
,
I~
. r'(\
. l,

t. Data General

093-000273-00

o

o

FORTRAN 77
Environment Manual

(AOS)

093-000273-00

For the latest enhancements, cautions, documentation changes, and other information on this
product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000273
©Data General Corporation, 1983
All Rights Reserved
Printed in the United States of America
Revision 00, September 1983
Licensed Material - Property of Data General Corporation

NOTICE
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE­
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITEq TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000i ECLIPSE Mv/aooO, TRENDVIEW, SWAT, GENAP, and MANAP
are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/l, ECLIPSE MV/10000,
GW/4000, GDC/1000, REV-UP, XODIAC, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN and BusiTEXT are
U.S. trademarks of Data General Corporation.

Revision History:

FORTRAN 77
Environment Manual

(AOS)
093-000273-00

Effective with:

Original Release - September 1983 FORTRAN 77 Rev. 2.10

o

()

Preface

As a programmer fluent in FORTRAN 77 (F77) and familiar with the Advanced Operating System
(AOS), you will find this environment manual a useful companion to the FORTRAN 77 Reference
Manual (093-000162).

Organization
We have organized this manual as follows.

Chapter I

Chapter 2

Chapter 3

Summarizes the software environment in which FORTRAN 77 exists.

Documents the utility subprograms your FORTRAN 77 programs can access.

Explains how your FORTRAN 77 programs can directly use AOS (i.e., make system
calls) at runtime.

Chapter 4 Presents the general concepts of multitasking. We also detail the individual multitasking
subroutines.

Chapter 5 Summarizes debugging. We introduce the SWATTM program as a valuable aid to
debugging.

Chapter 6 Explains subprograms. It shows how to write assembly language subprograms for
FORTRAN 77 programs to call and how to write FORTRAN 77 subprograms that
FORTRAN 5, DG/LTM, and PL/I programs can access.

Chapter 7

Chapter 8

093·000273·00

Gives several hints about writing better FORTRAN 77 programs.

Introduces the technique of writing large programs with overlays and gives a sample
program with overlaid subprograms.

Licensed Material·Property of Data General Corporation iii

Related Documentation
Other manuals you may find useful are as follows.

Manual Title

Advanced Operating System (AOS)
Programmer's Manual

Command Line Interpreter (CLI) User's Manual
(AOS and AOSjVS)

FORTRAN 5 Programmer's Guide (AOS)

Advanced Operating System (AOS)
Macroassembler (MASM) Reference Manual

Advanced Operating System (AOS)
Operator's Guide

Advanced Operating System (AOS) Link and Library
File Editor (LFE) User's Manual

SWATTM Debugger User's Manual

Manual
No.

093-000120

093-000122

093-000154

093-000192

093-000194

093-000254

093-000258

In addition, Data General strongly recommends that you have the Software Release Notices and
Update Notices for FORTRAN 77 and related software. These Notices may contain corrections to this
manual and additional information beyond the scope of this manual. For example, the documentation
for the subroutine to obtain the system date appeared in Release Notices before this manual was
written. And, they may contain suggestions for corrections or adjustments to current software problems.

Reader, Please Note:
We use these conventions for command formats in this manual:

Where

COMMAND

required

[optional]

iv

COMMAND required [optional] ...

Means

You must enter the command (or its accepted abbreviation) as shown.

You must enter some argument (such as a filename). Sometimes, we use:

required 1
required2

which means you must enter one of the arguments. Don't enter the braces; they only set
off the choice.

You have the option of entering this argument. Don't enter the brackets; they only set
off what's optional.

You may repeat the preceding entry or entries. The explanation will tell you exactly
what you may repeat.

licensed Material·Property of Data General Corporation 093·000273·00

o

Additionally, we use certain symbols in special ways:

Symbol Means
J Press the NEW LINE or carriage return (CR) key on your terminal's keyboard.

o Be sure to put a space here. (We use this only when we must; normally, you can see where to
put spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 358,

Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRYJ
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the CLI prompt.

Contacting Data General
• If you have comments on this manual, please use the prepaid Remarks Form that appears after the

Index. We want to know what you like and dislike about this manual.

• If you need additional manuals, please use the enclosed TIPS order form (USA only) or contact your
Data General sales representative.

• If you experience software problems, please notify Data General Systems Engineering.

End of Preface

093·000273·00 Licensed Material·Property of Data General Corporation v

Contents

Chapter 1 - Introductory Concepts
A Software Summary.
The Significance of AOS .. .
The Significance of Link and the Runtime Libraries
The Significance of the Release and Update Notices.

Chapter 2 - Utility Runtime Routines
Documentation Categories .. .
DATE
ERRCODE........
ERRTEXT .. .
EXIT
RANDOM...............
TIME.....................................

Chapter 3 - System Call Interface
Structure.
Implementing ISYS: An Initial Approach

Sample Program
Program Testing
Summary .. .

Implementing ISYS: a Final Approach
Files Related to Program F77BUILD_SYM
Symbol Construction Rules
Operating Instructions for F77BUILD_SYM
Reducing QSYM.F77.1N
Error Messages.
Updating your Operating System
ISYS and Sample Program LIST_DIRECTORY "
ISYS and Subroutine CLI .. .

The ISYS Function and Multitasking
IO_CHAN Function

Structure.
Example .. .
Reference.

093·000273·00 Licensed Material-Property of Data General Corporation

1-1
1-3
1-3
1-6

2-1
2-2
2-3
2-7

2-10
2-11
2-18

3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-6
3-6
3-7

3-10
3-10
3-11
3-15
3-21
3-21
3-21
3-22
3-22

vii

Chapter 4 - Multitasking
What is a Task? 4-1

Single-task Programs 4-1
Single-tasking: a Nonsoftware Example.. 4-2

What is Multitasking? - a Nonsoftware Example. 4-3
What is Multitasking? . 4-5
Multitasking Program Organization. 4-7
Task States, Transitions, and Subroutines . 4-7

Task States 4-7
Task Transitions . 4-11
Task Subroutines. 4-11
Sample Program. 4-14

Re-entrant Code. 4-20
Multitasking Subroutines. 4-22

Assembly Language Interface. 4-24
Conversion of FORTRAN 5 Multitasking Programs 4-25
Multitasking via the ISYS Function? . 4-27
Link Switches for F77 Multitasking. 4-27
Task Fatal Errors 4-28
Initial Task 4-28
Documentation of Multitasking Calls . 4-28

TQDQTSK 4-30
TQDRSCH . 4-32
TQERSCH 4-33
TQIDKIL .. 4-34
TQIDPRI 4-35
TQIDRDY .. 4-36
TQIDSTAT. 4-37
TQIDSUS .. 4-38
TQIQTSK .. 4-39
TQKILAD. 4-40
TQKILL 4-41
TQMYTID . 4-42
TQPRI. 4-43
TQPRKIL .. 4-44
TQPROT .. 4-45
TQPRRDY 4-46
TQPRSUS. 4-47
TQQT ASK .. 4-48
TQREC 4-49
TQRECNW 4-50
TQST ASK 4-51
TQSUS 4-52
TQUNPROT 4-53
TQXMT 4-54
TQXMTW 4-55
Another Sample Multitasking Program. 4-56
AOS F77 Multitask Stack Definition. 4-65

Macro F77ST ACK .. 4-66
Macro MAINST ACK .. 4-66
Example Entries for F77STACK.sR 4-67
Operating Instructions for F77ST ACK. 4-67
How Necessary is F77STACK? 4-67
An Example of Specific Stack Specifications. .. 4-67

viii licensed Material-Property of Data General Corporation 093-000273-00

Chapter 5 - Debugging

Traditional Debugging Methods
The SWAT Debugger

Sample Program Modules SORTlO.F77 and TEST_SORTlO.F77.
Sample Execution without the SWAT Debugger.
SW AT Debugger Fundamentals
Sample Execution with the SWAT Debugger
Corrections to Sample Program Modules
The SW AT Debugger - a Summary

Avoid Errors BEFORE Coding
Data General Bugs?

Chapter 6 - Subprograms

F77 and Assembly Language Subprograms
Calling Conventions
Common Return Block ...
Coding Assembly Language Routines for Use with F77 with Macros.
F77-to-Assembly Interface Examples
Macro F77 _FMAC.SR

Compatibility Between Languages
Multidimension Array Storage
Case Sensitivity
Interlanguage Conflicts.
A Sample Subprogram and Its Caller

High-Level Languages and F77 Subroutines
FORTRAN 5 and F77
DG /L and F77 Languages
PL/I and F77

Chapter 7 - Programming Hints

The F77 Error File
Improving Program Readability.
Program Enhancements

Compiler Switches and Program Performance.
Enhancing Computational Speed.
Enhancing I/O Speed.

F77 Output and Printing Special Forms.
Background for Two Examples
Example 1 - Printing Labels
Example 2 - Printing Index Cards

Reducing Memory and Disk Usage of Program Files.
Link - A Closer Look
The /KTOP=n Link Switch
An Example of Reducing a .PR File.
Cautions about Specifying /KTOP=n
Other Ways...

093·000273-00 Licensed Material·Property of Data General Corporation

5-1
5-2
5-2
5-5
5-5
5-6

5-12
5-12
5-13
5-13

6-1
6-1
6-3
6-9

6-10
6-16
6-17
6-17
6-20
6-20
6-20
6-23
6-23
6-25
6-28

7-1
7-1
7-1
7-2
7-3
7-3
7-5
7-6
7-6
7-9

7-12
7-12
7-14
7-14
7-16
7-18

ix

Chapter 8 - Overlays
Introduction.
Example 1 - A Program Using Overlays
Example 2 - A Program Implementing Overlays

x Licensed Material-Property of Data General Corporation

8-1
8-2
8-4

093-000273-00

('1 Illustrations'

Figure

1-1 Selected Data General Software. 1-2
1-2 The Compilation, Linking, and Execution of a Typical F77 Program. 1-5

2-1 Program EXAMPLE_RANDOM.F77 2-12
2-2 The Output from Program EXAMPLE_RANDOM 2-12
2-3 A Correspondence Between Selected Real Numbers and Integers 2-14
2-4 Program ROLL_DICE.F77 . 2-16
2-5 Typical Output from Program ROLL_DICE 2-17

3-1 The Compilation, Linking, and Execution of a Typical F77 Program. . 3-5
3-2 Program NEW_TEST_SACL 3-9
3-3 Program LIST_DIRECTORY. 3-12
3-4 Subroutine Subprogram ADD_NULL 3-14
3-5 Subroutine Subprogram CHECK 3-14
3-6 @CONSOLE Dialog During Execution of LIST_DIRECTORY 3-15
3-7 Subroutine Subprogram CLI 3-17
3-8 Program TEST _CLI 3-18
3-9 @CONSOLE Dialog During Execution of TEST _CLI . 3-19
3-10 Program TESTLCLI 3-20
3-11 @CONSOLE Dialog During Execution of TESTLCLI 3-21

4-1 A One-Lane Tunnel with One Approach Lane (Single-Tasking) 4-2
4-2

('1 4-3
4-4

A Two-Lane Tunnel with Four Approach Lanes. 4-4
A Multitasking Program File 4-6
The Organization and Execution of a Single-Task Program 4-8

4-5 The Organization and Execution of a Multitask Program. 4-9
4-6 Task States . 4-10
4-7 Task States and Transitions 4-13
4-8 A Listing of Program MAIN5.F77 4-15
4-9 A Listing of Subroutine TASK l.F77 . 4-16
4-10 A Listing of Subroutine TASK2.F77 4-18
4-11 Task Control Blocks and the Use of Re-entrant Code 4-21
4-12 A Listing of Subroutine TASLl1.F77 4-57
4-13 A Listing of Subroutine TASK I1.F77 4-59
4-14 A Listing of Subroutine TASKI2.F77 4-60
4-15 A Listing of Subroutine TASKI3.F77 4-61
4-16 A Listing of Subroutine TASKI4.F77 4-62
4-17 A Listing of Subroutine TASKI5.F77 4-63

6-1 The Stack after Execution of a SAVE Instruction 6-5
6-2 A Listing of TEST_TYP _SUB.F77 and Its Generated Code 6-6
6-3 A Listing of TYP _SUB.F77 and Its Generated Code 6-8
6-4 Main Program TEST_RUNTM.F77 6-11
6-5 Subroutine RUNTM.SR, Version 1 6-12
6-7 An Example of Storage of Multidimension Arrays by F77 and Other Languages. . 6-18
6-8 Subroutine Subprogram GENERAL.F77 6-21
6-9 Main Program TEST_GENERAL.F77 6-22
6-10 Program TEST_GENERAL.FR . 6-24
6-11 Program TEST_GENERAL.DG. 6-26

093·000273·00 Licensed Material·Property of Data General Corporation xi

7-1
7-2
7-3
7-4
7-5
7-6
7-7

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

xii

File MEMBERS.DA T A .. .
Program PRINT_LABELS
A Typical Index Card
Program PRINT_CARDS
A Memory Model for an F77 Program File
A Listing of Program MEMPAGE.LS
A Portion of MEMPAGE.MAP

The Desired Organization of GRADUA TION_CHECK.PR and Its Overlay File ..
The Desired Organization of SAMPLE_OVERLAY.PR and Its Overlay File
Main Program SAMPLE_OVERLA Y.F77
Subprogram SUB_OO_OO.F77
Subprogram SUB_OO_Ol.F77
Subprogram SUB_OLOO.F77
Subprogram SUB_OLOl.F77
Subprogram SUB_OL02.F77
A Portion of SAMPLE_OVERLA Y.MAP .

7-6
7-7
7-9

7-10
7-13
7-15
7-17

8-3
8-5
8-6
8-7
8-7
8-8
8-8
8-9

8-10

Licensed Material·Property 01 Data General Corporation 093-000273-00

o

o

Chapter 1
Introductory Concepts

This chapter gives you an overview of the "forest" of FORTRAN 77 and related software. Subsequent
chapters explain the "trees" of Data General extensions to ANSI Standard FORTRAN 77 (F77). The
FORTRAN 77 Reference Manual explains the "trees" of standard-conforming F77 statements and of
compilation/linking procedures.

A Software Summary
As an AOS F77 programmer on Data General (DG) hardware, you are familiar with many F77
program statements, instructions to the compiler and linker programs, and other software. Figure 1-1
shows some of this software.

093·000273·00 Licensed Material-Property of Data General Corporation 1-1

10·00100

LEFT CIRCLE:

DG FORTRAN-related

Software

Search Lists

Directories

CLI.PR

PL/I

?OPEN, OPEN

Preconnections

and Generic

Files

Runtime

Libraries

SWAT™

Debugger

MASM

RIGHT CIRCLE:

FORTRAN 77 Program-,

Compiler-, Link-, and

Execution-related

Statements

FORMAT

DIMENSION

Intrinsic

Functions

Compiler

Command

and

Switches

Assigned

GO TO

Arithmetic

IF

COBOL

Figure I-I. Selected Data General Software

This diagram somewhat arbitrarily classifies much of the Data General software that you are (or may
want to become) familiar with. In the diagram:

• The FORTRAN 77 Reference Manual explains all of the right-hand part of the right circle and
some of the overlapping area.

• This environment manual explains none of the right-hand part of the right circle and most of the
overlapping area. It extends the reference manual's description of the important Link program.

• Neither manual gives many details about the left-hand part of the left circle. It's sufficient to say
that incorrect access control lists, search lists, directories, and generic file assignments have caused
many programmers much grief over the years. Be sure yours are correct.

• A program written in one language can CALL a subprogram written in another language. For
example, COBOL appears outside both of the diagram's circles. Chapter 6 contains an example of
a DG/LTM program that CALLs a FORTRAN 77 subroutine to perform some number crunching.

1-2 Licensed Material·Property of Data General Corporation 093·000273·00

()

The Significance of AOS
Your F77 programs run under AOS. This is a very important statement, because among other things,
AOS:

• Handles all file placement and organization.

• Handles all file access commands from your program.

• Allows multitasked processes.

For example, consider the F77 statement

READ (2) RECORD

When the resulting compiler-generated and Linked machine language instructions execute at runtime,
they request AOS (which is also executing in primary storage) to perform an I/O operation. More
specifically, these machine language instructions set up and make a ?READ system call. It is the
instructions in this system call that direct the unformatted transfer of data from the file connected to
unit 2 to the variable or array whose name is RECORD. Thus, F77 needs AOS to do any useful
processing.

A programmer once told the writer of this manual that "A user program is merely an exit from the
operating system." He's right. A user program executes only temporarily; AOS always executes.
Furthermore, consider the F77 STOP statement. When its resulting instructions in a program file
execute, they tell AOS to terminate the current process and return to the father process. That is, at
runtime STOP results in a ?RETURN system call to transfer control back to the father process. This
is normally the Command Line Interpreter (CLI), which communicates directly with AOS.

The Significance of Link and the Runtime Libraries
If you're familiar with Link and its construction of F77 program files from the runtime libraries, then
skip this section.

Many introduction-to-data-processing textbooks contain statements equivalent to: "The FORTRAN
compiler translates the FORTRAN source program to a machine language object program. The
computer then places this object program in primary storage. Its instructions execute to process data as
specified in the FORTRAN source program". These statements are not entirely true for Data General's
(and most other computer manufacturers') implementation of F77.

The FORTRAN 77 compiler programs (F77.PR, F77PASS2.PR, F77PASS3.PR) are large and
complicated programs that do create an object (.OB) file from a source (.F77) file. The object file is
incomplete because it does not contain all the instructions necessary to carry out the directions of the
source program. Where do these missing instructions come from? Program LINK.PR obtains them
from other .OB files and from library (.LB) meso LINK.PR creates an executable program file (.PR)
based on the compiler-created .OB file, these other .OB files, and library files.

093-000273·00 licensed Material-Property of Data General Corporation 1-3

As an example, consider the following FORTRAN 77 program SAMPLE.F77. We've numbered its
statements for ease of reference.

1 PROGRAM SAMPLE
2 REAL*8 VARIABLE __ 1
3 INTEGER*2 ITIME(3), MY __ SUM, J
4 CALL TIME (ITIME)
5 MY __ SUM = 5 + 4
6 J = IAND(8,MY __ SUM)
7 PRINT *, 'GIVE ME VARIABLE __ 1 (XXXX.XX) ,
8 READ (11, 20) VARIABLE __ 1
9 20 FORMAT (F7.2)

10 STOP '- THAT IS ALL!'
11 END

The compilation, link, and execution commands you give to the CLI are:

F77 SAMPLE
F77L1NK SAMPLE
XEQ SAMPLE

Next is a summary of what these three commands do to selected statements in SAMPLE.F77.

• The F77 compiler programs process statement 4 by, among other things, creating a note in
SAMPLE.OB to LINK.PR. (Technically, this "note" is an External Reference -- an .EXTN
statement). This notification tells LINK.PR to insert instructions from TIME.OB into SAMPLE.PR.
Then:

- LINK.PR follows F77LINK.CLI's instructions and searches the runtime libraries to find
TIME.OB (in F77ENV.LB).

- When SAMPLE.PR executes and it reaches the instructions from TIME.OB, they make a
?GTOD system call to obtain the time of day.

- The respective contents of ITIME{l), ITIME(2), and ITIME(3) are the current hour, minute,
and second.

o The F77 compiler reacts to statement 5 by creating self-contained instructions in SAMPLE.OB.
These instructions make no reference to a subroutine; they execute at runtime to perform statement
5 by themselves. We can also say that the compiler generates in-line code from statement 5.

o Statement 6 results in the compiler's creation of in-line code for the intrinsic function lAND. The
code includes an AND instruction. At runtime this instruction executes to find the logical AND of
the 2-byte integer 8 and of the 2-byte integer in the variable MY_SUM.

o Statements 8 and 9 result in several instructions in SAMPLE.OB, and then many more instructions
in SAMPLE.PR. At runtime these SAMPLE.PR instructions:

- Obtain a string of ASCII characters from @INPUT.

- Check for an illegal character string (such as '027 A.38') and report an error if it occurs.

- Convert the legal character string to a double-precision floating-point number and move it to the
8 bytes that V ARIABLE_l refers to.

Figure 1-2 also summarizes the three commands that compile, link, and execute program SAMPLE.

1-4 Licensed Malerial·Property of Dala General Corporation 093·000273·00

dg·25478

SAMPLE.F77

F77.PR

F77PASS2.PR

F77PASS3.PR

(1)
SAMPLE.OB

I

F77DGPCT.OB

F77ENV.LB
(2)

SWATI.OB

URT.LB
(User Runtime)

•
•
•
I

Note (1): Macro F77.CLI executes programs F77.PR,

F77PASS2.PR, and F77PASS3.PR.

LlNK.PR

(3)

Note (2): Object file TIME.OB is part of library file F77ENV.LB.

Note (3): Macro F77L1NK.CLI executes program LlNK.PR.

SAMPLE.PR

(4)

Note (4): The CLI command XEQ SAMPLE executes program SAMPLE.PR.

Figure 1-2. The Compilation, Linking, and Execution of a Typical F77 Program

Link doesn't insert all the .OB files listed in Figure 1-2 into SAMPLE.PR. For example, SWATI.OB
goes into SAMPLE.PR only if the F77LINK command includes the jDEBUG global switch. The
SWAT Debugger requires SW ATI.OB. Chapter 5 summarizes the SWAT Debugger. And, not all of
the F77 runtime library files appear in Figure 1-2. F77IO.LB is an example. You can print
F77LINK.CLI to see the names of all Data-General-created object and runtime library files.

093·000273·00 Licensed Material·Property of Data General Corporation 1-5

If you're curious about the .OB files that Link places into a .PR file, use the /B and jL switches to
create a load map file. In our case, we replace the CLI command

F77L1NK SAMPLE

with

DELETE I 2 = IGNORE SAMPLE.MAP
F77L1NK/B/L=SAMPLE.MAP SAMPLE
TYPE SAMPLE.MAP

Normally, you don't have to worry about the details of F77.PR, F77PASS2.PR, F77PASS3.PR, and
LINK.PR. Just be sure that the F77 and F77LINK commands are correct for each program you write.

One problem arises when you've created a .OB or .LB file whose name matches a Data-General-supplied
.OB or .LB file. Link may find and select your .OB or .LB file instead of the correct file intended for the
current revision of F77.

To obtain the names of the Data-General-supplied .OB and .LB files that F77LINK uses, simply print
F77LINKCLI. Typically, its path name is :UTIL:F77:F77LINKCLI. Then, make sure that none of
your filenames matches those in F77LINKCLI.

The Significance of the Release and Update Notices
It's hard to overemphasize the necessity of having the latest Release and Update Notices for FORTRAN
77 and for related software such 'as Link. This manual assumes throughout that you have the latest
such Notices. Together, they give you the most current information Data General has available on the
software you need to write and maintain FORTRAN 77 programs. An F77 Reference or Environment
manual is incomplete by itself, just like a solitary Release or Update Notice. Read them all!

End of Chapter

1-6 Licensed Material·Property of Data General Corporation 093·000273·00

Chapter 2
Utility Runtime Routines

FORTRAN 77 provides many subprograms (both subroutines and external functions) that process
data in a variety of ways. This data processing includes a program/system runtime interface, which
Chapter 3 explains, and multitasking, which Chapter 4 explains. The subprograms also perform various
utility functions such as obtaining the date. We document these utility subprograms in this chapter.

NOTE: You don't have to specify any F77 utility subprogram names to the F77LINK macro.
F77LINK has Link search all the runtime library files that contain the utility subprograms.

Documentation Categories
The rest of this chapter describes the utility subprograms alphabetically. The explanation of each
subprogram includes:

• Its name and function.

• Its format and argument names.

• Descriptions of each argument.

• A sample program that uses the subprogram.

093·000273-00 Licensed Material-Property of Data General Corporation 2-1

DATE
Obtain the system date.

Format
CALL DATE(date_array)

Argument
date_array is an INTEGER *2 array into whose first three elements DATE will place the current

date from AOS:

First element - AD year since zero
Second element - Month, between 1 and 12 inclusive
Third element - Day, between 1 and 31 inclusive

NOTE: Routine DATE conforms to the ISA 561.1 standard.

Example

C SAMPLE ADS F77 PROGRAM CALL __ DATE
DIMENSION IDATE(3)

C
CALL DATE (IDATE)

C PRINT THE DATE IN MONTH/DAY/YEAR FORMAT.
PRINT *, 'Date is " IDATE(2). '/', IDATE(3). '/', IDATE(1)-1900

C
END

2-2 Licensed Material·Property of Data General Corporation 093·000273·00

ERRCODE
Report a runtime error based on an error code and an optional severity
number.

Format
CALL ERRCODE(code [,sevj)

Arguments
code is an INTEGER *2 expression that contains the code you want ERRCODE to report on.

Typically, this might be the value of the 10STAT= variable from an I/O statement or the
result code from the system interface function ISYS. File ERR.F77.1N contains PARAMETER
statements for the current values of code that F77 defines for its runtime system. If code is 0,
ERRCODE merely returns and writes no output.

NOTE: Be sure your system error message file (usually :ERMES) contains messages from
F77 and the Common Language Runtime Environment (CLRE). See the current
F77 Release Notice for instructions to create this file.

sev is an optional INTEGER *2 expression that contains the severity you assign to the error. If sev
is

0: Nonfatal - the task continues execution.

1: Task fatal - the task terminates in an orderly fashion.

Not 0 or 1: Process fatal - the program terminates in an orderly fashion.

Not supplied: Process fatal - the program terminates in an orderly fashion.

Relation to Error Logging'
A CALL to ERRCODE results in output to all units OPENed with ERRORLOG='YES' or, if
currently no units are OPEN in this way, to @OUTPUT.

Relation to ERR TEXT
The ERRCODE and ERR TEXT (described next) subroutines have quite similar functions. The most
significant difference is that you supply ERRCODE a numeric code argument, whereas you supply
ERRTEXT a character text argument. ERRTEXT always writes a diagnostic message, while
ERRCODE does so when, and only when, the value of its argument code differs from zero.

093·000273·00 Licensed Material-Property of Data General Corporation 2-3

ERRCODE (continued)

Example Program
Program TEST_ERRCODE lets you vary the values of the ERRCODE arguments code and sev. Its
listing is below; an example of its execution follows. If you decide to execute this program, we suggest
you select values of code from file ERR.F77.1N at runtime.

C TEST PROGRAM TEST __ ERRCODE TO TEST SUBROUTINE ERRCODE.

INTEGER*2 ERROR __ CODE, SEVERITY, Y __ OR __ N

10 WRITE (6, 20)
20 FORMAT (1HO, 'GIVE ME A DEC IMAL ERROR CODE AND A SEVERITY', /,

1 1X, NUMBER SEPARATED BY A COMMA.', /,
2 1X, THE SEVERITY NUMBER SHOULD BE 0 OR 1.', /,
3 1X, 'WHAT ARE THESE NUMBERS? " $)

READ(5,*) ERROR __ CODE, SEVERITY
PRINT * ' ,
PRINT *, 'NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)'
PRINT *, ,-----,
CALL ERRCODE (ERROR __ CODE, SEVERITY)
PRINT *

30 PRINT *, ' ,

C THE FOLLOWING STATEMENTS EXECUTE ONLY WHEN SEVERITY IS ZERO.
WRITE (6, 40)

40 FORMAT (1X, 'DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS',
1 '(Y OR N) ? __ <31>', $) ! <31> BACKSPACES THE CURSOR

READ (5, 50) Y __ OR __ N
50 FORMAT (A1)

2-4

IF (Y __ OR __ N .EO. 'Y') THEN
GO TO 10

ELSEIF (Y __ OR __ N .EO. 'N ') THEN

ELSE

ENDIF

END

PRINT *, 'END OF TESTING OF SUBROUTINE ERRCODE'
STOP

PRINT * '<BEL>YOUR RESPONSE MUST BE Y OR N
PRINT * '<BEL> TRY AGAIN.'
GO TO 30

Licensed Material·Property of Data General Corporation 093·000273·00

GIVE ME A DECIMAL ERROR CODE AND A SEVERITY
NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 11264,0 J

NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)

RUNTIME ERROR 26000 at 074124
in ROUTINE USER.ERR

called from .MAIN+ 174
Invalid unit number

DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (Y OR N)? Y J

GIVE ME A DECIMAL ERROR CODE AND A SEVERITY
NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 10000,0 J

NOW COMES THE CALL TO ERR CODE (ERR OR CODE, SEVERITY NUMBER)

RUNTIME ERROR 23420 at 074124
in ROUTINE USER. ERR

called from .M AIN + 174
UNKNOWN MESSAGE CODE 023420

DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (Y OR N)? Y J

GIVE ME A DECIMAL ERROR CODE AND A SEVERITY
NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 36,0 J

NOW COMES THE CALL TO ERR CODE (ERR OR CODE, SEVERITY NUMBER)

RUNTIME ERROR 44 at 074124
in ROUTINE USER.ERR

calledfrom .MAIN+174
DEVICE ALREADY IN SYSTEM

DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (Y OR N)? N J

END OF TESTING OF SUBROUTINE ERRCODE
STOP

093·000273-00 licensed Material-Property of Data General Corporation 2-5

ERRCODE (continued)
Please note the following about the execution of TEST_ERRCODE:

• Your "RUNTIME ERROR" and "called from" memory locations probably will differ from those
shown (074124 and _MAIN + 174, respectively)_

• The first example shows the outcome if a program had CALLed ERRCODE after an I/O operation
returned 11264 as the value of the 10STA T variable_

• The second example shows what happens if an error code unknown to the system error message file
:ERMES is passed to ERRCODE_ The F77 Release Notice explains how to construct ERMES so
that it contains F77 error codes_

• The third example shows that ERRCODE can respond to more than just nonzero values in
ERR_F77.1N_ Here, 36 (= 44K) is a valid AOS system error code_ ERMES must contain AOS
error codes as well as those from F77_

Related Documentation
You may regard subroutine ERRCODE as a natura-I extension of the software described in the
"Runtime Errors" section of the FORTRAN 77 Reference Manual_

2-6 Licensed Material-Property of Data General Corporation 093-000273-00

ERRTEXT
Report a runtime error based on a text string and an optional severity
number.

Format
CALL ERRTEXT(text [,sevj>

Arguments
text is a CHARACTER expression that contains the text of the error message that you want

ERR TEXT to report.

NOTE: Be sure your system error message file (usually :ERMES) contains messages from
F77 and the Common Language Runtime Environment (CLRE). See the current
Release Notice for instructions to create this file.

sev is an optional INTEGER *2 expression that contains the severity you assign to the error. If sev
IS

0: Nonfatal - the task continues execution.

1: Task fatal - the task terminates in an orderly fashion.

Not 0 or 1: Process fatal - the program terminates in an orderly fashion.

Not supplied: Process fatal - the program terminates in an orderly fashion.

Relation to Error Logging
A CALL to ERRTEXT results in output to all units OPENed with ERRORLOG='YES' or, if
currently no units are OPEN in this way, to @OUTPUT.

Relation to ERRCODE
The ERR TEXT and ERRCODE (described previously) subroutines have quite similar functions. The
most significant difference is that you supply ERRTEXT a character text argument, whereas you
supply ERRCODE a numeric code argument. ERR CODE writes a diagnostic message when, and only
when, the value of its argument code differs from zero, whereas ERRTEXT always writes a diagnostic
message.

093·000273·00 Licensed Material·Property 01 Data General Corporation 2-7

ERRTEXT (continued)

Example Program
Program TEST_ERRTEXT lets us vary the values of the ERRTEXT arguments text and sev. Its
listing is below; an example of its execution follows.

C TEST PROGRAM TEST __ ERRTEXT TO TEST SUBROUTINE ERRTEXT.

INTEGER SEVERITY, Y __ OR __ N
CHARACTER*70 ERROR __ TEXT

10 WRITE (6, 20)
20 FORMAT (1HO, 'GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)', I,

1 1X, AND A SEVERITY NUMBER SEPARATED BY A COMMA.', I,
2 1X, THE SEVERITY NUMBER SHOULD BE 0 OR 1.', I,
3 1X, 'WHAT ARE THESE ARGUMENTS? " $)

READ(5,*) ERROR __ TEXT, SEVERITY
PRINT * ' ,
PRINT *, 'NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)'
PRINT *, ,-----,
CALL ERRTEXT (ERROR __ TEXT, SEVERITY)
PRINT *

30 PRINT *, ' ,

C THE FOLLOWING STATEMENTS EXECUTE ONLY WHEN SEVERITY IS ZERO.
WRITE (6, 40)

40 FORMAT (1X, 'DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER "
1 '(Y OR N) ? __ <31>', $) ! <31> BACKSPACES THE CURSOR

READ (5, 50) Y __ OR __ N
50 FORMAT (A1)

2-8

IF (Y __ OR __ N .EQ. 'Y ,) THEN
GO TO 10

ELSEIF (Y __ OR __ N .EQ. 'N ') THEN

ELSE

ENDIF

END

PRINT *, 'END OF TESTING OF < SUBROUTINE ERRTEXT'
STOP

PRINT * '<BEL>YOUR RESPONSE MUST BE Y OR N
PRINT * '<BEL> TRY AGAIN.'
GO TO 30

Licensed Material·Property of Data General Corporation 093·000273·00

GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)
AND A SEVERITY NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 or 1.

WHAT ARE THESE ARGUMENTS? "SAMPLE ERROR TEXT",O J

NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)

RUNTIME ERROR 26536 at 074150
in ROUTINE USER. ERR

called from .MAIN+204
User defined ERROR text
EXECUTION continues
SAMPLE ERROR TEXT

DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER (Y OR N)? Y J

GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)
AND A SEVERITY NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 or 1.

WHAT ARE THESE ARGUMENTS? "SOME MORE ERROR TEXT",O J

NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)

RUNTIME ERROR 26536 at 074150
in ROUTINE USER. ERR

calledfrom .MAIN+204
User defined ERROR text
EXECUTION continues
SOME MORE ERROR TEXT

DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER (Y OR N)? N J

END OF TESTING OF SUBROUTINE ERR TEXT
STOP

Please note the following about the execution of TEST_ERRTEXT:

• Your "RUNTIME ERROR" and "called from" memory locations probably will differ from those
shown (074150 and .MAIN +204, respectively).

• Both examples use list-directed editing because of the

READ (5. *).ERROR __ TEXT. SEVERITY

statement. Thus, quotation marks surround the text given via the console to CHARACTER variable
ERROR-TEXT at runtime.

• Both examples show the error code 26536 (decimal 11614) because this is the error code for
user-defined error text.

Related Documentation
You may regard subroutine ERR TEXT as a natural extension of the software described in the
"Runtime Errors" section of the FORTRAN 77 Reference Manual.

093-000273-00 Licensed Material-Property of Data General Corporation 2-9

EXIT
Terminate the current task.

Subroutine EXIT terminates the calling task_ It acts like the F77 STOP statement, but you can't give
a number or text string to the subroutine_ EXIT returns a null string to the parent process_ Thus, for
single-task programs, you can use it to halt your program and have it return to the CLI without
displaying STOP on the console_ In contrast, the F77 STOP statement terminates the process with a
console message whose minimal contents are "STOP"_

Format
CALL EXIT

Arguments
none

Example

C SAMPLE ADS F77 PROGRAM CALL __ EXIT
PRINT *, 'THIS IS THE BEGINNING AND THE END _ '
CALL EXIT
END

Execution of CALL_EXITPR results in the following_

) X CALL_EXIT J

THIS IS THE BEGINNING AND THE END_
)

2-10 Licensed Malerial-Property of Dala General Corporal ion 093-000273-00

RANDOM
Function subprogram to obtain a random number.

Format
RANDOM(lSEED)

Result
The result of a function reference to RANDOM is aREAL *8 number greater than or equal to zero
and less than one.

Argument
ISEED is an INTEGER *4 variable or array element. It may not be a constant. If ISEED has an

initial value

< 0: The initial value of RANDOM(lSEED) depends on the system time of day. Thus,
successive references to RANDOM(lSEED) will result in a virtually
nonreproducible sequence of random numbers. Don't modify ISEED after assigning
it an initial value.

> = 0: The initial value of RANDOM(lSEED) depends on the value of ISEED. To
generate a reproducible sequence of random numbers, assign a chosen nonnegative
constant to ISEED and then make successive references to RANDOM(ISEED).
Don't modify ISEED after assigning it an initial value.

RANDOM stores the starting point (seed) for the next number it will generate in the
memory location that ISEED refers to. Therefore, ISEED must be a variable and never a
constant.

Please note the following.

• Successive references to RANDOM generate a sequence of random numbers with a uniform
distribution.

• RANDOM uses Knuth's Linear Congruential Algorithm to create a REAL *8 number based on the
value of ISEED. After this creation, RANDOM replaces ISEED with an integer between 0 and
262,143 inclusive. These integers, formed by successive references to RANDOM, are a sequence
with a period of 262,144. RANDOM creates a temporary value for ISEED that may exceed 262,143,
but the final value of ISEED is MOD(temporary-ISEED,262144).

• Be sure to declare RANDOM as REAL *8 or DOUBLE PRECISION in any program unit that
uses this function.

093·000273·00 Licensed Material·Property of Data General Corporation 2-11

RANDOM (continued)

Example Program 1
Figure 2-1 shows program EXAMPLE_RANDOM that uses RANDOM to generate five numbers.

PROGRAM EXAMPLE __ RANDOM
REAL*8 RANDOM, RESULT
INTEGER*4 ISEED
ISEED = 0 ! GENERATE A REPRODUCIBLE SEQUENCE OF RANDOM NUMBERS
DO 10 I = 1, 5
WRITE (6, 100) I, ISEED

100 FORMAT (1HO, 'BEFORE EXECUTING RANDOM FOR 11, ISEED = 17)
RESULT = RANDOM(ISEED)
WRITE (6, 110) I, ISEED, RESULT

110 FORMAT (1H , ' AFTER EXECUTING RANDOM FOR I = " 11,
1 " ISEED = " 17, ' AND RANDOM RETURNS " F9. 6)

.10 CONTINUE
WRITE (6, 20)

20 FORMAT (1HO, '*** END OF PROGRAM * **')
CALL EXIT
END

Figure 2-1. Program EXAMPLE_RANDOM.F77

Figure 2-2 shows the output from program EXAMPLE_RANDOM.

BEFORE EXECUTING RANDOM FOR I = 1, ISEED = 0
AFTER EXECUTING RANDOM FOR I = 1, ISEED = 55397 AND RANDOM RETURNS

BEFORE EXECUTING RANDOM FOR I = 2, ISEED = 55397
AFTER EXECUTING RANDOM FOR I = 2, ISEED = 192310 AND RANDOM RETURNS

BEFORE EXECUTING RANDOM FOR = 3, ISEED = 192310
AFTER EXECUTING RANDOM FOR = 3, ISEED = 182979 AND RANDOM RETURNS

BEFORE EXECUTING RANDOM FOR I = 4, ISEED = 182979
AFTER EXECUTING RANDOM FOR I = 4, ISEED = 55324 AND RANDOM RETURNS

BEFORE EXECUTING RANDOM FOR I = 5, ISEED = 55324
AFTER EXECUTING RANDOM FOR I = 5, ISEED = 118801 AND RANDOM RETURNS

*** END OF PROGRAM ***

Figure 2-2. The Output from Program EXAMPLE_RANDOM

2-12 Licensed Material·Property 01 Data General Corporation

.211323

.733604

.698009

.211044

.453190

093·000273·00

(\

NOTE: The output from EXAMPLE_RANDOM will always be the same because ISEED has an
initial nonnegative value. To generate a virtually nonreproducible sequence of five random
numbers, set ISEED to any valid negative integer.

Compare any two successive pairs of lines of output in Figure 2-2. You'll see that RANDOM
changes ISEED; the changed value of ISEED becomes input to the next reference to
RANDOM. For instance, when 1=2, RANDOM uses the ISEED value 55397 to generate
.733604; RANDOM changes ISEED to 192310 for input to the next reference to itself.

Example Program 2
Let's look at a program, named ROLL_DICE.F77, that uses RANDOM. This program:

• Simulates the rolling of a pair of fair dice 180 times.

• Counts the number of dots facing up after each roll.

• Computes a number, based on the actual results and the expected results and their differences, after
performing all the rolls.

• Uses a standard statistical test, with the computed number, to decide whether or not the differences
between the actual and expected results are significant.

Expected Results
We use the following information to calculate the expected results.

Number of Dots Probability(N) Expected Value of
Facing up, N in Each Roll N in 180 Rolls

2 1/36 1/36 x 180 = 5
3 2/36 2/36 x 180 = 10
4 3/36 3/36 x 180 = 15
5 4/36 4/36 x 180 = 20
6 5/36 5/36 x 180 = 25
7 6/36 6/36 x 180 = 30
8 5/36 5/36 x 180 = 25
9 4/36 4/36 x 180 = 20

10 3/36 3/36 x 180 = 15
II 2/36 2/36 x 180 = 10
12 1/36 1/36 x 180 = 5

Let's look at the second row as an example of all the rows. A pair of dice can land in 6x6 = 36 different
ways on each roll. There are only two ways a total of three dots can appear: the first die shows two dots
and the second die one dot, or the first die shows one dot and the second die two dots. The probability
of a total of three dots showing is 2/36. Thus, we can expect 2/36 of a large number of rolls to have
three dots showing. However, we are not guaranteed that exactly 2/36 of a large number of rolls will
show three dots.

093·000273·00 Licensed Material·Property of Data General Corporation 2-13

RANDOM (continued)

Converting RANDOM(ISEED) to an Integer

Each execution of a statement such as

RoLL __ RESULT = RANDoM(ISEED)

results in a number between 0.0 and 1.0 (including 0.0, excluding 1.0). To simulate the rolling of a die,
we must convert each such result to one of the six integers between 1 and 6, inclusive. Let's name this
INTEGER *2 variable DOTS. Figure 2-3 shows the necessary conversion between the values of
ROLL_RESULT and the corresponding ones of DOTS.

10·00102

O.O.LE
ROLL_RESULT

.LT. 1.0

DOTS

Figure 2-3. A Correspondence Between Selected Real Numbers and Integers

We have divided the real number line between 0.0 and 1.0 into six equal segments, with each segment
corresponding to one of the six integers 1, 2, 3,4, 5, and 6. Now we look for a formula that will take a
number between 0.0 and 1.0 - which lies on one of the segments - and compute the proper integer.
The formula, as an F77 assignment statement with the variables specified in the previous paragraph, is

DOTS = INT(6.0 • RoLL __ RESULT) + 1

2-14 Licensed Material·Property of Data General Corporation 093·000273·00

For example, suppose that ROLL_RESULT is 0.42. 0.42 is between 2/6 and 3/6. Replacing
ROLL_RESULT by 0.42 and evaluating this expression should, according to Figure 2-3, assign 3 to
DOTS. Does it?

