
t. Data General

o

Softw'8re Documentation

FORTRAN 5
Programmer's Guide

(AOS)

?

o

o

0····' '.

o

FORTRAN 5
Programmer's Guide

(AOS)

093-000154-02

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (OB5-series) supplied with the software.

Ordering No. 093-000154
CData General Corporation, 1978, 1981, 1985
All Rights Reserved
Printed in the United States of America
Revision 02, January 1985
Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/aOOO, TRENDVIEW, SWAT,
GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/l,
DG/GATE, DG/XAP, ECLIPSE MV/l0000, GW/4000, GDC/l000, REV-UP, XODIAC, DEFINE, SLATE,
microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Revision History:

FORTRAN 5
Programmer's Guide

(AOS)
093-000154-02

Original Release - October 1978

First Revision - January 1981

Second Revision - January 1985

CONTENT UNCHANGED

Effective with:

(FORTRAN 5 Rev. 6.10)

The content in this revision is unchanged from 093-000154-01. This revision changes only
printing and binding details.

o

o

o

Preface

As a programmer fluent in FORTRAN or a similar language and familiar with the
Advanced Operating System (AOS), you will find this Programmer's Guide a useful
companion to the FORTRAN 5 Reference Manual (093-000085).

This manual instructs you in writing your own runtime routines and in using the FORTRAN
5 runtime libraries. We detail various aspects of operating FORTRAN 5 under AOS, error
handling, the runtime environment, and the general.concepts of multitasking. If you write
your own runtime routines, Chapter 5, "The FORtRAN 5 Assembly Language Interface,"
will be of special interest to you.

We group the runtime routines in chapters by the functions they perform. Equipped with an
understanding of the operating instructions described in Chapter 1, "FORTRAN 5 under
AOS," you can call the runtime routines detailed in Chapters 7 through 24. At the end of
each runtime routine chapter is a sample FORTRAN 5 program that contains calls to one or
more of the routines in that chapter ..

We have organized the manual as follows:

Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapters 7-24

Appendix A

Appendix B

Appendix C

093-000154

Describes how to run FORTRAN 5 under AOS. We include information
on how to compile and link a FORTRAN 5 program as well as how to
change certain FORTRAN 5 default actions.

Details error handling. We describe the actions FORTRAN 5 takes when
it intercepts an. error, your control of these. actions,. and the actions you
take when a routine returns an error code.

Introduces the runtime environment. W.e define basic programming terms
and describe different resources and how they are allocated at runtime.

Presents the general concepts of multitasking. We detail tasks and their
resources, and memory partitions in a multitask environment.

Details how to write FORTRAN 5 assembly language runtime routines.
We explain runtime stack disciplines, and Data General assembly
language fundamentals; We include examples of runtime routine code.

Introduces the runtime routine chapters. We explain the types of
arguments in the routines and detail the organization of Chapters 7
through 24.

The runtime routines.

FORTRAN 5 Runtime Error Parameters (FORTRAN 5 errors and
system errors)

Exceptional Condition Codes

Calls To the Runtime Routines (alphabetical, with chapter and page
reference)

Licensed Malarial-Properly of Data General Corporation iii

Appendix D FORTRAN 5 Language Statements

Appendix E Runtime Databases

Appendix F Format For CLRE Math Routines

Appendix G ASCII Characters

Appendix H Entry Points for FORTRAN 5 Runtime Environment Routines

Reader, Please Note:
We use these conventions for command formats in this manual:

COMMAND required [optional]

Where Means

COMMAND You must enter the command (or its accepted abbreviation) as shown.

required You must enter some argument (such as a filename). Sometimes, we use:

{ ::~~:::~: }
which means you must enter one of the arguments. Don't enter the braces; they only
set off the choice.

[optional] You have the option of entering this argument. Don't enter the brackets; they only set
off what's optional.

You may repeat the preceding entry or entries. The explanation will tell you exactly
what you may repeat.

Additionally, we use certain symbols in special ways:

Symbol Means

Press the NEW LINE or carriage return (CR) key on your terminal's keyboard.

o Be sure to put a space here. (We use this only when we must; normally, you can see
where to put spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 35 8 •

Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRYJ
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the CLI prompt.

iv Licensed Material-Property of Data General Corporation 093-000154

Contacting Data General
• If you have comments on this manual, please use the prepaid Remarks Form that appears

after the Index. We want to know what you like and dislike about this manual.

• If you need additional manuals, please use the enclosed TIPS order form (USA only) or
contact your Data General sales representative.

End of Preface

093-000154 Licensed Material-Property of Data General Corporation v

o

o

Contents

Chapter 1 - Using FORTRAN 5 under AOS

Shareable Code. ., 1-1
Load-on-call Overlays ... 1-1
The Common Language Runtime Environment (CLRE) 1-1
Command Line Interpreter (CLI) Macro Files o ••• 1-2
Compiling a FORTRAN 5 Program Under AOS ' : 1-3

Compilation Examples 1-3
Linking a FORTRAN 5 Program Under AOS 1-6

Linking Examples ' 1-8
Linking a FORTRAN 5 Program That Contains Overlays. 1-8

Limiting the Amount of Memory Available to the FORTRAN 5
Environment .. 1-9
Setting a Maximum Line Length for Output 1-10

Error Conditions 1-10
Changing the Default Line Length.'. 1-10

o FORTRAN 5 Unit Numbers 1-11
FORTRAN 5 I/O (Input/Output) Pre connections 1-11

Statement Preconnections. , 1-11
Changing Default I/O Preconnections 1-11

The Program Development Cycle: A Coding Example 1-13

Chapter 2 - Error Handling

Status Variables 0 •••••••••••••••• 2-2
ERR= and END = Options in FORTRAN 5 Statements. 0 0 •• 0 ••••••••••••••• 2-2
Traceback. 2-3

LONG TRACE ... 2-3
Short Form Traceback. : 2-3
NOTRACE . 2-4

Floating Point Errors 2-4
Default Actions. 2-5
Changing Default Actions .. 2-5

ErrorFiles . 2-6

093-000154 Licensed Material-Property of Data General Corporation vii

Chapter 3 - Runtime Environment Fundamentals

Terminology .3-1
Compilation .3-1
Executable Program .3-1
Code ... " ... 3-2
Data .. 3-2
Process .. 3-2
Tasks and Multitasking 3-2

Resources. .3-3
CPU Time .. 3-3
Memory .. 3-4
Input/Output (I/O) Channels 3-5

The Runtime Environment .3-6
The Runtime Stack. .3-6
Runtime Memory Allocation. .3-8
Stack Partitions .3-8

File Input/Output (I/O) .. 3-9
Open .. 3-9
Read/Write ... 3-9
Close ... 3-9

Configuration of Main Memory 3-10
Page Zero. 3-11
The User Status Table (UST) 3-11
The Task Control Block (TCB). 3-11
The Overlay Directory . 3-11
TCB Extensions. 3-11
COMMON Blocks ... 3-11
Unshared Code and Data Partitions 3-11
Unallocated Region .. 3-12
Overlay Area .. 3-12
Shared Data Partition 3-12
Shared Code Partition " 3-12
Address Space ... 3-12

FORTRAN 5 Runtime Databases 3-12
File Control Tables .. 3-12
Task Global Area ... 3-13
110 Control Block (lOCB). 3-13

Chapter 4 - Multitask Programming in FORTRAN 5

Tasks and Their Resources4-1
Example .". 4-1
Non-FORTRAN 51'asks 4-1
Memory Partitions in a Multitask Environment 4-2
Changing Default Memory Partitions 4-2
Allocating Memory Partitions . 4-3
Classes of Suspensions 4-3

viii Licensed Material-Property of Date General Corporation 093-000154

o

o

o

o

o

Chapter 5 - FORTRAN 5 Assembly Language Interface

Why Write Assembly Language Routines? 5-1
ECLIPSE Architecture Introduction. 5-1
The FORTRAN 5 Runtime Stack Discipline 5-2

The Stack Frame 5-2
Using the Stack 5-4
Subprogram Linkage Conventions. 5-4
Assembling Your Assembly Language Routines 5-5
The Permanent Symbol CPS) File 5-6

Files Which Make Up the FORTRAN 5 Permanent Symbol
File .. 5-7

An Assembly Language Programming Example 5-8
Lines 1-12 .. 5-9
Line 14 .. 5-9
Lines 16-18 ... 5-9
Line 19 . ; 5-9
Line 21 .. 5-9
Line 23 ... 5-10
Line 24 ... 5-10
Line 26 ... 5-10
Line 27 ... 5-10
Line 29 ... 5-10
Lines30and31 .. 5-10
Lines 34 and 35 .. 5-10
Line 38 ... 5-10
Notes .. 5-10

Calling Other Routines. 5-11
About S?ATTR .. 5-11

Writing Routines That Have a Variable Number of Arguments 5-11
Initiating Tasks From Assembly Language " 5-12

S?TASK ... ' 5-12
S?QTSK ... 5-12
A?TASK ; 5-12
RT.ERR .. 5-14
F5.ERR ... 5-14

Calling FORTRAN 5 Built-in and Math Routines 5-15
.FIOPREP and .IUNIT 5-16

Chapter 6 - About the Runtime Routines

Arguments. .6-1
Typed Arguments .6-1
Aggregates ' 6-2
IER .. 6-2
Error Conditions .. 6-2
Examples. .6-3
Notes and Rules. .6-3
References.' .'6-3
Coding Example.6-3
Intrinsic Functions " .6-3

093-000154 Licensed Material-Property of Date General Corporation ix

Chapter 7 - Checking for Arithmetic Errors

The Routines In This Chapter .7-1
DVDCHK .. 7-1
OVERFL ... 7-2

Coding Example .. 7-3

Chapter 8 - Performing Logical Operations with Integers and Words

The Routines in This Chapter. 8-2
lAND ... 8-2
ICLR ... 8-3
lOR .. 8~4
ISET .. 8-5
ISHIFT .. 8-6
ITEST ... 8-7
IXOR ... 8-8
NOT .. 8-9

Coding Example. 8-10

Chapter 9 - Managing Logical Disks and Directories

The Routines In This Chapter 9-1
CDIR ... 9-2
CPART .. 9-3
DIR .. 9-4
GDIR ... 9-5
INIT .. 9-6
RELEASE. 9-7

Coding Example. 9-8

Chapter 10 - Maintaining Files

The Routines In This Chapter 10-1
CFILW ... 10-2
CHSTS ... 10-3
DFILW ... 10-4
FDELETE ... 10-5
FRENAME ... 10-6
LINK .. 10-7
RENAME ... 10-8
UNLINK .. 10-9

Coding Example . 10-10

x Licensed Material-Property of Data General Corporation 093-000154

Chapter 11 - File Input/Output

Opening Files 11-1
Closing Files .. 11-1
Reading and Writing Files 11-1
The Routines In This Chapter 11-2

APPEND11-3
BACKSPACE ... 11-4
CHRST ... 11-5
CHSAV ... 11-6
CLOSE .. 11-7
FCLOSE . 11-8
FOPEN ... 11-9
FSEEK .. 11-10
OPEN ... 11-11
RDBLK .. 11-12
RDLIN , 11-13
RDSEQ .. 11-14
READRW .. Ii-IS
RESET .. 11-16
REWIND ... 11-17
WRBLK .. 11-18
WRITRW ... 11-19
WRLIN .. 11-20
WRSEQ .. 11-21

Coding Example .. 11-22

Chapter 12 - Console Handling

The Routines In This Chapter. 12-1
GCIN .. 12-1
GCOUT : 12-2
ODIS ... 12-2
OEBL .. 12-3

Coding Example ... 12-4

Chapter 13 - Using the System Clock and Calendar

The Routines In This Chapter 13-1
DATE .. 13-2
FGDAY ... 13-3
FGTIME .. 13-4
FSDAY ... 13-5
FSTIME. 13-6
SDATE ... 13-7
STIME ... 13-8
TIME .. 13-9

Coding Example . 13-10

093-000154 Licensed Material-Property of Data General Corporation xi

Chapter 14 - Initiating Tasks in a Multitask Environment

The Routines In This Chapter 14-1
FTASK ... 14-2
ITASK ... 14-3

Coding Example ... 14-4

Chapter 15 - Changing Task States in a Multitask Environment

The Routines In This Chapter 15-1
AKILL ... 15-2
ARDY '.' 15-3
ASUSP ' 15-4
KILL ... 15-4
PRI ... 15-5
SUSP .. 15-5
TIDK ; 15-6
TIDP ... 15-7
TIDR .. 15-8
TIDS ... 15-9

Coding Example .. 15-10

Chapter 16 - Obtaining Task-Related Information in a
Multitask Environment

The Routines In This Chapter 16-1
GETEV ... 16-1
GETPRI- 16-2
MYEV .. 16-2
MYID .. 16-3
MYPRI ... 16-3

Coding Example 16-4

Chapter 17 - Intertask Communication

The Routines In This Chapter .17-1
REC ... 17-2
XMT ... 17-3
XMTW ... 17-4

Coding Example ... 17-5

xii Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

o

.~------ ... "

Chapter 18 - Requesting Delayed or Periodic Task Initiation

Queue Tables ... 18-1
Task Initiation ... 18-1
Task Completion ... 18-2
Premature Termination of a Request . 18-2
Timing .. 18-2

The Routines In This Chapter 18-3
ASSOCIATE .. 18-4
CANCL ... 18-5
CYCLE ... 18-6
START ',' ... : 18-7
TRNON , 18-8

Coding Example . 18-9

Chapter 1 9 - Enabling and Disabling the Multitask Environment

Disabling the Multitask Environment 19-1
Enabling the Multitask Environment 19-1
Other Options. 19-1
The Routines In This Chapter . 19-1

MULTITASK .. , .. 19-2
SINGLET ASK .. 19-2

Coding Example 19-3

Chapter 20 - Using Overlays

Explicit Overlay Management. 20-1
Loading Overlays .. 20-2
Releasing Overlays ... 20-2
The Routines In This Chapter 20-2

EST ... 20-3
OVCLOSE .. : 20-4
OVEXIT .. 20-5
OVKILL .. 20-6
OVLOD ' , 20-7
OVOPN ... 20-8
OVREL. ~ 20-9

Coding Example . 20-10

Chapter 21 - User/System Clock Commands

The Routines In This Chapter 21-1
FDELAY .. 21-1
GHRZ .. 21-2
WAIT .. 21-3

Coding Example ... 21-4

093~000154 Licensed Material-Property of Deta General Corporation xiii

Chapter 22 -Transferring Control Between Programs
And Accessing Command Line Information

Swapping . '. 22-1
Chaining 22-1
Accessing Command Line Information 22-2
The Routines In This Chapter. 22-2

CHAIN ; 22-3
COMARG ' 22-4
COMINIT 22-6
COMTERM .. 22-7
FCHAN ... 22-8
FSWAP ... 22-9
SWAP ... 22-10

Coding Example . 22-11

Chapter 23 - Reporting Errors and Messages

The Routines In This Chapter 23-1
CHECK '.' 23-1
EBACK ... 23-2
ERROR ... 23-3
EXIT ... 23-3
GETERR , 23-4
MESSAGE ... 23-5

Coding Example 23-6

Chapter 24 - Using Extended Memory

Defining the Window Size . 24-1
Aligning the Common Block. 24-1
Using Extended Memory in a Multitask Environment 24-1

Transfer Completion 24-2
Separate Window Maps 24-2
Virtual Data Files . . -. 24-3
Interprocess Communication Through Shared Data 24-3

The Routines In This Chapter. 24-3
ERDB ' 24-4
EWRB .. 24-5
MAPDF .. 24-6
REMAP ... 24-8
VCLOSE ... 24-10
VDUMP ... 24-11
VFETCH ... 24-12
VLOAD ' 24-15
VMEM .. 24-16
VOPEN .. 24-17
VSTASH ... 24-18

Coding Example .. 24-19

xiv Licensed Material-Property of Data General·Corporation 093-000154

o

o

a

o

o

o

Appendix A - FORTRAN 5 Runtime Error Parameters

(

Appendix B - Exceptional Condition Codes

Appendix C - Calls to the Runtime Routine

Appendix D - Alphabetized List of FORTRAN 5 Statements

Appendix E - Fortran 5 Runtime Databases

Runtime Environment Data Areas . E-l
User Status Table .. E-l
Task Control Blocks .. E-2
Task Control Block Extensions . E-4
Stack Partition ... E-5
Task Global Area 0 •• 0 •••••• 0 0 •••••••••••••••••••••• E-5
Input-Output Control Block 0 •••••••••••••••••••• E-6
Bookkeeping Area 0 0 • • • • • • • • 0 • 0 • • E-6
Overlay Directory 0 • • • • • • • • 0 • Y • • • • • 0 • • • • • • • • • • • 0 • • , • 0 • 0 0 • • • E-6
File Table 0 •••••••• 0 0 •• 0 0 •••••• 0 •• 0 • ' ••••••••••••••• E-6
Preconnection Table. 0 0 • • • • • • 0 0 • E-7

Appendix F - CLRE Math Routines

< BASICNAME >. 0 •••••••• 0 •••••••••••••••••••••••• of-l
< VERSION >. F-2
< Entry> 0 ••••••••• 0 ••••• 0 •••••••••••••••••••••• : •••••• F-2
< ARGDT >. 0 0 ••••••• 0 0 •••••••••••••••••••••••••• 0 •••••• F-2
< RESDT > 0 ••••••• 0 ••••••••••••• 0 0 ••••••••••••••• F-3

Calling Sequence 0 • •• • • • • • • • • • F~3
Integer ... 0 ••••• 0 0 •••••• 0 ••••••••••• 0 •••••••••••••••••• F-3
Real and Double Precision 0 ••••••••••••••••••••••••• F-3
Complex ... F-3

Appendix G - ASCII Table

Appendix H - Entry points for FORTRAN 5 Runtime
Environment Routines

093-000154 .. Licensed Material-Property ·of Data General·Corporation xv

Tables

Table Caption

1-1 Function Switches . 1-4
1-2 DGCPCT Preconnections 1-12
1-3 IBMPCT Pre connections 1-12
1-4 Statement File Preconnections 1-12
5-1 ACO Format For F5.ERR 5-14
8-1 Values Returned for Argument Bits .. 8-1
11-1 Read and Write Modes 11-1
18-1 Queue Table ... 18-3
H-l Runtime Routine Entry Points H-l

III ustrations

Figure Caption

2-1 Link Segment 2-4
3-1 Multitasking ... 3-3
3-2 The CPU Interacting With Processes in Main Memory 3-4
3-3 Address Space in Main Memory 3-5
3-4 The Runtime Stack. 3-6
3-5 A Push Operation. 3-7
3-6 110 Operation 3-9
3-7 Layout of Main Memory 3-10
5-1 The Stack Frame. 5-3
5-2 The Runtime Stack at Various Stages of a Subroutine Call 5-5
5-3 Source for DIR ... 5-8
20-1 Overlays ... 20-1
E-l The Relationship Between UST, TCB and TCB Extensions E-3
E-2 File Table ... E-7
E-3 The Pre connection Table E-8

xvi Licensed Material-Property of Data General Corporation 093-000154

o

o

o

Chapter 1
Using FORTRAN 5 under AOS

FORTRAN 5 supports many of the advanced features of the Advanced Operating System
(AOS). You can use FORTRAN 5 to take full advantage of AOS without resorting to the use
of assembly language. FORTRAN 5 produces code that rivals assembly language in
compactness and speed of execution, but provides the ease of programming and debugging
associated with high-level languages.

Shareable Code
FORTRAN 5 produces programs that are fully shareable. With this feature, all users
running a FORTRAN 5 program execute the same copy of the program residing in memory.
This results in more efficient utilization of memory.

Load-on-call Overlays
FORTRAN 5 supports the Load-on-call overlay features of the AOS Resource Call Facility
(see the AOS Programmer's Manual (093-000193) for more information on Resource Calls).
An overlay is a portion of a program that resides in an overlay file. Using the Load-on-Call
facility from your program, you can load the overlay into main memory from the overlay file.
Consequently, seldom used subroutines and functions need not take up space in main memory
until they are actually called. You decide which routines are memory resident and which
routines reside in disk overlays when you link your program. You need not recompile your
routines to change this overlay structure.

The Common Language Runtime Environment
Through the AOS CLRE, routines written in different languages can caB each other in the
same program as long as they don't use conflicting features. FORTRAN 5 routines share a
common runtime interface with Data General's AOS PLjland DGjeM, languages. These
languages also use the same set of mathematical routines (see Appendix F).

093-000154 Licensed Material-Property of Date General Corporation 1-1

Command Line Interpreter (CLI) Macro Files
A CLI macro file contains a group of CLI commands. When you call a CLI macro file by
entering its name as a CLI command, the CLI automatically executes all the commands in it.
FORTRAN S provides twoCLI macros for use in compiling and linking programs: FS.CLI
and FSLD.CLI. FS.CLI invokes FORTRAN S to compile a source program to produce an
object file. FSLD.CLI links object programs to produce an executable program file.

You must separately compile each FORTRAN 5 main program, subroutine, and subprogram.
Use the FS.CLI command to do this. After you compile your source programs; use FSLD.CLI
to build your executable program file. FSLD.CLI invokes the system utility, Link, which
names the FORTRAN S runtime libraries in proper order.

The following example documents a series of AOS CLI commands that compile, link, and
execute a FORTRAN S program.

Compile:

F5 MAINJ
F5 SUBJ
F5 XFUNJ
F5 XSUBJ

Link:

F5LD MAIN SUB 1 XFUN XSUBJ

Execute:

XEQ MAINJ

1-2 Licensed Material-Proper~ of Data General Corporation 093-000154

o

o

o

Compiling a FORTRAN 5 Program Under AOS
To compile a FORTRAN 5 program under AOS, type in the FORTRAN 5 command
followed by the pathname of the source file.

The format of the FORTRAN 5 command line is

FS [function switches] inputpathname

where inputpathname is the name of your FORTRAN 5 source file and function switches are
any combination of the switches in Table 1-1.

Compilation Examples
• FS MYPROGJ

Compiles MYPROG.FR , if it exists, or MYPROG. Since there is no IE switch, the system
sends all errors to the current @OUTPUT pathname. The compiler produces the object file,
MYPROG.OB .

• FS/ER/NOI/L=PROG.LS/CODE PROGJ

Compiles either PROG.FR or PROG , depending on the existence of the .FR file. This
command generates a listing file, PROG,LS . If PROG.LS already exists, the new listing is
appended to it. The listing includes the generated code, but not lines from the INCLUDE
statement. The system does not create an error file.

093-000154 Licensed Material-Property of Data General Corporation 1-3

Table 1-1. Function Switches

o

(continues)

1-4 Licensed Material-Property of Data General Corporation 093-000154

Table 1-1. Function Switches

o·

o
093-000154 Licensed Material-Property of Data General Corporation 1-5

Linking a FORTRAN 5 Program Under AOS
Use the F5LD command to link your FORTRAN 5 program. This command uses the
F5LD.CLI macro. F5LD.CLI invokes the AOS linker, LINK. It also names the FORTRAN 5
libraries in the proper order.

In general, you link your program in the following sequence:

1. main FORTRAN 5 program

2. user subprograms

3. support libraries (e.g., Commercial Subroutine package)

The F5LD command line has the form

F5LD [function switches] mainprogram [argument switches] [subprogram [argument switches] ... J)

Where

mainprogram

subprogram

function switches

argument switches

is the name of your FORTRAN 5 main program unit

is the name of the FORTRAN 5 subprogram that one of your
FORTRAN 5 routines uses.

represent any combination of the following optional function
switches.

represent any combination of the following optional argument
switches.

The F5LD command may also contain LINK overlay designators described later in this section.

LINK interprets the following switches directly. If you use them in situations where you use
XEQ LINK instead of F5LD , apply them to LINK not XEQ .

F5LD LINK
Function
Switch

Action

I ALPHA Produces a symbol table listing, sorted alphabetically by symbol name.

IE = path name Sends error messages to pathname instead of the default output file,
@OUTPUT .

IKTOP=n Specifies the top of the program's address space. n specifies a number of
I024-word pages.

IL=pathname Outputs the listing to the specified pathname . If you omit =pathname ,
LINK outputs the listing to the current CLI listfile.

1-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

FSLD LINK Function Action
Switch

INTOP=n

INUMERIC

IMAP

IMOOMAP

IMOOSYM

IO=pathname

Specifies the top of the program's address space. n specifies a
maximum address.
Produces a symbol table listing sorted by numeric value.

Produces a map listing the size of each object partition.

Produces a module-by-module map that lists the size of each object
partition.

Produces a module-by-module list of symbols.

Assigns pathname.PH to the executable program file. If you omit
this switch, the program file assumes the name of the first module in
the FORTRAN 5 command line with the extension .PR .

I REV = ww[.xx[.yy[.zz]]]Sets the revision number of the generated program (e.g. Irev=2.37).
yy and zz are meaningful only for AOS/VS.

ISYS=ROOS

ISYS=VS16

ITASKS=n

la=b

FSLD Argument
Switch

la=b

IALlGN=N

ISHAREO

093-000154

Generates a .SV program file executable under RDOS AOS.

Generates a program file executable under AOS/VS.

Specifies the maximum number of concurrent tasks the program
will need for execution.

Changes partition attributes. a and b must be one of the following:

UC unshared code
UO unshared data
SO shared code
SO shared data

When you use this switch, the system treats object modules of type
a as though they were of type b.

Action

See the description of a = b in the preceding section. When you
append this switch to an argument filename, it modifies attributes of
that module. .

When attached to the name of a common block, it causes Link 5 to
align that block on a (2**n) word boundary.

For example, BLK1 lalign= 10 aligns the common block, BLK1 on a
I024-word boundary.

When attached to the name of a common block, it causes Link to
place that common block in the shared data partition.

Licensed Material-Property of Data General Corporation 1-7

F5LD LINK Overlay
Designators

Action

! • Indicates the start of a module list you want to place in a single
overlay area.

• ! Indicates the end of a module list you want to place in an
overlay area.

! Indicates the divisions between overlays within an overlay area.
This argument must appear between!' and '! .

Numeric values for Link switches are decimal by default. You can append a radix specifier
(Rn) to a numeric value to change its radix (e.g. I ALIGN = 9 and I ALIGN = 11 R8 have the
same meaning).

See the following FORTRAN 5 LINK examples, and the LINK Reference Manual
(093-000254) for additional information.

The following switches are interpreted by F5LD.CLI . Most are not LINK switches and cannot
be abbreviated.

F5LD.CLI Switch Action

ISTRING

I LONGTRACE

I QCALLS

ITASKS=n

Places Link's termination message in [!STRING]

Includes LONGTRACE.OB to produce the most descriptive form of
traceback. You must have included I LONG in the F5 compilation
command for 1 or more routines.

Includes F5ASYS.LB. You must supply this switch if the program calls
any of the AOS QCALL runtime routines described in the FORTRAN
QCALLS Reference Manual (093-000239).

Includes F5T ASK.LB. Do not include this switch unless the program
includes two or more tasks.

Linking Examples
• F5LD MYPROGI

Links the main program, MYPROG, and the required FORTRAN 5 runtime routines.

• F5LD/L=NEWPROG.LM/O=NEWPROG/ALPHA PROGI

Creates the executable program file, NEWPROG.PR (IO=NEWPROG) from the object
file, PROG.OB . Includes the required FORTRAN 5 runtime routines. Generates a listing
file, NEWPROG.LM. , that includes an alphabetically sorted list of symbol names and
values (I ALPHA).

Linking a FORTRAN 5 Program That Contains Overlays
If you type

F5LD EXAMPLE!' SUB3 ! SUB4 SUB5 '!

FORTRAN 5 invokes LINK to build EXAMPLE3.PR and its overlay file, EXAMPLE3.0L .
This program includes a single overlay area with two overlays, one containing SUB3 and the
other containing SUB4 and SUB5 .

1-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o· .
~.
y

y

The symbols in this example have the following meanings:

! • Begin the definition of an overlay area

Separate overlays within an overlay area

• ! End the definition of an overlay area

You must separate overlay designators from· module names by one or more spaces or tabs.
You can append F5LD LINK argument switches to the overlay area start designator (!.).
F5LD LINK argument switches apply to all modules·within an overlay area.

