
Idea
Interactive

Data Entry/Access

, Concepts and Facilities

, (AOS)

969-000023-00

p

Idea
Interactive

Data Entry/Access

Concepts and Facilities

(AOS)

969-000023-00

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 069-000023 .
© Data General Corporation, ~%-
All Rights Reserved . J" ..;

PriJllted in the United Sta.te's of Aiherica
Revision 00, Octoberi978

NOTICE

The information contained in this manual is the property of Data General Corporation (DGC) and
shall not be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Idea
Interactive

Data Entry / Access
Concepts and Facilities

(ADS)
069-000023

Revision History:

Original Release - October 1978

The following are trademarks of Data General Corporation, Westboro, Massachusetts: .

u.s. Registered Trademarks

CONTOUR I INFOS NOV ALITE
DATAPREP NOVA SUPERNOVA
ECLIPSE NOV ADISC

Trademarks

DASHER
DG/L
microNOVA

(\
\

i
("'\

Preface

This manual describes the capabilities and underlying
principles of Data General's Idea system as it runs
under the Advanced Operating System, using the
INFOS® system file structure. We wrote this manual
for both the technical reader who will be implementing
Idea systems, and for the general reader who wants an
overall description of Idea.

The first five chapters of the manual highlight Idea's
general features; chapters six, seven, and eight
describe Idea's programming language in detail.

To develop your Idea system, you will need the
following manuals and documents:

Idea Product Briej(012-30l)
Idea Systems Briej(012-302)
Idea Programmer's Rejerence Manual (A OS) (093-151)
Idea Release Notice (085-047)
Introduction to the INFOS System (093-113)
The INFOS Storybook (093-199)
INFOS System User's Manual (A OS) (093-152)

Reader, Please Note:
We use these conventions for command formats in this
manual:

COMMAND required [optiona!l ...

Where Means

COMMAND You must enter the command (or
its accepted abbreviation) as
shown.

required

[optiona!l

You must enter some argument
(such as a filename). Sometimes,
we use:

{ reqU!red,}
requlred 2

which means you must enter one of
the arguments. Don't enter the
braces; they only set off the choice.

You have the option of entering
some argument. Don't enter the
brackets; they only set off what's
optional.

You may repeat the preceding
entry or entries. The explanation
will tell you exactly what you may
repeat.

Additionally, we use certain symbols in special ways:

Symbol

o

Means

Press the NEW LINE or RETURN
key on your terminal's keyboard.

Be sure to put a space here. (We use
this only when we must; normally,
you can see where to put spaces.)

All numbers are decimal unless we indicate otherwise;
e.g., 35 8 .

Finally, in examples of system interactions, we use a
right parenthesis,), for the system prompt,

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR SYSTEM RESPONSES AND
QUERIES

End of Preface

069-000023-00 iii

· ". _ .. l

Contents

Chapter 1 - Introduction

What is Idea? 1-1
The Idea Language Package. 1-1
Idea Screen Formats ' 1-1
Idea Format Generator -- IFMT 1-1
Idea Field Processing Language -- IFPL. ~ 1-2
The Idea Runtime Monitor : 1-2
INFOS, the Database Manager. 1-2
Concurrent Processing. 1-2
Hardware Environment. 1-3

Chapter 2 - Operation

Accessing Formats-The Sign-On Function 2-1

(\.
\

Data Entry. ' 2-1
Operator Commands . 2-3
Function Keys 2-3

Examples of Formats. 2-3
Menu. 2-3
Scroll Fields . 2-4
Enter and Calculate .. 2-4
Lookup and Update 2-4
Screen Overlays 2-4
Bar Graphs 2-5

Chapter 3 - Format Structure and Preparation

Literals : 3-1
Data Fields. 3-1

Data Field Attributes ' .. 3-1
Edit3-1
Display 3-1
Output 3-2

Message Field ... 3-2
Creating Formats. 3-2

Hardcopy Printout Formats 3-3

OEi9-000023-00 v

vi

Chapter 4 - Organization of Application Systems

Formats and Applications Programs 4-2
Monitor Functions : 4-2

Error Checking .. 4-2
Transaction File ',' 4-2
Linking Formats .. 4-3

Format-Only Systems .. 4-3
IFPLlFormat Programming Example 4-3
Printing ' 4-4

Report Printing--PRIRNTF and COBOL 4-4
Report Printing--DASHER 4-4
Reference Printing--DASHER 4-4

Chapter 5 - INFOS Database Manager

INFOS Structure ... 5-1
Backing Up the Database 5-4
Creating Database Stuctures 5-4

Chapter 6 - IFPL Data Transaction Language--Most Statements

Definition Statements .. ' . 6-1
Defining Storage Requirements 6-1
Defining Sub-Registers 6-1
Defining Data Field Processing Modules . 6-1
Creating Tables .. 6-1

Executable Statements 6-2
Communicating with the CRT , 6-2
Branches .. '. 6-2
Subroutines ... 6-2

Tables .. 6-2
Computation . 6-3
Linking to Other Formats 6-3
Source Library Files . 6-3
Generating Reports 6-4

Storing Print Data in the System File. 6-4
Programming Keyboard Functions . 6-4
Compiler-Directing Statements . 6-4
Inactivity Clause . 6-5

069-000023-00

J
i

I

Chapter 7 - IFPl File Handling Statements

Database Definition. 7-1
Files .. 7-1
Indexing Path .. 7-1
Key Length and Duplicate Keys 7-1
Record Description. ... 7-2

Managing Subindexes 7-2
Define Subindex 7-2
Link Subindex. 7-2

Data Retrieval 7-3
Retrieve Key. 7-3
Verify. 7-3
Record Locking ... 7-4

Data Storage 7-4
Inversion. 7-4

Deleting Records ... 7-4

Chapter 8 - Structure of IFPl Programs

Field Orientation · 8-1
Monitor Interaction · 8-2
Processing Flow . · 8-2

The Next Logical Field 8-3
Display and Edit Processing · 8-3
Starting Address · 8-3
At the End · 8-3
Other Considerations. · 8-4

Chapter 9 - Summary

Operation · 9-1
Formats · 9-1
INFOS Database Manager · : 9-1
Applications Programs . · 9-1

069-000023-00 vii

viii

III ustrations

Figure Caption

1-1 The Idea System Provides Full Multiterminal Capabilities 1-3

2-1 Idea Sign-on .. 2-1
2-2 Keyboard and Templates 2-2
2-3 Menu Format ' 2-3
2-4 Scroll Fields. 2-4
2-5 Lookup and Update ' .. 2-4
2-6 Bar Graph Format ',' 2-5

3-1 A Format During Data Entry 3-1
3-2 Format in Preparation 3-3

4-1
4-2
4-3

5-1
5-2
5-3
5-4

5-5

5-6
5-7
5-8
5-9

A Sample Idea Application: An Inventory System i •••••••••••••••••• 4-1
A Format and its Procedures 4-2
Sales Crder Format 4-3

Accessing Records via Two Indexes 5-1
Multilevel Indexes 5-2
Separate Index Paths with Different Numbers of Levels 5-2
You Can Access Records through Index Keys Directly or .
through Subordinate Subindex Levels 5-3
A Number of Keys within an Index Pointing to the Same
Record .. 5-3
Use of Duplicate Keys 5-3
Keys of Different Data Type and Length within a Single Index 5-3
Use of Approximate and Generic Keys 5-4
Backing up the Database : . 5-4

6-1 Subregisters .. 6-1
6-2 Printing Reports 6-4

7-1 SalesrepFile .. 7-2
7-2 Inversion .. 7-4

8-1 Screen Data Fields and IFPL Modules 8-1
8-2 Processing a Single Data Field 8-2
8-3 Display and Edit Processing Order 8-3

Tables
Table Caption

7-1 File Retrieval Statements 7-3

9-1 IFPL Statements 9-2

069-000023-00

Chapter 1
I ntrod uction

What is Idea?
Idea stands for Interactive Data Entry/Access. You can
use the Idea system to develop and operate database
systems that are fully compatible with other Data
General ECLIPSE-line software.

The Idea system consists of three major elements -- a
language package, a runtime monitor, and a database
manager.

The Idea language Package
Using a system utility called IFMT, you create screen
formats that will control data entry and access with your
programs. Then you write your applications programs
in Idea's Field Processing Language (IFPL). Together, o IFPL and IFMT make up the language package.

You can develop your Idea application from the top
down. At the top design level, you layout the database
and select the screen formats to interact with it. At the
second design level, you design the individual screen
formats. The bottom level consists of the IFPL
programs that support the various screen formats.

Idea Screen Formats
The fundamental organizational unit of an Idea
application is the screen format. This makes the
application modular, which makes applications easier to
plan and develop. Later, when changes to the system
are required, they will probably be isolated to specific
formats and their IFPL programs. Similarly, -extensions
to the system will probably be limited to the addition of
new formats and their programs.

Idea screen formats contain their own program control
structures, which control such things as processing
sequence and inter-screen linking. In its simplest
application, a screen steps through its data fields
sequentially and, when through, either logs itself off or
calls another screen format. You can also modify the
behavior of a screen with a supporting IFPL program.
Nonetheless, the screen's default control structure is

t=\ the top-level control structure of the Idea application.

069-000023-00

Screen formats consist of data fields plus literal material
that does not change in screen execution. In a finished
application, the literal material is a guide to the data
entry operator; however, during program
development, the literal material functions as program
comments.

During execution, the system displays these comments
on the screen; they permit you to watch the top-level
control structure function, as the cursor steps from
field to field and from comment to comment. The high
visibility of the format control structure thus turns the
screen into a powerful design tool.

Screen format data fields contain length and data-type
specifications. During the execution, the system checks
any data entered in these fields against the
specifications; thus the screen format contributes
further to the application.

Idea Format Generator --IFMT
To generate screen formats, you use the IFMT utility.
Generating screen formats requires no programming;
you set up the format on the video display screen just as
you want it to appear to someone using it.

IFMT also asks you a series of questions about format
parameters; you answer these questions interactively.

IFMT serves three purposes:

1. It defines the overall screen format structure;

2. It defines the individual fields on the format; and

3. It allows you to make screen field definitions
available to the compiler. (This is a programming
option; you may also describe your fields within
your IFPL program.)

The only limit on the number of formats a system may
have is set by the amount of available storage.

1-1

Idea Field Processing Languag~ -- IFPL
Detail processing of an Idea application is done by
conventional programs written in IFPL. Each IFPL
program supports a particular screen format.

IFPL programs serve three purposes. First, they
provide the interface between the application and the
database. Second, they modify the behavior of the
screen format, including its control structure. Third,
they perform conventional processing through
statements that manipulate data, do arithmetic, and
provide program control.