?
3 INT(6.0 * 0.42) + 1

?
3 INT(2.52) + 1

?
3 2 + 1

?
3 3

Yes.

Of course, the program will have to execute two such assignment statements to simulate each roll of the
pair of dice.

The Decision Rule
Finally, we use the chi-square test from statistics to see if the actual results differ "too much" from the
expected results. The formula is

12

chi-square
expectedn

n=2

(actual result - expected result)2
chi-square = sum of

expected result

If this sum is less than 18.3, we can conclude that RANDOM has generated an acceptable sequence of
random numbers between 0.0 and 1.0. Otherwise, we might cast some suspicion on RANDOM and
investigate further or else assume the large difference has occurred by chance alone.

A note about statistics:

For those of you with knowledge about statistics:

p(X2 >= 18.3, 10 degrees of freedom) = 0.05

And, the expected number of dots showing is five or more for all possible outcomes.

Program ROLL_DICE

Program ROLL_DICE.F77 is shown in Figure 2-4.

093-000273-00 Licensed Material-Property of Data General Corporation 2-15

RANDOM (continued)

C ADS PROGRAM ROLL __ DICE TO SIMULATE THE ROLLING OF A
C PAIR OF FAIR DICE AND TO TEST THE VALIDITY OF THE RESULTS.

REAL*8 RANDOM ! RANDOM NUMBER GENERATOR FUNCTION SUBPROGRAM
REAL*8 ROLL __ RESULT RECEIVE OUTPUT FROM RANDOM ON

C EACH ROLL OF THE DICE
REAL*4 CHI __ SQUARE /0.0/ TO BE COMPUTED

REAL*4 MAXIMUM __ CHI __ SQUARE
INTEGER*2 NUM __ ROLLS ! NUMBER OF ROLLS OF THE DICE
PARAMETER (MAXIMUM __ CHI __ SQUARE = 18.3,

+ NUM __ ROLLS = 180)

INTEGER*2 DOTS __ UP __ 1 ! DOTS SHOWING ON THE FIRST DIE
INTEGER*2 DOTS __ UP __ 2 I DOTS SHOWING ON THE SECOND DIE
INTEGER*2 DOTS __ UP I DOTS SHOWING ON BOTH DICE AFTER EACH ROLL
INTEGER*4 ISEED / -1 / ! START A NEW SEQUENCE OF RANDOM NUMBERS
INTEGER*2 ACTUAL __ RESULTS(2:12) / 11*0 /
INTEGER*2 EXPECTED __ RESULTS(2:12) / 5, 10, 15, 20, 25, 30,

1 25, 20, 15, 10, 5 /

WRITE (S, 20) NUM __ ROLLS
20 FORMAT (1H , '<TAB>RESULTS OF ROLLING A PAIR OF DICE' ,13,' TIMES', /)

DO 30 I = 1, NUM __ ROLLS

C ROLL A PAIR OF DICE
ROLL __ RESULT = RANDOM(ISEED)
DOTS __ UP __ 1 = S*ROLL __ RESULT + 1 1ST DIE
ROLL __ RESULT = RANDOM(ISEED)
DOTS __ UP __ 2 = S*ROLL __ RESULT + 1 I 2ND DIE
DOTS __ UP = DOTS __ UP __ 1 + DOTS __ UP __ 2 I BOTH DICE

C ... AND TALLY THE RESULT. FOR EXAMPLE, IF DOTS __ UP IS 5,
C THEN ACTUAL __ RESULTS(5) IS INCREASED BY 1.

ACTUAL __ RESULTS(DOTS __ UP) = ACTUAL __ RESULTS(DOTS __ UP) + 1
30 CONTINUE

C DISPLAY THE RESULTS
WRITE (S, 40)

40 FORMAT (1H , '<TAB>DOTS ACTUAL EXPECTED', /,
1 1H , '<TAB>SHOWING COUNT COUNT I)

DO SO I = 2, 12
WRITE (S, 50) I, ACTUAL __ RESULTS(I), EXPECTED __ RESULTS(I)

50 FORMAT (1H , '<TAB>', 2X, 12, 9X, 13, 9X, 13)
SO CONTINUE

C CALCULATE CHI-SQUARE
DO 70 I = 2, 12
CHI __ SQUARE = CHI __ SQUARE +

1 FLOAT((ACTUAL __ RESULTS(I) - EXPECTED __ RESULTS(I))**2) /
C

2 FLOAT(EXPECTED __ RESULTS(I))
70 CONTINUE

Figure 2-4. Program ROLL-DICE.F77 (continues)

2-16 Licensed Material·Property of Data General Corporation 093·000273·00

.'<' I

WRITE (6, 80) MAXIMUM __ CHI __ SQUARE, CHI __ SQUARE
80 FORMAT (1HO, '<TAB>MAXIMUM ALLOWABLE VALUE OF CHI -SQUARE:

1 1H , '<TAB>ACTUAL VALUE OF CHI-SQUARE:
IF (CHI __ SQUARE .LE. MAXIMUM __ CHI __ SQUARE) THEN

PRINT * '<TAB>CONCLUSION: RANDOM PASSES THIS TEST'
ELSE

PRINT ~ '<TAB>CONCLUSION: RANDOM FAILS THIS TEST'
ENDIF
PRINT ., '<NLXTAB>END OF SIMULATION'
CALL EXIT
END

Figure 2-4. Program ROLL-DICE.F77 (concluded)

ROLL_DICE Output

Figure 2-5 shows typical output from program ROLL_DICE.

093·000273·00

RESULTS OF ROLLING A PAIR OF DICE 180 TIMES

DOTS ACTUAL EXPECTED
SHOWING COUNT COUNT

2 5 5
3 10 10
4 15 15
5 27 20
6 26 25
7 27 30
8 25 25
9 24 20

10 9 15
11 8 10
12 4 5

MAXIMUM ALLOWABLE VALUE OF CHI-SQUARE: 18.30
ACTUAL VALUE OF CHI-SQUARE: 6.59

CONCLUSION: RANDOM PASSES THIS TEST

END OF SIMULATION

Figure 2-5. Typical Output from Program ROLL-DICE

Licenl!ed Material·Property of Data Gen!lral Corporation

F5.2, t,
F5.2, I)

2-17

TIME
Obtain the system time of day.

Format
CALL TIME(time_array)

Argument
time_array is an INTEGER *2 array into whose first three elements TIME will place the absolute

time (based on a 24-hour clock) from AOS:

First element - Hours, between 0 and 23 inclusive
Second element - Minutes, between 0 and 59 inclusive
Third element - Seconds, between 0 and 59 inclusive

NOTE: Routine TIME conforms to the ISA S61.1 standard.

Example

C SAMPLE ADS F77 PROGRAM CALL __ TIME
DIMENSION ITIME(3)

C
CALL TIME (ITIME)

C PRINT THE TIME IN HOUR:MINUTE:SECONDS FORMAT.
PRINT 100. ITIME

100 FORMAT (' Time is '. 12. ':'. 12.2. ':'. I2.2)
C

END

End of Chapter

2-18 Licensed Material·Property of Data General Corporation 093·000273·00

Chapter 3
System Call Interface

This chapter almost exclusively explains the system call interface subprogram ISYS. ISYS is an
external function that lets your F77 programs have full access to AOS. It also explains the external
function subprogram IO_CHAN that returns an AOS channel number.

Basically, you supply arguments to ISYS that represent a system call's name and accumulator values.
You obtain these names and values from the ADS Programmer's Manual and from your program's
requirements. At runtime, F77 attempts an AOS system call in response to each occurrence of ISYS.
It returns a value of 0 if the call executed successfully, or else a nonzero value, if it did not. The nonzero
value identifies the exceptional condition that occurred.

The structure of function ISYS is

ISYS (call_name, AGO, AG 1, AG2)

where:

calLname is an INTEGER *2

Structure

expression that contains the value of an AOS system call code. This code comes from a
statement in SYSID.SR that' assigns the value to a system call symbol. SYSID.SR is
normally in :UTIL.

AGO
AG1
AG2

are INTEGER *2 variables
or array elements that contain the values you want the corresponding accumulators to
have when the system call occurs. After the system call comple~es, these variables or array
elements are defined with the corresponding accumulator values.

Frequently, your program will implement ISYS by means of statements whose general structure is

IER = ISYS (CALL_CODE, ACO, AC1, AC2)
IF (IER .NE. 0) THEN

C PLACE ERROR HANDLING ROUTINE HERE
ENDIF

or

IF (ISYS (CALL_CODE, ACO, AC1, AC2) . NE. 0) THEN
C PLACE ERROR HANDLING ROUTINE HERE

ENDIF

NOTE: In a few cases, the "system calls" that the ADS Programmer's Manual documents are
actually calls to the User Runtime Library (URT). The ISYS function cannot work in these
cases. ?TRCON is an example; to obtain a complete list, give the CLI command

X LFE/L=@GONSOLE T :UTIL:URT.LB

093-000273-00 Licensed Material-Property of Data General Corporation 3-1

Implementing ISYS: An Initial Approach
Be sure you're familiar with the BYTEADDR and WORDADDR intrinsic functions. They can supply
arguments for ISYS. The explanation of BYTEADDR and WORDADDR first appeared as the table
"System Intrinsic Functions" in file F77_DOCUMENTATION that accompanied the Release Notice
for Revision 2.00 of AOS FORTRAN 77. If the explanation of BYTEADDR and WORDADDR isn't
in your FORTRAN 77 Reference Manual, then find it in your current file

F77_DOCUMENTATION

Let's look at an example of the application of the ISYS function. Suppose our username on an AOS
system is TOM and we want our F77 program to change the Access Control List (ACL) of a file
NEW_STUDENTS from

TOM,OWARE

to

TOM,OWARE JERRY,RE

We begin by reading the explanation of the ?SACL (set a new ACL) system call in the AOS
Programmer's Manual to learn that we must construct the new ACL as a special text string. From
there, we go to the appendixes to obtain the following information from the listings of PARU.sR and
SYSID.sR. We should inspect these files in our system (usually in :UTIL) to get the latest information.

Symbol Decimal Meaning
Value

?FACO 16 Owner Access
?FACW 8 Write Access
?FACA 4 Append Access
?FACR 2 Read Access
?FACE 1 Execute Access
?.sACL 76 ?SACL System Call (I 14K = 76)

The decimal equivalent of ACL "OW ARE" is 16 + 8 + 4 + 2 + 1 = 31 and the decimal equivalent of
ACL "RE" is 2+ 1 = 3. The respective octal equivalents are 37K and 3K.

The new ACL as an assembly language text string is

'TOM<O> <?FACO+ ?FACW+ ?FACA+?FACR+ ?FACE> ---t

---t JERRY <O><?FACR +?FACE><O>'

We know, from our previous table and arithmetic, that the respective values of

<?FACO+?FACW+?FACA+?FACR+?FACE> and <?FACR+?FACE>

are 37K and 3K. Now, we can easily create the string to which ACI must contain a byte pointer. The
string is

'TOM<0><37>JERRY<0><3><0>'

3-2 Licensed Material·Property of Data General Corporation 093·000273·00

0

Sam pie Program
The F77 statements resulting from our exploration of ?SACL appear in program TEST_SACL.

PROGRAM TEST __ SACL
INTEGER ISYS
INTEGER BPTR __ ACO, BPTR __ AC1 ! BYTE POINTERS TO ACO, AC1
BPTR __ ACO = BYTEADDR('NEW __ STUDENTS<O>')
BPTR __ AC1 = BYTEADDR('TOM<0><37>JERRY<0><3><0>')
IER = ISYS (114[, BPTR __ ACO, BPTR __ AC1, IAC2) I DO IT!
PRINT *, 'RESULT CODE FROM ISYS TO ?SACL IS " IER
STOP
END

NOTE: We appended a null to 'NEW_STUDENTS' because ?SACL requires a null delimiter for a
string whose byte pointer is in ACO. The second string has a trailing null because of this
system call's requirement for ACl, and thus we don't add another one.

This program does the same thing as the CLI command

ACL NEW_STUDENTS TOM,OWARE JERRY,RE

Program Testing
We can test this program after we have compiled and linked it. Again, our username is TOM and the
program name is TEST_SACL. The following console dialog shows the results of the test.

) DELETE/2=IGNORE NEW_STUDENTS J
) CREATE NEW_STUDENTS J
) ACLIV NEW_STUDENTS J
NEW.3TUDENTS TOM,OWARE
) X TEST _SACL J
RESULT CODE FROM ISYS TO ?SACL IS 0
STOP
) ACLIV NEW_STUDENTS J
NE W.3 TUDENTS TOM,OWARE JERRY,RE
)

Summary
The sample program TEST_SACL shows how we can bring together the

• Documentation of operating system calls.

• Operating system's definition files (SYSID.sR and PARU.SR).

• BYTEADDR and WORDADDR intrinsic functions.

• ISYS external function.

to create a FORTRAN 77 program that hooks into AOS via system calls at runtime.

However, this nonparametric method has its drawbacks! Program TEST_SACL is hard-wired. That
is, it contains the current numerical values of symbols such as ?FACO. These values can change with
future revisions of the operating system, and the unchanged program (with its constant values such as
37K = <37» might then give incorrect results. Furthermore, there is no guarantee that symbols
such as ?F ACO will always have the same value in the AOS /VS and AOS parameter files (PARU .32.sR
and PARU.sR, respectively).

How can we overcome the limitations of hard-wiring the values of system parameters in our F77
programs? For the answer, read the next section.

093·000273·00 Licensed Material·Property of Data General Corporation 3-3

Implementing ISVS: a Final Approach
Data General has developed a program (F77BUILD_SYM) that builds a symbol file (QSYM.F77.1N)
from your system's PARU and SYSID files. The command to execute the program is

X F77BUILD_SYM [filename]

where filename is the name of an optional file whose contents are symbols from the PARU and SYSID
files. Then, your program can %INCLUDE QSYM.F77.1N and access operating system values as
symbols instead of as hard-wired constants.

Files Related to Program F77BUILD_SYM
Symbol file QSYM.F77.1N contains FORTRAN 77 PARAMETER statements and values for, by
default, each symbol defined in the parameter and system call definition files. For example, the
statements

.DUSR

.DUSR
?FAOB = 11.
?FACO = 1B(?FAOB)

OWNER ACCESS
OWNER ACCESS

are in PARU.SR. Program F77BUILD_SYM by default transforms the second statement from its
equivalent in listing file PARU.LS into

INTEGER*2 ISYS __ FACO
PARAMETER (ISYS __ FACO = 16) I ?FACO = 20K

in QSYM.F77.1N. You can place the statement

%INCLUDE "QSYM.F77.IN"

in your F77 source program, and then work with symbols such as ISYS_F ACO instead of with
hard-wired constants such as 16 or 20K.

NOTE: The words "by default" appear twice in the previous paragraph. If, when executing
F77BUILD_SYM, the CLI command does not include a filename, then the default case
occurs and F77BUILD_SYM transforms all PARU and SYSID .DUSR symbols into
INTEGER and PARAMETER statements in QSYM.F77.1N. If this CLI command includes
a filename, then F77BUILD_SYM transforms only specific PARU and SYSID .DUSR
symbols.

Figure 3-1 expands this explanation of program F77BUILD_SYM and its input files. The figure also
contains a partial listing of a program (SHOW_SYMBOLS) that uses the system symbol ?FACO.

3-4 licensed Material·Property of Data General Corporation 093·000273·00

,iiO:l

I
MASM

~ SYSID.SR SYSID.LS

F77BUILD_SYM
QSYM.F77.IN

I
MASM

PARU.SR PARU.LS - Optional
Specific
Symbols

" 0 0
PROGRAM SHOW __ SYMBOLS

0 C INCLUDE SYMBOLS FROM SYSTEM CALL
0

C AND PARAMETER FILES.
~

0 %INCLUDE "QSYM.F77.IN" 0 ...
C PRINT 10, ISYS __ FACO Program

10 FORMAT (1X, 'OCTAL VALUE OF Listing

0 + '?FACO IS 07) 0
C ...

0 0

0 0

10·00577

Figure 3-1. The Construction and Use of Parameter File QSYM.F77.IN

093·000273-00 Licensed Material-Property of Data General Corporation 3-5

Symbol Construction Rules
F77BUILD_SYM follows these rules in sequence as it converts each PARU and SYSID .DUSR
statement to a pair of INTEGER/PARAMETER statements in QSYM.F77.1N:

1. If the .DUSR statement defines a symbol of the form? <root>, then construct a symbol of the
form ISYS_ <root>.
Example: ? .RETURN ---> ISYS_RETURN

2. If the .DUSR statement defines a symbol of the form ?<root>, then construct a symbol of the
form ISYS_<root>.
Example: ?RTDS ---> ISYS_RTDS

3. If the .DUSR statement defines a symbol of the form <root>, then construct a symbol of the
form ISYS_ <root>.
Example: ERFTL ---> ISYS_ERFTL

4. If, after the ISYS_ <root> symbol is formed according to one of these previous rules, <root>
contains any periods, then change them to underscores.
Example: ISYS_SYM.BOL ---> ISYS_SYM_BOL

Sometimes F77BUILD_SYM creates ISYS_ <root> slightly differently from what you expect. For
example, "?TRUNCATE" in SYSID.SR results in "ISYS_TRC" in QSYM.F77.1N.
F77BUILD_SYM places ISYS_<root> symbols in QSYM.F77.1N in the same order as it reads
SYSID.LS - sequentially.

Once it derives the ISYS_ <root> symbol, F77BUILD_SYM constructs an

INTEGER*2 ISYS __ <root>

statement. It handles symbols with values of lOOOOOK (-32768) differently. However, you don't have to
make any changes to your programs or even know these symbols' names.

NOTE: We explain the optional input file to F77BUILD_SYM (labeled "Optional Specific Symbols"
in Figure 3-1) later in this chapter in the "Reducing QSYM.F77.1N" section. This is the same
file whose name appears in a CLI command of the form

X F77BUILD_SYM lfilename]

Operating Instructions for F77BUILD_SYM
Be sure you have access to SYSID.sR, PARU.sR, and F77BUILD_SYM.PR. The first· two are
usually in :UTIL and the third comes with the FORTRAN 77 software. Ask your system manager for
their location.

The primary output file is QSYM.F77.1N. Most likely, you'll want to make it available to all F77
programmers on your system. You can do this by constructing it in :UTIL or in a directory devoted to
F77 and accessible to all F77 programmers. Or, you can create QSYM.F77.1N in any directory, and
then move it to a publicly available directory (after setting its ACL).

The CLI commands to execute F77BUILD_SYM and create QSYM.F77.1N are

DELETE I 2 = IGNORE SYSID.LS
DELETE/2=IGNORE PARU.LS
X MASM/L=SYSID.LS SYSID.SR
X MASM/L=PARU.LS PARU.SR
DELETE I 2 = IGNORE QSYM.F77 .IN
X F77BUILD_SYM

3-6 Licensed Material·Property of Data General Corporation 093·000273·00

NOTE: MASM may report errors such as

C .MACRO ?SCLI

on @OUTPUT. They will not appear in either .LS file, and you can ignore such error
messages.

You should now place the statement

%INCLUDE 'OSYM.F77.IN'

in an AOS F77 program that references function subprogram ISYS. Then, all the .DUSR symbols and
their values in files SYSID.sR and PARU.sR are available to the program.

Reducing QSYM.F77.IN
Although comprehensive and usable by any F77 program that needs to interface with the operating
system, file QSYM.F77.1N is quite large. The following shows the approximate number of symbols and
statements in various files.

AOS/VS

AOS

SYSID
Symbols

390

220

PARU
Symbols

1700

1610

QSYM.F77.IN
Statements

4180

3660

You can shorten the length of your programs' listing files considerably by including the statements

%LIST (OFF)
%INCLUDE "OSYM.F77.IN"
"LIST (ON)

Even so, this inclusion increases compilation time and usage of symbol table space during your
program's compilation. Your program probably needs only a small fraction of these 1800+ symbols.

One way to reduce the size of QSYM.F77.1N is to select only the SYSID and PAR U symbols that you
need in your F77 programs. Place the selected symbols in a file, and then give the file's name to
F77BUILD_SYM.PR. This file appears in Figure 3-1 with the label "Optional Specific Symbols."

Example
Recall program TEST_SACL that contains hard-wired PARU and SYSID values. We now work
strictly with symbols instead of their values as we create program NEW_TEST_SACL. It performs
the same function of setting the ACL of file NEW_STUDENTS to TOM,OWARE JERRY,RE.

The following CLI dialog creates a new file QSYM.F77.1N with only the six symbols necessary for
?SACL. We assume that SYSID.LS and PARU.LS remain from a prior assembly of SYSID.sR and
of PARU.sR. This assembly must have occurred according to the description in the "Operating
Instructions for F77BUILD_SYM" section.

093-000273-00 Licensed Material-Property of Data General Corporation 3-7

) DELETE/2=IGNORE SACL_SYMBOLS QSYM.F77JN SACL_SYMBOLS.F77JN J
) CREATE I I SACL_SYMBOLS J
»?FACO J
»?FACW J
»?FACA J
»?FACR J
»?FACE J
»?SACL J
») J
) X F77BUILD_SYM SACL_SYMBOLS J
) RENAME QSYM.F77JN SACL_SYMBOLS.F77JN J
)

We renamed QSYM.F77JN to more accurately summarize its limited contents.

NOTE: In the "Operating Instructions for F77BUILD_SYM" section, we gave the CLI command

X F77BUILD_SYM

for program
F77BUILD_SYM. This command results in F77BUILD_SYM's not reading the optional
file (shown in Figure 3-1) and in a large output file QSYM.F77JN.

Here, we give the following CLI command instead.

X F77BUILD_SYM SACL_SYMBOLS

This command results in F77BUILD_SYM's reading of file SACL_SYMBOLS and in a
small output file QSYM.F77JN.

Now, let's look at part of the listing (.LS) file from the compilation of program
NEW_TEST_SACL.F77. See Figure 3-2.

3-8 Licensed Material·Property of Data General Corporation 093·000273·00

Source file: NEW __ TEST __ SACL.F77
Compiled on 19-0ct-82 at 14:38:54 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=NEW __ TEST __ SACL.LS

1 C AOS PROGRAM NEW __ TEST __ SACL
2 INTEGER ISYS, VALUE __ OWARE, VALUE __ RE
3 CHARACTER*20 AC1 ! FOR THE NEW ACL
4
5
6
7
8
9

10
11
12

INTEGER BPTR __ ACO, BPTR __ AC1 I BYTE POINTERS TO ACO, AC1
%INCLUDE "SACL __ SYMBOLS.F77.IN"
**** F77 INCLUDE file for system parameters ****

**** Parameters for SYSID ****

INTEGER*2 ISYS __ SACL
PARAMETER (ISYS __ SACL = 76) I ?SACL = 114K

13 **** Parameters for PARU ****
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

093·000273·00

C

C

C
C
C
C
C

1

1

INTEGER*2 ISYS __ FACO
PARAMETER (ISYS __ FACO = 16)

INTEGER*2 ISYS __ FACW
PARAMETER (ISYS __ FACW = 8)

INTEGER*2 ISYS __ FACA
PARAMETER (ISYS __ FACA = 4)

INTEGER*2 ISYS __ FACR
PARAMETER (ISYS __ FACR = 2)

INTEGER*2 ISYS __ FACE
PARAMETER (ISYS __ FACE = 1)

?FACO = 20K

?FACW = 10K

I ?FACA = 4K

?FACR = 2K

I ?FACE = 1K

END of F77 INCLUDE file for system parameters ***-*
CONSTRUCT THE VALUE OF ?FACO+?FACW+?FACA+?FACR+?FACE
VALUE __ OWARE = ISYS __ FACO + ISYS __ FACW + ISYS __ FACA +

ISYS __ FACR + ISYS __ FACE
CONSTRUCT THE VALUE OF ?FACR+?FACE .
VALUE __ RE = ISYS __ FACR + ISYS __ FACE
CONSTRUCT THE NEW ACL IN CHARACTER VARIABLE AC1. NOTE THE

USE OF THE CHAR INTRINSIC FUNCTION TO CONVERT AN INTEGER
NUMBER TO ITS ASCII CHARACTER EQUIVALENT. FOR EXAMPLE,
VALUE __ RE IS CURRENTLY (AOS/VS REVISION 1.50) 3 AND
CHAR(VALUE __ RE) IS '<3>'.

AC1 = 'TOM<O>' 1/ CHAR(VALUE __ OWARE) I I 'JERRY<O>' I I
. CHAR(VALUE __ RE) I I '<0>'

BPTR __ ACO = BYTEADDR("NEW __ STUDENTS<O>")
BPTR __ AC1 = BYTEADDR(AC1)
IER = ISYS (ISYS __ SACL, BPTR __ ACO, BPTR __ AC1, IAC2) DO IT!
PRINT *, 'RESULT CODE FROM ISYS TO ?SACL IS " IE-R
END

Figure 3-2. Program NEW_TEST~ACL

Licensed Material·Property of Data General Corporation 3-9

Error Messages
The following error messages from F77BUILD_SYM could appear on @OUTPUT:

• Can't open <filename>

This refers to one of the input files. Either you haven't created the necessary .LS files or the optional
special symbols file, or for some reason the file isn't accessible.

• Unreferenced symbol: <symbol>

You've supplied an optional special symbols file. However, <symbol> in that file wasn't found in
either .LS file. BIG_MAC is an example of an unreferenced symbol.

• Invalid symbol: <symbol>

You've supplied an optional special symbols file. However, <symbol> in that file does not have one
of the following formats:

- ?<name>
- .<name>
- <name>
where <name> begins with a letter. $LPT is an example of an invalid symbol.

Updating your Operating System
We suggest that you do the following for each revision or update of your operating system:

• Reassemble the new SYSID and PARU .SR files.

• Rerun F77BUILD_SYM.

• Recompile and reI ink all programs that %INCLUDE statements from QSYM.F77.1N.

It isn't always necessary to do these things, but doing them may prevent some strange F77 program
behavior because of changes to the operating system.

3-10 Licensed Material·Property of Data General Corporation 093·000273·00

ISYS and Sample Program LIST_DIRECTORY
Program NEW_TEST _SACL is an elaborate way of invoking the ?SACL system call. It is, of course,
easier to give the CLI command ACL to invoke ?SACL. However, sometimes we want to invoke a
system call that has no direct counterpart as a CLI command. ?GNFN (Get the Next FileName) is an
example.

Program Unit listings
Program LIST_DIRECTORY is an instance of a program that uses ISYS to invoke ?GNFN. At
runtime, LIST_DIRECTORY accepts a directory name and a template. It attempts to list the
filenames of all the files that are in the directory and that match the template. LIST_DIRECTORY
appears in Figure 3-3. Figures 3-4 and 3-5 contain listings of its respective subroutine subprograms
ADD_NULL and CHECK.

We have executed program F77BUILD_SYM to create a restricted symbol file for inclusion by each
of program units LIST_DIRECTORY.F77 and CHECK.F77. The names and contents of the respective
files given to F77BUILD_SYM are

LIST _DIRECTORY _SYMBOLS

?OPEN
?GNFN
EREOF
?CLOSE

RECF
RFEC
RFER
?RETURN

Although the output from F77BUILD_SYM is always file QSYM.F77.1N, we have renamed it to
LIST_DIRECTORY _SYMBOLS.F77.1N, and then toCHECLSYMBOLS.F77.1N. The respective
statements

%INCLUDE 'LIST_DIRECTORY __ SYMBOLS.F77.IN' %INCLUDE 'CHECK __ SYMBOLS.F77.IN'

do not appear in Figures 3-3 and 3-5. They are, of course, part of source program files
LIST_DIRECTORY.F77 (at line 32) and CHECK.F77 (at line 11).

093·000273·00 Licensed Material·Property of Data General Corporation 3-11

Source file: LIST __ DIRECTORY.F77
Compiled on 21-0ct-82 at 14:41:44 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=LIST __ DIRECTORY.LS

3-12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

PROGRAM LIST __ DIRECTORY

! Accumulators INTEGER ACO,AC1,AC2
INTEGER ISYS
INTEGER RESULT __ CODE

! System interface function subprogram
! Result of calling ISYS

CHARACTER*132 FILENAME
CHARACTER*132 DIRECTORY
CHARACTER*132 TEMPLATE

Received by GNFN
Supplied to OPEN
Supplied to GNFN

INTEGER*2 OPEN __ PACKET(0:11) I 12*0 I ! Parameter packet
INTEGER*2 CHANNEL Offset
INTEGER*2 ISTI Offset
INTEGER*2 ISTO Offset
INTEGER*2 IBAD Offset
INTEGER*2 IFNP Offset
INTEGER*2 IMRS Offset
INTEGER*2 IDEL Offset

EQUIVALENCE (OPEN __ PACKET(O), CHANNEL)
EQUIVALENCE (OPEN __ PACKET(1), ISTI)
EQUIVALENCE (OPEN __ PACKET(2), ISTO)
EQUIVALENCE (OPEN __ PACKET(3), -I-BAD)
EQUIVALENCE (OPEN __ PACKET(9), IFNP)
EQUIVALENCE (OPEN __ PACKET(10),IMRS)
EQUIVALENCE (OPEN __ PACKET(11),IDEL)

?ICH
?ISTI
?ISTO
?IBAD
?IFNP
?IMRS
?I DEL

for ?OPEN

INTEGER*2 GNFN __ PACKET(0:2) I Parameter Packet for ?GNFN

C %INCLUDE 'LIST __ DIRECTORY __ SYMBOLS.F77.IN'
%LIST(OFF)
%LIST(ON)

100 PRINT *,"Directory? "
READ (*,10,END=1000) DIRECTORY

10 FORMAT(A)
Accept a directory name.

C @INPUT end-of-file is CTRL-D.

C
C

CALL ADD __ NULL(DIRECTORY) Change the first (if any)
space ('<040>') in the
directory name to a nUll.

C Prepare the parameter packet for ?OPEN.
ISTI = 0 Default ?OPEN options
ISTO = 0 Default file type
IBAD = -1 Default byte pOinter to buffer
IFNP = BYTEADDR(DIRECTORY) Byte pOinter to directory name
IMRS = -1 Default block size
IDEL = -1 Default delimiters

AC2 = WORDADDR(OPEN __ PACKET)

Figure 3-3. Program LIST .-DIRECTORY (continues)

licensed Material·Property of Data General Corporation 093·000273·00

n

77 C
78
79
80
81 C
82 C
83 C
84
85
86
87
88 20
89
90
91
92
93
94
95
96
97
98
99

C
C

100 C
101 200
102
103
104 C
105 C
106
107
108
109
110
111
112
113
114
115
116
117 C
118
119
120
121
122
123
124
125
126
127

Execute the ?OPEN system call to the accepted directory.

RESULT __ CODE = ISYS(ISYS __ OPEN, ACO, AC1, AC2)

If ?OPEN has executed successfully, then report nothing and
continue. Otherwise, report the error on @OUTPUT and STOP
the program.

CALL CHECK(RESULT __ CODE,"On OPEN of directory" II DIRECTORY)

PRINT *,"Template? "
READ (*,20,END=1000) TEMPLATE
FORMAT(A)

CALL ADD __ NULL(TEMPLATE)

GNFN __ PACKET(O) = 0
GNFN __ PACKET(1) = BYTEADDR(FILENAME)
GNFN __ PACKET(2) = BYTEADDR(TEMPLATE)
AC1 = CHANNEL
AC2 = WORDADDR(GNFN __ PACKET)

Typical response is +.

Change the first (if any)
space in TEMPLATE to
a nUll.

Offset ?NFKY
Offset ?NFNM

! Offset ?NFTP
! Channel number from ?OPEN

Call ?GNFN to get the next filename from the current directory.
RESULT __ CODE = ISYS(ISYS __ GNFN, ACO, AC1, AC2)

IF (RESULT __ CODE .EO. 0) THEN Ignore the first (1f any) null
in FILENAME and then print
the filename.

NULL __ POS = INDEX(FILENAME,"<:NUL>")
IF (NULL __ POS .EO. 0) NULL __ POS = LEN(FILENAME)-1

PRINT *, FILENAME(1:NULL __ POS-1)
GO TO 200 I Get the next filename.

ELSE IF (ACO . Ea. ISYS __ EREOF) THEN
PRINT *

ELSE

ENDIF

PRINT *,"-- End of Directory
PRINT *
AC2 = WORDADDR(OPEN __ PACKET)

Close the current directory and move to its superior.
RESULT __ CODE = ISYS(ISYS __ CLOSE, ACO, AC1, AC2)
CALL CHECK (RESUL T __ CODE, 'While closing the dire,ctory')

GOTO 100 ! Get the next directory name

! A ?GNFN error, different from end-of-f1Ie, has occurred.
CAlL CHECK (ACO, 'During a ?GNFN Call')

128 1000 PRINT *
129 PRINT *, '<7>*** End of program LIST __ DIRECTORY ***<NL>'
130 END

Figure 3-3. Program LIST _DIRECTORY (concluded)

093·000273·00 Licensed Material·Property of Dilta General Corporation 3-13

Source file: ADD __ NULL.F77
Compiled on 14-Jun-82 at 14:17:17 by ADS F77 Rev 02.00.00.00
Options: F77/L=ADD __ NULL.LS

1
2 C
3 C
4 C
5
6
7
8
9

SUBROUTINE ADD __ NULL(TEXT)

Change the first space in TEXT to a nUll.

CHARACTER*(*) TEXT
INTEGER SPACE __ POS

SPACE __ POS = INDEX(TEXT, '<040>')
10
11
12

IF (SPACE __ POS .NE. 0) TEXT(SPACE __ POS:SPACE __ POS)
RETURN

'<NUL>'

END

Figure 3-4. Subroutine Subprogram ADD-'VULL

Source file: CHECK.F77
Compiled on.21-0ct-82 at 14:43:24 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=CHECK.LS

1
2
3
4
5
6
7
8

SUBROUTINE CHECK(ECODE,TEXT)

C

INTEGER ECODE
CHARACTER*(*) TEXT

INTEGER AC2

Error code returned from ISYS
Error text from main program to

accompany ECODE

C %INCLUDE 'CHECK __ SYMBOLS.F77.IN'
%LIST(OFF)
%LIST(ON)

9
10
34
35
36 IF (ECODE .EO. 0) RETURN ! ISYS executed without an error.

3-14

37
38 C
39
40
41
42 C
43
44
45

ISYS executed with an error, so report it.
AC2 = ISYS __ RFCF + ISYS __ RFEC + ISYS __ RFER
AC2 = AC2 + MIN(LEN(TEXT),255)

Execute ?RETURN and report the error from ISYS.
IER = ISYS(ISYS __ RETURN, ECODE, BYTEADDR(TEXT), AC2)
STOP '- Impossible-to-occur error occurred during ?RETURN'
END

Figure 3-5. Subroutine Subprogram CHECK

Licensed Material·Property of Data General Corporation 093·000273·00

(\
\

Sample Execution of Program LIST_DIRECTORY

Figure 3-6 shows the dialog that occurred during an execution of LIST_DIRECTORY. In the working
directory, subdirectory FOO_DIR existed with at least one file; nondirectory file FOO also existed.
Note the resulting error message when ?GNFN attempted to read file FOO.

OG-25167

) XEQ LIST_DIRECTORY J

Directory? FOO_DIR J

Template? + J

FOOl_FILE
F002_FILE
F003_FILE

--End of Directory-­

Directory? FOO J

Template? + J

ERROR
NOT A DIRECTORY
During a ?GNFN Call
ERROR: FROM PROGRAM
X,LIST _DIRECTORY
)

Figure 3-6. @CONSOLE Dialog During Execution of LIST_DIRECTORY

ISYS and Subroutine eLi
You may be one of many programmers using the SED text editor to create source files. If so, you're
probably familiar with the convenient DO command that lets you create a short-lived CLI process to
execute one or more CLI commands. One such application of the DO command is

DO DELETE/V 12=IGNORE L1NES_3_15 ; DUPLICATE LINES 3 TO 15 ONTO L1NES_3_15

A natural question to ask now, regardless of whether or not you're familiar with SED, is: "If ISYS lets
me execute any AOS system call, thus including ?PROC, can I create a subroutine that does the
following:

• Receives a string of CLI commands.

• Creates a son process (via ?PROC) that executes :CLI.PR.

• Gives the string to :CLI.PR for processing.

• Reports on the success or failure of the process' creation."

Happily, the answer is "yes." Continue reading for details about the subroutine.

Program Unit listings

Figure 3-7 contains a listing of a subroutine subprogram, CLI, that performs these four consecutive
functions. Figure 3-8 contains a listing of a program, TEST_CLI, to test the subroutine.

093-000273-00 Licensed Material-Property of Data General Corporation 3-15

We have executed program F77BUILD_SYM to create a restricted symbol file for inclusion by
program unit CLI.F77 _ The name and contents of the file given to F77BUILD_SYM are

CLLSYMBOLS

?PFEX
?PROC

Although the output from F77BUILD_SYM is always file QSYM_F77.1N, we have renamed it to
CLLSYMBOLS_F77.1N_ The statement

%INCLUDE 'CLI __ SYMBDLS_F77_IN'

does not appear in Figure 3-7_ It is, of course, part of source program file CLI.F77 (at line 32)_

3-16 Licensed Material-Property of Data General Corporation 093-000273-00

Source file: ClI.F77
Compiled on 21-0ct-82 at 14:44:20 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/l0GICAl=2/l=ClI.lS

1
2
3 C
4 C
5 C
6
7
8 C
9

10 C
11
12
13
14
15 C
16 C
17
18
19
20
21
22
23 C
24 C
25
26
27
28
29

SUBROUTINE ClI(TEXT, RESUlT __ CODE)

This subroutine receives a string of ClI commands from the main
program. The subroutine then creates a ClI son process and
gives it the string of commands to execute.

INTEGER ADDRESS __ OF __ PROGRAM __ NAME

INTEGER ADDRESS __ OF __ STRING

INTEGER ADDRESS __ OF __ MESSAGE __ HEADER
INTEGER ACO, AC1, AC2
INTEGER ISYS
INTEGER RESUlT __ CODE

! Program name of the son
process is ClI.PR.

! The string is the string
of ClI commands.

! Packet for ?ISEND header
Accumulators
System interface function

! Number it returns to
this subroutine and
then to the main program.

INTEGER*2 PROC __ PACKET(0:15) 1 16*-11 I Packet for ?PROC call
EQUIVALENCE (ADDRESS __ OF __ PROGRAM __ NAME, PROC __ PACKET(1))
EQUIVALENCE (ADDRESS __ OF __ MESSAGE __ HEADER, PROC __ PACKET(2)

INTEGER*2 ISEND __ HEAOER(0:6) 1 7*0 1 Packet for ?ISEND header
for inter process
communication (IPC).

EQUIVALENCE (ADDRESS __ OF __ STRING, ISEND __ HEADER(6))

CHARACTER*(*) TEXT
CHARACTER*(256) TEMPORARY __ TEXT

! String of ClI commands

30 C %INClUDE 'ClI __ SYMBOlS.F77.IN'
31 %LIST(OFF)
49 %LIST(ON)
50
51 TEMPORARY __ TEXT = TEXT Move the ClI commands to

a fixed-length buffer. 52 C
53
54 C
55
56 C
57
58
59
60 C
61
62
63
64
65 C
66
67 C
68
69
70

093·000273·00

Prepare ?ISEND header packet.
ISEND __ HEADER(5) = 128 ! Maximum length of the IPC

message in words
AOORESS __ OF __ STRING = WOROAOOR(TEMPORARY __ TEXT)

PROC __ PACKET(O) = ISYS __ PFEX I Set ?PFEX bit so that ClI.PR will
execute with its father blocked.

ADDRESS __ OF __ PROGRAM __ NAME = BYTEAOOR(' :ClI.PR<O>')
ADDRESS __ OF __ MESSAGE __ HEAOER = WORDAOOR(ISENO __ HEAOER)
AC2 = WORDAODR(PROC __ PACKET)

00 it!
RESUlT __ CODE = ISYS(ISYS __ PROC, ACO, AC1, AC2)
The main program receives the value of RESUlT __ CODE.

RETURN
END

Figure 3-7. Subroutine Subprogram eLI

licensed Material·Property of Data General Corporation 3-17

Source file: TEST __ ClI.F77
Compiled on 21-0ct-82 at 13:26:30 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/l0GICAl=2/l=TEST __ ClI.lS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

C
C

C

20

30

40

50

60
70

1

PROGRAM TEST __ ClI
CHARACTER*80 ClI __ STRING
INTEGER IER

! to test subroutine ClI
! string of ClI commands

! error variable returned from
subroutine ClI and from its
reference to function ISYS

WRITE (6, 20)
FORMAT (1HO, 'GIVE ME A CLI COMMAND STRING: $)
READ (5, 30, END=60) CLI __ STRING
FORMAT (A)
@INPUT end-of-file is CTRl-D.

WRITE (6, 40)
FORMAT (1H , 'HERE WE GO I, I)
CAll CLI (CLI __ STRING, IER)
WRITE (6, 50)
FORMAT (1H, 'JUST RETURNED FROM SUBROUTINE CLI')
IF (IER .NE. 0) THEN

PRINT *
PRINT * 'ERROR', IER, ' OCCURRED DURING "

'REFERENCE TO ISYS'
PRINT *

ENDIF
WHEN SUBROUTINE ClI EXECUTED.'

WRITE (6, 70)
FORMAT (1HO, '*** END OF PROGRAM

STOP
END

***'

Figure 3-8. Program TEST _CLI

I)

Sample Execution of Program TEST_eLI

Figure 3-9 shows the dialog that occurred during an execution of TEST_CLI. In the working directory,
subdirectory FOO_DIR existed with at least one file; non directory file FOO also existed. Note the
resulting error message

ERROR: NON.,DIRECTORY ARGUMENT IN PATHNAME, FILE FOO
DIR,FOO

when user F77 tried to make FOO the working directory. The son process CLI.PR reported this
two-line error message. The ?PROC call from subroutine CLI.OB that created this son process
executed without error. So, TEST_CLI received 0 in argument IER and did 7not7 execute its
statements in lines 19-22.