The command

F5LD EXAMPLE4 !. SUB 1 SUB2 SUB3 ! SUB4 SUB5 ! SUB6 .!

builds EXAMPLE4.PR and EXAMPLE4.0L which contains 3 overlay areas. The first overlay
area contains SUB 1 ,SUB2, and SUB3 . The second contains SUB4 and SUB5 . The third
contains SUB6 .

Limiting the Amount of Memory Available to the
FORTRAN 5 Environment

By default, a single-task FORTRAN 5 program begins execution with only enough unshared
memory pages to satisfy the stack requirements of the main program. The runtime
environment requests additional unshared pages (up to the 64KW address space limit) as the
program requires stack space. The runtime environment reports a stack overflow error if no
additional memory is available to the program when a stack overflow occurs (see Chapter 3,
Runtime Environment Fundamentals. for more information on stack overflows). The
program does not release memory acquired during execution until it terminates.

You can override the default memory allocation for both single-task and multitask programs
either when you link the program or when you execute it.

To change the amount of memory requested, follow the instructions in DMEM.SR for editing
the file. Assemble the file by following the instructions in Chapter 5, and include DMEM.OB
in the F5LD command. See the instructions in DMEM.SR for additional information.

You can limit the amount of memory the program can use when you execute it by using the
I MEM switch for the PROCESS CLI command. You must use the PROCESS CLI command
rather than the EXECUTE command if you use the I MEM switch.

You can also limit the amount of memory the program uses when you link the program. You
can do this in two ways:

• Use the LINK INTOP and IKTOP switches to establish an upper limit on memory use .

• Edit the file DMEM.SR supplied with FORTRAN 5 to specify both the upper limit and the
size of the initial request for single-task programs.

You can also use the file DMEM.SR to force single-task programs to request the full available
address space for non-dynamic memory allocation.

Unlike single-task programs, the memory usage in multi task programs is not dynamic.
Multitask programs use the full amount of memory available for the program's address space
throughout the lifetime of the program.

093-000154 Licensed Material-Property of Data General Corporation 1-9

Setting a Maximum Line Length for Output
FORTRAN 5 provides standard default line lengths, but you can define your own defaults.
You can also override the standard defaults explicitly, file-by-file. By default, the longest line
that you can write to a line-oriented file is 136 characters.

The OPEN statement sets specific line lengths and allows the following two options:

LEN = n specifies the line length

ATT="L" specifies that the file organization is line-oriented rather than record-oriented
or stream-oriented

For example, the statement

OPEN "OUT",ATT="L",LEN=40

opens a line-oriented file with a maximum line length ·of 40 characters. If you attempt to
output a longer line, you either get the message, OUTPUT RECORD TOO LONG in the
case of formatted I/O, or the excess spills over to the next line in the case of free-formatted
I/O.

See the description of the OPEN statement in the FORTRAN 5 Reference Manual for more
informaton.

Error Conditions
When a line exceeds the maximum line length, one of the following results occurs, depending
on the type of output.

The error message OUTPUT RECORD TOO LONG appears for the following reasons:

• A line of formatted output exeeds the maximum line length .

• A data item other than a Hollerith or string constant spills from one data item to a second,
and cannot fit on the new line.

The excess data item spills to a second line when a line of free-formatted output, including
Hollerith and string constants, exceeds the maximum line length.

Changing the Default Line Length
If you don't use options to open a file, AOS assumes that it is line-oriented. The file then has
the AOS default line length of 136 characters. Use the following method to change the
default line length:

1. Edit the file LlNESIZE.SR , using the instructions in that file, and change the default
value to the one you want.

2. Assemble LlNESIZE.SR (see Chapter 5 FORTRAN 5 Assembly Language Interface).

3. Include LlNESIZE.OB in the F5LD command line when building the program file.

1-10 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

FORTRAN 5 Unit Numbers
All input and output routines in FORTRAN 5 reference files by their unit numbers.
FORTRAN 5 manages unit numbers on a per-program basis. If you open a file in one
routine, any routine can access it.

A program can access up to 64 files simultaneously, numbered from 0 to 63.

FORTRAN 5 I/O (Input/Output) Preconnections
Under FORTRAN 5,there are conventional I/O statement/unit number and unit
number /pathnamepreconnections.

When you open a file explicitly with the FORTRAN 5 open statement, the system associates
the unit number you provide in the statement with the file you specify in the statement. You
can, however, specify a unit number in an I/O statement before the system associates it with
a particular file. The system then checks a file preconnection table and either

• Opens the file if an entry exists in the table associating that unit number to a pathname, or

• Signals an error if no entry exists in the table for that unit number.

Editing the preconnection source files supplied with FORTRAN 5 lets you specify your own
unit number/pathname and device name preconnections. The two preconnection files are
DGCPCT.OB and IBMPCT.OB. By default, the system uses the Data General
preconnections shown in Table 1-2, DGCPT Preconnections. If you. want file preconnections
similar to those used in IBM FORTRAN 4, name the file IBMPCT.OB in your F5LD
command line .. See Tables 1-2 and 1-3 for the DGCPCT.SR and IBMPCT.SR default
preconnections.

You can output to unit numbers not explicitly opened using IBMPCT preconnections. If you
do this, the system opens a temporary file called unit number.F5 . (This is not the case when
you use Data General Preconnections.)

Statement Preconnections
The statements TYPE, ACCEPT, PUNCH, PRINT and READ don't allow you to explicitly
mention unit numbers. See Table 1-4 for the default statement unit numbers.

Changing Default I/O Preconnections
If you want to define your own I/O preconnections, or alter the standard Data General or
IBM preconnections, follow this procedure:

1. Create a copy of either DGCPCT.SR or IBMPCT.SR (supplied with FORTRAN 5),
depending on which preconnection style you prefer. Use the directions in this new file to
edit it.

You can provide most of the same information in the file preconnection table that you
provide in the OPEN statement.

2. Assemble your preconnection file as described in chapter 5, "The FORTRAN 5 Assemble
Language Interface".

3. The assembly produces an object file. Include the pathname to this file in your F5LD
command line.

093-000154 Licensed Material-Property of Data General Corporation 1-11

Table 1-2. DGCPCT Preconnections

Table 1-3. IBMPCT Preconnections

o

Table 1-4. Statement File Preconnections

0·· . .

1-12 Licensed Material-Property of Data General Corporation 093-000154

o The Program Development Cycle: A Coding Example

o

o End of Chapter

093-000154 Licensed Material-Property of Data General Corporation 1-13

(

o

o

10

o

o

Chapter 2
Error Handling

By default, FORTRAN 5 never ignores errors. It either acts on them or signals error
conditions so you can act on them. This error handling chapter describes·· the actions
FORTRAN 5 takes, your control of these actions, and the actions you take when a runtime
routine returns an error code.

FORTRAN 5 acts upon three kinds of errors:

• Fatal errors

• Transparent errors

• Recoverable errors

Fatal errors are errors from which recovery is impossible or undesirable. In this case,
FORTRAN 5 outputs a message to the error files and terminates your program. Errors of
this type include stack overflow and subscript out-of-bounds.

Transparent errors are errors that FORTRAN 5 reports, though the program continues to
execute. You can neither intercept control nor suppress the reporting of the error.
FORTRAN 5 reports a transparent error if you supply illegal arguments for intrinsic
functions. .

Recoverable errors are errors that FORTRAN 5 reports pr passes on to you for action. You
decide how to handle the situation. When you call a particular FORTRAN 5 routine, the
calling sequence determines your choice of error haqdling alternatives. For a routine
returning a status variable; FORTRAN 5 will pass a 1 b*ck in that variable if the routine is
completed successfully. If a problem occurred, it will re*rn an error code in that variable.
FORTRAN 5 never acts on an error that occurs in sUGh a routine, but always leaves the
action up to you. The majority of I/O (Input/Output) errors are recoverable errors.

Some toutines' calling sequences do not include a status va,riable. FORTRAN 5 acts on errors
in these routines by sending an error message to the error files.

If FORTRAN 5 statements such as DELETE, RENAME, or WAKEUP detect etrors,
FORTRAN 5 handles them because it can't pass an error code to you. When the system
detects errors in I/O statements that have ERR= or ENDr= clauses, it transfers control to the
statement label you name in the appropriate clause. Aftpr the transfer of control, you can
determine what error occurred by calling the runtime rout~ne, GETERR .

You can change the default actions taken for certain runtime errors. We detail how and when
you can make these changes later in this cha.pter. i

093-000154 Licensed Malerlal-Property of Oala General Corporalion 2-1

Status Variables
A status variable is an integer that receives either a 1 or an error code upon return from a
routine. In a runtime routine call that returns a status variable, the status variable is always
the last argument.

Never ignore the error code returned in status variables. An error code other than 1 indicates
an error. Always check these variables for information about occurring errors.

Call the CHECK routine if you want FORTRAN S to check the error code and report an error
if one occurred. Use the following format:

CALL CHECK(error variable)

You pass CHECK the same error variable name you passed to a previous runtime routine call.
When CHECK sees a value of 1, indicating no errors, program execution continues. If the
value is not 1, CHECK invokes the error reporter, and the program stops.

The Instrument Society of America (lSA) convention requires all error codes to be greater
than or equal to 3. Since the system starts its error codes at 0, FORTRAN S must add 3 to all
system-defined error codes in order to comply with the standard. Any error code returned in a
status variable is three greater than the actual error code value.

If you don't use CALL CHECK, you should check the error status yourself. If you do this, you
can control the error processing. The file in Appendix A, FSERR.FR, contains FORTRAN S
error parameters. They define the mnemonics of error conditions that the runtime routines
can return in a status variable. Use these parameters to check for specific errors (FORTRAN
S error parameters have the ISA offset of 3 added to them).

You can also signal an error by calling CHECK with any error code defined in FSERR.FR.
The FORTRAN S runtime error reporter will process it and terminate your program. Instead
of referring to the Appendix, you can incorporate into your program all of FSERR.FR with
the INCLUDE statement.

ERR= and END= Options in FORTRAN 5 Statements
In FORTRAN 5, failure to include ERR= or END= clauses in specific tasking and I/O
statements causes termination of your program when errors occur. These clauses specify the
following:

ERR=label

END=label

label is a statement label number that receives control when FORTRAN
S detects an error condition during execution of the statement.

label is a statement label number that receives control when FORTRAN
S detects an end-of-file condition during execution of the statement.

If both clauses occur in FORTRAN S statements, END= takes control of an end-of-file
condition, and ERR= takes control in all other cases. If END= is not present, ERR= takes
control of end-of-file conditions as well.

You can examine the error code that caused the most recent ERR= or END= branch by
calling the routine, GETERR . GETERR accepts one argument, an integer variable, in which it
returns an error code.

A call to GETERR clears the internally saved error code. This is the sole method in which the
internal error code is cleared. If neither an ERR = nor an END = branch has occurred,
GETERR returns 1.

2-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

Traceback
Traceback is an error reporting mechanism that indicates where an error occurred in a
program. This mechanism provides output when an error occurs in either a routine not
returning a status variable or an internal FORTRAN 5 runtime environment routine. You
can choose one of three types of traceback: LONGTRACE, short form (default) traceback,
and NOTRACE.

In selecting a form of traceback for error handling, consider the following information. The
short form gives you the same information as LONGTRACE, but occupies far less memory.
LONGTRACE outputs routine names. It also outputs source line numbers if you compile
your routines with the global switch, I LONGTRACE . Both LONGTRACE and short form
traceback report memory locations as octal numbers ..

Incorporating line numbers with LONGTRACE has both an advantage and a disadvantage.
If you use ILONGTRACE , you don't need a code listing of your program's routines to
determine where an error occurred. However, using ILONGTRACE slows down your
program's execution.

LONGTRACE
Adding the I LONGTRACE switch into your F5LD command line gives you the most readable
traceback. The following is an example of LONGTRACE output

• • ERROR·· reported by SQR22?4
Called at offset 26 in program unit SUBR 1
Called at offset 13 (Line 2) in program unit .MAIN
Illegal argument for SQRT

In this example an attempt to take the square root of a negative number caused an error.
SQR22?4, the double precision square root function (The CLRE name for the FORTRAN 5
DSQRT routine), reported the error. The subroutine SUBR1 called SQR22?4. At offset 26 8

from the start of SUBR 1 , the compiler generated a call operation. The main program, .MAIN,
called SUBR1 on line 2. Since you compilied .MAIN with the global ILONGTRACE switch,
the traceback output includes the source line numbers of the subroutine calls to SUBR 1 and
DSQRT.

Short Form Traceback
If you don't select LONGTRACE, FORTRAN 5 provides the short form traceback. Notice
the lack of line numbers in the following example of the short form error report:

• • ERROR •• reported by (50)
Called at 70023+26
Called at 70000+ 13
Illegal argument for SQRT

The short form traceback requires some information from the listing file Link produces when
you specify the I NUMERIC function switch. Figure 2-1 is a segment of the Link listing file
with the information you need.

With the Link listing, you can determine that the (50) in the first line of the error report is
the starting address of the SQR22?4 routine at location 50 8 • Similarly, you can determine
that location 70023 8 is the starting address of SUBR1 , and 700008 is the start of the main
program (MAIN) code. Thus, 70023 + 26 refers to offset 26 8 in SUBR 1 .

093·000154 Licensed Material-Properly of Data General Corporation 2-3

Figure 2-1. Link Segment

NOTRACE
In addition to the error handling alternatives, LONGTRACE and short form traceback, you
can also choose NOTRACE. NOTRACE produces no traceback output at all, only an error
message. Include NOTRACE.OB in your F5LD command line to suppress Traceback.
NOTRACE saves considerable space in your program. However, because you will receive no
indication where an error occurred with this alternative, only use NOTRACE in completely
debugged code.

Floating Point Errors
The ECLIPSE® Floating Point Unit (FPU) provides a passive means of detecting floating
point errors whenever they occur. FORTRAN 5 uses this mechanism to report four types of
floating point errors:

Error

Floating
Point
Overflow

Floating
Point
Underflow

Floating
Point
Division by
Zero

Mantissa
Overflow

Definition

While processing a floating point calculation, an exponent overflow occurred.
The result is correct except the exponent is 128 too small.

While processing a floating point calculation, an exponent underflow
occurred. The result is correct except the exponent is 128 too large.

While processing a floating point division, the FPU detected a zero divisor. It
aborted the division and did not change the operands.

During a numeric scaling operation or a real to integer conversion, the FPU
shifted a significant bit out of the high order end of the mantissa. The
significance of the result was lost.

FORTRAN 5 provides a routine, the floating point trap handler, which acts upon these
errors. This routine performs a default action for each of the floating point errors. However,
you can change its actions to suit your specific needs.

2-4 Licensed Material-Property of Data General Corporation 093-000154

o

Default Actions
When the ECLIPSE FPU detects an error, the floating point trap handler does two things.
First, it determines which instruction caused the error. Second, it takes some action based on
which of the four floating point error conditions is set in the ECLIPSE Floating Point
Status Register. The following list defines the default actions FORTRAN 5 takes for each
error.

Error

Overflbw

Underflow

Division by zero

Mantissa Overflow

FORTRAN 5 Default Action

Reports a fatal error and terminates the program.

Sets the result of the operation to zero. FORTRAN 5 does not
report an error.

Reports a nonfatal (transparent) error and continues program
execution. Since the FPU leaves the operands unchanged, the result
appears to be the value of the numerator.

Takes no action and continues execution.

Changing Default Actions
The default actions for floating point errors may not suit your particular application.
However, you can override them depending on your needs.

If you don't want any floating point error detection, the file NOTRAP.OB supplied with
FORTRAN 5 disables the floating point trap mechanism. When you load NOTRAP.OB with
your program, FORTRAN 5 does not provide the floating point trap handler. You will have
no floating point error detection. To check for floating point errors, you must call the runtime
routines OVERFL and DVDCHK .

If you want floating point traps, but the default actions are not appropriate, you can change
them. Do this by editing the assembly language source file, FPTRAP.SR supplied with
FORTRAN 5. This source file establishes the severity of the floating point errors and how
they affect program execution. Edit FPTRAP.SR using the instructions in the file itself to
change the actions in these areas:

• Whether or not the FORTRAN 5 reports an error

• Severity of the generated error (Fatal or Transparent)

• What value FORTRAN 5 places in the erroneous Floating Point accumulator (zero,
largest number with the same sign, smallest number with the same sign, or unchanged
result)

Once you have made changes in FPTRAP .SR , you assemble the changed file with the
macroassembler as described in Chapter 5, "The FORTRAN 5 Assembly Language
Interface." Then include FPTRAP.OB in your F5LD command line when you link your
programs.

093-000154 licensed Material-Property of Data General Corporation 2-5

Error Files
You can direct error message output to any number of error files. By default, error message
output goes to your process output file, @OUTPUT . You can reassign or specify additional
error files by editing the files DGPCT.sR or IBMPCT.sR supplied with FORTRAN 5.
Decide which file to edit by reading the section on file preconnections in Chapter 1,
"FORTRAN 5 Under AOS."

In order to prevent errors from going to the terminal, you remove the line

EFILE @OUTPUT

from the source file. To send errors to a disk pathname, EFILE 1 , you would add

EFILE "EFILE 1"

EFILE could be a disk file pathname or a link to another file. If you name a link in your error
file definitions, you can unlink and relink the error file before each program run. This lets you
produce a different error file each time your program runs without changing the program.

End of Chapter

2-6 Licensed Material-Property of Data General Corporation 093-000154

o

Chapter 3
Runtime Environment Fundamentals

In this chapter we will describe how the computer executes your FORTRAN 5 programs
within a runtime environment. This information will be useful if you want to know how your
program actually performs the functions specified in the FORTRAN statements. It also
serves as an introduction to Chapter 4, "Multitasking in FORTRAN 5," and Chapter 5,
"FORTRAN 5 Assembly Language Interface." In this chapter, we make no assumptions
about what you know about the computer.

Terminology
We will begin by discussing some basic terminology used later in this chapter, and in
Chapters 4 and 5. You may be familiar with many of these terms, but the definitions given
here will clarify their usage in relation to the runtime environment. This selection of terms is
not meant to be a complete glossary of computer terminology.

Compilation
A compiler is a program that translates a program written in a high-level computer language,
such as FORTRAN 5, into a machine language. The ECLIPSE computer executes the
compiled machine language program, known as an executable program, at runtime. This
translation process is known as compilation.

The translated output produced by the FORTRAN 5 compiler consists of object modules.
Object modules are files with the .OB extension that the compiler creates for each routine in
your FORTRAN 5 program; one object module (.08) for each source routine (.FR).

Executable Program
An executable FORTRAN 5 program consists of the compiled object modules and additional
modules supplied by the FORTRAN 5 runtime libraries. The Link utility combines these
modules into an executable program.

When you issue the F5LD command, AOS invokes Link. Link performs two functions: it
binds all of the object modules together and supplies modules for runtime routines from the
runtime libraries (files with the .LB extension). The output of Link is an executable program
which you can execute (a file with the .PR extension).

093-000154 Licensed Material-Property of Data General Corporation 3-1

Code
Code refers to the executable machine language instructions that occupy either 1 or 2 16-bit
words in main memory. The executable code in your program is one of two classes:

• User code, produced either by the FORTRAN 5 compiler or from your assembly language
sources (if you have any).

• Runtime code, supplied by FORTRAN 5 from the runtime libraries.

Almost all of the code in a FORTRAN 5 program is shareable. If several users execute the
program at the same time, only one copy of the shared code must exist in main memory for
all users of the program. As a result, memory usage is decreased.

Data
Data consists of space for the variables, arrays and constants in your object program. Data is
also the temporary storage space required by the code.

There are three different types of data in your program:

• User data which is space for user variables, arrays, and constants.

• Runtime data which is space that the FORTRAN 5 runtime routines require for temporary
storage.

• System data which is space that AOS requires for information about your process and its
tasks.

Most of the data in your program is unshared. Therefore, each user executing your program
at a given time has his own copy of the data. Some of the constants in your program may be
shared since the program cannot alter constants. All users of the same program can use the
same copy of the constants.

Process
Your executable program, together with a set of system resources is called a process. These
resources include main memory, I/O devices, the floating-point unit, and the Central
Processing Unit (CPU). A process competes for resources with other processes which exist on
the computer as it executes.

Each process consists of one or more tasks.

Tasks and Multitasking
A task is a single flow of control through a program, and is a logically. complete unit of
program execution. A program having only one task is called a single-task program. While
executing, a task uses process resources such as memory and CPU time. A program can have
from one to thirty-two tasks.

AOS has the ability to synchronize execution of more than one task at a time. A multi task
program consists of multiple, concurrent flows through the program.

During execution of a program, the various tasks compete with each other for the resources of
the process. The AOS multitask scheduler controls this competition by allocating resources to
the highest priority task that is ready to execute.

For more information about multitasking, see Chapter 4, "Multitasking."

Figure 3-1 shows the operation of a multi task process.

3-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

Figure 3-1. Multitasking

Resources
AOS treats the computer as if it is made up of many separate resources available to its users.
Resources include the main memory space in which the program will reside, space on disks
for the storage of files, and pathways through which the progam can access files. Other
resources are physical devices such as magnetic tapes, printers, and card readers. AOS is
responsible for allocating the available resources among all users. Your program makes use of
some or all of these resources at different times.

We will now detail the different resources in more depth and discuss the way they relate to
your program in the runtime.environment.

CPU Time
The CPU is the part of the computer that performs logical, control, and arithmetic
operations. All functions that a FORTRAN 5 program performs involve use of the CPU, and
each machine language instruction specifies an action for the CPU to perform.

AOS manages CPU time. as different processes compete for it. Once you start program
execution, a process continues funning until it either makes an AOS system call or is
interrupted by AOS at the end of its allocated time for CPU control. AOS then selects
another process for execution. The allocation of CPU time to different processes executing
simultaneously is called time-sharing. .

093-000154 Licensed Material-Property of Data General Corporation 3-3

Just as processes compete for CPU time, tasks within a process compete for CPU time. AOS
examines the priorities of the tasks which are ready to execute, and gives control of the CPU
to the highest priority ready task. Each task executes until it suspends itself or until AOS
suspends it at at the end of its allocated time for CPU control.

If several tasks have equal priority, then they receive control of the CPU in a round-robin
fashion.

Figure 3-2 shows the CPU interacting with various processes in main memory.

Figure 3-2. The CPU Interacting With Processes in Main Memory

Memory
Before a process can execute, AOS must load the program to be executed into main memory.
FORTRAN 5 programs make use of a basic unit of storage in main memory called a 16-bit
word. Each word can contain all or part of an ECLIPSE computer instruction or a variable
piece of data used in a program.

Each word in memory is uniquely identified by an address. Because FORTRAN 5 treats each
16"bit word as a signed integer, each address in memory must be in the range of 0 to 32,767
(2 15 -1). Although your ECLIPSE computer may have more main memory available than
these 32,768 addressable words, each FORTRAN 5 program is limited to this amount of
memory.

3-4 Licensed Material-Property of Data General Corporation 093-000154

o

0··· . .

o

o

o

The range of addresses possible for a program is called its address space. Within the address
space of a FORTRAN 5 program lies portions of its executable code and portions of its data.
The ECLIPSE does not execute instructions or access data unless they reside in main
memory.

Some portions of your program's code and data can reside on disk. AOS system calls bring
these disk resident portions into main memory before the CPU can access them.

Figure 3-3 shows the address space in main memory.

Figure 3-3. Address Space in Main Memory

Input/Output (I/O) Channels
All access to files and devices in AOS must take place along an abstract data path called a
channel. Before you can access a file or device, you must open it; ie, AOS must assign a
channel number for use when accessing that file and return it to the FORTRAN 5 runtime
environment routines. FORTRAN 5 runtime routines refer to a file by its channel number to
perform any operations on it. FORTRAN 5 maintains a table that contains the association
between AOS channels and FORTRAN 5 unit numbers.

093-000154 Licensed Material-Property of Data General Corporation 3-5

The Runtime Environment 0
Runtime is the time when the system executes your compiled and linked program. The way
the executing program interacts with AOS and the ECLIPSE computer to obtain system
resources determines the runtime environment. The runtime code and data that FORTRAN
5 and AOS provide at runtime are a part of the runtime environment.

The Runtime Stack
FORTRAN 5 reserves part of the user data area within each task for an abstract data
structure called a runtime stack. During program execution, the program treats it as a last-in,
first-out list. It adds items on at the top of the stack (pushes) and removes them in the
opposite order from which it added them (pops).

During runtime, the ECLIPSE computer maintains information within main memory about
the current top of the runtime stack and its upper limit. ECLIPSE machine language
instructions permit the program to push and pop 16-bit words and to examine and alter
locations within the stack. If the stack reaches its upper limit, an error called a stack overflow
occurs.

Figure 3-4 details the runtime stack.

Figure 3-4. The Runtime Stack

3-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

FORTRAN 5 maintains copies of all program variables not in COMMON, STATIC, or
data-initialized storage on the runtime stack. By referencing these variables, FORTRAN 5
subroutines and functions can call themselves. This technique is called "recursion." Recursive
routines are useful for performing some action a variable number of times.

Since each FORTRAN 5 task in a program has its own runtime stack, several tasks can
execute code for the same routine at the same time. This technique is called "re-entrancy."

The program also passes the addresses of arguments to subroutine and function calls on top of
the runtime stack. The program also saves the current state of the executing routine on top of
the stack before a called routine begins execution. This permits the program to restore the
caller's state of execution upon return from the called routine.

Runtime routines also make use of the runtime stack.

COMMON and STATIC storage, constants, and some runtime and system data are not
maintained on the runtime stack.

Figure 3-5 shows the runtime stack before and after a push operation.

Figure 3-5. A Push Operation

093-000154 Licensed Material-Property of Data General Corporation 3-7

Runtime Memory Allocation
AOS determines the amount of memory it needs for a FORTRAN 5 program by the amount
of memory required at three levels of activation: per-process, per-task and
per-routine-activation.

Per-process data includes executable code, COMMON blocks and STATIC variables,
locations containing pointers to runtime routines, and data maintained by the FORTRAN 5
runtime environment and AOS. Each process has one copy of its per-process data. All tasks
active within that process can access this data. Per-process data is also known as process
global data.

AOS and FORTRAN 5 maintain per-task data separately for each task in a process. This
data includes information on each task's processing state:

• the contents of the CPU registers in which arithmetic operations are performed

• its program counter, which contains the address of the next machine instruction to be
executed

• the task's runtime stack and its associated pointers. (partitions and state variables are
described later)

Each routine a task executes can access this data. The AOS scheduler and the FORTRAN 5
runtime environment routines coordinate the use of each copy of this data.

In single-task programs AOS maintains only one set of per-task data.

FORTRAN 5 maintains per-routine activation data on the runtime stack. Each routine
activation causes FORTRAN 5 to create another copy of that routines local variables and
arrays on the stack. The runtime environment allocates this space just before a routine begins
execution, and releases it when the routine finishes execution. The data's lifetime is therefore
only the length of time that the routine is executing. Space for routine argument addresses,
the subroutine return address, and temporary storage for intermediate results from
calculations is also maintained on the runtime stack for each activation of a routine.

Stack Partitions
A stack partition is an area of memory that AOS sets aside for a task's per-task data. The
stack partition includes a per-task database called the Global Area, and space for the task's
runtime stack. FORTRAN 5 allocates a stack partition for a task when the task is initiated,
before it begins execution. FORTRAN 5 frees the stack partition when the task terminates.
FORTRAN 5 maintains a list of available stack partitions within the runtime environment.

Multitask stack partitions have a fixed allocation which occurs before the program begins
executing. Thus, any stack overflow in any task causes a fatal runtime error.

In a single-task program, AOS allocates only enough l024-word pages of memory for the
stack to permit the main program to start execution. If a stack overflow occurs during
program execution, the FORTRAN 5 stack overflow handling routine requests enough
additional pages of memory from AOS to continue executing the program. Once AOS
allocates all addressable memory to the process, FORTRAN 5 reports a fatal runtime error
for any additional stack overflows.