An IFPL program has less to do than a traditional
applications program because the screen format and the
runtime Monitor handle some of the traQitional tasks.
For example, your IFPL program will not include the
screen format. The format is displayed directly from
the file created by the format generator.

Furthermore, your IFPL program doesn't have to
move the cursor or accept data from the terminal on a
character-by-character basis because the monitor
handles that function. A single instruction in IFPL
stores data input from the terminal. Similarly, a single
program statement can display data on the terminal.

The monitor also checks entries for illegal characters,
and sends out the resulting error messages. The
monitor sends only validated data to your IFPL
program.

The Idea Runtime Monitor
Idea applications programs operate under a runtime
Monitor. Up to 32 terminals under AOS can operate
concurrently, running any combination of the same or
different screen formats and programs.

The Monitor is format-driven. That i:s,the terminal
data entry operator can choose and run anyone of the
available formats totally independently of what may be
running on other terminals. .

1-2

The Monitor is also interactive. It prompts the
operator, validates entered data, and flags errors
immediately, while the operator is still at the offending
field. Its editing functions allow the operator to correct
or modify entered data.

Because IDEA applications are interactive and
format-driven, you have a great deal of freedom in
setting up your data entry and retrieval operations. You
can, for example, decentralize data capture terminals,
locating them near the data source. Similarly, you can
allow operating departments to access data directly,
rather than wait for bulky paper reports.

INFOS®, the Database Manager
The INFOS system controls data entry and access to
the database. Idea INFOS uses a DBAM (Database
Access Method) file structure that is well suited for
systems inwhich many programs share data files-.

You access data records via keys through a multilevel
indexing structure. This indexing structure allows you
to cross-index your records through several indexing
paths.

The system posts immediately entered data to the data
record, and accessed data is always the latest available. r=\
A record locking mechanism assures that new I)

information can't be posted to an open record. These
features eliminate delays caused by off-line input,
batch processing, and printing and distributing reports.

Concurrent Processing
You can run Idea programs concurrently with other I
processes, such as programs written in COBOL, RPG
II, or other Data General languages. Via the INFOS
system, these programs can ac.cess the same database , :
and use identical indexing structures.

You can also run communications software
concurrently with Idea to link your AOS system to
other Data General computers or to larger host
systems.

069-000023-00

~
\

Hardware Environment
Under AOS, Idea supports the simultaneous operation
of up to 32 operator terminals (video and/or hard
copy).

The commercial ECLIPSE computer processor controls
the entire system. Among its special features are
memory management, an extended arithmetic unit for
fast calculation processing, and special

business-oriented instructions incorporated directly
into its instruction set.

Data General also offers a full range of disk storage
devices, which you can link together to provide up to
1536 megabytes of on-line storage. You can use
industry-standard magnetic tape formats for on-line
back-up of the database, for archival storage, and for
inter-system data exchange.

r-------ECLIPSE PROCESSOR-------.,

SUPERVISORY CRT

DATA ENTRY/RETRIEVAL
CRT's

(Up to 16)

FOREGROUND

IDEA
APPLICATIONS

PROGRAMS
(Under IDEA

Monitor Cantrall

BACKGROUND

FORMAT
GENERATOR

IFPL COMPILER
COBOL BATCH
PROCESSING

SO-01143 Figure 1-1. The idea System Provides Full Multiterminal
Capabilities

End of Chapter

069-000023-00

PROGRAM
DEVELOPMENT

CRT

DATABASE

TO
OTHER
SYSTEMS

1-3

()
I

(')
!

::

Chapter 2
Operation

Idea can support up to 32 data entry/access terminals
operating concurrently under AOS. The terminals can
run any combination of the same or different formats
and their associated applications programs. You can use
the sign-on function to call upa format and its program
from the system.

Accessing Formats-The Sign-On
Function

Sign-on provides two primary functions: convenient
access to all system formats and security froni
unauthorized use. Here is how it works.

80-01144
Figure 2-1. Idea Sign-on

You can call up a format from any unused terminal in
the system. After you log on, the terminal will respond
with the log-on display (shown in Figure 2-.1). You then
type an identification code or a password and the name
of the format you want to use. The system will respond
by displaying the format; it will also position the cursor
on the first field that you must fill out.

069-000023-00

You must implement password handling in your
applications program. The ID you use to call a format is
available to your applications program in the reserved
word PASSWORD. The terminal number is available
inthe reserved word CRT. Your applications program
can use these words to implement a variety of different
security systems, as required by the sensitivity of the
data being handled. . .

In addition; at start-up time the system operator may
designate a particular format (e;g., the menu) as the
ground state format.. If a format has been previously
designated; the terminal operator no· longer can choose
a format' directly at sign-o'n or at any other time.
Instead, the system will display, the ground state
format, whieh links to other formats in the system. You
may make the links conditional on the password and

, CRT number. - -

Data Entry
You enter data into an Idea field via the terminal

. keyboard. Using the various editing function keys, you
can position the cursor anywhere within a field and
correct and keyboard errors you've made. After
completing a field entry, strike the NEW LINE or
RETURN key.

The Idea Monitor will examine each field entry. If it
discovers an error, it will display a message and position
the cursor at the offending field. If the data meets all its
defined criteria, the Monitor will make the data
available to the applications program. If the data field is
an output field, the data is also output to the
transaction file. The Monitor will then position the
cursor at the next field.

When you've completed the data entry for a format,
the system will flush the format from the screen. It will
then display the next logical format (if one is defined),
or it will ask you to choose another format.

2-1

I~

2-2 069-000023-00

Operator {~ommands

You can modify the usual sequence of operations
described above by issuingkeyboard commands via the
various keyboard function keys. .

To recedit a field,press baCktab~it will move the cursor
back to the previous data field.

To .. end the present forma(anddisplaythenext format
(if one has been defined); press End Data. .

To end use of the terminal and make it available to
another user,press Log Off.

To cancel the presentformat and start it .afresh, press
Repeat Page.

To end processing of scroll fields (see below) and move
the cursor to the first field beyond the scroll area, press
Change Mode.

To make corrections, press Erase Field. It will delete
the entry and position the cursor to the field's first
character position.

To duplicate the data in the field above (in scroll mode)
use Dup Field.

Function Keys

We have implemented the command keys just
discussed as part of the Idea system. In addition, you
can define five other key fundions with your
applications programs. Using the last two hys ift the
function key row (see Figure 2-2) by themselves, and
with the Shift Key, you can define four functions; the
Escape key provides another.

With suitable code in your applications program, you
can set commonly-used operator functions to simple
keystrokes. Examples of possible functions are:

• Escape. In applications systems incOfPorating several
levels of menus, you can use the Escape key to back
up to the precedingrnenu.

069-000023-00

• Skip. You could use a Skip key to bypass an
inapplicable section of a format.

• Subtotal. You could display the subtotal for a
column of scrolled entries at any point in the entry
process.

Examples of Formats
The examples below show the kind of format
structures and operations that you can create on the
Idea system.

Menu

The menu is a clear way to present an operator with all
the optionsavailableata particular processing step. Its
d#ity. makes thesystemmore>natutal to operate and
means that less training is required.

For instance,youcan use the rnenu as the system
ground state format. to provide access to all other
formats in the system, Then, at sign-on, the menu
format is the only one the operator need remember.
You can implement the menu format with a simple and
short applications program with as few as nine IFPL
statements.

Figure 2-3. Menu Format

2-3

Scroll Fields

You will find scroll fields convenient for entering
tabular material. For instance, the patient charges list in
Figure 2-4 is a scroll field. After you have entered data
on the last line of the field, the charges scroll up one
line, vacating a line for the next entry.

A screen format can have several independent scroll
fields. Scroll fields can total up to 512 bytes and occupy
from one line to all twenty-three lines of the screen.
The literal heading information is always visible; it does
not scroll.

Figure 2c4. Scroll Fields

Enter and Calculate

The scroll format shown in Figure 2-4 illustrates
another technique useful in format design. Here, the
operator enters only enough information on each of the
charges to completely specify it. In our example, the
department and charge number specify a change. The
program then uses these to look up the cost and the
description. From these it calculates the new total and
displays it immediately in its field and at the bottom of
the screen.

This scheme means that you save operator time and
eliminate calculation errors; and the feedback
information allows the operator to confirm the inpu t.

2-4

Figure 2-5. Lookup and Update

lookup and Update

Another convenient format structure to use is the
look-up and update Jormat (shown in Figure 2-5). You
can use this format for inquiry or to update
information. In a typical case, the operator enters data
identifying the record needed, such as the name or
number of a particular patient. The screen will display
data on the patient, as currently reflected. The operator
may then use this data for reference or update it with
new information.

Screen Overlays

In some applications, you can enter different kinds of
data about the same subject. Therefore, while a portion
of the format may change, its heading remains the
same. In this kind of situation, the overlay is a
convenient function. For example, the formats shown
in Figures 2-4 and 2-5 share the same patient name and
number and could utilize the overlay function. Let's
look at how to use overlays.

The system displays the first format, one portion of
which contains heading data. Another portion contains
data on the first task. After you have filled out the
format, it links to the format for the second task,a
partial screen format. This second format overwrites a
portion of the first format's data but leaves the heading
visible. Thus you do not need the data again, nor do
you need to look it up in the database.

069-000023-00

The overlay feature is quite versatile. You can divide
the screen in any proportions because an overlay
format can consist of any number of disconnected
parts. Parts can start and end anywhere, including in
the middle of lines. Furthermore, you can use as many
overlay formats as you desire, although only one
format can be active at any given time.

Bar Graphs

Some data is best understood when presented visually
(see Figure 2-6). The system can generate graphs
directly from data stored on the database or from data
input to a format. The up-to-the-minute currency of
the information, coupled with its visual presentation,
make this a powerful display in management
information system applications.

End of Chapter·

069-000023-00

Figure 2-6. Bar Graph Format

2-5

!

. . I

Chapter 3
Format Structure and Preparation

NUMERIC
DATA FIELD

CURRENT

LITERAL

SCROLL
FIELDS

DATA ENTRY ALGEBRAIC.
SIGN

MONITOR-GENERATED
ERROR MESSAGE

SO-01150

ALpHA
DATA FIELD ALPHA-NUMERIC

FLOATING DATA FIELD

DOLLAR SIGN

PROMPT

"--------------- Figure 3-1. A Format During Data Entry ---------------'

A format consists of a protected literal area, one or
more data fields and a message field.

Literals
You use literals for the format title, to identify data
fields, and perhaps for brief instructions to the
operator. Literals are protected; you cannot change
them from the operator's terminal keyboard. All
keyboard characters are legal as literals.

Data Fields
You use data fields for keyboard entry and for data
display. Yougive each field a defined format and length
which also specifies the class of characters which are
legal for the field. You can restrict the field to to
numeric only, alpha only or alphanumeric characters.
For numeric fields, the definition includes the decimal
point location. It can specify that leading zeros be
suppressed; and it can include a floating arithmetic sign
or a floating currency symbol.