3-18 Licensed Material·Property of Data General Corporation 093·000273·00

DG·25471

) XEQ TEST_CLI J

GIVE ME A CLI COMMAND STRING: TIME; DATE; DIRECTORY; WHO J

HERE WE GO ...

15:28:11
21-0CT-82
:UDD:F77:MARLL
PID: 38 F77 038 :CLI.PR

JUST RETURNED FROM SUBROUTINE CLI

*** END OF PROGRAM ***
STOP
) XEQ TEST _CLI J

GIVE ME A CLI COMMAND STRING: DIR FOO; FILESTATUS + J

HERE WE GO ...

ERROR: NON-DIRECTORY ARGUMENT IN PATHNAME. FILE FOO
DIR.FOO

JUST RETURNED FROM SUBROUTINE CLI

*** END OF PROGRAM ***
STOP
)

Figure 3-9. @CONSOLE Dialog During Execution of TEST _CLI

A Variation of Program TEST_eLI

Program TEST_CLI accepts a CLI command string at runtime from @INPUT. You can also write
programs that contain a "hard-wired" CLI command string in a CHARACTER variable. For example,
let's modify lines 6 through 11, inclusive, of program TEST_CLI (in Figure 3-8) to create program
TESTI_CLI. Figure 3-10 contains TESTl_CLI, and Figure 3-11 shows the results of its execution.

093·000273·00 Licensed" Material-Property of Data General Corporation 3-19

Source file: TEST1 __ ClI.F77
Compiled on 21-0ct-82 at 13:37:12 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/l0GICAl=2/l=TEST1 __ ClI.lS

1
2
3
4 C
5 C
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3-20

PROGRAM TEST1 __ ClI
CHARACTER*80 ClI __ STRING
INTEGER IER

! to test subroutine ClI
! string of ClI commands

! error variable returned from
subroutine ClI and from its
reference to function ISYS

ClI __ STRING = 'TIME; DATE; WHO; RUNTIME'

WRITE (6, 40)
40 FORMAT (1H , 'HERE WE GO I, I)

CAll CLI (CLI __ STRING, IER)
WRITE (6, 50)

50 FORMAT (1H , 'JUST RETURNED FROM SUBROUTINE elI')
IF (IER .NE. 0) THEN

60
70

PRINT *
PRINT * 'ERROR', IER, ' OCCURRED DURING "

1 'REFERENCE TO ISYS'
PRINT *

ENDIF
WHEN SUBROUTINE ClI EXECUTED.'

WRITE (6, 70)
FORMAT (1HO, '*** END OF PROGRAM

STOP
END

***' I)

Figure 3-10. Program TEST1_CLI

Licensed Malerial·Property of Dala General Corporal ion 093·000273·00

You could modify program TESTl_CLI to pass a character constant to subroutine CLI by making
lines 2 and 9 blank, and by changing line 15 to

CAll ClI ('TIME; DATE; WHO; RUNTIME', IER)

The runtime results would be identical to those of the original TESTl_CLI (in Figure 3-10).

The ISYS Function and Multitasking
Very briefly - Don't use the ISYS function to do multitasking!

Chapter 4 documents the subroutines that your F77 programs should CALL when they issue
multj.tasking instructions. These subroutines interact correctly with the FORTRAN 77 runtime routines
and databases.

10_CHAN Function
This external function returns the channel number that the operating system assigned to the F77 I/O
unit number supplied as the function's argument. If this unit number is invalid 10_CHAN returns a
value of -1.

Structure
The structure of function subprogram 10_CHAN is

IO_CHAN(unit)

where:

unit

is a symbol whose data type you specify via an INTEGER*2 statement.

is an INTEGER *2 expression that specifies an F77 I/O unit number.

) XEa TESTLCLI j

HERE WE GO ...

15:41:22
21-0CT-82
PID: 35 F77 035 :CLI.PR
ELAPSED 0:00:01, CPU 0:00:00.046, I/O BLOCKS 0, PAGE SECS 2

JUST RETURNED FROM SUBROUTINE CLI

*** END OF PROGRAM ***

STOP
)

DG-25472

Figure 3-11_ @CONSOLE Dialog During Execution of TESTl_CLI

093-00q273-00 Licensed Material-Property of Data General Corporation 3-21

Example

C ADS PROGRAM DEMO __ IO __ CHAN
C

C

C

INTEGER*2 IO __ CHAN

OPEN (3, FILE='TIME __ CARDS', RECFM='DS',
+ STATUS='OLD')

IOCHAN __ 3 = IO __ CHAN(3)
IF (IOCHAN __ 3 _EO_ -1) THEN

PRINT * 'IO __ CHAN RECEIVED AN
+ 'INVALID UNIT NUMBER'

10
+

ELSE

ENDIF

STOP
END

PRINT 10, IOCHAN __ 3
FORMAT (1X, 'OPERATING SYSTEM CHANNEL NUMBER',

, ASSIGNED TO UNIT 3 IS', 06, 'K')

Reference
The number that the IO_CHAN function returns is the ?ICH offset of a parameter packet for the
?OPEN system call. In the previous example, the F77 runtime routines prepared a parameter packet
and used it to make the ?OPEN call in response to the

OPEN (3, ___)

F77 source program statement. This ?OPEN call set ?ICH; the subsequent reference to IO_CHAN(3)
then retrieved the value of ?ICH_

End of Chapter

3-22 Licensed Material-Property of Data General Corporation 093-000273-00

Chapter 4
Multitasking

AOS supports multitasking - a useful programming technique. Just as timesharing allows several
concurrent processes to exist within one computer, multitasking allows several concurrent instruction
paths to exist within one process.

This chapter gradually introduces multitasking in the following sections:

• What is a Task?

• What is Multitasking? - A Nonsoftware Example

• What is Multitasking?

• Task States, Transitions, and Subroutines

• Re-entrant Code

• Multitasking Subroutines

• Sample Programs

• Multitasking Stack Definition

If you're familiar with multitasking (such as implemented in Data General's FORTRAN IV or
FORTRAN 5) and only want to know the details of FORTRAN 77's subroutines that "hook into:'
AOS multitasking routines, then skip to Figure 4-7, and then to the section entitled "Multitasking
Subroutines."

What is a Task?
A task is an asynchronous path of execution through a program.

Let's examine the key words in this definition:

• "Path" implies a beginning and an end. Thus, each task has an initial instruction and a final
instruction during its existence.

• "Path" means the sequence of instructions that execute at runtime. An instruction can execute more
than once during the task's existence. For example, such an instruction can originate from the body
of a DO loop.

• "Asynchronous" means each instruction executes by itself during a specific time period. Instructions
vary in the amount of time they require. For example, a binary addition requires much less time than
the division of two REAL *8 numbers. And, the instructions from one program unit can execute
interleaved with those from other program units. "Asynchronous" comes from three Greek words
that mean "not in the same time [as something else]."

Single-task Programs
Any FORTRAN 77 program you've written according to the rules in the FORTRAN 77 Reference
Manual is a single-task program. That is, at runtime the CPU executes exactly one flow of instructions
from your program. An instruction has to wait only for its predecessor's completion before CPU
execution. (An exception to this rule occurs when there is overlap in floating-point instruction
executions.)

093-000273-00 licens·ed Material-Property of Data General Corporation 4-1

Single-tasking: a Nonsoftware Example
Consider the physical situation of a one-way, one-lane road that leads to a narrow and short tunnel.
Assume that drivers have cooperated so their cars form one line of traffic. Thus, each driver merely has
to wait until the cars ahead go through the one-lane tunnel. That is, once a car is in line, there is no
competition from parallel lines of cars for the one available lane. Thus, the tunnel only handles traffic
arriving from one lane. Furthermore, the vehicles go through the tunnel one at a time - not in a
continuous flow. Figure 4-1 portrays this situation.

10·00104

4-2

Lane 1 (of 1)

Tunnel
Entrance

Figure 4-1. A One-Lane Tunnel with One Approach Lane (Single-Tasking)

Licensed Material·Property of Data General Corporation 093·000273·00

()

~ I

(\

In the figure, the third vehicle awaiting passage through the tunnel is a semitrailer truck. Note that the
truck cannot pass through the tunnel as quickly as the cars. This also means that cars behind the truck
have a longer wait than cars behind other cars.

Below we list certain correspondences between a single-tasked program and the lane/tunnel situation in
Figure 4-1:

• Each instruction executes asynchronously, awaiting the completion of its predecessor. (Each vehicle
goes through the tunnel after its predecessor completes the trip.)

• The program has a beginning and an end, even though the sequence of instructions may change
(depending on the data read) from one execution to the next. (In a given time period, there is an
initial vehicle and a final vehicle.)

• Some instructions, particularly those resulting in commands to AOS to perform an I/O operation,
require much more time to complete than others. (Some vehicles, particularly loaded trucks, require
much more time to go through the tunnel than others.)

• If certain instructions - particularly I/O commands - could execute without tying up the CPU,
then many other instructions could execute along with the certain instructions. (If a separate and
parallel truck lane existed in the tunnel, then many autos and motorcycles could pass through along
with one truck.)

The last point raises an important question: Is there some way to construct a program file so that many
fast instructions can execute in the same time period that one slow instruction executes? In other
words: adding a truck lane to the tunnel greatly increases the traffic flow; is there a parallel software
construction? Happily, the answer is "yes"; it's called multitasking.

What is Multitasking? - a Nonsoftware Example
To lead up to the software construction, let's create a hardware system that greatly increases the
number of vehicles that can go through the tunnel in a given time period. To do this, we:

• Widen the tunnel so that a car and a truck (but only one of each) can be passing through the tunnel
simultaneously.

• Assume that there are four competing lanes of traffic leading into the tunnel.

• Set up a controller who regulates the gates at the end of each lane to control the overall throughput.

• Assume that many cars can go through the tunnel while one truck is passing through.

See Figure 4-2.

093·000273-00 licensed Material-Property of Data General Corporation 4-3

10-00105

4-4

Lane 1 (of 4) II

8
[3

Lane 2 (of 4) I I

~

8

Gate 2

Wide and Slow

Lane

Lane 3 (of 4)

8

Gate 3

Narrow and Fast

Lane

I I Lane 4 (of 4)

8
~

8
8

Gate

Controller

Figure 4-2_ A Two-Lane Tunnel with Four Approach Lanes

Licensed Material-Property of Data General Corporation 093-000273-00

()

()

Note that setting up the controller to regulate the gates is most important. We assume that:

• Each traffic lane has a unique number to identify it.

o Each lane has a priority number. For example, one lane might be reserved for emergency vehicles.
If the lead vehicles in two or more lanes are both ready to go, then the vehicle in the lane with the
higher priority will go first.

o Each lane can communicate with any other lane and with the controller.

o Each lane can attempt to control itself and other lanes by:

- Closing gates permanently.

- Closing gates temporarily.

- Changing priorities of lanes.

- Making lanes ready if their gates are closed.

• The controller can overrule any command by any lane.

In summary, a set of multiple tasks (lanes of vehicles) competes for limited resources (two routes
through the tunnel) according to certain rules (the lanes' requests and the controller's decisions).

These assumptions may not entirely represent real-life situations, especially in terms of communication
and control amongst the lanes and the controller. However, this traffic situation and the assumptions
listed above provide a convenient bridge to understanding software multitasking.

For another real-life example of a multitasking situation, consider an expert chess player who plays
several games simultaneously. He concentrates on one board at a time, yet is aware of the other boards
and must service them periodically.

At this point, we mostly leave behind our lane/tunnel situation and explain multitasking in terms of
software.

What is Multitasking?
In software multitasking, we create a source program and subroutines, which we compile and link into
a program file. At runtime the program file has several paths of instructions awaiting CPU execution,
just as the tunnel has several lanes of traffic to accept. In either case a very important part is, of course,
the rules for lane selection (i.e., which gate is open) and path selection (i.e., which instruction executes
next). Figure 4-3 shows the structure of a program file with a main program and three tasks.

Figure 4-3 shows that multitasking consists of multiple, concurrent flows through a program, where the
various flows (tasks) compete for CPU control. In multitasking, a single program deals easily and
efficiently with two or more tasks at one time. Although there is only one CPU, and in reality only one
instruction executes at a time, it appears as though several instructions from different tasks are
executing simultaneously. This is because tasks take turns executing. For example, when one suspends
execution (because of awaiting completion of an I/0 instruction or some other reason), another task
gains control of the CPU. All of this happens automatically within the operating system. Thus, you
have no need to keep track of the various tasks and to appropriately switch control among them. F77
runtime routines and AOS take care of such bookkeeping activities. As many as 32 tasks can be active
simultaneously.

Even though you have no need to switch control among tasks, you can exercise a fine control over the
tasks that the system selects for execution and the time at which it selects them. When you define a task
and specify the instructions it will execute at the source program level, you also assign the task a
priority number relative to other tasks. However, you can change these task priorities at runtime. This
change allows you to control which tasks receive CPU control, and when. A task scheduler, which is
part of AOS, allocates CPU control to the highest priority task that is ready either to perform or to
continue to perform its function.

093·000273·00 Licensed Material·Property of Data General Corporation 4-5

Multitasked Program

----------------------~~---------------------(~

10·00106

4-6

Main Program

Task 1 Task 2

In a decision box, <>. control might take either

path, based on the state of some variable.

Figure 4-3. A Multitasking Program File

Licensed Material·Property of Data Generel Corporation

Task 3

093·000273·00

Although each task in a multitask environment can execute independently, a certain amount of
interaction between the tasks is often required. F77's multitasking subroutines allow convenient
intertask communication, providing for synchronization. For example, a task may suspend its own
execution at a certain point, awaiting a signal from another task.

Remember, you do not create tasks; you, the computer, and Link create instructions in the program
file. The one or more runtime execution paths through these instructions create a multitasking
environment.

Multitasking Program Organization
We construct a multitasked program based on a main program unit and one or more subroutines. As an
example, Figure 4-4 shows both the organization of a single-task program with two subroutines and its
execution. Then, for comparison, Figure 4-5 shows both the organization of a multi task program with
two tasks and its execution.

Figures 4-4 and 4-5 illustrate the following general principles of multitasking:

• The instruc;tions in MAINS.PR, after the CALL TQSTASK statements, execute among the
MAIN.OB, TASKl.OB, and TASK2.0B sections according to whatever task has won the
competition for the CPU. In contrast, the instructions in MAIN4.PR execute in predictable sections
according to CALL and RETURN statements.

• Program MAINS does not, and may not, contain a STOP statement. Its execution stops the entire
process - including the execution of T ASKl and T ASK2. Program MAINS could kill itself via a
CALL KILL statement with no effect on TASKl and TASK2.

• TASK land T ASK2 will finish when they execute a RETURN statement, regardless of whether or
not MAINS has executed its CALL EXIT statement. (Execution of CALL EXIT and END
statements, along with the RETURN statement, results in a task's finishing). Furthermore, TASKl
and T ASK2 could be killed by themselves, by the other tasks, or by MAIN 5; thus, the rectangles in
Figure 4-5 representing their execution are open-ended.

• The main program unit is a task. Thus, the Link command in Figure 4-5 is

F77L1NKITASKS=3

instead of

F77L1NK/TASKS=2

• Some tasks may execute for the life of a program.

We explain subroutine TQSTASK, which MAINS calls, later. It's enough to say here that TQSTASK
initiates the execution of a task.

Task States, Transitions, and Subroutines
This section explains the states a task has, the transitions from one state to another, and the F77-callable
subroutines that cause the transitions.

Task States
It's obvious by now that competing tasks gain control and lose control of the CPU during their
lifetimes. We can be more specific about the states of a task during its lifetime. Figure 4-6 shows these
states.

093-000273-00 Licensed Material-Property of Data General Corporation 4-7

(

Program
Organization

A

PROGRAM
MAIN4

CALL SUB1
CALL SUB2

STOP
END

SUBROUTINE
SUB1

RETURN
END-

SUBROUTINE
SUB2

RETURN
END

\

r
MAIN4

T
i

m CALL SUB 1
e

CALL SUB2

STOP

NOTE: The compilation and Link commands are:

10-00107

F77 (MAIN4 SUB 1 SUB2)
F77L1NK MAIN4 SUB 1 SUB2

Program
Execution

A
\

SUB1 SUB2

[;]

RETURN

Figure 4-4_ The Organization and Execution oj a Single-Task Program

4·8 Licensed Material-Property of Data General Corporation 093-000273-00

(j

()

Program

Organization
A

(\

PROGRAM MAINS
Program

Execution

EXTERNAL A.

+ TASK 1. TASK2
("\

MAINS TASK1 TASK2

CALL TQSTASK

+ (TASK1)

CALL TQS TASK CALL

+ (TASK2) + TQSTASK

+ (TASK1.
T ...)

... i ...

CALL EXIT m CALL

ENO
e + TQSTASK

+ (TASK2.

+ ...)

...
SUBROUTINE CALL EXIT

+ TASK1
...

...
RETURN • •
END • •

• •

SUBROUTINE
• • • + TASK2 • • •
• • •

...
~ RETURN

END

NOTE: The compilation and Link commands are:

F77 (MAIN5 TASK 1 TASK2)
F77 LINK/TASKS = 3 MAIN5 TASK 1 TASK2

10·00108

Figure 4-5. The Organization and Execution of a Multitask Program

093·000273·00 Licen$ed Material·Property of Data General Corporation 4-9

Active,

Executing

Task Scheduler

Active,

Ready-to-Run

System Syste m
TQSTASK Call Call

Subroutine Completion Issua nce

,
I Active,

I Inactive 1 Suspended

10-00109

Figure 4-6. Task States

4-10 Licensed Material·Property of Data General Corporation 093-000273-00

The runtime states a task can have (in order of increasing ability to gain control of the CPU) are:

• Inactive - Dormant. The task does not have control of the CPU. The task is dead and never even
attempts to gain control of the CPU. (This is similar to a stopped lane of traffic in Figure 4-2 whose
gate is locked.)

• Active - Suspended. The task does not have control of the CPU. It is unable to gain control for one
or more reasons. A common reason is that a time-consuming system call must complete before the
task is again eligible to execute. (This is similar to a stopped lane of traffic in Figure 4-2 whose gate
is closed while the lane awaits the passage through the tunnel of its currently moving vehicle - a
slow-moving truck.)

• Active - Ready-to-run. The task does not have control of the CPU. However, it is willing and able
to gain control; it is merely waiting its turn. (This is similar to a stopped lane of traffic in Figure 4-2
whose gate is open, but whose vehicles are blocked by those moving from another lane.)

• Active - Executing. The task has control of the CPU. (This is similar to a moving lane of traffic in
Figure 4-2 whose gate is, of course, open.)

The task scheduler is the piece of system software that selects a task for execution from among those
that are ready. Naturally, you can affect the task scheduler's selection rules. One way to do this is to
assign a priority to each task.

Task Transitions
A task could change its runtime state because of one of the following situations:

• The task scheduler's actions, such as suspending a task because it had been executing for a certain
amount of time.

• An event, such as a planned I/O transfer or an unplanned interrupt from a device (e.g., an alarm
unit).

• Instructions and requests tasks issue to the scheduler, to each other, and to themselves. For example,
a task can kill itself.

The rest of this chapter deals almost exclusively with the last situation. Thus, next we'll learn how to
issue these instructions and requests.

Task Subroutines
This chapter later documents 25 subroutines. But first, in this section we introduce a subset of 13
subroutines that affect task transitions. We will also modify Figure 4-6 to contain these 13 subroutines.

The subroutines may seem to have strange names. However, the core of each subroutine is one or more
system calls or calls to routines in the user runtime library, URT.LB. Each F77 multitasking subroutine
takes its name from a system call name or a URT.LB routine name. For example, an assembly
language programmer might terminate a task via a ?KILL system call. If we remove the "?", r~place
it by the letter "Q" (for "question mark"), and add the letter "T" (for "task"), we obtain TQKILL. An
examination of assembly language module TQKILL.SR would reveal at least one ?KILL statement.

093·000273-00 Licensed Material-Property of Data General Corporation 4-11

Recall Figure 4-2 and the five-item bulleted list of standards for controller regulation. We rewrite the
list to describe a multitasking program.

• Each task should have a unique positive number to identify it. When you initiate one or more tasks
via a call to subroutine TQST ASK or to subroutine TQQT ASK, you also specify their ID numbers.
Other multitasking subroutines use the ID number to specify a particular task. If you assign no ID
number (i.e., 0) to one or more tasks, or the same ID number to two or more tasks, a runtime error
occurs. By default, the main program has a task ID of 1.

• Each task has a number to specify its priority. When you initiate one or more tasks via a call to
subroutine TQST ASK or to subroutine TQQT ASK, you also specify their priority numbers. The
highest priority task has priority number 0; the lowest priority task has priority number 255. You
may assign the same priority number to two or more tasks. By default, the main program has a
priority of O. Furthermore:

- If two or more tasks are ready to run, then the task scheduler selects the one with the highest
priority (i.e., lowest priority number).

- If two or more tasks with the same priority number are ready to run, then the task scheduler
selects the next one in round-robin fashion. That is, the task that executed the longest time ago
among two or more tasks with equal priority executes next (first in, first out).

• Each task can communicate with any other task, including the main program. The two intertask
communication calls affecting the task scheduler are TQREC (wait to receive a message) and
TQXMTW (transmit a message and await its reception). Calls to TQRECNW (receive a message
without waiting) and to TQXMT (transmit a message without waiting for its reception) also affect
scheduling; they may cause a suspended task to become active.

• Each task controls itself and others by:

- Killing. Subroutine TQIDKIL kills (makes inactive) a task with a specified ID number. Subroutine
TQKILL kills the calling task.

- Suspension. Subroutine TQPRSUS suspends all tasks with a specified priority. Subroutine
TQIDSUS suspends a task with a specified ID number. Subroutine TQSUS suspends the calling
task. TQXMTW and TQREC might also suspend the calling task.

- Changing priorities. Subroutine TQIDPRI changes the priority of a task with a specified ID
number. Subroutine TQPRI changes the priority of the calling task.

- Making tasks ready. Subroutine TQPRRDY makes ready (changes, the state from suspended to
ready-to-run) all tasks with a specified priority. Subroutine TQIDRDY makes ready a task with
a specified ID number.

• Any task can control and communicate with any other task. (This is in contrast to the controller/gate
relationship shown in Figure 4-2). Recall that the main program is itself a task whose default ID is
1 and whose default priority is O. However, any task can use the above subroutines to control and
communicate with the main program.

We change Figure 4-6 to contain the information in this modified list. The result is in Figure 4-7.

4-12 licensed Material·Property of Data General Corporation 093·000273·00

o

Active,
Executing

RETURN, Task Scheduler

TOKILL,
TOIDKIL

Active,
Ready-to-Run

TOIDRDY, TOIDSUS,
TOPRRRDY, TOPRSUS-,

System TOSUS,
TOSTASK, Call Real-Time
TQOTASK Completion Event

I
Inactive I

10·00110

Figure 4-7. Task States and Transitions

Active,
Suspended

TOIDS US,

US, TOPRS
TOREC
TOSUS
TOXM TW,
System

Call
Issuan ce

NOTE: TQIDPRI and TQPRI do not appear in Figure 4-7. They do not immediately change the state
of a task, but will affect the task scheduler's future actions with the task.

093·000273·00 Licensed Material·Property 01 Data General Corporation 4-13

Sample Program
Figure 4-5 contains the outline of a multitasking program with its program units named MAIN5,
TASKI, and TASK2. We now add to the outline and create the three program units. At runtime:

• MAIN5 initiates TASKl.

• MAIN5 initiates TASK2.

• MAIN5 kills itself.

• TASKI opens a fresh output file TASKl.OUT.

• TASKI sends the message 377K to TASK2 and awaits its reception.

• T ASK2 opens a fresh output file T ASK2.0UT.

• TASK2 awaits a message.

• After the receipt of the message has synchronized the two tasks, they remain active for about 1-1/2
seconds. At the end of this time, TASKI KILLs TASK2 and the process terminates upon execution
of TASK 1 's RETURN statement.

We have already summarized the multitasking subroutines appearing in the program units. The
subroutines are (in chronological order of execution): TQSTASK, TQXMTW, TQREC, and TQIDKIL.
Comments appear in the programs to explain the subroutines' arguments. Figure 4-8 contains
MAIN5.F77. Figure 4-9 contains TASKl.F77. Figure 4-10 contains TASK2.F77.

NOTE: We assign 11 as the ID number of TASKI instead of 1. Why? By default, MAIN5 is itself a
task whose ID number is 1 (and whose priority is 0).

4-14 Licensed Material·Property of Data General Corporation 093·000273·00

.r-\
")

• j

(\

C

C
C

C
C

1
2

1
2

PROGRAM MAINS TO CONTROL TASKS TASK1 AND TASK2

COMMON ICOLDI MAILBOX
EXTERNAL TASK1, TASK2

FOR TASK1 --> TASK2 COMMUNICATION
NECESSARY I

PRINT *
PRINT *, 'PRIORITY OF TASK1?
READ *, IPR1
PRINT *, 'PRIORITY OF TASK2?
READ *, IPR2
PRINT *, 'MAIN PROGRAM MAINS EXECUTES NOW'
PRINT *
MAILBOX = 0 SHARED MAILBOX MUST CONTAIN INITIAL 0

FOR TASK1 --> TASK2 COMMUNICATION

INITIATE TASK1 WITH AN ID NUMBER OF 11, PRIORITY <IPR1>, AND
DEFAULT (SYSTEM-SELECTED) STACK SIZE OF O.

CA(L TQSTASK (TASK1, 11, IPR1, 0, IER)
IF (I ER . NE. 0)

WRITE (*, * ERR = 97, IOSTAT=IOS)
'ERROR' IER, ' OCCURRED INITIATING TASK1'

INITIATE TASK2 WITH AN ID NUMBER OF 12, PRIORITY <IPR2>, AND
DEFAULT (SYSTEM-SELECTED) STACK SIZE OF O.

CALL TQSTASK (TASK2, 12, IPR2, 0, IER)
IF (IER .NE. 0)

WRITE (*, * ERR = 98, IOSTAT=IOS)
'ERROR IER, , OCCURRED INITIATING TASK2'

CALL EX IT ! I'M DONE!

97 PRINT *, 'AT 97, IDS IS " IDS
STOP 97

98 PRINT *, 'AT 98, IDS IS IDS
STOP 98

END

Figure 4-8. A Listing of Program MAIN5.F77

093·000273·00 Licensed Material·Property of Data General.Corporation 4-15

Source file: TASK1.F77
Compiled on 21-Dec-82 at 14:51:49 by AOS F77 Rev 2.10
Opt10ns: F77/INTEGER=2/LOGICAL=2/L=TASK1.LS

1 SUBROUTINE TASK1
2
3 COMMON ICOLDI MAILBOX
4
5 %INCLUDE 'TASK1 __ SYMBOLS.F77.IN' ! FOR ?DELAY SYSTEM CALL
6 **** F77 INCLUDE file for system parameters ****
7
8 **** Parameters for SYSID ****
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24 100
25

1

INTEGER*2 ISYS __ DELAV
PARAMETER (ISYS __ DELAY = 13)

Parameters for PARU ****

I ?DELAY = 15K

END of F77 INCLUDE file for system parameters ****

OPEN (1, FILE='TASK1.0UT', STATUS='FRESH',
RECFM='DATASENSITIVE', CARRIAGECONTROL='LIST')

WRITE (1, 100)
FORMAT ('IN FILE TASK1.0UT: TASK1 HAS BEGUN<NL>')

26 C
27 C
28 C

SEND THE "MESSAGE" 377K TO ALL TASKS WHO ARE WAITING FOR ONE TO
ARRIVE IN A SHARED MEMORY LOCATION ("COMMON MAILBOX"), AND
WAIT UNTIL THE MESSAGE ARRIVES.

4-16

29
30 CALL TQXMTW(MAILBOX, 377K, -1, IER)
31 IF (IER .NE. 0)
32 1 WRITE (1, 110) IER
33 110 FORMAT (' ERROR 08,' OCCURRED DURING TQXMTW<NL>')
34
35 C DELAY (SUSPEND) THIS TASK FOR 1.5 SECONDS.
36
37 IACO = 0 ACO AND
38 IAC1 = 1500 AC1 SPECIFY A DELAY OF 1500 MILLISECONDS
39 IAC2 = 0
40 IER = ISYS(ISYS __ DELAY, IACO, IAC1, IAC2)
41 IF (IER .NE. 0) THEN
42 PRINT *, 'ERROR', IER, ' OCCURRED IN TASK1 DURING
43 1 'A ?DELAY SYSTEM CALL'
44
45
46
47 C
48
49 120
50

STOP '-- PROGRAM ENDS NOW'
ENDIF

1 1/2 SECONDS HAVE ELAPSED; NOW KILL TASK2.
WRITE (1, 120)
FORMAT ('PAST TQXMTW; NOW I KILL TASK2<NL>')

Figure 4-9. A Listing of Subroutine T ASKl.F77 (continues)

Licensed Material-Property of Data General Corporation 093-000273-00

o

o

51 CALL TQIDKIL (12, IER)
52 IF (I ER . NE. 0)
53 1 WRITE (1, 130) IER
54 130 FORMAT (' ERROR " 08, ' OCCURRED TQIDKILing TASK2<NL>')
55
56 WRITE (1, 140)
57 140 FORMAT ('NOW I RETURN TO MAIN PROGRAM MAINS')
58
59 RETURN
60 END

Figure 4-9. A Listing of Subroutine T ASKI.F77 (concluded)

Licensed Material·Property 01 Datil General Corporation 4-17

4-18

SUBROUTINE TASK2

COMMON ICOLDI MAILBOX

INTEGER ITIME(3)

OPEN (2, FILE='TASK2.0UT', STATUS='FRESH',
1 RECFM='DATASENSITIVE', CARRIAGECONTROL='LIST')

'WRITE (2, 100)
100 FORMAT ('IN FILE TASK2.0UT: TASK2 HAS BEGUN<NL>')

C AWAIT A COMMUNICATION BY MONITORING VARIABLE <MAILBOX>.
C WHEN <MAILBOX> IS NONZERO, ITS CONTENTS MOVE INTO <MESSAGE>.

CALL TQREC(MAILBOX, MESSAGE, IER)
IF (IER .NE. 0)

1 WRITE (2, 110) IER
110 FORMAT ('ERROR', 08, OCCURRED ON TQREC<NL>')

WRITE (2, 120) MESSAGE
120 FORMAT ('CONTENTS OF MESSAGE ARE 08, '<NL>')

130

140
150

WRITE (2, 130)
FORMAT ('NOW FOR UP TO
DO 150 I = 1, 10000

WRITE (2, 140)
FORMAT (' IN DO

CONTINUE

RETURN
END

10000 LINES OF TEXT<NL><NL>')

I
150 LOOP, IS)

Figure 4-10. A Listing of Subroutine T ASK2.F77

licensed Material·Property of Data General Corporation

o

o
093·000273·00

After the commands

F77 (MAIN5 TASK 1 T ASK2)
F77L1NK/TASKS=3 MAIN5 TASK1 TASK2

have created MAIN5.PR, we execute it three times while varying the priority numbers. The results
appear next; note how the amount of output from T ASK2 varies according to its priority number.
Remember: A lower priority number for a task means it is more likely to execute.

) X MAIN5; F/AS TASK1.0UT TASK2.0UT i

PRIORITY OF TASKl? 4 i

PRIORITY OF T ASK2? 5 i

MAIN PROGRAM MAIN5 EXECU:[ES NOW

DIRECTORY :UDD2:F77:MARLL

TASKl.0UT TXT 21-0CT-82 16:58:24 104
TASK2.0UT TXT 21-0CT-82 16:58:24 36
) X MAIN5; F/AS TASK1.0UT TASK2.0UT i

PRIORITY OF TASKl? 5 i

PRIORITY OF T ASK2? 5 i

MAIN PROGRAM MAIN5 EXECUTES NOW

DIRECTORY:UDD2:F77:MARLL

TASKl.0UT TXT 21-0CT-82 16:59:30 104
TASK2.0UT TXT 21-0CT-82 16:59:30 318
) X MAIN5; F/AS TASK1.0UT TASK2.0UT i

PRIORITY OF TASKl? 5 i

PRIORITY OF TASK2? 4 i

MAIN PROGRAM MAIN5 EXECUTES NOW

DIRECTORY:UDD2:F77:MARLL

TASKl.0UT TXT 21-0CT-82 17:00:16 104
TASK2.0UT TXT 21_0CT-82 17:00:18 1046
)

If you create MAIN5.PR and execute it your results probably won't be exactly the same as these.
TASKl delays execution for a variable time period (about 1.5 seconds), and thus TASK2 writes
varying numbers of lines into T ASK2.0UT. The overall load on the system also affects the amount of
output T ASK2 creates.

093·000273·00 Licensed Material·Property of Data General Corporation 4-19

Re-entrant Code
In certain situations, it is appropriate for two or more tasks to execute exactly the same sequence(s) of
instructions yet still remain independent of one another and use their own sets of data. In such cases, it
is more efficient for all of these tasks to share a single set of instructions than to duplicate the code
several times. This sharing is possible provided that the code does not modify itself, and that F77 sets
aside a separate data space for each task.

To provide this runtime data space for each task, F77 allocates a part of the memory area known as its
runtime stack for variables that the task uses. Thus, it separates the unmodified, shared code from the
multiple modified data areas. We call the shared code re-entrant code since various tasks are entering
and using the code at the same time. .

NOTE: By default, F77 allocates variables on the runtime stack unless:

• DATA statements assign them initial values.

• A SAVE statement specifies or implies them.

• The program units they reside in are compiled with the /SA VEV ARS switch.

• They exist in COMMON.

The actual sequence of events in the use of re-entrant code is as follows. Each time you initiate a task
in a multitasking program, F77 assigns the task a task control block and a section of the runtime stack.
This task control block keeps track of which instruction the task is executing and the data space
allocated to the task. Two or more tasks can execute a single subroutine (the re-entrant code) at one
time although the tasks cannot execute the same statement at a given instant. Figure 4-11 illustrates
the status of the program at one point in time. It is not a dynamic picture of these operations.

For example, suppose you want two tasks to move concurrently through subroutine SUBRA, three
tasks to move concurrently through subroutine SUBRB, and one task to move through subroutine
SUBRC. Assume also that the main program is named MAINI2. The structure of MAINI2.F77 is as
follows.

PROGRAM MAIN12

EXTERNAL SUBRA. SUBRB. SUBRC

CALL TQSTASK (SUBRA. 11. . ..)
CALL TQSTASK (SUBRA. 12. ___)

ID IS 11
ID IS 12

C START 3 TASKS THROUGH SUBROUTINE <SUBRB>_ ASSUME THEY
C REMAIN ACTIVE UNTIL WE EXPLICITLY KILL THEM.

CALL TQSTASK (SUBRB. 21. . _ .) ID IS 21
CALL TQSTASK(SUBRB. 22. ___) ID IS 22
CALL TQSTASK (SUBRB. 23. ___) ID IS 23

CALL TQSTASK (SUBRC. 31. ___) ID IS 31

CALL TQIDKIL (22. IER) SUBRB IS STILL ACTIVE
CALL TQIDKIL (23. IER) SUBRB IS STILL ACTIVE
CALL TQIDKIL (21. IER) SUBRB IS FINALLY INACTIVE

C ALL TASKS IN SUBROUTINE <SUBRB> ARE NOW INACTIVE_

END

4-20 Licensed Material-Property of Data General Corporation 093-000273-00

10-00111

093-000273-00

• • •

• • •

Task Control
Blocks

TCB for Task 1

Location

Counter

Data

Address

TCB for Task 2

Location

Counter

Data

Address

• • •
• • •

50

70

Re-entrant Code

Process's Stack

Part of Stack

Reserved for

Task 1

Part of Stack

Reserved for

Task 2

Figure 4-11_ Task Control Blocks and the Use of Re-entrant Code

Licensed Material-Property 01 Data General Corporation

• • •

• • •

4-21

The compilation and Link instructions would have the following general outline.

F77 (MAIN 12 SUBRA SUBRB SUBRC)
F77L1NK/TASKS=7 MAIN12 SUBRA SUBRB SUBRC

Multitasking Subroutines
Table 4-1 shows the correspondence between called-by-F77 subroutines and the operating system calls
(AOS) that ultimately perform a subroutine's multitasking request. The "F77" column determines the
alphabetical order of the three columns.

4-22 Licensed Material·Property of Data General Corporation 093-000273-00

Table 4-1. F77 and AOS Multitasking Calls and their Functions

F77 AOS Function

TQDQTSK ?DQTSK Dequeue a previously queued task.

TQDASCH ?DFASCH, Disable a scheduling and optionally return a flag.
?DASCH

TQEASCH ?EASCH Enable scheduling.

TQIDKIL ?IDKIL Kill a task specified by its 10.

TQIDPAI ?IDPAI Change the priority of a task specified by its ID.

TQIDADY ?IDADY Ready a task specified by its 10.

TQIDSTAT ?IDSTAT Get a task's status.

TQIDSUS ?IDSUS Suspend a task specified by its ID.

TQIQTSK ?IQTSK Create a queued task manager.

TQKILAD ?KILAD Define a kill processing routine.

TQKILL ?KILL Kill the calling task.

TQMYTID ?MYTID Get the priority and 10 of the calling task.

TQPAI ?PAI Change the priority of the calling task.

TQPAKIL ?PAKIL Kill all tasks of a specified priority.

TQPAOT none Start a protected area.

TQPAADY ?PAADY Ready all tasks of a specified priority.

TQPASUS ?PASUS Suspend all tasks of a specified priority.

TQQTASK none Create a queued task.

TQAEC ?AEC Receive an intertask message.

TQAECNW ?AECNW Receive an intertask message without waiting.

TQSTASK ?TASK Initiate one task.

TQSUS ?SUS Suspend the calling task.

TQUNPAOT none Exit a protected area.

TQXMT ?XMT Transmit an intertask message.

TQXMTW ?XMTW Transmit an intertask message and wait for its reception.

none ?IDGOTO Redirect a task.

none ?IFPU Initialize the floating-point unit.

none ?TACON Read a task message from the process console.

093·000273·00 Licensed Material·Property of Data General Corporation 4-23

For example, suppose that your AOS F77 program unit contains a

CALL TQIDPRI (arguments)

statement- When Link processes the program unit's _OB file, it places code from F7-7MT_LB into the
main program's program CPR) file_ At runtime this code makes a ?IDPRI operating system call.
However, not all F77 multitasking subroutines result in F77MT-LB code and exactly one runtime
operating system call.

Note in Table 4-1 that:

• ?IDGOTO, ?IFPU, and ?TRCON have no corresponding F77-callable subroutines_ However, some
of these subroutines make a ?IFPU system call; none of them makes a ?IDGOTO or ?TRCON call.

• TQPROT and TQUNPROT have no direct correspondence with any system calls.

• TQQT ASK has no direct correspondence with any system calls. However, it uses ?TASK to carry
out its function of queued task creation.

Assembly Language Interface
FORTRAN 77 also provides a set of routines to replace multitasking system calls. These routines are
in F77MT.LB. They:

• Take accumulator values and parameter packets identical to those of the corresponding system calls.

• Make a system call.

• Take the conventional error or normal return.

The difference between the replacement routines and system calls is that the former provide the same
protection of the runtime database integrity as do the F77-callable routines; the latter do not-

Assembly Language Calls
You can invoke these subroutines from assembly language programs, as well as from FORTRAN 77
programs. To do this, remove any multitasking statements of the form

?<call> ; make a system call

The correct replacement is a statement of the form

EJSR T?<call> ; make a system call via a routine in F77MT.LB

In each of these two cases, AC2 must contain the packet address if required. All other statements and
declarations related to the system call remain the same. You must also add .EXTN statements. For
example, you would replace

?IDKIL with . EXTN T?IDKIL
EJSR T?IDKIL

Such replacement results in protection of runtime database integrity.

4-24 Licensed Material-Property of Data General Corporation 093-000273-00

: .

Example

Suppose you want to change the priority of task number 7 to 5 by using subroutine T?IDPRI instead
of by making a call to ?IDPRI. The skeleton assembly language code resembles the following.

.EXTN T?IDPRI DECLARE ROUTINES AS EXTERNALS.
; ...
LDA O,C7 TASK NUMBER 7 WILL HAVE A
LDA 1,C5 ... PRIORITY OF 5.
EJSR T?IDPRI DO IT! (FORMERLY: ?IDPRI ; DO IT!)
JMP ERIDPRI ERROR RETURN

NORMAL RETURN: CONTINUE

ERIDPRI: RESPOND TO ERROR FROM T?IDPRI.

C7: 7
C5: 5

Routine Names

The complete list of multitasking routines accessible via the

EJSR <routine name>

mechanism is as follows.

T?DQTSK
T?DRSCH
T?ERSCH
T?IDKIL
T?IDPRI
T?IDRDY
T?IDSTAT
T?IDSUS

T?IQTSK
T?KILAD
T?KILL
T?MYTID
T?PRI
T?PRKIL
T?PRRDY
T?PRSUS

T?QTASK
T?REC
T?RECNW
T?STASK
T?SUS
T?XMT
T?XMTW

There is no F77-callable subroutine named TQDFRSCH. However, your AOS assembly language
program can contain a

EJSR T?DFRSCH

statement to call ?DFRSCH. This way, your program both disables scheduling and knows (via a flag
- the "F" of DFRSCH) whether or not scheduling already was disabled at the time ?DFRSCH
executed. If it was, then ?DFRSCH places the value of ?DSCH in ACO.

F77MT.LB provides you with entry points for the protected-against-KILLing-and-SUSPension code
paths that TQPROT and TQUNPROT create. The names of these entry points are T?PROT and
T?UNPROT.

Finally, after assembly, use macro F77LINK to create your program file. This macro has Link search
F77MT.LB and F77ENV _MT.LB (along with other FORTRAN 77 library files) according to the
multitasking statements of your program.

Conversion of fORTRAN 5 Multitasking Programs
You might have AOS FORTRAN 5 or RDOS FORTRAN 5 multitasking programs and want to
convert them to FORTRAN 77 programs. These FORTRAN 77 programs will use the multitasking
routines from library file F77MT.LB.

093'000273-00 Licensed Material·Property of Data General Corporation 4-25

You have two ways to convert FORTRAN 5 multitasking CALLs such as

CALL XMT (arguments)

and statements such as

ANTICIPATE 4

to FORTRAN 77 multitasking CALLs.