3-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

File Input/Output (I/O)
At runtime, much work takes place during the execution of a single OPEN, CLOSE, READ,
or WRITE statement in FORTRAN 5. When you specify an I/O operation for a certain unit·
number through an I/O statement, the compiler translates the statement into one or more
calls to FORTRAN 5 runtime environment routines. These routines call AOS to carry out the
I/O operation.

FORTRAN 5 runtime routines that perform input and output also call AOS to perform I/O
operations. All I/O system calls to AOS take place through a process called the ghost in AOS
and the agent in AOS/VS. The ghost or agent buffers most data between a file and a user
program. This eliminates the necessity of maintaining large data buffers in in the user's
address space.

Open
A FORTRAN 5 runtime routine makes an AOS system call to open the file you name and
associate a unit number with that file. AOS then returns the number of a channel that is
associated with the open file. FORTRAN 5 uses that channel number for all further requests
to AOS that refer to that unit number.

Read/Write
If you perform a formatted READ or WRITE statement, FORTRAN 5 runtime environment
routines perform any necessary reformatting of the data. During the course of a single READ
or WRITE statement, the FORTRAN 5 runtime environment routines create a data area for
their use on top of the user's runtime stack. This data base is called an I/O Control Block
(lOCB). The runtime environment routines associate this area when the code invoked for the
I/O statement completes execution.

Figure 3-6 shows a Read operation in action.

Close
When you close a file, a FORTRAN 5 runtime routine issues an AOS system call to release
the channel number. The channel number assigned to that file becomes available for reuse.

Figure 3-6. I/O Operation

093-000154 Licensed Material-Property of Data General Corporation 3-9

Configuration of Main Memory
In the following section, we describe the layout of main memory for both single-task and
multi task programs as depicted in Figure 3-7. We will begin at the smallest address (location
0) and move upward through the address space to the maximum address (location 77777 8).

Figure 3-7. Layout of Main Memory

3-10 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

Page Zero
The first 2000 8 locations in the address space are known as Page Zero. The object program
can access the first 4008 words of Page Zero using the eight bit offset in a one-word
ECLIPSE instruction. These locations are therefore convenient for use as frequently used
variables and pointers. AOS and FORTRAN 5 maintain the state variables for the currently
executing task and pointers to the FORTRAN 5 runtime environment routines here.

The User Status Table (UST)
Following Page Zero is a set of tables maintained by AOS and the FORTRAN 5 runtime
environment routines. The User Status Table (UST) is a per-process data area in which AOS
maintains information on the process. This information includes the number of tasks in the
process and the location of other system databases.

The Task Control Block (TCB)
The TCB is a per-task data area in which AOS maintains such information about a task as its
task identification number (lD), its priority, and locations for maintaining the contents of its
accumulators and program counter. In 16-bit AOS, the Task Control Blocks (TCBs) are
located above the UST. In AOS/VS, the TCBs are not maintained in the program's address
space, but instead reside in the agent.

The Overlay Directory
Next, in programs containing overlays, is an overlay directory in which AOS maintains
information on overlay areas within the program. This information includes which overlay is
presently being loaded in the program and the number of tasks executing routines in that
overlay. For more information about overlays see Chapter 20, "Using Overlays."

TCB Extensions
Following the task control blocks, are a set of per-task data areas called the TCB-extensions.
Within each task's TCB extension, FORTRAN 5 and AOS maintain task state information
not contained in the TCB itself. In AOS, a pointer to the TCB-extension exists in the TCB. In
AOS/VS, FORTRAN 5 maintains a pointer to the TCB extension in the per-task variable,
?USP.

COMMON Blocks
After the TCB extensions is the fixed per-process program data. This includes COMMON
blocks, STATIC variables, and DATA-initialized variables.

Unshared·Code and Data Partitions
Above these static d::ita areas is the unshared code partition. Located here is any unshared
code which exists in the program. By default, the only unshared code in a FORTRAN 5
program is the FORTRAN 5 runtime initializer. This is a routine that establishes the
runtime environment data areas. Most of the code space for the initializer becomes a part of
the address space available for the runtime stack space.

Following the unshared code partition is the unshared data partition. This area contains the
runtime stack partition for each task.

093-000154 Licensed Material-Property of Data General Corporation 3-11

Unallocated Region
In single-task programs, AOS does not allocate the portion of the program's address space
between the unshared and shared areas until the program requires the memory addresses in
this "no man's land"· for growth of the runtime stack. No unallocated region exists in
multitask programs.

Overlay Area
Next, in programs containing overlays, is the area into which AOS loads the overlays. For
more informaton about overlays, see Chapter 20, "Using Overlays."

Shared Data Partition
Above the unallocated space· or the overlay area is the space for the shared data partition. It
contains constant per-process data such as literals passed as arguments to subroutines or
functions. Link places this passed literal data here so that it's addresses can be passed
between routines in different overlays.

Shared Code Partition
Following the shared data partition is the shared code partition. In this area are three types of
code:

• compiler-generated user code

• code supplied by AOS for system call interfaces between the program and AOS

• FORTRAN 5 runtime code

Address Space
Link always allocates the shared portions of the program from the top of the address space
downwards in memory. It allocates the unshared portions of the program from location zero
upwards in memory.

Multitask programs use all 32KW of available address space. This is because the runtime
initializer allocates stack partitions before the program begins execution. In single-task
programs, the amount of memory used grows with the needs of the program's runtime stack.
In the case where the single-task runtime stack does not take up all of the available space,
AOS does not allocate the logical addresses between the unshared data area and the shared
data area. Thus, the process does not waste memory space that other processes could use.

FORTRAN 5 Runtime Databases
FORTRAN 5 maintains several data areas on either a per-process or per-task basis. These
databases are located in the unshared data partition. For more information see Appendix (E),
"FORTRAN 5 Runtime Databases."

File Control Tables
The file control table is a per-process database in which FORTRAN 5 maintains information
about each FORTRAN I/O unit number. This information includes whether or not that unit
number is currently assigned to an open file, and if opened, which AOS channel number is
assigned to that unit. AOS also maintains information on the attributes of the unit, such as
whether the file is line-oriented or blank-padded.

3-12 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

Task Global Area
At the bottom of each task's stack partition is its task global area. A per-task variable in page
zero contains a pointer to the current task's global area. The task global area contains the
I/O and task control information.

1/0 Control Block (IOCB)
The I/O control block (IOCB) is a per-task database. FORTRAN 5 creates it on the task's
stack during the lifetime of a single FORTRAN 5 read or write operation, or during a
FORTRAN 5 runtime routine call which performs a read or write. The 10CB contains all
necessary data for the I/O operation, including a buffer for line-oriented and record-oriented
transfers. Also contained in the 10CB is the AOS system call packet used for the I/O system
calls. A word in the task's global area contains a pointer to the current 10CB.

End of Chapter

093-000154 Licensed Material-Proparty of Data General Corporation 3-13

o

o

Chapter 4
Multitask Programming in

FORTRAN 5

This chapter presents general concepts of multitasking, whereas Chapters 14 through 19
detail the multitasking routines. Before reading this chapter, read about multitasking in the
FORTRAN 5 Reference Manual.

FORTRAN 5 supports nearly all the multitasking capabilities of AOS. In addition,
FORTRAN 5 provides you with the event mechanism explained in the FORTRAN 5
Reference Manual.

Tasks and Their Resources
In a multitask environment, tasks share physical resources. FORTRAN 5 and AOS manage
these resources together, depending on a particular task's resource requirements. The current
state of a task's resources defines the task. For a more detailed description of resources, see
"Chapter 3 Runtime Environment Fundamentals," and Chapter 5, "The FORTRAN 5
Assembly Language Interface."

AOS handles the accumulators, carry, unique storage position (USP), the hardware stack,
and the program counter. AOS manages these resources through the task control block
(TCB) for each task.

For example, AOS allocates an area of memory for each task to store its copy of the
accumulator's values in when the task isn't executing. The multitask scheduler saves and
restores the task's state.

FORTRAN 5 handles memory partitions, floating point unit, and page zero locations called
task state variables (.SP, .FP, .SSE .GP, .RP). FORTRAN 5's management of resources
utilizes the TCB extension.

If you write all your tasks in FORTRAN 5, then AOS and FORTRAN 5 together handle the
resources ..

Example
One task within your program might communicate with a terminal to get requests to examine
the data file of an accounting record. Concurrently, another task could access the data file
itself through READ statements. A third task could record the request made by executing
WRITE statements to a logging file. Although each process actually executes only one
instruction in one task at a given time, AOS switches execution control between tasks so
rapidly that all tasks seem to be executing simultaneously.

Non-FORTRAN 5 Tasks
You can also write non-FORTRAN 5 tasks. For instance, you can write tasks in assembly
language. If you don't designate which resources a task can use, then it has access to both
AOS-managed and FORTRAN-managed resources. Runtime routines have access to both
types of resources.

Tasks written entirely in assembly language may not need any of the FORTRAN 5 resources
such as stack partitions. Therefore, you can avoid wasting memory or FORTRAN 5
resources, by defining the partition specification as lOOOOOK in the stack size parameter. This
partition specification prevents the task from receiving a TCB extension or a FORTRAN 5
memory partition.

093-000154 Licensed Material-Property otData General Corporation 4-1

Memory Partitions in a Multitask Environment
Each FORTRAN 5 task in a multitask environment has its own memory partition. The
memory partition consists of a task global area and a runtime stack area. The runtime stack
area contains a stack, end zone, and I/O control blocks (IOCBs). See the file F5SYM.sR
supplied with FORTRAN 5 for sizes of the task global area, end zone, and fixed portion of
the IOCB.

Changing Default Memory Partitions
Since tasks may require different amounts of memory, the allocation of default size partitions
may be inefficient for some programs. You may want to explicitly specify the size of the
memory partitions that will be allocated for each task. Your program will then require less
memory space at runtime.

You can use the files PARTITION.sR and DPART.SR supplied with FORTRAN 5 to
create a partition specification table. The runtime initializer uses this table at runtime to
control the allocation of task partitions. By editing DPART.sR in the manner described in
PARTITION.sR, and by assembling and linking DPART.OB into your program, you can
define the number and size of stack partitions to be allocated. Then, when you initiate a task
within your program, you can use the partition specification parameter for the task initiation
request. You can select the exact stack size required for the request. The partition specifier is
described later in this chapter.

The amount of space each task requires depends on the following:

• The nesting of calls made by the task to subroutines and runtime routines.

• The number and size of local variables and arrays allocated on the stack by each
subroutine and runtime routine executed by the task.

The process of "customizing" the stack requirements of each task is a process of trial and
error. Therefore, you will probably want to do it for fully debugged programs only, to
maximize their efficiency.

When you terminate a FORTRAN 5 task, its stack partition is returned to the pool of
available partitions by the runtime environment routines. You can then reallocate the
partition for another task.

The size of default partitions depends on three variables:

• The total amount of memory available for partitions

• The amount of memory allocated for fixed-size partitions

• The number of tasks you specify (via Link's ITASKS= switch) when you Link the
program.

The runtime initializer first allocates space for any fixed-size partitions you specify through
DPART.SR. If you have explicitly requested a specific number of default size partitions in
DPART.sR, the runtime initializer allocates only that number of default size partitions. If
you do not explicitly specify a number of default size paritions, the runtime initializer will
allocate enough default partitions to insure that at least one partition exists for each task.
These extra partitions are allocated from memory which remains available after any
fixed-size partitions are allocated.

The FORTRAN 5 runtime initializer apportions available memory according to the partition
specification table. The section in Chapter 1 on "Limiting the Amount of Memory Available
to the FORTRAN 5 Environment" details how you can restrict the amount of memory the
runtime initializer treats as available memory.

4-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

Allocating Memory Partitions
When you initiate a FORTRAN 5 task, the runtime initializer allocates a partition from the
pool of available partitions. (If none is available, then you get an error message.) The runtime
initializer assigns a partition according to the task's stack size parameter. The system
specifies the stack size in several ways:

• If you initiate the task using the TASK statement then you can designate the stack size with
the STK= option. (See the FORTRAN 5 Reference Manual for details). If you do not use
this option, the runtime initializer allocates a default size partition.

• For the runtime routines ASSOCIATE, FT ASK, IOPROG, and IT ASK, you can designate
the stack size as an argument to the call . The stack size parameter is optional for FT ASK,
IOPROG, and IT ASK. If you do not specify a stack size, the runtime initializer allocates a
default stack.

• If you initiate the task from assembly language with the macro call, S?T ASK, then the
program passes the stack size parameter in an accumulator.

• DPART.SR specifies the stack size for the FORTRAN 5 main program as a parameter. By
default, the runtime initializer allocates a default size partition to the main program.

The following shows the interpretation of the stack size parameter:

Stack Size Parameter Effect on Partition Selection

o or I Select an available default size partition

2 Select the smallest available partition

3 Select the largest available partition

> 3 Select an available partition of the size given. (Note: The size must
match exactly.)

100000K Select no partition

You get an error message if the runtime initializer can't find an available partition to meet
the criteria you specified for the stack size.

Each called FORTRAN 5 subprogram requires an amount of stack space, in words, equal to
the sum of the following:

• The number of arguments the program passes to it, plus one additional word if the program
is a function of a subprogram

• Five words for the stack frame header

• The number of words designated by the second word of its SAVE operation

The stack requirements of runtime routines vary; a typical routine needs less than 20 words.

Classes of Suspensions
Various classes of task suspensions exist. For information on multiple suspensions, refer to the
AOS Programmer's Manual or the FORTRAN 5 Reference Manual. Each task suspension
acts independently. When you issue a call to suspend a task, you must issue its corresponding
call to ready the task. A task will not resume until you lift all suspensions.

End of Chapter

093-000154 Licensed Material-Property of Data General Corporation 4-3

o

o

o

o

o

Chapter 5

FORTRAN 5 Assembly Language
Interface

Assembly language is a direct symbolic representation of the machine code that the
ECLIPSE computer executes. Like FORTRAN, assembly language removes the
requirement that you program in the binary machine language of the ECLIPSE computer.
Like FORTRAN, assembly language permits you to assign symbolic names to variables
instead of referencing specific locations in memory. Unlike FORTRAN, each executable
statement of assembly language translates into a single machine instruction. The compiler
may translate a single executable FORTRAN statement into many machine instructions.
Thus, with assembly language, you have very direct control over what you are doing and how
it is carried out.

This chapter is for those who want to code their own assembly language runtime routines. It
provides a more in-depth view of the runtime environment than Chapter 3, and will help you
understand the assembly language code the compiler generates. All the figures in this chapter
are intended to depict the general layout of FORTRAN 5 data areas, not their exact format.

You will better understand this chapter if you have some familiarity with ECLIPSE
assembly language, but this is not a necessity.

Why Write Assembly Language Routinesl
There are three main reasons for writing your own assembly language programs:

• You may want to do something that you can't do directly from FORTRAN 5. An example
of this is performing operations on non-FORTRAN data types such as packed-decimal,
using ECLIPSE commercial or character instruction sets.

• You may want some part of the program to be as fast as possible for a real-time application
such as device interrupt handling.

• You may want to write a runtime routine not available in the FORTRAN 5 runtime
libraries.

In general, if you have some portion of a program which FORTRAN 5 cannot do efficiently,
you should consider assembly language.

ECLIPSE Architecture Introduction
We will take a moment to describe the ECLIPSE architecture. The FORTRAN 5 compiler
and runtime routines use an instruction set which performs operations on the following:

• 16-bit integers

• 32-bit single precision floating point numbers

• 64-bit double precision floating point numbers

093-000154 Licensed Malerial-Property of Data General Corporation 5-1

All integer arithmetic in the program takes place in 4 16-bit general purpose CPU registers,
called accumulators or ACs. Floating point arithmetic takes place in 4 64-bit floating point
registers, called floating point accumulators or FPACS. The CPU performs most arithmetic
operations by loading the operands from main memory into the appropriate type of registers,
performing the operation, and storing the result back into main memory. For a description of
the ECLIPSE instruction set, see the Principles of Operation manual for the model of
ECLIPSE you use.

The FORTRAN 5 Runtime Stack Discipline
Certain page zero state variables define the stack activities. When the AOS task scheduler
gives control to a task, it sets up these state variables in page zero. The contents of these
words describe the per-task data area that the executing task will use. When a task is not
executing, its values for the state variables are stored in its per-task data area (TCB or task
global area).

Both AOS and FORTRAN 5 make use of the state variables. The following is a list of these
variables and their functions:

Name

.SP

.FP

.SSE

.sov

.RP

.GP

Location

40 8

41 8

42 8

43 8

< 400 8

< 400 8

Purpose

Stack Pointer; contains a pointer to the location which is the
current top of the runtime stack.

Frame Pointer; contains a pointer to the current routine activation
data on the runtime stack.

Stack Limit or Stack Extent; pointer to the last location which is
available for the runtime stack.

Stack Overflow Handler Address; pointer to the stack overflow
handling procedure. In the event of a stack overflow, this
mechanism acquires more space for the stack from AOS, or
reports a runtime error.

Return Pointer; the FORTRAN 5 runtime environment support
routines use this as a temporary storage area for return addresses
and other information.

Global Pointer; contains a pointer to the task's global area.

In AOSjVS, ?USP (location 16 8 contains a unique storage pointer to a database called the
TCB extension.

The Stack Frame
The ECLIPSE computer SAVE instruction creates the stack frame. The stack frame
contains the contents of the calling unit's ACO, ACl, and AC2. It also contains the contents
of the frame pointer at the time the routine was called. The stack frame contains the state of
the carry bit and the contents of bits 1-15 of AC3. These bits contain the address of the
instruction where the CPU will transfer control when the routine returns (the return address).
The stack frame also has space reserved for local storage.

5-2 Licensed Material-Property of Data General Corporation 093-000154

. .
c· .. ···

o

o

The SA VE instruction is normally the first instruction of a routine. It does the following:

1. Pushes the contents of ACO, ACl, and AC2 onto the stack in order.

2. Pushes the current value of the frame pointer (.FP) onto the stack.

3. Concatenates the carry bit and the rightmost 15 bits of AC3 and pushes them onto the
stack. (This saves the value of the return address for the calling routine.) A JSR or EJSR
instruction which calls this routine places the return address into AC3.

4. Places the current value of the stack pointer (.SP) in the frame pointer, (.FP).

5. Finally, increments the stack pointer (.SP) by the number of words specified as the
argument to the SAVE instruction. (This allocates storage for per-routine activation
data.)

Figure 5-1 details the stack frame.

Figure 5-1. The Stack Frame

093-000154 Licensed Malerial-Property of Dala General Corporation 5-3

Using the Stack
The machine instruction set of the ECLIPSE computer contains several instructions for
using the stack. They are

PSH

POP

SAVE

RTN

Places the contents of one or more accumulators on top of the stack in ascending
order.

Removes the top words from the stack and places them into one or more
accumulators in descending order.

Creates a new frame on the stack. SAVE places a "return block" on the stack
which retains the state of the calling routine's accumulators and program
counter for resumption on reactivation.

Removes the last stack frame from the top of the stack. The R TN instruction
causes a return to the calling routine by reversing the operations of the SAVE
instruction. The contents of the accumulators and the carry bit are restored.
The frame pointer and the stack pointer are restored to their previous value, and
control returns to the address pushed from AC3.

Subprogram Linkage Conventions
You use a technique known as Call-by-Reference to pass arguments to subprograms. With
this method, you pass the arguments to a subprogram by pushing their addresses onto the
stack in reverse order (the address of the last argument is pushed first). All addresses are
I5-bit word addresses. .

This list summarizes the actions FORTRAN 5 requires for a subprogram call:

1. Load the stack pointer (.SP, location 40 8) in AC2.

2. Push the addresses of the arguments onto the stack in reverse order.

3. If calling a function, push the address of the variable to receive the returned value.

4. Call the routine.

5. On return, store AC2 into the Stack Pointer (.SP).

When the called subprogram begins, the end of the argument list is one word after the
address passed into AC2. The passed value in AC2 is known as the Stack Marker. Figure 5-2
shows the runtime stack at various stages of a subroutine call.

Stage 1

Stage 2

Stage 3

.What the stack looks like before the argument address are pushed.

What the stack looks like after the argument addresses are pushed.

What the stack looks like after the called routine executes the SAVE
instruction.

Once you push the argument addresses, you call the subprogram with the AOS resources call,
?RCALL . ?RCALL first places the current value of the program counter, the return address,
into AC3. ?RCALL then transfers control to the address you specified as its argument ..

The SAVE instruction places the return address on the stack. We recommend that you use
the FCALL macro in your assembly language routines to invoke ?RCALL . We describe
FCALL later in this chapter.

5-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

Stage 3 in Figure 5-2 shows the stack after execution of the SAVE instruction in the called
subprogram.

When the called subprogram returns via the RTN instruction, the calling routine resumes
execution at the location after the ?RCALL .

Address of Argument N

Address of Argument N-l

Address of Argument N

Addess of Argument N-l

Address of Argumenll

Caller's ACO

Caller's ACI

Stack Marker
(Caller's AC2)

Figure 5-2. The Runtime Stack at Various Stages of a Subroutine Call

Assembling Your Assembly Language Routines
This section describes the actions you must perform to assemble any assembly language
source file into an object file (.OB). You can then include the object file in your programs
when you link them with the F5LD command. You must follow this procedure when you
assemble y'our own assembly language routines and when you assemble one of the assembly
language routines supplied by FORTRAN 5.

First, build a FORTRAN 5 permanent symbol file if one does not already exist on your AOS
system. You need to do this only once. You can use a permanent symbol file for all
FORTRAN 5 assembly language sources. Only rebuild the permanent symbol file if you
begin using a new version of FORTRAN 5. The next section of this chapter, "The Permanent
Symbol (.PS) File", describes the permanent symbol file and how to create it.

Once you create a permanent symbol file, you assemble your assembly language source files
with the macroassembler (MASM.PR in AOS and MASM16.PR in AOSjVS).

093-000154 Licensed Malerial-Properly of Dala General Corporalion 5-5

In AOS, the forma:t of the MASM command is

X MASM I 8 j L = listpathnamej B = objectpathnamejPS = pspathname sourcefilename

In AOSjVS, the format ofthe MASM command is

X MASM 1618 jL=listpathnamejB=objectpathnamejPS= pspathname sourcefilename

The 18 switch directs MASM to generate 8-character symbols rather than the default
5-character symbols. The optional IL= , IB= , and IPS= switChes specify the pathnames
of the listing file, the object file, and the permanent symbol file respectively.
SOURCEFILENAME is the path name of the source file. If your FORTRAN 5 permanent
symbol file has a name other than MASM.PS in AOS and MASM.16.PS in AOSjVS, you
must use the IPS= switch to identify it.

You cannot use the MASM.PS supplied in :UTIL or the MASM16.PS supplied by AOSjVS
in :UTIL to assemble your FORTRAN 5 assembly language routines.

If you do not specify the I B = switch for the assembly, the assembler names the object
sourcefilename.OB if the source file is named sourcefilename.SR .

The Permanent Symbol (.PS) File
If you know what an assembler .PS file is then, you can skip this section.

The Permanent Symbol File is a pre-assembled version of assembly language symbols and
macros. It is supported by the macroassembler. If you specify the IS switch when executing
the assembler, it scans the source files named in the command line and builds a permanent
symbol file. By default, the permanent symbol file is called MASM.PS in AOS and
MASM16.PS in AOSjVS. From then on, whenever you invoke the assembler the source
program being assembled can refer to symbols and macros in the .PS file. The source
program treats these symbols as though they are defined in the source file itself.
Furthermore, the I S switch permits you to change symbolic values within all source files
without having to edit the source files themselves.

By using the MASM.PS file, you can write "Parametric Programs". You can avoid coding
absolute values for packet offsets, error code numbers, and system parameters into your
source programs by using symbolic values. If you use these symbols and any of their values
change, you need not recode your routine; just reassemble it.

The following examples show how to build a FORTRAN 5 MASM.PS.

In AOS:

X MASM/8/S jPS=pathname [AF5SYM.AS]

In AOSjVS:

X MASM16/8/S jPS=pathname [VF5SYM.ASJ

If you specify the IPS= switch, you can create a .PS file named anything other than
MASM.PS; e.g., F5MASM.PS. This permits you to maintain different permanent symbols
files for different uses. You can name the desired permanent symbol file via the IPS switch
when you assemble your routines. .

5-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

Files Which Make Up the FORTRAN 5 Permanent Symbol File

In this chapter, we do not attempt to list all of the symbols and macros defined in the
FORTRAN 5 MASM.PS. However, we will highlight the most important symbols and
macros. You can become familiar with the contents of the permanent symbol file by
examining the source files that compose it. These source files are named later in this section.

The Symbols that FORTRAN 5 uses fall into two groups:

• Operating system defined symbols

• FORTRAN 5 defined symbols

The operating system defined symbols include the instruction op-code specifications, system
call parameters, and system error codes. EBID.sR and ECID.sR define the instruction
op-codes. The system call parameters and system symbols are defined in PARU.SR (in AOS)
or PARU.16.sR (in AOS/VS). The system call definitions are in SYSID.sR in AOS and
SYSID.16.sR in AOS/VS.

The primary FORTRAN 5 symbol files are F5SYM.SR and FMAC.SR. F5SYM.SR defines
the core of FORTRAN 5 symbols and macros. FMAC.SR defines symbols and macros that
FORTRAN 5 shares with Data General's FORTRAN IV.

Two additional files, AF5SYM.SR and VF5SYM.SR define whether the permanent symbol
file is for AOS or AOS/VS respectively. The remaining files that compose the .PS file
contain additional symbols and macros, some of which are described later.

Using the symbols and macros in the .PS file ensures that changes in FORTRAN 5 will not
affect your assembly language source files.

In addition to assisting you in creating parametric programs, the MASM.PS file can assist
you in creating operating system independent source routines. You can use the majority of
the macros defined in MASM.PS in any runtime environment. For those macros and symbols
which you cannot use in all environments, the assembler and the FORTRAN 5 MASM.PS
define a conditional assembly feature and a set of conditional assembly symbols.

The following symbols are defined as switches for use with the conditional assembly
pseudo-ops (.IF, .DO, and .ENDC):

Mnemonic

NSW
ESW
MVSW
RSW
RDSW
RTSW
ASW
AESW
AVSW

093-000154

Target Environment

Conditional code is for NOVA@computers
Conditional code is for ECLIPSE computers
Conditional code is for ECLIPSE MV /8000 computers
Conditional code is for RDOS or RTOS
Conditional code is for RDOS but not RTOS
Conditional code is for RTOS but not RDOS
Conditional code is for AOS or AOS/VS
Conditional code is for AOS but not AOS/VS
Conditional code is for the AOS/VS but not AOS

Licensed Material-Property of Data General Corporation 5-7

An Assembly Language Programming Example
Figure 5-3 is the source code for the FORTRAN 5 runtimeroutineDIR in F5ISA.LB. We
have added line numbers for reference. Following the source code, we explain each line and
describe its function.

The source code in Figure 5-3 builds the module for their DIR runtime routine in both AOS
and RDOS.

_ Figure 5-3. Source/or DIR

5-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

Lines 1-12
Lines 1-12 are comments that contain a copyright, the name of the routine, and the calling
sequence.

Line 14
Line 14 is a macro invocation (TITLE) that builds a descriptive line in the listing. For
example

.TITLE DIR ;AOS ECLIPSE FORTRAN 5

You can use this information to be sure that the version of the routine you are assembling
(RDOS,AOS,AOSjVS and ECLIPSE ,NOVA) is correct, based on symbols in the .PS
file. TITLE also initializes some variables which other macros need.

Lines 16-18
Line 16 (DEFARGS) is a macro invocation that begins the definition of arguments the
calling routine will pass to this routine.

The calling routine will define symbolic names for the stack offsets of the addresses of the two
arguments. The stack offset is where the calling routine will place the address of NAME at
runtime. The code can then reference that argument without a particular offset in the
instructions. Thus, you can write LDA Q,@NAME,3 rather than LDA Q,@-5,3 . Your code will
always refer to the proper frame pointer offset, even if that offset changes at some future
time.

The DEF macro assigns the frame pointer offset to the symbolic name passed as an argument
(NAME).

The DEF in line 17 defines NAME as the symbol for the first argument passed. DEF in line 18
acts as a place holder for the second argument.