069-000023-00

Data Field Attributes

You assign each data field one of more of the following
attributes: Edit, Display, Output, Full, Required,
Auto-Dup, and Auto-Entry. Each allows you to control
data entry, display and storage for the field in a specific
way.

Edit

You use an edit field to enter data into the applications
program.

Display

The format displays data generated by the applications
program in this field.

You can assign both Display and Edit attributes to a
field. In this case, it is a display field the first time it is
encountered and an edit field thereafter. While a field is
a display field, it is protected from keyboard entry.

3-1

Output

The system 'automatically stores data entered into the
field in the transaction file, You can assign the attribute
Outputto Display or Edit fields. The data may originate
from the applications program (Display and Output), or
it may originatefromthe keyboard (Edit and Output or
Output only).

You can assign the following attributes to Edit or
Output fields; you cannot use them with Display-only
fields.

Full.

You must fill out a Full, field completely or not at all.
Use this attribute for fields that ,have a constant
number of characters, such as a zip code or a telephone
number.

Required.

The operator cannot bypass a required field. Once you
encounter it, you must make an entry in it. In addition,
the system bars the operator from exiting the format
with the Log Off or End of Data commands until all
required fields are filled. You can also give a required
field the Full attribute.

Auto-Dup.

To save keying effort, you give a field the Auto-Dup
attribute. This means that you do not have to retype
information each time you encounter a field whose data
repeats on every line in a scroll area. You do not have
to strike New-Line or Return to terminate this type of
field. You type it once and it is automatically duplicated
after that.

The Auto-Dup function is useful for output fields
where each line of the scroll area forms a separate data
record. Auto-Dup inserts a repeating variable into each
record without requiring it to be manually re-entered
each time.

3-2

Secure.

Secure fields echo asterisks during and after operator
input. You can use this attribl:lteto protect the privacy
of inpu t data.

Auto-Entry.

Once you have filled all character positions in an
Auto-Entry field, the system performs the Enter
function automatically.

Message Field
The system displays error and information messages
(generated by the Monitor or an applications program)
on the bottom line of the screen.

Creating Formats
You create formats interactively, under the utility
IFMT (pronounced I-format). Here is how to prepare
the format.

After placing the terminal in Literal mode, you type the
literal data just as it is to appear to the operator. The
editing functions allow you to correct errors and move
the literals on the screen by inserting and deleting
characters and lines.

You can create the data fields by changing the terminal
to Field mode. Then type the data fields in place just as
you do literals. You can specify the class of characters
legal for each field, the length of the field, the position
of the decimal point, a currency symbol, an algebraic
sign, and commas.

An IFMT keyboard command prints out the screen
format. The printout is a character-by-character image
of the format, showing the exact placement of all the
elements on the screen. The printout indicates data
fields by the same mnemonics you used to specify
them. '

069-000023-00

I

~
I

You can switch from Literal mode to Field mode and
back any number of times. You may also move the
elements of the format and change them repeatedly.
When they are just as you want them, put the terminal
into Assign Attributes mode, which allows you to
assign each data field its attributes.

The format is now complete, so the system will flush it
from the screen and store it in the database. From
there, it is available to the runtime system. It is also
available to IFMT for further revisions.

Hardcopy Printout Formats

IFMT also lets you generate formats for printing
reports. In printout mode, IFMT allows formats which
are any number of lines long. In the other modes, the
print and display formats are identical. For all modes,
however, you use the same kind of structures. Thus,
reports consist of data fields and literals as you have set
up the elements interactively in the screen--a much
easier process than through programming. Similarly,
you can type headings and other literals directly, rather
than in a program.

End of Chapter

069-000023-00

Figure 3-2. Format in Preparation

3-3

\
\

Chapter 4
Organization of Application Systems

8D-01152

I ACCOI,;\ TI\"(iICO.WPTROLLI:.R

:-

i
i

PL RCII.~.\I\"(i : 1---.--.---...
INVENTOR YSYSTLM fORMAlS

Ihls hypOli7ellcul inventory syslel1l 1\
de.'iIJ~nl'd 10 run Oil CR T's loca/ed in
(('('('iviIlK. the sfockroom. {Jurchasil1}!"
ac("()un/lf1}!, and 1!Jl' ('omp/roller '.\ (~!li('('.
If has sppcia!iz(!d .I(}rnwIs impl('m(~I1{il1g
lasks pe~ji","ed by each or II/{"
departments.

IJurll1}!, .\y\fl'm d('vC'/opmel1l. a lhrmals
diG}!,ram like Ihis (Jill' sen€'\ two
IJUI"f}(JS('S. II 1.\ a .Iilllclmlla! h/ock
chu}!,ram (~I II/e sYSll'm .. II show.\ l/1e
jill/elUJ".\" 1he \.vs(ell/ will per./orm alld l1/l'

way in which Ihe jill/Cliol/.\ are
;I1I('1"-r('lal(~d. II 1.\' an imp/eme11lalioll

. -c/iG}!,ram. h dir('cI~y iuel1ldies each (~l"1C'
IInp/emelllal;'H1 C'/el1U"lis.'

-------Figure 4-1. A Sample Idea Application: An Inventory System ---------

An applications system consists of all the formats, file
structures and applications programs required to
perform a function; e.g., inventory control, accounts
receivable, or hospital patient records.

There are data entry formats for inventory received
and withdrawn, as well as special formats for adjusting
errors and reversals. There are also formats for
reviewing and changing the system's semi-permanent
parameters such as the approved vendors list and
re-order levels. There are inquiry formats ranging from
specific ("How many units of item X are on hand?") to
highly summarized (for business information). In
short, there is a format tailored to every transaction
and inquiry function we want the the system to fulfill.

Formats, Idea's basic organizational units, correspond
to data transactions. For example, the inventory
system diagrammed in Figure 4-1 has ·formats for
transactions of several types.

069-000023-00 4-1

Formats and Applications Programs
You can support fotmatswith applications programs to
add considerable power to the sys~em. Your programs
can perform calculations on data, retrieve data from the
database, and display data on the CRT, among many
other things. -

An applications program is permanently associated'wlth
particular format. When you call a format (at sign-on,
for instance), the Monitor will automatically load its
associated program. '

You write applications programs in IFPL, an acronym
for Idea Field Processing Language. The structure of
IFPL prog-rams suggests the name; that' is; each
program's structure closely parallels the structur'e of
the format it supports. A specific procedure in its
supporting program processes each format data· field.
The procedures and data fields are brought together in
the system at compile time.

During processing, the Monitor processes the format
field-by-field. At each field, it gives the applications
program control, for a specific procedure. When
processing of the procedure is complete, the program
passes control back to the Monitor. Because the
Monitor takes care of the overhead involved with
terminal communication and keeps track of the current
and next field, procedures in the applications program
-are short and direct. They must provide only data
processing instructions, not communications-related
ones. An example of a format and its procedures is
shown in Figure 4-2.

Database. While the format-program modules are
specialized to each task, the database is common to all.
All programs can access the same records through the
identical indexing structure. For more information on
the database structure, see Chapter 5.

Monitor Functions
In addition to providing an interface between the
format and the program, the Monitor performs several
other functions which reduce the burden on your
programs. These include error checking, creation _of a
file to accomodate the data, and the linking of
sequential formats.

Error Checking

The Monitor automatically checks for errors in entered
data by comparing it to the criteria established during
the format creation process. That is, it checks the
number of characters, class of characters (alpha,
numeric or alphanumeric) and legal positioning of the
decimal point in decimal numbers. If the Monitor
detects an error, you must correct it before any further
data is accepted.

Transaction File
The transaction file is a file in which the Monitor
automatically stores'data from selected screen fields.
You can use the file as a journal or audit trail, or you
can use it to transfer data to other systems.

t t t t

BBBB

DATABASE

50-01153

'------- Figure 4-2. A Format and its Procedures -------~

4-2 069-000023-00

()!
'/

I
I

~I

j

~
i
I

The Monitor automatically creates records tailored to
the data input requirements of each format. As you
enter data into the format, the Monitor will
automatically file it in the database. The Monitor
indexes the data records by CRT number, batch
number, and format type. It·also records date, time and
operator ID.

IFPL programs explicitly store and read data in your
files. The transaction file is additional to these. .

Linking Formats

Sometime~Ut is convenient to implement a particular
task using two or mQre formats. To do this, you can
link formats, so that when one format is completed the
system automatically displays the next format required
for the task.

The system maintains a facility for passing information
from the program of one format to the program of
another. .

Format-Only Systems
The Monitor performs the above functions--error
checking, transaction file entry,. and format
linking--entirely from parameters you specify when you
generate each format. It derives criteria for error
checking from the field definitions, it creates the
transaction file records directly from the data fields,
and it links formats as specified by the format designer.
Thus, these functions require no program support. In
fact, you can run simple data entry formats without any
program support. The Monitor will check data you
enter into formats of this type and, after validation,
stores it in the transaction file.

Figure 4-3. Sales Order Format

069-000023-00

IFPL/Format Programming Example

To understand the field orientation of IFPLand the
way in which programs are written, consider this short
example (illustrated by Figure 4-3). Each of the fields
has a procedure in the program.

For instance, the procedure for the first field (CUST
ACCT) stores the account number keyed in by the
operator in a variable location called ACCT, as follows:

CUSTACCT: STOREACCT
RETURN

A single instruction is all that you need to read the
account number from the screen and store it. The
RETURN returns control to the Monitor, which then
positions the cursor to the next field.

The next field, NAME, is a display field. The program
displays the customer name associated with the account
number so the operator can verify it. The procedure is
as follows:

CUSTNAME: FIND CUSTREC USING ACCT
DISPLAY NAME
RETURN

Using ACCT as the key, our program finds the
customer record in the database. The screen then
displays the customer's name, a field within the record.
Again, the program returns to the Monitor.

The next fields are Quantity and Stock Number; the
procedures are similiar to the CUST ACCT procedure
above.

QUAN:

STKNO:

STORE QUANTITY
RETURN
STORE STKNO
RETURN

Our program next looks up and displays the
Description and Unit Price of the item in question.
These procedures are similiar to the CUSTN AME
procedure above. In this case STKREC is the item's
record. It contains the fields DESCRIPTION and
UNITPRICE.

DESCS:

PRICE:

FIND STKREC USING STKNO
DISPLAY DESCRIPTION
RETURN
DISPLAY UNITPRICE
RETURN

4-3

The last field extends the price for item, derived by a
calculation, as follows:

EXTEND: MULTIPLY QUAN UNITPRICE TOTPRICE
DISPLA Y TOTPRICE
RETURN

This is the entire procedure section for the format
shown. (In addition, however, there is also a definition
section; see Chapters 6 and 7 for information on this.)