Rewrite Each Multitasking CALL or Statement
Rewrite each FORTRAN 5 multitasking CALL or statement according to the rules of its equivalent
FORTRAN 77 CALLs. The names of these subroutines are in Table 4-1 at the beginning of this
chapter; their explanations appear later in this chapter. For example, you might replace

CALL SUS ; SUSPEND THIS TASK

with

CALL TQSUS (IER) ! SUSPEND THIS TASK

You should include an error-processing routine for errors arising from the execution of the multitasking
routines.

Use a Conversion Library
Use the set of F77 subroutines supplied with F77. These subroutines have the same names as FORTRAN
5 subroutines, and they convert a FORTRAN 5 name/arguments CALL to a FORTRAN 77
name/arguments CALL. Their location is directory F77_F5MT.

For example, the outline of ARDY.F77 is similar to the following:

C SUBRDUTINE ARDY.F77 TO PERFORM THE FUNCTION
C OF READYING ALL TASKS OF A GIVEN PRIORITY
C IN AN ADS RUNTIME ENVIRONMENT.

SUBROUTINE ARDY (PRIORITY)
INTEGER PRIORITY, IER

C F77/TQPRRDY IS EQUIVALENT TO FS/ARDY
CALL TQPRRDY (PRIORITY, IER)
RETURN
END

You might have to change some of the arguments in the FORTRAN 5 CALLs. For example,

CALL XMT (MAILBOX, MESSAGE, $100)

is correct in FORTRAN 5, but the "$" of the third argument makes the entire statement incorrect in
FORTRAN 77. You must change this line to

CALL TQXMT (MAILBOX, MESSAGE, *100)

And, you might want to create a .LB file for the F77 source subroutines. This library file would become
part of your F77LINK macro.

4-26 licensed Material-Property of Data General Corporation 093-000273-00

-0

For example, suppose you decide to leave all FORTRAN 5 CALLs to subroutines AKILL, ARDY,
and SUSP alone. This means that you must manually convert the other multitasking CALLs to
FORTRAN 77 names and arguments. Suppose also that program TYPICAL.F5 has a maximum of
five tasks and that you have edited it into program TYPICAL.F77 without making any changes to the
AKILL, ARDY, and SUSP CALLs. Then, give the following CLI commands:

• F77 (AKILL.F77 ARDY.F77 SUSP.F77)

• X LFE N F5_MT /0 AKILL ARDY SUSP

• F77 TYPICAL.F77

• F77LINK/T ASKS = 5 TYPICAL F5_MT.LB

The /T ASKS = 5 F77LINK switch directs Link to search F77MT.LB, F77ENV _MT.LB, and other
F77 library files. Program file TYPICAL.PR is now ready for execution.

Recommended Conversion Method
We recommend the first method of conversion - rewriting each FORTRAN 5 multitasking CALL or
statement to its FORTRAN 77 equivalent statements. Your program will execute slightly faster than
if you use a conversion library. More significantly, some FORTRAN 5 multitasking CALLs and
statements are not in the conversion subroutines because they have no FORTRAN 77 equivalents.
CALL GETEV, with its reference to an event number, is an example. You can print the conversion
subroutines from directory F77_F5MT and read the FORTRAN 5 Programmer's Guide to see what
FORTRAN 5 multitasking CALLs and statements are missing in the conversion subroutines.

Multitasking via the ISYS Function?
So far we have mentioned the following three ways of hooking into the multitasking capabilities of
AOS:

• Using traditional system calls from assembly language programs, such as ?IDPRI.

• Using FORTRAN 77 CALLs such as CALL TQIDPRI (arguments) to multitasking routines in
F77MT.LB.

• Using assembly language interface routines for system calls resulting in statements such as EJSR
T?IDPRI.

It isn't possible to use the ISYS function to perform AOS multitasking calls. All AOS multitasking
routines reside in URT.LB and are linked into .PR files from there. These routines execute code in user
context; the F77 ISYS function does not support them.

link Switches for F77 Multitasking
The addition of the multitasking routines could affect your commands to Link. The new F77LINK
switches are /IOCONFLICT and /T ASKS.

IIOCONFUCT Switch
This F77LINK switch has three values: ERROR, IGNORE, and QUEUE. QUEUE is the default.
That is,

F77LlNK MY _PROG

and

F77LlNK/IOCONFLlCT=QUEUE MY _PROG

give identical results.

As the name implies, programs Linked with this switch will detect a runtime error when an I/O conflict
occurs. Such a conflict happens when one task "A" attempts to access a unit that another task "B" is
using. Then:

093·000273·00 Licensed Material·Property of Data General Corporation 4-27

• If /IOCONFLICT= ERROR, task "A" receives an error value from its I/O statement that
unsuccessfully attempted to access the unit. The success or failure of task "B" is unaffected by "A's"
attempted simultaneous access of the unit.

e If /IOCONFLICT= IGNORE, the F77 runtime routines don't check for simultaneous access of a
unit by more than one task. The results are unpredictable and the runtime I/O databases could be
compromised. You would use this switch setting if speed is important and you can guarantee that
only one task will access a given unit at any time.

• If /IOCONFLICT=QUEUE or is not specified, task "A" does not receive an error value from its
I/O statement that attempted to access the unit. It waits until "B" is finished with the unit before
continuing with its I/0 operation.

/TASKS=n Switch

F77LINK.CLI passes this switch down to Link. For multitasking programs you must specify it to
either F77LINK.CLI or to the Link command. For example, suppose your program file (.PR file) will
have at most five tasks, and it uses F77 multitasking routines. Then

For an

F77 program:

Assembly language
program:

Specify

F77LINK/T ASKS = 5 MY _PROG .. .

F77LINK/TASKS=5 MY_PROG .. .

F77LINK responds to the /T ASKS switch and chooses the appropriate libraries for linking.

Task Fatal Errors
Several types of runtime errors that were previously fatal to a process are now fatal to a task. These
errors are:

• I/0 runtime.

o Arithmetic exceptions (such as overflow).

o Subscript/substring addressing.

• Stack overflow /underflow.

Previously, these errors resulted in the process' termination. In general, only internal consistency errors
will now terminate a process.

Initial Task
The initial task - the main program - has an ID of I and a priority of 0 when it begins execution.
Keep this in mind as you code CALLs to TQQT ASK and to TQST ASK which, in turn, initiate tasks.

Documentation of Multitasking Calls
The rest of this chapter describes the individual F77-callable multitasking routines alphabetically. The
explanation of each routine includes:

• Its name and function.

• Its format and argument names for CALLing by F77.

• Descriptions of each argument.

• If possible, a sample CALL and related statements.

4-28 Licensed Material·Property of Data General Corporation 093·000273·00

The Result Code Argument

All the multitasking subroutines have an argument that receives a code to indicate the result of the
subroutine's execution. This argument appears in this chapter as ier. It is always the last argument in
the argument list. If no exceptional condition occurs during the subroutine's execution, ier contains
zero. Otherwise, ier contains one of the following:

• An operating system error code. (See the beginning of PARU.sR; or, give the CLicommand
MESSAGE/O ier.) You can also use subroutine ERRCODE, explained in Chapter 2, to report the
error.

• An error code from ERR.F77.1N, which contains the same codes as F77ERMES.SR.

• An error code from CLREERMES.SR.

For example, suppose a F77 program contains the statements

INTEGER TASK __ ID
TASK __ ID = 8
CALL TQIDKIL (TASK __ ID. IER)

If IER is zero after your program returns control from TQIDKIL, then no exceptional condition has
occurred. Otherwise, IER contains an error code from one of the above files.

093·000273·00 Licensed Material·Property of Data General Corporation 4-29

TQDQTSK
Dequeue a previously queued task.

Format

CALL TQOQTSKCtask_definition_packet. ier)

Arguments

task_definition_packet is an INTEGER *2 (not INTEGER *4) array that contains the task definition
packet. Read the restrictions on certain words of the packet in the
"Arguments" section of the explanation of TQQT ASK.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

A program unit must execute CALL TQIQTSK and CALL TQQTASK statements in this order
before it can execute a CALL TQDQTSK statement. The following program creates a queued task
manager to initiate six tasks whose IDs are 14, 15, 16, 17, 18, and 19. Then, it dequeues all six tasks.
Program CALL_TQDQTSK follows.

C SAMPLE AOS F77 PROGRAM CALL __ TQDQTSK
EXTERNAL SUB __ QDTASK I SUBROUTINE WHOSE NAME IS AN ARGUMENT

C TO TQQTASK

C

C
C

C

INTEGER*2 ETDP(0:14) ! EXTENDED TASK DEFINITION PACKET
MUST BE INTEGER*2

INTEGER*2 TASK __ ID. PRIORITY, IER

CREATE A TASK WHICH IS THE QUEUED TASK MANAGER.
TASK __ ID = 4
PRIORITY = 2
CALL TQIQTSK(TASK __ ID, PRIORITY, IER)
IF (IER .NE. 0.) GO TO 9000

C SET UP THE 15-WORD EXTENDED TASK DEFINITION PACKET. TQQTASK
C WILL USE THIS PACKET AND TQDQTSK WILL ALSO USE IT.

ETDP(OO) = 0 ?DLNK: 0 TO SPECIFY AN EXTENDED PACKET

ETDP(01) = 7 ?DPRI: THE PRIORITY NUMBER FOR
EACH TASK

ETDP(02) = 14 ?DID: TASK IDS ARE THE NONZERO
NUMBERS 14, 15, 16,

ETDP(03) = 0 ?DPC: TASK STARTING ADDRESS
IS SUPPLIED BY F77.

ETDP(04) = 0 ?DAC2: TASK MESSAGE IS ZERO.

4-30 Licensed Material·Property of Data General Corporation 093·000273·00

(\

C
C

C

C
C
C
C
C
C
C
C

C
C

9000
C

9010
C
9020

C

ETDP(05) = 0 ?DSTB: ACCEPT F77'S STACK BASE.

ETDP(06) = 0 ?DSSZ: EACH TASK SHARES A DEFAULT-SIZE STACK.

ETDP(07) = 0 ?DSFLT: ACCEPT F77'S STACK FAULT HANDLER.

ETDP(08) = 0 ?DFLGS: 0 FOR THIS RESERVED WORD

ETDP(09) = 0 ?DRES: 0 FOR THIS RESERVED WORD

ETDP(10) = 6 ?DNUM: THERE ARE SIX TASKS.

ETDP(11) = 14 ?DSH: INITITATE THE TASKS AT THE
ETDP(12) = 906 ?DSMS: NEXT OCCURRENCE OF 2:15:06 PM.

ETDP(13) = 3 ?DCC: THREE INITIALIZATION ATTEMPTS
ARE ENOUGH, ...

ETDP(14) = 10 ?DCI: ... SPACED 10 SECONDS APART.

CREATE THE QUEUED TASK.
CALL TQQTASK(SUB __ QDTASK, ETDP, IER)
IF (IER .NE. 0) GO TO 9010
DON'T ALTER <ETDP> WHILE IT'S IN THE QUEUE.

START THE TASKS VIA CALLS TO TQSTASK

NOW REMOVE ALL SIX TASKS (IDS 14-19) PREVIOUSLY QUEUED
FOR INITIATION BY A CALL TO TQQTASK . WE DON'T
ALTER THE PACKET GIVEN TO TQQTASK

CALL TQDQTSK(ETDP, IER)
IF (IER. NE. 0) GO TO 9020

ERROR ROUTINES ARE
CONTINUE

CONTINUE

CONTINUE

STOP
END

HANDLE

HANDLE

HANDLE

NEXT .
AN ERROR FROM TQIQTSK.

AN ERROR FROM TQQTASK.

AN ERROR FROM TQDQTSK.

093·000273·00 Licensed Material·Property of Data General Corporation 4-31

TQDRSCH
Disable scheduling and optionally return a previous status.

Format
CALL TQDRSCH([previously_disabled,} ier)

Arguments
previously_disabled is an optional LOGICAL *2 variable or array element, which if supplied:

Receives a value of .TRUE., if scheduling was disabled before the call.

• Receives a value of .FALSE., if scheduling was not disabled before the call.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQDRSCH
LOGICAL PREV __ DIS
INTEGER IER

C
CALL TQDRSCH(PREV __ DIS, IER)

C
C ... DO THINGS WITH SCHEDULING DISABLED ...
C

C
C
C
C

IF (.NOT. PREV __ DIS
1 CALL TQERSCH(IER)

END

IF SCHEDULING WAS NOT PREVIOUSLY
DISABLED, THEN RE-ENABLE IT
SINCE I'VE DONE MY THINGS WITH
SCHEDULING DISABLED.

4-32 Licensed Material-Property of Data General Corporation 093-000273-00

TQERSCH
Enable scheduling.

Format
CALL TQERSCH(ier)

Argument
ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQERSCH
INTEGER IER

C

C

CALL TQERSCHCIER)
PRINT 10, IER

10 FORMAT C' ERROR CODE RETURNED FROM TQERSCH IS

END

06, 'K')

093·000273·00 Licensed Material·Property of Data General Corporation 4-33

TQIDKIL
Kill a task specified by its 10.

Format
CALL TQIDKIL(taskid, ier)

Arguments
taskid is an INTEGER *2 expression that contains the ID of the task you want to kill.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQIDKIL
INTEGER TASK __ ID, IER

C
C NOW KILL TASK NUMBER 9.

C

TASK __ ID = 9
CALL TQIDKILCTASK __ ID, IER)
PRINT 10, IER

fo FORMAT C' ERROR CODE RETURNED FROM TQIDKIL IS

END

06, 'K')

4-34 Licensed Material·Property of Data General Corporation

()

093·000273·00

TQIDPRI
Change the priority of a task specified by its ID.

Format
CALL TQIDPRI(taskid, priority, ier)

Arguments
taskid is an INTEGER *2 expression that contains the ID of the task whose priority you want to

change.

priority is an INTEGER *2 expression that contains the new priority ofthe task.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQIDPRI
INTEGER IER

C
C CHANGE lHE PRIORITY OF TASK NUMBER 7 TO 5

CALL TQIDPRI (7, 5, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQIDPRI IS
C

END

06, 'K')

093·000273-00 Licensed Material-Property of Data General Corporation 4-35

TQIDRDY
Ready a task specified by its 10.

Format
CALL TQIDRDY(taskid, ier)

Arguments
taskid is an INTEGER *2 expression that contains the ID of the task you want to make ready.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE AOS PROGRAM CALL __ TQIDRDY
INTEGER TASK __ ID, IER

C
C MAKE READY TASK NUMBER 19.

C

TASK __ ID = 19
CALL TQIDRDY (TASK __ ID, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQIDRDY IS

END

06, 'K')

4-36 Licensed Material-Property of Data General Corporation 093-000273-00

o

lQIDSTAT
Get a specified task's status.

Format
CALL TQIDSTAT(taskid, status, ier)

Arguments
taskid is an INTEGER *2 expression that contains the task's ID.

status is an INTEGER *2 variable or array element that receives the task's status word. This word is
offset ?TST A T of the task's task control block (TCB).

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQIDSTAT
INTEGER TASK __ ID, STATUS, IER

C
C GET AND PRINT TASK 16'S STATUS WORD.

C

TASK __ ID = 16
CALL TQIDSTAT(TASK __ ID, STATUS, IER)
PRINT 10, STATUS

10 FORMAT (" TASK 16'S STATUS WORD IS' 06, "K")

END

093·000273-00 Licensed Material-Property of Data General Corporation 4-37

TQIDSUS
Suspend a task specified by its ID.

Format
CALL TQIDSUS(taskid, ier)

Arguments
taskid is an INTEGER *2 expression that contains the ID of the task you want to suspend.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE AOS PROGRAM CALL __ TQIDSUS
INTEGER IER

C
C SUSPEND TASK NUMBER 18.

C

CALL TQIDSUS (18, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQIDSUS IS

END

06, 'K')

4-38 Licensed Material·Property of Data General Corporation 093·000273·00

()

(\

TQIQTSK
Create a queued task manager.

Format
CALL TOIOTSK(taskid, priority, ier)

Arguments
taskid is an INTEGER *2 expression that specifies the ID of the queued task manager; the task

manager is itself a task. Count this task as you calculate n for the /TASKS=n F77LINK
switch.

priority is an INTEGER *2 variable or array element that specifies the priority of the task. For
proper execution, it should be the highest priority task (i.e., have priority number 0).

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C

C
C
C

10
C

SAMPLE F77 PROGRAM CALL __ TQIQTSK
INTEGER TASK __ ID, PRIORITY, IER

CREATE A TASK TO SERVE AS THE QUEUED TASK MANAGER FOR
THIS PROGRAM WITH AN ID OF 5 AND A PRIORITY OF O.

TASK __ ID = 5
PRIORITY = 0
CALL TQIQTSK(TASK __ ID, PRIORITY, IER)
PRINT 10, IER
FORMAT (' ERROR CODE RETURNED FROM TQIQTSK IS 06,' K')

END

093·000273·00 Licensed Material·Property of Data General Corporation 4-39

TQKILAD
Define a kill processing routine.

Format
CALL TQKILAD(subroutine-name, ier)

Arguments
subroutine-name is the name of a subroutine that will receive control the first time that another task

("A") attempts to KILL the task ("8") containing a CALL TQKILAD statement.
However, subroutine-name will not receive control if task "8" terminates itself via
its own TQKILL, STOP, or RETURN statements_ Declare subroutine-name
EXTERNAL in any task containing a CALL to TQKILAD_

ier is an INTEGER *2 variable or array element that receives the result code_

Example

C ASSUME THAT THIS IS ADS TASK "UNIT __ B_F77"_ ASSUME ALSO
C THAT WE WANT IT TO CALL SUBROUTINE "C __ SUB" WHENEVER SOME
C OTHER TASK (CALL IT "UNIT __ A_F77") ATTEMPTS TO TERMINATE
C TASK "UNIT __ B_F77" _ HOWEVER, SUBROUTINE TQKILL OR THE
C RETURN AND STOP STATEMENTS IN "UNIT __ B_F77" WILL TERMINATE
C "UNIT __ B_F77" WITHOUT RESULTING IN A CALL TO "C __ SUB"_
C

C

C

INTEGER IER
EXTERNAL C __ SUB

CALL TQKILAD (C __ SUB, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQKILAD IS

END

06, 'K')

4-40 Licensed Material-Property of Data General Corporation 093-000273-00

TQKILL
Kill the calling (current) task.

Format
CALL TQKILL(ier)

Argument
ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE AOS PROGRAM CALL __ TQKILL
INTEGER IER

C
C KILL THE CALLING (I.E .. THE CURRENT = THIS) TASK

CALL TQKILL(IER)
PRINT 10. IER

10 FORMAT (. ERROR CODE RETURNED FROM TQKILL IS 06.' K')
C

END

093·000273·00 Licensed Material·Property of Data General Corporation 4-41

TQMYTID
Get the. priority and 10 of the calling (current) task.

Format
CALL TQMYTID(taskid, priority, ier)

Arguments
taskid is an INTEGER *2 variable or array element that receives the ID of the calling (i.e., the

current) task.

priority is an INTEGER *2 variable or array element that receives the priority of the calling (i.e., the
current) task.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQMYTID
INTEGER TASK __ ID, PRIORITY, IER

C
C

C

10
1
2

OBTAIN AND PRINT THE ID AND PRIORITY OF
CALL TQMYTID(TASK __ ID, PRIORITY, IER)
PRINT 10, TASK __ ID, PRIORITY, IER
FORMAT (' ID OF CURRENT TASK IS:

END

, PRIORITY OF CURRENT TASK IS:
, ERROR CODE FROM TQMYTID IS:

THE CURRENT TASK.

16, /,
16, /,
06, 'K')

4-42 Licensed Material·Property of Data General Corporation 093·000273·00

()

!
II

TQPRI
Change the priority of the calling (current) task.

Format
CALL TQPRI(priority. ier)

Arguments
priority is an INTEGER *2 expression that specifies the new priority of the calling (i.e., the current)

task.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE PROGRAM CALL __ TQPRI TO CHANGE THE PRIORITY OF
C THE CURRENT TASK

C

C

INTEGER NEW __ PRIORITY. IER

NEW __ PRIORITY = 5
CALL TQPRI(NEW __ PRIORITY. IER)
PRINT 10. IER

10 FORMAT (' ERROR CODE RETURNED FROM TQPRI IS

END

06, 'K')

093·000273·00 Licensed Material·Property of Data General Corporation -4-43

TQPRKIL
Kill all tasks of a specified priority.

Format
CALL TQPRKIL(priority, ier)

Arguments
priority is an INTEGER *2 expression that specifies the priority of the tasks to be killed_

ier is an INTEGER *2 variable or array element that receives the result code_

Example

C SAMPLE AOS PROGRAM CALL_TQPRKIL
INlEGER PRIORITY_7 171, IER

C
C KILL ALL TASKS WHOSE PRIORITY IS THE VALUE OF PRIORITY_7_

CALL TQP,RKIL(PRIORITY_7, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODe RETURNED FROM TQPRXIL IS' 06, 'K')
C

END

4-44 Licensed Materia-I-Property of Data 'General -Corporation 093-000273-00

TQPROT
Start a protected area.

Format
CALL TQPROT(ier)

Argument
ier is an INTEGER *2 variable or array element that receives the result code.

Explanation
This routine has no direct counterpart in AOS.

When a task (we'll label it A) successfully returns from this routine, no other task (labeled B) can
suspend (TQIDSUS, TQPRSUS) or kill (TQIDKIL, TQPRKIL) task A untit two events occur:

• Task A successfully returns from a matching TQUNPROT (exit a protected path) routine.

• Task A has no other levels of protection because of previous calls to TQPROT.

Any such task B becomes suspended until A successfully executes all necessary calls to TQUNPROT;
then B's request is processed, and A becomes suspended or killed. If two or more tasks try to suspend
or kill A while it is protected. the task that even.tually kills or suspends A is unknown.

F77 assigns each task a protect count field whose value at initiation is zero. CALLing TQPROT
increments a task's protect count by one. CALLing TQUNPROT decrements a task's, prote'ct count by
one (unless it's already zero). Thus, a task is protected if, and only if, its protect count is, greater than
zero.

Example

c

c

c
c
C

10
1

C
C

20
C

SA·MPLE F77 PRO;GRAM CALL_ TQP'RO~T
INnGER IER1, IER2

CALL TQPRO'l(IER1}
AS LONG AS. IER1=0, I CAN"T B'E SUS,P'EN,OEO OR KILLED, BY ANY
OTHER TASK; IF ONE TRIES, IT BEUMES SUSP'END,ED U'NTIL
n lEAST I'M FIMISH'ED AND CALL TQUN'PROT_
PRIN:T 10, IER1
FORMAT (' ERROR CO'DE RETURN'ED FROM TQ.PR'OT IS

06, 'K')

I'VE C·O·M,PLETED· MY PROTECTED PAl-H_
CALL TQUNPROT(IER2)
PRINT 2.0" IER2
FORMn (' ERROR CODE RETURNE'D FROM TQU~PROT IS

END

093-000273-00

TQPRRDY
Ready' all tasks of a specified priority.

Format
CALL TQPRRDY(priority, ier)

,Arguments
priority is an INTEGER *2 expression that specifies the priority of the tasks to be made ready.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE ADS PROGRAM CALL __ TQPRRDY
INTEGER IER

C
C MAKE READY ANY TASK WHOSE PRIORITY NUMBER IS B.

CALL TQPRRDY(B, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQPRRDY IS 06.' K')
C

END

4-46 Licensed Material-Property of Data General Corporation 093-000273-00

TQPRSUS
Suspend all tasks of a specified priority.

Format
CALL TQPRSUS(priority. ier)

Arguments
priority is an INTEGER *2 expression that specifies the priority of the tasks to be suspended.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQPRSUS
INTEGER PRIORITY __ 5, IER

C
C SUSPEND ANY TASK WHOSE PRIORITY NUMBER IS 5.

C

PRIORITY __ 5 = 5
CALL TQPRSUS(PRIORITY __ 5, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQPRSUS IS

END

06, 'K')

093·000273·00 Licensed Material·Property of Data General Corporation 4-47

TQQTASK
Create a queued task.

Format
CALL TQQTASK(subroutine, task_definition_packet, ier)

Arguments
subroutine is the name of the subroutine you are placing on a queue for execution.

Declare it EXTERNAL.

task_definition_packet is an INTEGER *2 (not INTEGER *4) array that contains the task definition
packet. Don't alter this array while it is in the task queue. You can alter it
after a corresponding execution of TQDQTSK.

ier is an INTEGER *2 variable or array element that receives the result code.

Explanation
This routine assumes you have built task_definition_packet according to the operating system
programmer's manual. However, this routine (and its complement, TQDQTSK) will restrict or overwrite
the following words in the parameter packet:

• ?DID (task ID) cannot be zero. Every task must have a unique ID number.

• ?DSTB (stack base), if zero or negative, is replaced by F77's own value. Otherwise, F77 uses a
positive number as the address of the stack base. Then, you must declare an array of length
?DNUM*?DSSZ and use the WORDADDR function to place the address of this array in ?DSTB.

• ?DSFL T (stack fault handler) is replaced by F77's own value.

• If you set ?DSSZ (stack size) to zero, F77 provides a default size.

• ?DPC is replaced (by F77) by the subroutine's address.

Example
Read the sample program CALL_TQDQTSK that is part of the explanation of the TQDQTSK
subroutine. This program shows one way to set up a task definition packet for the TQQT ASK
subroutine.

4-48 Licensed Material-Property of Data General Corporation 093-000273-00

o

(\

TQREC
Receive an intertask message.

Format
CALL TQREC(mailbox, message, ier)

Arguments
mailbox is an INTEGER *2 variable or array element that specifies the word from which you will

receive a message from another task. Note, mailbox must be in a COMMON area shared
by both this and the sending task.

message is an INTEGER *2 variable or array element that contains a nonzero message; this message
arrives from the previous argument, mailbox.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C

C
C
C
C
C

10
1

C

SAMPLE F77 PROGRAM CALL __ TQREC
INTEGER,MAILBOX, MESSAGE, IER
COMMON ICOLDI MAILBOX

SEE IF THERE IS A NON-ZERO MESSAGE IN VARIABLE MAILBOX. IF
SO, MOVE THE CONTENTS OF MAILBOX TO VARIABLE MESSAGE
AND PLACE A ZERO IN VARIABLE MAILBOX. IF THERE IS NO
SUCH MESSAGE, THEN WAIT FOR THE MESSAGE.

CALL TQREC (MAILBOX, MESSAGE, IER)
PRINT 10, MESSAGE, IER
FORMAT (' MESSAGE RECEIVED IS: ' 06, 'K', I,

ERROR CODE VALUE IS: ' 06, 'K')

END

093·000273·00 Licensed Materiel·Property of Data General Corporation 4-49

TQRECNW
Receive an intertask message without waiting.

Format
CALL TQRECNW(mailbox, message, ier)

Arguments
mailbox is an INTEGER *2 variable or array element that specifies the word from which you will

receive a message from another task. Note, mailbox must be in a COMMON area shared
by both this and the sending task.

message is an INTEGER *2 variable or array element that contains a nonzero message; this message
arrives from the previous argument, mailbox.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQRECNW
INTEGER MAILBOX, MESSAGE, IER
COMMON ICOLDI MAILBOX

C
C
C
C
C

C

10

4-50

SEE IF ADS HAS PLACED A ONE-WORD MESSAGE IN VARIABLE MAILBOX.
IF SO, MOVE THE CONTENTS OF MAILBOX TO VARIABLE
MESSAGE, AND PLACE A ZERO IN VARIABLE MAILBOX; THEN
DISPLAY THE FINDING.

MESSAGE = 0 ! INITIAL ASSUMPTION: NO MAIL FOR ME
CALL TQRECNW (MAILBOX, MESSAGE, IER)
IF (MESSAGE .EQ. 0) THEN

PRINT *, 'NO MESSAGE RECEIVED'
ELSE

PRINT 10, MESSAGE
FORMAT (' MESSAGE RECEIVED IS: 06, 'K')

ENDIF

END

Licensed Material·Property of Data General Corporation 093·000273·00

TQSTASK
Initiate one task.

Format
CALL TQSTASK(subroutine, taskid, priority, stacksize, ier)

Arguments
subroutine is the name of the subroutine you want to initiate. Declare it EXTERNAL.

taskid is an INTEGER *2 expression that contains the task's ID number.

priority is an INTEGER *2 expression between 0 and 255, inclusive, which specifies the task's
priority.

stacksize is an INTEGER *2 expression that specifies the size of your stack in words.

You can specify zero, and F77 creates a default-size stack. It creates such a stack by
dividing available memory equally among the n tasks specified by the F77LINK switch
ITASKS=n.

If you specify stacksize, it should be large enough for your task's local variables, return
blocks, and I/O buffers. For more information, see the last section of this chapter ("AOS
F77 Multitask S'tack Definition").

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE ADS PROGRAM CALL __ TQSTASK
INTEGER IER
EXTERNAL SUB __ 14

C
C START THE TASK IN SUBROUTINE "SUB __ 14" WHOSE ID IS 14, WHOSE
C PRIORITY NUMBER IS 18, AND WHOSE STACK SIZE IS SELECTED BY F77.

C

CALL TQSTASK (SUB __ 14, 14, 18, 0, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQSTASK IS 06,' K')

END

093·000273·00 Licensed Material·Property of Data General Corporation 4-51

TQSUS
Suspend the calling (current) task.

Format
CALL TQSUS(ier)

Argument
ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE ADS PROGRAM CALL __ TQSUS
INTEGER I~R

C
C SUSPEND THE CALLING (I.E .. THE CURRENT = THIS) TASK

CALL TQSUS (IER)
PRINT 10. IER

10 FORMAT (' ERROR CODE RETURNED FROM TQSUS IS 06.' K')
C

END

4-52 L.icensed Material·Property of Data General Corporation 093·000273·00

TQUNPROT .
Exit a protected area.

Format
CALL TQUNPROT(ier)

Argument
ier is an INTEGER *2 variable or array element that receives the result code.

Explanation
This routine has no direct counterpart in AOS.

Any protected path in a task begins with a call to the TQPROT routine and ends with a call to the
TQUNPROT routine. See the explanation of TQPROT for more information about TQUNPROT and
how these two calls affect a task's protect count field.

Example
See the sample program CALL_TQPROT under the explanation of subroutine TQPROT.

093-000273·00 Licensed Material-Property of Data General Corporation 4-53

TQXMT
Transmit an intertask message.

Format
CALL TQXMT(mailbox, message, flag, ier)

Arguments
mailbox is an INTEGER *2 variable or array element that specifies the word into which you will

place a message for transmission to another task or tasks. You must place mailbox in a .
COMMON area shared by the receiving task or tasks, and mailbox must contain zero
before the call.

message is an INTEGER *2 expression that contains a nonzero message; this message goes to the
previous argument, mailbox.

flag is an INTEGER *2 expression whose values and corresponding directions are

-1 Transmit the message to all waiting receiving tasks.

Not -1 Transmit the message to only the waiting receiving task with the highest priority.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C SAMPLE F77 PROGRAM CALL __ TQXMT
INTEGER MAILBOX, IER
COMMON /COLD/ MAILBOX

C
C SEND THE "MESSAGE" 377K TO VARIABLE MAILBOX AND THEN FROM
C THERE TO ALL AWAITING TASKS REGARDLESS OF THEIR PRIORITIES.

MAILBOX = 0
CALL TQXMT (MAILBOX, 377K, -1, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQXMT IS", 06,. 'K')
C

END

4-54 licensed Material·Property of Data General Corporation 093·000273·00

TQXMTW
Transmit an intertask message and wait for its reception.

Format
CALL TQXMTW(mailbox, message, flag, ier)

Arguments
mailbox is an INTEGER *2 variable or array element that specifies the word into which you will

place a message for transmission to another task or tasks. You must place mailbox in a
COMMON area shared by the receiving task or tasks, and mailbox must contain zero
before the call.

message is an INTEGER *2 expression that contains a nonzero message; this message goes to the
previous argument, mailbox.

flag is an INTEGER *2 expression whose values and corresponding directions are

-1 Transmit the message to all waiting receiving tasks.

Not -1 Transmit the message to only the waiting receiving task with the highest priority.

ier is an INTEGER *2 variable or array element that receives the result code.

Example

C

C

SAMPLE F77 PROGRAM CALL __ TQXMTW
INTEGER MAILBOX, IER
COMMON ICOLDI MAILBOX

C SEND THE "MESSAGE" 377K TO VARIABLE MAILBOX AND THEN FROM
C THERE TO ONLY THE TASK WITH THE HIGHEST POSSIBLE PRIORITY.

C

MAILBOX = 0
CALL TQXMTW (MAILBOX, 377K, 1, IER)
PRINT 10, IER

10 FORMAT (' ERROR CODE RETURNED FROM TQXMTW IS 06,' K')

END

093·000273·00 Licensed Material·Property 0·' Data General Corporation 4-55

Another Sample Multitasking Program
We have created a sample multitasking program with its program units TASKO, TASKll, TASKI2,
TASKI3, TASKI4, and TASKI5. At runtime:

• TASKO initiates TASKll, TASKI2, TASK13, TASKI4, and TASKI5; it also opens a fresh file,
TASKO.OUT, to receive the tasks' output.

• TASK 11 writes a message into T ASKO.OUT every 5 seconds.

• TASK12 writes a message into TASKO.OUT every 15 seconds.

• TASK13 accepts 10 integers into array IARRA Y from the console.

• TASK 14 sorts the elements of IARRA Y into ascending order.

• TASK15 displays IARRAY and kills TASKll, TASKI2, TASKI3, TASKI4, and itself.

Listings of TASKO, TASKll, TASKI2, TASKI3, TASKI4, and TASK15 appear in respective
Figures 4-12, 4-13, 4-14, 4-15, 4-16, and 4-17.

4-56 Licensed Material-Property of Data General Corporation 093-000273-00

()

Source file: TASKO.F77
Compiled on 05-Nov-82 at 14:30:52 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASKO.LS

1
2 C
3 C
4
5
6

PROGRAM TASKO MAIN PROGRAM TO INITIALIZE TASKS
TASK11, TASK12, TASK13, TASK14,
AND TASK15.

EXTERNAL TASK11, TASK12, TASK13, TASK14, TASK15

7
8 C
9 C

COMMON ICOLDI MAIL34, MAIL45, IARRAY(10) ! FOR TASK13 -> TASK14
COMMUNICATION, TASK14 -> TASK 15 COMMUNICATION,
AND THE ARRAY TO BE OBTAINED, SORTED, AND PRINTED.

10
11
12
13 C

MAIL34 = 0
MAIL45 = 0

ALL OUTPUT GOES TO FRESH FILE <TASKO.OUT>.
14 OPEN (1, FILE='TASKO.OUT', STATUS = 'FRESH',
15 1 RECFM='DATASENSITIVE', CARRIAGECONTROL='LIST')
16 WRITE (1, 10)
17 10 FORMAT ('IN FILE TASKO.OUT: TASKO HAS BEGUN<NL>')
18
19 C
20 C
21 C
22
23
24
25
26

INITIATE THE TASKS VIA SUBROUTINE <TQSTASK> BY GIVING AS
ARGUMENTS EACH TASKS'S NAME, 10 NUMBER, PRIORITY,
AND SYSTEM-SELECTED STACK SIZE.

CALL TQSTASK (TASK11, 11, 7, 0, IER)
IF (IER .NE. 0) THEN

PRINT *, 'ERROR " IER, ' OCCURRED IN TASKO WHILE
1 'INITIATING TASK11'

27 STOP '-- PROGRAM ENDS NOW'
28 ENDIF
29
30 CALL TQSTASK (TASK12, 12, 7, 0, IER)
31 IF (IER .NE. 0) THEN
32 PRINT *, 'ERROR', IER, ' OCCURRED IN TASKO WHILE
33 1 'INITIATING TASK12'
34 STOP '-- PROGRAM ENDS NOW'
35 ENDIF
36
37 CALL TQSTASK (TASK13, 13, 7, 0, IER)
38 IF (IER .NE. 0) THEN
39 PRINT *, 'ERROR " IER, ' OCCURRED IN TASKO WHILE
40 1 'INITIATING TASK13'
41
42
43

ENDIF
STOP '-- PROGRAM ENDS NOW'

44 CALL TQSTASK (TASK14, 14, 7, 0, IER)
45 IF (IER .NE. 0) THEN
46 PRINT *, 'ERROR', IER, ' OCCURRED IN TASKO WHILE
47 1 'INITIATING TASK14'
48
49

093·000273·00

STOP '-- PROGRAM ENDS NOW'
ENDIF

Figure 4-12. A Listing of Subroutine T ASK_11.F77 (continues)

Licensed Material·Property of Data General Corporation 4-57

50
51
52
53
54
55
56
57
58 C
59
60
61
62
63
64
65
66
67

4-58

CALL TQSTASK (TASK15, 15, 7, 0, IER)
IF (IER .NE. 0) THEN

PRINT *, 'ERROR " IER, ' OCCURRED IN TASKO WHILE
1 'INITIATING TASK15'

STOP '-- PROGRAM ENDS NOW'
ENDIF

I'M DONE.
PRINT *, 'TASKO IS DYING'
CALL TQKILL (IER)
IF (IER .NE. 0) THEN

PRINT *, 'ERROR IER, , OCCURRED IN TASKO WHILE
1 'KILLING (TQKILL) TASKO'

STOP '-- PROGRAM ENDS NOW'
ENDIF

END

Figure 4-12. A Listing of Program T ASKO.F77 (concluded)

Licensed Material·Property of Data General Corporation 093·000273·00

Source file: TASK11.F77
Compiled on 05-Nov-82 at 14:31:44 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASK11.LS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

SUBROUTINE TASK11

C THIS TASK WRITES A MESSAGE INTO FILE <TASKO.OUT> EVERY 5
C SECONDS. <TASKO:OUT> IS OPENED BY MAIN PROGRAM <TASKO>.

COMMON ICOLOI MAIL34, MAIL45, IARRAY(10)
DIMENSION ITIME(3)

%INCLUDE 'TASK11 __ SYMBOLS.F77.IN' ! FOR ?DELAY SYSTEM CALL
**** F77 INCLUDE file for system parameters ****

**** Parameters for SYSID ****

INTEGER*2 ISYS __ DELAY
PARAMETER (ISYS __ DELAY = 13)

**** Parameters for PARU ****

?DELAY = 15K

**** END of F77 INCLUDE file for system parameters ****

24 WRITE (1, 10)
25 10 FORMAT ('IN FILE TASKO.OUT: TASK11 HAS BEGUN <NL>')
26
27 20 IACO = 0 ACO AND
28 IAC1 = 5000 AC1 SPECIFY A DELAY OF 5000 MILLISECONDS
29 IAC2 = 0
30 C DELAY (SUSPEND) THIS TASK FOR 5 SECONDS.
31 IER = ISYS(ISY.S __ DELAY, IACO, IAC1, IAC2)
32 IF (IER .NE. 0) THEN
33 PRINT *, 'ERROR " IER, ' OCCURRED IN TASK11 DURING
34 1 'A ?DELAY SYSTEM CALL'
35 STOP '-- PROGRAM ENDS NOW'
36 ENDIF
37
38 CALL TIME (ITIME)
39 WRITE (1, 30) ITIME
40 30 FORMAT ('TASK11 REPORTS AFTER A 5-SECOND DELAY AT
41 1 12, ':',12, ':',12)
42 GO TO 20
43
44 END

Figure 4-13. A Listing of Subroutine T ASK11.F77

093·000273·00 Licensed Material-Property of Data General Corporation 4-59

Source file: TASK12.F77
Compiled on 05-Nov-82 at 14:32:15 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASK12.LS

1
2
3
4
5
6
7
8
9

10
11

SUBROUTINE TASK12

C THIS TASK WRITES A MESSAGE INTO FILE <TASKO.OUT> EVERY 15
C SECONDS. <TASKO.OUT> IS OPENED BY MAIN PROGRAM <TASKO>.

COMMON ICOLDI MAIL34, MAIL45, IARRAY(10)
DIMENSION ITIME(3)

%INCLUDE 'TASK12 __ SYMBOLS.F77.IN' ! FOR ?DELAY SYSTEM CALL
**** F77 INCLUDE file for system parameters ****

12 **** Parameters for SYSID ****
13
14
15
16
17
18 ****
19
20
21
22
23
24
25
26

10

20

INTEGER*2 ISYS __ DELAY
PARAMETER (ISYS __ DELAY = 13)

Parameters for PARU ****

?DELAY 15K

END of F77 INCLUDE file for system parameters ****

WRITE (1, 10)
FORMAT ('IN FILE TASKO.OUT: TASK12 HAS BEGUN <NL>')

IACO = 0 ACO AND 27
28 IAC1 = 15000 AC1 SPECIFY A DELAY OF 15000 MILLISECONDS

4-60

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

C

1

30
1

IAC2 = 0
DELAY (SUSPEND) THIS TASK FOR 15 SECONDS.
IER = ISYS(ISYS __ DELAY, IACO, IAC1, IAC2)
IF (IER .NE. 0) THEN

ENDIF

PRINT *, 'ERROR', IER, ' OCCURRED IN TASK12 DURING
'A ?DELAY SYSTEM CALL'

STOP '-- PROGRAM ENDS NOW'

CALL TIME (ITIME)
WRITE (1, 30) ITIME
FORMAT ('TASK12 REPORTS AFTER A 15-SECOND DELAY AT

12, ':',12, ':',12)
GO TO 20

END

Figure 4-14. A Listing of Subroutine T ASK12.F77

Licensed Material·Property of Data General Corporation 093·000273·00

0

Source file: TASK13.F77
Compiled on 05-Nov-82 at 14:32:45 by AOS f77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASK13.LS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2:0
21
2.2
23
24
25
26
27
28
29
3:0

·093·00aZ73cOO

SUBROUTINE TASK13

C THIS TASK ACCEPTS INTO <IARRAY> 10 INTEGERS FROM THE CONSOLE
C AND THEN SENDS A MESSAGE TO <TASK14>.

COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)

PRINT *
PRINT * 'GIVE ME 10 INTEGERS'
PRINT *

DO 10 I = 1, 10
PRINT *, 'INTEGER NUMBER
READ *, IARRAY (I)

10 CONTINUE

PRINT *

I '?

CNOTIFY <TASK14> THAT I'M :DONE S,O IT CA.N SORT <aRRAY>.
C I'LL SEND IT THE NUMBER 3 AS T~E MESSAGE.