This is the ISA error return variable, usually called IER . Note that by placing a semicolon
before IER in line 18, we reserve a location on the stack for IER without explicitly defining a
symbol called IER . Thus, we prevent conflicts between the name IER and other symbols that
begin with IER .

Line 19
Line 19 invokes the macro DEFTMPS which terminates the end of argument definition. It
also begins the definitions of temporary locations which this routine can use; although, in this
case, it doesn't use any. However, DEFTMPS must appear even if the routine uses no
temporary locations. If we did need temporary locations, we would use the DEF macro just as
we did after DEFARGS .

Line 21
Line 21 invokes the FENTRY macro. FENTRY defines an entry point for DIR and saves the
correct amount of words in the assembled source program. The number of words saved
depends on the number of temporary locations DFTMPS reserves and whether the routine
calls any other FORTRAN-type variables (in this case 0). TITLE, DEFARGS, DEFTMPS,
DEF and FENTRY are defined in FMAC.SR.

093-000154 Licensed Material-Property of Data General Corporation 5-9

",\'i"&'%".,,' - w _._, _~_

Line 23
Line 23 is the first line of real code. Here we load the address of the first argument, NAME,
into ACO. The comment uses the notation -> to indicate that ACO contains the word address
of (points at) NAME. Had we included the indirection symbol (@) in this line, the value of
NAME, rather than its address, would be loaded.

Line 24

Line 24 converts the 15-bit word pointer to NAME into a 16-bit pointer (byte pointer). The
system call we are about to do requires this action. The MOVZL 0,1 instruction moves ACO to
ACI, shifting left one bit to create the byte pointer. The notation => in the comment
indicates that ACI now contains the byte pointer to NAME.

Line 26
Line 26 (••. DO ASW) makes use of two features of the macroassembler. The .DO ASW
means that the assembler will assemble the following code only if the symbol ASW has a non
zero value. Thus, if we build the AOS version of the routine, the symbol ASW (AOS switch)
is a one, and the system assembles the following lines up to .ENDC . The •• on the line causes
the system to suppress the listing of this line.

Line 27
Line 27 is an AOS system call macro (?DIR). It causes the system to change the working
directory to the directory whose name is passed in ACI as the byte pointer.

Line 29
The .ENDC RSW in line 29 signals the end of the .DO condition in line 26. The symbol RSW
causes the system to skip assembly until it finds a bracketed RSW (line 32). This convention
(.DO, .ENDC label , and [label]) provides an IF-THEN-ELSE functionality for the
assembler. The code between .DO ASW is included in the AOS version only. The code
between .ENDC RSW and [RSW] (lines 30-31) is included in the RDOS version only.

Lines 30 and 31
Lines 30 and 31 cause the system to generate the RDOS .SYSTM .DIR system call for the
RDOS versions of this routine .. DIR in RDOS works like the ?DIR system call in AOS.

Lines 34 and 35
Lines 34 and 35 use the ISA.NORM and ISA.ERR macros to put either a one or an error code
into the ISA error variable. Because a system call skips the next sequential word if it is
successful, you want IER set to one if the next word is skipped by the system call. If the next
word is not skipped, an error has occurred and you want IER set to the appropriate error code.
The ISA.ERR macro invokes a routine at runtime to put the error code passed back from the
system call (in AOS) into IER . The ISA.NORM macro places a one into IER . Both
ISA.NORM and ISA.ERR cause the program to execute a return instruction at runtime which
returns control to the calling routine.

Line 38
Line 38 (END) is a "clean-up" macro which completes the assembly.

Notes
TITLE, DEFARGS, DEF, DEFTMPS and FEN TRY are defined in FMAC.SR.

5-10 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

Calling Other Routines
Your assembly language routines can call other FORTRAN 5 convention routines via the
FCALL macro. You supply the name of the routine to be called as an argument to FCALL,
as in the following example:

FCALL SUBR

The routine name (SUBR) is declared external by FCALL. FCALL invokes the AOS
resource manager via ?RCALL . FCALL is defined in F5SYM.SR.

About SlATTR
The macros S?ATTR, TITLE, DEFARGS, DEF, DEFTMPS, and FENTRY are the standard
means of setting up an assembly language subroutine for a FORTRAN 5 program. S?ATTR
is the only macro not mentioned in the example above. S?ATTR is a macro defined in
F5SYM.SR which signals that the routine you are writing is going to call another FORTRAN
5 routine. The calling sequence for S?ATTR is

S?ATTR FCALL

or

S?ATTR RCALL

A S?ATTR FCALL indicates that the routine will call another FORTRAN 5 routine. This
indication is necessary to reserve extra space for a bookkeeping area in the SAVE generated
by FENTRY . An S?ATTR RCALL indicates that the routine will use resource calls directly in
AOS and not via the FCALL macro. You must set the RCALL attribute to reserve two words
for the ?RCALL manager in the SAVE that FENTRY generates. You need not specify the
RCALL attribute if you use the S?ATTR FCALL . S?ATTR must appear after TITLE and
before DEFTMPS. S?ATTR is defined in F5SYM.SR.

Writing Routines That Have a Variable Number of
Arguments

You can write assembly language routines that have optional arguments. The A?CNT macro
enables you to count the number of arguments actually passed to a routine. The format of the
call is

A?CNT AC

where AC is 0 for ACO or 1 for ACI. The AC receives the count of the number of arguments
passed to the routine. Before you can call A?CNT , AC3 must contain the frame pointer, and
AC2 must contain the stack marker. This arrangement should exist immediately following
the SAVE performed by FENTRY .

Several additional macros for dealing with optional arguments are defined in SMARK.SR,
which is included in the .PS file.

093-000154 Licensed Material-Property of Data General Corporation 5-11

Initiating Tasks From Assembly Language
You can initiate tasks from assembly language by using FORTRAN 5 supplied macros. This
section describes several of these macros which are defined in F5SYM.SR.

SlTASK
S?T ASK initiates a task.

You can use the S?TASK macro to create either a FORTRAN 5 task or a non-FORTRAN 5
task. FORTRAN 5 tasks utilize resources that FORTRAN 5 manages, such as the runtime
stack. The calling sequence for S?T ASK is described below:

ACO

ACI

AC2

Error Return

Normal return

SlQTSK

Left Byte = Task ID
Right byte = Task Priority

Task start address

Partition size parameter

(error code in ACO)

(ACO, ACl, AC2 and Carry preserved, AC3 = Frame Pointer)

S?QTSK Requests delayed or periodic initiation of a task.

You can use S ?QTSK to invoke a queued task for execution at some future time. The
database the system requires for a queued task is an aggregate of length Q.LEN. It is called a
queue table. The queue table consists of an AOS ?T ASK packet followed by several words of
data for use by the FORTRAN 5 runtime environment routines. The offsets within the queue
table are defined in F5SYM.SR and have names beginning with "Q.". The format of the
S?QTSK macro invocation is:

AC2 Address of queue table of length Q.LEN

Error return Error code in ACO.

Normal return ACO, ACl, AC2, and carry preserved, (AC3 = Frame Pointer).

A1TASK

A?TASK initiates a task and passes information in a queue table rather than in the ACs.

The A?TASK macro gives you more control over the task initiation than that provided by
S?TASK.

Offset Q.MEM in the queue table, passed to S?QTSK or A ?TASK should contain a partition
size specifier.

The partition size specifier indicates whether or not you should allocate a partition for a task,
and if so, its size. All tasks which contain FORTRAN 5 compiled code must have a stack
partition. See Chapter 4 for a description of partition specifiers.

5-12 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

Accessing COMMON, STATIC, and Data-Initialized Storage
You can refer to a FORTRAN 5 named COMMON block with an external symbol (.EXTN
pseudo-op) using the name of the named COMMON block. You address all variables and
arrays in a common block relative to the start of the COMMON block.

Because FORTRAN 5 permits data initialization of unlabelled COMMON, do not allocate
unlabelled COMMON via the .COMM pseudo-op. FORTRAN 5 treats unlabelled
COMMON storage like labelled COMMON and gives it the block name ".BLAN". You can
access unlabelled COMMON by declaring an external reference (.EXTN pseudo-op) for
".BLAN".

The FORTRAN 5 compiler generates STATIC data and data-initialized storage as if it were
a named COMMON block. The name of this Static data block is formed from the first seven
characters of the routine name with a "." appended. Thus, the system would define the static
storage for a routine called ··SUBl" as ".ENT SUBl. ...

093-000154 Licensed Material-Property of Data General Corporation 5-13

RT.ERR
Use RT.ERR to invoke the error reporter to report an AOS error. AOS errors have
mnemonics that begin with the letters ER. Errors reported by RT.ERR cause the system to
terminate the program.

The two forms of calls to RT.ERR are

Call

RT.ERR

RT.ERR code

Action

Invoke the FORTRAN 5 error reporter. Code passed
in ACO. All errors are fatal.

Loads error code code into ACO, then invokes the
FORTRAN 5 error reporter. All errors are fatal.

The first form, without the argument, generates a single word of code that the program can
skip. The second form may not be skipped.

FS.ERR
Invoke FS.ERR to report FORTRAN 5 errors. FORTRAN 5 errors have mnemonics that
begin with F? or F .. Table 5-2 describes the information passed in ACO.

Table 5-1. ACO Format For F5.ERR

As with RPT.ERR, assume that the runtime environment preserves none of the ACs if
F5.ERR returns to your program. See Chapter 2 for a description of error classes
(transparent, recoverable, and fatal).

5-14 Licensed Material-Property of Data General Corporation 093-000154

10

o

o

To access FORTRAN 5 error codes, you must declare them with the assembler's .EXTN
pseudo-op because they are defined as external symbols. The mnemonics beginning with F?
include both the error code in bits 2-15 and a default value in the fatality field. The
mnemonics beginning with F. include the error code only.

You can find the FORTRAN 5 error code mnemonics in Appendix A. Each of the
FORTRAN 5 error codes listed in F5ERR.FR begin with the letters "FE". By appending the
remaining three letters of the name to either F? or F. , you get the names of the appropriate
error symbols.

For example, the FORTRAN 5 error, "Illegal Input Number" is given the name "FEINM"
in F5ERR.FR. The symbol for '~Illegal Input Number" that contains both the code and a
default fatality field is F?INM. The code alone, without the fatality field, is represented by
the symbol F.INM.

If you invoke the F5.ERR with an F. symbol instead of an F? symbol, you indicate that you
don't care about the severity of the generated error because fatality field of an F. symbol is
zero.

Do not try to report any errors except FORTRAN 5 errors using F5.ERR. If you do, the
results are unpredictable; the error reported tries to interpret the 16-bit code as a 2-bit
fatality field and a 14-bit FORTRAN 5 error code.

The two types of F5.ERR invocations are

Call

F5.ERR

F5.ERR code

Meaning

Invoke the FORTRAN 5 error reporter. ACO has
previously been loaded with a FORTRAN 5 F? error
code.

Load the FORTRAN 5 error code code into ACO and
. invoke the FORTRAN 5 error reporter. The F5.ERR

macro declares code as external.

The first form of the call, without arguments, is guaranteed to generate a single word that the
program can skip over.

Calling FORTRAN 5 Built-in and Math Routines
You can call the routine entry points for the FORTRAN 5 built-in routines in Appendix F
through the use of the BCALL macro. The calling sequence for these routines is also
described in Appendix F.

The naming conventions and calling sequences for mathematic built-in functions is described
in Appendix F.

093-000154 Licensed Material-Property of Date General Corporation 5-15

.FIOPREPand .IUNIT
With the routin~s .FIOPREP and JUNIT ,you can perform I/O using FORTRAN unit
numbers. Both routines convert a FORTRAN unit number into an AOS channel number .
. IUNIT also attempts to open the unit if a preconnectionfor that unit exists. You must declare
.FIOPREP and JUNIT external with the assembler's .EXTD pseudo-op .

. IUNIT (COMMON)

Converts a unit number to an operating system channel number, and performs a
pre-connected open if necessary.

Input:

Called:

Output:

ACO = FORTRAN 5 unit number

JSR @.IUNIT

AC2 = operating system channel number
AC3 = frame pointer
ACO, ACl unchanged
Carry may be destroyed.

Any errors detected are fatal.

.FIOPREP

Obtains an AOS channel number corresponding to a FORTRAN 5 unit number.

Input:

Called:

ACl = FORTRAN 5 unit number

JSR @.FIOPREP
error return
good return

Good Return Output: ACl = FORTRAN 5 unit number
AC2 = AOS channel number

Error Return Output:

AC3 = frame pointer .
ACO and carry are unchanged.

ACO = error code
Other ACs destroyed

.FIOPREP skips the instruction after the JSR if no error occurs.

End of Chapter

5-16 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

Chapter 6
About the Runtime Routines

A FORTRAN 5 runtime routine is either an assembly language function or subroutine. You
call a runtime routine in a source program and it is executed at runtime. Runtime routines
have been previously assembled and are combined with the object program when you link
your program with the F5LD command. You call a runtime routine the same way you call
your own subroutines.

FORTRAN 5 provides several libraries of runtime routines which we detail in the following
chapters. You can call these routines or write your own additional runtime routines. For
information on how to write your own routines, see Chapter 3, "Runtime Environment
Fundamentals," and Chapter 5, "FORTRAN 5 Assembly Language Interface."

You also have direct access to many of the AOS assembly language system calls through a set
of runtime library routines called QCALLS. These FORTRAN 5 subroutines permit you to
make use of operating system functions previously available only through assembly language.
Because the QCALL routines interface directly with AOS, they are very efficient. This
means increased execution speed for your programs. Programs which use the QCALLs will
run under AOS and AOS/VS. For additional information on the QCALLs, see the
FORTRAN QCALLS Reference Manual (093-000239).

We group the runtime routines into chapters by the functions they perform. Where
appropriate, an introduction precedes the routines' descriptions. We also direct you to
supplementary references and appendixes when necessary. Each chapter begins with an
alphabetical listing of the calls and ends with a page long example of the routines used in the
chapter.

We refer to the format you use to call the routine as the calling sequence. The calling
sequence specifies the order in which you must enter the arguments.

We will now explain the format of the runtime routine chapters.

Arguments
An argument is either a source or destination of data that the runtime routine uses. The value
of an argument can mean several things to the routine:

• It can indicate what actions the routine should perform.
• It can provide the data with which to perform these actions .
• It can tell the routine to return information about other arguments in the same call.
• It can also provide data and tell the routine to return information about other arguments in

the same call.

There are two classes of arguments: typed arguments and non-specific aggregates. You must
pass to the subroutine the class of argument the subroutine expects.

Typed Arguments
A typed argument is always a variable of a certain FORTRAN data type. The data types you
use most frequently with FORTRAN 5 runtime routines are integers and real numbers. We
indicate that a routine must have a specific data type when the routine expects one. (The
FORTRAN 5 Reference Manual describes FORTRAN data types more fully.)

093-000154 Licensed Material-Property of Data General Corporation 6-1

Aggregates
An argument of no specified data type is an aggregate. You use an aggregate in a situation
where the runtime routine doesn't care what data type it receives. A runtime routine treats an
aggregate merely as a sequence of contiguous words or bytes.

When a runtime routine returns information in an aggregate, you must provide an aggregate
large enough to contain all returned data. We indicate the size of the aggregate the routine
expects in the routine's description.

If we specify that you must provide a string of ASCII characters in an aggregate, you must
ensure that a null (0) byte terminates the string.

If you specify a quoted string as an aggregate argument input value, the FORTRAN 5
compiler ensures the string is terminated by a null. For example, if you call the DFILW
runtime routine to delete a file, you pass the name ofthe file to be deleted as either

CALL DFILW (file-to-be-deleted,IERRCODE)

or

CALL DFILW (namearray,IERRCODE)

In the first case, the runtime environment deletes the file file-to-be-deleted . The
FORTRAN 5 compiler ensures that the string file-to-be-deleted is terminated by a null (0)
byte.

In the second case, you have previously placed the ASCII characters of the file name into the
array namearray . You must ensure that a null (0) byte terminates the file name in
namearray.

IER
The last argument for many of the routines is IER . IER is an integer status variable that
receives a numeric status code. The ISA (Instrument Society of America) defines these codes
as follows:

Code

Negative or 0
1
2
3 and up

Value

undefined
No error, successful completion
Currently unused
An error occurred. Look up the (decimal) error code in F5ERR.FR (see
Appendix A).

You can incorporate the file, F5ERR.FR, into your program with the INCLUDE statement.

Do not omit IER from an argument list, if it is specified. If you do, the results will be
unpredictable. You need not use the status variable IER . You can use any integer variable
name to receive the error code.

Error Conditions
We list possible error conditions for each runtime routine. We also refer you to an appendix
of error conditions when this is appropriate.

The routines can receive exceptional condition codes from some system and task calls. We list
these codes by category under the error conditions section, when applicable. For example,
when you create a directory with CDIR , the error codes that may occur are File System
codes. Appendix B describes each of these codes in detail.

For details on FORTRAN 5's error handling, see Chapter 2, "Error Handling."

6-2 Licensed Material-Property 01 Data General Corporation 093-000154

o

o

o

Examples
We use each routine and its arguments in a FORTRAN 5 situation. If a routine has no
arguments, we may omit the example.

Notes and Rules
"Notes" contains information about a routine's purpose, and any aliases for the routine's
n.ame.

"Rules" is a section reserved for items essential to calling the routine.

References
In the "Reference" section, we may name one or more system calls. The AOS system calls
have names beginning with a question mark; for example ?READ . The description of these
calls in the AOS Programmer's Manual (093-000120) help describe the specifics of the
routine's functionality.

Coding Example
At the end of each runtime routine chapter is a sample program that uses one or more of the
runtime routines in that cha,pter. Because this example is a complete program, you may find
it more comprehensive tlm the example given with the individual runtime routine
descriptions.

Intrinsic Functions
The FORTRAN 5 mathematical functions are described in the FORTRAN 5 Reference
Manual.

End of Chapter

093-000154 Licensed Material-Property 01 Data General Corporation 6-3

o

o

o

o

Chapter 7
Checking for Arithmetic Errors

You can substitute the routines in this chapter for the floating point trap mechanism when
you want an explicit check for floating point errors. The floating point trap mechanism
provides only a passive check. See Chapter 2, "Error Handling," for an explanation of the
floating point trap mechanism and the types of errors the ECLIPSE floating point unit
generates.

DVDCHK

OVERFL

DVDCHK

The Routines In This Chapter
Checks for a prior floating point division-by-zero

Checks for a prior floating point underflow or
overflow.

Checks for a prior floating point division-by-zero.

Format
CALL DVDCHK (code)

Argument

code an integer variable that receives one of the following:

if division-by-zero occurred.

2 if division-by-zero did not occur.

Error Conditions
No error conditions are currently defined.

Notes
Each call to DVDCHK resets the division-by-zero status bit in the floating point status
register. Thus, every call to DVDCHK reports on division-by-zero occurrences since the
previous call to DVDCHK , or since the start of the program for the first call.

Example

C
CALL DVDCHK(lCODE)
BRANCH IF DIVIDE-BY-ZERO OCCURRED
IF (ICODE.EQ.1) GO TO 99

093-000154 LicensedMaterial-Property of Data General Corporation 7-1

OVERFL
Checks for a prior floating point underflow or overflow.

Format
CALL OVERFL (code)

Argument
code an integer variable that receives one of the following:

If overflow occurred.

2 If neither overflow nor underflow occurred.

3 If underflow occurred, but overflow did not.

If both overflow and underflow occurred, the routine signals overflow
(code 1).

Error Conditions
No error conditions are currently defined.

Notes
Each call to OVERFL resets the overflow and underflow status bit in the floating point status
register. Thus, every call to OVERFL reports on overflow-underflow occurrences since the
previous call to OVERFL , or since the start of the program for the first call.

Example
CALL OVERFL(J)

C BRANCH IF OVERFLOW OR UNDERFLOW OCCURRED
IF (J.NE.2) GO TO 80

7-2 Licensed Malerial-Properly of Dala General Corporalion 093-000154

o Coding Example

o

End of Chapter

o
093-000154 Licensed Material-ProperlY of Date General Corporation 7-3

o

o

o

o

o

o

Chapter 8
Performing Logical Operations with

Integers and Words

Each runtime routine in this chapter permits access to and manipulation of the bits of integer
variables. The routines treat integers as unsigned 16-bit aggregates. With the exception of
ISET and IClR , each routine is a function that returns an integer value to the routine that
invoked it.

The functions lAND , lOR , IXOR and NOT perform the logical operations AND, inclusive
OR,exclusive OR, and complement, respectively. They perform these functions on a
bit-by-bit basis between two integers. The function NOT performs the logical complement on
each bit of an integer.

Table 8-1 summarizes the values returned in a given bit of the function result for each pair of
corresponding bits in the two arguments.

Table 8-1. Values Returned for Argument Bits

For more information on logical operations see the FORTRAN 5 Reference Manual.

The bit numbering scheme in the runtime routines IClR, ISET, and ITEST is as follows:

o for the least significant bit (rightmost)

15 for the most significant bit (leftmost)

The Instrument Society of America (ISA) mandates this scheme.

093-000154 Licensed Material-Property of Date General Corporation 8-1

lAND

IClR

lOR

ISET

ISHIFT

ITEST

IXOR

NOT

lAND

The Routines in This Chapter
Produces the bit-by-bit logical AND of two integers.

Sets a bit in a word to o.

Produces the bit-by-bit logical inclusive OR of two integers.

Sets a bit in a word to 1.

Shifts the bits in an integer.

Tests a bit in a word for 1 or o.

Produces the bit-by-bit logical exclusive OR of two integers.

Produces the bit-by-bit logical complement of an integer.

Produces the bit-by-bit logical AND of two integers.

Format
lAND (int 1, int2)

Arguments
int1

int2

the first integer operand.

the second integer operand.

Error Conditions
No error conditions are currently defined.

Examples
Example 1.

I = IAND(I,J)

Example 2.

C CHECK FOR A ZERO RIGHT BYTE
IF (lAND(J,377K) .EQ.O) GO TO 50

8-2 Licensed Msterlal-Property of Data General Corporation

o

o
093-000154

o

o

o

lelK
Sets a bit in a word to o.

Format
CAll IClR (word,bit)

Arguments
word a one-word aggregate that contains the bit you want to clear (set to 0).

bit an integer that specifies the position of the bit you want to clear; bits are
numbered from 0, the rightmost, to 15, the leftmost.

Error Conditions
No error conditions are currently defined.

Notes
If you issue a call to IClR with a bit that is outside the legal range, then the routine does not
perform the operation. In this case, you do not receive an error status code or error message.

Example
C SET BIT 3 OF K TO ZERO

CAll IClR(K,3)

093-000154 Licensed Material-Property of Data General Corporation 8-3

lOR
Produces the bit-by-bit logical inclusive OR of two integers.

Format
lOR (int 1, int2)

Arguments
int1 the first integer operand.

int2 the second integer operand.

Error Conditions
No error conditions are currently defined.

Examples
Example 1.

C ASSIGNS TO K THE BIT-WISE LOGICAL
C OR OF J AND IDEF

K = IOR(J,IDEF)

Example 2.

C COMPARES THE LOGICAL OR OF M
C AND J TO ZERO

IF (lOR(M,J) .NE.1) GO TO 100

8-4 Licensed Material-Property of Data General Corporation 093-000154

o

ISET
Sets a bit in a word to 1.

Format
CALL ISET (word,bit)

Arguments
word a one-word aggregate that contains the word whose bit you want to set.

bit an integer that specifies the position of the bit you want set to one; bits
are numbered from 0, the rightmost, to 15, the leftmost.

Error Conditions
No error conditions are currently defined.

Notes
If you issue a call to ISET with a bit that is outside the legal range, then the operation is not
performed. You do not receive an error message.

Example
CALL ISET(1,3)

093-000154 Licensed Malerial-Properly of Dala General Corporation 8-5

ISHIFT
Shifts the bits in an integer.

Format
ISHIFT (integer,count)

Arguments
integer the integer you want to shift.

count an integer that specifies the number and the direction of the bits you want
to shift.

Error Conditions
No error conditions are currently defined.

Notes
If count is an integer n , the system responds in these ways when n has the following values:

n=O no shift

n>O shift left n bits, bringing in zeros from the right (logical shift).

n<O shift right n bits, bringing in bits from the left that were shifted out of the right
(circular shift).

To perform a right logical shift, use (15-n) for n . n can be greater than 15; the effect is the
same as moden, 15) .

Alias is ISHFT

Examples
Example 1.

C ASSIGN TO INEW THE VALUE OF IOLD
C SHIFTED RIGHT 5 BITS

INEW = ISHFT(lOLD,-5)

Example 2.

C CHECK FOR A NULL LEFT BYTE
IF (lSHIFT(J,-8) .EO.O) GO TO 60

8~6 Licensed Material-Property of Date General Corporation 093-000154

o

o

o

o

o

ITEST
Tests a bit in a word for 1 or O.

Format
ITEST (word,bit)

Arguments
word the integer you want to test.

bit an integer that specifies the position of the bit you want to test (bits are
numbered from 0, the rightmost, to 15, the leftmost).

Error Conditions
No error conditions are currently defined.

Notes
This function returns a 1 if the specified bit is set, and a zero if the bit is cleared.

If you issue a call to ITEST with a bit that is outside the legal range, you receive the result
associated with the rightmost bit (bit 0).

If you declare ITEST as LOGICAL, you receive these results:

.TRUE.

.FALSE.

Examples
Example 1.

if the bit is set (1)

if the bit is clear (0)

C , CHECKS THE K'TH BIT OF I FOR 1 OR 0
J = ITEST(I,K)

Example 2.

LOGICAL ITEST

C PASS CONTROL TO STMNT LBL 70
C IF BIT 3 OF J IS SET

IF (ITEST(J,3» GO TO 70

093-000154 Licensed Material-Property of Data General Corporation 8-7

IXOR
Produces the bit-by-bit logical exclusive OR of two integers.

Format
IXOR (int 1 ,int2)

Arguments
int 1

int2

the first integer operand.

the second integer operand.

Error Conditions
No error conditions are currently defined.

Notes
Alias is IEOR .

Examples
Example 1.

10THREE = IXOR(lONE,ITWO)

Example 2.

C CHECK TO SEE IF ALL BITS OF I AND J DIFFER
IF (IXOR(I,J) .EQ.1) GO TO 200

8-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

NOT
Produces the bit-by-bit logical complement of an integer.

Format
NOT (integer)

Argument

integer the integer you want to complement,

Error Conditions
No error conditions are currently defined.

Examples
Example 1.

ICAN = NOT(IMAY)

Example 2.

C CHECK FOR ALL 1 BITS IN J
IF (NOT(J) .EQ.O) GO TO 40

093-000154 Licensed Material-PrQperty 01 Data General Corporation 8-9

Coding Example

o

8-10 Licensed Material·Property of Data General Corporation 093·000154

o
End of Chapter

o
093-000154 Licensed Material-Property of Date General Corporation 8-11

o

o

o

Chapter 9
Managing Logical Disks and

Directories

For the routines in this chapter, you will need to specify the size of aggregates containing
pathnames and logical disk names. We define size. parameters in QSYM.FR to assist you in
doing this: the symbol QMXL gives the maximum path name length in bytes.

The Routines In This Chapter

CDIR Creates a directory.

CPART Creates a control point directory.

DIR Changes the working directory.

GDIR Obtains the current working directory name.

INIT Initializes a logical disk.

RELEASE Releases a logical disk.

093-000154 Licensed Material-Property of D.ata General Corporation 9-1

CDIR
Creates a directory.

Format
CALL COIR (directory name,IER)

Arguments
directory name an aggregate that contains the pathname of the directory you want to

create.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.

Example
CALL COIR ("NEWOIR" ,IER)
CALL CHECK (lER)

Reference
?CREATE (System call)

9-2 lIcenaed Material-ProperlY of Date General Corporation 093-000154

o

o

o

o

o

CPARY
Creates a control point directory.

Format
CALL CPART (CPO name,size,IER)

Arguments

CPO name an aggregate that contains the pathname of the control point directory
you want to create.

size an integer that contains the maximum number of 256-word disk blocks
you want to allocate to the control point directory.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER are

File System codes.