To summarize, the program shown has accepted
operator data from the screen, used it to look~up and
display additional data and to make calculations. The
program is modular and each module supports a
specific data field. Consequently, it is an easy program
to specify, write, and modify.

Printing
Interactive systems frequently require two types of
printing facilities-- one for the traditional high-volume
generation of reports and another for preparing
hardcopy for immediate reference. Typically, report
printing produces a number of long reports at
scheduled intervals. On the other hand, reference
printing is used to produce short printouts -- perhaps of
a single transaction -- on demand. Idea provides
facilities for both report and reference printing.

Report Printing -- PRINTF and COBOL

PRINTF is an Idea utility for printing reports from
IDEA-generated data. It is designed to transfer the
image of a video terminal display to a line printer. In
practice, it is a versatile tool that can generate a variety
of transaction or summary reports.

You may also use COBOL to generate conventional
reports from the same database.

Report Printing -- DASHER

To generate printed reports, you can attach a DASHER
printing terminal to the system as an Idea terminal,
have it monitor the other terminals, and have it print at
their request. The Idea applications language provides a
facility that permits such a terminal to remain quiescent
until it senses a print request. (See "Inactivity Clause"
in Chapter 6.)

This particular configuration is a convenient way to
provide local printing for remote sites. The DASHER
can be connected via communications lines in the same
way as any other terminal.

Reference Printing -- DASHER

You can also use the D ASHER as a reference printer,
working as a satellite of a particular video terminal.
With this configuration, the DASHER can print an
image of its associated video terminal screen.

A typical use for this facility is in an inquiry system that
demands a file search using approximate keys. When
the operator has retrieved the wanted file, he/she can
produce an immediate snapshot of it; the system will
ignore the rest of the terminal transaction.

End of Chapter

4-4

(')[
! I

J

\

! '
069-000023-00 I '
~ '=~n'=" _ .. ~.=._. ... ~ I

Chapter 5
INFOS Database Manager

The Idea system uses Data General's powerful INFOS
data manager, as implemented at its highest level,
DBAM (Database Access Method).

Under the INFOS system, a database is truly just
that--a pool of data accessible to various programs for
their own purposes. For example, consider a database
containing sales orders. Under the INFOS system, we
can naturally and conveniently use the same database
for billing, for calculating sales commissions, and for
statistical management reports, to name just three
applications.

CUSTOMER INDEX

LUDLOW

MORTON

NORRIS

SILVER

~ � ____ ______

~··········~I __ ~

.!o·
": .. ,:. :

PRODUCT INDEX

5300

5900

6200

6800

7600

DATABASE

SD-OllS7

Figure 5-1. AcceSSing Records via Two Indexes ~

You do not have to write the programs accessing the
database all in the same language, nor operate all of
them underldea. Thus data entry in our example could
be under Idea control. The management report
program could be one of the IFPL programs comprising
an interactive, on-line management inquiry system. On
the other hand, you might write the billing and sales
commission programs in COBOL, RPGII or another
language and run them in batch, concurrently.
However, although this may be significant in many
cases, it may not be the most important benefit of the
INFOS system. Under the INFOS system, the database
becomes a growing corporate resource, ready for use in
the future in ways you did not envision when you
collected the data.

INFOS Structure
The ability to access the same database differently for
different purposes is inherent in the way the INFOS
system structures data. The database consists primarily
of records and indexes. You need to store each record
only once, but you may access it through any number
of indexes by attributes, thus making it available for
different purposes. To continue our example, the
billing program could access sales order records
through a customer index, while the management
report program might access them through a product
index as shown in Figure 5-1.

As shown in Figure 5-2, an indexing structure may
have an index and several levels of subindexes. Thus,
you can easily create hierarchical data structures. For
instance, you might organize sales records by year,
month, and account. In such a structure, year keys
(entries in the year index) point to month subindexes.

5-1

SUBINDEX
LEVEL 1

SUBINDEX
LEVEL 2

..

ACCOUNT

04321

04322

04377

07692

MONTH

JAN

FEB

MAR

APR

MAY

............ ·1L-__J

YEAR INDEX

1973

1974

1975

1976

MONTH

ACCOUNT

04321

04322

04377

06291

.. · .. ·······1L-__ -J

·· · · .. ···· ·L-I __J

DATABASE

50-01158

~---- Figure 5-2. MultilevelIndexes ____ --..I

Month keys point to account subindexes. Keys in the
lowest subindex point to individual records. In that
way, July 1973 is distinguishable from july 1974.

You may note that the number of indexes and
subindexes is not limited by the INFOS system.
However, each IFPL applications program can open no
more than three files (indexes), sharing a total of 15
indexes and subindexes. However, you can apportion
them in any way. At one extreme, your IFPL program
might handle a single file with an index and 14 levels of
subindexing. The transaction file and the common file
and their indexes and subindexes are not included in
this limit because they are automatically available.

5-2

YEAR INDEx CUSTOMER INDEX

1973 LUDLOW

197<1 MORTON

1975

1976

I.
SUBINDEX

MONTH MONTH

LEVEL 1
JAN

FEB

MAR

APR

MAY

·········ACCOUNT

04321

04322

........ ·le... _----'I .. ·
DATA BASE 50-01159 L-______________ --'

~ ___ Figure 5-3. Separate Index Paths with ___ --'
Different Numbers of Levels

Of course, you do not have to give all indexing paths
the same number of levels. As shown in Figure 5-3,
you might access records along one path through only a
single index and along another path through a dozen
levels. In fact, the INFOS system is quite flexible in the
types of index structures and records that you can use
and allows many variations of the basic index structure.
Each extends the usefulness and convenience of the
database.

For instance an index or subindex may reference
subordinate subindex levels as well as records directly
(see Figure 5-4). That is, you might access sales orders
via the sales representative - month, path, and expense
reports directly via the sales rep index.

Furthermore, any number of keys within a single index
can point to the same record or subindex (see Figure
5-5) .

j
II
II

II

nil
I II

I
069-000023-00 (II

--------------~~~==============~~~~~~~~~~ .. -~-= .. -.~-~~~.~".~c.-~-~ .. ~_.~ .. ~ .. ~. ~~~_~.~_ .. ~~.~~)

~
I

SAlESREP INDEX

HARRIS

GORDON

... JAMES

MONTH MONTH

JAN S JAN UBINDEX
L EVEL 1

FEB FEB FEB

MAR MAR MAR

1

r=-Cl
... ! ,--1_-,

I

Figure 5-4. You Can Access Records thro[:gh Index Keys
Directly or through Subordinate Subindex Levels

MAILING LIST INDEX

ESSO EXXON HUMBLE

...............
.

.....

.

DATABASE

80-01161

Figure 5-5. A Number of Keys within an Index Pointing to
the Same Record

Figure 5-6 shows how the INFOS system supports
duplicate keys at all levels. The system distinguishes
them from each other by an automatically-generated
occurrence count which is permanently associated with
the key. Thus SMITH occurrence 20 retains its unique
identity even after SMITH occurrence 19 has been

069-000023-00

EMPLOYEES INDEX

SMITH 1 19 TAYLOR UNGER

DATABASE

SO-01162

'------ Figure 5-6. Use of Duplicate Keys -----'

25

..............
'.;.

SD-01163

STREETS INDEX

38 42 AMERICAS LEXINGTON

.

'---_---'I :

DATABASE

'--__ Figure 5-7. Keys of Different Data Type and __ -,
Length within a Single Index

deleted from the database. New SMITH added to the
database are given a higher occurrence count.
Occurrence counts used by deleted keys are not
reassigned.

Within an index, you can use keys of mixed type and of
different lengths (see Figure 5-7). The system also
supports access via full keys, generic (also known as
partial) keys and approximate keys (see Figure 5-8).

The approximate key "SMIDT" will access the record
stored under "SMITH." The generic key "SMIDT"
will return nothing, since you must give an exact match
of the generic key fragment.

5-3

INDEX

SMATHERS SMITH SMITHE SMYTH SMYTHE

DATABASE

80-01155

Figure 5-8. Use of Approximate and Generic Keys

You can also access records of different length, which
contain different types of information, via the same
index path. Futhermore, you can lock records on an
individual basis and prevent simultaneous access to the
same record by different, unsynchronized users.
However, all users can have simultaneous access to all
other parts of the same files.

Backing Up the Database
No database system can be considered fully secure
unless a good method for recovery from database
malfunctions exists. In Idea, the heart of the recovery
procedure is the tape logging function (which is
completely under program control). All records written

to the disk can also be written to tape to provide a
backup copy. As further explained in Chapter 7, the
logging records are defined and written to tape by your
program. Thus, the system designer can implement any
of a wide range of schemes.

If you use two rape drives, the system will switch to the
next drive automatically, so that terminal operations
can continue without interruption for tape mounting
and unmounting.

Figure 5-9 illustrates one backing scheme in which
IFPL programs write after-images of all records
written, re-written, and deleted. In the event of a
database crash, a COBOL utility program will update
the most recent valid disk image using the after-image.

Creating Database Structures
You can create, modify and delete the database
structures described above through a series of
interactive INFOS utilities. From the answers you give,
the utilities will create or modify a database, requiring
no programming. However, designing a large database
to use storage efficiently and to have good access time
does require specialized knowledge.

The INFOS utilities commonly used in database
maintenance are: ICREATE, ICOPY, IDELETE,
IRENAME, and INQUIRE.

The utilities are described in the "Utilities" chapter of
the INFOSSystem User's Manual (A OS).

i--i------------T-----:--------------------------------------r---------:--1
I I I I I
I I I I I __ " ___ ~------c--~.---------------~----------------.--" __ ~---.-

SO·01156

RECORD
FORMAT
INFORMATION

DELETE!
WRITE!
REWRITE
FLAG

RECORD KEYS,
FILENAME

'----------------- Figure 5-9. Backing up the Database----------------'

End of Chapter

5-4 069·000023·00

~
!
II

II

Ii

!'
'j

Ii
I,

(I
I
/;

I

01
I

I
!
\

-----------------------=-===============================~~=~=~=~.==~-=~--~===~.~.==~.~~~ .. ~==I'

Chapter 6
IFPLData Transaction Language--Most Statements

IFPL is a conversational computer language designed
speCifically for writing data transaction programs. IFPL
operators are English words such as COMPARE,
DISPLAY, STORE, and ADD. You can include auxiliary
words like TO, FOR, and IS within statements to make
programs morereadable.

We describe the IFPL language in the next three
chapters. In this chapter, we discuss most processing
statements. We describe file handling statements in the
next chapter, and in Chapter 8 we conclude our IFPL
description with a discu~sion .of the structure of IFPL
programs and details on their interaction with the Idea
Monitor.