CALL TQXMT (MAIt34. 3, -1, IER)

IF{ IER .NE. tl) THEN
PRINT *, 'ERRO.R " IER, 'OCCURRED IN TASK13 'DURING

1 'A CALL TO TQlMT
STOP '-- PROGRAM ENDS NOW'

ENDIF

END

Figure 4-! 5. A Listing.of Subroutine TASK! 3.F77

:Licensed Male.~iaHP,ropert·y ,of 'D,ata ,GeneJ.e:1 'Corpor,aHon 4-61

Source file: TASK14.F77
Compiled on 05-Nov-82 at 14:33:24 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASK14.LS

4-62

1 SUBROUTINE TASK14
2
3 C THIS TASK AWAITS THE RECEIPT OF THE MESSAGE WHOSE VALUE IS 3
4 C FROM <TASK13>. THEN, IT SORTS THE ELEMENTS OF <IARRAY>
5 C INTO ASCENDING ORDER AND FINISHES BY SENDING A MESSAGE TO
6 C <TASK14>.
7
8
9

COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)

10 10 CALL TQREC (MAIL34, MESSAGE, IER)
11 IF (IER .NE. 0) THEN
12 PRINT *, 'ERROR " IER, ' OCCURRED IN TASK14 DURING
13 1 'A CALL TO TQREC
14 STOP '-- PROGRAM ENDS NOW'
15 ENDIF
16
17 C <MESSAGE> MUST BE 3; WAIT SOME MORE IF IT ISN'T
18 IF (MESSAGE .EQ. 3) GO TO 20
19 GO TO 10 <MESSAGE> DOES NOT CONTAIN 3.
20

<MESSAGE> DOES CONTAIN 3. 21
22
23

20 CONTINUE
30 KSWAP = 0 COUNT OF SWAPS FOR THE NEXT PASS THROUGH <IARRAY>

24
25
26 C
27
28
29
30
31 . 40

DO 40 I = 1, 9
IF (IARRAY(I) .LE. IARRAY(I+1)) GO TO 40
SWAP THE CONTENTS OF THE CURRENT TWO <IARRAY> ELEMENTS.
ITEMP = IARRAY(I)
IARRAY(I) = IARRAY(I+1)
IARRAY(I+1) = ITEMP
KSWAP = KSWAP +1 ! COUNT THIS SWAP
CONTINUE

32 IF (KSWAP .GE. 1 GO TO 30 ! <IARRAY> MIGHT NOT BE SORTED YET
33
34 C
35 C
36

<IARRAY> IS SORTED NOW, SO SEND A MESSAGE WHOSE VALUE IS 4
TO <TASK15>.

37 CALL TQXMT (MAIL45, 4, -1, IER)
38 IF (IER .NE. 0) THEN
39 PRINT *, 'ERROR " IER, ' OCCURRED IN TASK14 DURING
40 1 'A CALL TO TQXMT
41 STOP '-- PROGRAM ENDS NOW'
42
43
44

ENDIF

END

Figure 4-16. A Listing of Subroutine TASK14.F77

Licensed Material-Property of Data General Corporation 093·000273·00

o

o

Source file: TASK15.F77
Compiled on 05-Nov-82 at 14:34:03 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TASK15.LS

1 SUBROUTINE TASK15
2
3 C THIS TASK AWAITS THE RECEIPT OF THE MESSAGE WHOSE VALUE IS 4
4 C FROM <TASK14>. THEN, IT OISPLAYS THE SORTED ELEMENTS OF .
5 C <IARRAY> AND SEQUENTIALLY KILLS ALL ACTIVE TASKS, INCLUDING
6 C ITSELF.
7
8
9

COMMON ICOLDI MAIL34, MAIL45, IARRAY(10)

10 10 CALL TQREC (MAIL45, MESSAGE, IER)
11 IF (IER .NE. 0) THEN
12 PRINT *, 'ERROR " IER, ' OCCURRED IN TASK15 DURING
13 1 'A CALL TO TQREC
14 STOP '-- PROGRAM ENDS NOW'
15 ENDIF
16

C

20

30

<MESSAGE> MUST BE 4; WAIT SOME MORE IF IT ISN'T
IF (MESSAGE .EQ. 4) GO TO 20
GO TO 10 <MESSAGE> DOES NOT CONTAIN 4.

CONTINUE <MESSAGE> DOES CONTAIN 4.

DO 30 I = 1, 10
PRINT *, I, '<TAB>', IARRAY(I)
CONTINUE

WRITE (1, 40) ! CLEAN-UP MESSAGE

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40 FORMAT ('<NL>*** TASK 15 REPORTS: THIS IS THE LAST RECORD ***<NL>')

C KILL THE OTHER TASKS AND THEN MYSELF.
PRINT *
PRINT * 'TASK15 IS ABOUT TO KILL ALL OTHER TASKS AND THEN ITSELF'
PRINT *

DO 50 I = 11, 15
CALL TQIDKIL(I, IER)
IF (IER .NE. 0) THEN

PRINT *
39 PRINT * 'ERROR IER, , OCCURRED IN TASK15 DURING "
40 1 'A CALL TO TQIDKIL
41 PRINT * 'THE ID OF THE TASK TQIDKIL FAILED ON IS
42 PRINT *
43 ENDIF
44 50 CONTINUE
45
46 END

Figure 4-17. A Listing of Subroutine T ASK15.F77

093·000273·00 Licensed Material·Property of Data General Corporation 4-63

The commands

F77(TASKOTASK11 TASK12TASK13TASK14TASK1~
F77L1NK/TASKS=6 TASKO TASK11 TASK12 TASK13 TASK14 TASK15

create TASKO.PR. Macro F77LINK.CLI by default includes its /IOCONFLICT=QUEUE switch
and value, so there is no possibility of an I/O conflict problem with file T ASKO.OUT at runtime.

The results of a typical execution of T ASKO.PR are next.

) X TASKO)

T ASKO IS DYING

GIVE ME 10 INTEGERS

INTEGER NUMBER 1 ?

INTEGER NUMBER 2 ?

INTEGER NUMBER 3 ?

INTEGER NUMBER 4 ?

INTEGER NUMBER 5 ?

INTEGER NUMBER 6 ?

INTEGER NUMBER 7 ?

INTEGER NUMBER 8 ?

INTEGER NUMBER 9 ?

INTEGER NUMBER 10 ?

1 -17

2 -3

3 0

4 9

5 40

6 58

7 85

8 129

9 178

10 941

85)

941)

-17)

40)

129)

-3)

178)

58)

0)

9)

T ASK15 IS ABOUT TO KILL ALL OTHER TASKS AND THEN ITSELF

ERROR 12 OCCURRED IN T ASK15 DURING A CALL TO TQIDKIL
THE ID OF THE TASK TQIDKIL FAILED ON IS 13

ERROR 12 OCCURRED IN T ASK15 DURING A CALL TO TQIDKIL
THE ID OF THE TASK TQIDKIL FAILED ON IS 14

) TYPE TASKO.OUT)

IN FILE T ASKO.OUT: T ASKO HAS BEGUN

IN FILE TASKO.OUT: TASK12 HAS BEGUN

IN FILE TASKO.OUT: TASKll HAS BEGUN

4-64 Licensed Material·Property of Data General Corporation 093·000273·00

TASKll REPORTS AFTER A 5-SECOND DELAY AT 14:35:21
TASKll REPORTS AFTER A 5-SECOND DELAY AT 14:35:26
TASK12 REPORTS AFTER A 15-SECOND DELAY AT 14:35:31
T ASK11 REPORTS AFTER A 5-SECOND DELAY AT 14:35:31
TASKll REPORTS AFTER A 5.,SECOND DELAY AT 14:35:36
TASKll REPORTS AFTER A 5-SECOND DELAY AT 14:35:41
TASK12 REPORTS AFTER A 15-SECOND DELAY AT 14:35:46
TASKll REPORTS AFTER A 5-SECOND DELAY AT 14:35:46
TASKll REPORTS AFTER A 5-SECOND DELAY AT 14:35:52

*** TASK 15 REPORTS: THIS IS THE LAST RECORD ***
Several questions arise from an examination of T ASKO's output. We also present some answers.

1. Why does error 12, "TASK I.D. ERROR" (from the symbol ERTID in PARU.SR), occur when
TASKI5 issues a TQIDKIL call to tasks with ID numbers 13 and 14?

TASK13 and TASKI4 are inactive at this time. They have executed all their statements, and thus
the task scheduler has already killed them. An attempt by TQIDKIL to kill a task that is inactive
results in an ERTID error.

2. TASKO issues TQSTASK calls to TASKII and TASK 12 in that order. Yet, TASKI2 places its
start-up message in TASKO.OUT before TASKII does. Why?

The task scheduler has many steps to perform, and these steps have certain time-dependent
relationships. As a result, the order of task execution can vary slightly from one execution of a
program to another. Repeated execution of T ASKO.PR would vary the order of appearance of the
initial messages from TASKII and TASKI2 in TASKO.OUT.

3. TASKO.OUT shows TASKII reporting at 14:35:46 and next at 14:35:52. These times are 6
seconds apart, not 5. Why?

Again, the task scheduler has much work to do. The fraction of a second that elapses between the
completion of the ?DELAY and ?GTOD system calls can be enough to result in a reported
difference of 6 seconds.

AOS F77 Multitask Stack Definition
An AOS F77 multi task program, during its initialization phase at runtime, divides all available
memory into a number of memory blocks. Each task has a memory block to contain the task's stack and
other information about the task. The portion of a memory block with this other information is called
the per task area. The initialization phase follows these steps:

I. Obtain all stack memory available to the process.

2. If the program file does not include an .08 file that used macro F77ST ACK to request specific
stack sizes, then go to step 3. Otherwise, the program requests specific stack lengths via the
inclusion of specifications from macro F77ST ACK; so, create the memory blocks to provide the
requested stacks.

3. Calculate the number of default-size memory blocks to create. This equals the number of tasks
specified with the IT ASKS = F77LINK switch, minus the number of memory blocks set aside in
step 2. If you have not used macro F77ST ACK to request specific stack lengths, then the number
of tasks given by the ITASKS= F77LINK switch specifies the number of default-size memory
blocks (each containing one default-size stack) that will be created.

4. Set aside the memory blocks for the default-size stacks by dividing the amount of remaining
available memory by the number of default-size stacks needed.

If any stack specified by macro F77STACK cannot fit within remaining available memory, then
F77 reports a STACK OVERFLOW error during initialization.

093·000273·00 Licensed Material·Property 01 Data General Corporation 4-65

The runtime routines select a memory block for a task when they create it. As you have seen, this block
is used for task information and for its runtime stack. The method the F77 runtime routines use to
select an appropriate memory block follows these basic steps:

1. Obtain the requested stack size, specified either by the <stacksize> argument to TQST ASK or
the ?DSSZ value of <tasLdefinition_packet> to TQQT ASK.

2. Scan a list of "memory block identifiers" to find free blocks of memory that are large enough to
provide the requested stack space. The previous four steps explain the creation of the blocks of
memory.

3. Choose the closest fitting memory block, lock it in use, build a task packet, and start a task whose
stack is in the chosen memory block.

If no memory block is found that is large enough, then an error is returned to the routine
attempting to start the task.

File F77STACK.SR, which comes with your release of AOS F77, contains two assembly language
(MASM) macros. You use these macros to request special stack lengths to the F77 runtime initializer.
The macros are named F77STACK and MAINSTACK; their descriptions follow.

Macro F77ST ACK
This macro requests the initialization of memory blocks with a specified stack length. The following
rules apply to F77ST ACK:

• All numbers are decimal.

• The first call must be

F77STACK

to initialize the request table.

• The last call must be

F77STACK

to terminate the request table.

• Calls in between can be either

F77STACK <size>

or

F77STACK <size> <count>

where:

<size> is the number of words to be reserved for a stack.

<count> is the number of stacks of length <size>. If <count> is absent, then its assumed
value is 1.

Macro MAINST ACK
This macro specifies a stack size for the main task. The following rules apply to MAINST ACK:

• All numbers are decimal.

• Make the call by writing

MAINSTACK <size>

4-66 Licensed Material·Property of Data General Corporation 093·000273·00

where:

<size> is the stack size for the main task.

NOTE: This macro does not reserve any stack area. It simply selects an appropriately sized stack from
those stacks previously defined to the F77ST ACK macro.

Example Entries for F77STACK.SR
You create an assembly language source file whose principal entries have a pattern such as follows.

F77STACI(
F77STACIC 500
F77STACI(300 8
F77STACIC

MAINSTACI(500

FIRST call INITIALIZES the table.
Request 1 stack of 500. words.
Request 8 stacks of 300. words.
LAST call TERMINATES the table.

The main program will use the
SOD-word stack requested above.

The object module resulting from the assembly of these entries requests the F77 runtime initializer to
set up memory blocks for (1 +8) =9 stacks. If the /TASKS= F77LINK switch indicates a number of
tasks greater than 9, then the F77 initializer will calculate the difference and set up default-sized stacks
for the additional (beyond 9) tasks.

Operating Instructions for F77ST ACK
Perform the following steps to use macro F77ST ACK.

I. Create an assembly language source file. We refer to it here as YOURFILE.SR for identification
purposes only, but you can choose any appropriate name. A .TITLE statement should appear
early in YOURFILE.SR and an .END statement should appear at its end.

2. Insert your selected F77ST ACK and MAINST ACKentries in YOURFILE.sR.

3. Assemble YOURFILE.SR. The command is

X MASM/8 F77STACK/S YOURFILE

4. Create a program file containing the stack creation instructions from YOURFILE.OB. The
general command is

F77L1NK/TASKS=number mainprogram YOURFILE

How Necessary is F77ST ACK?
In most cases it will not be necessary to use either of the F77ST ACK or MAINST ACK macros. When
the program file doesn't include an object module that requests any special stack lengths, F77 will
automatically create the /TASKS= number of default-size stacks. For many programs the default-size
stacks are large enough and there is no need to use F77ST ACK.SR. However, if a CALL to TQST ASK
or TQQT ASK requests a stack size larger than the default value, a runtime error occurs.

An Example of Specific Stack Specifications
For some large and complicated multitasked programs it may be necessary to divide up the stack areas
in a specific manner. For example, consider a program where one task acts as a controller of several
minor tasks and some "average" size tasks. The controller task has a large number of local variables,
calls several levels of subroutines, and does I/O, while the minor tasks do only arithmetic calculations

093·000273·00 Licensed Material·Property of Data General Corporation 4-67

on scalar variables. The one controller task might need a stack that is larger than the default, while the
smaller tasks will not need all the stack memory of a default size stack. In this case, you want to request
special stack sizes with the F77ST ACK macro. To make these special requests, create an assembly
language source file such as the following .

. TITLE SAMPLE

F77STACK Initialize the request table.
F77STACK 12000 Request a stack of 12000 words for

the controller task.
F77STACK 199 3 Request 3 stacks of 199 words for

the minor tasks.
; Make no specific request for the "average" tasks.
F77STACK ; Terminate the request table.

Also assume that the controller task is
the main/initial taSk, and we want it to have
a stack of 12000. words.

MAINSTACK 12000 Assign the main program the 12000. word
stack specified above .

. END

If the program file is named CONTROLLER.F77 and has been compiled, then give the following
commands to create and execute CONTROLLER.PR with the stack sizes specified in SAMPLE.SR.

X MASM/8 F77STACK/S SAMPLE
F77L1NK/TASKS=6 CONTROLLER SAMPLE
XEQ CONTROLLER

During the program initialization stage of CONTROLLER.PR's execution, available memory will
include memory blocks containing:

• One stack of 12000 words.

• Three stacks of 199 words.

• Two default size stacks.

If CONTROLLER.F77 contains statements equivalent to the following five, then the tasks will have
the desired stacks.

CALL TQSTASK (MINOR_1, 11, 5, 199, IER)
CALL TQSTASK (MINOR_2, 12, 5, 199, IER)
CALL TQSTASK (MINOR_3, 13, 5, 199, IER)
CALL TQSTASK (AVERAGE_1, 21, 3, 0, IER)
CALL TQSTASK (AVERAGE_2, 22, 3, 0, IER)

The main task, because of the creation of CONTROLLER.PR by F77LINK with SAMPLE.OB, will
have a stack of 12000 words.

End of Chapter

4-68 Licensed Material-Property of Data General Corporation 093·000273-00

()

- I

Chapter 5
Debugging

Programmers commonly use the word debug to describe the process of locating and eliminating errors
from their programs. A bug is simply an error. -

This chapter explains possible errors in terms of their symptoms, their causes, and finding those causes.
The resulting changes to your programs, F77 commands, F77LINK commands, and program execution
commands are then largely your responsibility. This chapter now proceeds with the following sections:

• Traditional Debugging Methods

• The SWAT Debugger

• Avoid Errors BEFORE Coding

• Data General Bugs?

Traditional Debugging Methods
Typically, you begin the process of eliminating bugs when you first see a symptom. Symptoms include:

• Compiler error messages (i.e., from F77.CLI).

• Link error messages (i.e., from F77LlNK.CLI).

• Abnormal program termination at runtime.

• Incorrect output at runtime.

It's natural to ask "What about doing something to eliminate errors before beginning to write F77
statements?" We address this later in the "Avoid Errors BEFORE Coding" section of this chapter. But
first; we'll discuss how to detect errors after they occur.

The F77 compiler, Link, and the runtime routines report errors they find in your instructions and in
data the instructions process. The error messages summarize the problem. You correct it based on the
error messages, your knowledge of F77, and F77 documentation.

Data General F77 does not have a TRACE option to print the values of variables that the program
assigns as it proceeds. Instead, you can follow these traditional steps:

• Insert extra PRINT (or WRITE) statements for key variables at important places.

• Recompile and relink.

• Execute the program and examine the values of the key variables.

093·000273·00 Licensed Material·Property of Data General Corporation 5-1

• If the examination reveals the cause, then:

- Make corrections to the source program.

- Recompile and relink.

- Execute the program to ensure the elimination of the error.

- Eliminate the extra PRINT (or WRITE) statements from the source program.

- Recompile and relink.

• If the examination doesn't reveal the cause, then begin again at the first item in this list.

You can ease this process somewhat by declaring a logical named constant and making the extra output
statements depend on that constant. Then, redefinition of that constant will switch modes. For example,

LOGICAL DEBUG
PARAMETER (DEBUG .TRUE.)

C
IF (DEBUG) THEN

C PRINT THE VALUE OF KEY VARIABLES.
ENDIF

C
END

These steps, while fairly effective, can be quite time consuming. The mechanics of editing the source
program modules, compiling, linking, and executing require far more time than the creative aspects of
deciding which variables to print, when to print them, and how to interpret them. Is there a better way?
Yes - continue reading.

The SWAT Debugger
The SWAT Debugger does not debug in the sense of removing errors. However, it is a big help in
finding errors; then it's up to you to change your program to eliminate the errors.

To use the SWAT debugger, you should read the SWATTM Debugger User's Manual and the Release
Notice for the current revision of the documentation. However, a brief explanation of SWAT software
fundamentals and a sample SWAT debugging session follow. They will show you the features of the
SWAT debugger and should whet your appetite to use it.

Sample Program Modules SORT10.F77 and TEST_SORT10.F77
Subroutine SORTIO.F77 contains instructions to sort a character array of up to 100 lO-byte elements
into alphabetical order. The main program, TEST_SORTlO.F77, contains an unsorted character
array of lO-byte elements. At runtime, TEST_SORTIO CALLs SORTIO to sort the array, and then
the main program displays the sorted array. Following are the first pages of TEST_SORTIO.LS and
SORTIO.LS after the compiler has created them. The respective compilation commands are

F77 IDEBUG/L=TEST_SORT10.LS TEST_SORT 10
F77 IDEBUG/L=SORT10.LS SORT10

The /DEBUG switch has the compiler generate symbols and code for SWAT.

5-2 Licensed Material·Property of Data General Corporation 093·000273·00

Source file: TEST __ SORT10.F77
Compiled on 22-0ct-82 at 17:10:36 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/DEBUG/L=TEST __ SORT10.LS

PROGRAM TEST __ SORT10 TO TEST SUBROUTINE SORT10 1
2
3
4
5
6
7
8
9

CHARACTER*80 ALL __ OF __ THE __ NAMES I ALL THE NAMES, IN ONE CONVENIENT
C AND EASY-TO-CONSTRUCT STRING

C
C

CHARACTER*10 NAMES(8) <NAMES> WILL CONTAIN THE EIGHT
ELEMENTS THAT <SORT10> WILL
SORT ALPHABETICALLY.

C THE NEXT TWO LINES HELP TO CONSTRUCT <ALL __ OF __ THE __ NAMES>.
10
11
12
13

C00000000111111111122222222223333333333444444444455555555556666666666777
C23456789012345678901234567890123456789012345678901234567890123456789012

DATA ALL_OF_THE_NAMES I 'MIKE HENRIETTA ENRICO LISA
+ JEFFREY BETSY ALICE NORMAN 'I

14
15 C PLACE THE 8 INDIVIDUAL FIRST NAMES INTO <NAMES> FROM THE SINGLE
16 C STRING <ALL __ OF __ THE __ NAMES>.
17 DO 10 I = 1, 8
18 NAMES(I) = ALL __ OF __ THE __ NAMES(10*I-9 : 10*1) ! EXAMPLE: IF
19 C I = 2, THEN <ALL __ OF __ THE __ NAMES(11:20» IS
20 C 'HENRIETTA' AND <NAMES(2» IS ALSO 'HENRIETTA
21 10 CONTINUE
22
23 C SORT THE NAMES INTO ALPHABETICAL ORDER.
24 CALL SORT10 (NAMES, 8)
25
26 C PRINT THE RESULTS.
27 WRITE (10, *)
28 WRITE (10, *) 'THE SORTED NAMES ARE:'
29 WRITE (10, *)
30 DO 30 I = 1, 8
31 WRITE (10, *) NAMES(I)
32 30 CONTINUE
33
34 WRITE (10, *)
35 WRITE (10, *) '*** END OF JOB ***'
36 STOP
37 END

093·000273·00 Licensed Material·Property of Data General Corporation 5-3

Source file: SORT10.F77
Compiled on 22-0ct-82 at 17:12:07 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/0EBUG/L=SORT10.LS

1 SUBROUTINE SORT10 (C __ ARRAY, N)
2
3 C THIS SUBROUTINE SORTS THE FIRST <N> ELEMENTS OF A
4 C CHARACTER*10 ARRAY, <C __ ARRAY>, WITH AT MOST 100 ELEMENTS
5 C (EACH 10 BYTES LONG).
6
7 C
8 C
9 C

10C
11

SORTING METHOD: TRADITIONAL "BUBBLE" SORT WHICH MOVES THE
HIGHER-VALUED ELEMENTS (SUCH AS "ZACHARY") TO THE RIGHT IN
THE ARRAY AND THE LOWER-VALUED ELEMENTS (SUCH AS "AMANDA")
TO THE LEFT ELEMENTS OF THE ARRAY.

12 CHARACTER*10 C __ ARRAY(100)
13 CHARACTER*10 TEMP TEMPORARY STORAGE AREA REQUIRED
14 C
15
16
17
18
19
20 C
21
22
23
24
25

IF (N .LT. 2) GO TO 30

HERE WE GO ...

DO 20 J = 1, N __ LESS __ 1
M = N-J

DO 10 I = 1, M

BY THE SORT ROUTINE

NO NEED TO SORT.

26 IF (C __ ARRAY(I) .LE.
27 1 C __ ARRAY(It1) GO TO 10
28
29 CIT'S NECESSARY TO SWAP TWO ADJACENT ELEMENTS OF <C __ A,RRAY>.
30 C FOR EXAMPLE, <C __ ARRAY(2» MIGHT CONTAIN "EDWARD "AND
31 C <C __ ARRAY(3» MIGHT CONTAIN "BEVERLY "; THEN THE NEXT
32 C THREE STATEMENTS EXECUTE TO PERFORM THE SWAP. AFTER THE
33 C SWAP, <C __ ARRAY(2» WILL CONTAIN "BEVERLY "AND
34 C <C __ ARRAY(3» WILL CONTAIN "EDWARD
35
36 TEMP = C __ ARRAY(I)
37 C __ ARRAY(I) = C __ ARRAY(I+1)
38 C __ ARRAY(I+1) = TEMP
39
40 10 CONTINUE
41 20 CONTINUE
42
43 C DONE I
44
45 30 RETURN
46
47 END

5-4 licensed Material·Property of Data General Corporation

()

093·000273·00

Sample Execution without the SWAT Debugger
The command to create TEST_SORTIO.PR so that we can execute it either with or without the
SW AT debugger is

F77L1NK/OEBUG TEST_SORT10 SORT10

If we give the eLI command

X TEST_SORT10

then TEST_SORTIO.PR displays the following.

THE SORTED NAMES ARE:

ALICE
NORMA

ENRICO
EY BETSY
HENRIETTA
LISA JEFFR
MIKE
N

*** END OF JOB ***
STOP

Obviously, this program has at least one bug that results in the mixing of names. We also observe that
the garbled names appear in alphabetical order. For the time being, resist the temptation to search
TEST_SORTIO.F77 and SORTIO.F77 for bugs. Read the following summary of the SWAT debugger,
and then you'll see how it can help locate the bug.

SWA T Debugger Fundamentals
The SWAT debugger executes to allow easy tracing of your program. Basically, you select places in
your program where you wish to know the values of key variables. You tell the debugger to execute
your program and pause at the selected places. There, you have the debugger display the key variables'
values. Next, you can terminate program execution and fix the source code or continue to the next
selected place.

You need only a subset of SWAT debugger commands to locate the problem in program units
TEST_SORTIO and SORTIO. The command names, descriptions, and examples are as follows.

093·000273·00 Licensed Material·Property of Data General Corporation 5-5

Command

BREAKPOINT

BYE

CLEAR

CONTINUE

ENVIRONMENT

LIST

TYPE

%

Description

Set a place in the program where the SWAT debugger will
suspend its execution. You specify a line number from the
program unit's compiler-created .LS file. The debugger
suspends the program just before executing the first
machine language instruction that the specified source
program instruction resulted in.

Terminate the execution of both the SWAT debugger and
the program file, and return to the CLI.

Remove a breakpoint from a program.

Resume execution at a breakpoint.

Select the program unit, usually used to move from one
program unit to another (as from the main program to a
subroutine to set a breakpoint).

List a range of source program lines on the console. Use of
LIST frees you from constant reference to a printed .LS
file.

Display the value of one or more variables on the console.

If you execute the SWAT debugger with the AUDIT
switch, then all text appearing on the console goes into an
audit file for later printing. The debugger places lines from
you that begin with "%" into the audit file, but it does
nothing else with these lines.

Sample Execution with the SWAT Debugger
Instead of giving the CLI command

X TEST_SORT 1 a
as we did before, use

X SWAT / AUDIT TEST_SORT10

Example

BREAKPOINT 10

BYE

CLEAR 10

CONTINUE

ENVIRONMENT
SORT10

LIST 20,30

TYPE I, ARR(3)

% Now display J.

SWAT.PR executes and creates TEST_SORTlO.PR as a son process. Here, all dialog between you
and the debugger goes into audit file TEST_SORTlO.AU. Records in TEST_SORTIO.AU beginning
with "> " represent commands you give in response to the SWAT debugger prompt "> ". Records
that don't begin with "> " represent the debugger's output. Not including the / AUDIT switch means
that the dialog appears on the console only.

Marll is the programmer who has created TEST_SORTIO.F77 and SORTlO.F77. Following is the
dialog he and the SW AT debugger crea ted in TEST_SO R Tl O.A U. The records in TEST_SO R Tl O.A U
are numbered to make it easier to refer to them. The SWAT debugger does not place such record
numbers in the audit (.AU) files it creates.

Marll created an unusually large number of comment lines (the ones beginning with "> %") as he
located his error. Read TEST_SORTlO.AU very carefully to learn how you can use the SWAT
debugger. You might have to refer several times to TEST_SORTlO.LS and to SORTIO.LS as you
read TEST_SORTIO.AU.

5-6 Licensed Material-Property of Data General Corporation 093·000273-00

(\

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

SWAT REVISION 02.00 ON 10/25/82 AT 11:27:26
PROGRAM -- :UDD:MARLL:F77:TEST __ SORT10

> " > " Set a breakpoint to see if <NAMES> receives its elements correctly
> " from <ALL __ OF __ THE __ NAMES>.
> BREAKPOINT 21
Set at :TEST __ SORT10:21

> " > " Also set a breakpoint just before the CALL to SORT10.
> BREAKPOINT 24
Set at :TEST __ SORT10:24

> " > " Verify
> LIST 20,
20 C
21B
22

the breakpoints.
25

'HENRIETTA' AND <NAMES(2» IS ALSO ,'HENRIETTA
10 CONTINUE

23 C , SORT THE NAMES INTO ALPHABETICAL ORDER.
24B
25

> "

CALL SORT10 (NAMES, 8)

> " Move to subroutine SORT10 and set appropriate breakpoints.
> ENVIRONMENT :SORT10
:SORT10
> BREAKPOINT 22, 36
Set at :SORT10:22
Set at :SORT10:36

> "
> " Verify
> LIST 22,
22B
23
24
25
26
27 1
28
29 C
30 C
31 C
32 C
33 C
34 C
35
36B

> "

the breakpoints.
36

DO 20 J = 1, N __ LESS __ 1
M = N-J

DO 10 I = 1, M
IF (C __ ARRAY(I) .LE.

C __ ARRAY(I+1) GO TO 10

IT'S NECESSARY TO SWAP TWO ADJACENT ELEMENTS OF <C __ ARRAY>.
FOR EXAMPLE, <C __ ARRAY(2» MIGHT CONTAIN "EDWARD "AND
<C __ ARRAY(3» MIGHT CONTAIN "BEVERLY "; THEN THE NEXT
THREE STATEMENTS EXECUTE TO PERFORM THE SWAP. AFTER THE
SWAP, <C __ ARRAY(2» WILL CONTAIN "BEVERLY "AND
<C __ ARRAY(3» WILL CONTAIN "EDWARD

TEMP = C __ ARRAY(I)

>" Return to the main program ...
> ENVIRONMENT @MAIN
:TEST __ SORT10
> " ... and begin program execution.
> CONTINUE

093·000273·00 Licensed Material-Property of Data General Corporation 5-7

53 Breakpoint trap at :TEST __ SORT10:21
54 >"
55 >" Look at the first few elements of <NAMES> while the program
56 >" continues to execute.
57 > TYPE I, NAMES(I) ; CONTINUE
58 1
59 "MIKE
60
61 Breakpoint trap at :TEST __ SORT10:21
62 > TYPE I, NAMES(I) ; CONTINUE
63 2
64 "HENRIETTA'
65
66 Breakpoint trap at :TEST __ SORT10:21
67 > TYPE I, NAMES(I) ; CONTINUE
68 3
69 "ENRICO
70
71 Breakpoint trap at :TEST __ SORT10:21
72 >"
73 >" So far, so good. Since <NAMES> seems OK, I'll clear this breakpoint
74 >" and continue.
75 > CLEAR 21
76 Cleared at :TEST __ SORT10:21
77 > CONTINUE
78
79 Breakpoint trap at :TEST __ SORT10:24
80 >"
81 >" Go ahead and let SORT10 execute.
82 > CONTINUE
83
84 Breakpoint trap at :SORT10:22

85 "
86 "Now I'm in subroutine SORT10.
87 > TYPE N, N __ LESS __ 1
88 8
89 7

90 >"
91 >" OK -- move into the DO 20 and DO 10 loops that sort <C __ ARRAY>.
92 > CONTINUE
93
94 Breakpoint trap at :SORT10:36
95 > TYPE J, I, C __ ARRAY(I), C __ ARRAY(I+1)
96 1
97 1
98 "MIKE
99 "HENRIETTA'
100 >"
101 >" OK -- C __ ARRAY(1) and C __ ARRAY(2) have to swap their values.
102 > CONTINUE

5-8 Licensed Material·Property of Data General Corporation 093·000Z73·00

103
104 Breakpoint trap at :SORT10:36
105 > TYPE J, I, C __ ARRAY(I), C __ ARRAY(It1)
106 1
107 2
108 "MIKE
109 "ENRICO

110 >"
111 >" OK -- C __ ARRAY(2) and C __ ARRAY(3) have to swap their values.
112 > CONTINUE
113
114 Breakpoint trap at :SORT10:36
115 > TYPE J, I, C __ ARRAY(I), C __ ARRAY(It1)
116 1
117 3
118 "MIKE
119 "LISA JEFFR"

120 >"
121 >" I've got a problem! "MIKE " is a valid name but "LISA JEFFR" is
122 >" wrong. Somehow "LISA ' and "JEFFREY "have been incorrectly

'123 >" mixed together. Now I'll display all the elements of <C __ ARRU> to
124 >" see if there are any other such mixtures.
125 > TYPE C __ ARRAY(1), C __ ARRAY(21. C __ ARRAY(3), C __ ARRAY(4)
126 "HENRIETTA"
127 "ENRICO
128 "MIKE
129 "LISA JEFFR"
130 > TYPE C __ ARRAY(5), C __ ARRAY(6), C __ A.RRAY(7), C __ ARRAY(8)
131 "EY BETSY"
132" ALICE"
133" NORMA"
134 "N
135 >"
136 >" The last f1 ve elements of <C __ ARRAY> are wrong. I'll quit the debugger
137 >" and take a close look at main program. TEST __ SORT10, which is the
138 >" source of <C_ARRAY>.
139 > BYE
140
141 SWAT TERMINATED

TEST_SORTlO.AU is largely self-explanatory. Pay special attention to the following lines.

2 The SWAT debugger gives the pathname of the program file.

16,19 Marlrs instructions in lines 6 and 10 set breakpoints at lines 21 and 24 of TEST _SORTlO.
LISTing lines 20 through 25 verifies the setting of these breakpoints by showing a "B" next to
line numbers 21 and 24.

25 Marll set two breakpoints with one statement.

31,45 Note again the letter "B" to signify a breakpoint next to line numbers 22 and 36 of SOR Tl o.
What is not self-explanatory is the bug. Somehow the last five elements of C_ARRA Yin SORTlO­
which originate from NAMES in TEST_SORTIO - have mixed together. Marll decides to execute
the debugger again and look more carefully at NAMES instead of moving to subroutine SORTIO.
Perhaps he was too hasty with his comments in lines 72 through 77 of TEST_SORT1O.AU.

Marll gives the CLI commands

DELETE TEST_SORT to.AU
X SWAT / AUDIT TEST:"-SORT 10

093·000273·00 Licensed Maferfal·Prop-erty of Data GeAeraf CorpOration

It's necessary to delete the audit file because SWAT/AUDIT appends to <PROGRAM NAME>.AU
instead of deleting and recreating it. The resulting TEST_SORTlO.AU that points to the error follows.

1 SWAT REVISION 02.00 ON 07/26/82 AT 11:35:48
2 PROGRAM -- :UDD:MARLL:F77:TEST __ SoRT10
3 >"
4 >" I'll set a breakpoint where I can display ALL the elements of <NAMES>.
5 > BREAKPOINT 21
6 Set at :TEST __ SoRT1o:21
7 > LIST 15, 21
8 15 C PLACE THE 8 INDIVIDUAL FIRST NAMES INTO <NAMES> FROM THE SINGLE
9 16 C STRING <ALL __ oF __ THE __ NAMES>.

10 17 DO 10 I = 1, 8
11 18 NAMES(I) = ALL __ oF __ THE __ NAMES(1o*I-9 : 10*1) I EXAMPLE: IF
12 19 C I = 2, THEN <ALL __ oF __ THE __ NAMES(11:2o» IS
13 20 C 'HENRIETTA' AND <NAMES(2» IS ALSO 'HENRIETTA
14 21B 10 CONTINUE
15
16
17
18

> "
> " Here we gol
> CONTINUE

19
20

Breakpoint trap at
> TYPE I, NAMES(I)

21 1
22 "MIKE
23

:TEST __ SoRT1o:21
; CONTINUE

24
25
26

Breakpoint trap at :TEST __ SoRT1o:21
> TYPE I, NAMES(I) ; CONTINUE
2

27 "HENRIETTA'
28
29 Breakpoint trap at
30 > TYPE I, NAMES(I)
31 3
32 "ENRICO
33
34
35
36
37
38

Breakpoint trap at
> TYPE I, NAMES(I)
4
"LISA JEFFR"

39 Breakpoint trap at
40 > TYPE I, NAMES(I)
41 5
42 "EY BETSY'
43

:TEST __ SORT10:21
; CONTINUE

:TEST __ SoRT1o:21
; CONTINUE

:TEST __ SoRT1o:21
; CONTINUE

44
45
46

Breakpoint trap at :TEST __ SORT1o:21
> TYPE I, NAMES(I) ; CONTINUE
6

47" ALICE"
48
49 Breakpoint trap at :TEST __ SORT1o:21
50 > TYPE I, NAMES(I) ; CONTINUE
51 7
52" NORMA'
53

5-10 Licensed Material'Property of Data General Corporation 093·000273·00

54 Breakpoint trap at :TEST __ SORT10:21
55 > TYPE I, NAMES(I)
56 8
57 "N
58 > %
59 > % The first three elements of <NAMES> are OK and I can't see any
60 > % immediate reason for the error (the mixing) in the last five
61 > % elements. I'll investigate by going backwards and LISTing the
62 > % CHARACTER string <ALL __ OF __ THE __ NAMES>, from which <NAMES>
63 > % obtains its elements.
64 > LIST 9, 13
65 9 C THE NEXT TWO LINES HELP TO CONSTRUCT <ALL __ OF __ THE __ NAMES>.
66 10 C00000000111111111122222222223333333333444444444455555555556666666666777
67 11 C23456789012345678901234567890123456789012345678901234567890123456789012
68 12 DATA ALL_OF_THE_NAMES / 'MIKE HENRIETTA ENRICO LISA
69 13 + JEFFREY BETSY ALICE NORMAN '/
70 > %
71 > % Rather puzzling. can see that "LISAbbbbbb" (b = blank) is in
72 > % lines 12 and 13. The first five blanks of "LISAbbbbbb" come
73 > % from line 12 and the last blank comes from line 13. <NAMES(4»
74 > % is "LISAbJEFFR" with just one blank. It looks like only the
75 > % blank in "+ JEFFREY" of line 13 has arrived in the incorrect
76 > % <NAMES(4». In other words, the five blanks after "LISA" in
77 > % line 12 have disappeared. What's going on here? I'm going to
78 > % terminate SWAT and think of why the five blanks after "LISA"
79 > % in line 12 have disappeared.
80 > %
81 > % However, before terminating SWAT I'll display <ALL __ OF __ THE __ NAMES>.
82 > TYPE ALL OF THE NAMES
83 "MIKE HENRIETTA ENRICO LISA JEFFREY BETSY ALICE NORMAN

84 > %
85 > % This display also shows that the first five of the necessary six
86 > % blank characters after "LISA" have disappeared.
87 > BYE
88
89 SWAT TERMINATED

The key question is "What has happened to the first five of the six blanks in 'LISAO 0 0 0 0 0' (0
= blank)?" One thing you have to remember about the F77 compiler is that, by default, it reads a line
from the source module and ignores any trailing blanks. In our case, the last characters of line 12 of
TEST_SORTlO.F77 were either

LlSAO 0 0 0 0 <NL>

or LlSA<NL>

The F77 compiler ignored any blanks at the end of line 12 and processed the blank in "+ OJEFFREY"
ofline 13. This ignoring effectively shifted the last four elements of ALL_OF_THE_NAMES left by
five spaces. Thus, the DO 10 loop of TEST_SORTlO constructed NAMES with the following
contents:

093·000273·00 Licensed Material·Property of Data General Corporation 5-11

M KEoooooo
HENRIETTAo
ENRICOoooo
LIS A OJ E F F R
E Y oooB E T S Y
oootJoA L C E
oooooN 0 R M A
Nooooooooo

Even though SORTlO worked correctly with the array it received from TEST_SORTlO, the array was
wrong in the first place, and thus the sorted displayed output from TEST_SORTlO was wrong. This is
a perfect example of GIGO - garbage in, garbage out!

Corrections to Sample Program Modules
How do we correct TEST_SORTlO and SORTlO? First, SORTlO is fine; it properly sorts the array
it receives. There are at least two ways to correct line.12 of TEST_SORTlO.F77:

1. Leave it alone and change the compilation command for TEST_SORTlO from

to

F77 /CARDFORMAT TEST_SORT10

The jCARDFORMAT switch directs the compiler to pad (with blanks) to 72 characters any
source program line that is less than 72 characters long. F77 then would combine characters 64
through 72 of line 12 with character 7 of line 13 to form the desired "LISAO 0 0 0 0 0".

2. Delete lines 3 and 4 ofTEST_SORTlO.F77. Then, replace lines 9 through 22 with the following.

DATA NAMES / 'MIKE
+ 'LISA
+ 'ALICE

'HENRIETTA
'JEFFREY
'NORMAN

The SWAT Debugger - a Summary

'ENRICO
'BETSY

/

SWAT is a very flexible and powerful programming aid. The key to its use is the effective placing of
breakpoints and the displaying of the proper variables and arrays at those breakpoints. There is no
convenient formula for this placing and displaying. You'll have to employ a fair amount of trial and
error as you learn to use the SWAT debugger.

5-12 Licensed Material·Property of Data General Corporation 093·000273·00

()

Avoid Errors BEFORE Coding
The old saying that "an ounce of prevention is worth a pound of cure" applies to FORTRAN 77
programming. You have seen that the SWAT debugger makes debugging much easier than the
traditional method of placing extra WRITE statements and then later removing them. Even so, you're
better off to follow certain techniques before and during the coding stage. Improving the design of a
program often reduces the need for debugging it.

The subject of proper program design and coding is a broad one ~ far too broad for explanation here.
However, we list several books next. Each of them contains many suggestions for creating program
units that should reduce the need for later debugging. Data General in no way endorses these books or
requires that you read any of them; the list is merely for your convenience. The books' authors and titles
are:

• Henry F. Ledgard, "Programming Proverbs for FORTRAN Programmers", Hayden Book Company,
Inc., Rochelle Park, New Jersey (1975).

• Brian W. Kernighan and P.J. Plauger, "The Elements of Programming Style", McGraw-Hill Book
Company, New York, New York (1974).

