0O statement failed), the program
branches to tag.

The system will not return serious file errors to the program. It will instead log them on the
supervisory console, display a message on the associated operator’s terminal advising the operator
of the error, and log the operator off. Idea sends only recoverable errors to the program.

The system writes one of the following recoverable error codes into the reserved word IOERR.

Recoverable Error Codes

Code Meaning

00 No error.

10 End of File/Subindex. The last record in the file or subindex was read by a FIND NEXT or
FIND PREVIOUS statement.

18 Record Length Exceeds Block Size.

22 Duplicate Key. The key used in a FILE-NEW statement duplicates an existing key and duplicates

are not allowed since no DUPLICATES COUNTED statement was specified.
23 Key is defined in the database but no record is associated with it.

24 Key doesn’t exist. The key specified in a FIND USING, FIND NEAREST, FIND BEGINNING,
DESTROY, REMOVE, VERIFY, or REINSTATE doesn’t exist.

26 Delete denied while other pointers to record exist.

30 Physical Tape Error (such as parity).

34 End of Volume. All volumes have been exhausted.

94 Record locked. The record specified was locked by some other program. The record cannot be

accessed until it is unlocked.

96 Record deleted. The record specified was logically deleted.

7 ‘40 Licensed Material-Property of Data General Corporation 093-000151-01

ON LINE-ERR
[ON]LINE-ERR tag

This statement causes the monitor to pass control to tag when it senses excessive (i.e., more than
64) line errors on a user’s line.

When line errors are excessive and your program contains no ON LINE-ERR statement, Idea will
log the console off. ON LINE-ERR allows the log-off process to be orderly. The program given
control under this clause will maintain control until it RETURNSs or is timed out. The next time

control returns to the monitor, it will log the console off.

When Idea detects a line error and the number of line errors is not excessive, the monitor will send
a message to the console operator. This message will indicate the problem and request that the user
re-enter the character in question. The monitor will display the faulty character as a question mark
and move the cursor to its position.

This statement is nonexecutable.

ON LOGOFF
[ON] LOGOFF tag
To log off, operators strike the LOG ON-OFF key, which initiates a normal log-off procedure.

Instead, by including the ON LOGOFF statement, you can have the program branch to a routine
named by tag when the operator strikes LOG ON-OFF.

Place the ON LOGOFF statement with the nonexecutable statements, but not within the PROCESS
statement block.

If you include no ON LOGOFF statement in your program, the monitor will initiate the normal
log-off sequence when the operator strikes the LOG ON-OFF key.

ON MODE CHANGE
[ON]MODE CHANGE tag

This statement branches to the routine labeled by tag when an operator strikes the CHANGE
MODE function key. The CHANGE MODE key allows the operator to exit from a scroll area.

093-000151-01 Licensed Material-Property of Data General Corporation 7‘ 4 1

ON NO-ACTIVITY
[ON]NO-ACTIVITY tag

This statement passes control to the routine designated by tag when the specified inactivity time has
elapsed. It is up to the program to then take appropriate action.

The inactivity clock is reset to zero when the program reaches each field that requires operator
input. Inactivity time is the time that elapses between initiation of a field for input, and entry of the
field delimiter (NEW LINE, etc.) by the operator.

The program in Figure 7-14 will log off an inactive terminal after waiting 10 minutes for operator

input.

NAME COFFEETIME

INACTIVITY CONSTANT IS 1@

CN NO-ACTIVITY LOGOFF

PROCESS FILLER AT NONE 'ANC

BUSY:
RETURN

LCGOFF:

MESSAGE LOGGED OFF BECALSE OF

CPERATOK INACTIVITY
QUIT

7-42

Figure 7-14. Logging Off an Inactive Terminal with ON NO-ACTIVITY

Licensed Material-Property of Data General Corporation

093-000151-01

ON-OVERFLOW
ON-OVERFLOW tag

If your program performs an arithmetic function that overflows the integer portion of its result
variable, the monitor sets the overflow flag on. The ON-OVERFLOW statement checks this flag

and branches to the routine labeled by tag if the flag is set.