The IFPL statements are of two types: definition
statements for establishing registers, tables, and file
parameters, and executable statements which
accomplish the actual processing.

Definition Statements

Defining Storage Requirements

The REGISTER statement allocates memory storage. In
it, you specify the amount of storage reserved, the data
type, the position of the decimal point for numeric
variables, and an optional initial value.

Defining Sub-Registers

In some cases, particular characters or groups of
characters within a register have an independent
meaning. For instance, in a time of day register, the
hours, minutes and seconds are concatenated, but you
may need to treat them separately. Similiarly, you may
need to separate a check digit from an account number.

You can conveniently handle these requirements with
the REDESIGNATE command. This command assigns a
name to specified portions of a register. For instance,
you might assign the name MONTH to the first two
characters of the register DATE, the name DAY to the

069-000023-00

/
DATE

REGISTER
I

~~----.---~/ ~~----,,---~/ ~~----~I ----/
MONTH DAY YEAR

SUBREGISTERS

SD-01164

....... ------Figure 6-1. Sub registers -------1

second two, and the name YEAR to the third two. The
entire DATE register and each of its sub-registers,
MONTH, DAY, and YEAR behave as independently
addressable variables. You can move values from and
into them, you can display them, and/or use them as
elements of tables or in calculations.

You can divide a register into any number of
sub-registers, which mayor may not overlap. It is not
necessary to include all the bytes of a register when
redesignating.

Defining Data Field Processing Modules

As more fully described in Chapter 8, a particular IFPL
program module processes each data field. A PROCESS
statement specifies the module, and, to save
programming effort, reserves memory storage space
for the data. This removes the need for a separate
REGISTER statement to store screen data fields. The
definition of the data field made during format
preparation serves as the picture statement.

Creating Tables

You create tables with the TABLE statement by simply
typing the table entries (literals or registers) in their
proper order. You terminate the table with an
ENDTABLE statement.

6-1

Executable Statements

Communicating with the CRT

The IFPL language has special statements for easy
communication between your program and the
terminal display. To take data entered at a console and
store it in a specified location, use the STORE
statement. To take data from a memory location and
display it on the screen, use the DISPLAY statement.
The MESSAGE statement displays error messages and
instructions on the screen, and the LINK statement
displays a new format.

Branches

IFPL also provides both conditional and unconditional
branch statements. You write conditional branches as
statement pairs consisting of a test instruction followed
by an instruction specifying the branch condition and
location.

The COMPARE statement compares two variables, then
uses the result with an IF EQUAL, IF NOT-EQUAL,
GREATER, or LESS statement to perform a branch.

The RANGE statement tests a variable against the range
specified by two arguments. It is associated with the
branch conditions In-range or Out-range.

For instance, an error checking routine might look
something like this:

STORE MONTH
RANGE "1" MONTH "12"
OUT-RANGE ERROR

The variable MONTH, keyed in from the CRT, is
checked against the range 1 through 12. If it is outside
that range, the program branches to the routine
ERROR. Otherwise, the system executes whatever
statement follows OUTRANGE.

Though MONTH is checked against a fixed range in
this example, the range also may be variable. In that
case you would specify the registers in place of literals.

The LOOKUP statement, treated further under Tables
also may be followed by branching statements IF
FOUND and IF NOT-FOUND. LOOKUP searches for
a variable in a particular table. You might use it, for
instance, to to check the validity of a password.

LOOKUP PASSWORD IN PASSTABLE
IF FOUND PROCEED
MESSAGE "INVALID PASSWORD"

6-2

In this example, if the PASSWORD (a reserved word
into which the system automatically places the
password used at sign-on) is contained in the table
P ~SST ABLE (Jisting all valid passwords), processing
wIll branch to the routine PROCEED. Otherwise a
message is displayed and normal processing does not
occur.

The ON·IOERR statement allows you to handle I/O
errors with a minimum of extra instructions. You
would use this statement to branch to the I/O error
handling routine after any of the database access
statements.

The GO TO statement causes the program to branch to
a specified location unconditionally. The GO TO USING
statement is the indexed version of the unconditional
branch. It branches to one of a list of locations
according to the value of the index. It allows you to
write routines where your program dynamically
determines the branching location. For an example, see
TABLES, below.

The RETURN statement branches to the specified
screen data field and its associated routine, via the
Monitor. Its indirect version, RETURN USING, allows
your program to dynamically specify the next data field
to be processed.

Subroutines

The IFPL language also accommodates subroutines for
common processing. The PERFORM statement
branches to the subroutine named in its argument. You
define the subroutine entry point with a SUBROUTINE
statement and its exit with an ENDSUB statement.
When the system encounters ENDSUB, processing will
branch back to the instruction following the subroutine
call. Subroutines may call other subroutines, and there
is no limit to the number of nested levels. However,
subroutines cannot call themselves nor subroutines
through which they were called.

Tables
Tables are frequently the most efficient way to handle
lists of data. IFPL supports table lookup routines with a
number of special instructions. To do this, you
predefine a table and all its elements in the definition
(non-executable) portion of your IFPL program. Table
elements are addressed as TABLENAME pointer where
pOinter is the register containing the element's position
in the table. You may use this table address as an
argument to the MOVE and DISPLAY commands.
Thus you can move variables to or from tables and
display them directly from tables.

069-000023-00

n
i
ii

r
I

i
I

____________ -=~====~==========~~~~ .. ~=~~~-~====~J

Table elements may consist of literals or registers. In
the latter case, the elements may be dynamically
changed during program execution, but you may
address them by either their register names or by their
table position.

You can define up to ten tables, and address up to 99
elements per table.

To look up a variable in a table, use the LOOKUP
instruction. If the system finds the variable, it will store
its table position in the register specified. You can then
use the table position to index a variable in a second
table. You can also use it as an index for branching or
linking via the GO TO USING RETURN USING or LINK
USING statements.

One common application of the LOOKUP-- GO TO
USING construction is in handling I/O errors. There are
12 error states, identified by non-consecutive number
codes. In our example below, we have defined six of
these error codes as elements of the table ERR TABLE.
The reserved word IOERR contains the error code.
The routine to determine the error and the point to
which the program must branch might look likethis:

LOOKUP IN ERRTABLE (INDEX) IOERR
GO TO E1 0 E22 E23 E24 E94 E96 USING INDEX

The system will use IOERR's position in the table
ER R TABLE to select one of the six branches,
E10 ... E96, specified in our GO TO USING statement.

Computation
IFPL has a complete fixed point arithmetic capability.
The ADD, SUBTRACT, MULTIPLY and DIVIDE
instructions perform computation. The result's
accuracy depends on the size of the receiving variable.
You can use numeric variables up to eighteen digits
long and you can put the decimal point anywhere

. within the variable.

Linking to Other Formats.
An IFPL program can also link to other formats and
their associated programs. The LINK USING statement
links indirectly, via a program memory location. The

069·000023·00

statement makes applications systems using format
tree structures particularly easy to write. In a menu
prQgram, for instance, the LINK USING'system can link
to the cor,rectformat directly from the operator's input.

You can pass variables from an active program to its
successors. You pass the data via a special system file or
buffer. The PASS statement inserts the variables into
the file. An ACCEPT statement in a successor program
retrieves the variables. The file structure allows data
passing between any set of programs run on the same
CR T, even if other programs are interspersed between
them. Thus you can implement a particular function by
two, three or more consecutive IFPL programs.
Intermediate data can pass from program to program,
including from the first program to the last.

For example, suppose we have a menu that asks an
operator to pick one of a list of alternatives by keying its
item number. The program uses the item number to
link to the proper format and its associated program. In
the sample routine below, the format names are stored
in a table called FORMTBL. The system moves the
chosen format, indicated by ITEM, to the temporary
register FORMAT, and performs the link.

STORE ITEM
MOVE FORMTBL (ITEM) TO FORMAT
LINK USING FORMAT
RETURN

The RETURN statement returns control to the IDEA
Monitor, which will display the new format and load its
applications program.

This routine, together with a process statement and
some register statements, is all that is necessary to
process a menu. The four statements above are the
only executable statements required.

Source Library Files
You can maintain a library of standard IFPL modules as
a series of source files. This is particularly convenient
for definitions of standard data index structures and
records which recur in all application programs using
them.

6-3

To do this, write all standard program modules once
and store them as individual source files. You can then
insert them into any IFPL program using them with a
single COpy statement. The IFPL compiler will expand
the COpy statement to the full contents of the
referenced file.

Generating. Reports
IFPL programs can also generate data for reports.

To reduce the overhead in your application programs,
the report printouts use formats just like the CRT
displays. You create the formats interactively, under
IFMT, in the same way. That is, you can use IFMT to
create headings, data identifications and other literal
information, as well as the definition and page
placement of the data fields. Thus, you need perform
none of these functions in your applications program.

All you need to do in your IFPL program is to file the
data into a special system file in the order required by
the format. Later, a utility program will read the file
and map the data into the format as it prints it out.

Storing Print Data in the System File

Conceptually, the system print file consists of a serial
. string of variable data. Each item contains one or more
data records which match the requirements of the
format for the printout. The item's beginning and end
in the file are marked, and the print utility will use
these marks later as it maps the data into the print
format.

You use the following three IFPL commands to
generate the print file:

• The INITIATE PRINTING command inserts the
start-of-printout mark into the system print file.

• The PRINT command stores a data record in the
print file. A record corresponds to each page area
(between tabular areas) of the printout format or to
each tabular line of the printout.

• The TERMINATE PRINTING command marks the
end of the printout.

All three of these commands reference a particular
printout format. Thus your program can accumulate
data for several printouts concurrently. However, you
would have to initial and terminate each printout
separately.

You may also generate printed output via COBOL or
RPGII programs, or a Dasher printing terminal.

6-4

IFPL-STORED DATA

PRINTOUT
FORMAT

50-01165

!----- Figure 6"2. Printing Reports -----..1

Programming Keyboard Functions
As described in Chapter 2, the function keys allow you
to select special operations, return to eai'lier portions of
the format, and perform other functions. There are two
types of functions; those which the system performs
automatically, and those which you define in your
applications program. The automatic functions are
LOG OFF, END DATA, REPEAT PAGE, CHANGE
MODE (used to exit from a scroll field), ERASE
FIELD, DUP FIELD, AND BACKT AB. In addition,
there are five function keys which you can define in
your program.

Compiler-Directing Statements
Compiler-directing statements allow your program to
sense external conditions and respond to them. Typical
external conditions are:

• Striking a function key.

• Disconnection of a dial-up communications line.

• Attempted log-off.