• Charles B. Kreitzberg and Ben Shneiderman, "The Elements of FORTRAN Style: Techniques for
Effective Programming", Harcourt Brace Jovanovich, Inc., New York, New York (1972).

• Dennie Van Tassel, "Program Style, Design, Efficiency, Debugging, and Testing", Prentice-Hall,
Inc., Englewood Cliffs, New Jersey (1974).

• Louis A. Hill, Jr., "Structured Programming in FORTRAN", Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1981).

Mr. Van Tassel's book contains an entire chapter on debugging.

Data General Bugs?
The F77 compilers are large and complicated programs. The runtime libraries are a collection of many
subroutines. We honestly state that bugs could exist somewhere among all this software. In fact, several
compiler error messages have the form "Possible compiler error If this message persists, please
submit software trouble report."

Your system manager should let you have access to the Software Release Notice that applies to the
revision of FORTRAN 77 you are using. Among other things, the Release Notice tells you about:

• The newest features of F77.

• Problems corrected since the last release of F77.

• Problems remaining in F77 with possible ways to work around them.

e Changes to the F77 documentation, including this manual.

• Using Software Trouble Reports.

In particular, if you suspect you've found an error in the compiler or in the runtime routines, then read
the section of the Release Notice about a Software Trouble Report (STR). This section explains how to
verify that you really have found a problem in Data General software. It also explains how to use an
STR to communicate with Data General about the problem.

End of Chapter

093-000273-00 Licensed Material-Property of Data General Corporation 5-13

01

Chapter 6
Subprograms

FORTRAN 77 programmers often create program files (.PR files) that are a collection of one main
program unit and one or more subprograms (subroutine and function). The FORTRAN 77 Reference
Manual describes how to create such program files when the main program unit and all of its
subprograms are written in F77.

You actually have a wide choice in selecting languages for a main program unit and its subprograms.
For example, you can write an F77 program unit that calls a subroutine subprogram written in
assembly language. And, a PL/I program can call a subroutine written in F77 to perform extensive
calculations.

The three major parts of this chapter present:

• The structure of F77 /assembly language interfaces.

• An overview of high-level-language/F77 interfaces.

• Examples of specific high-level-language/F77 interfaces, such as a PL/I program and its called F77
subroutine.

F77 and Assembly Language Subprograms
This section assumes you are familiar with assembly language and want to use it to write subprograms
for calling from F77. Before reading on, remember that Chapter 3 explains how you can use the ISYS
function to access the operating system. Thus, you may have no need to write assembly language
subroutines whose sole purpose is to perform an operating system call.

Calling Conventions
The F77-generated code which implements the CALL statement or references to function subprograms
observes the conventions of the Data General AOS Common Language Runtime Environment (CLRE).
These conventions are also used by AOS FORTRAN 5, AOS DG/L, and AOS PL/I.

Under the AOS CLRE conventions, each language defines the addressing schemes used for its data
types. But the essential elements of

• How arguments are passed to external procedures

• How external procedures are called

• How the caller's stack is left after return from external procedures

are common to the AOS CLRE languages.

The AOS CLRE convention provides the possibility for a given routine to be used in more than one
language environment. Data General has taken advantage of the AOS CLRE to develop, for example,
mathematical libraries and file system interface routines that can be called from routines written in any
of the AOS CLRE languages.

093·000273·00 licensed Material·Property of Data General Corporation 6-1

The CLRE Convention

Here are the five principles of the AOS CLRE convention.

I. As the initial step in calling an external procedure, an

LDA 2,.SP

instruction is executed. This is done prior to any push instructions, so that the caller's AC2
becomes a "stack marker".

2. The addresses of the to-be-passed arguments are pushed onto the caller's stack in reverse order of
their appearance in the argument list.

Each CLRE language defines the ways its data types are stored and addressed, and so the nature
of the addresses pushed will depend on the called routine's source language. F77's storage and
addressing rules are given in the next section.

3. Once all the addresses of the arguments are pushed onto the stack, the external procedure is called
via the ?RCALL mechanism.

4. Upon return from the called procedure:

• All fixed-point accumulators contain the values they had prior to the ?RCALL, except AC3,
which contains the frame pointer.

• All floating-point accumulators are undefined.

5. All "pushed" argument addresses are effectively "popped" from the stack by a

STA 2,.SP

instruction that the calling program executes upon return from the procedure.

F77 Argument Addressing Conventions

Each pushed address is usually a 16-bit WORD address. The exceptions to this are:

• For CHARACTER variables and character constants, a 16-bit BYTE address is pushed.

• For arguments that have been declared EXTERNAL or INTRINSIC, the WORD address of the
external reference is pushed.

If any argument on the CALL line is of type CHARACTER, extra arguments are on the stack. These
arguments, known as dope vectors, inform the called routine of the actual size of the arguments. The
dope vectors are built either at compile-time or runtime. The addresses of all required dope vectors are
first pushed onto the stack, followed by the addresses of all of the user's arguments in reverse order.

6-2 licensed Material·Property of Data General Corporation 093·000273·00

()

o

(Users writing assembler subprograms to interface with F77 routines need to be aware of the existence
of these dope vectors on the stack. However, the content and number of these vectors is determined by
Data General and may change over time. User routines should not attempt to refer to or use the dope
vectors in any way. Instead, the calling routine should use extra arguments to pass length information.
The called routine can then obtain the length information via the appropriate argument address and be
independent of the dope vectors, if any.)

All arguments passed to subprograms are passed by reference; that is, subprograms perform operations
directly on the arguments, not local copies of them. To pass a variable argument by value, enclose it in
parentheses in the argument list. This forces the compiler to treat the argument as an expression, and
pass its value in a temporary.

Function Results
A function result will be returned in a temporary. The word address of the temporary will have been
pushed on the stack by the calling routine, as if it were the first argument in a CALL statement. This
address may need to be copied and converted to a byte pointer inside character functions.

Common Return Block
The AOS CLRE common return block is the fundamental data structure used for linkage between
routines in the F77 runtime environment. The block is built on the stack of the calling routine. The
block is used by subroutines, reached by a CALL statement, and by function subprograms, reached by
a function reference. The block is constructed in two separate steps:

Step 1. The CALLING routine pushes onto the stack the addresses of the arguments to be passed.

Step 2. The CALLED routine, as its first instruction, executes a SAVE, to both push a return block
onto the stack, and allocate its own stack frame, if needed, beyond the common return block.

Upon completion of the subprogram, the CALLED routine executes an RTN instruction, popping both
the CALLED routine's stack frame and the common return block from the stack. This instruction then
transfers control to the CALLING routine.

NOTE: There is no relationship between the common return block and FORTRAN COMMON
storage. The term "common" here refers to the fact that the same return block format is used
by other AOS languages, as well.

093·000273-00 Licensed Material-Property of Data General Corporation 6-3

Figure 6-1 contains a general diagram of the common return block, and is followed by notes that apply
to the different items depicted in the figure. Next, Figures 6-2 and 6-3 further illustrate Figure 6-1
because they contain listings of a specific main program and CALLed subroutine. The subroutine is
named TYP _SUB - an abbreviation of "typical subroutine." The main program, since it tests
subroutine TYP _SUB, is named TEST_TYP _SUB. These listings, created by the F77 compiler with
the "jCODE" switch, confirm the way a subroutine accesses its arguments.

Several notes apply to phrases appearing in Figure 6-1.

Pointer to Arg 0

This is a word or a byte pointer (depending upon the data type) that points to the first argument, which
is number 0.

Pointer to Arg i

This is a word or a byte pointer (depending upon the data type) that points to argument i.

REMEMBER - USE THE PARAMETERS FROM AF77SYM.sR AND F77_FMAC.SR!

Old ACO
This is the saved value of ACO at the time of the calL

To access this entry in the return block, use the parameter offset FACO.

Old AC1
This is the saved value of ACl at the time of the calL

To access this entry in the return block, use the parameter offset FAC1.

Old AC2
This is the saved value of AC2 at the time of the calL

It contains the old value of .sP. Don't change this word, since it affects the stack upon return from the
subprogram.

To access this entry in the return block, use the parameter offset FAC2.

Old FP
This is the caller's frame pointer.

To access this entry in the return block, use the parameter offset FOFP.

C I Return PC

These are the values of the carry bit and of the program counter. The R TN instruction restores these
values.

To access this entry in the return block, use the parameter offset FRTN.

6-4 Licensed Material·Property of Data General Corporation 093·000273·00

Decimal
Frame

Offset

-7

-6

-5

-4

-1

-2 Return
Block

-3

0

+1

•
•
•

•
•
•

ci

Contents

Pointer to Arg n

•
•

Pointer to Arg i

•
•

Pointer to Arg 2

Pointer to Arg 1

Pointer to Arg 0

Old ACO

Old AC1

Old AC2 (Old .SP)

Old FP

Return PC (*)

First User Temporary

Additional

Procedure Data

* The carry is bit 0 of this word, and the PC is in bits 1 through 15 .

•
•
•

Symbolic
Offset
from <.FP>(··)

..-Old .SP

~

•
•
•

.FP

ARG"N"

ARG"i"

ARG2

ARG1

ARGO

FACO

FAC1

FAC2

FOFP

FRTN

TMP or FFLE

.... These symbolic offsets are defined in the source files AF77SYM.SR and F77_FMAC.SR (included with
F77). In al/ cases, you should always use these symbolic offsets, and not numeric offsets, to address

entries in the return block. The easiest way to work with these parameters is to add them to your
permanent symbol table file, MASM.PS. See the AOS Macroassembler Reference Manual for more
information.

DG·25474

Figure 6-1. The Stack after Execution of a SAVE Instruction

093-000273-00 Licensed Material-Property of Data General Corporation 6-5

6-6

Source file: TEST __ TYP __ SUB.F77
Compiled on 26-0ct-82 at 14:40:08 by AOS F77 Rev 2.10
Options: F77IINTEGER=21LOGICAL=21L=TEST __ TYP __ SUB. LS/CODE

1
2
3 C
4 C
5 C
6
7
8
9

10
11
12 C
13
14
15
16
17
18
19

Reloc Opcode

Line 1

00000 163710

Line 7
00002* 102050
00004 162250

Line 8
00006* 102050
00010 162250

Line 9
00012 060041
00013 041410

Line 10
00014 166070
00016 045411

PROGRAM TEST __ TYP __ SUB

THIS PROGRAM TESTS SUBROUTINE <TYP __ SUB>. THIS PROGRAM'S
LISTING FILE. <TEST __ TYP __ SUB.LS>. SHOWS THE CLRE
RETURN BLOCK USED FOR LINKAGE WITH SUBROUTINES.

R1 = 25.2
R2 = 16.8
11 = 33
12 = 872

FIND THE OVERALL SUM.

CALL TYP __ SUB (R1. R2. 11. 12. SUM4)

PRINT *. . THE OVERALL SUM IS '. SUM4

STOP
END

Code Listing

Instruction

TEST __ TYP __ SUB:
SAVE 16

FLDS 0.+16
FSTS 0.+4.3

FLDS 0.+14
FSTS 0.+6.3

LEF 0.+41
STA 0.+10.3

ELEF 1.+1550
STA 1.+11.3

Reference

14.

14. 25.2
4. R1

12. 16.8
6. R2

33.
8. 11

872.
9. 12

Figure 6-2. A Listing of TEST _TYP -'sUB.F77 and Its Generated Code (continues)

Licensed Material·Property of Data General Corporation 093·000273·00

()

(\
Line 14
00017 030040 LDA 2,t40 32.
00020 061412 LEF 0,t12,3 10. SUM4
00021 103110 PSH 0,0
00022 061411 LEF 0,t11,3 9. 12
00023 065410 LEF 1,t10,3 8. 11
00024 107110 PSH 0,1
00025 061406 LEF 0,t6,3 6. R2
00026 065404 LEF 1,t4,3 4. R1
00027 107110 PSH 0,1
00030* 006014 ?RCALL TYP_SUB
00032 050040 STA 2,t40 32.

Line 16
00033 060006 LEF 0,t6 6.
00034 041414 STA 0,t14,3 12. <temp>
00035 162470 ELEF 0, .t31 [66) $.312
00037 065414 LEF 1,t14,3 12. <temp>
00040 107110 PSH 0,1
00041* 162070 ELEF o,to O. <dope>
00043* 166070 ELEF 1,t1 1. <dope>
00045 107110 PSH 0,1
00046* 006000 JSR@ to O. LW?EINIT
00047 050040 STA 2,t40 32.
00050 060023 LEF 0,t23 19.
00051 041414 STA 0,t14,3 12. <temp>

(\
00052 061414 LEF 0,t14,3 12. <temp>
00053* 166070 ELEF 1,t2 2.
00055 125120 MOVZL 1,1
00056 107110 PSH 0,1 THE OVERALL SUM IS
00057* 006000 JSR@ to o. LW?SCH
00060 050040 STA 2,t40 32.
00061 061412 LEF 0,t12,3 10. SUM4
00062 103110 PSH 0,0
00063* 006000 JSR@ to o. LW?SR4
00064 050040 STA 2,t40 32.
00065* 006000 JSR@ to o. LC?ETERM

Line 18
$.312:

00066 126400 SUB 1,1
00067* 006000 JSR@ to ; o. F. STOP

Figure 6-2. A Listing of TEST _TYP -.SUB.F77 and Its Generated Code (concluded)

093·000273·00 Licensed Material·Property of Data General Corporation 6-7

6-8

Source file: TYP __ SUB.F77
Compiled on 26-0ct-82 at 14:40:40 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TYP __ SUB.LS/COOE

1
2
3
4
5
6
7
8
9

SUBROUTINE TYP __ SUB (REAL __ 1,REAL __ 2, INT __ 1, INT __ 2, OVERALL)

10

Reloc Opcode

Line 1

00000 163710
00002 102400
00003 041403

Line 3
00004 162050
00006 161050
00010 162250

Line 5
00012 027771
00013 033770
00014 147000
00015 122450
00016 162250

Line 7
00020 162050
00022 161050
00024 162250

Line 9
00026 127710

SUM __ REALS = REAL __ 1 + REAL __ 2

SUM __ INTS = FLOAT(INT __ 1 + INT __ 2)

OVERALL = SUM __ REALS + SUM __ INTS

RETURN
END

Code Listing

Instruction

TYP __ SUB:
SAVE 10
SUB 0,0
STA 0,+3,3

FLOS 0,@-5,3
FAMS 0,@-6,3
FSTS 0,+4,3

LOA 1,@-7,3
LOA 2,@-10,3
ADD 2,1
FLAS 1,0
FSTS 0,+6,3

FLOS 0,+6,3
FAMS 0,+4,3
FSTS 0,@-11,3

RTN

Reference

8.

3. $.306

-5. REAL __ 1
-6. REAL __ 2
4. SUM __ REALS

-7. INT __ 1
-8. INT __ 2

6. SUM __ INTS

6. SUM __ INTS
4. SUM __ REALS
-9. OVERALL

Figure 6-3. A Listing of TYP --SUB.F77 and Its Generated Code

Licensed Material·Property of Data General Corporation 093·000273·00

0

Note how Figures 6-2 and 6~3 illustrate the general principles of Figure 6-1. For example, the fourth
argument in both program units is the second of the two integer numbers to be added. Its name is 12 in
TEST_TYP _SUB.F77 and INT_2 in TYP _SUB.F77. Both 12 and INT_2 refer to the same memory
location. Observe that the compiler has generated code that places this fourth argument on the stack
after it has placed the fifth argument there.

Coding Assembly Language Routines for Use with F77 with Macros
When writing assembly language routines for F77, you may want to use the set of macros and symbols
supplied in the files AF77SYM.sR, F77_FMAC.SR, and LITMACS.SR. This section describes the
use of the FORTRAN CALL macro set contained in the first two of these files. These macros are

TITLE

SlATTR

DI;FARGS

DEFTMPS

DEF

FENTRY

FCALL

FRET

END

If these macros are used, TITLE must be the first one invoked (except for preliminary comment lines).
This macro specifies the title of the routine you are writing and initializes the environment for the other
macros.

If your routine will call another routine, you must indicate this by using the Sl A TTR macro. The
calling sequence for S? A TTR is

S?ATTR 7[NO]7 FCALL ! 7[NO]7 RCALL

Here, the symbol "!" carries the meaning of "inclusive OR". Specifying S?ATTR FCALL indicates
that your routine will call another F77 routine. This specification is necessary to reserve extra space on
the stack for "bookkeeping." Specifying S? A TTR RCALL indicates that your routine will use ?RCALL
directly (not via the FCALL macro). The RCALL attribute must be set to have the FENTRY macro
reserve two words of stack space for the ?RCALL manager. Under AOS, FCALL will actually be
performed by an ?RCALL, but you need not specify S?ATTR RCALL if you have specified S?ATTR
FCALL. The optional NO argument to the S?ATTR macro is for documentation and completeness. If
S? A TTR is not used, the effect is the same as specifying

S?ATTR NO FCALL ! NO RCALL .

DEFARGS immediately follows TITLE, and S? ATTR if used. This macro is used to start the definition
of your routine's arguments. You should define each argument using the DEF macro. For example:

TITLE ESSAY
DEFARGS

DEF SOUND
DEF SPECIOUS

These four lines declare two arguments, SOUND and SPECIOUS, in the routine ESSAY. Even if your
routine has no arguments, you must use DEFARGS.

093·000273·00 Licensed Material·Property of Data General Corporation 6-9

DEFTMPS follows DEFARGS and DEFs (if any). DEFTMPSis used to start the definitions of your
routine's temporaries. You use DEF to define each temporary. For example:

DEFTMPS
DEF 80 (10.) Argument is size in 16-bit words

(must be in parentheses).
When no argument is given,

the default length of one word is assumed.

DEFTMPS must appear even if your routine does not require any temporaries.

DEF names each of your routine's arguments and temporaries. You must name the arguments in the
order in which they appear when the routine is CALLed. In FORTRAN programming environments,
it is always your responsibility to ensure that the arguments provided by the calling routine match those
expected by the called routine in number, order, and type.

DEF assigns to the symbol you supply a unique, sequential offset on the stack. Entries on the stack are
addressed by indexing from the current frame pointer (.FP), which is loaded into either AC2 or AC3.
At the beginning of your routine, AC3 contains the value of the frame pointer. To access an argument
passed by the caller, use the symbol for the argument, indexed by the AC containing the frame pointer,
as an indirect address. Temporaries on the stack are accessed by using the symbol for the temporary,
indexed by the AC containing the frame pointer.

FEN TRY follows DEFARGS and DEFTMPS. FENTRY generates a SAVE instruction and defines
your entry point. AC3 contains the frame pointer when the first instruction after FENTRY is executed.

Finally, your subprogram code can be written. You can use any AC's or FPAC's you need - they will
be restored as required when your routine completes. If your routine calls out, and uses the CLRE
calling convention, you will need to set up AC2 as the stack marker and push argument addresses on
the stack, as described earlier in this chapter.

FRET returns control to the calling routine. This macro generates an RTN instruction, which restores
the caller's environment, and resumes execution of the caller.

END must be the last line of your routine. This macro generates a .END assembler directive, and
terminates the environment set up by the previous macros.

See the next section for examples of complete assembly language subroutines.

F77-to-Assembly Interface Examples
Figure 6-4 contains a listing of program TEST_RUNTM.F77. As its name implies, the program tests
subroutine RUNTM which, in turn, makes a ?RUNTM system call to obtain process statistics. Figure
6-5 contains a listing of the first version of assembly language subroutine RUNTM.sR. It uses the
symbols for stack displacement from the files AF77SYM.sR and F77_FMAC.SR to access the
arguments from the calling routine. Figure 6-6 contains a listing of the second version of assembly
language subroutine RUNTM.SR. It also uses symbols for stack displacement from AF77SYM.sR
and F77_FMAC.SR; and it uses FORTRAN 77 CALL macros from these files.

NOTE: The first pages of both versions of RUNTM.sR are identical.

6-10 Licensed Material·Property of Data General Corporation 093·000273·00

()

PROGRAM TEST __ RUNTM

C THIS PROGRAM TESTS SUBROUTINE <RUNTM> WHICH RETURNS THE
C PROCESS'S RUNTIME STATISTICS.

C THE ARGUMENTS GIVEN TO <RUNTM> ARE:
C NONE

C THE ARGUMENTS RETURNED BY <RUNTM> ARE:
INTEGER*4 ELAPSED , ELAPSED TIME IN SECONDS

C SINCE PROCESS'S CREATION
INTEGER*4 CPU PROCESS'S CPU TIME IN

C MILLISECONDS
INTEGER*4 IO __ BLOCKS

C
NUMBER OF I/O BLOCKS READ

OR WRITTEN
INTEGER*4 PAGE __ MILSECS
INTEGER*4 IER

NUMBER OF PAGE/MILLISECONDS
! ERROR CODE FROM <RUNU>

C CRUNCH SOME NUMBERS TO ACCUMULATE SOME CPU TIME.
DO 10 I = 1, 10000

10 CONTINUE

X = FLOAT(I)
VARIABLE1 = SIN(X) + ALOG(X) - SQRT(X)
VARIABLE2 = 1.0/VARIABLE1

C OBTAIN THE PROCESS'S RUNTIME STATISTICS.
CALL RUN,TM(ELAPSED, CPU, IO __ BLOCKS, PAGE __ MILSECS ,. IER)

C DISPLAY THE RESULTS.
IF (IER .NE. 0) THEN

PRINT *, 'ERROR IER,' OCCURRED DURING EXECUTION
1 'OF SUBROUTINE RUNTM.'

093-000273-00

ELSE

ENDIF

PRINT *

PRINT *
PRINT *
PRINT *
PRINT *

'PROCESS ELAPSED TIME IN SECONDS:
'PROCESS CPU TIME IN MILLISECONDS:
'NUMBER OF I/O BLOCKS~
'NUMBER OF PAGE/MILLISECONDS:

PRINT * '*** END OF JOB ***'

CALL EX IT
END

Figure 6-4. Main Program TEST -RUNTM.F77

licensed' Malerial-Proj}erty of Data, G'en'eral: Corporati'on

ELAPSED
CPU
IO __ BLOCKS
PAGE __ M.ILSECS

6-12

SUBROUTINE RUNTM.SR

This F77-callable assembly subroutine obtains process runtime
statistics by making a "?RUNTM" system call .. It uses
the ADS CLRE conventions.

This routine executes in the sharable code area, but builds the packet
for the system calIon the user's stack, in unshared
memory. Note carefully how the offsets that define
the system call packet are used for addressing the stack.

CALL Syntax:
CALL RUNTM (IELAPSED, ICPU, IIO_BLKS, IP_MS, IER)

Arguments (all returned to caller):
IELAPSED: INTEGER*4 (elapsed time in seconds

since process's creation)
ICPU: INTEGER*4 (process's CPU time in

milliseconds)
IIO_BLKS INTEGER*4 (number of I/O blocks read

or written)
IP_MS: INTEGER*4 (number of page/milliseconds)
IER: INTEGER*4 (error code from ?RUNTM)

To assemble this routine:

1. Be sure a MASM.PS file exists that contains the parameter
offsets and macros for interfacing to F77. To create one,
give the CLI command

X MASM/8/S/N EBID SYSID PARU AF77SYM PARF77 F77_FMAC LITMACS

2. Give theCLI command

X MASM/8 RUNTM

To link this routine with F77 programs:

F77LINK main-program-name RUNTM

Figure 6-5. Subroutine RUNTM.SR, Version 1 (continues)

licensed Material·Property of Data General Corporation 093·000273·00

**************************** Version 1 ****************************

RUNTM:

RUNTERR:

093·000273·00

. TITLE RUNTM

.ENT RUNTM

. NREL 1

PACKET TMP

PCKTLEN ?GRLTH

SAVE PCKTLEN

ADC 0,0
ELEF 2,PACKET,3
?RUNTM
JMP

FLMD
FFMD
FLMD
FFMD
FLMD
FFMD
FLMD
FFMD

SUB

FLAS

FFMD

RTN

.END

RUNTERR

O,PACKETt?GRRH,3
O,@ARGO,3
O,PACKETt?GRCH,3
O,@ARG1,3
O,PACKETt?GRIH,3
O,@ARG2,3
O,PACKETt?GRPH,3
O,@ARG3,3

0,0

0,0

O,@ARG4,3

Shared .

To build ?RUNTM packet on the stack,
define PACKET start as the offset to
the first user temporary,

and calculate the maximum number of
words on the stack that will
be needed to build the packet.

Routine entry:
Save the state, and enough stack
space for the packet, and put
AC3 <== my FRAME POINTER.

Make system call:
ACO <== -1 to indicate this process
AC2 <== address of packet
Get runtime stats
Error on system call
Good return:

move values into caller's arguments
Get elapsed time in seconds
Put into Oth argument via pOinter
Get CPU time in milliseconds
Put into 1st argument via pOinter
Get I/O blocks read or written
Put into 2nd argument via pointer
Get # page/milliseconds
Put into 3rd argument via pOinter

Zero ACO to show good return

Enter here if error. Common path
for setting error return variable:

Float the value in ACO (into FPACO)
as a single precision number.

Put (FPACO) into 4th argument
as a 4-byte integer.

Go back to F77 caller.

Figure 6-5. Subroutine RUNTM.SR, Version 1 (concluded)

Licensed Material·Property of Data General Corporation 6-13

6-14

SUBROUTINE RUNTM.SR

This F77-callable assembly subroutine obtains process runtime
statistics by making a "?RUNTM" system call. It uses
the ADS ClRE conventions.

This routine executes in the sharable code area, but builds the packet
for the system call on the user's stack, in unshared
memory. Note carefully how the offsets that define
the system call packet are used for addressing the stack.

CAll Syntax:
CALL RUNTM (IElAPSED, ICPU, IIo_BlKS, IP_MS, IER)

Arguments (all returned to caller) :
IElAPSED: INTEGER*4 (elapsed time in seconds

since process's creation)
ICPU: INTEGER*4 (process's CPU time in

milliseconds)
IIo_BlKS INTEGER*4 (number of I/O blocks read

or written)
IP_MS: INTEGER*4 (number of page/milliseconds)
IER: INTEGER*4 (error code from ?RUNTM)

To assemble this routine:

1. Be sure a MASM.PS file exists that contains the parameter
offsets and macros for interfacing to F77. To create one,
give the ClI command

X MASM/8/S/N EBID SYSID PARU AF77SYM PARF77 F77_FMAC lITMACS

2. Give the ClI command

X MASM/8 RUNTM

To link this routine with F77 programs:

F77lINK main-program-name RUNTM

Figure 6-6. Subroutine RUNTM.SR, Version 2 (continues)

Licensed Material·Property of Data General Corporation 093·000273·00

(\

**************************** Version 2 ****************************

Macros defined in F77 __ FMAC.SR are identified by "@FMAC' in comment field.

TITLE RUNTM

DEFARGS
DEF IELAPSED
DEF ICPU
DEF IIO ____ BLKS
DEF IP ____ MS

DEF IER

DEFTMPS
DEF PACKET (?GRLTH)

FENTRY RUNTM

ADC 0,0
ELEF 2,PACKET,3
?RUNTM
JMP RUNTERR

FLMD 0,PACKETt?GRRH,3
FFMD 0,@IELAPSED,3
FLMD 0,PACKETt?GRCH,3
FFMD 0,@ICPU,3
FLMD 0,PACKETt?GRIH,3
FFMD 0,@IIO __ BLKS,3
FLMD 0,PACKETt?GRPH,3
FFMD 0,@IP __ MS,3

SUB 0,0

RUNTERR:

FLAS 0,0

FFMD 0,@IER,3

FRET

END

Name the object module, generate @FMAC
a language-identifying tag comment,
and specify shared code.

Begin argument definitions: @FMAC
@FMAC
@FMAC

(Use two underscores since these are @FMAC
arguments to a macro that removes @FMAC

one of them: "IP ____ MS· becomes
"IP __ MS' as desired.)

@FMAC

Begin temporary definitions: @FMAC
To build ?RUNTM packet on the stack, @FMAC
define PACKET as a temporary, with
length equal to the maximum number of
words needed to build the packet.

Routine entry:

ACO <== -1 to indicate this process
AC2 <== address of packet
Get runtime stats
Error on system call
Good return:

move values into caller's arguments
Get elapsed time in seconds

@FMAC

Put into IELAPSED via address on stack
Get CPU time in milliseconds
Put into ICPU via address on stack
Get I/O blocks read or written

; Put into IIO __ BLKS via address on stack
; Get # page/milliseconds
; Put into IP __ MS via address on stack

; Zero ACO to show good return

Enter here if error. Common path
for setting error return variable:

Float the value in ACO (into FPACO)
as a single precision number.

Put (FPACO) into IER via argument
address, as a 4-byte integer.

Go back to F77 caller. @FMAC

@FMAC

Figure 6-6. Subroutine RUNTM.SR, Version 2 (concluded)

093·000273·00 Licensed Material·Property of Data General Corporation 6-15

The following commands assemble RUNTM.SR (in either Figure 6-5 or Figure 6-6), compile
TEST_RUNTM.F77, and create TEST_RUNTM.PR.

X MASM/8/0=RUNTM.OB RUNTM
F77 TEST _RUNTM
F77L1NK TEST _RUNTM RUNTM

Let's look at the results of executing TEST_RUNTM.PR:

) X TEST _RUNTM J

PROCESS ELAPSED TIME IN SECONDS:
PROCESS CPU TIME IN MILLISECONDS:
NUMBER OF I/O BLOCKS:
NUMBER OF PAGE/MILLISECONDS:

*** END OF JOB ***

4
2916
20
98946

The results usually vary slightly each time TEST_RUNTM.PR executes.

Macro F77_FMAC.SR

Beginning with Revision 2.10 of AOS F77, the file F77_FMAC.SR is supplied with F77 instead of
FMAC.SR. The files are different mainly in the content of their ISA.NORM and ISA.ERR macros.

The ISA.NORM and ISA.ERR macros have been changed because of a side effect caused by the
presence of character data type in FORTRAN 77. When you pass a character argument, F77 also
passes a dope vector for that argument which describes the length of the character argument. This
length is used by the called routine when the character argument is referred to. A call of the form

CALL SUB(Cl, I, C2, J)

where CI and C2 are character variables, is really treated by the compiler as

CALL SUB(CI, I, C2, J, <dope for Cl>, #, <dope for C2»

Here "#" is simply a placeholder, because "I", not being a character argument, does not need a dope
vector. Note that there is no corresponding placeholder for "J" at the end of the list because it would
have been the first argument pushed (arguments are pushed in reverse order) and would be as useless
as extra leading zeros when writing numbers.

The AOS CLRE languages (including FORTRAN 5 and FORTRAN 77) mark the stack (by loading
the stack pointer into AC2) before pushing the addresses of arguments. The ISA.NORM and ISA_ERR
macros with FMAC.SR assumed that the last argument in the list (the one whose address is first
pushed) was the ier argument. The macro had no way of knowing that the last argument was not really
the ier argument, but rather a dope vector, when character entities were passed.

The new version of FMAC.SR (called F77_FMAC.SR) has modified versions of ISA.NORM and
ISA.ERR.

Old Syntax

ISA.NORM

ISA.ERR [errorcodej

New Syntax

ISA.NORM [ier_posj

ISA.ERR [new_errorcode [.ieLposjj

If the routine you are writing is not called with character arguments, then you may omit ier_pos. The
presence of ier_pos tells ISA.NORM and ISA.ERR not to assume that the last argument is the "ier"
argument, and to use the supplied position.

new_errorcode is used exactly as errorcode except that it can additionally take the value "*", which
means to use the value of the error code that is in ACO. The "*,, symbol is a placeholder, which allows
you to specify a nondefault ier_pos and to supply the error code in ACO.

6-16 Licensed Material-Properly of Data General Corporation 093-000273-00

Examples: ISA.ERR

ISA.NORM

*,3

5

- ier is argument 3, error code is in ACO

- ier is argument 5

Compatibility Between Languages
One of the features of F77 is that the calling conventions and the return block format it uses are
compatible with other AOS languages that also use the Common Language Runtime Environment
(CLRE). The languages using the CLRE are DGjLTM, FORTRAN 5, FORTRAN 77, and PLjl.

For example, you can write a subroutine in F77 to call a procedure written in PLjI; a PLjI procedure
can refer to an F77 function subprogram in the same way it would refer to a PLjI procedure with a
RETURNS attribute; and DGjL programs can access subroutines written in F77. The rest of this
chapter explains subprograms written in F77 and linkage to them.

The arguments in the parameter lists of the calling and called routines must agree in number, order,
and type. Furthermore, you must make sure that the internal representations of any arguments or
returned values are compatible. For example, an F77 argument declared as INTEGER *2 requires a
PLjI caller to declare its corresponding argument as FIXED BIN(l5). Some data types in other
languages may not have a corresponding data type in F77, and vice versa. For example:

• F77 does not support any data types that correspond to PLjI's ALIGNED CHARACTER,
VARYING CHARACTER, or BIT data types.

• F77 does not directly support any data type that corresponds to the DGjL language's POINTER.

• The DGjL language does not support any data type that corresponds to F77's COMPLEX data
type.

You must be familiar with the internal data representation of both languages.

Multidimension Array Storage
F77 stores the elements of a multidimension array differently from other languages. It stores them by
varying the left-most subscript most rapidly, while other languages vary the right-most subscript most
rapidly. For example, the northern New England states have the abbreviations VT, NH, and ME (for
Vermont, New Hampshire, and Maine) while the abbreviations for the southern New England states
are MA, CT, and RI (for Massachusetts, Connecticut, and Rhode Island). It seems natural to place
these six abbreviations in a two-dimension array with two rows and three columns. The following
sequences of F77 and PLjI statements accomplish this.

PROGRAM STATES STATES: PROCEDURE;
CHARACTER*2 NE __ STATES(2,3) DECLARE NE __ STATES(2,3)

CHARACTER(2);
NE __ STATES(1,1) 'VT' NE __ STATES(1,1) 'VT' ;
NE __ STATES(1,2) 'NH' NE __ STATES(1,2) 'NH' ;
NE __ STATES(1,3) 'ME' NE __ STATES{1,3) 'ME' ;
NE __ STATES(2,1) == 'MA' NE __ STATES(2,1) 'MA' ;
NE __ STATES(2,2) 'CT' NE __ STATES(2,2) 'CT' ;
NE __ STATES(2,3) 'RI' NE __ STATES(2,3) 'RI' ;

We can think that the six elements of NE_ST A TES are stored as

093·000273·00 Licensed Material·Property of Data General Corporation 6-17

Column 1 Column 2 Column 3

Row 1 VT NH ME
Row 2 MA CT RI

to aid in the coding process, Such thinking helps in constructing statements to interchange the
corresponding elements in the rows so that NE_STATES would then contain

Row 1
Row 2

Column 1

MA
VT

Column 2

CT
NH

Column 3

RI
ME

F77 and the other CLRE languages store the six elements of NE_ST A TES in six sequential storage
locations with increasing addresses, F77 stores the six elements differently from the other languages,
See Figure 6-7,

F77

Other

Language

10-00113

s

IncreaSing Addresses

NE_STATES (1," NE_STATES (2,"

'VT' 'MA'

IncreaSing Addresses

NE_STATES (1," NE_STATES (1,2)

'VT' 'NH'

NE_STATES (1,2) NE_STATES (2,2) NE_STATES (1,3) NE_STATES (2,3)

'NH' 'cr 'ME' 'R!'

NE_STATES (1,3) NE_STATES (2," NE_STATES (2,2) NE_STATES (2,3)
'ME' 'MA' 'cr 'R!'

Figure 6-7, An Example of Storage of Multidimension Arrays by F77 and Other Languages

6-18 Licensed Material-Property of Data General Corporation 093-000273-00

0

We write a rather specialized F77 subroutine to swap the corresponding elements of an array such as
NE_STATES. The resulting subroutine SWAP _ROWS.F77 appears next.

SUBROUTINE SWAP_ROWS (ARRAy)
INTEGER*2 COLUMN
CHARACTER*2 ARRAY(2.3). TEMP

DO 10 COLUMN = 1. 3

10 CONTINUE
RETURN
END

TEMP = ARRAY(1.COLUMN)
ARRAY(1.COLUMN) = ARRAY(2.COLUMN)
ARRAY(2.COLUMN) = TEMP

If we add the statement

CALL SWAP_ROWS (NE_STATES)

to STATES.F77, then its compilation and linking with SWAP_ROWS correctly results at runtime in

Row 1
Row 2

Column 1

MA
VT

However, if we add the statement

Column 2

CT
NH

CALL SWAP_ROWS (NE_STATES);

Column 3

RI
ME

to STATES.PLl, then its compilation and linking with SWAP_ROWS incorrectly results at runtime
in

Row 1
Row 2

Column 1

NH
ME

Column 2

VT
RI

Column 3

MA
CT

The difference in the results occurs because of the different sequential storage of array NE_ST A TES
by F77 and by PL/I.

To generalize from this example, you must be careful when you write F77 subroutines to process
multidimension arrays from calling programs that are in a language other than F77. You have to allow
for F77's different storage of these arrays. Single-dimension arrays and simple variables present no
such problem.

093·000273·00 licensed Material·Property of Data General Corporation 6-19

Case Sensitivity
F77 is case-insensitive because it maps all external references to uppercase letters. For example, a
CALL to subroutine VaRiEs compels Link to. locate and load the module with external entry point
"V ARIES" into the program file. PL/I and Link are case-sensitive. So

• You must declare in uppercase letters the name of any F77 subprogram that you call or refer to in
a PL/I source module.

• You should declare in uppercase letters the name of any PL/I subprogram that you call or refer to
in an F77 source module.

A general way to avoid problems is to use uppercase letters in any program module name and in
commands to Link.

Interlanguage Conflicts
Each CLRE language uses a separate set of runtime routines to handle I/0 and certain support
functions. These routines are language-specific. If you try to link these separate runtime routines into
the same program file, conflicts could arise between the names of (and operations performed by)
routines from F77, and the names and operations from another language. To avoid this situation, design
your program so that only one language does all of the program's I/O.

A Sample Subprogram and Its Caller
Figure 6-8 contains a listing of subroutine subprogram GENERAL.F77. This subroutine:

• Receives an array of single-precision floating-point numbers.

• Receives an array of INTEGER *2 numbers.

• Receives a single-precision floating-point number that is an angle measurement (in degrees).

• Returns the largest of the single-precision floating-point numbers.

• Returns the smallest of the INTEGER *2 numbers.

• Returns the trigonometric sine of the received angle.

• Returns 1 in an error variable if there are too few elements in either array; otherwise, returns O.

6-20 Licensed Material·Property of Data General Corporation 093-000273-00

Source file: GENERAL.F77
Compiled on 10-Nov-82 at 13:36:58 by ADS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=GENERAL.LS

1 SUBROUTINE 'GENERAL (REAL_ARRAY, REAL_SIZE, INT _ARRAY, INT _SIZE,
2 + ANGLE, LARGEST_REAL, SMALLEST_INT, SINE_ANGLE, ERROR)
3
4
5
6
7
8
9

10
11
12
13

INTEGER*2 REAL_SIZE
REAL*4 REAL_ARRAY(REAL_SIZE)
INTEGER*2 INT_SIZE
INTEGER*2 INT_ARRAY(INT_SIZE)
REAL*4 ANGLE
REAL*4 LARGEST_REAL
INTEGER*2 SMALLEST_I NT
REAL*4 SINE_ANGLE
INTEGER*2 ERROR

14 ERROR = 0 Assume there's no error in the array sizes.
15 C But, check the sizes and RETURN with the
16 C error variable set if there is an error.
17 IF (REAL_SIZE .LT. 1 .OR. INT_SIZE .LT. 1) THEN
18 ERROR = 1
19 RETURN
20 ENDIF
21
22 C Find the largest element in <REAL_ARRAY> and place it in
23 C <LARGEST_REAL>.
24 LARGEST_REAL = REAL_ARRAY(1)
25 DO 10 I = 2, REAL_SIZE
26 IF (REAL_ARRAY (I) . GT. LARGEST_REAL
27 1 LARGEST_REAL = REAL_ARRAY(I)
28 10 CONTINUE
29
30 C Find the smallest element in <INT_ARRAY> and place it in
31 C <SMALLEST_INT>.
32 SMALLEST_I NT = INT_ARRAY(1)
33 DO 20 I = 2, INT_SIZE
34 IF (INT_ARRAY(I) .LT. SMALLEST_I NT
35 1 SMALLEST_I NT = INT_ARRAY(I)
36 20 CONTINUE
37
38 C Compute the sine of <ANGLE> after converting <ANGLE> from degrees
39 C to radians.,
40 SINE_ANGLE = SIN(3.141593*ANGLE/180.0) I PI radians = 180 degrees.
41
42 C Donel
43 RETURN
44 END

Figure 6-8. Subroutine Subprogram GENERAL.F77

093·000273·00 Licensed Material·Property of Data General Corporation 6-21

Subroutine GENERAL.F77 exists so that the other CLRE languages can call it to process their data.
You will soon see sample programs that call GENERAL; they are written in the FORTRAN 5, DG/L,
and PL/I languages (as well as in F77).

Figure 6-9 contains a listing of main program TEST_GENERAL.F77. As its name implies,
TEST_GENERAL.F77 is an F77 program to test subroutine GENERAL.

Source file: TEST __ GENERAL.F77
Compiled on 10-Nov-82 at 13:40:12 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=TEST __ GENERAL.LS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 C
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1

PROGRAM TEST __ GENERAL

REAL*4 REALS(10) I

INTEGER*2 R __ SIZE

INTEGER*2 INTS(5) I
INTEGER*2 I __ SIZE

REAL *4 ANGLE I

REAL*4 BIG __ REAL
INTEGER*2 SMALL __ INT
REAL*4 SINE __ ANGLE
INTEGER*2 IER

Here we go ...

I

I

I to test subroutine GENERAL

3.40, 8.61, -6.00, 8.94, 4.18,
7.56, -9.57, 0.00, -1.24, 0.52 I
10 I

386, -2846, 3091, -33, 5104 I
5 I

30.0 I

CALL GENERAL (REALS, R __ SIZE, INTS, I __ SIZE, ANGLE,
1 BIG __ REAL, SMALL __ INT, SINE __ ANGLE, IER)

IF IER .EO. 0) THEN

ELSE

ENDIF

STOP
END

PRINT *
PRINT * 'THE LARGEST REAL*4 NUMBER IS:
PRINT * 'THE SMALLEST INTEGER*2 NUMBER IS:
PRINT * 'THE SINE OF " ANGLE, ' DEGREES IS:
PRINT *

PRINT *
PRINT * 'ERROR OCCURRED IN SUBROUTINE GENERAL.'
PRINT *

Figure 6-9. Main Program TEST _GENERA L. F77

BIG __ REAL
SMALL __ INT
SINE __ ANGL

Note that all the variables in GENERAL.F77 and TEST_GENERAL.F77 are either REAL*4 or
INTEGER*2. Each of the CLRE languages supports these two data types.