For example:

MULTIPLY VAR1 VAR2 RESULT

ON-OVERFLOW MAKENOTE

MAKENOTE: MESSAGE RESULT VARIABLE OVERFLOWED

QUIT

If the above multiplication resulted in a product of 8456.81 and the variable RESULT had a picture
999.99, the program would branch to MAKENOTE.

ON REPEAT
[ON] REPEAT tag

This statement passes control to tag when the operator strikes the REPEAT PAGE key. It is
nonexecutable.

7-43

093-000151-01 Licensed Material-Property of Data General Corporation

ON SCREEN
[ON] SCREEN [IMAGE] tag

If you use this statement in a program, the operators must be using 6053 terminals equipped with
printing boards, as well as a DASHER printer. We describe this configuration in Chapter 9.

If you have the 6053 printer option, the ON SCREEN statement sends program execution to the
routine labeled by tag when the operator strikes the PRINT key. The routine must contain a
DISPLAY or MESSAGE statement with control codes. To print all information on the screen, use
the code sequence <10> <21>.To print only the variable screen data, use <10> <01>,

This program fragment will print a snapshot of the screen when the operator strikes the PRINT key.

ON SCREEN SNAPSHOT

REGISTER FIELD 99

SNAPSHOT: MESSAGE <10> <21>
RETURN USING FIELD

PARAMETERS FOR SUBINDEX
PARAMETERS [FOR] subindexname

This statement begins a subindex definition block. Use it and the DEFINE SUBINDEX statement
to define parameters, other than the defaults, for a subindex.

The subindex definition statements are
NODE SIZE [IS/value
PARTIAL LENGTH [IS]/value

The default node size is 2042, and the default partial length is 0. To determine the proper
parameters for subindexes, refer to the INFOS System User’s Manual (A0S), 093-000152.

7 = 4 4 Licensed Material-Property of Data General Corporation 093-000151-01

PARTIAL LENGTH
PARTIAL LENGTH /IS/value

This statement specifies the partial record length associated with the subindex.

The value is the number of bytes. The default partial length is 0.

PASS

PASS recordname
Use PASS to send a record into the system COMMON file so that you can retrieve the record with

another IFPL program. The other IFPL program uses an ACCEPT statement to read the record
from the COMMON file.

Data that the PASS statement writes to the COMMON file will remain there until you execute
another PASS statement that overwrites it.

PERFORM
PERFORM subroutinename

Use this statement to jump to a subroutine. After the monitor executes the subroutine, program
control returns to the statement following the PERFORM statement.

093-000151-01 Licensed Material-Property of Data General Corporation 7 -4 5

PRINT
PRINT /[THE] recordname USING printformatname

Use this statement to write a printing record to the system COMMON file. You define recordname
in a RECORD FOR PRINTING IS recordname statement. Define printformatname in an
INITIATE PRINTING USING printformatname statement, which starts a group of printing
records. The program must execute the RECORD and INITIATE statements before it executes the
PRINT statement.

You mark the end of the print file with a TERMINATE PRINTING USING printformatname
statement. The program must execute this statement after it stores all the PRINT statements
associated with the print format.

Figure 7-15 shows a program fragment that demonstrates how these statements fit together. FOUT
is the name of the print format. To create print formats, use IFMT (or WIFMT); give the P
response to the prompt TYPE(H OR P OR NONE).