The compiler-Qirecting statements handle conditions
such as these. All such statements have similiar syntax
and functions. For example, to respond to a
disconnected communications line, you would write
the statement

ON DISCONNECT TAG

When a disconnect occurs, the program will
automatically branch to the routine specified by tag.
This routine will terminate the program cleanly.

069-000023-00

1

()
/

All the function keys (except the editing keys
CHANGE MODE,ERASE FIELD and DUP FIELD)
can be sens,ed with similar statements.

Three of the function keys -- LOG OFF, END DATA
and REPEAT PAGE -- do not need to be implemented
in your program. They are functions of the Monitor, as
described in Chapter 2. Therefore, your program does
not have to sense or implement them. However, there
are cases in which your program must control the use
of these keys. For example, your program might
disable the LOG OFF key during a portion of its
processing; e.g., to prevent an operator from exiting
from a program before updating all of a number of
related records.

In other words,let us assume that your program
updates the records in the routines for fields four, five
and six. If someone tries to exit from the program after
entering field four and before completing field six, it
will result in incompatible records. Thus you must
disable the LOG OFF key during the processing of
those fields. Your routine might look like this:

REGISTER FIELD 9(2)
ON LOGOFF TEST-FIELD

TEST-FIELD:
RANGE "4" FIELD "6"
IF IN-RANGE LOGOFF-ERROR
QUIT

LOGOFF-ERROR:
MESSAGE LOG OFF NOT ALLOWED IN THIS FIELD
RETURN USING FIELD

In this routine, our program branches to TEST-FIELD
every time the LOG OFF key is struck. The current
field (automatically maintained by the reserved word
FIELD) is range checked to determine if a log off is
allowed. If it is not, we display an error message and the
program returns to the current field. If a log off is
allowed, the program executes a QUIT.

Inactivity Clause
To better utilize system resources, your program can
limit the amount of time an operator can spend
entering data into a single field.

That is, the statement INACTIVITY CONSTANT IS
minutes defines the outside limit for a reasonable
waiting time. Each program can set it differently, to
anything from one minute to two hours, depending on
the particular task.

When the inactivity constant is exceeded, the program
will branch to the routine defined in the ON
NO-ACTIVITY tag at which point it will do whatever is
appropriate. For instance, it may log the terminal off.

NOTE: Operator commands can only occur at data
fields. At all other times, keyboard entry is
disabled. Thus you need take no special
precautions against exit from the program if
each program module completes all
housekeeping tasks.

End of Chapter

069-000023-00 6-5

;; ... ;;;;;;;;;;. !

~ I

Chapter 7
IFPL File Handling Statements

The database structure and access capabilities of the
INFOS system are available to your application
programs through the IFPL definition and operiltion
statements. The definition statements specify the file
structure to your IFPL program, and the operation
statements store, retdeve, update, and delete data.
Note, however, that you cannot create files via an IFPL
program. Instead, you must create them beforehand
with the ICREATE utility.

Database Definition
To build an INFOS structure, you must define the files
that you want to access, the index paths, key lengths,
and record parameters you want to use.

Files

You must use a file statement to identify the files your
program will use. Any IFPL program may open up to
three files, using a maximum of fifteen index and
subindex levels. You can apportion the fifteen levels
among the three files in any way. Note here that the
XFPL language uses the word file synonymously with
index. Thus, the file name is the name of the highest
level index.

This restriction on the number of files and index levels
does not include system files. Thus, in addition to any

069-000023-00

files your program opens explicity, your program can
also use the system-maintained Transaction and
Common files.

Indexing Path

You must specify the indexing path required to reach
each record type by induding a statement for each
subindex level. Thus, you could specify a three-level

. sales rep file indexed by region, territory, and salesrep's
name by these two statements:

SUBINDEX FOR REGION IS TERRITORY
SUBINDEX FOR TERRITORY IS NAME

These two statements establish the index chain-
REGION is linked to TERRITORY, and TERRITORY

. is linked to NAME.

Key Length and Duplicate Keys

For each index or subindex level, you must write a KEY
statement which specifies the maximum length of the'
keys contained in the index. The INFOS system uses
this definition to create subindexes as they are
required.

The system also allows you to use duplicate keys at any
level. If you want to allow duplicates, you must use the
DUPLICATES COUNTED statement to define a register
for storing the duplicate occurrence count.

7-1

Record Description

Next, you must associate a record type with its index or
subindex. For example, your file might contain a
record describing monthly sales; the statement

RECORD FOR NAME IS SALES

would establish this.

REGION INDEX

CENTRAL

NORTHEAST

SOUTH

WEST
TERRITORY

1

2

, 3

4

5

NAME NAME

I II
t YR

MONTH

..... DOE

JOHNSON

KELSEY

MDRGANSON

TOTAL
SALES

SMITH

I II
.. I I I

DATABASE

SO-01166

HARRIS

JOHNSON

JENSON

NANCY

SMITH

TERRITORY

SUBINDEX
LEVEL 1

SUBINDEX LEVEL 2

Figure 7-1. SalesrepFile ___ -'-_-1

Each record type has a fixed format and contains a
specific number of variables arranged in a predefined
sequence. (These variables are also known as fields; we
have used the word variables to avoid confusion with
screen data fields.) Once you have accessed a file, you
can manipulate the variables within it as you can
program variables. It makes no difference whether you
declare a variable in a register, calculate or input it from
a CR T, or read it from a database record. The variables
are packed and are not separated by delimiters. Thus
you will require a template to separate the record into

7-2

its constituent variables. Continuing our example, the
sales record contains three variables"-month, year, and
total sales for the month. A typical record might look
like this:

11760046057

You would specify length and constituent parts in the
following statements:

LENGTH IS 11
INCLUDES MONTH 1 2 ASCII
INCLUDES YEAR 3 2 ASCII
INCLUDES SALES 5 7 ASCII
STOP

The third INCLUDES statement· specifies that the
variable SALES starts at the fifth character, and is seven
ASCII characters long. From the other INCLUDES
statements we can determine that, for this record, the
month is 11, the year is 76 and sales are 46,057.

The INCLUDES clauses do not reserve space; they only
define record fields. You must match each INCLUDES
field that you want to use with a corresponding program
variable.

You can associate any number of different record types
with a particular index structure. For instance, you
could also have name and address records associated
with each salesman's name; other records might be
associated with the region and territory. You would

. access the latter two through one and two indexing
levels, respectively.

To use these additional records, you need not r~-define
the index path statements, but only the additional
records.

Managing Subindexes
For programmers with a good knowledge of the INFOS
data manager, IFPL provides two facilities for
managing subindexes. These facilities are optional;
they improve storage efficiency but do not otherwise
affect functionality.

Define Subindex
This statement allows you to specify subindex
parameters such as node size and partial length. The
IFPL statement is PARAMETERS FOR subindex.

Link Subindex

Keys within an index may be logically synonymous. For
instance, consider the file diagrammed in Figure 7-l.
Suppose that the "Northeast" region is also known as
"Atlantic." To access all records presently accessed by

069-000023-00

n

the key "N ortheast" via the key" Atlantic," you could
add the key" Atlantic" to the region index and link it
to all Territory indexes presently linked to
"Northeast". In that way, Northeast and Atlantic share
all the subindexes. No extra space is required since they
are not stored twice.

The link facility is further described under the
ESTABLISH LINK statement in the Idea Programmer's
Reference Manual (A OS) (93-000151)

Data Retrieval
You use a FIND statement to retrieve variables stored
in the database. This statement reads the record from
storage into processor memory. Arguments to the
statement define the record type and specify the key or
keys needed to access a unique record.

After the system executes the FIND statement you can
manipulate the variables within the record like any
others. The INCLUDES definition is all that you need to
define their names and positions within the record.
You can move the variables to other memory locations,
display them on the terminal, and use them in
calculations.

You can implement all the access modes described in
Chapter 5 with versions of the FIND statement, as
shown in Table 7-1.

Retrieve Key

In Idea you do not need to include the key and the
duplicates count within the record because the system
stores them within the database.

When you access a record sequentially (with FIND
NEXT or FIND PREVIOUS), with an approximate key
(FIND NEAREST). or with a generic key (FIND
BEGINNING), you may not know the actual key and its
duplicates count. However, you may use this
information for a number of reasons; for instance, to
delete a record. You can return the record's
lowest-level key and duplicates count with the
RETRIEVE KEY statement.

Verify

In some circumstances, you will not need the record
itself, but you will only need to determine whether it
exists. For instance, an error checking routine might
check an input account number against those in the file
to verify that it exists or, perhaps, to insure that it is not
already assigned. IFPL'S VERIFY command will
perform this function by checking the database for the
existence or non-existence of a particular record. It
requires fewer disk accesses than the FIND command
and thus improves overall response time.

Table 7-1. File Retrieval Statements

069-000023-00

Access IFPl Statement Definition
Mode

Full Keyed FIND Retrieves record exactly as specified.
Access

Generic Key FIND BEGINNING Retrieves record for which you give only
beginning of key.1

Approximate FIND NEAREST Retrieves record whose key equals or follows
Key the specified key.

Sequential FIND NEXT Retrieves the record following (FIND NEXT)
Access FIND PREVIOUS or preceding (FIND PREVIOUS) the last

record accessed. In effect. this converts the file
into a sorted serial file.

Note 1. In FIND BEGINNING statements with more than one level of keys, only the
lowest key can be partial. Similiarly, in multiple-keyed FIND NEAREST statements, only
the lowest key is approximate.

7-3

Record Locking

If you niust protect an accessed record from change or
access by other programs operating concurrently, you
may lock the record. Each of the FIND commands
described above has a variant which prohibits access to
the record by other users. For instance, the locking
version of the FIND command is FIND AND HOLD. The

. other commands use parallel syntax.

The system will automatically unlock the record when
you refile or delete it (see below). Alternately, you can
explicitly unlock the record with a RELEASE statement.

Data Storage
You store variables in the database by reversing the
operations required to access them. That is, you first
assemble the record in processor memory by specifying
the values of all record variables that you want to
change. ,Then you store the record in the database.

There are two storage instructions: FILE-NEW and
REFILE. FILE-NEW creates a new record; REFILE
updates an existing record with the new values of the
variables. You specify arguments with both
instructions which supply the record type and the keys
by which you want it filed.

Inversion

If you want to access a record by more that one index
path, you must invert it through alternate paths after
you file it.

For example, consider the cross-indexed structure
shown in Figure 7-2. In this structure, you can access
each record via either the index path A,B,C, or through
D,E. When you store a new record via one index path
(for instance A,B,C), you must "invert" it through the
other path (D,E). Inversion means that you must
update the keys in the second path so that you can later
access the record by that path. You do this with the
IFPL command INVERT, followed by record and key
arguments.

Deleting Records
To delete records from the database, you can use either
the DESTROY or REMOVE commands.