Example
C CREATE CPO HAVING A MAXIMUM
C SIZE OF 80 BLOCKS

CALL CPART ("NEWCPO",80,IER)
CALL CHECK (lER)

Reference
?CREATE (System call)

093-000154 Licensed Material-Property of Data General Corporation 9-3

DIR
Changes the working directory.

Format
CALL DIR (directory name,IER)

Arguments
directory. name an aggregate that contains the name of the new working directory.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.

Example
C MAKE USMAN THE WORKING DIRECTORY

CALL DIR ("USMAN",IER)
CALL CHECK (lER)

Reference
?DIR (System call)

9-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

GDIR
Obtains the working directory name.

Format
CALL GDIR (directory name,IER)

Arguments
directory name an aggregate that receives the working directory name.

IER an integer variable that receives the routine's completion status code.

Error Conditions
Error codes that may return in IER are

File System codes.

Example
INTEGER CURDIR(6)

CALL GDIR (CURDIR,IER)
CALL CHECK (IER)

Reference
?GNAME (System call)

093-000154 licensed Materlal"PrOpertY of Daia General Corporation 9-5

INIT
Initializes a logical disk.

Format
CALL INIT (LD name,IER)

Arguments
LD name an aggregate that contains the name of a logical disk device.

IER an integer variable that receives the routine's completion status code.

!
Error Conditions
The error codes that may return in IER are

File System codes.
Initialization and Release codes.

Notes
An initialized logical disk remains initialized until you release it by calling RELEASE.

Example
CALL INIT ("2DPF2 ",IER)
CALL CHECK (IER)

Reference
?INIT (System Call)

9-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

0,'
"

o

o

RELEASE
Releases a logical disk.

Format
CALL RELEASE (LD name,IER)

Arguments
LD name an aggregate that contains the name of a logical disk.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return IER are

File System codes.
Initialization and Release codes.

Notes
Alias is RLSE .

Example
CALL RELEASE ("PAYROLL",IER)
CALL CHECK (lER)

Reference
?RELEASE (System call)

093-000154 Licensed Material-Property 01 Date General Corporation 9-7

Coding Exam pie

o

End of Chapter

o
9-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

Chapter 10
Maintaining Files

For the routines in this chapter, you must specify the size of pathnames. QSYM.FY defines
size parameters to assist you in doing this: the symbol QMXPL gives the maximum pathname
length in bytes.

The Routines In This Chapter

CFILW Creates a disk file.

CHSTS Obtains the current directory status for an opened unit.

DFIL W Deletes an unopened disk file.

FDELETE Deletes an unopened disk file.

FRENAME Renames an unopened disk file.

LINK Creates a link entry in the current directory.

RENAME Renames an unopened disk file.

UNLINK Deletes a link entry.

093-000154 Licensed Material-Property of Data General Corporation

CFILW
Creates a disk file.

Format
CALL CFILW (pathname,file type, [size,} IER)

Arguments
path name an aggregate that contains the pathname of the disk file you want to

create.

file type an integer with either of these two values which indicate the following:

2 noncontiguous file

3 contiguous file

size an integer that specifies the number of 256-word disk. blocks you want to
allocate. This argument is meaningful only for contiguous files; it is
ignored for noncontiguous files.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.

Notes
Alias is CFIL .

Example
CALL CFILW ("FILNM.DC",2,IER)
CALL CHECK (lER)

Reference
?CREATE (System call)

10-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

CHSTS
Obtains the status for an opened unit.

Format
CALL CHSTS (unit number,status,IER)

Arguments
unit number an integer that specifies the FORTRAN S unit number.

status an aggregate that receives QSLTH words of channel status information.

IER an integer variable that receives the routine's completion status code.

Rules
You must have read access to the parent directory of the file when you call CHSTS.

Error Conditions
The error codes that may return in IER are

File System codes.

Notes
FSSYM.FR contains the current value of QSLTH.

For a description of the returned information, see the description of the ?FSTAT call in the
AOS Programmer's Reference Manual.

Example
INTEGER 1ST AT(22)

CALL CHSTS (3,ISTAT,IER)
CALL CHECK (lER)

Reference
?FSTAT (System call)

093-000154 Licensed Material-Properly of Data General Corporation 10-3

DFILW
Deletes an unopened disk file.

Format
CALL DFILW (pathname,IER)

Arguments
path name an aggregate that contains the pathname of the file you want to delete.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER are

File System ..(!lodes.

Notes
Use DFILW rather than FDELETE if you do not want an error condition to cause program
termination.

Alias is DFIL .

Example
CALL DFILW ("TEST.PR",IER)

Reference
?DELETE (System call)

10-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

FDELETE
Deletes an unopened disk file.

Format
CALL FDELETE (path name)

Argument
pathname an aggregate that contains the pathname.

Error Conditions
The error conditions that may result are

File System codes.

Notes
The error conditions that may result from using FDELETE cause program termination. Use
DFILW rather than FDELETE if you don't want program termination.

Example
CALL FDELETE ("TEST.PR")

- Reference
?DELETE (System call)

093-000154 Licensed Malerial-Property of Data General Corporation 10-5

FRENAME
Renames a file.

Format
CALL FRENAME (old pathname,new filename)

Arguments
old pathname an aggregate that contains the current path name to the disk file you want

to rename.

new filename an aggregate that contains the new filename of the disk file.

Rules
new filename must be a simple filename, not a pathname.

Error Conditions
The error conditions that may result are

File System codes.

Notes
The error conditions that may result from using FRENAME cause program termination. Use
RENAME if you don't want an error to terminate the program.

Example
CALL FRENAME (":UDD:DOC:DC","CHAP4.DC")

10-6 Licensed Material-Property of Data General Corporation 093-000154

' .
0·' .. ·

o

o

LINK
Creates a link entry.

Format
CALL LINK (pathname 1 ,pathname2,IER)

Arguments
pathname1 an aggregate that contains the pathname of the link entry you want to

create .

pathname2 . an aggregate that contains the pathname of the file onto which you want
to link.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.

Notes
If the last filename in pathname2 is a link, then the system will not resolve the link.

Example
CALL LINK ("PROG 1.PR", "PROG2.PR" ,IER)
CALL CHECK (lER)

Reference
?CREATE (System Call)

093-000154 Licensed Malerial-Property of Dale General Corporation 10-7

RENAME
Renames a file.

Format
CALL RENAME (old pathname,new filename,IER)

Arguments
old path name

new filename

an aggregate that contains the new pathname of the disk file.

an aggregate that contains the new filename of the disk file.

IER an integer variable that receives the routine's completion status code.

Rules
new filename must be a simple filename, not a pathname.

Error Conditions
The error codes that may return in lEA. are

File System codes.

Example
CALL RENAME (":UDD:DOC:DC", "CHAP4.DC" ,IER)
CALL CHECK (IER)

Reference
?RENAME (System call)

10-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

o

UNLINK
Deletes a link entry •

Format
CALL UNLINK (pathname,IER)

Arguments
pathname an aggregate that contains thepathname of the link entry you want to

delete.

IER an integer variable that receives the routine's completion status code.

Error Conditi()ns
The error codes that may return in IER are

EROIO Attempt to delete a directory containing entries of one or more inferior
directories.

ERDIU Attempt to delete the working directory.

ERIFT Attempt to delete a permanent file.

File System codes

Example
CALL UNLINK ("PROG 1.PR" ,IER)
CALL CHECK (IER)

Reference
?DELETE (System call)

093-000154 licensed Material-Properly of Data General Corporation 10-9

Coding Example

o

o
End of Chapter

10-10 Licensed Material-Property of Date General Corporation 093-000154

Chapter 11
File Input/Output

Several options are available to open, close, read or write files.

Opening Files
You must associate a FORTRAN 5 unit number with a file by opening it in order to read or
write to it. You can open a file by calling one of the following runtime routines: OPEN,
FOPEN, or APPEND. The OPEN statement in FORTRAN 5 also opens a file. (See Appendix
E, "FORTRAN 5 Language Statements".)

Files opened with these routines do not respond to ANSI carriage control characters in the
first character of output lines. To use ANSI carriage control, you must either use the OPEN
statement with ATT="P" or the preconnected opening. (See the FORTRAN 5 Reference
Manual and Chapter 2 of this manual for more information on the preconnected opening.)

Closing Files
You disassociate a FORTRAN 5 unit number from a file by closing the file. Close a file by
calling the runtime routines CLOSE or FCLOSE . The RESET routine closes all open files.
You can also use the CLOSE statement in FORTRAN 5 to close the file. (See Appendix D,
"FORTRAN 5 Language Statements".)

Reading and Writing Files
After you open a file, you can read from and write to it. There are four modes in which you
can read and write files. The FORTRAN 5 runtime libraries provide you with runtime
routine calls that correspond to these modes. See Table 11-1.

Table 11-1. Read and Write Modes

For more information on I/O in AOS, refer to the AOS Programmer's Manual
(093-000120).

093-000154 Licensed Material-Property of Data General Corporation 11-1

APPEND

BACKSPACE

CHRST

CHSAV

CLOSE

FCLOSE

FOPEN

FSEEK

OPEN

RDBLK

RDLIN

RDSEO

READRW

RESET

REWIND

WRBLK

WRITRW

WRLlN

WRSEO

11-2

The Routines In This Chapter
Opens a file for appended output.

Backspaces a file to the previous logical record.

Restores the position of a file saved by CHSAV.

Saves the program's current position within a file.

Closes a file.

Closes a file.

Opens a file.

Positions a file to a given logical record.

Opensa file.

Reads a series of 256-word blocks from a file.

Reads a line from a file.

Reads a series of bytes from a file.

Reads a series of logical records from a file.

Closes all open files.

Positions a file at its beginning.

Writes a series of 256-word blocks to a file.

Writes a series of logical records to a file.

Writes a line to a file.

Writes a series of bytes to a file.

Licensed Material-Property of Data General Corporation

o

o
093-000154

o

o

o

APPEND
Opens a file for appended output.

Format
CALL APPEND (unit number,pathname,mode, [recordsize,j IER)

Arguments
unit number

pathname

mode

record size

IER

an integer that specifies the FORTRAN 5 unit number of the file you
open.

an aggregate that contains the name of the file.

is unconditionally ignored. It is included to make the argument list
identical to that of the OPEN routine.

an integer that specifies the size of a record in bytes.

an integer variable that receives the, routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call Codes.
Channel-Related codes.

Notes
APPEND positions you at the end of a file. Any WRITING occurs after the existing data in
the file.

The call to APPEND is identical to the call to OPENexcept

• APPEND allows you to open and extend a file that already exists .

• The system ignores the mode argument in the call to APPEND because you open the file
specifically for appending.

Example

CALL APPEND(13, "LOGFL" ,IDUMMY ,IER)
CALL CHECK(lER)

Reference
?OPEN (System call)

093-000154 Licensed Material-Property of Data General Corporation 11-3

BACKSPACE
Backspaces a file to the previous record.

Format
CALL BACKSPACE (unit number)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you want

backspaced.

Rules
You must have specified a record length fot a file to backspace it.

Error Conditions
The error conditions that may result are

File System codes.

Notes
Alias is FBCKSP .

Example
CALL BACKSPACE(3)

Reference
?SPOS (System call)

11-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

CHRST
Restores the position of a file saved by CHSA V.

Format
CALL CHRST (unit number,position)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number.

position a.2-word aggregate that contains the 32-bit position of the file when
saved by a call to CHSAV .

Error Conditions
The error conditions that may result are

File System codes.

Notes
You can use CHRST to set a file position to a user specified 32-bit file position; you need not
call CHSAV before calling CHRST .

Example
INTEGER POSTN (2)

CALL CHRST (2,POSTN)

Reference
?SPOS (System call)

093-000154 Licensed Malerial-Properly of Dala General Corporation 11-5

CHSAV
Saves the program's current position within a file.

Format
CALL CHSAV (unit number, position)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number.

position a 2-word aggregate that receives the current position of the specific file.

Error Conditions
The error conditions that may result are

File System codes.

Example
INTEGER POSTN(2)

CALL CHSAV(2,POSTN)

Reference
?GPOS (System call)

11-6 Licensed Materlai-Property of Data General Corporation 093-000154

o

o

o

o

o

o

CLOSE
Closes a file.

Format
qALL CLOSE (unit number,IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want closed.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
You can prepare this file for printing (ATT = "P") when you open it with the FORTRAN 5
OPEN statement. If you do, FORTRAN 5 appends a NEW LINE and a carriage return to
the last line of the file before closing it.

Example
CALL CLOSE(7,IER)

Reference
?CLOSE (System call)

093-000154 Licensed Material-Property of Data General Corporation 11-7

FCLOSE
Closes a file.

Format
CALL FCLOSE (unit number)

Argument
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want closed.

Error Conditions
The error conditions that may result are

File System codes.
System Call codes.
Channel-Related codes.

Notes
You can prepare this file for printing (ATT="P") when you open it with the FORTRAN 5
OPEN statement. If you do, FORTRAN 5 appends a NEW LINE and a carriage return to
the last line of the file before closing it.

Call CLOSE if you don't want a fatal error to terminate program execution.

Example
CALL FCLOSE (2)

Reference
?CLOSE (System call)

11-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

10

o

FOPEN
Opens a file.

Format
CALL FOPEN (unit number,pathname)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want opened.

pathname an aggregate that contains the name of the file.

Error Conditions
The error conditions that may result are

File System codes.
System Call codes.
Channel-Related codes.

Notes
If the named file doesn't exist, then the system creates it.

Example
CALL FOPEN (6, "INPUT")

Reference
?OPEN (System call)

093-000154 Licensed Material-Property of Data General Corporation 11-9

FSEEK
Positions a file to a given logical record.

Format
CALL FSEEK (unit number,record number)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want positioned.

record number an integer that specifies the FORTRAN 5 unit number where you want
the system to position you.

Rules
You must specify a record length when you open the file if you use FSEEK for that file.

Error Conditions
The error conditions that may result are

File System codes.
System Call codes.
Channel-Related codes.

Notes
Record numbering begins with record 1. You must open the file before you can position it
with FSEEK.

Example
C POSITIONS UNIT 6 BEFORE
C RECORD # IREC .

CALL FSEEK (6,IREC)

11-10 Licensed Malerial-ProperlY. of Data General Corporation 093-000154

o

o

o

o

o

OPEN
Opens a file.

Format
CALL OPEN (unit number,pathname,mode, /record size,] IER)

Arguments
unit number an integer that . specifies the FORTRAN 5 unit number of the file you

want to open. .

pathname an aggregate that contains the name of the file.

mode an integer with one of the following values:

o append
1 read only
2 shared read and write access
3 exclusive read and write access
4 exclusive read and write access

record size an integer that specifies the size of a record in bytes

IER an integer variable that receives the routine's completion status code

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
If you OPEN a file in exclusive mode, no other user can access that file.

If the file does not exist, the system will not create it. However, the system will return the
error code ERFDE (file name does not exist). You can then call CFIL to create the file, or use
the FORTRAN 5 OPEN statement without an ERR= option to create the file.

Examples
Example 1.

C OPEN FOR READING ONLY
CALL OPEN (6, "MYFILE", 1 ,IER)
CALL CHECK(lER)

Example 2.

C OPEN FOR APPENDING WITH
C 20-BYTE RECORDS

CALL OPEN (13,"OUTPUT",O,20,IER)
CALL CHECK(IER)

Reference
?OPEN (System call)

093-000154 Licensed Mater.ial-ProperlY of Data General Corporation 11-11

RDBLK
Reads a series of 256-word blocks from a file.

Format
CALL RDBLK (unit number,starting block,data arraY,count, [returned count.] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want to read.

starting block an integer that specifies the block at which to start reading (the first
block is numbered 0).

data array an aggregate that receives the data read.

count an integer that specifies the total number of 256-word blocks you want to
read.

returned count an integer variable that receives the total number of blocks successfully
read only when an end-of-file condition is set. Otherwise this argument is
not set.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Example
INTEGER RDARAY (1024)

OPEN 7,"DATA"

C READ BLOCKS #5 THRU #8 INTO RDARA Y
CALL RDBLK (7,5,RDARAy,4,IER)
CALL CHECK (lER)

Reference
?READ (System call)

11-12 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

ROLIN
Reads a line from a file.

Format
CALL ROLIN (unit number,data array, [returned count,] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number from which you

want to read data.

data array an aggregate that receives the line read.

returned count an integer variable that receives the number of bytes read (including the
termina tor).

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
You should generally make data array 136 bytes long to accommodate the longest possible
line unless you specify a different record length when you open the file.

ROLIN reads characters up to a data sensitive delimiter. These delimiters are NEW LINE,
Form Feed, Carriage Return, and Null.

Using ROLIN to read from a terminal causes typed characters to echo on your terminal.
ROSEQ does not echo typed characters.

Example
INTEGER ARA YO (69)

CALL ROLIN (5,ARA YO,ICNT,IER)
C SIGNAL ANY ERROR

CALL CHECK (lER)
C BRANCH IF TERMINATOR IS THE ONLY
C CHARACTER

IF (lCNT .EQ.1) GO TO 15

Reference
?REAO (System call)

093-000154 Licensed Material-Property of Data General Corporation 11-13

RDSEQ
Reads a sequence of bytes from a file.

Format
CALL RDSEQ (unit number,data arraY,count, [returned count,] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number from which you

want to read data.

data array an aggregate that receives the data read.

count an integer that specifies the number of bytes you want to read.

returned count an integer variable that receives the partial read count in bytes only when
the system encounters an end-of-file condition. Otherwise this argument
is not set.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
RDSEQ does not echo characters read from terminals.

Example
INTEGER AREA20(20)

CALL RDSEQ (FILNBR,AREA20, 120,ICNT,IER)
CALL CHECK

Reference
?READ (System call)

11-14 Licensed Material-Property of Data General Corporation 093-000154

READRW
Reads a series of logical records from a file.

Format
CALL READRW (unit number,starting record,data arraY,count, [returned count.] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number from which you

want to read data.

starting record an integer that specifies the number of the first record you want to read
(the first record of a FORTRAN 5 file is numbered 1).

data array

count

returned count

an aggregate that receives the records that AOS reads.

an integer that specifies the number of records you want to read.

an integer variable that receives the number of bytes in a record that are
read only when the system encounters an end-of-file condition (otherwise
this argument is not set).

IER an integer variable that receives the routine's completion status code.

Rules
Before calling READRW , you must have specified the record length for this file when you
opened it.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
Aliases are READR and RDRW .

Example
INTEGER PDQARY (400)

C FOUR-WORD RECORDS
OPEN 14,"INPUTDATA",LEN=8

C READ RECORDS 100 TO 104
CALL READRW (14,100,PDQARY,5,ICNT,IER)
CALL CHECK (lER)

Reference
?READ (System call)

093-000154 Licensed Malerial-Properly of Dala General Corporation 11-15

RESET
Closes all open files.

Format
CALL RESET

Arguments
None

Error Conditions
The error conditions that may result are

File System codes.
System Call codes.
Channel-Related codes.

Notes
When you call this routine in a multitask environment, invoke the SINGLETASK routine first.
This disables task rescheduling to insure that no I/O is in progress during the call.
Afterwards, reinstate the multitask environment with a call to MUL TITASK .

Reference
?CLOSE (System call)

11-16 Licensed Material-ProperlY of Data General CorporatIOn 093-000154

0·'" .'

o

a

o

)

REWIND
Positions a file at its beginning.

Format
CALL REWIND (unit number)

Argument
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want to rewind.

Error Conditions
The error conditions which may result are

File System codes.

Notes
Alias is FRWND .

Example
CALL REWIND(lNPCH)

Reference
?SPOS (System call)

093-000154 Licensed Malerial-Properly of Dala General Corporation 11-17

WRBLK
Writes a series of 256-word blocks to a file.

format
CALL WRBLK (unit number,starting block,data arraY,count, [returned count,] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want to write.

starting block an integer that specifies the first block you want to write (the first block
is numbered 0).

data array an aggregate that contains the data you want to write.

count an integer that specifies the number of blocks you want to write.

returned count an integer variable that receives the number of blocks successfully written
when the system exhausts space in the file's directory.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Example
INTEGER AREA9 (1024)

OPEN 9, "FILE9"

C WRITE BLOCKS #4 THRU #6 FROM
C AREA9 ONTO UNIT9

CALL WRBLK (9,4,AREA9,3,IER)
CALL CHECK (IER)

Reference
?WRITE (System call)

11-18 Licensed Material-Property of Data General Corporation 093-000154

~ ir ..
,*iIh~

o

WRITRW
Writes a series of logical records to a file.

Format
CALL WRITRW (unit number,starting record,data array,count,IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number to which you

want to write data.

starting record an integer that specifies the number of the first record to which you want
to write.

data array an aggregate that contains the records you want to write.

count aninteger that specifies the number of records you want to write.

IER an integer variable that receives the routine's completion status code.

Rules
Before calling WRITRW , you must specify the record length for this file. Do this in either an
OPEN statement or in a call to the runtime routines, OPEN or APPEND.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
Alliases are WRTR Wand WRITR.

Example
C a-BYTE BUFFER

COMPLEX MESAREA

C FOUR-BYTE RECORDS
CALL OPEN (7,"OUTDATA",3,4,IER)

C WRITE RECORDS 14 AND 15
CALL WRITRW (7, 14,MESAREA,2,IER)
CALL CHECK (IER)

Reference
?WRITE (System call)

093-000154 Licensed Material-Property of Datli General Corporation 11-19

WRLlN
Writes a line to a file.

Format
CALL WRLlN (unit number,data array, [returned count,} IER)

-Arguments
unit number an integer that specifies the FORTRAN 5 unit number to which you

want to write data.

data array an aggregate that contains the line you want to write.

returned record an integer variable that receives the total number of bytes the call wrote
if an error occurs.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System Codes.
System Call codes.
Channel-Related codes.

Notes
This routine transfers characters up to and including a data sensitive delimiter. These
delimiters are form feed, NEW LINE, carriage return, and null.

Example
DOUBLE PRECISION COMPLEX SIGNET

SIGNET= "TEST LlNENUL"

CALL WRLlN (4,SIGNET,INCT,IER)
CALL CHECK (IER)

Reference
?WRITE (System call)

11-20 Licensed Material-Property of Date General Corporation 093-000154

0-

WRSEQ
Writes a sequence of bytes to a file.

Format
CALL WRSEQ (unit number,data array,count,IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number to which you

want to write data.

data array an aggregate that contains the data you want to write.

count an integer that specifies the number of bytes you want to write.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

File System codes.
System Call codes.
Channel-Related codes.

Notes
The system writes exactly the number of bytes you specified in count to unit number.

Example
INTEGER USAREA (10)

CALL WRSEQ (3,USAREA,360,IER)
CALL CHECK (lER)

Reference
?WRITE (System call)

093-000154 Licensed Material-Property of Data General Corporation 11-21

Coding Example

o

11-22 Licensed Malerial-Properly of Dala General Corporation 093-000154

End of Chapter

o

093-000154 Licensed Material-Property of Data General Corporation 11-23

o

o

o

o

o

o

Chapter 12
Console Handling

•
When AOS starts up your program, it enables co~sole interrupts. You can disable them with
with the routine 0015 and enable them with the r9Utine OEBL .

The Routines In This Chapter
GCIN Obtains the input console name.

GCOUT Obtains the output console name.

0015 Disables console interrupts.

OEBL Enables console interrupts.

GCIN
Obtains the input console name.

Format
CALL GCIN (pathname,IER)

Arguments
pathname a 5-word aggregate that receives the input console name (@CONSOLE) .

IER an integer variable that receives a routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example
INTEGER CONM (5)

CALL GCIN (CONM,IER)
CALL CHECK (lER)

093-000154 Licensed Material-ProperlY of Data General Corporation 12-1

GCOUT
Obtains the output-fil~.

Format
CALL GCOUT (pathname,IER)

Arguments
pathname a 5-word aggregate that receives the output console name (@CONSOLE) .

IER an integer vari!1ble that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example
INTEGER OUTCON(5)

CALL GCOUT (OUTCON,IER)
CALL CHECK (IER)

OOIS
Disables .console interrupts.

Format
CALL 0018 (IER)

Argum.ents
IER > an integer variable that receives the routin"e's ·c~mpietio~ code.

Error Conditions
No error conditions are currently defined.

Example
CALL 0018 (lER)
CALL CHECK (lER)

Notes
After you call 0018 , you must call OEBL before you can perform a console interrupt.

Reference
?0018 (System call)

12-2 L.tcensed·Material-Property 01 Data General Corporation 093-:000154

o

o

o

o

o

OEBL
Enables console inter,rupts.

Format
CALL OEBL (lER)

Argument
IER an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example
CALL OEBL (lER)
CALL CHECK (IER)

Notes
This call does not supply an interrupt-processing capability.

Reference
?OEBL (System call)

093-000154· Licensed Malerlal-ProPllrtY of· Data General Corporation 12-3

Coding Example

End of Chapter

12-4 Licensed Material-Property of Data General Corporation 093-000154

I
i

Chapter 13
Using the System Clock and Calendar

The FORTRAN 5 runtime routines in this chapter obtain the time of day, set the time,
obtain the current date, and set the date. You can call one of two routines to perform each of
these functions: an ISA formatted routine with an argument that is a three-word integer
array, or a routine with three separate integer arguments. For example, to set the time you
can use either STIME or FSTIME .

Valid dates are those between January 1, 1968 and December 31, 2099. The time of day is
based on a 24-hour clock. Midnight is 0,0,0; the second before midnight is 23,59,59.

To set the date or time, the caller must be running as the operator process (PID 2) or one of
it's brothers.

The Routines In This Chapter
DATE Obtains the current date.

FGDAY Obtains the current date.

FGTIME Obtains the current time.

FSDAY Sets the date.

FSTIME Sets the time.

SDATE Sets the date.

STIME Sets the time.

TIME Obtains the current time.

093-000154 Licensed Material-Proper1Y of Data General Corporation 13-1

DATE
Obtains the current date •.

Format
CALL DATE (date,IER)

Argument
date . a three-word aggregate which receives the integer values for the month,

day, andyear in words 1,2, and 3 reSpectively.

IER an integer variable that receives a routine's completion status code.

Error Conditions
No error conditions are currently defined.

Notes
The year is returned as a four-digit integer.

Example
DIMENSION IDATE(3)

CALL DATE(lDATE,IER)

Reference
?GDAY (System call)

13-2 Licensed Matarlal-PrQperlY of Data General Corporation 093-.000154

o

o

o

o

FGDAY
Obtains the current date.

Format
CALL FGDA Y (month,day,year)

Arguments
month an integer variable that receives the current month by number (1 through

12).

day an integer variable that receives the current day by number (1 through
31).

year an integer variable that receives the current year since 1900 by number (0
through 199).

Error Conditions
No error conditions are currently defined.

Notes
The year is returned as a two-digit number.

Example
CALL FGDAY (lMON,IDAY,IYEAR)

Reference
?GDA Y (System call)

093-000154 Licensed Material-Property of Data General Corporation 13-3

FGYIME
Obtains the current time.

Format
CALL FGTIME (hour,minute,second)

Arguments
hour an integer variable that receives the current hour (0 through 23).

minute an integer variable that receives the current minute (0 through 59).

second an integer variable that receives the current second (0 through 59).

Error Conditions
No error conditions are currently defined.

Example
CALL FGTIME (lHOUR,IMIN,ISEC)

Reference
?GTOD (System call) -

13-4 Licensed Material-Property of Date General Corporation 093-000154

0"
..

o

o

o

o

o

FSDAV
Sets the current date.

Format
CALL FSDAY (month,day,year)

Arguments
month

day

an integer that specifies the month by number (1 through 12).

an integer that specifies the day by number (1 through 31).

year an integer that specifies the year since 1900 by number (0 through 199).

Rules
Only the operator process or one of its brothers can call FSDA Y .

Error Conditions
The error conditions that can result are

ERTIM Illegal month, day, or year.

ERPRV Caller not privileged for this action.

Notes
Using FSDAY you only need to specify the year since 1900, whereas with SDATE you must
specify all four digits.