SCREEN FORMAT

NAME ADDRESS

XXXXXXXXXX XXXXXXXXYXXXXXX XXX XX
INVOICE AMOUNT

a 999 $999.99

d x

Froaram Segcment

RECORD FOR PRINTING IS IMAGE 1
LENGTH IS 3@
INCLUDES NAME 1 1@ ASCII
INCLUDES ADDK 11 2@ ASCII
STOP

RECORD FOR PRINTIMNG IS IMAGERZ
LENGTH IS 1@
INCLUDES INV 1 3 ASCII
INCLUDES AMCUNT 4 7 ASCII

STOP
RECORD FOR PRINTING IS ENUSCROLL
LENGTH IS 1

INCLUDES "a" 1 1 ASCTI
PROCESS NAME AT NONE AND ENANE
PROCESS ADDk AT NOME AND EACDRESS
PROCESS INV AT NONE ANC EINV
PROCESS AMOUNT AT NONE AND EANCUNT
PKOCESS UONE AT FILLER AND EDONE
ENANE: INITIATE PRINTING LSING FOUT *FOUT IS
*PRINT FORMAT
*NANE
STORE NAME
RE TURN
EADDR: STORE ADDR
PRINT IMAGE 1 USING FCLT
RETURN
EINV: STORE INV
RETURN
EAMOUNT: STORE AMOUNT
PRINT IMAGE2 USING FOUT
RE TURN
EDONE: PRINT ENDSCROLL USING FOUT
TERMINATE PRINTING USING FOUT
RETURN

Figure 7-15. The Statements for Printing

7 - 4 6 Licensed Material-Property of Data General Corporation 093-000151-01

Because of the special nature of scroll groups, we must signal the end of the scroll group by printing
an @ sign; this requires its own RECORD FOR PRINTING statement.

PRIORITY
PRIORITY [IS]value

Use this statement to assign a relative priority to the execution of the local Idea process under which
your application runs. The legal values are 1, 2, and 3, where 1 is the highest priority.

Each user profile in AOS has a priority established with the Profile Editor (PREDITOR). The
PRIORITY statement can lower this priority, but not raise it.

PROCESS

FILLER NONE/AND] tag,
label # [AT
liabet#] PROCESS{variable; {tag1 [AND] NONE

PROCESS statements regulate the main flow of control in Idea programs by sending program
control to screen-field-related routines. Also, together with the screen-format field pictures, they
declare program variables.

In the format above, variable is the name of a screen field.

If you give the field the EDIT attribute (but not DISPLAY) with IFMT, use a PROCESS statement
of the form

PROCESS variable AT NONE and tag,

where tag, labels a routine that will process the EDIT-field variable; this routine must contain a
STORE statement.

If you give the field the DISPLAY attribute (but not EDIT), use a PROCESS statement of the form
PROCESS variable AT tag; AND NONE

where tag; labels a routine that will process the DISPLAY -field variable; this routine must contain
a DISPLAY statement.

If you give both the EDIT and DISPLAY attributes to a screen field, use this form of the PROCESS
statement:

PROCESS variable AT tag; AND tag.,

where tag, labels a routine that will use the field as a DISPLAY field, and tag, labels a routine that
will use the field as an EDIT field.

093-000151-01 Licensed Material-Property of Data General Corporation 7 -4 7

PROCESS (continued)

FILLER is a reserved word that lets you use variables declared with REGISTER statements or
variables that will never receive a value. We explain this in detail below.

The optional label lets you direct program execution to the PROCESS statement with a RESET or a
RETURN label statement. You must place a pound sign immediately after the label, with no spaces
in between, such as PAYDAY #. You must place a space or a tab after the pound sign, as in this
PROCESS statement:

PAYDAY# PROCESS WAGES AT NONE AND PAYCHECK

The statement RETURN PAYDAY will direct program execution to this PROCESS statement,
which directs execution to the routine PAYCHECK to process the variable WAGES.

IFPL programs must contain a PROCESS statement for each logical field in the associated format.
(A logical field has the EDIT and/or the DISPLAY attribute.) The monitor orders the screen fields
from left to right and from top to bottom. The PROCESS statements must follow this order; i.e., the
first PROCESS statement must correspond to the first logical screen field, the second PROCESS
statement to the second logical screen field, and so on.