The DESTROY command physically deletes the record
from the database and frees the storage space it
occupied for reuse. After the system executes this
command, the record is no longer accessible.

INDEX 1 INDEX 2

~~l rI ,.6.. .. --_ ...
B B --

DATABASE

50-01167

L...------Figure 7-2. Jnversion------~

The REMOVE command performs a logical delete. That
is, it flags the record as deleted but leaves the record
accessible. When you access a logically deleted record,
the system sets the reserved word IOERR to 96 to
indicate the record has been logically deleted.

Although the REMOVE command does not actually
perform a deletion and free disk space, you might use it
in preference to the DESTROY command for two
reasons. First, it is safer than the DESTROY command;
its action is reversible. Second, it is also faster than the
DESTROY command. Thus, most of your IFPL
programs might use the REMOVE command, then
periodically a separate program might physically delete
all logically deleted records.

The REINSTATE command will restore a record that
has been logically deleted.

Like the other record reference commands, you follow
these commands with record type and key arguments.

End of Chapter

7-4 069-000023-00

--------------~---.............. ============::::::::===~~;;;;;:;;;;;;;;;~

(1
\

SO-01168

Chapter 8
Structure of IFPL Programs

IFPL PROGRAM

PROCESS STATEMENTS

..

EACH OAT A FIELD
HAS AN ASSOCIATED
PROCESS ST ATEMENT

IFPL ROUTINES
IMPLEMENT
PROCESSING
FOR EACH
DATA FIELD

"'u
..

---------- Figure 8-1. Screen Data Fields and fFPL Modules ~--------------'

Each IFPL program you write will support a specific
screen format. Much of the ease and speed with which
you can write IFPL programs depends on the close
correspondence between IFPL structures and their
analagous format structures. The program relates to
the format in three principle ways: through Field
Orientation, Monitor Interaction and processing flow
shown in Figure 8-1.

069-000023-00

Field Orientation
IFPL programs are field-oriented--that is, each screen
format data field may have its own unique processing
module within the IFPL program. (A module contains
the procedure for handling a particular field's data.)
Fields with both display and edit attributes can have
two modules--one for processing display information
and a second for processing edit information. Fields
with similar processing requirements may share a single
module.

8-1

Note, however, that if a data field has no Edit or
Display attribute, it will have no corresponding module
in the format's IFPL program. From the standpoint of

. the program, processing will occur as if the field did not
exist. However even though you may not include a data
field in your program, the Monitor will recognize it,
position the cursor to the field, and check the input for
errors. The Monitor will also file the data in the
Transaction file if you specify the OUTPUT attribute
for the field.

To assign the processing module (or modules, for
display and edit fields) to a data field, use a PROCESS
statement.

Monitor Interaction
The system passes control from the Monitor to the
next IFPL program module and back to the Monitor on
a field-by-field basis. The Monitor thus directly handles
the overhead associated with terminal
communications. It requires no support from your
program.

The Monitor thus directly handles the overhead
associated with terminal communications. It requires
no support from your program.

Here is how the system processes a single data field.

First, the Monitor moves the cursor to the data field. If
the field is an Edit field, the Monitor will wait for the
operator to enter the required data; it will then check
the data for errors. After the error checks are satisfied,
the Monitor will store the entered data in a reserved
area. From there, it is available to your IFPL program
via the STORE command. To pass control from the
Monitor back to the IFPL program module specified
for that data field, you use a PROCESS statement.

If the field is a display field, the Monitor will pass
control immediately to the specified IFPL program
module. Actual display of data in the field will not take
place until the system has executed the IFPL module.

Processing will then proceed under IFPL control.
Processing may include database operations, arithmetic
operations, execution of subroutines, branches to
other portions of the IFPL program or any of the other
statements described above. Note that the system will
interpret any STORE or DISPLAY instructions as
pertaining to the current field, regardless of where they
occur within your IFPL program. This is true even if
the program branches· to code within a module
associated with another field.

Control will pass from the IFPL program back to the
Monitor when the system encounters a RETURN
statement. If the field is a display field, the Monitor will

8-2

display any information specified by your IFPL
program. The Monitor will then position the cursor at
the next logical data field and repeat the process.

Processing Flow
Each time the Monitor gains control, it will position the
cursor at the next logical field and re-enter the IFPL
program at the module specified for that field. Thus,
processing flow is field-determined. However, there
are two distinct aspects to determining processing flow;
the system must determine which is the next logical
field filled and then which module is effective (fields
with both display and edit attributes are associated with
two modules).

START

FIELD
TYPE?

DISPLAY

EDIT

REPEAT
PROCESS

5D-01169

--- Figure 8-2. Processing a Single Data Field __ ...J

D69-000023-00

START -----I~

Diw1aral/(! Ldll Pmcn';lIIg Order

Processing liJI' 1//1_\ filn'c)je/d .Ior/Jlat SI(U() (If !he (1i.~/,1a\·

/II()dIl/n. 8('('011.\(' D/.)P3 r('{/lms {() .field 011(', rhe .field:., arc
IJroc('\-set/ agaill. Ihi.\ {III/C' h.1 IIieir ('di! II/odu/es. EDI T3 also
rC'fllms {ojidel 1111(' olld flwfie/ds are again processed by rileil
('tll//IIudllle').

J
~------------------~~~----------

50-01170

~-------------- Figure 8-3. Display and Edit Processing Order ----------------'

The Next logical Field

Generally, the next logical field is the next physical
field on the screen, following a sequence of left to right
and top to bottom. The logical sequence differs from
the physical sequence in the following two cases, given

. in the order of priority.

l. You may have specified the next logical field in a
RETURN statement, in which case the Monitor will
position the cursor to the specified field and branch
to its effective IFPL module.

You should use this form of the RETURN statement
to exit from loops under program control. It is the
best way to return to data fields whose display
processing has been completed but whose edit
processing is pending.

2. The logical field following the last data field in scroll
area is the first field of that scroll area. Thus, a
scroll area creates an implicit loop in the program.
You must explicitly exit from the loop in your IFPL
program or via an operator command if you want to
process data fields outside the scroll area after
processing within the scroll area has started.

Display and Edit Processing

After the Monitor determines the next logical field, it
will enter your program at the effective module
specified in that field's PROCESS statement. If you
specify only one module, the system will process that
module every time it encounters the field. If you
specify two modules, one for .display and one for edit
processing, the system will determine the effective
module according to the following rules:

o The first time the system encounters the field,
processing takes place at the display module.

069~000023~OO

• The second and every subsequent time the system
encounters the field, processing takes place at the
edit module.

Note, however, that nothing inherent in the system
assures that a field will be encountered a second time .
Your program must explicitly loop back by using a
RETURN statement.

Note also that you can reset a display and edit field to
DISPLA Y by executing a RESET statement.

If a scroll field has both the 'Display' and 'Edit'
attributes, the system will process it as shown in Figure
8-3.

The first time the system encounters the field, the
display module. will process it. If the field is
encountered again, on the same line, the edit mode will
process it. Once the system enters the next scroll line, it
treats the field as if it were encountering it for the first
time. That is, the display module processes the field
first, then (if encountered again) the edit module.

Starting Address

Implicit in the processing order described above is the
starting location of your IFPL program. The program
will start at the effective module of the first screen
field. Occasionally, however, you may want to perform
some initialization or other processing before the first
field. In that case, you should create a single character
display-only field at the beginning of the screen, then
use its associated module for initialization or whatever.

At the End

If the module for the last field ends with just a RETURN
(without a field number), the Monitor will link to a new
format, as specified during preparation of the current
format. (Specifically, the format you entered in answer

8-3

to the question LIN K? asked at the end ofIFMT.) You
can use this facility to link to the next task or to the
system's ground state.

If you specified no format in response to the LINK?
question, control returns to the Monitor. It will flush
the screen and display either the ground state format or
the question FORMAT? to the operator.

Other Considerations

Because field order in the screen format usually
determines the processing flow, arrangement of data
fields is quite important. If you arrange data fields in
the order in which information is available -- as, for
instance, the blanks on a 1040 income tax form -- the
supporting IFPL program is easy to write. Conversely,
if an IFPL program is difficult to write, it may help to
rearrange the data fields in a more logical order.

The GO TO and the RETURN statement are sometimes
confusing because both statements cause processing to
branch to another portion of your IFPL program.' GO
TO will branch to the location specified by its argument
while RETURN will branch to the location specified in
the nextlogical PROCESS statement.

However, there is a crucial difference between the two.
GO TO will branch immediately, and no matter where it
branches, the current screen field will remain the same.
Furthermore, the system will interpret all DISPLAY and
STORE commands with respect to the same field.

The RETURN statement, on the other hand, will branch
via the Monitor. When your IFPL program regains
control, the effective data field will be the next logical
field. The Monitor interprets all DISPLAY and STORE
statements with respect to a new data field.

End of Chapter

8-4 069-000023-00

Chapter 9
Summary

Idea is an integrated software package for the
development and operation of in~eractive data
entry/access systems on Data General's ECLIPSE-line
systems.

The major operating and developmen't features of Idea
are summarized below.

Operation
Operation is screen-format driven and interactive,
using an on-line database. Many operating features
make the system particularly easy to learn and to
operate,. including error detection, prompting, and
dedicated keyboard function keys: In addition, your
applications software can easily incorporate menus and
other interactive operator aids. As a result, you can
move data entry and retrieval functions to operating
departments with significant improvements in
responsiveness, reduced error rates and cost savings.

Formats
You express system data transactions with as many
screen formats as you need. These formats can link to
other formats automatically, either unconditionally or
as a result of operator action.

You prepare formats interactively under the Idea
utility, IFMT, by typing the format literals and data
fields as you want them to appear to the operator.

You can specify data fields as Alphabetic,
Alphanumeric or Numeric. Numeric fields may have a

069-000023-00

floating currency symbol, an arithmetic sign, a decimal
point leading zeros suppressed, and a check-protect
character. You can assign datafields one or more of the
following attributes: Display, Edit, Output, Required,
Full, Secure, Auto-Dup and Auto-Entry.

INFOS Database Manager
Idea uses INFOS DBAM database structures, which
means that the system stores data in records which it
retrieves via index and keys. These indexes may be
multi-level, and you may cross-index data records. In
addition to full keys, you may use approximate keys
and generic keys. The system also supports both
forward and backwards sequential access.

The INFOS system is also the key to compatibility
between Idea programs and other systems running on
the same processor. Because Idea uses the standard
INFOS system, all data is equally accessible to
programs written in COBOL or other Data General
languages through the same data structures and access
keys.

Applications Programs
You write applications programs in IFPL, a language
specifically created to make format-related programs
easy to write. IFPL programs consist of modules tied to
specific screen data fields. This structure allows the
runtime Monitor to perform many of the overhead
functions required for interactive screen I/O. Table 9-1
lists all the IFPL statements by category.