Example
C SET THE DATE TO OCTOBER 17, 2001

CALL FSDAY (10,17,101)

Reference

?SDAY (System call)

093-000154 Licensed Material-Property of Date General Corporation 13-5

FSYIME
Sets the time.

Format
CALL FSTIME (hour,minute,second)

Arguments
hour an integer that specifies the hour (0 through 23).

minute an integer that specifies the minute (0 through 59).

second an integer that specifies the second (0 through 59).

Rules
Only the operator process or one of its brothers can call FSTIME

Error Conditions
ERTIM Illegal time of day.

ERPRV Caller not privileged for this action.

Example
C SET THE CLOCK TO 3:30 PM

CALL FSTIME (15,30,0)

Reference
?STOD (System call)

\

Licensed Material-Property of Date General Corporation

o

o
093-000154

. \ 0··'·

SDATE
Sets the date.

Format
CALL SDATE (date,IER)

Arguments
date a 3-word aggregate that contains new values for the date as month, day, year in

words 1,2, and 3 respectively.

IER an integer variable that receives the routine's completion status code.

Rules
Only the operator process or one of its brothers can call SDATE .

Error Conditions
ERTIM Illegal day, month, year.

ERPRV Caller not privileged for this action.

Notes
You specify the year as a 4-digit number.

Example
DIMENSION IDATE(3)

IDATE(1)=7
IDATE(2)=4
IDATE(3) = 76

C SET THE DATE TO
C JULY 4, 1976

CALL SDATE (IDATE,IER)
CALL CHECK (lER)

Reference
?SDA Y (System call)

093-000154 Licensed Malerial-Property of Dala General Corporalion 13-7

SliME
Sets the time.

Format
CALL STIME (time,iER)

Arguments
time

IER

Rules

a3-word aggregate whose elements contain the time based on a 24-hour
clock as hours, minutes, and seconds in words 1,2, and 3 respectively.

an integer variable that receives the routine's completion status variable.

Only the operator process or one of its brothers can call STIME .

Error Conditions
The error conditions that can return in IER are

ERTIM Illegal time of day.

ERPRV Caller not privileged for this action.

~~ 0
DIMENSION IARRA Y(3)

IARRAY(1)= 10
IARRAY(2)=0
IARRAY(3)=0

C SET THE CLOCK TO 10:00 AM
CALL STIME (lARRAY,IER)
CALL CHECK (lER)

Reference
?STOD (System call)

Licensed Material-Property of Data General Corporation

o
093-000154

TIME
Obtains the current time.

Format
CALL TIME (time,IER)

Arguments
time

IER

a 3-word aggregate whose elements receive the current time of day based
on a 24-hour clock in hours, minutes, seconds in words 1, 2, and 3,
respectively.

an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example
DIMENSION ITIME(3)

CALL TIME(lTIME,IER)
CALL CHECK (lER)

Reference
?GTOD (System call)

093-000154 Licensed Material-Property of Data General Corporation 13-9

Coding Example

End of Chapter

o

13-10 Licensed Material-Property of Data General CorporatiOn 093-000154

o

. Chapter 14
Initiating Tasks in a Multitask

Environment

When you initiate a task with One of these calls, you can assign it an optional identification
number (task ID) and an optional priority.

A task's priority can range from 0, the highest priority, to 255, the lowest priority. The task
scheduler allocates CPU control to the highest priority ready task.

Tasks can have equal priorities. In this case each task receives CPU control in equal amounts,
in a round robin fashion.

A task's ID must be unique and in the range of 1 through 255 decimal. Any number of tasks
can also have no ID (indicated as 0).

Both FT ASK and IT ASK include a value for partition specifier in their arguments. A
partition specifier tells the system how large a stack to allocate for the task. The parameter
values for partition are as follows:

o or 1

2

3

>3

100000K

a default size stack (the system divides available memory into partitions
numerically equal to the number of tasks requiring default size
partitions). .

the smallest available stack.

the largest available stack.

a stack of this exact size (you must have specified a partition of this exact
size at LINK time using the methods described in Chapter 4).

no stack at all (can't be a FORTRAN 5 task).

Although FT ASK and IT ASK both initiate a task, we recommend that you call IT ASK . It
permits you to specify an ID and gives you a completion status code.

The Routin,s In This Chapter

FTASK Initiates a task.

ITASK Initiates a task.

093-000154 Licensed Material-Property 01 Data General Corp'oration 14-1

FlASK
Initiates a task.

Format
CALL FTASK (subroutine,error return label,priori.ty, [partition specifier])

Arguments

subroutine the initial subroutine the task will execute (you must declare subroutine
as external).

error return label a statement label to which the system transfers control if an error occurs
during task initiation.

priority an integer that specifies the initial priority for the task.

partition
specifier

an integer that specifies the stack partition size. for the task. If you omit
partition specifier, the system uses a partition specifier value of 0 (the
default partition size).

Rules
The subroutine name must appear in a FORTRAN 5 EXTERNAL declaration.

You must specify the error return label with a dollar sign; for example, $100 .

Error Conditions
The error codes that may result are

Task codes.

Example
EXTERNAL SU
CALL FTASK (SU,$99,20,400)

Reference
?TASK (Task call)

14-2 Licensed Material·Property of Data General Corporation 093·000154

o

ITASK
Initiates a task.

Format
CALL ITASK (subroutine,task ID,priority, /partition specifier] ,IER)

Arguments

subroutine the initial subroutine the task executes (you must declare subroutine as
external).

task ID an integer specifying the identification number you want to assign to the
task. Zero indicates you didn't want to specify a task ID.

priority an integer that specifies the initial priority for the task.

partition
specifier

an optional integer argument that specifies the stack partition size for
the task. If you omit partition specifier, the system uses a partition
specifier of 0 (default partition size).

IER an integer variable that receives the routine's completion status code.

Rules
The subroutine name must appear in a FORTRAN 5 EXTERNAL declaration.

Error Conditions
The error codes that may return in IER are

FEPNA Requested partition unavailable.

FEPRI Illegal task priority.

FESTK Illegal stack size.

Task codes.

Example
EXTERNAL SUBR2
CALL ITASK (SUBR2,11,2,500,IER)
CALL CHECK (lER)

Reference
?TASK (Task call)

093-000154 Licensed Material-Property of Date General Corporation 14·3

Coding Ex~m pie o

o

End of Chapter

o
14-4 Lice,nsed Material-Property of Data General Corporation 093-000154

o

0

o

Chapter 15
Changing Task States ina Multitask

Environment

You can use the runtime routines in this chapter to suspend, ready and terminate tasks. If you
call one of the runtime routine!!. that susp¥nds a task, you can call a corresponding routine to
ready the task and cancel the suspension. Corresponding routines are listed in the "Notes"
section when appropriate.

The calls liDS, TIDR, TIDK, and TIDP identify tasks by their ID to change their priority or to
suspend, ready, or terminate them. Other calls such as AKILL, ARDY, and ASUSP identify
tasks by their priorities to suspend, ready, or terminate them.

There are several methods you can use to terminate tasks. For example, by executing a
RETURN statement in the task's initial subroutine, the task will terminate itself. Another way
in which a task can terminate itself is through the KILL routine. With the routines TIDK,
AKILL, and the KILL and DESTROY statements, a task can terminate itself or other tasks.

AKILL

ARDY

ASUSP

KILL

PRI

SUSP

TIDK

TIDP

TIDR

TIDS

093-000154

The Routines In This Chapter
Kills all tasks of a given priority.

Readies all tasks of a given priority.

Suspends all tasks of a given priority.

Kills the calling task.

Changes the priority of the calling task.

Suspends the calling task.

Kills the task specified by an ID number.

Changes the priority of the task specified by an ID number.

Readies the task specified by an ID number.

Suspends the task specified by an ID number.

Licensed Material-Property of Data·General Corporation 15-1

AKILL
Kills all tasks of a given priority.

Format
CALL AKILL (priority)

Arguments
priority an integer that specifies a task priority number.

Error Conditions
The error conditions that may result are

Task codes.

Example
C KILL ALL TASKS HAVING PRIORITY 4

CALL AKILL(4)

Reference
?PRKILL (Task call)

15-2 Licensed Material-ProperlY of Data General Corporation

o

o
093-000154

ARDY
Readies all tasks of a given priority.

Format
CALL ARDY (priority)

Arguments
priority an integer that specifies a task priority number.

Error Conditions
The error conditions that may return are

Task codes.

Notes
ARDY can ready a task suspended by ASUSP .

Example
INTEGER PR
PR=1
CALL ARDY(PR)

Reference
?PRRDY (Task call)

093-000154 Li<!ensed Material-Property 01 Data General Corporation 15-3

ASUSP
Suspends all tasks of a given priority.

Format
CALL ASUSP (priority)

Argument
priority an integer that specifies a task priority.

Error Conditions
The error conditions that may result are

Task codes.

Notes
If you use ASUSP to suspend a task, you can ready that task with ARDY or TIDR .

Example
CALL ASUSP (2)

Reference
?PRSUS (Task call)

KILL
Kills the calling task.

Format
CALL KILL

Arguments
None

Error Conditions
No error conditions are currently defined.

Reference
?KILL (Task call)

15-4 Licensed Material-ProperlY 01 Data General Corporation

o

o
093-000154

o PRI
Changes the priority of the calling task.

Format
CALL PRI (priority)

Argument
priority an integer that specifies the new priority of the calling task.

Error Conditions
The error condition that may result is

FEPRI You specified an illegal task priority.

Example
CALL PRI(5)

Reference
?PRI (Task call)

SUSP
Suspends the calling task.

Format
CALL SUSP

Arguments
None

Error Conditions
No error conditions are currently defined.

Reference
?8US (Task call)

093-000154 Licensed Material-Property of Data General Corporation 15-5

IIOK
Kills the task specified by an ID number.

Format
CALL TIDK (task ID,IER)

Arguments
task 10 an integer that specifies the ID number of the task you want to kill.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER are

FETID You specified an illegal ID to a task.

Task codes.

Notes
Aliases are TIDKILL, ABORT and DESTROY.

Example
CALL TIDK (99,IER)
CALL CHECK (IER)

Reference
?IDKIL (Task call)

15-6 Licensed Malerial-Properly of Dala General Corporation 093-000154

o
TIDP

Changes the priority of a task specified by an 10 number.

Format
CALL TIDP (task ID,priority,IER)

Arguments
task ID

priority

IER

an integer that specifies the ID number of the task receiving the new
priority.

an integer that specifies the new priority of the task.

an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

FEPRI You specified an illegal task priority.

FETID You designated an illegal ID for a task.

Task codes.

Notes
Aliases are TIDPRI, CHNGE and CHPRI .

Example
CALL TIDP (100,1 ,IER)
CALL CHECK (IER)

Reference
?IDPRI (Task call)

093-000154 Licensed Material-Property of Data General Corporation 15-7

TIDR
Readies a task specified by an ID number.

Format
CALL TIDR (task ID,IER)

Arguments
task ID an integer that specifies the ID number ofthe task you want to ready.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

FETID You designated an illegal ID for a task.

Task codes.

Notes
You can use TIDR to ready a task suspended by TIDS .

Aliases are REl,SE and TIDRDY .

Example
CALL TIDR (101,IER)
CALL CHECK (lER)

Reference
?IDRDY (Task call)

15-8 Licensed Material-Property of Date General Corporation 093-000154·

o

o

o

o

liDS
Suspends a task specified by an 10 number.

Format
CALL TIDS (task ID, IER)

Arguments
task ID an integer that specifies the ID number of the task you want to suspend.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

FETID You designated an illegal ID for a task.

Task codes.

Notes
You can use TIDR to ready a task suspended by TIDS .

Aliases are TIDSUSP and HOLD.

Example
CALL TIDS (55,IER)
CALL CHECK (lER)

Reference
?IDSUS (Task call)

093-000154 Licensed Material-Property of Data General Corporation 15-9

Coding Example

End of Chapter

15-10 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

Chapter 16
Obtaining Task-Related Information

in a Multitask Environment

The Routines In This Chapter
GETEV Obtains a task's event number.

GETPRI Obtains a task's priority.

MYEV Obtains the calling task's event number.

MYIO Obtains the calling task's ID number.

MYPRI Obtains the calling task's priority.

GETEV
Obtains a task's event number.

Format
CALL GETEV (task 10,event,IER)

Arguments
task 10 an integer that specifies the task's ID number.

event an integer variable that receives the event number associated with a task.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are.

FEEVT Illegal event usage (task is not a FORTRAN 5 task).

Task codes.

Notes
A zero event represents a lack of event association.

Example
CALL GETEV (100,IEVENT,IER)
CALL CHECK (lER)

093-000154 Licensed Maleriel-Property of Dala General Corpore lion 16-1

GETPRI
Obtains a task's priority.

Format
CALL GETPRI (task 10,priority,IER)

Arguments
task 10

priority

an integer that specifies the task's ID number.

an integer variable that receives the task's priority.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

Task codes.

Example
CALL GETPRI (100,IPRI,IER)
CALL CHECK (lER)

MYEV
Obtains the calling task's event number.

Format
CALL MYEV (event)

Argument
event an integer variable that receives the task's event number.

Error Conditions
No error conditions are currently defined.

Notes
A zero event represents a lack of event association.

Example
CALL MYEV (J)

16-2 Licensed Malerial-Properly of Dala General Corporation 093-000154

o

o

MYID
Obtains the calling task's 10 number.

Format
CALL MYIO (task 10)

Argument
task 10 an integer variable that receives the task's ID number.

Error Conditions
No error conditions are currently defined.

Notes
Zero represents a lack ofID.

Example
CALL MYIO (I)

MYPRI
Obtains the calling task' spriority.

Format
CALL MYPRI (priority)

Arguments
priority an integer variable that receives the task's priority.

Error Conditions
No error conditions are currently defined.

Example
CALL MYPRI (I)

093-000154 Licensed Material-Property of Data General Corporation 16-3

Coding Example o

o

o
16-4 Licensed Material-Property of Date General Corporation 093-000154

o End of Chapter

o
093-000154 Licensed Material-Property of Date Ganeral Corporation 16-5

o

o

o

Chapter 17
Intertask Communication

In a multi task program, tasks can send and receive one-word messages. If several tasks
attempt to receive the same message, only the highest priority task receives the message.

The system suspends a task that is receiving a message. Because of this suspension, you can
use the routines in this chapter to synchronize tasks.

Transmitting and receiving messages occurs in the same mailbox. Messages pass under
control of the multi task scheduler into and out of the mailbox.

REC

XMT

XMTW

093-000154

The Routines In This Chapter
Receives a one-word message from another task.

Transmits a one-word message to another task.

Transmits a one-word message to another task and waits for the task to receive
it.

Licensed Material-ProPE1rlY of Data General Corporation 17 -1

REC
Receives a one-word message from another task.

Format
CALL REC (mailbox,message)

Arguments
mailbox

message

Rules

a one-word aggregate through which the message passes.

an integer variable that receives the message.

Declare the mailbox in COMMON storage.

Never directly change or examine a mailbox.

Error Conditions
No error conditions are currently defined.

Notes
REC suspends the calling task until it receives the message.

Example
COMMON / BOX / ISLOT
CALL REC (lSLOT,IMSG)

Reference
?REC (Task call)

17-2 Licensed Material-Property of Data General Corporation

o

o

o
093-000154

o

o

XMT
Transmits a one-word message to another task.

Format
CALL XMT (mailbox,message,error label)

Arguments
mailbox

message

a one-word aggregate through which the message passes.

a nonzero integer value you want to transmit to another task.

error label a statement label to which the system transfers control when an error
occurs.

Rules
Declare the mailbox in COMMON storage.

Never directly change or examine a mailbox.

You must specify statement label with a dollar sign; for example, $100.

Error Conditions
The error conditions that may result are

Task codes.

Notes
The difference between XMT and XMTW is as follows:

XMT deposits a message.

XMTW deposits a message, and suspends the program until the task receives the transmitted
message.

Example
COMMON / MAIL / ITSK(20)

C TRANSMIT THE MESSAGE IN IMSG
C THROUGH THE MAILBOX ITSK(1 0)

CALL XMT (ITSK(10),IMSG,$100)

Reference
?XMT (Task call)

093-000154 Licensed Material-Property of Date General Corporation 17-3

XMTW
Transmits a one-word message to another task and waits for the
task to receive it.

Format
CALL XMTW(mailbox,message,error label)

Arguments
mailbox

message

a one-word aggregate through which the message passes.

a nonzero integer value you want to transmit to another task.

error label a statement label to which the system transfers control when an error
occurs.

Rules
Declare the mailbox in COMMON storage.

Never directly change or examine a mailbox.

You must specify error label with a dollar sign; for example, $100 .

Error Conditions
The error conditions that may result are

Task codes.

Notes
The difference between XMT and XMTW is the following:

XMT deposits a message.

XMTW deposits a message and suspends the program until the task receives the transmitted
message.

Example
COMMON / MBOX / ISLOT
CALL XMTW (ISLOT,IABC,$1050)

Reference
?XMTW (Task call)

17-4 Licensed Msterial-Property of Data General Corporation 093-000154·

o

o

o

Coding Example

093-000154 Licensed Material-Property of Data General Corporation

o

End of Chapter o

o
17-6 licensed Material-Property of Date General Corporation 093-000154

Chapter 18
Requesting Delayed or Periodic Task

Initiation

Normally, the system activates a task as soon as you initiate it. However, AOS provides a
mechanism that initiates a task at a time you designate. The routines in this chapter enable
you to create and queue a task initiation request that AOS will execute at some future time.

Queue Tables
The initiation request you make takes the form of a queue table. In the queue table, you
supply information describing the tasks you want to initiate. After setting up the queue table,
transfer it to the operating system as a task initiation request, via the ASSOCIATE routine.

Before using delayed or periodic task initiation, you must allocate an array in COMMON or
STATIC storage large enough for the queue tables.

Each queue table contains three types of information:

• Descriptive information about the tasks you want to InItIate. This includes the task
identifier, task priority, stack size, and the task's initial subroutine.

• Information that designates times for task initiation: hour, second within the specified hour,
interval between initiations, and number of times to initiate a task.

• Information that the system uses for its own bookkeeping.

See Table 18-1 for a detailed description of the queue table.

When you request delayed task initiation, AOS places the request on a queue for later
processing. AOS removes the request from the queue for one of the following reasons:

• All requested task initiations have been performed.

• A call to CANCL removes the request from the queue.

AOS uses the memory allocated in COMMON or STATIC storage between queuing and
dequeuing the tables. Because of this, you can not change the values in the array between the
time you queue a table and the time you remove it from the queue. If subroutines allocate
stack space for queue tables, you must remove them from the queue before the subroutine
returns. When the subroutine returns, the stack space is free.

Task Initiation
Call ASSOCIATE to fill in a table with task descriptions. Specify task initiation time and
transfer the queue table to the operating system by calling START, TRNON , or CYCLE.
START requests initiation after a specified delay, while TRNON requests it at a specific future
time. CYCLE requests periodic initiation with a delay between initiations.

At the time you designate, the operating system will attempt to initiate the described task.
Any errors at this point foil the initiation and the system tries it later.

093-000154 Licensed Material-Proper1Y of Data General Corporation 18-1

Task Completion
When a queue table's requests are satisfied, the system dequeues it and you then have access
to the table. You must terminate each task when its work is finished. If your program returns
from the task's initial subroutine, it automatically terminates itself.

Premature Termination of a Request
If you must terminate one or more requests before the operating system finishes with them,
call CANCL . Tell AOS which request(s) you want to terminate by referring to the queue
table for that request.

When the queue table leaves the operating system's queue, its information does not change.
You can queue the removed queue table with or without modification.

Never use the queue table before the operating system removes it from the queue.

Timing
Generally, a task initiation doesn't start at the second you requested. It may start later. The
starting time associated with a task initiation request is accurate only to one second.

In some routines you can specify time units. The routines START and CYCLE convert the
time interval to seconds, rounding any fraction up to the next whole second. For example, if
you call START and specify any nonzero delay, the task will start at a future second. If you
call CYCLE and specify a cycle time of a fraction of a second, the routine converts the cycle
time to one second.

You can request task initiation for future days. If you supply a starting time earlier than the
current time, the request designates task initiation for that time the following day. When you
specify a starting time later than midnight on the current day, the request will appear as a
certain day (hours/24), and hour (hour-(hour/24)*24). Hours=24*D+ H specifies Day(D)
and Hour(H).

Three values associated with time initiation, QDCC, QDSH, and QDCI are unsigned. Before
describing these values we remind you that FORTRAN 5 represents the values 32768
through 65534 as -32768 through -2. Minus 1 represents 65535.

If the value of QDCC is -1, the system initiates an unlimited number of tasks. If the value is
0, the the system returns the error ERQTS (error in user task table). Otherwise, the values of
QDCC are between 1 and 65534.

QDSH represents the starting hour. If it has a value of -1, the system initiates the task
immediately. Otherwise, its values lie between 0 and 65534.

QDCI represents the rerun time based in seconds. Its values lie between 0 and 65335.

18-2 Licensed Material-Property of Data General Corporation 093-000154

o

ASSOCIATE

CANCL

CYCLE

START

TRNON

093-000154

Table 18-1. Queue Table

The Routines In This Chapter

Associates a queue table with a task initiation request.

Prematurely removes a queued request.

Requests periodic task initiation.

Queues a request for task initiation after a specified delay.

Queues a request for task initiation at a specific time.

Licensed Material-Property of Data General Corporation 18-3

ASSOCIATE
Associates a queue table with a task initiation request.

Format
CALL ASSOCIATE (subroutine name,queue table, task ID,prioritY,stack size,IER)

Arguments

subroutine the name of the task's initial routine. You must include this name in an
EXTERNAL statement.

queue table an aggregate 17 words long.

priority an integer that specifies the task's initial priority.

stack size an integer that specifies the stack size for the task.

IER an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example

18-4

INTEGER IRAY(17)
EXTERNAL SUBD6

CALL ASSOCIATE(SUBD6,IRA Y ,3,D,IER)
CALL CHECK(lER)

Licensed Material-Property of Data General Corporation 093-000154

o

CANCL
Prematurely removes a queued request.

Format
CALL CANCL (queue table,IER)

Arguments
queue table an aggregate that contains the queue table associated with the request

you want to cancel.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

Task codes.

Notes
This call removes the queue table from the queue of requests. However, it does not alter the
information within the table.

Example
CALL CANCL(lRA Y,IER)
CALL CHECK(lER)

Reference
?OQTSK (Task call)

093-000154 Licensed Material-Property of Data General Corporation 18-5

CYCLE
Requests periodic task initiation.

Format
CALL CYCLE(queue table,cycle time,time units,IER)

Arguments

queue table an aggregate that contains the queue table associated with this task.

cycle time an integer that specifies the number of time units between initiations.

time units an integer that has one of the following values:

o Basic System Units (real time clock ticks)
1 Milliseconds
2 Seconds
3 Minutes
4 Hours

IER an integer variable that receives the routine's completion status code.

Rules
Before using this routine, you must call ASSOCIATE.

Error Conditions
The error codes that may return in IER are

FERTC No real time clock.

FEITU Illegal time units code

Task codes.

Notes
The smallest effective resolution for periodic task initiations is one second.

Example

INTEGER ITIME(17)
EXTERNAL SUB06

CALL ASSOCIATE(SUB06,ITIME,3, 1,O,IER)
CALL CYCLE(lTIME,5,O,IER)
CALL CHECK(lER)

Reference
?TASK (Task call)

18-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

o

START
Queues a request for task initiation after a specified delay.

Format
CALL START (queue table,delay time,time units,IER)

Arguments

an aggregate that contains the queue table associated with that task. queue table

delay time an integer that specifies the number of time units you want to delay
before executing this task.

time units an integer that has one of the following values:

o Basic System Units (real time clock ticks)
1 Milliseconds
2 Seconds
3 Minutes
4 Hours

IER an integer variable that receives the routine's completion status code.

Rules
Before using this routine, you must call ASSOCIATE.

Error Conditions
The error codes that may return in IER are:

FERTC No real time clock.

FEITU Illegal time units code.

Task Codes.

Notes
The smallest effective resolution for periodic task initiations is one second.

Example
INTEGER IRA Y (17)

CALL START(lRAY, 10,2,IER)
CALL CHECK(lER)

Reference
?T ASK (Task call)

093-000154 Licensed Material-Property of Data General Corporation 18-7

TRNON
Queues a request for task initiation at a specific time.

Format
CALL TRNON(queue table,time arraY,IER)

Arguments
queue table an aggregate that contains the queue table associated with this task

request.

time array an integer array whose first three elements contain the hours, minutes,
and seconds of the task initiation time.

IER an integer variable that receives the routine's completion status code.

Rules
Before using this routine, you must call ASSOCIATE.

Error Conditions
The error codes that may return in IER include

Task codes.

Example
INTEGER IRA Y(17),ITIME(3)
EXERNAL SUB06

CALL ASSOCIATE(SUB06,IRAY,3, 1,O,IER)
CALL CHECK(lER)

C SET UP ITIME ARRAY
CALL TRNON(lRAY,ITIME,IER)
CALL CHECK (IER)

Reference
?TASK (task call)

18-8 Licensed Material-Property of Data General Corporation 093-000154

o Coding Example

o

End of Chapter

o
093-000154· Licensed Material-Property of Data General Corporation 18-9

o

o

o

o

o

---------- ------ ----------------~---------~-------------------------- -- ------- ----------~------,

Chapter 19

Enabling and Disabling t~~' Mu'l~itask
- , Environment

In a normal multitask environment, the tasks you initiate compete for CPU control according
to their relative priorities. However, in certain situations you may want a task to execute
without competing for CPU control. To accomplish this, temporarily disable the multi task
environment. The privileged task has exclusive control of the CPU until it relinquishes that
privilege.

Disabling the Multitask Environment
Disable the multitask environment only when it is mandatory that other tasks not interrupt
the privileged task. -

SINGLET ASK disables the multitask environment. After a task issues this call, it gains full
CPU control. No other task can compete for CPU control until the privileged task calls
MULTITASK.

When a task gains CPU control through SINGLET ASK, interrupts are still enabled.

Enabling the Multitask Environment
MUL TIT ASK re-enables the multi task environment. All tasks can again compete for CPU
control.

Other Options
The use of SINGLETASK is not appropriate in all situations where a task needs exclusive CPU
control. The following are two such situations, and the actions you can take:

• You want a task to receive primary CPU control, but need not prevent the execution of
other tasks. In this case, simply give that task highest priority .

• You must deny other tasks access to a critical resource such as a sensitive database.
However, you don't need to restrict task execution outside this resource. In this case, you
can use the XMT fREC mechanism to "lock" the critical piece of code.

The Routines In This Chapter

MULTITASK Enables the multi task environment

SINGLETASK Disables the multitask environment

093·000154 Licensed !,1aterlal-Proper1Y of Dala General Corporation 19-1

MULTITASK
Re-enables the multitask environment.

Format
CALL MUL TIT ASK

Arguments
None

Error Conditions
No error conditions are currently defined.

Notes
When a task calls MUL TIT ASK. it relinquishes privileged control of the CPU. Tasks can then
compete for CPU control.

SINGLETASK
Disables the multitask environment.

Format
CALL SINGLET ASK

Arguments
None

Error Conditions
No error conditions are currently defined.

Notes
This call gives a task privileged control of the cpu.

19-2 Licensed Material-Property of Data Genera.i Corporation 093-000154

., 0'· Coding Example

o

o
093-000154 Licensed Material-ProperlY of Data General Corporation 19-3

o
End of Chapter

o
19-4 Licensed Material-Property of Data General Corporation 093-000154

o

Chapter 20
Using Overlays

An overlay consists of one or more subroutines or functions stored in a disk file and used by a
memory resident program. An overlay file is a disk file containing overlays. An overlay area
is that portion of main memory that the program uses to load an overlay for execution of one
of the overlay routines. Figure 20-1 shows how the overlay area relates to main memory.

FORTRAN 5 supports the AOS Load-On-Call facility of the AOS resource call (?RCALL)
mechanism. See the AOS Programmer's Guide (093-000154) for more information on the
Load-On-Call facility.