6-22 Licensed· Material-Property of Data General Corporation 093-000273-00

()

The compilation, link, and execution commands for TEST_GENERAL.F77 and GENERAL.F77 are

F77 TEST_GENERAL
F77 GENERAL
F77L1NK TEST_GENERAL GENERAL
XEQ_GENERAL

The output displayed in response to the last command is

THE LARGEST REAL *4 NUMBER IS:
THE SMALLEST INTEGER*2 NUMBER IS:
THE SINE OF 30. DEGREES IS:

STOP

8.94
-2846
.5

High-level languages and F77 Subroutines
The DG/L, FORTRAN 5, FORTRAN 77, and PL/I languages follow the CLRE. The rest of this
chapter consists of the following for each language, except F77:

• A list of F77 data types and the language's corresponding data types.

• A sample program in the language that calls GENERAL.F77.

• An explanation of any peculiarities of the language that affect F77 subroutines.

FORTRAN 5 and F77

This section lists F77 data types and their FORTRAN 5 correspondents. It also shows the FORTRAN
5 program, TEST_GENERAL.FR, that calls subroutine GENERAL.F77.

F77 and FORTRAN 5 Data Types

INTEGER*2

INTEGER*4

REAL*4

REAL*8 and

F77

DOUBLE PRECISION

COMPLEX

COMPLEX*16 and
DOUBLE PRECISION COMPLEX

LOGICAL*2

LOGICAL*4

CHARACTER *N
("N" is a constant.)

Sample Program

FORTRAN 56

INTEGER

None

REAL

DOUBLE PRECISION

COMPLEX

DOUBLE PRECISION COMPLEX

LOGICAL

None

None

Program TEST_GENERAL.FR calls subroutine GENERAL. This program's listing is shown in
Figure 6-10.

093·000273·00 licensed Material·Property of Data General Corporation 6-23

AOS FORTRAN 5, Version 6.11 -- Wednesday, November 10, 1982 2:01:33 PM

1 :
2:
3 :
4:
5:
6:
7 :
8:
9:

10:
11:
12:
13:
14:
15:
16:

C

17: C
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

1

TEST __ GENERAL.FR

PROGRAM TEST __ GENERAL

REAL REALS (10) / 3.40,
7.56,

INTEGER R __ SIZE / 10 /

INTEGER INTS(5) / 386,
INTEGER I __ SIZE / 5

REAL ANGLE / 30.0 /

REAL BIG __ REAL
INTEGER SMALL __ INT
REAL SINE __ ANGLE
INTEGER IER

Here we go ...

to test subroutine GENERAL

8.61, -6.00, 8.94, 4.18,
-9.57, 0.00, -1.24, 0.52 /

-2846, 3091, -33, 5104 /
/

CALL GENERAL (REALS, R __ SIZE, INTS, I __ SIZE, ANGLE,
1 BIG __ REAL, SMALL __ INT, SINE __ ANGLE, IER)

IF IER .NE. 0) GO TO 10

TYPE
TYPE 'THE LARGEST REAL NUMBER IS: BIG __ REAL
TYPE 'THE SMALLEST INTEGER NUMBER IS: SMALL __ INT
TYPE 'THE SINE OF " ANGLE, ' DEGREES IS: " SINE __ ANGLE
TYPE
GO TO 20

10 TYPE
TYPE 'ERROR OCCURRED IN SUBROUTINE GENERAL.'
TYPE

20 STOP
END

Figure 6-10. Program TEST _GENERAL.FR

Assume that you have the directory with the FORTRAN 5 software on your searchlist and that you
have compiled GENERAL.F77 to create GENERAL.OB. Then, use the following commands to
compile, link, and execute TEST_GENERAL.FR.

F5 TEST_GENERAL
F5LD TEST_GENERAL GENERAL F77MATH2.LB
XEQ TEST_GENERAL

6-24 Licensed Material·Property of Data General Corporation 093·000273·00

()

()

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL NUMBER IS: 8.94000
THE SMALLEST INTEGER NUMBER IS: -2846
THE SINE OF 30.0000 DEGREES IS: .500000

STOP

DG/l and F77 languages
This section lists F77 data types and thei"r DG/L correspondents. It also shows the DG/L program,
TEST_GENERAL.DG, that calls subroutine GENERAL.F77.

F77 and DG/l Data Types

INTEGER*2

INTEGER*4

REAL*4

REAL*8 and

0=77

DOUBLE PRECISION

COMPLEX

COMPLEX*16 and
DOUBLE PRECISION COMPLEX

LOGICAL*2

LOGICAL*4

CHARACTER * 1

CHARACTER *N
("N" is a constant.)

CHARACTER *(*)

Sample Program

INTEGER(l)

INTEGER(2)

REAL(2)

REAL(4)

None

None

Dell

None- But, a DG/L BOOLEAN variable whose
value is 0 is the same as an F77 LOGICAL *2
variable whose value is .FALSE .. The DG/L
language represents "TRUE" with a binary 1 in a
BOOLEAN variable; F77 represents ".TRUE."
with a -1 (all bits on) in a LOGICAL*2 variable.

None

STRING(l)

STRING(N)

None

Program TEST_GENERAL.DG calls subroutine GENERAL. This program's listing is shown in
Figure 6-11.

093·000273·00 Licensed Material·Property of Data General Corporation 6-25

6-26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

ADS DG/L. VERSION 2.10 -- WEDNESDAY. NOVEMBER 10. 1982 3:11 PM

DGL/L=TEST __ GENERAL.LS TEST __ GENERAL.DG

BEGIN

COMMENT SAMPLE PROGRAM TEST __ GENERAL
<GENERAL>;

EXTERNAL PROCEDURE GENERAL;
EXTERNAL STRING PROCEDURE GETCOUTPUT;

REAL(2) ARRAY
INTEGER(1)

INTEGER(1) ARRAY
INTEGER(1)

REAL(2)

REAL(2)
INTEGER(1)
REAL(2)
INTEGER(1)

REALS[1]
REALS[2}
REALS[3]
REALS[4]
REAlS[5]
REALS[6]
REALS[7]
REALS[8]
REALS[9]
REALS[10]
R __ SIZE

INTS[1]
INTS[2]
INTS[3]
INTS[4]
INTS[5]
I __ SIZE

ANGLE

:= 3.40;
:= 8.61;
:= -6.00;
:= 8.94;
:= 4.18;
:= 7.56.;
:= -9.57;
:= 0.00;
:= -1.24;
:= 0.52;
:= 10

386;
.= -2846;

3091;
-33;

5104;
.= 5;

:= 30.0;

OPEN (1.(GETCOUTPUT»;

COMMENT Here we go ...

REALS [1:10];
R __ SIZE;

INTS [1:5);
I __ SIZE;

ANGLE;

BIG __ REAL;
SMALL __ INT;
SINE __ ANGLE;
IER;

TO TEST SUBROUTINE

GENERAL (REALS. R __ SIZS. INTS. I __ SIZE. ANGLE.
BIG __ REAL. SMALL __ INT. SINE __ ANGLE. IER);

Figure 6-11. Program TEST _GENERAL.DG (continues)

I,.icensed Materil;ll·Property of Dl;lta General Corporation

()

093·000273'()O

(\
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69 END;

IF IER = 0 THEN

ELSE

BEGIN
WRITE (1,
WRITE (1,

WRITE (1,

WRITE (1,

WRITE (1,
END

BEGIN

"<NL>");
"THE LARGEST REAL(2) NUMBER IS:

BIG_REAL, "<NL>");
"THE SMALLEST INTEGER(1) NUMBER IS:

SMALL_INT, "<NL>");
"THE SINE OF ", ANGLE, " DEGREES IS: "

SINE_ANGLE, "<NL>");
"<NL>") ;

WR ITE (1, "<NL>");
WRITE (1, "ERROR OCCURRED IN SUBROUTINE GENERAl. <NL>");
WRITE (1, "<NL>");
END;

Figure 6-11. Program TEST _GENERAL.DG (concluded)

Assume that you have the directory with the DG/L software on your searchlist and that you have
compiled GENERAL.F77 to create GENERAL.OB. Then, use the following commands to compile,
link, and execute TEST_GENERAL.DG.

X DGL TEST_GENERAL
X LINK TEST_GENERAL GENERAL F77MATH2.LB [DGLlB]
X TEST_GENERAL

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL(2) NUMBER IS: 8.94
THE SMALLEST INTEGER(J) NUMBER IS: -2846
THE SINE OF 30. DEGREES IS: .5

(l93·000?73·OO J,.ip!!nsed MaleriaH'r()P!!rty ()f Pal!! G!!n!!ral Corporatipn

PL/I and F77
This section lists F77 data types and their PLjI correspondents. It also shows the PL/I program,
TEST_GENERAL.PLI, that calls subroutine GENERAL.F77.

F77 and PL/I Data Types

INTEGER*2

INTEGER*4

REAL*4

REAL*4

REAL*8 and

F77

DOUBLE PRECISION

REAL*8 and
DOUBLE PRECISION

COMPLEX

COMPLEX*16 and \
DOUBLE PRECISION COMPLEX

LOGICAL*2

LOGICAL*4

CHARACTER *N
("N" is a constant.)

CHARACTER *(*)

Sample Program

PL/I

FIXED BIN(l) through FIXED BIN(l5)

FIXED BIN(l6) through FIXED BIN(3I)

FLOAT BIN(l) through FLOAT BIN(21)

FLOAT DEC(l) through FLOAT DEC(6)

FLOAT BIN(22) through FLOAT BIN(53)

FLOAT DEC(7) through FLOAT DEC(16)

None

None

ALIGNED BIT(l6) variable, which is always
either "OOOO"B4 or "FFFF"B4; or

FIXED BIN(l5) variable, which is always either
o or-l

ALIGNED BIT(32) variable, which is always
either "OOOOOOOO"B4 or "FFFFFFFF"B4; or

FIXED BIN(31) variable, which is always either
o or -1

CHAR(N)

CHAR(*)

Program TEST_GENERAL.PLI calls subroutine GENERAL. This program's listing is shown in
Figure 6-12.

6-28 Licensed Malerial-Property of Dala General Corporation 093·000273-00

Q

()

()

SOURCE FILE: TEST __ GENERAL.PL1
COMPILED ON 11/10/82 AT 15:41:28 BY PL/I REV 2.31
OPTIONS: PL1/L=TEST __ GENERAL.LS.TEST __ GENERAL

1 TEST __ GENERAL:
2 PROCEDURE;
3 DECLARE REALS(10) FLOAT BINARY(15) STATIC INIT (
4
5

3.40. 8.61. -6.00. 8.94. 4.18.
7.56. -9.57. 0.00. -1.24. 0.52).

6
7 R __ SIZE
8
9 INTS(5)

10
11
12 I __ SIZE
13
14 ANGLE
15
16 BIG __ REAL
17 SMALL __ INT
18 SINE __ ANGLE
19 IER
20

GENERAL

FIXED BINARY(15) STATIC INIT(10).

FIXED BINARY(15) STATIC INIT (
386. -2846. 3091. -33. 5104).

FIXED BINARY(15) STATIC INIT(5).

FLOAT BINARY(15) STATIC INIT(30).

FLOAT BINARY(15).
FIXED BINARY(15).
FLOAT BINARY(15).

FIXED BINARY(15).

ENTRY((10) FLOAT BIN(15).
FIXED BIN(15).

(5) FIXED BIN(15).
FIXED BIN(15).
FLOAT BIN(15).

1* REALS
1* R __ SIZE
1* INTS
1* I __ SIZE
1* ANGLE

-*1
*1

*1
*1

*1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

FLOAT BIN (15) . 1* BIG __ REAL *1
FIXED BIN(15). 1* SMALL __ INT* 1
FLOAT BIN(15). I*SINE __ ANGLE*I
FIXED BIN(15)) . 1* IER *1

@OUTPUT FILE;

OPEN FILE(@OUTPUT) STREAM OUTPUT PRINT;

1* Here we go ... *1

CALL GENERAL(REALS. R __ SIZE. INTS. I __ SIZE. ANGLE.
BIG __ REAL. SMALL __ INT. SINE __ ANGLE. IER);

Figure 6-12. Program TEST _GENERAL.PLl (continues)

093·000273·00 Licensed Material·Property of Data General Corporation 6-29

40 IF IER = 0 THEN
41 00;
42 PUT FILE(@OUTPUT) SKIP LIST (" ");
43 PUT FILE(@OUTPUT) SKIP EOIT(
44 "THE LARGEST REAL*4 NUMBER IS:
45 BIG_REAL) (A, F(5,2));
46 PUT FILE(@OUTPUT) SKIP EDIT(
47 "THE SMALLEST INTEGER*2 NUMBER IS: "
48 SMALL_I NT) (A, F(5));
49 PUT FILE(@OUTPUT) SKIP EDIT(
50 "THE SINE OF ", ANGLE, .. DEGREES IS: ",
51 SINE_ANGLE) (A, F(5, 1). A, F(7,4));
52 PUT FILE(@OUTPUT) SKIP LIST (" ");
53 END;
54 ELSE
55 DO;
56 PUT FILE(@OUTPUT) SKIP LIST (" ");
57 PUT FILE(@OUTPUT) SKIP LIST (
58 "ERROR OCCURRED IN SUBROUTINE GENERAL.");
59 PUT FILE(@OUTPUT) SKIP LIST (" ");
60
61 END;
62
63 STOP;
64
65 END; /* OF PROGRAM TEST_GENERAL */

Figure 6-12. Program TEST _GENERAL.PLl (concluded)

Assume that you have the directory with the PLjI software on your search list and that you have
compiled GENERAL.F77 to create GENERAL.OB. Then, use the following commands to compile,
link, and execute TEST_GENERAL.PLI.

PL1 TEST_GENERAL
PL 1L1NK TEST_GENERAL GENERAL F77MATH2.LB
XEQ TEST_GENERAL

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL *4 NUMBER IS: 8.94
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 30.0 DEGREES IS: 0.5000

End of Chapter

6-30 Licensed Material·Property of O",ta General Corporation 093·000273·00

()

0

Chapter 7
Programming Hints

This chapter presents several diverse topics that may help you implement F77 programs. The topics are
as follows.

• The F77 Error File

• Improving Program Readability

• Program Enhancements

• F77 Output and Printing Special Forms

• Reducing Memory and Disk Usage by Program Files

The F77 Error File
The FORTRAN 77 Reference Manual explains how to incorporate and use file ERR.F77.1N in your
F77 program units. It's worth repeating that use of this error file means your program works with
mnemonics. These mnemonics and their corresponding text explanations never change form one
revision of F77 to another. This is in possible contrast to the use of hard-wired constant values for error
identification,

ERR.F77.1N sometimes changes with a new release of F77. You usually don't have to recompile and
relink any current programs just because they %INCLUDE ERR.F77.1N. New programs should
%INCLUDE the latest error file.

Improving Program Readability
Chapter 5 mentions the importance of carefully designing programs to minimize the need for subsequent
debugging. You should also create programs that other programmers can easily understand and
maintain. Just remember that few things in electronic data processing are more permanent than
"temporary" programs that departed programmers have written!

Program Enhancements
This section explains:

• The effect of certain compiler switches on performance.

• Ways to improve runtime computation speed.

• Ways to improve runtime I/O speed.

093-000273-00 Licensed Milierilll-Property of Oilia General Corporation 7-1

Compiler Switches and Program Performance
Compiler options can heavily influence F77 program performance. Some options depend on others, and
selecting one could reduce the impact of others. The options could affect:

• The compilation time.

• The ability of the compiler to optimize.

• The disk space needed by compiler-generated files.

• The memory needed at runtime.

• The execution time.

The most significant effects of the compiler switches are:

/DEBUG

/DOTRIP= 1

slows the compilation because of the extra information it makes for the SWAT
debugger. The generated code can't carry certain values in the accumulators from
one statement to the next. Instead, the code must store newly computed values in
memory at the end of some statements. Chapter 5 has shown you the convenience of
using the SWAT debugger. Once you have used it to locate bugs, then recompile
without this switch (delete any leftover .DL and .DS files) and relink to create a
faster executing program file.

generates code that is slightly more efficient than /DOTRIP=O. Be certain that the
program logic will work correctly with this switch before using it.

/SA VEV ARS is often required to make programs from other vendors produce correct results, or
sometimes even to run at all. Many non-DG FORTRANs provide static (nonstack)
storage of variables by default. The result is that the program can subtly depend on
such features as having uninitialized variables containing zero, and preserving the
values of local variables in subprograms from one CALL or function reference to the
next. The /SA VEV ARS switch provides this preservation in F77; so does the SAVE
statement. However, neither forces uninitialized variables to contain zero.

There is another potential effect of the /SA VEV ARS option: some program
algorithms (most often those involving large amounts of subscript manipulation), can
cause the generated code to "run out of accumulators." That is, the code must go to
great lengths to free the resource called an "index register" (AC2 and AC3). If this
"running out" occurs, /SA VEVARS (or SAVE) has the compiler allocate specific
memory addresses, thus allowing faster calculation of offsets and less conflict among
accumulator usage.

There is no definite way to predict whether or not static allocation of variables will
help a given program. You must experiment in each case.

/SUB has the compiler insert extra instructions in the generated code. Each time the code
evaluates a subscript or substring expression and calculates the actual offset into the
array or string, it also compares the offset to the appropriate limit. This comparison
takes time, and also reduces the optimizer's ability to use the accumulators for
storing data and expression values.

Usually, the simple compilation command line

F77 /OPT your_program_name

produces the best code (and a longer compilation time). Sometimes adding /SA VEVARS or
/DOTRIP= 1 (or both) can produce better code.

7-2 Licensed Material·Property of Data General Corporation 093·000273·00

()

()

()

Enhancing Computational Speed
Once you have selected compiler options to increase runtime performance of a debugged program,
consider the effects of computation at runtime. This section gives tips and techniques to speed up
computations.

First, integer arithmetic is faster than single-precision arithmetic, which is faster than double-precision
arithmetic.

Second, you improve compilation and execution speed by running on an idle system with lots of physical
memory and a large working set.

Third, scan each Release Notice for hints. Also, your Data General Systems Engineer has access to the
two following documents:

• The Systems Engineering NewsLetter (SENL) .

• The FORTRAN Product Support Manual.

Ask him or her about the latest F77 programming suggestions that appear in these publications.

Enhancing 1/0 Speed
Data General created some F77 programs whose sole purpose was to read records from a common file
via different I/O statements. This file contained thousands of 100-byte ASCII data strings that were
separated by NEW-LINE characters. The slowest possible access technique was used as a basis for
comparison with other techniques. Its relative speed is thus 1.00. The "Result" column below gives the
quotient of a technique's records/second number divided by the records/second number of the slowest
technique.

File Access Technique Result

Read the file as a data-sensitive file into an integer array 1.00
using the data descriptor "lOOAl" for each record.

Read the file as a data-sensitive file into a character 2.94
variable using the data descriptor "AlOO" for each record.

Read the file as a fixed file into a character variable 3.25
using the data descriptor "AlOO" for each record.

Read the file as a fixed file into a character variable with 5.21
unformatted I/O for each record.

Read the file as a dynamic file into a character variable 6.52
with unformatted I/O for each record and with the
default BLOCKSIZE (512).

Read the file as a dynamic file into a character variable 6.91
with unformatted I/O for each record and with a
BLOCKSIZE value of 2048.

NOTE: These numbers reflect operation with a particular ECLIPSE® computer, operating system,
peripherals, and revision of F77. Use them as guidelines to show how to increase I/O
performance, and not as guaranteed results.

093·000273·00 Licensed Material·Property of Data General Corporation 7-3

Here are some general and some F77-specific approaches to consider as you try to increase I/O speed.

• Use the record format of the file to your advantage. In general, RECFM = DATASENSITIVE will
give the slowest file I/O, with VARIABLE, FIXED, and DYNAMIC successively faster. You can
attain the fastest possible I/O by performing unformatted reads and writes of an array with a file
whose records are dynamic. In this case, I/O occurs directly from and to an array without the F77
runtime routines doing any data movement.

• Define a large BLOCKSIZE in the OPEN statement to reduce the number of file accesses required
for sequentially processing a file.

• To output an array using formatted I/O, use a sequence like

C SEQUENCE A
DIMENSION IARRAY(SO)

WRITE (10, 100) IARRAY
100 FORMAT (5015)

It is much more efficient to do an I/O operation on an entire array rather than on its individual
elements. While a sequence like

C SEQUENCE B
DIMENSION IARRAY(SO)

WRITE (10, 100) (IARRAY(I), I = 1, 50)
100 FORMAT (5015)

displays identical results, it results in about 50 system calls (one for each element of IARRA V),
instead of about one system call. In other words - avoid implied DO loops for I/O whenever
possible. Finally, FORMAT statement 100 in both of the above sequences is more efficient than

100 FORMAT (50(15))

In general, avoid FORMAT statements that have sizable repeat counts outside specifications with
parentheses.

• If you have to use only a known part of an array for I/O, then (as mentioned before) try to avoid
implied DO loops. Instead, use EQUIVALENCE or assignment statements to define another array
whose consecutive elements are those of the known subset. For instance, assume that the respective
array names are A-ARRA Y and B_ARRA Y so that B_ARRA Y contains the necessary subset of
A_ARRA V's elements. Then, write a statement pair such as

WRITE (10, 110) B __ ARRAY
110 FORMAT (12F6.2)

instead of

WRITE (10, 110) (A __ ARRAY(I), I = 1, 23, 2)
110 FORMAT (12F6.2)

• Suppose you need to use a unit number that is normally preconnected to some other file. It is faster
to CLOSE the preconnected unit and to OPEN the file you want on that unit than it is to directly
OPEN the file on that unit. Why? Directly OPENing the file on the unit is actually a reOPEN of a
preconnected unit that hasn't been accessed yet -- and extra processing is necessary to determine if
such a reOPEN refers to the name of the preconnected file or to some new file. The CLOSE
statement eliminates the need for the extra processing. For example:

Faster Slower

CLOSE (6) OPEN (6, FILE = 'FOO', ...)
OPEN (6, FILE='FOO', ...)

7 -4 Licensed Material·Property of Data General Corporation 093-000273·00

o

()

F77 Output and Printing Special Forms
Suppose your F77 program writes to a data-sensitive file and the output includes a form-feed character
(whose octal value is <014». When you print the file via a QPRINT command, XLPT.PR (as part
of AOS) sends this character to the printer which advances the paper to the next page.

At most installations:

• The printer then advances three lines and printing resumes on the fourth line.

• The printer prints only 63 lines on a page and then advances to the fourth line of the next page to
resume its output.

In addition, the first response to the QPRINT command is frequently a header page (filename in large
letters, pathname, times, dates, etc.) and a form feed.

You can have the printer behave differently. For example, you might want to print special forms that
are not the default 66 lines long (i.e., 11 inches for a switch setting of 6 lines per inch). And, you might
want printing on the first line of the form.

What software steps are necessary to change the default behavior of the printer? You must use the
Forms Control Utility (FCU) program and sometimes place special nonprinting control characters in
the output files your FORTRAN 77 programs create. You or your system's operator must also give
specific commands to EXEC to print the special forms.

If you aren't familiar with EXEC commands to control the printer, or with FCU.PR, then read the
appropriate manuals - the Advanced Operating System (AOS) Operator's Guide and the Command
Line Interpreter (CLl) User's Manual (AOS & AOSjVS).

The basic steps to prepare and print a file on nonstandard forms are:

• Determine the layout of the form. You have to know the first line of printing, the length and width
of the form, the last line printing can occur on, and any lines that the paper should advance to by
skipping to channels 2 through 11 of a vertical forms unit (VFU); i.e., a carriage control tape.

• Write, compile, Link, and execute the F77 program that inserts form-feed characters and VFU
control characters in the output fire. The CLI User's Manual explains the VFU control characters
and their effects. And the output file should have data-sensitive records.

• Execute FCU.PR and describe your special form to it.

o Your system operator should:

Record the current LPP, CPL, and HEADERS values for the selected printer (with its VFU).

PAUSE the printer and change the lines-per-page (LPP) and characters-per-line (CPL) settings
to the true length and width of the special form. You must have already given these same
numbers when you executed FCU.PR for the form. Also, insure that the HEADERS setting is
correct (frequently, zero). If you don't do this, unwanted header page information might print
on at least the first form.

Insert and align the special forms.

CONTINUE the printer.

Print (QPRINT) the output file.

PAUSE the printer. Reset the LPP, CPL, and HEADERS settings to those of the next form.

Remove the special forms.

Insert and align the next forms.

CONTINUE the printer.

093·000273·00 Licensed Material·Property of Data General Corporation 7-5

Background for Two Examples
Frank is the corresponding secretary of his antique auto club. Part of his job is to keep track of
members and their autos. He creates a file called MEMBERS.DATA with data-sensitive organization
because programs that contain LIST-directed READ statements will read the file. These programs will
create two files: MEMBERS.LABELS - for printing address labels, and MEMBERS.CARDS - for
printing index cards. The filenames of these respective programs are PRINT_LABELS.F77 and
PRINT _CARDS.F77.

Figure 7-1 contains a listing of file MEMBERS.DA T A.

DG·25246

"MARLL DALRYMPLE", "64 WOOSTER DRIVE"," ", "FRAMINGHAM", "MA", "01701"
"31 FORD MODEL A PHAETON", "40 FORD CONVERTIBLE", "40 FORD COUPE"
"47 FORD 'WOODIE' WAGON", " ", " "
"GORDON CLIFFORD", "501 BELKNAP ROAD", "BOX 44", "WAYLAND", "MA", "01778"
"34 FORD CABRIOLET", "35 BUICK RUMBLE SEAT COUPE", "39 PACKARD SEDAN"
"46 CHRYSLER TOWN & COUNTRY", "52 MG TO ROADSTER", " "

Figure 7-1. File MEMBERS.DATA

Example 1 - Printing Labels
Figure 7-2 contains a listing of program PRINT_LABELS. Note that one form-feed character will
precede the characters for each label. The only channel skipping the printer will do while working with
the labels is to channell - precisely the effect of the form-feed character. The labels are 15/16 inches
high by 3.5 inches wide, which is a standard size.

7-6 Licensed Material·Property of Data General Corporation 093-000273·00

o

o

o

C
PROGRAM PRINT __ LABELS TO PREPARE FILE <MEMBERS.LABELS>

FOR PRINTING LABELS

CHARACTER*25 NAME, ADDRESS __ 1, ADDRESS __ 2
CHARACTER*15 CITY
CHARACTER*2 STATE
CHARACTER*5 ZIP
CHARACTER*26 CARS __ OWNED(6)
INTEGER COUNT / 0 / I COUNT OF LABELS PRINTED

OPEN (2, FILE='MEMBERS.DATA', STATUS='OLD', IOINTENT='INPUT')
OPEN (3, FILE='MEMBERS.LABELS', STATUS='FRESH', IOINTENT='OUTPUT')

10 READ (2, * END=60) NAME, ADDRESS __ 1, ADDRESS __ 2, CITY, STATE, ZIP
READ (2, *) (CARS __ OWNED(I), I = 1, 3) READ THESE RECORDS, AND
READ (2, *) (CARS __ OWNED(I), I = 4, 6) THEN IGNORE THEM.

WRITE (3, 20) NAME
20 FORMAT ('<FF>', A) <NAME> GOES ON A NEW LABEL.

WRITE (3, 30) ADDRESS __ 1
30 FORMAT (A)

IF (ADDRESS __ 2 .NE. " •) WRITE (3, 30) ADDRESS __ 2
WRITE (3, 40) CITY, STATE

40 FORMAT (A, 2X, A)
WRITE (3, 50) ZIP

50 FORMAT (10X, A) I INDENT ZIP CODE FOR THE POSTAL SERVICE.
COUNT = COUNT + 1
GO TO 10

60 WRITE (3, 70) COUNT
70 FORMAT (' <FF>', '* **

CLOSE (2)
CLOSE (3)

! END THE LABELS EXPLICITLY.
14, ' LABELS PRINTED ***')

PRINT *, 'FILE MEMBERS. LABELS IS READY FOR PRINTING'

STOP
END

Figure 7-2. Program PRINT_LABELS

Frank executes PRINT _LABELS.PR to create MEMBERS.LABELS. He also has to execute FCU .PR
to create the VFU specifications file for MEMBERS. LABELS. This file is in the User Data Area
(UDA) assigned to MEMBERS.LABELS. The dialog between Frank and FCU.PR appears next.

) XEQ FCU J

AOS Forms Control Utility Revision ..

Type 'Help' for instructions

Command? C J
Pathname? MEMBERS. LABELS J

093-000273-00 Licensed Material-Property of Data General Corporation 7-7

Characters Per Line (16-255)
[80J? 35 J

Tab Stops (2-79, OR STANDARD)
[8,16,24,32,40,48,56,64,72 J

? J
Form length in Lines Per Page (6-144)

[66J? 6 J
Top of Form (Channell) Line Number (1-6)

[IJ? J
Bottom of Form (Channel 12) Line number (1-6)

[6J? J
VFU Tape (Line numbers 1-6, Channels 2-11, OR STANDARD)

[J
? J
Output to Pathname

[:UDD:F77:FRANK:MEMBERS.LABELSJ?

Command? BYE J

FCU terminating ...

Frank verifies that the VFU specifications file exists with the CLI command

FILEST ATUS / UDA MEMBERS.LABELS

AOS responds with

MEMBERS.LABELS UDA

Frank and his system's operator, John, go to the operator's console (username OP) and to the printer.
They perform the following steps.

1. They determine that the current LPP, CPL, and HEADERS values are 66, 80, and 1, respectively.

2. They wait for the current print queue to LPT (devicename @LPB) to complete.

3. John gives these commands to the CLI.

CONTROL @EXEC PAUSE @LPB
CONTROL @EXEC LPP @LPB 6
CONTROL @EXEC CPL @LPB 35
CONTROL @EXEC HEADERS @LPB 0

4. They insert and align the labels in their Model 4216 printer.

5. John gives these commands to the CLI.

CONTROL @EXEC CONTINUE @LPB
QPRINT :UDD:F77:FRANK:MEMBERS.LABELS
CONTROL @EXEC PAUSE @LPB
CONTROL @EXEC LPP @LPB 66
CONTROL @EXEC CPL @LPB 80
CONTROL @EXEC HEADERS @LPB 1

6. They remove the labels and reinsert standard II-inch high paper.

7. John gives the command

CONTROL @EXEC CONTINUE @LPB

to finish the restoration of the printer to its previous settings.

7-8 Licensed Material·Property of Data General Corporation 093·000273·00

o

(\

Example 2 - Printing Index Cards
Figure 7-3 contains a printed index card. Specifically

• Its height is 3 inches (= 18 lines) and its width is 5 inches (= 50 characters).

• Frank wants printing to begin on the second line of the form.

• Frank wants the printer to advance each card as quickly as possible from the name/address area of
the form to line 10 before printing the cars a member owns. He arbitrarily chooses channel 4 of the
electronic carriage control tape to correspond to line 10.

1
2
3
4
S
6
7
8
9

10
11
12
13
14
1S
16
17
18

DG·OOl14

GORDON CLI FFORD
S01 BELKNAP ROAD
BOX 44
WAYLAND MA 01778

34 FORD CABRIOLET
3S BUICK RUMBLE SEAT COUPE
39 PACKARD SEDAN
46 CHRYSLER TOWN & COUNTRY
S2 MG TD ROADSTER

Figure 7-3. A Typical Index Card

Figure 7-4 contains a listing of program PRINT_CARDS. Note that one form-feed character will
precede the characters for each card. The printer must skip to channel 1 while working with the cards;
the form-feed characters in FORMAT statements 20 and 80 accomplish this. The 2 bytes
<022><103> in FORMAT statement 50, along with the proper execution of FCU.PR, cause the
printer to advance a card to its line 10. The "$" character is in statement 50 to prevent the issuance of
a NEWLINE character (< 12>) and the resulting advance of an index card to line 11 for the printing
of the first antique auto's information.

093·000273·00 licensed Material·Property of Data General Corporation 7-9

C
PROGRAM PRINT __ CARDS TO PREPARE FILE <MEMBERS.CARDS>

FOR PRINTING OF INDEX CARDS

CHARACTER*25 NAME, ADDRESS __ 1, ADDRESS __ 2
CHARACTER*15 CITY
CHARACTER*2 STATE
CHARACTER*5 ZIP
CHARACTER*26 CARS __ OWNED(6)
INTEGER COUNT / 0 / ! COUNT OF CARDS PRINTED

OPEN (2, FILE='MEMBERS.DATA', STATUS='OLD', IOINTENT='INPUT')
OPEN (3, FILE='MEMBERS.CARDS', STATUS='FRESH', IOINTENT='OUTPUT')

10 READ (2, * END=70) NAME, ADDRESS __ 1, ADDRESS __ 2, CITY, STATE, ZIP
READ (2, *) (CARS __ OWNED(I), I = 1, 3)
READ (2, *) (CARS __ OWNED(I), I = 4, 6)

WRITE (3, 20) NAME
20 FORMAT ('<FF>', A) <NAME> GOES ON A NEW LABEL.

WRITE (3, 30) ADDRESS __ 1
30 FORMAT (A)

IF (ADDRESS __ 2 .NE. " ") WRITE (3, 30) ADDRESS __ 2
WRITE (3, 40) CITY, STATE, ZIP

40 FORMAT (A, 2X, A, 2X, A)

C SKIP TO LINE 10 (THAT IS, CHANNEL 4 OF THE YFU "TAPE") ...
WRITE (3, 50)

50 FORMAT ('<022><103>', $)

C ... AND PRINT THE CARS THE MEMBER OWNS.

7-10

DO 60 I = 1, 6
IF (CARS __ OWNED(I) .NE. " ,) WRITE (3, 30) CARS __ OWNED(I)

60 CONTINUE
COUNT = COUNT + 1
GO TO 10

70 WRITE (3, 80) COUNT
80 FORMAT (,<FF>', '***

CLOSE (2)
CLOSE (3)

! END THE CARDS EXP~ICITLY.
14, ' CARDS PRINTED ***')

PRINT *, 'FILE MEMBERS. CARDS IS READY FOR PRINTING'

STOP
END

Figure 7-4. Program PRINT_CARDS

Licensed Material·Property of Data General Corporation

()

()

()

093·000273·00

Frank executes PRINT_CARDS.PR to create MEMBERS.CARDS. He also has to execute FCU.PR
to create the VFU specifications file for MEMBERS.CARDS. The dialog between Frank and FCU.PR
appears next.

) XEQ FCU J

AOS Forms Control Utility

Type 'Help' for instructions

Command? C J

Revision ...

Pathname? MEMBERS. CARDS J
Characters Per Line (16-255)

[80J? 50 J
Tab Stops (2-79, OR STANDARD)

[8,16,24,32,40,48,56,64,72J
? J
Form length in Lines Per Page (6-144)

[66J? 18J
Top of Form (Channell) Line Number (1-18)

[4J? 2 J
Bottom of Form (Channel 12) Line number (2-18)

[18J? J
VFU Tape (Line numbers 2-18, Channels 2-11, OR STANDARD)

[J
? 4-10 J
? J
Output to Pathname

[:UDD:F77:FRANK:MEMBERS.CARDSJ?

Command? BYE J

FCU terminating ...

Frank and his system's operator, John, go to the operator's console (username OP) and to the printer.
They perform the following steps.

I. They determine that the current LPP, CPL, and HEADERS values are 66, 80, and 1, respectively.

2. They wait for the current print queue to LPT (devicename @LPB) to complete.

3. John gives these commands to the CLI.

CONTROL @EXEC PAUSE @LPB
CONTROL @EXEC LPP @LPB 18
CONTROL @EXEC CPL @LPB 50
CONTROL @EXEC HEADERS @LPB 0

4. They insert and align the cards on their Model 4216 printer.

5. John gives these commands to the CLI.

CONTROL @EXEC CONTINUE @LPB
QPRINT :UDD:F77:FRANK:MEMBERS.CARDS
CONTROL @EXEC PAUSE @LPB
CONTROL @EXEC LPP @LPB 66
CONTROL @EXEC LPP @CPL 80
CONTROL @EXEC HEADERS @LPB 1

093·000273·00 Licensed Material·Property of Data General Corporation 7 -11

6. They remove the cards and reinsert standard II-inch high paper.

7. John gives the command

CONTROL @EXEC CONTINUE @LPB

to finish the restoration of the printer to its previous settings.

The most important point in this section is that you must place special characters .(VFU codes) in an
output file so that when it prints, the paper advances properly. The AOS Operator's Guide explains
how the FORMS command can help to eliminate the need for giving many specific instructions each
time you need to print an F77-created output file on special forms.

Reducing Memory and Disk Usage of Program Files
This section explains a way to reduce your program files' runtime memory space and disk space.

Consider the following CLI dialog.

) CR!:ATE/I SMALL_LARGE.F77 J
» PROGRAM SMALL_LARGE! SMALL PROGRAM, LARGE MEMORY IDISK USAGE J
» SUM = 2.0 + 3.0 J
» PRINT " 'SUM IS', SUM, '<NL>' J
» STOP J
» END J
)))J
) F77 SMALL_LARGE; F77L1NK SMALL_LARGE; F/LEN SMALl_LARGE.<F77,PR> J

SMALL_LARGE.F77 124 SMALL_LARGE.PR 553

You can see that this small source program requires very little disk space, yet the resulting .PR file is
much larger .. When SMALL_LARGE.PR executes, it requires a full 32K words of memory. It may
well slow the execution of other programs because of memory contention. Is there any way to reduce
SMALL_LARGE.PR? The answer is "yes"; continue reading for the details.

Link - A Closer Look
F77LINK.CLI invokes LINK.PR to create a .PR file from at least one .OB file and various .LB files.
By default, Link creates a .PR file that requires 65,536 bytes of memory at runtime and an identical
amount of disk space. Link places a program's shared area at the end of a 32K-word block. Consequently,
the program's unshared area of the 32K words is often much larger than it has to be.

See Figure 7-5 for a simplified view of a .PR file that results from a .F77 file. SMALL_LARGE.PR
is an example; recall that it is created without special F77LINK switches that can alter the addresses
in the figure. The file exists this way on disk; its exact image is in memory immediately after it is copied
there. Symbols such as NTOP in Figure 7-5 appear in a Link-created load map file if you give the
F77LINK command with the /MAP switch.

7-12 Licensed Material·Property of Data General Corporation 093·000273·00

o

o

The /KTOP=n Link Switch
Link uses the value of its /KTOP = n switch to place the shared portion of the program in the .PR file.
n is the memory page number where the shared area ends. (A page of memory has l024=2000K
words.) By default, n is 32, and consequently there is typically much unusued memory between the
bottom of the shared area (location SBOT) and the top of the stack. In Figure 7-5, /KTOP=32.

If /KTOP is less than 32 then, with all other things being equal:

• The shared area moves down, along with the value of SBOT.

• The size of the shared area remains the same.

• The overall size of the .PR file becomes smaller, both on the disk and then later in memory.

• The unused portion of the unshared area becomes smaller.

• The area from NMAX down to location 0 remains unchanged in size.

Thus, one key to producing smaller .PR files is the proper use of the /KTOP=n switch in your
F77LINK command. F77LINK passes this switch intact to Link.

An Example of Reducing a .PR File
Figure 7-6 contains a listing file from a sample program, MEMPAGE.F77. The program uses the
ISYS function (from Chapter 3) to make a ?PST AT call to get process statistics, and then displays
some of them. Chapter 3 also explains the creation of %INCLUDE files such as MEMPAGE_SYM­
BOLS.F77.1N.

7-14 Licensed Material·Property 01 Data General Corporation 093·000273·00

v

v

v

u

Shared

Unshared

u

DG·2S475

u
093·000213·00

Memory

Shared Data and Code

Unused (Stack Expands into
These Locations at
Runtimel

Unshared Data and Code:

COMMON: Stack, with
Initial Size of 30 Words

Reserved

Reserved J

NTOP = 32767 =
077777K =

KTOP* 1024 - 1

SBOT = varies
(27648 = 066000k in
SMALL_LARGE.PRl

NMAX = varies
(744 = 001350K in
SMALL_LARGE.PRl

NBOT = 255 = 000400K

o

Figure 1-5. A Memory Model for an F17 Program File

Licensed Material·Prc)p·erty of Da:ta General Corporation 7-13

Source file: MEMPAGE.F77
Compiled on 16-Nov-82 at 16:18:11 by AOS F77 Rev 2.10
Options: F77/INTEGER=2/LOGICAL=2/L=MEMPAGE.LS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

093-000273·00

PROGRAM MEMPAGE ! TO DETERMINE THE NUMBER OF MEMORY PAGES
C THIS PROGRAM REQUIRES AT RUNTIME.

INTEGER*2 IER
INTEGER*2 ACO, AC1, AC2

%INCLUDE 'MEMPAGE __ SYMBOLS.F77.IN'
**** F77 INCLUDE file for system parameters ****

... -

••••

Parameters for SYSID ****

INTEGER*2 ISYS __ PSTAT
PARAMETER (ISYS __ PSTAT = 5) ?PSTAT = 5K

Parameters for PARU ****

INTEGER*2 ISYS __ PSBK
PARAMETER (ISYS __ PSBK = 25) ?PSBK = 31K

INTEGER*2 ISYS __ PSPS
PARAMETER (ISYS __ PSPS = 26) ?PSPS = 32K

INTEGER*2 ISYS __ PSSF
PARAMETER (ISYS __ PSSF = 27) ?PSSF = 33K

INTEGER*2 ISYS __ PSLTH
PARAMETER (ISYS __ PSLTH = 46) ?PSLTH = 56K

END of F77 INCLUDE file for system parameters ****

INTEGER*2 PSTAT __ PACKET(O:ISYS __ PSLTH)

ACO = -1
AC1 = 0
AC2 = WORDADDR(PSTAT __ PACKET)

IER = ISYS(ISYS __ PSTAT, ACO, AC1, AC2)
IF (IER .NE. 0) CALL ERRCODE(IER, 0)

PRINT * '<NL> User Unshared Pages:
PRINT * '<NL> User Shared Pages:
PRINT * '<NL> Start User Shared:

STOP
END

PSTAT __ PACKET(ISYS __ PSBK)
PSTAT __ PACKET(ISYS __ PSPS)
PSTAT __ PACKET(ISYS __ PSSF)

Figure 7-6. A Listing of Program MEMPAGE.LS

Licensed Meterial-Property of Data General Corporation 7-15

The command to create MEMPAGE.OB is

F77 MEMPAGE

The general command to create MEMPAGE.PR is

DELETE I 2 = IGNORE MEMPAGE.LS
F77L1NK I L = MEMPAGE.MAP I MAP I KTOP = n MEMPAGE

Below are the results of linking MEMPAGE for various values of /KTOP=n and then executing the
program. Note how the value of n (Column 1) directly affects the size of MEMPAGE.PR, both on the
disk (Column 2) and in memory (the sum of Columns 3 and 4).