Using the reserved word FILLER in a PROCESS statement in place of variable can save you space
in certain instances. Use PROCESS FILLER to display program constants, or in places where you do
not have to allocate space for the variable.

The following program fragment demonstrates the use of REGISTER, PROCESS FILLER, and the
REGISTER variable within a routine.

PROCESS FILLER AT E1 AND NONE
REGISTER AA X(11) CORPORATION

E1: DISPLAY AA
RETURN

In Figure 7-16, we use a dummy field to send program execution to a routine after an operator has
completed a scroll area. The field has no other use, so we don’t need to allocate space for it.

In Figure 7-16, we want to pass data from one program to another and then Link to the second
program. We want these things to occur after an operator has completed the scroll area entries. We
don’t know ahead of time how many entries the operator will make, and we cannot place the PASS
and LINK statements in the E1 routine. (We want to send the data after we’ve finished the scroll
area.) So, using IFMT, we place a dummy field on the screen format (the single X), and give it the
DISPLAY attribute so the monitor will pass control directly to the program without waiting for
operator input. In the program, we use the PROCESS FILLER statement to direct program
execution to the routine D1, which performs the PASS and LINK tasks.

Notice that routine D1 doesn’t display any data on the screen.
You may use as many PROCESS FILLER statements in one program as you need, as long as you

maintain the proper correspondence with the screen fields. However, the word FILLER is
meaningless in any other IFPL statement.

7-48 Licensed Material-Property of Data General Corporation 093-000151-01

INVOICENO. QUANTITY COST

Screen @ 9999 $9999.99
9999

Format
@
X
PROCESS COST AT NONE AND E1
PROCESS FILLER AT D1 AND NONE

IFPL .
Program E1: STORE COST

RETURN

D1. PASS PARAMETERS
LINK USING FORMAT2
FINISH

Figure 7-16. An Example of PROCESS FILLER

093-000151-01 Licensed Material-Property of Data General Corporation 7 - 4 9

QUEUE
QUEUE variable

The QUEUE statement lets you queue a batch job from an IFPL program.

The variable is any type of IFPL variable, including a literal. It must be alphabetic or alphanumeric;
it cannot be numeric.

Also, variable can be any CLI command or macro. For example, we will explain what happens
when a program executes the following QUEUE statement:

QUEUE “QPRINT MY_FILE”

Idea first creates a batch job file. It then places the contents of the variable -- which in this case is the
literal QPRINT MY_FILE -- in the batch file. It then queues the batch file. When the batch stream
executes this job, it will execute the CLI command QPRINT MY_FILE.

You can give a series of commands in a QUEUE statement variable by separating the commands
with semicolons (;),

QUEUE “DIR :UDD:JTM:IDEABOOK;SYNTAX/L CHECKBOOK:QPRINT CHECKBOOK.UP”

Or you can create a macro that contains a series of commands, and then give the macro’s name as
the contents of variable.

The system uses the initial working directory and search list for QUEUE commands. Therefore, be
sure that any files that QUEUE commands will need are within that directory, or are in directories
appearing in the initial search list. Also, remember that the system places any files created by the
QUEUE CLI commands within that directory.

QUIT
QuIT

The QUIT statement terminates a program. When the monitor executes this statement, it closes
any open files and logs the operator off. The QUIT statement does not clear the terminal screen.

7 = 5 0 Licensed Material-Property of Data General Corporation 093-000151-01

RANGE
RANGE variable, variable, variable;

RANGE compares the contents of the three specified variables to determine whether the contents
of variable, lie within the limits of variable, and variables. If variable; is greater than or equal to
variable 3, Idea sets the IN-R ANGE flag; otherwise is sets the OUT-RANGE flag.

RANGE evaluates fields in a fashion similar to COMPARE; it compares numeric fields numerically
(only), and alphanumeric<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>