Figure 20-1. Overlays

Explicit Overlay Management
If you use the Load-On-Call facility you need not use the routines in this chapter to explicitly
call an overlay routine. However, you may want to explicitly call overlay routines for the
following reasons:

• Compatability with FORTRAN IV
• Running your program using RDOS FORTRAN 5
• Explicit control of the overlay because it is a non-FORTRAN 5 routine or because it

contains data

093-000154 Licensed Material-Property of Data General Corporation 20-1

Loading Overlays
You can request that AOS load overlays conditionally or unconditionally.

A conditional request loads the overlay area only if it is not already resident. Use a
conditional request when you do not want to reinitialize the overlay when you recall it.

An unconditional request causes AOS to load the overlay even if it is already present. This
reinitializes any data in the overlay.

Releasing Overlays
You must release an overlay when you finish with it so the main program can reuse the
overlay area. Until you release it, the system assumes that an overlay routine has not
completed execution. When you attempt to load in a new overlay under these circumstances,
the loading routine suspends indefinitely as it waits for the overlay area to be released.

Many routines in this chapter require that you specify an overlay name. You declare an
overlay name by an OVER LA Y statement in exactly one subroutine or function in the overlay.
Declare the name EXTERNAL in all other routines using it.

In this example, the user declared the overlay OFRED as EXTERNAL:

EXTERNAL OFRED

CALL OVLOAD (OFRED,-1 ,IER)
CALL CHECK (IER)
CALL FRED (Y)

END

The subroutine declares the overlay name:

SUBROUTINE FRED (X)
OVERLAY OFRED

END

Several routines in this chapter let you specify a unit number as their first argument. All of
the routines ignore this argument because they don't need the information. FORTRAN 5
allows a unit number as an optional argument because FORTRAN IV versions of the
routines require the information.

The Routines In This Chapter
EST Loads an overlay unconditionally.

OVCLOSE Closes an overlay file.

OVEXIT Releases an overlay and returns to the overlay routine caller.

OVKILL Kills a task and releases the overlay in which it is currently executing.

OVLOD Loads an overlay.

OVOPN Opens an overlay file.

OVREL Releases an overlay.

20-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

EST
Unconditionally loads an overlay.

Format
CALL EST ([unit number.] overlay name,IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want to load. AOS ignores this argument.

overlay name the name of the overlay (you must declare overlay name as external).

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

EROVN Illegal overlay number.

ERADR Illegal overlay size.

File System codes.

Notes
You must pair each overlay request with an eventual overlay release. Otherwise, AOS will
reserve the overlay area indefinitely.

Example
EXTERNAL OV3

CALL EST (OV3,IER)
CALL CHECK (lER)

Reference
?OVLOD (System call)

093-000154 Licensed Material-Property of Data General Corporation 20-3

OVCLOSE
Closes an overlay file.

Format
CALL OVCLOSE (lER)

Argument
IER an integer variable that receives the routine's completion status code.

Notes
Although OVCLOSE has no meaning In AOS, we include the routine for RDOS
compatability.

20-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

OVEXIT
Releases an overlay and returns to the overlay routine caller.

Format
CALL OVEXIT (overlay name,IER)

Arguments
overlay name the name of the overlay you want to release (you must declare overlay

name as external).

IER an integer variable that receives the routine's completion status code.

Error Condition
The error code that may return in IER is

EROVN Invalid overlay number; the overlay area is not occupied by the given user
overlay.

Notes
OVEXIT releases the overlay in which the current subroutine is executing. It then returns to
the caller of the current subroutine.

Example
CALL OVEXIT (OVNAM,IER)
CALL CHECK (lER)

Reference
?OVREL (System call)

093-000154 licensed Materlal~Property of Data General Corporation 20-5

OVKILL
Kills the calling task and releases its overlay.

Format
CALL OVKILL (overlay name,IER)

Arguments
overlay name the name of the overlay you want to kill and release (you must declare

overlay name as external).

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

EROVN Invalid overlay number.

File System codes.

Notes
OVKILL kills the calling task and releases the overlay in which the task is executing. In a
single-task environment, this causes program termination because there is only one task to
kill.

Example
EXTERNAL OSUS 1

CALL OVKILL (OSUS 1,IER)
CALL CHECK (lER)

Reference
?OVKIL (System call)

20-6 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

OVLOD
Loads an overlay.

Format
CALL OVLOD ([unit number,} overlay name,flag,IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number of the file you

want to load. AOS ignores this argument.

overlay the name of the overlay (you must declare overlay as external).

flag an integer set to -1 when you want to load the overlay unconditionally.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

ERADR Illegal overlay size.

EROVN Illegal overlay number.

File System codes.

Notes
You must pair each overlay request with an eventual overlay release. Otherwise, AOS will
reserve the overlay area indefinitely.

Aliases are FOVL Y and FOVLD .

Example
EXTERNAL OV3

CALL OVLOD (OV3,-3,IER)
CALL CHECK (lER)

Reference
?OVLOD (System call)

093-000154 Licensed Material-Property of Date General Corporation 20-7

OVOPN
Opens an overlay file.

Format
CALL OVOPN ([unit number,] pathname,IER)

Arguments

unit number

path name '

IER

Notes

an integer that specifies the FORTRAN 5 unit number of the file you
want to open. AOS ignores this argument.

an aggregate that contains the name of the overlay file.

an integer variable that receives the routine's completion status code.

Although OVOPN has no meaning in AOS, we include it for RDOS compatibility.

20-8 Licensed Material-Properly of Data: General Corporation 093-000154

o

o

o

o

o

OVREL
Releases an overlay.

Format
CALL OVREL (overlay name,IER)

Arguments
overlay name the name of the overlay you want to release (you must declare overlay

name as external).

IER an integer variable that receives a routine's completion status code.

Error Conditions
The error code that may return in IER is

EROVN Invalid overlay number; the overlay area is not occupied by this user overlay.

Notes
You cannot issue this command from a routine within the overlay you want to release.

Aliases are FOVRL and UNEST .

Example
EXTERNAL OVL Y 1

CALL OVREL (OVL Y 1 ,IER)
CALL CHECK (IER)

Reference
OVREL (System call)

093-000154 Licensed Material-Property of Date General Corporation 20-9

Coding Example

End of Chapter

20-10 Licensed Material-Property of Data General Corporation 093-000154

Chapter 21
User jSystem Clock Commands

The clock ticks we name in this chapter refer to the interrupts generated by your system's
real time clock.

The Routines In This Chapter
FDELAY Delays a task a given number of clock ticks.

GHRZ Obtains the real time clock frequency.

WAIT Suspends a task for a specified time.

FDELAY
Delays a task for a given number of clock ticks.

Format
CALL FDELA Y (ticks)

Argument
ticks an integer that specifies the number of clock ticks you want to delay the

calling task.

Error Conditions
No error conditions are currently defined.

Notes
An error causes termination of your program.

If you specify a number of ticks that are not a multiple of the real time clock period, then the
system rounds off the delay interval to the succeeding multiple.

Alias is FDEL Y .

Example
CALL FDELA Y (10)

Reference
?DELA Y (System call)

093-000154 Licensed Material-Property of Data General Corporation 21-1

GHRZ
Gets the real time clock frequency.

Format
CALL GHRZ (frequency,IER)

Argument
frequency an integer variable that receives one of the following values:

o Frequency is 60 HZ (A.C. line frequency)

Frequency is 10 HZ

2 Frequency is 100 HZ

3 Frequency is 1000 HZ

4 Frequency is 50 HZ (A.C. line frequency)

IER an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Notes
Alias is GFREQ .

Example
CALL GHRZ (lFREQ,IER)
CALL CHECK (lER)

Reference
?GHRZ (System call)

21-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

WAIT
Suspends a task for a specified amount of time.

. . . . - .

Format
CALL WAIT (d~lay count,time units,IER)

Arguments
delay count an integer that specifies the number of time units you want to suspend a

task.

time units an integer that specifies the delay count unit measurement. It can have
one of the following values:

o Real time clock ticks

1 Milliseconds

2 Seconds

3 Minutes

IER an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Example
CALL WAIT (lPULS,O,IER)
CALL CHECK (IER)

Reference
?DELAY (System call)

093-000154 Licensed Material-Property of Data G"neral Corporation 21-3

Coding Example o

o
End of Chapter

o
21-4 Licensed Material-Property of Data General Corporation 093-000154

o

Chapter 22
Transferring Control Between Programs

And Accessing Command Line
Information

AOS swapping and chaining facilities allow you to segment large programs and execute the
segments separately.

Through swapping and chaining you can treat several programs as if they were one large
program. However, because the system treats each segment as a separate part, it does not
maintain data when it swaps from one segment to another and back again.

Swapping
Program swapping permits a program file to temporarily replace an executing program.

The following is a swapping sequence:

1. The executing program suspends its own execution to invoke another program.

2. AOS temporarily stores the suspended program on disk.

3. The new program is invoked.

4. The new program completes its execution.

5. AOS returns the original program and resumes its execution.

Chaining
Program chaining permits a calling program to be subdivided into separate, executable
segments. Each segment calls the next one sequentially. The chained program cannot return
to its caller. The following is a chaining sequence:

1. The executing program suspends its own execution to invoke another segment.

2. The new segment is invoked.

3. The new segment completes its execution.

The new segment can, in turn, chain a new segment. Chains go forward but do not return.

093-000154 Licensed Material-Property of Data General Corporation 22-1

Accessing Command Line Information
When you invoke a program from the CLI, that program can .determine the switches and
arguments supplied when the program was invoked. The COMINIT routine initiates this
mechanism; COMARG is then called repeatedly to access successive command arguments.
The program name itself is argument zero. The example given for the COMARG routine in
this chapter demonstrates this process.

COMARG returns the end-of-file code in the ier argument when no additional arguments
exist. COMTERM is then called to terminate the sequence. Since these routines also exist in
RDOS, this mechanism provides a mechanism which is independent of the operating system.

The Routines In This Chapter

CHAIN Transfers control to another program.

COMARG Reads one argument string and its switches from the command line.

COMINIT Initializes argument processing for COMARG .

COMTERM Terminates COMARG argument processing.

FCHAN Transfers control to another program.

FSWAP Temporarily transfers control to another program.

SWAP Temporarily transfers control to another program.

22-2 Licensed Materla·I-Property of Date General Corporation 093-000154·

o

o

o

o

CHAIN
Transfers control to another program.

Format
CALL CHAINCpathname,IER)

Arguments
pathname an aggregate containing the pathname of the program to be executed.

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error codes that return in IER are

ERMEM Attempt to allocate more memory than is available.

ERNSW Insufficient amount of swap file space for the the system to maintain the
new program file on disk. .

File System codes.

Example
CALL CHAIN C"PROG2.PR" ,IER)
CALL CHECK (lER)

Reference
?CHAIN (System call)

093-000154 LI.censed Material-Property of Data General Corporation 22-3

COMARG
Reads one argument string and its switches from the command line.

Format
CALL COMARG(unit number,string, [switches,] IER)

Arguments

unit number an integer that specifies a FORTRAN 5 unit number (AOS ignores this
argument).

string an aggregate that receives the ASCII text of a command argument.

switches a 2-word aggregate that receives 26 bits of switch information.

IER an integer variable that receives the routine's completion status code.

Error Conditions

The error conditions that may return in IER are

File System Codes.
System Call Codes.
Channel-Related Codes.

Notes

COMARG is equivalent to the RDOS COMARG routine.

The system ignores the unit number argument.

The system reports an end-of-file after it reads the last argument.

The aggregate switches receives a 26-bit map of single character switches. The 16 bits of the
first word represent the A through P switches. The leftmost 10 bits of the second word
represent the Q through Z switches. Other bits are turned off.

AOS supports only single character switches to provide common functionality with the
RDOS version of this routine.

22-4 Licensed Material-Property of Date General Corporation 093-000154

o

o

c

0< "

, ,

Example
Assume you entered

X MYPROG I C JOE I 0 I F HARRY

to start execution of the current program, MYPROG . The following statements show a
possible application of calls to COMARG .

CALL COMINIT(O,IER)

C READ ARGUMENT 0
/ CALL COMARG(O,ITEXT,ISWITCH,IER)

IF(lER.EO.EREOF) GO TO 10
CALL CHECK(IER)

C READ ARGUMENT 1

C

CALL COMARG(O,ITEXT,ISWITCH,IER)
IF(lER.EO.EREOF) GO TO 10
CALL CHECK(lER)

READ ARGUMENT 2
CALL COMARG(O,ITEXT,ISWITCH,IER)
IF(lER.EO.EREOF) GO TO 10
CALL CHECK(lER)

10 CALL COMTERM(O,IER)
CALL CHECK(IER)

In the first call to COMARG , ITEST receives the ASCII string MYPROG (the CLI removes
the X). ISWITCH receives the bit flags corresponding to the switch, IC . In the second call,
ITEXT receives the ASCII string JOE. ISWITCH receives the switch bits for 10 and IF. Note
that the three calls to COMARG have identical formats.

References
?GTMES (System call)

OGTMES (Runtime routine) OGTMES provides full access to the command line.

093-000154 Licensed Material-PropertY of Date General Corporation 22-5

COMINIT
Initializes argument processing for COMARG.

Format
CALL COMINIT(unit number,IER)

Arguments
unit number an integer that specifies a FORTRAN 5 unit number (AOS ignores this

argument).

IER an integer variable that receives the routine's completion status code.

Error Conditions
The error conditions that may return in IER include

File System codes.
System Call codes,
Channel-Related codes.

Notes
The system ignores the argument unit number.

COMARG uses an internal counter set by COMINIT.

Example

22-6

CALL COMINIT(O,IER)
CALL CHECK(IER)

CALL COMARG(O,IAR(1),IER)
CALL CHECK(lER)

Licensed Material-ProperlY of Data General Corporation 093-000154

o

o

o

o

" 0"',

o

COMTERM
Terminates COMARG argument processing.

Format
CALL COMTERM(unit number,IER)

Arguments
unit number

IER

an integer that specifies a FORTRAN 5 unit number (AOS ignores this
argument).

an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currentlydefined.

Notes
The system ignores the argument unit number.

COMTERM invalidates the internal counter used by COMARG .

Example
CALL COMTERM(O,IER)
CALL CHECK (IER)

093-000154 Licensed Material-Property of Data General Corporation 22-7

FCHAN
Transfers control to another program.

Format
CALL FCHAN(pathname)

Argument
pathname an aggregate that contains the pathname of a program to which you want

to transfer control.

Error Conditions
The error conditions that may result are

ERNSW Insufficient amount of swap file space for the system to maintain the new
program file on disk.

File System codes.

Notes
The error conditions terminate the program.

Example
CALL FCHAN ("PROG2.PR")

Reference
?CHAIN (System call)

22-8 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

FSWAP
Temporarily transfers control to another program.

Format
CALL FSWAP("PROG3.PR")

Argument
pathname an aggregate specifying the pathname of the program that receives

control.

Error Conditions
The error conditions that may result are

File System codes.

Notes
When calling this routine in a multi task environment, invoke the SINGLET ASK routine first
to freeze the environment. To reinstate the multitask environment, invoke MUL TITASK on
return from the swap.

Any error causes termination of the calling program.

Example
CALL FSWAP("PROG.30")

Reference
?PROC (System call)

093-000154 Licensed Malerial-Property 01 Data General Corporation 22-9

SWAP
Temporarily transfers control to another program.

Format
CALL SWAP(pathname,IER)

Arguments
pathname an aggregate containing the pathname of the program that receives

control.

IER an integer variable that receives the routine's completion status code.

Error Conditions
ERNSW Insufficient amount of swap file space for the system to write the new program

file to disk.

File System codes.

Notes
When calling this routine in a multi task environment, invoke the SINGLET ASK routine first
to freeze the environment. To reinstate the multitask environment, invoke MULTITASK on
return from the swap.

Example
CALL SWAP("PROG.PR",IER)
CALL CHECK (lER)

Reference
?PROC (System call)

22-10 Licensed Material-Property of Data General Corporation 093-000154

o

o

Coding Example

o

o
093-000154 Licensed Material-Property of Data General Corporation 22-11

0.' ".

End of Chapter

o

o
22-12 Licensed Material-Property of Data General Corporation 093-000154

' '

0········

0

o

Chapter 23
Reporting Errors and Messages

In this chapter we refer to ISA error codes. See the section on status variables in Chapter 2,
"Error Handling" and the section on IER in Chapter 6, "About the Runtime Routines" for
more information on ISA error codes.

The Routines In This Chapter
CHECK Checks the status returned from a runtime routine.

EBACK Terminates a program and indicates an error.

ERROR Outputs a runtime error message and terminates the program.

EXIT Terminates the program with no error.

GETERR Determines the cause of the last END = or ERR = branch.

MESSAGE Outputs a message to the error files and continues program execution.

CHECK
Checks the status returned from a runtime routine.

Format
CALL CHECK(error)

Argument
error an integer variable that has received a routine's completion status code

returned in IER by a prior call to a runtime routine

Error Conditions
If the error status code is 1, the routine returns to the calling program and reports no errors.
In all other cases, the routine invokes the error reporter which reports the error conditions
with a traceback and terminates the program.

Example
CALL CHECK(lER)

093-000154 Licensed Material-Property of Data General Corporation 23-1

EBACK
Terminates a program and indicates an error.

Format
CALL EBACKCerror)

Argument
error an integer that specifies an error code

Upon execution of a call to EBACK , the routine makes an unconditional return to the father
process. If that program is the CLI, one of the following occurs:

• If the error status code is an AOS error code or a FORTRAN 5 error code, the system
displays the appropriate error message. This message is taken from the system error file,
:ERMES .

• If you specify one of your own error status codes, the CLI does not recognize it. The system
then displays UNKNOWN ERROR CODE n, where n is the argument passed to EBACK.

Error Conditions
No error conditions are currently defined.

Example
CALL DFILWC"FILE20" ,IER)
IF (lER.NE.1) CALL EBACK (lER)

Reference
?RETURN (System call)

23-2 Licensed Material-Property of Date General Corporation 093-000154

o

o

o

o

o

ERROR
Outputs a runtime error message and terminates the program.

Format
CALL ERROR (error message)

Argument
error message an aggregate that contains your message

Error Conditions
No error conditions are currently defined.

Notes
When you call ERROR, the FORTRAN 5 error reporter performs an error traceback and
sends your message to the error files. The program terminates.

Example
CALL ERROR ("FATAL ERROR FROM PHASE 2A")

Reference
?RETURN (System call)

EXIT
Terminate a program with no error.

Format
CALL EXIT

Arguments
None

Error Conditions
No error conditions are currently defined.

Notes
The aliases for EXIT are BACK and FBACK .

Reference
?RETURN (System call)

093-000154 Licensed Material-Property of Date General Corporation 23-3

GETERR
Determine the cause of the last END = or ERR = branch.

Format
CALL GETERR(error)

Argument
error an integer receiving the error code from the error causing the last ERR =

or END= branch in a FORTRAN 5 I/O statement

Error Conditions
No error conditions can occur.

Notes
GETERR returns a code specifying the error that caused the program to take an ERR = or
END= branch in an I/O or task statement. You can pass this code to CHECK to report the
error.

You can also use GETERR after an alternate return from those routines which have an
alternate return argument; e.g., FT ASK.

GETERR resets the internal error value. This is your only method of resetting it. GETERR
returns a value of 1 if no error has occurred since the last call to it.

Example
READ FREE(11 ,ERR= 100)X,Y,Z

100 CALL GETERR(I)
IF (I,EQ.ERSPC)GOTO 200

23-4 Licensed Material-Property of Data General Corporation 093-000154

o

MESSAGE
Outputs a message to the error files and continues program
execution.

Format
CALL MESSAGE(error message)

Argument
error message an aggregate that contains your message

Error Conditions
No error conditions are currently defined.

Notes
When you execute a call to MESSAGE, the FORTRAN 5 error reporter performs an error
traceback and sends your message to the error files. The routine then returns to the calling
program.

Example
CALL MESSAGE ("NONFATAL ERROR #17")

093-000154 Licensed Material-Property of Date General Corporation 23-5

Coding Example

o

End of Chapter

o
23-6 Lic.ensed Material-Property 01 Data General CorporatiOn 093-000154

o

o

Chapter 24
Using Extended Memory

FORTRAN 5 provides you with an explicit method for accessing larger amounts of data than
could fit in your program's address space. This mechanism is called Extended Memory
Mapping, and utilizes the AOS shared page (?SPAGE) mechanism described in the AOS
Programmer's Manual.

Extended Memory Mapping permits you to define a window in your program, usually an
array in named COMMON. Through the window, you access pages of extended memory--~;/
which AOS maintains outside your address space. Extended memory can be up to 255
l024-word blocks long.

Use the MAPDF routine to define the size and4~~ti~~~f this window. Use the REMAP .
routine to place an area of extended memory into the window for access by the program.
Other routines described in this chapter permit you tOQ.riItiaiiz) the contents of extended
memory from a file, or load and dump selected portions of exterioed memory to a file.

Defining the Window Size
Within your FOR1'RAN 5 program, you must align the window in memory on :1:._1024-wor.d - ~,..~ ---.... ~-'-<-.

boundary. To do this, place the array in named COMMON and make it th~!.~t:r~intll~
common block. AOS can then move l024-word pages· of memory via the memory
management hardware (MAP) of the ECLIPSE . The l024-word boundary corresponds to
a physical memory page boundary. J

Aligning the Common Block
Use LINK toalign the common block. Include the name of the common block at the end of the
F5LD command line, and append the / SHARE and / ALIGN = 10 switches to it. LINK aligns
the window and per~!~ _ use of the extended memory routines. Failure to align a wi1}dow
produces the error, (Wil1dQW~Aggr~gqle Does Not Begin On JOU':'WoidBounaar'ji". See
Chapter 1 for more information about LINK. . .. ·1 .~.

{r t

Using Extended Memory in a Multitask Environment
A single program defines only one window map. In a multitaskenvironment, several tasks can
share the same window map. The FORTRAN 5 interfaces to the extended memory facility
do the following:

• allow multiple tasks to concurrently access the same database in extended memory

• enable you to implement a scheme in which each of several tasks has its own window map

Several tasks can concurrently access extended memory through the VFETCH and VST ASH
calls. These calls remap window block 0 to the appropriate extended memory block, and then
transfer a block of words.

093-000154. Licensed Material-ProperlY of Data Gel1.eral Corporation 24-1

\
t.

While one task accesses extended memory through .window block 0, the system suspends
another task's activity through the ?DRSCH/?ERSCH system calls (refer to the AOS
Programmer's Manual). The system can then protect a task's access of extended memory
from other tasks' access, if the blocks of words accessed all lie in the same 1024-word
extended memory block.

You may have a situation where a given task must perform a second remapping operation.
This would bring the next portion of the desired block of extended memory into the window.
When the block of words you want to transfer spans two or more extended memory blocks,
other tasks can gain control and access extended memory.

Transfer Completion
All tasks which call VFETCH and VSTASH use window block 0 as a scratch window block.
Your program must not remap window block 0 on its own if it uses VFETCH or VSTASH .

The VFETCH and VST ASH routines perform the following sequence of actions in a multi task
environment:

1. Disable rescheduling to lock out other tasks.

2. Remap the desired extended memory page into window block O.

3. Perform the transfer of data.

4. Unlock the window, re-enabling task scheduling.

If the transfer involves more than one extended memory block, VFETCH"and VSTASH will
repeat steps one through four until the transfer is complete.

Separate Window Maps
In a multitask environment, you can create a separate window for each of several tasks. First,
allocate a window of n blocks in the call to MAPDF , where n is the number of tasks accessing
extended memory through their own window blocks. Next assign a window block to each task
for its exclusive use (each task performs its own REMAP calls).

Notes:
• The system does not lock the remapping code in the multitask environment .

• The system does not protect an extended memory block if two or more tasks access
it through their separate windows. Unprotected memory blocks are possible and
permissable.

You may find it useful to implement a combination of the above two techniques. A task could
then use the VFETCH / VST ASH facility as well as having its own window block. If you do
this, define the window size as n+ 1 blocks. VFETCH and VSTASH use block 0, and the
program can reserve blocks 1 through n+ 1 as the individual window blocks for the n different
tasks.

24-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

0

0

Virtual Data Files
The routines in this chapter make use of a temporary virtual data disk file. In this file, AOS
maintains any extended memory pages that can no longer reside in main memory.

Before you call MAPDF for the first time, call VOPEN to specify the name of the virtual data
file. If you don't, MAPDF opens a default virtual data file named ?pid.VIRTUAL.DATA.TEMP
where pid is the program's process ID.

You can close an open virtual data file with VCLOSE , then open a different file with VOPEN,
if you wish.

The calls in this chapter exist for both AOS and RDOS, permitting you to write programs
that run under either system.

Interprocess Communication Through Shared Data
Two or more processes can open the same virtual data file with VOPEN and access the same
extended memory data. This mechanism provides an efficient means of interprocess
communication and shared data access. However, it does not provide any data-locking
features.

CVF

DCVF

DVF

ERDB

EWRB

IVF

MAPDF

REMAP

VDUMP

VF

VFETCH

VL6AD

VOPEN

VMEM

VCLOSE

VSTASH

093-000154

The Routines In This Chapter
COMPLEX form for VFETCH

DOUBLE PRECISION COMPLEX form for VFETCH

DOUBLE PRECISION form for VFETCH

Reads a series of blocks from a disk file into extended memory

Writes a series of blocks from extended memory to a disk file.

INTEGER form for VFETCH .

Defines a window map or redefines the default element size.

Alters the mapping of window blocks to extended memory blocks.

Copies all of extended memory to a disk file.

REAL form for VFETCH .

Fetches one or more elements from extended memory.

Initializes all of extended memory using the contents of a disk file.

Opens a virtual data file.

Determines the amount of extended memory available to a program.

Closes a virtual data file.

Copies one or more elements into extended memory.

Licensed Ma1erlal-Property of Data General Corporation 24-3

ERDB
Reads a series of blocks from a disk file into extended memory.

Format
CALL ERDB(unit number,disk block,memory block,blockcount, [partial count,] IER)

Arguments
unit number

disk block

memory block

block count

partial count

IER

an integer that specifies the FORTRAN 5 unit number of a disk file.

an integer that specifies the initial disk block number you want to read.
The first block is block O.

an integer that specifies the initial extended memory quarter block (a
256-word portion of a full 1024-word memory block) number into which
the system reads data.

an integer that specifies the number of disk blocks you want to transfer
(maximum = 255).

an optional integer variable that receives the number of quarter blocks
transferred successfully in the event of an end-of-file condition.

an integer variable that receives the routines completion status code.

Error Conditions
The error conditions that may return in IER are

FEIFN Illegal unit number.

FEBLN Illegal extended memory block number.

FEBLC Illegal block count.

File system codes.
Memory codes.
Miscellaneous codes.

Example
CALL ERDB(3,6,0,4,ICNT,IER)
CALL CHECK(lER)

References
?SPAGE (System call)
?READ (System call)

24-4 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

EWRB
Writes a series of blocks from extended memory to a disk file.

Format
CALL EWRB (unit number,disk block, memory block, block count, /partial count.] IER)

Arguments
unit number

disk block

memory block

block count

partial count

IER

an integer that specifies the FORTRAN 5 unit number of a disk file.

an integer that specifies the initial disk block to which the routine writes
data.

an integer that specifies the initial extended memory quarter block (a
256-word portion of a full 1024-word memory block) number from which
the routine writes data. ERDB rounds this number up to the next multiple
of4.

an integer that specifies the number of disk blocks of data you want to
transfer (maximum = 255).

an optional integer variable that receives the number of quarter blocks
transferred successfully in the event of an end-of-file condition or when
disk file space is exhausted.

an integer variable that receives the routine's completion status code.

Error Conditions
Error codes that may return in IERare

FEIFN

FEBLN

FEBLC

Illegal unit number.

Illegal extended memory block number.

Illegal block count.

File system codes.
Memory codes.
Miscellaneous codes.

Notes
Alias is EWRBLK .

Example
C WRITE QUARTER BLOCKS 3-7 TO DISK BLOCKS 6-10

CALL EWRB(1,6,3,5,ICNT ,IRT)
CALL CHECK (lER)

This call writes thelastquaiter of the first 1024-word extended memory blockand the entire
second memory block to relative disk blocks 6 through 10 on FORTRAN 5 unit 1. If EWRB
exhausts disk file space in the course of writing, INCT receives the number of disk blocks
successfully written.