9-1

Table 9-1. I FPL Statements
()'

I

I

Definition Unconditional Branches File Storage

REGISTER GO TO FILE-NEW
REDESIGNATE GOTO USING REFILE
PROCESS RETURN REMOVE
TABLE RETURN USING DESTROY
ENDTABLE REINSTATE

INVERT
EST ABLISII LINK

Communic.l!ing With a CRT Linking Record Locking

STORE LINK USING 1I0LD
DISPLA Y PASS RELEASE
MESSAGE ACCEPT
LINK

Subroutines Computation Hard Copy

PERFORM ADD INITIATE PRINTING
SUBROUTINE SUBTRACT PRINT
ENDSUB MULTIPLY TERMINATE PRINTING

DIVIDE

Conditional Branches File Definition Mediating Keyboard Commands

COMPARE FILE ON BACKTAB
SUBINDEX ON END OF DATA

IF EQUAL KEY ON ESCAPE
IF NOT-EQUAL RECORD ON LOGOFF
IFGREATER LENGTH ON FUNCTION
IF LESS INCLUDES ON REPEAT

REDEFINES ON SCREEN
RANGE PARAMETERS FOR SUBINDEX

NODE SIZE
OUT-RANGE PARTIAL LENGTII
IN-RANGE DEFINE SUBINDEX

DUPLICATES
LOOKUP COpy -'

IF FOUND
IF NOT-FOUND

ON-IOER R
File Retrieval Other Statements

MOVE
FIND LJSINCi LEFT
FI!'<D NEXT RIG liT
FIND PREVIOliS COpy

k VERII:Y QUIT
RETRIE\T KEY RESTART

~~~ )J RETRII\T HICill KEY RESET 
INACTIVITY CONSTANT 

~ ~~~~A~~) Oi\; !'<()-ACTIVITY 
L< lCi 

~Cv~\~~~# Oi\; DISCON!'<ECl 

,) ~ Jl or-; LINE-ERR 

~"'o t-l""< ./ PRIORITY 
.. -" c1l\~ 
'?J~~" 

\~\) End of Chapter ~\'IY 

9-2 069-000023-00 



Index 

Within this index, "f" or "ff' after a page number 
means "and the following page" (or "pages"). In 
addition, primary page references for each, topic are 
listed first. Commands, calls, and acronyms are in 
uppercase letters (e.g. , CREATE); all others are 
lowercase. 

ACCEPT 6-3 
accessing formats 2-1 
ADD 6-3 
address, starting 8-3 
AOS 1-2 
application systems 4-1 
applications programs 4-2,9-1 
approximate keys 5-3 
arithmetic 6-3 
attributes 3-1 
auto-dup attribute 3-lf 
auto-entry attribute 3-lf 
automatic functions 6-4 

back-up database 5-4 
BACKTAB 6-4 
bar graphs 2-5 
batch 5-1 
branches 6-2 

CHANGE MODE 2-3,6-4 
checking errors 4-2 
COBOL 1-2,5-1,6-4 
COBOL printing 4-4 
command formats iii 
commands 2-3 
COMPARE 6-2 
compiler directing statements 6-4 
computation 6-3 
concurrent processing 1-2 
conventions, format iii 
creating database structures 5-4 
creating formats 3-2 
creating screen formats 1-1 
CRT 2-1 

and program 6-2 

DASHER printing 4-4 
data entry 2-1 
data field attributes 3-1 
data field processing module 6-1 

069-000'023-00 

data fields 3-1 
data retrieval 7-3 
data storage 7-4 
data transactions 4-1 
database 4-2 

access method 5-1 
definition 7-1 
manager 1-2,5-1,9-1 
structures 5-4 
backup 5-4 

DBAM 5-1 
DBAM files 1-2 
define subindex 7-2 
defined functions 6-4 
defining data field processing modules 6-1 
defining database 7-1 . 
defining screen formats 1-1 
defining storage requirements 6-1 
defining sub-registers 6-1 
defining tables 6-1 
definition statements 6-1 
deleting records 7-4 
describe record 7-2 
design of systems 4-1 
DESTROY 7-4 
different length keys 5-3 
DISPLAY 6-2 
display and edit processing 8-3 
display attribute 3-1 
DIVIDE 6-3 
divide register 6-1 
documents iii 
DUP FIELD 2-3,6-4 
duplicate keys 5-3, 7-1 

ECLIPSE computer 1-1 
edit attribute 3-1 
END DATA 2-3,6-4 
ENDSUB 6-2 
enter and calculate formats 2-4 
entering data 2-1 
EQUAL 6-2 
ERASE FIELD 2-3, 6-4 
error checking 4-2 
ESC 2-3 
escape 2-3 
examples of formats 2-3 
executable statements 6-2 

Index-1 



field attributes 3-1 KEY 7-1 
() 

field orientation 8-1 key length 7-1 
field processing module 6·1 keyboard commands 2-3 
file handling statement 7-1 keyboard functions 6-4 
files 7-1 keys 5-3 
FIND 7-3 approximate 5-3 
flow of processing 8-2 function 2-3 
format 3- I(primary) generic 5-3 

creation 3-2 
examples 2-3 languages 1-2,5-1 
generator 1-1,3-2 LESS 6-2 
linking 4-3, 6-3 LINK statement 6-2 
preparation 3-lf link subindex 7-2 
structure 3-1 LINK USING 6-3 

format-only systems 4-3 linking formats 4-3, 6-3 
format/IFPL example 4-3 literals 3-1 
formats 1-1, 4-lf, 9-1 locking records 7-4 

accessing 2-1 LOG OFF 2-3, 6-4 
command iii logging to tape 5-4 

full attribute 3-lf LOOKUP 6-3 
function keys 2-3 lookup and update formats 2-4 
functions of monitor 4-2 
functions, keyboard 6-4 manuals iii 

menu formats 2-3 
generating reports 6-4 message field 3-2 I 
generic keys 5-3 MESSAGE statement 6-2 l 
GOTO 6-2 mixed type keys 5-3 
graphs, bar 2-5 monitor 2-1 n GREATER 6-2 monitor functions 4-2 

monitor interaction 8-2 
hardcopy printout formats 3-2 MOVE 6-2 
hardware environment 1-2 MUL TIPL Y 6-3 

ICOPY 5-4 NEWLINE 2-1 
ICREATE 5-4 next logical field 8-3 
ID 2-1 NOT-EQUAL 6-2 
Idea 1-1 
Idea documentation iii octal iii 
Idea Field Processing Language 6-1, 1-1 ON-IOERR 6-2 
Idea manuals iii operation 2-1, 9-1 
Idea monitor 2-1 operator commands 2-3 
Idea templates 2-2 other languages 1-2 
IDELETE 5-4 OUT-RANGE 6-2 
IF clauses 6-2 output attribute 3-lf 
IFMT 1-1,3-2 overlays 2-4 
IFPL 1-2,1-1,4-2, 6-lf 
IFPL statements, table of 9-2 partial keys 5-3 
IFPLlformat example 4-3 PASS 6-3 
IN-RANGE 6-2 PASSWORD 2-1 
inactivity clause 6-4 paths, index 5-2,7-1 
indexing paths 5-2, 7-1 PERFORM 6-2 
INFOS 1-2,5-1,9-1 pointer 6-2 
INFOS structure 5-1 preparation offormat 3-1 
INFOS utilities 5-4 preparing formats 3-2 
INITIA TE PRINTING 6-4 PRINT 6-4 
INQUIRE 5-4 PRINTF 4-4 () inversion of data 7-4 printing 4-4,6-4 
IRENAME 5-4 printout formats 3-2 

Index-2 069-000023-00 



I 

!~ 

processing flow 8-2 
. program structure 8-1 

programming keyboard functions 6-4 
programs 9-1 
programs, application 4-2 

RANGE 6-2 
record deletion 7-4 
record description 7-2 
record locking 7-4 
recovering from crash 5-4 
recovery procedure 5-4 
REDESIGNATE command 6-1 
reference printing 4-4 
registers 6-1 
REINSTATE 7-4 
REMOVE 7-4 
REPEAT PAGE 2-3,6-4 
report generation 6-4 
report printing 4-4 
required attribute 3-lf 
retrieve data 7-3 
retrieve key 7-3 
RETURN 6-2 
RETURN USING 6-2 
RPG II 1-2,5-1,6-4 
runtime monitor 1-2 

satellite printing 4-4 
screen formats 1-1 
screen overlays 2-4 
scroll fields 2-4 
secure attribute 3-lf 

069-000023-00 

sign-on 2-1 
skip key 2-3 
source library files 6-3 
starting address 8-3 
statements 6-1 

executable 6-2 
table of 9-2 

storage requirements 6-1 
STORE st~tement 6-2 
storing data 7-4 
structure of INFOS 5-1 
structure, program 8-1 
sub-registers 6-1 
subindexes 7-2 

linking 7-2 
SUBROUTINE 6-2 
subroutines 6-2 
subtotal key 2-3 
SUBTRACT 6-3 
summary of operation 9-1 
systems 4-1 

table of statements 9-2 
tablename 6-2 
tables 6-1 f, 
tape logging 5-4 
templates 2-2 
TERMIN ATE PRINTING 6-4 
transaction file 4-2 
transactions 4-1 

utilities, INFOS 5-4 
verify record 7-3 

Index~3 



()I 
, " 



SD·00742 

____________ ~ ___________________________________________________________ No. __________________ __ 

We wrote the book for you, "and naturally we had to make certain assumptions about who you are and how you 
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few 
minutes to respond. 

If you have any comments on the software itself, please contact your Data General representative. If you wish to 
order manuals, consult the Publications Catalog (012-330). 

Senior System Analyst 
Analyst/Programmer 

Operator 

(List ill order: I = Primal:v lise) 

Introduction to the product 
Reference 
Tutorial Text 

Other ____________ ~ ______________________ __ Operating Guide 

Somewhat 

o 
o 
o 
o 
o 
o 
o 

Is the manual easy to read? 
Is it easy to understand? 
Is the topic order easy to follow? 
Is the technical information accurate? 

Can you easily find what you want? 
Do the illU,strations help you? 



FOLD DOWN FIRST FOLD DOWN 

,---------------------~--------------------------------~---------------------------------------~-

BUSINESS REPLY MAIL 
No Postage Necessary if Mailed in the United States 

Postage will be paid by: 

Data General Corporation 
Southboro, Massachusetts 01772 

ATTENTION: Software Documentation 

FIRST 
CLASS 
PERMIT 
No. 26 

Southboro 
Mass. 01772 

I 

-----------------------------------------------------~-----------------------------------------~-FOLD UP SECOND FOLD UP ! 

SD-00742A STAPLE 

,r\,: 
I . 

/- , 