--------- Result of XEQ MEMPAGE -----------

Size of User Unshared User Shared First User
n MEMPAGE.PR Pages Pages Shared Page

5 Link error: FILE TOO LARGE FOR ADDRESS SPACE
6 12,288 1 5 1
7 14,336 2 5 2

10 20,480 5 5 5
15 30,720 10 5 10
27 55,296 22 5 22
32 65,536 27 5 27
33 67,584 ERROR: ILLOGICAL PROCESS ADDRESS SPACE DEFINITION

Cautions about Specifying /KTOP = n
There are no convenient rules for specifying the smallest value of /KTOP= n as F77LINK creates your
program files. The execution of MEMPAGE shows that n should be at least 6 and at most 32.

Remember that "ordinary" (i.e., non-COMMON and non-SAVEd) variables and arrays require space
on the stack at runtime. A program with such variables and arrays could compile and link with no
indicated errors, but then abort at runtime because of a stack overflow. In this case, the stack had to
expand to accommodate the variables and arrays, but its growth attempted to expand into the
program's shared area to cause the overflow and process termination.

For example, consider program MEMPAGE.F77. The commands

F77 MEMPAGE
DEL/2=IGNORE MEMPAGE.MAP
F77L1NK/L=MEMPAGE.MAP IMAP IKTOP=6 MEMPAGE
XEQ MEMPAGE

successfully compile, link, and execute the program. Suppose you change line six of MEMPAGE.F77
to

INTEGER*2 TABLE(1024)

The same four commands successfully compile and link the program, yet it aborts at runtime. Why?
The compiler does not allocate 2,048 bytes (one page) for array TABLE. Instead, at runtime the
program tries to allocate 2,048 bytes on the stack for TABLE; they simply don't exist, and the program
aborts. If you change "/KTOP=6" to "/KTOP=7" in the F77LINK command, then MEMPAGE.PR
executes successfully.

7-16 Licensed Material·Property of Data General Corporation 093·000273·00

We have added letters A, B, C, D, and E to identify five lines. Compare Figure 7-5 and 7-7, and make
the following observations about program MEMPAGE:

• Lines A and B show that the shared area of MEMPAGE.PR is from 002000K to 13777K. These
locations aren't necessarily entirely occupied by shared data and shared code.

• Line B shows that the last location in MEMPAGE.PR is 13777K=6143, where 6143 = 6*1024-1;
this number is the direct result of specifying jKTOP=6 in the F77LINK command that created
MEMPAG E.PR.

• Lines C and D show that the stack occupies at least locations 001361K to 001416K; at runtime it
can expand into locations 001417K to 001777K inclusive, which is an increase of 361K = 241 words.
You have already seen that addition of a 1024-word array causes a runtime stack overflow error.

e Lines D and E show that the shared data and shared code reside in locations 002000K through
012415K.

In conclusion, you may have to use a certain "amount of trial and error to select the smallest possible
value of jKTOP=n in your F77LINK commands. The load map can help with your selection. The
difference between SBOT and NMAX is a rough estimate of the amount of memory the stack can
expand into.

Other Ways
So far in this section ("Reducing Memory and Disk Usage of Program Files") we have explained the
use of the jKTOP= n Link switch to reduce the size of the .PR file. Two other ways of reducing
memory and disk usage are available: eliminating the symbol table file and executing a program via the
PROCESS command. .

Eliminating the Symbol Table File

By default, Link creates two files: a program (.PR) file and a symbol table (.ST) file. You usually don't
need the .ST file unless you're going to debug the program using the AOS debugger (DEBUG). The
easiest way to eliminate a program's .sT file is not to create it in the first place. To do this, give the
jSUPST (SUPpress Symbol Table) switch to F77LINK. F77LINK then passes this switch intact to
Link.

The PROCESS Command

You usually execute a program by typing XEQ programname. You can also execute a program by
giving the PROCESS command. This latter method lets you exercise rather fine control over the
process, including its memory usage.

For example, recall program SMALL_LARGE. The command

XEQ SMALL_LARGE

executes SMALL_LARGE.PR, and SMALL_LARGE.PR requires a full 32K words of memory
because Link created it without the jKTOP=n switch. However, the command

PROCESS/BLOCK/DEFAUL T 1I0C/MEMORY=7 SMALL_LARGE

also executes SMALL_LARGE.PR. Then, SMALL_LARGE.PR only requires 7K words of memory
as a result of this PROCESS command. It doesn't matter if Link created SMALL_LARGE.PR with
a jKTOP= value of 8 or more.

In general, you may have to experiment to find the smallest possible value for jMEMOR Y if you give
the jPROCESS command to execute a program. Too small a value gives a runtime error message
(ILLEGAL MAXIMUM PROCESS SIZE) and aborts the program.

End of Chapter

7-18 Licensed Material·Property of Data General Corporation 093·000273·00

v

v

o

0'·
,," '

0·_,
.-

0

Using the Load Map
Sometimes you can

• Invoke F77LINK without a value of jKTOP (same as jKTOP= 32), and with the jMAP and
jL= <map_filename> switches.

• Examine the Link-created load map.

• Select a value of jKTOP for the next F77LINK command.

For example, Figure 7-7 contains a portion of MEMPAGE.MAP as created by Link when KTOP=6.

LINK REVISION 04.10 ON 11/17/82 AT 11:56:34

NENPAGE 02.10
F77DGPCT
F77IOREV 02.10
CO.ERLOP
LC?EINIT
CO.EINIT

FINIT
DU.NAIN.
CO.ERLOG
DU. TFINT
CO.PTRDF
II .ENDLI

ZBOT:
ZNAX:
NBOT:
USTA:
NNAX:
SBOT:
NTOP:

000050
000073
000400
000447
001417
002000
013777

<-- (A)
<-- (B)

STACK SIZE: 000036 (OCTAL)

TYPE NANE ADDRESS

CONN UC AB 000000
PART UC ZR 000050
CONN UC UST 000400
CONN UC TCB 000423
CONN UD SCR?11. 000447
CONN UD SCR?5. 000554
PART UD UD 000661
PART UC UC 000661
CONN UC STACK 001361
PART SD SD 002000
PART SC SC 002050

=NENPAGE.PR CREATED

LENGTH

000046
000023
000023
000024
000105
000105
000000
000500
000036
000050
010346

END

000045
000072
000422
000446
000553
000660

001360
001416
002047
012415

Figure 7-7. A Portion of MEMPAGE.MAP

093·000273·00 Licensed Material·Property of Data General Corporation

<-- (C)
<-- (D)
<-- (E)

7-17

Chapter 8
Overlays

This chapter gives a general explanation of overlays. Then, it explains the construction of two sample
F77 programs that contain overlays.

Introduction
In many cases, an application program is too large to reside in main memory at one time. If you have
written your program in modules (for example, using subroutines and functions), you can often use a
software technique known as overlaying to overcome this size difficulty. An overlay area is a reserved
portion in main memory that various modules can share.

Several modules (subroutines and functions, but not the main program) reside in a special file on the
disk. These modules are the individual overlays. When the main program needs such a module, it
requests AOS to copy the module from the disk file to the overlay area. Then, the newly arrived code
executes. While a given subprogram is in the overlay area, the other subroutines not in use remain on
the disk.

NOTE: Depending on Link's construction of the program, AOS might copy additional modules along
. with the needed one from the disk file. .,

A main program and its overlay file that contains several modules are like a doctor who must deal with
several patients. Only one patient at a time is in the office while the others wait outside. A patient
moves from the waiting room to the office to receive one part of a treatment and then back to the
waiting room until the doctor is ready to have him or her return to the office for the next step of the
treatment. (In contrast, an overlay "moves" - i.e., is copied - only from the disk to memory, where it
overwrites the memory it occupies.)

093-000273-00 Licensed Material·Property of Data General Corporation 8-1

Example 1- A Program Using Overlays
For example, consider an AOS F77 programmer named Peggy who works for a college. Her job is to
write a program to analyze each prospective graduate's records and determine if the- student's courses
satisfy various department and college-wide requirements. There are 30 departments, and all students
must take specific courses such as English composition and physical education. The program functions
fall fairly naturally into these steps:

1. Read each student's course records into a two-dimension array, where the fields in each row of the
array represent one completed course. For example:

ENGLISH
MATH
COMPSCI
HISTORY

101 FALL 79
110 FALL 79
101 FALL 79
131 FALL 79

B- 3.0 PEARL
C+ 4.0 HEITZ
A- 3.0 ZETTERHOLM
B 3.0 MCDONALD

The next-to-Iast field contains the number of semester hours in the course. The last field is the
instructor's name.

2. Determine whether or not English composition was successfully completed.

3. Determine whether or not physical education was successfully completed.

4. Depending on the student's major, determine whether or not the department requirements were
met.

5. Determine whether or not the student has passed 128 semester hours.

Peggy has no problems with the organization of the program. The course records are in a file sorted by
student number, so the main program follows these major steps for each student:

1. Read all the course records and place them in COMMON in the two-dimension array RECORDS.

2. CALL Subroutine CHECK-ENG, which also declares RECORDS in COMMON, to examine
RECORDS for English composition records, flag them if found so that certain future subroutines
will skip them, and print the result.

3. CALL subroutine CHECK-PED to examine array RECORDS in COMMON for physical
education records and similarly process them.

4. Depending on the student's major (art, biology, chemistry, ... , zoology), CALL a subroutine
(CHECK-ART, CHECK-BIOLOGY, CHECK-CHEMISTRY, ... , CHECK-ZOOLOGY) to
examine RECORDS in COMMON that meet the major's requirements and similarly process
them. Perhaps all these subroutines aren't required, but this choice of one subroutine for each of
the 30 majors is one way to introduce overlays.

5. CALL subroutine COUNT_HOURS to examine array RECORDS in COMMON and count the
number of hours earned from all the course records, then print this number.

Based on these functions and steps, Peggy finds the coding to be straightforward. She writes the main
program and its (1+1+30+1)=33 subroutines, and links them to create
GRADUA TION_CHECK.PR. However, GRADUA TION_CHECK.PR exceeds 32K words; it can't
execute. What can she do?

She begins by constructing a diagram of the desired program file and its accompanying overlay file.
The program file contains the main program, subroutine CHECK-ENG, subroutine CHECK-PED,
subroutine COUNT_HOURS, and space for just one of the 30 subroutines CHECK-4RT through
CHECK_ZOOLOGY. The overlay file contains all of the 30 subroutines CHECK-ART through
CHECK-ZOOLOGY. See Figure 8-1.

8-2 Licensed Material·Property of Data General Corporation 093-000273·00

o

o

o

GRADUATION_CHECK.PR

Shared Data and
Code, Including
Main Program,
Subroutines, and
Library Routines

Overlay Area

Unused
(For Stack
Expansion)

System Tables,
COMMON

DG·25476

32K /
(by default)

0

GRADUATION_CHECK.OL

•
•
•

Subroutine
CHECK-.ART

Subroutine
CHECK_BIOLOGY

Subroutine
CHECK_CHEMISTRY

Subroutine
CHECK_ZOOLOGY

•
•
•

Figure 8-1. The Desired Organization ojGRADUATION_CHECK.PR and Its Overlay File

At runtime, a CALL to any of the subroutines that reside in GRADUA TION_CHECK.OL results in
the movement (i.e., duplication) of the subroutine into the overlay area of
GRADUA TION_CHECK.PR. Then, the instructions from the newly arrived subroutine execute just
as if they had always been in GRADUATION_CHECK.PR.

The key to creating GRADUATION_CHECK.PR and GRADUATION_CHECK.OL is the
command to F77LINK. The AOS Link User's Manual has a general explanation of giving commands
to Link to create related program and overlay files. Basically, Peggy uses the symbols !*, !, and *! as
part of her F77LINK command. These symbols specify the construction of the overlay areas in the .PR
file and the placement of the subroutines in the .OL file as follows.

093·000273·00 Licensed Material·Property of Data General Corporation 8-3

1* Start an overlay area.

Subprogram separator in the overlay file.

*! End an overlay area.

Examine the F77LINK skeleton commands next. The first one creates GRADUATION_CHECK.PR
and GRADUATION.OL according to Figure 8-1. For comparison, the second command creates a
GRADUATION_CHECK.PR that contains all the subroutines (even though the program file is too
large to execute).

F77UNK GRADUATION_CHECK &
CHECILENG CHECILPED &
! * CHECILART ! &
CHECILBIOLOGY ! &
CHECILCHEMISTRY ! &

CHECILZOOLOGY *!&
COUNT_HOURS

F77L1NK GRADUATION_CHECK &
CHECILENG CHECILPED &
CHECILART &
CHECILBIOLOGY &
CHECILCHEMISTRY &

CHECILZOOLOGY &
COUNT_HOURS

The movement of subroutines from the overlay file into the overlay area and their subsequent execution
requires much more time than the CALLing of subroutines such as CHECK-ENG that are always in
memory. But, creating overlay files lets Peggy and you meet memory requirements such as those
presented by the graduation program with its many subprograms.

Example 2 - A Program Implementing Overlays
Consider the following two-dimension array named ARRAY with two rows and three columns.

811.0
821.0

812.0
822.0

813.0
823.0

We wish to construct a main program and five subroutine subprograms that function as follows:

• Main program SAMPLE_OVERLAY declares ARRAY, places it in a named COMMON area,
and assigns the above values to it.

• Subroutine SUB_OO_OO finds the sum of the first row of ARRAY. The subroutine resides in the
first (number 00) of the overlay areas; it is the first (number 00) of the two subroutines in this
overlay area.

• Subroutine SUB_OO_Ol finds the sum of the second row of ARRAY. The subroutine resides in the
first (number 00) of the overlay areas; it is the second (number 01) of the two subroutines in this
overlay area.

• Subroutine SUB_Ol_00 finds the sum of the first column of ARRAY. The subroutine resides in the
second (number 01) of the overlay areas; it is the first (number 00) of the three subroutines in this
overlay area.

• Subroutine SUB_Ol_0l finds the sum of the second column of ARRAY. The subroutine resides in
the second (number 01) of the overlay areas; it is the second (number 01) of the three subroutines in
this overlay area.

• Subroutine SUB_Ol_02 finds the sum of the third column of ARRAY. The subroutine resides in
the second (number 01) of the overlay areas; it is the third (number 02) of the three subroutines in
this overlay area.

It isn't at all necessary to use overlays in this situation, but doing so outlines a way to construct a
program file with more than one overlay area.

Licensed Material·Property of Data General Corporation 093·000273·00

Figure 8-2 shows the desired construction of SAMPLE_OVERLA Y.PR and of SAMPLE_OVER­
LAY.OL.

SAMPLE_OVERLAY.PR SAMPLE_OVERLA Y .OL

32K
Shared Data and (by default)

Code, Including
Main Program and

Subroutine
SUB_OL02

Library Routines

Subroutine
Overlay Area 0 1 SUB_01_01

Overlay Area 00 Subroutine
SUB_OLOO

Unused
,

(For Stack
Expansion)

Subroutine
SUB_00_01

Subroutine
System Tables, SUB_DO_DO
COMMON
(Containing ,
ARRAY)

0

DG·25477

Figure 8-2. The Desired Organization of SAMPLE_OVERLAY.PR and Its Overlay File

Link allows a maximum of 63 overlay areas in a program file with up to 511 overlays for each overlay
area. It stores all the program modules sequentially in the overlay file and does not create distinct
overlay areas there. We have two overlay areas in SAMPLE_OVERLA Y.PR instead of one just to
indicate how to create more than one overlay area in a program file.

093·000273·00 Licensed Material·Property of Data General Corporation 8-5

The coding of the six program units is straightforward. We make few particular allowances for overlays
because their construction occurs during linking and their execution occurs at runtime. However, we
have placed ARRAY in COMMON because different subroutines, not all of which are in memory at
the same time, access it at runtime.

Figures 8-3,8-4,8-5,8-6,8-7, and 8-8 respectively contain program units SAMPLE_OVERLA Y.F77,
SUB_OO_OO.F77, SUB_OO_01.F77, SUB_OLOO.F77, SUB_OL01.F77, and SUB_OL02.F77.

8-6

PROGRAM SAMPLE __ OVERLAY I TO DEMONSTRATE OVERLAYS

REAL ARRAY(2,3)
COMMON ICOLDI ARRAY
DATA ARRAY I 811.0, 821.0, 812.0, 822.0, 813.0, 823.0 I

PRINT *, '<NL>*** SUBROUTINE CALLING BEGINS NOW ***<NL><NL>'

CALL SUB __ 00 __ 00(2, 3, SUM)
PRINT *, 'SUM OF THE ELEMENTS IN ROW 1 IS SUM, '<NL>'

CALL SUB __ 00 __ 01(2, 3, SUM)
PRINT *, 'SUM OF THE ELEMENTS IN ROW 2 IS SUM, '<NL>'

CALL SUB __ 01 __ 00(2" 3, SUM)
PRINT *, 'SUM OF THE ELEMENTS IN COLUMN 1 IS SUM, '<NL>'

CALL SUB __ 01 __ 01(2, 3, SUM)
PRINT *, 'SUM OF THE ELEMENTS IN COLUMN 2 IS SUM, '<NL>'

CALL SUB __ 01 __ 02(2, 3, SUM)
PRINT * 'SUM OF THE ELEMENTS IN COLUMN 3 IS " SUM, '<NL>'

PRINT * '<NL>*** SUBROUTINE CALLING ENDS NOW ***<NL>'

STOP
END

Figure 8-3. Main Program SAMPLE_OVERLAY.F77

Licensed Material·Property of Data General Corporation 093-000273-00

o

8-8

SUBROUTINE SUB __ 01 __ 00 (ROWS, COLUMNS, SUM)

C THIS SUBROUTINE FINDS THE SUM OF THE ELEMENTS IN THE
C 1ST COLUMN OF <ARRAY>. IT IS IN OVERLAY AREA 01, AND
C IS THE FIRST INDIVIDUAL OVERLAY (NUMBER 00) IN THE AREA.

C
C
C

INTEGER ROWS NUMBER OF ROWS IN <ARRAY> FOR POSSIBLE ADDITION
INTEGER COLUMNS NUMBER OF COLUMNS IN <ARRAY> FOR POSSIBLE ADDITION
REAL ARRAY (2, 3)

COMMON ICOLDI ARRAY

SUM = 0.0

DO 10 I = 1, ROWS
SUM = SUM + ARRAY(I,1)

10 CONTINUE

RETURN
END

Figure 8-6. Subprogram SUB_OI_OO.F77

SUBROUTINE SUB __ 01 __ 01 (ROWS, COLUMNS, SUM)

THIS SUBROUTINE FINDS THE SUM OF THE ELEMENTS IN THE
2ND COLUMN OF <ARRAY>. IT IS IN OVERLAY AREA 01, AND
IS THE SECOND INDIVIDUAL OVERLAY (NUMBER 01) IN THE AREA.

INTEGER ROWS NUMBER OF ROWS IN <ARRAY> FOR POSSIBLE ADDITION
INTEGER COLUMNS NUMBER OF COLUMNS IN <ARRAY> FOR POSSIBLE ADDITION
REAL ARRAY (2, 3)

COMMON ICOLDI ARRAY

SUM = 0.0

DO 10 I = 1, ROWS
SUM = SUM + ARRAY(I,2)

10 CONTINUE

RETURN
END

Figure 8-7. Subprogram SUB_OI_OI.F77

Licensed Material·Property of Data General Corporation 093·000273·00

v

v

v

o

0,
d,C.

(j

C
C
C

C
C
C

SUBROUTINE SUB __ OO __ OO (ROWS, COLUMNS, SUM)

THIS SUBROUTINE FINDS THE SUM OF THE ELEMENTS IN THE
1ST ROW OF <ARRAY>. IT IS IN OVERLAY AREA 00, AND
IS THE FIRST INDIVIDUAL OVERLAY (NUMBER 00) IN THE AREA.

INTEGER ROWS NUMBER OF ROWS IN <ARRAY> FOR POSSIBLE ADDITION
INTEGER COLUMNS NUMBER OF COLUMNS IN <ARRAY> FOR POSSIBLE ADDITION
REAL ARRAY (2, 3)

COMMON ICOLDI ARRAY

SUM = 0.0

DO 10 J = 1, COLUMNS
SUM = SUM + ARRAY(1,J)

10 CONTINUE

RETURN
END

Figure 8-4. Subprogram SUB_OO_OO.F77

SUBROUTINE SUB __ 00 __ 01 (ROWS, COLUMNS, SUM)

THIS SUBROUTINE FINDS THE SUM OF THE ELEMENTS IN THE
2ND ROW OF <ARRAY>. IT IS IN OVERLAY AREA 00, AND
IS THE SECOND INDIVIDUAL OVERLAY (NUMBER 01) IN THE AREA.

INTEGER ROWS NUMBER OF ROWS IN <ARRAY> FOR POSSIBLE ADDITION
INTEGER COLUMNS ! NUMBER OF COLUMNS IN <ARRAY> FOR POSSIBLE ADDITION
REAL ARRAY (2, 3)

COMMON ICOLDI ARRAY

SUM = 0.0

DO 10 J = 1, COLUMNS
SUM = SUM + ARRAY(2,J)

10 CONTINUE

RETURN
END

Figure 8-5. Subprogram SUB_OO_OI.F77

093·000273·00 Licensed Material·Property of Data General Corporation 8-7

C
C
C

SUBROUTINE SUB __ 01 __ 02 (ROWS. COLUMNS. SUM)

THIS SUBROUTINE FINDS THE SUM OF THE ELEMENTS IN THE
3RD COLUMN OF <ARRAY>. IT IS IN OVERLAY AREA 01. AND
IS THE THIRD INDIVIDUAL OVERLAY (NUMBER 02) IN THE AREA.

INTEGER ROWS NUMBER OF ROWS IN <ARRAY> FOR POSSIBLE ADDITION
INTEGER COLUMNS NUMBER OF COLUMNS IN <ARRAY> FOR POSSIBLE ADDITION
REAL ARRAY (2. 3)

COMMON ICOLDI ARRAY

SUM = 0.0

DO 10 I = 1. ROWS
SUM = SUM + ARRAY(I.3)

10 CONTINUE

RETURN
END

Figure 8-8. Subprogram SUB_Ol_02.F77

The command to compile the six program units is

F77 (SAMPLE_OVERLAY SUB_DO_DO SUB_OO_O 1 SUB_O LOO SUB_O LO 1 SUB_O L02)

The all-important command to F77LINK that results in the creation of SAMPLE_OVERLA Y.PR
and SAMPLE_OVERLA Y.OL is

DELETE I 2 = IGNORE SAMPLE_OVERLAY .MAP;
F77L1NK/L=SAMPLE_OVERLAY.MAP/MAP SAMPLE_OVERLAY &

,0 SUB_DO_DO , SUB_OO_O 1 0, &
,0 SUB_OLOO' SUB_OL01 , SUB_OL02 0,

Figure 8-9 contains a portion of file SAMPLE_OVERLAY. MAP.

093·000273·00 Licens.ed Material·Property of Data General Corporation 8-9

LINK REVISION 04.10 ON 11/12/82 AT 10:57:14

SAMPLE ... OVERLAY 02.10
SUB ... OO ... OO 02.10
SUB ... 00 ... 0102.10
SUB ... 01 ... 00 02.10
SUB ... 01 ... 0102.10
SUB ... 01 ... 0202.10
F77DGPCT
F77IOREV 02.10
CO.ERLOP
LC?EINIT
CO. EINIT

FINIT
DU.MAIN.
CO.ERLOG
DU.TFINT
CO.PTRDF
II. ENDLI

ZBOT:
ZMAX:
NBOT:
USTA:
NMAX:
SBOT:
NTOP:

000050
000077
000400
000504
001473·
056000
077777

STACK SIZE: 000036 (OCTAL)

TYPE NAME ADDRESS

COMM UC AB 000000
PART UC ZR 000050
COMM UC UST 000400
COMM UC TCB 000423
COMM UC OLDIR 000447
COMM UC RHT 000472
COMM UD COLD 000504
COMM UD SCR?11. 000520
COMM UD SCR?5. 000625
PART UD UD 000732
PART UC UC 000732
COMM UC STACK 001435'
COMM SC AREA 00 056000
COMM SC AREA 01 060000
PART SO SO 062000
PART SC SC 062233

LENGTH

000046
000027
000023
000024
000023
000012
000014
000105
000105
000000
000503
000036
002000
002000
000233
013615

END

000045
000076
000422
000446
000471
000503
000517
000624
000731

001434
001472
057777
061777
062232
076047

Figure 8-9. A Portion of SAMPLE_OVERLAY.MAP (continues)

8-10 Licensed Material-Property of Data General Corporation 093-000273·00

TYPE NAME

AREA 00
PART SC OVERLAY 00
PART SC OVERLAY 01

TYPE NAME

AREA 01
PART SC OVERLAY 00
PART SC OVERLAY 01
PART SC OVERLAY 02

=SAMPLE __ OVERLAY.PR CREATED

ADDRESS

056000
056000

ADDRESS

060000
060000
060000

LENGTH

000040
000040

LENGTH

000037
000037
000037

END

056037
056037

END

060036
060036
060036

Figure 8-9. A Portion of SAMPLE_OVERLAYMAP (concluded)

The results of the command

XEa SAMPLE_OVERLAY

are as follows.

*** SUBROUTINE CALLING BEGINS NOW ***
SUM OF THE ELEMENTS IN ROW 1 IS 2436.

SUM OF THE ELEMENTS IN ROW 2 IS 2466.

SUM OF THE ELEMENTS IN COLUMN 1

SUM OF THE ELEMENTS IN COLUMN 2

SUM OF THE ELEMENTS IN COLUMN 3

*** SUBROUTINE CALLING ENDS NOW ***
STOP

IS 1632.

IS 1634.

IS 1636.

Examine Figure 8-9 and note how Link creates identifiers for the subroutines in the overlay file it
builds. For example, our subroutine SUB_OO_Ol is known to Link as AREA 00, OVERLAY 01. It
might be more natural to call this subroutine SUM_ROW _02, but Link would label it AREA 00,
OVERLA Y 01. The existence of SUM_ROW _02 would appear in SAMPLE_OVERLA Y.MAP at
the beginning and not at the end as we might like. We chose "SUB_OO_O l" to have it agree with the
Link-created name.

This chapter does not explain all possible ways to construct overlay files. Much of this construction
depends on Link, thus, you should read its documentation carefully.

End of Chapter

093·000273·00 Licensed Material·Property of Data General Corporation 8-11

Index

Within this index, "r' or "fr' after a page number means
"and the following page" (or "pages"). In addition,
primary page references for each topic are listed first.
Commands, calls, and acronyms are in uppercase letters
(e.g., BYTEADDR); all others are lowercase.

A

Access Control List (ACL) 3-2
address

byte 6-2
word 6-2

AF77SYM.SR 6-5, 6-9f
AOS 1-3, 1-1,2-2,2-6,2-18,3-1,3-3,4-1,

4-3,4-5,4-22,4-27,4-45,4-53,7-5,8-1
array storage, multidimension 6-17ff
assembly language/multitasking interface 4-24f
assembly language subprograms 6-lff

B

block, common return 6-3ff
byte address 6-2
BYTEADDR 3-2f

C

call, system 1-3,4-10
carriage control tape 7-5
case sensitivity 6-20
chi-square 2-15
CLI (special subroutine) 3-15ff
CLI.PR 3-15ff
CLRE 6-2ff, 2-3, 2-7, 6-1, 6-10, 6-16f, 6-20, 6-22
CLREERMES.SR 4-29
COBOL 1-2
code

in-line 1-4
re-entrant 4-20ff, 4-1

command format conventions iv
Command Line Interpreter (CLI) 1-3
common return block 6-3ff
compiler programs, F77 1-3, 1-5ff
conflicts, interlanguage 6-20
contacting Data General v
conventions

command format iv
documentation iv, v

count, protect 4-45

D

Data General systems engineering v
Data General, contacting v
DATE 2-2
/DEBUG F77.CLI switch 7-2
/DEBUG F77LINK.CLI switch 1-5
debugger, SWAT 5-lff
debugging 5-1 ff
DEF macro 6-9f, 6-15
DEFARGS macro 6-9f, 6-15
DEFTMPS macro 6-9f, 6-15
DG/L 6-1, 6-17, 6-23
DG/L and F77 6-25ff
disk usage by program files 7 -12ff
documentation conventions iv, v
documentation, related iv
documentation remarks form v
dope vector 6-2f, 6-16
dormant task 4-11
/DOTRIP F77.CLI switch 7-2f
.DUSR symbols 3-4

E

EJSR 4-24
END macro 6-9f, 6-15
enhancements, program 7-1 ff
:ERMES 2-3, 2-6
ERRCODE 2-3ff, 2-7, 4-29
ERR.F77.1N 2-3, 2-6,4-29, 7-1
error message file 2-3
ERRORLOG specifier 2-3, 2-7
ERRTEXT 2-7ff, 2-3
EXEC 7-5
executing task 4-11
EXIT 2-10, 4-7, 4-9
.EXTN 4-24

F

F5_MT.LB 4-27
F77 compiler programs 1-3, 1-5ff
F77BUILD_SYM 3-4ff
F77_CLI 1-5,4-27,4-64,5-1
F77DGPCT.OB 1-5
F77_DOCUMENTATION 3-2
F77ENV.LB 1-4f
F77ENV _MT.LB 4-27

093-000273-00 Licensed Material-Property of Data General Corporation Index-1

F77ERMES.sR 4-29
F77_FMAC.SR 6-16f, 6-5, 6-9f, 6-15
F7710.LB 1-5
F77LINK.CLI 1-5f, 2-1, 4-7, 4-9, 4-25ff, 4-28, 4-39,

4-64,4-67,5-1,7-12,8-3f
F77MT.LB 4-24f, 4-27
F77ST ACK macro 4-65ff
faster programs 7-3f
FCALL macro 6-9
FENTR Y macro 6-9f, 6-15
FMAC.SR 6-16
form

documentation remarks v
TIPS order v

format conventions, command iv
Forms Control Utility (FCU) 7-5
forms, printing special 7-5ff
FORTRAN 5 6-1, 6-16f, 6-23
FORTRAN 5 and F77 6-23ff
FORTRAN 5 multitasking programs 4-25
frame pointer 6-2, 6-10
FRET macro 6-9f, 6-15

H

high-level/F77 programs 6-23ff

I

? IDGOTO 4-24
?IDKIL 4-24
?IDPRI4-24
?IFPU 4-24
initial task 4-28
in-line code 1-4
interface, assembly language/multitasking 4-24f
interlanguage conflicts 6-20
/IOCONFLICT F77LINK.CLI switch 4-27f, 4-64
lOST AT variable 2-3, 2-6
IO_CHAN function 3-20f, 3-1
ISA.ERR macro 6-16f
ISA.NORM macro 6-16f
ISYS and multitasking 3-20, 4-27
ISYS function 3-1£f, 4-27, 6-1

K

KILL 4-7
/KTOP F77LINK.CLI switch 7-14, 7-16ff

L

Link 1-3ff, 1-2,4-7,4-28,5-1,7-12
LITMACS.SR 6-9

M

MAINST ACK macro 4-66ff
manuals, related iv
MASM 1-2,3-5,3-7,4-66

MASM.PS 6-5, 6-12, 6-14
memory usage by program files 7 -12ff
message file, error 2-3
multidimension array storage 6-17ff
multi task stack definition 4-65ff
multitasking 4-1 ff
multitasking and ISYS 3-20, 4-27
multitasking interface, assembly language 4-24f

N

Notice
Release iv, 1-6,2-3, 2-6f, 5-13, 7-3
Update iv, 1-6

o
operating system updating 3-10
/OPT F77.CLI switch 7-2
order form, TIPS v
overlay area 8-1
overla ys 8 -1 ff

P

PARU.32.SR 3-3
PARU.LS 3-4ff
PARU.SR 3-4ff, 3-2f, 4-29
pass by reference 6-3
pass by value 6-3
per task area 4-65
PL/I 1-2,6-1,6-17,6-23
PL/I and F77 6-28ff
pointer, frame 6-2, 6-10
printing special forms 7-5ff
?PROC 3-15ff
Product Support Manual 7-3
program enhancements 7-1£f
program files

reducing disk usage 7-12ff
reducing memory usage 7-12ff

programs
F77 compiler 1-3, 1-5ff
faster 7-3f
high-level/F77 6-23ff
F77 /assembly 6-1£f

protect count 4-45

Q

QPRINT 7-5
QSYM.F77.1N 3-4ff

R

RANDOM 2-11ff
?RCALL 6-2
ready-to-run task 4-11
reducing program disk usage 7-12ff
reducing program memory usage 7-12ff

Index-2 Licensed Material-Property 01 Data General Corporation 093-000273-00

0····
'.

()

re-entrant code 4-20ff, 4-1
reference, pass by 6-3
related documentation iv
related manuals iv
Release Notice iv, 1-6,2-3, 2-6f, 5-13, 7-3
remarks form, documentation v
return block, common 6-3ff
routines

runtime 1-3ff
specific runtime 2-1 ff

runtime routines 1-3ff
runtime routines, specific 2-1 ff

S

?SACL 3-2ff
S?ATTR macro 6-9
ISAVEVARS F77.CLI switch 7-2f
scheduler, task 4-5, 4-11
SED text editor 3-15
sensitivity, case 6-20
Software Trouble Report (STR) 5-13
special forms, printing 7-5ff
specific runtime routines 2-1 ff
stack definition, multi task 4-65ff
states, task 4-7ff
storage, multidimension array 6-17ff
ISUB F77.CLI switch 7-2
subprograms, assembly language 6-1 ff
suspended task 4-11
SWAT debugger 1-2, 1-5, 5-lff
SWATI.OB 1-5
SYSID.LS 3-4ff, 3-5ff
SYSID.sR 3-4ff, 3-1, 3-2f
system call 1-3,4-10
system interface, see ISYS function
system updating, operating 3-10
systems engineering, Data General v
Systems Engineering Newsletter (SENL) 7-3

T

tape, carriage control 7-5
task

dormant 4-11
executing 4-11
initial 4-28
ready-to-run 4-11
suspended 4-11

task control block (TCB) 4-20ff, 4-37
IT ASKS F77LINK.CLI switch 4-7, 4-9, 4-27f, 4-39,

4-64f,4-67
task scheduler 4-5, 4-11
task states 4-7ff
task transitions 4-11
T?DQTSK 4-25
T?DRSCH 4-25

T?ERSCH 4-25
text editor, SED 3-15
T?IDKIL 4-24
T?IDPRI 4-25, 4-27
T?IDRDY 4-25
T?IDSUS 4-25
TIME 2-18
TIPS order form v
T?IQTSK 4-25
TITLE macro 6-9, 6-15
T?KILAD 4-25
T?KILL 4-25
T?MYTID 4-25
T?PRI4-25
T?PRKIL 4-25
T?PROT 4-25
T?PRRDY 4-25
T?PRSUS 4-25
TQDQTSK 4-30ff, 4-23, 4-48
TQDRSCH 4-32, 4-23
TQERSCH 4-33; 4-23
TQIDKIL 4-34, 4-12ff, 4-23, 4-29, 4-45
TQIDPRI 4-35, 4-12f, 4-23f, 4-27
TQIDRDY 4-36, 4-12f, 4-23
TQIDSTAT 4-37, 4-23
TQIDSUS 4-38, 4-12f, 4-23, 4-45
TQIQTSK 4-39, 4-23, 4-30
TQKILAD 4-40, 4-23
TQKILL 4-41, 4-1lff, 4-12f, 4-23, 4-40
TQMYTID 4-42, 4-23
TQPRI 4-43, 4-12f, 4-23
TQPRKIL 4-44, 4-23, 4-45
TQPROT 4-45, 4-23ff, 4-53
TQPRRDY 4-46, 4-12f, 4-23
TQPRSUS 4-47, 4-12f, 4-23, 4-45
TQQTASK 4-48, 4-12f, 4-23f, 4-28, 4-30, 4-66f
TQREC 4-49, 4-12ff, 4-23
TQRECNW 4-50, 4-12, 4-23
TQSTASK 4-51, 4-7, 4-9f, 4-12ff, 4-23, 4-28, 4-66f
TQSUS 4-52, 4-12f, 4-23, 4-26
T?QTASK 4-25
TQUNPROT 4-53, 4-23ff, 4-45
TQXMT 4-54, 4-12, 4-23, 4-26
TQXMTW 4-55, 4-12ff, 4-23
TRACE option 5-1
transitions, task 4-11
?TRCON 4-24
T?REC 4-25
T?RECNW 4-25
T?STASK 4-25
T?SUS 4-25
T?TIDSTAT 4-25
T?UNPROT 4-25
T?XMT 4-25
T?XMTW 4-25

093-000273-00 Licensed Malerial-Property of Dala General Corporalion Index-3

U

Update Notice iv, 1-6
updating, operating system 3-10
usage

reducing disk 7-12ff
reducing memory 7-12ff

User Runtime Library (URT.LB) 1-5,3-1,4-11,4-27

V

value, pass by 6-3
vector, dope 6-2f, 6-16
vertical forms unit (VFU) 7-5

W

word address 6-2
WORDADDR 3-2f, 4-48

X

XLPT.PR 7-5

Index-4 Licensed Material·Property of Data General Corporation 093·000273·00

_. DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service's Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal"
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P .S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS
Educational Services - M.S. F019
Data General Corporation
4400 Computer Drive
Westboro, MA 01580

8. We'll take care of the rest!

()

lJ..i1
~I
-J 1
Q
lJ..i1

~I
01

(\ Q,

~I g,
"<:1
f-.
:::J
U

~. Data General
useps
gpoup Installation Membership Form

Name _______________ _ Position _______________________________ _ Date _____ _

Company, Organization or School __ _

Address ____________________ _ City _____________ State _______ Zip ______ _

Telephone: Area Code _____ _ No. ___________ ___
Ext.

o OEM o Batch (Central)
o End User o Batch (Via RJE)
o System House o On· Line Interactive
o Government

Qty Installed I Qty. On Order 0 HASP 0 X.25

0 HASP II 0 SAM

0 RJE80 0 CAM

0 RCX 70 0 XODIACTM

0 RSTCP 0 DG/SNA

0 4025 0 3270

0 Other

Specify

0 ________ _

Data General Corporarion, Westboro. Massachusetts 01580, (617) 366-8911

FOLD

TAPE

FOLD

" III
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

~. Data General
ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

n

n

~., Data General TP ____ _

TIPS ORDER FORM
Technical Information & Publications Service

BILL TO: SHIP TO: (if different)

COMPANYNAME ____________________________ _ COMPANY NAME

ADDRESS ADDRESS
CITY ____________________________________ _ CITY

STATE ______________ _ ZIP STATE ZIP
ATTN: __________________________________ __ ATTN:

QTY MODEL II DESCRIPTION UNIT LINE TOTAL
PRICE DISC PRICE

(Additional items can be included on second order fonn) [Minimum order is $50.00] TOTAL

Tax Exempt II Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (V.P.S or Postal)

For. orders less than $100.00
o Other:

o V.P.S. Blue Label
o Air Freight
o Other

o Charge my 0 Visa 0 MasterCard
Acc't No. _____ Expiration Date ___ _

o Purchase Order Number: __________ _

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIJ>PING AND HANDLING. ---------'

Person to contact about this order __________________ Phone _______ _

Mail Orders to:

Data General Corporation
Attn: Educational ServicesITIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366·8911 ext. 4032

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

DGC Sales Representative (If Known)

012·1780

Extension

Date

Badge II

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical Infonnation and Publications Service (TIPS) solely in accordance with the following
tenns and conditions and more specifically to the Customer signing the Educational Services TIPS Order Fonn shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Fonn shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Tenns are net cash on or prior to delivery except where satisfactory open account credit is established, in which case tenns are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC nonnally ships either by UPS or U.S. Mail or ot}ler appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Fonn. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until tenninated by either party upon
thirty (30) days prior written notice .. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the tenns and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the tenns and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreemenfby reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT­
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC­
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Fonn. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These tenns and con­
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These tenns and conditions shall prevail notwithstanding any different, conflicting or addi­
tional tenns and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCouNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

o

o

o

~ I

n

User Documentation Remarks Form
Your Name ___________________ Your Title __________ ..,..-___ _

Company

Street ___ __

City _______________________ State _______ Zip ______ _

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title FORTRAN 77 Environment Manual (AOS) Manual No. 093-000273-00

Who are you? o EDP Manager o Analyst/Programmer OOther ________ _

OSenior Systems Analyst o Operator

What programming language(s) do you use? ___________________________ _

How do you use this manuaU (List in order: 1 = Primary Use) ____________________ _

_ Introduction to the product _ Tutorial Text
_ Reference _ Operating Guide

About the manual:
Yes

Is it easy to read? 0
Is it easy to understand? 0
Are the topics logically organized? 0
Is the technical information accurate? 0
Can you easily find what you wanH 0
Does it tell you everything you need to know 0
Do the illustrations help you? 0

_ Other

Somewhat
o
o
o
o
o
o
o

No
o
o
o
o
o
o
o

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

o

o

o

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772

POSTAGE Will BE PAID BY ADDRESSEE

t. DataGeneral
User Documentation, M.S. E-111
4400 Computer Drive
Westborough, Massachusetts 01581

NO POSTAGE
NECESSARY

IF MAilED
INTHE

UNITED STATES

(J-'

Data General Corporation, Westboro, MA 01580 093-000273-00 'I
i

"