References
?READ (System call)
?FLUSH (System call)

093-000154 Licensed Material-Property 01 Data General Corporation· 24-5

MAPDF
Defines a window map or redefines the default element size.

Formats
CALL MAPDF(count,window arraY,window size, /element size,} IER)

CALL MAPDF(element size,IER)

Arguments
count

window array

window size

element size

IER

Rules

an integer that specifies the total number of extended memory blocks you
want to use. This number should include blocks in the window, plus any
additional extended memory blocks.

an aggregate in your program through which you make references to
extended memory. You must allocate window array on a I024-word
boundary.

an integer that specifies the size of the window in I024-word blocks.

an integer that specifies the default size of an element in words for use by
VFETCH and VSTASH (if omitted, the element size is 1).

an integer variable that receives the routine's completion status code.

Before you call MAPDF for the first time, call VOPEN to specify the name of the temporary
virtual data file. If you don't, MAPDF opens a default virtual data file named
?pid.VIRTUAL.DATA.TEMP where pid is the program's process ID.

You must align the the common block that contains the window on a I024-word boundary.
See the introduction to this chapter for more information on how to align the common block.

Error Conditions
Error codes that may return in IER are

FEW1K Window aggregate does not begin on a I024-word boundary.

File system codes.
Memory codes.
Miscellaneous codes.

Notes
Only one window can exist within a program.

Two forms exist for this call. Note that you can use the first form only once in a program.
You cannot change the values it establishes except for the element size. You can change this
with the second form of the MAPDF call.

MAPDF uses the variable you supply as count only as a value for use with VLOAD and
VDUMP . The maximum value for count should be 255 plus the size of the window in blocks.

24-6 Licensed Material-Property of Data General Corporation 093-000154

Examples
Example I.

INTEGER WINDOW(2048)
CALL MAPDF(7, WINDOW ,2.4,IER)
CALL CHECK(lER)

In this example, the call sets up a window map using a total of 7 blocks of memory. Since the
aggregate WINDOW is 2048 words in size, the number of additional extended memory blocks
to be allocated is 5. You must set up the array, WINDOW, in common. Then load it so that it
begins on a IK boundary. (You can do this with the LINK! ALIGN switch). The element size is
set to 4, meaning that the routine will access extended memory in multiples of 4 words at a
time.

Example 2.

CALL VMEM (N,IER)
CALL CHECK(lER)

CALL MAPDF(N + 1,IWIND, 1,IER)
CALL CHECK(lER)

In this example, the two calls allocate all available extended memory for use in window
mapping. The window, IWIND , consists of a single IK-word block. The total number of
blocks which participate in the window mapping is n + 1. The routine sets the element size to
1 by default.

Example 3.

C SET UP WINDOW MAPPING
C DEFINE ELEMENT SIZE AS3

CALL MAPDF(7,WINDOW,1,3,IER)

C ACCESS ELEMENTS OF SIZE 3
CALL MAPDF(5,IER)

C ACCESS ELEMENTS OF SIZE 5
CALL MAPDF(3,IER)

093-000154 Licensed Material-Property of Data General Corporation 24-7

REMAP
Alters the mapping of window blocks to extended memory
blocks.

Formats
CALL REMAP(starting window block,starting extended memory block, [number of blocks,;

IER)

CALL REMAP(block number,IER)

Arguments

starting window
block

starting extended
memory block

number of
blocks

block number

IER

Error Conditions

an integer that specifies the number of the starting block in the
window you want to map (window blocks start at 0).

an integer that specifies the number of the starting block in
extended memory to which blocks in the window will be mapped
(must be between 0 and 255).

an integer that specifies the number of blocks you want to remap. If
you omit this argument, the call remaps 1 block.

an integer that specifies the block number in extended memory to
which window block 0 should be mapped.

an integer variable that receives the routine's completion status
code.

Error codes that may return in IER are

FEBLN

FEVOP

Block number in window or map exceeds 255.

Virtual data file not open.

File system codes.
Memory codes.

Notes
Two forms exist for this call. Note that the first form remaps any number of consecutively
numbered window blocks to consecutively numbered extended memory blocks. The second
form is intended mainly for windows of a single block, block O. However, it can also remap
block 0 of a multiple block window.

24-8 Licensed Material-Property of Data General Corporation 093-000154

c

o

o

o

Examples
Example 1.

C MAP BLOCK 0 IN THE WINDOW
C TO BLOCK 3 IN EXTENDED MEMORY

CALL REMAP(3,IER)
CALL CHECK(lER)

Example 2. (Performs the same action as Example 1 using the second format.)

CALL REMAP(O,3,IER)
CALL CHECK(lER)

Example 3.

C MAP BLOCKS 2, 3, AND 4 IN THE WINDOW TO
C BLOCKS 0, 1, AND 2 IN EXTENDED MEMORY , RESPECTIVELY

CALL REMAP(2,O,3,IER)
CALL CHECK(lER)

Reference
?SPAGE (System call)

093-000154 Licensed Material-Property of Data General Corporation 24-9

VCLOSE
Closes a virtual data file.

Format
CALL VCLOSE(IER)

Argument
IER An integer variable that receives the routine's completion status code.

Error Conditions
The error codes that may return in IER are

Channel related codes.
File system codes.

Notes
VCLOSE closes the current virtual data file that was previously opened by VOPEN or MAPDF.
If no data file Was previously open, the error message ERFNO ,,"Channel Not Open" is
returned in IER .

VCLOSE does not flush any modified shared pages before closing the file. Thus, the contents
of the file will not reflect the contents of extended memory at the time of the call to VCLOSE.
Use VDUMP to obtain a disk file copy of extended memory.

VCLOSE does not delete the virtual data file. You must delete this file yourself.

Example
CALL VCLOSE(IER)
CALL CHECK(IER)

Reference
?SCLOSE (System call)

24-10 Licensed Material-Property of Data General Corporation 093-000154

o

0······,
"

o

o

o

VDUMP
Copies all of extended memory to a disk file.

Format
CALL VDUMP(unit number, (block count,] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number on which you

opened the disk file.

block count an integer variable that receives the number of disk blocks successfully
written if the write operation cannot complete. The reasons it may not
complete are an end-of-file condition or if disk space is exhausted on the
virtual data file.

IER an integer variable that receives the routine's completion status code.

Error Conditions
Error codes that may return in IER are

FEIFN Illegal unit number.

File system codes.
Memory codes.

Notes
VDUMP uses the number of extended memory blocks supplied in the count argument of the
MAPDF call to determine the number of blocks to dump.

VDUMP may exhaust the disk file space in the current directory during the write operation. If
this happens, the number of successfully written 256-word disk blocks is returned in ICNT .

Example
CALL VDUMP (2,ICNT,IER)
CALL CHECK (lER)

This call dumps all of extended memory to the disk file opened on FORTRAN 5 unit 2. (You
lose the previous contents of the disk file.)

References
?SPAGE (System call)
?WRITE (System call)

093-000154· Licensed Material-Property 01 Data General Corporation 24-11

VFETCH
Copies one or more elements from extended memory.

Format
CALL VFETCH(data area,index, [elements,fsize]])
IVF(index)
VF(index)
DVF(index)
CVF(index)
DCVF(index)

Arguments
data area

index

elements

size

an aggregate that defines the area into which VFETCH reads data from
extended memory.

an integer that specifies the index of the first element.

an integer that specifies the number of elements you want to fetch (if
omitted, one element is fetched).

an integer that specifies the element size for the current transfer (if
omitted, the permanent element size given by the most recent call to
MAPDF is used).

Error Conditions
The error codes that may result are

FEEDB Extended memory reference out of bounds.

File system codes.

Notes
VFETCH reads elements * size words from extended memory, beginning at offset (index-1 •
size), into the FORTRAN 5 aggregate data area.

Alternate entry points IVF, VF, DVF, CVF, and DCVF allow you to use VFETCH as functions
of several data types. You can use IVF when VFETCH acts as an integer function if you want
to fetch a single word from extended memory. Use VF in the case of·real numbers, when
fetching 2-word elements, etc.

All entry points to VFETCH , including VFETCH itself, are functionally identical. See
Examples 4 and 5 for use of the more readable, array-like syntax for VFETCH . Note that you
must declare DVF, CVF, and DCVF DOUBLE PRECISION, COMPLEX, or DOUBLE
PRECISION COMPLEX (respectively), if used.

24-12 Licensed Malerial-Property of Dala General Corp.oralion 093-000154

o

o

o

o

o

Examples
All examples assume the following:

You set the element size to 4 by a prior MAPDF call.

You declared the variable DX and the array DY as double precision.

Example 1.

C FETCH THE 1200TH 4-WORD ELEMENT INTO VARIABLE
C DX (THE WORDS AT OFFSETS 4796 THROUGH 4799)

CALL VFETCH(DX, 1200)

Example 2.

C FETCH DY(12),DY(13), AND DY(14) FROM
C THE 2500TH, 2501ST, AND 2502ND
C 4-WORD ELEMENTS OF EXTENDED ME:MORY'

CALL VFETCH(DY(12),2500,3)

Example 3.

C
C

FETCH THE 4797TH WORD (AT OFFSET 4797)
OF EXTENDED MEMORY INTO THE INTEGER VARIABLE I
CALL VFETCH (1,4797,1,1)

In Example 3, size temporarily overrides the permanent element size of 4, specified with
MAPDF . Note that you must give elements, even though it is 1, because you gave size.

Example 4.

DOUBLE PRECISION DVF

C FETCH THE 4500TH 4-WORD ELEMENT
C IN EXTENDED MEMORY INTO VARIABLE DX

DX=DVF(4500)
C FETCH THE 5875TH 4-WORD ELEMENT OF EXTENDED
C MEMORY INTO DOUBLE PRECISION ARRAY ELEMENT DY(64)

DY(64) = DVF(5875)

Example 4 shows how you can use the alternate entry points of VFETCH to make VFETCH act
as a function.

093-000164 Lice~sed Material-Property of Data G.eneral Corporation 24-13

VFETCH (continued)

Example 5.

DOUBLE PRECISION DVF
C INTEGER IVF (IMPLICITLY TYPED)

C STATEMENT FUNCTIONS TO SIMULATE
C ARRAYS IN EXTENDED MEMORY

C IVA LOOKS LIKE A 200X20 INTEGER
C ARRAY (FOR READING)

IVA(I,J)=IVF(20"(J-1)+I, 1, 1)

C OVA LOOKS LIKE A 3000-ELEMENT DOUBLE
C PRECISION ARRAY WHICH OCCUPIES EXTENDED
C MEMORY FOLLOWING THE 4000-WORD INTEGER
C " ARRAY" IV A

DVA(I)=DVF(1000+1)

CALL MAPDF(N,IWIND,4,IER)

OX = DVA(4500)
DY(64) = DVA(875)
J = IVA(K,L) + IVA(L,K)

In Example 4, VFETCH treats extended memory as a vector; i.e., linearly subscripted.
Therefore, to provide a syntax for multiple subscripting, you need to include only a statement
function. The statement function performs the mapping of a multiply subscripted indexing
function into a linear subscript. An advantage of this syntax for VFETCH is that you can have
several implicit calls to VFETCH in a single line. Example 4 illustrates this in the assignment
to J .

Note that there is no equivalent syntax for VSTASH . In the definition of statement function
IVA, you must pass an element size of 1 explicitly. This is because we have already defined
the permanent element size as 4 in these examples. For the same reason, you need not pass an
element size in calls to VFETCH under the guise of DVF .

24-14 Licensed Material-ProperlY of Data General Corporation 093-000154

o

o

o

o

o

-0

VLOAD
Initializes all of extended memory using the contents of a disk file.

Format
CALL VLOAD (unit number, /b1ock count,] IER)

Arguments
unit number an integer that specifies the FORTRAN 5 unit number on which you

opened the disk file.

block count an integer variable that receives the number of disk blocks successfully
read if the system cannot complete the read operation due to an
end-of-file condition.

IER an integer variable that receives the routine's completion status code.

Error Conditions
Error codes that may return in IER are

FEIFN

File system codes.
Memory codes.

Example

Illegal unit number.

CALL VLOAD (2,ICNT,IER)
CALL CHECK (IER)

This call loads all extended memory currently defined with the contents of the disk file
opened on FORTRAN 5 unit 2.

If the disk file is smaller than the amount of extended memory currently defined, then the
number of 256-word blocks that were read successfully returned in ICNT .

References
?SPAGE (System call)
?READ (System call)

093-000154 Licensed Material-Property of Data General Corporation 24-15

VMEM
Determines the amount of extended memory available to a
program.

Format
CALL VMEM (count,IER)

Arguments
count an integer variable that receives the number of free l024-word blocks of

extended memory (always returns 255 in AOS).

IER an integer variable that receives the routine's completion status code.

Error Conditions
No error conditions are currently defined.

Notes
This routine exists in AOS to provide compatibility with RDOS. The number of blocks
returned in count is always 255.

Example
CALL VMEM(I,IER)
CALL CHECK(lER)

24-16 Licensed Material-Property of Data General Corporation 093-000154

o

VOPEN
Opens a virtual data file.

Format
CALL VOPEN(pathname,IER)

Arguments
pathname An aggregate that contains the pathname of the disk file you want to use

to buffer virtual data.

IER An integer variable that receives the routine's completion status code.

Rules
If you do not call VOPEN before you call MAPDF , MAPDF opens a temporary virtual data
file with the default name ?pid.VIRTUAL.DATA.TMP where pid is the process ID of the
program.

Error Conditions
The error conditions that may return in IER are

Channel related codes.
File system codes.

Notes
VOPEN allows you to specify the name of the virtual data file that the other routines in this
chapter will use. If the file does not exist, VOPEN creates it. If the file already exists, its file
element size must be 4.

Example
CALL VOPEN(":UDD:LYNNE:VIRTUAL:?TEMPFILE.TMP",IER)
CALL CHECK(lER)

Reference
?SOPEN (System call)

093-000154 Licensed Material-Property of Data General Corporation 24-17

VSTASH
Copies one or more elements into extended memory.

Format
CALL VSTASH (data area,index, [elements,fsize]])

Arguments
data area

index

elements

size

an aggregate that defines the area from which VSTASH writes data into
extended memory.

an integer that specifies the index of the element in extended memory
where VST ASH copies the first of a number of consecutive elements.

an integer that specifies the number of elements you want to copy (if
omitted, one element is copied).

an integer. that specifies the element size for the current transfer (if
omitted, the permanent element size given by the most recent call to
MAPDF is used).

Error Conditions
The error codes that may return in IER are

FEEOB Extended memory reference out of bounds.

File system codes.
Memory codes.

Notes
VSTASH transfers elements * size words from the FORTRAN 5 aggregate data area to
extended memory, beginning at offset (index-1) * size.

Alias is VS .

Examples
Usage of VSTASH is identical to that of VFETCH as described in Examples 1,2, and 3. Note
that you cannot use VSTASH or VS as a function, as you can with VFETCH and its alternate
entry points. (See the last two Examples, 4 and 5, under VFETCH .)

24-18 Licensed Material-Property of Data General Corporation 093-000154

o

Coding Example

o

o
093-000154 Licensed Material-Property of Date General Corporation 24-19

End of Chapter o

o
24-20 Licensed Material-Property of Data General Corporation 093-000154

o Appendix A
FORTRAN 5 Runtime Error Parameters

FORTRAN 5 Errors

Parameter Decimal Octal Default
Message

Value Value Action

FESOV 003076 6004 FATAL Stack overflow

FEDAT 003077 6005 FATAL Insufficient
arguments for data
initialization

FESBS 003078 6006 FATAL Subscript out of
bounds

FEFMT 003079 6007 RECOVERABLE Illegal format item

FEINM 003080 6010 RECOVERABLE Illegal input
number

o FERCL 003081 6011 RECOVERABLE Output record too
long

FERCS 003082 6012 RECOVERABLE Input record too
short

FEIFt-.I 003083 6013 RECOVERABLE Illegal unit number

FEATT 003084 6014 RECOVERABLE Invalid or
inconsistent file
attribute

FESEK 003085 6015 RECOVERABLE Record file
required for seek

FESTK 003086 6016 RECOVERABLE Illegal stack size

FEEVT 003087 6017 RECOVERABLE Illegal event usage

FESQR 003088 6020 TRANSPARENT Illegal argument
forSQRT

FEEXP 003089 6021 TRANSPARENT Illegal argument
for EXP

FELOG 003090 . 6022 TRANSPARENT Illegal argument
for LOG

FEASC 003091 6023 TRANSPARENT Illegal argument
for AS IN or
ACOS o

FEATN 003092 6024 TRANSPARENT Illegal argument
forATAN2

(continues)

093-000154 Lloensed Material-Property of Data General Corporation A-1

FORTRAN 5 Errors

Parameter Dedmal Octal Default
Message Value Value Action

FEPWR 003093 6025 TRANSPARENT Illegal
exponentiation

FEINT 003094 6026 TRANSPARENT Integer overflow on
conversion

FERTN 003095 6027 TRANSPARENT Invalid return

FEFNU 003096 6030 RECOVERABLE Unit number in use

FEMOP 003097 6031 RECOVERABLE Illegal mode for
OPEN

FERCR 00398 6032 RECOVERABLE Record count
required for
contiguous file
create-on-OPEN

FEEOB 003099 6033 FATAL Extended memory
reference out of
bounds

FEW1K 003100 6034 RECOVERABLE Window aggregate
does not begin on
1024-word
boundary

FEBLN 003101 6035 RECOVERABLE Illegal block
number o

FEBLC 003102 6036 RECOVERABLE Illegal block count

FENPC 003103 6037 RECOVERABLE No file
preconnected to a
unit number

FERLN 003104 6040 RECOVERABLE Illegal value for
record length in
LEN = specifier

FELEF 003105 6041 RECOVERABLE Inconsistent
specification for
LEFmode

FEONO 003106 6042 RECOVERABLE Overlay file not
open

FEOAO 003107 6043 RECOVERABLE Overlay file
already open

FETID 003108 6044 RECOVERABLE Illegal task
identifier

FEPRI 003109 6045 RECOVERABLE Illegal task priority

FEEVN 003110 6046 RECOVERABLE Illegal event number

FEPNA 003111 6047 RECOVERABLE Requested partition
not available

FEITU 003112 6050 RECOVERABLE Illegal time units o
code

(continued)

A-2 Licensed Material-Property of Date General Corporation 093-000154

o FORTRAN 5 Errors

Parameter Decimal Octal Default Message
Value Value Action

FERTe 003113 6051 RECOVERABLE No real time clock

FETMQ 003114 6052 RECOVERABLE Too many queue
blocks specified

FEFPU 003115 6053 RECOVERABLE Floating point
hardware not
present

FEMDV 003116 6054 RECOVERABLE Multiply/Divide
hardware not
present

FEMEM 003117 6055 RECOVERABLE InsuffiCient
memory for
FORTRAN 5
program

FEIOP 003118 6056 RECOVERABLE Did not allow for
IOPROG in IOPC
call

FEPTO 003119 6057 RECOVERABLE Program table overflow

FETIL 003120 6060 RECOVERABLE Time interval too large

FEIRN 003121 6061 RECOVERABLE Illegal record '0 number

FEIFV 003122 6062 RECOVERABLE Illegal flag value

FEFPT 003123 6063 FATAL Floating point
status not valid

FEOVF 003124 6064 FATAL Floating point
overflow

FEUNF 003125 6065 TRANSPARENT Floating point
underflow

FEDVZ 003126 6066 TRANSPARENT Floating point
division by zero

FEMOF 003127 6067 TRANSPARENT Floating point
mantissa overflow

FEZER 003128 6070 FATAL Infinite loop at
location 0

FENTH 003129 6071 FATAL No floating pt trap
handler loaded

FEWNA 003130 6072 FATAL Wrong number of
arguments supplied

FEUSR 003131 6073 FATAL User exit

FEVOP 003132 6074 FATAL Virtual data file
o

not open (continued)

093-000154· Licensed Material-Property of Date General Corporation A-3

System Errors

Parameter Decimal Octal Message Value Value

ERICM 000004 00004 ILLEGAL SYSTEM
COMMAND

ERFNO 000005 000005 CHANNEL NOT OPEN

EROPR 000006 000005 CHANNEL ALREADY OPEN

ERSAL 000007 000007 SHARED I/O REQ NOT MAP
SLOT ALIGNED

ERMEM 000008 000010 INSUFFICIENT MEMORY
AVAILABLE

ERADR 000009 000011 ILLEGAL STARTING ADDRESS

EROVN 000010 000012 ILLEGAL OVER LA Y
NUMBER

ERIM 000011 000013 ILLEGAL TIME ARGUMENT

ERNOT 000012 000014 NO TASK CONTROL BLOCK
AVAILABLE

ERXMT 000013 000015 SIGNAL TO ADDRESS
ALREADY IN USE

ERQTS 000014 000016 ERROR IN QTASK REQUEST

ERTID 000015 000017 TASK I.D. ERROR

ERDCH 000016 000020 DATA CHANNEL MAP FULL

ERMPR 000017 000021 SYSTEM CALL PARAMETER
ADDRESS ERROR

ERABT 000018 000022 TASK NOT FOUND FOR
ABORT

ERIRB 000019 000023 INSUFFICIENT ROOM IN
BUFFER

ERSPC 000020 000024 FILE SPACE EXHAUSTED

ERSFT 000021 000025 USER STACK FAULT

ERODE 000022 000026 DIRECTORY DOES NOT
EXIST

ERIFC 000023 000027 ILLEGAL FILENAME
CHARACTER

ERFDE 000024 000030 FILE DOES NOT EXIST

ERNAE 000025 000031 FILE NAME ALREADY
EXISTS

ERNAD 000026 000032 NON-DIRECTORY
ARGUMENTS IN
PATH NAME (continued)

A-4 Licensed Material-Property of Data General Corporation 093-000154

o System Errors

Parameter Decimal Octal Message Value Value

ERE OF 000027 000033 END OF FILE

ERDID 000028 000034 DIRECTORY DELETE ERROR

ERWAD 000029 000035 WRITE ACCESS DENIED

ERRAD 000030 000036 READ ACCESS DENIED

ERAWD 000031 000037 APPEND AND/OR WRITE
ACCESS DENIED

ERNMC 000032 000040 NO CHANNELS AVAILABLE

ERSRL 000033 000041 RELEASE OF NON-ACTIVE
SHARED SLOT

ERPRP 000034 000042 ILLEGAL PRIORITY

ERBMX 000035 000043 ILLEGAL MAX SIZE ON
PROCESS CREATE

ERPTY 000036 000044 ILLEGAL PROCESS TYPE

ERCON 000037 000045 CONSOLE DEVICE
SPECIFICATION ERROR

ERNSW 000038 000046 SWAP FILE SPACE
o

EXHAUSTED

ERIBS 000039 000047 DEVICE ALREADY IN
SYSTEM

ERDNM 000040 000050 ILLEGAL DEVICE CODE

ERSHP 000041 000051 ERROR ON SHARED SET

ERRMP 000042 000052 ERROR ON REMAP CALL

ERGSG 000043 000053 ILLEGAL GHOST GATE
CALL

ERPRN 000044 000054 NUMBER OF PROCESSES
EXCEEDS 64

ERNEF 00045 000055 IPC MESSAGE EXCEEDS
BUFFER LENGTH

ERIVP 000046 000056 INVALID PORT NUMBER

ERNMS 000047 000057 NO MATCHING SEND

ERNOR 000048 000060 NO OUTSTANDING
RECEIVE

o ERIOP 000049 000061 ILLEGAL ORIGIN PORT

ERIDP 000050 000062 ILLEGAL DESTINATION
PORT

(continued)

093-000154 Licensed Malerial-Property of Data General Corporation A-5

System Errors
O,d, ','"

i . ' •

Parameter Decimal Octal
Message Value Value

ERSEN 000051 000063 INVALID SHARED LIBRARY
REFERENCE

ERIRL 000052 000064 ILLEGAL RECORD LENGTH
SPECIFIED (=0)

ERARC 000053 000065 ATTEMPT TO RELEASE
CONSOLE DEVICE

ERDAI 000054 000066 DEVICE ALREADY IN USE

ERARU 000055 000067 ATTEMPT TO RELEASE
UNASSIGNED DEVICE

,

ERACU 000056 000070 ATTEMPT TO CLOSE
UNOPEN
CHANNEL/DEVICE

ERITC 000057 000071 I/O TERMINATED

ERLTL 000058 000072 LINE TOO LONG

ERPAR 000059 000073 PARITY ERROR

EREXC 000060 000074 RESIDENT PROC TRIED TO
PUSH (.EXEC) o

ERNDR 000061 000075 NOT A DIRECTORY

ERNSA 000062 000076 SHARED I/O REQUEST NOT
TO SHARED AREA

ERSNM 000063 000077 ATTEMPT TO CREATE>
MAX # OF SONS

ERFIL 000064 000100 FILE READ ERROR

ERDTO 000065 000101 DEVICE TIMEOUT

ERIOT 000066 000102 WRONG TYPE I/O FOR
OPEN TYPE

ERFTL 000067 000103 FILENAME TOO LONG

ERBOF 000068 000104 POSITIONING BEFORE
BEGINNING OF FILE

ERPRV 0000069 000105 CALLER NOT PRIVILEGED
FOR THIS ACTION

ERSIM 000070 000106 SIMULTANEOUS REQUESTS
ON SAME CHANNEL

ERIFT 000071 000107 ILLEGAL FILE TYPE

ERNRD 000072 000110 INSUFFICIENT ROOM IN
DIRECTORY o

(continued)

A-6 Licensed Material-Property of Data General Corporation 093-000154

System Errors

Parameter Decimal Octal Message Value Value

ERILO 000073 000111 ILLEGAL OPEN

ERPRH 000074 000112 ATTEMPT TO ACCESS PROC
NOT IN HIERARCHY

ERBLR 000075 000113 ATTEMPT TO BLOCK
UNBLOCKABLE PROC

ERPRE 000076 000114 INVALID SYSTEM CALL
PARAMETER

ERGES 000077 000115 ATTEMPT TO START
MULTIPLE GHOSTS

ERCIU 000078 000116 CHANNEL IN USE

ERICB 000079 000117 INSUFFICIENT
CONTIGUOUS DISK BLOCKS

ERSTO 000080 000120 STACK OVERFLOW

ERIBM 000081 000121 INCONSISTENT BIT MAP
DATA

ERBSZ 000082 000122 ILLEGAL BLOCK SIZE FOR
DEVICE

ERXMZ 000083 000123 ATTEMPT TO XMT ILLEGAL
MESSAGE

ERPUF 000084 000124 PHYSICAL UNIT FAILURE

ERPWL 000085 000125 PHYSICAL WRITE LOCK

ERUOL 000086 000126 PHYSICAL UNIT OFFLINE

ERIOO 000087 000127 ILLEGAL OPEN OPTION FOR
FILE TYPE

ERNDV 000088 000130 TOO MANY OR TOO FEW
DEVICE NAMES

ERMIS 000089 000131 DISK AND FILE SYS REV #'S
DON'T MATCH

ERIDD 000090 000132 INCONSISTENT DIB DATA

ERILD 000091 000133 INCONSISTENT LD

ERIDU 000092 000134 INCOMPLETE LD

ERIDT 000093 000135 ILLEGAL DEVICE NAME TYPE

ERPDF 000094 000136 ERROR IN PROCESS UST

o DEFINITION

ERVIU 000095 000137 LD IN USE, CANNOT
RELEASE

(continued)

093-000154 Licensed Material-Property of Data General Corporation A-7

System Errors

Parameter Decimal Octal Message
Value Value

ERSRE 000096 000140 SEARCH LIST RESOLUTION
ERROR

ERCGF 000097 000141 CAN'T GET IPC DATA FROM
FATHER

ERILB 000098 000142 ILLEGAL LIBRARY
NUMBER GIVEN

ERRFM 000099 000143 ILLEGAL RECORD FORMAT

ERARG 000100 000144 TOO MANY OR TOO FEW
ARGUMENTS TOOPMGR

ERIGM 000101 000145 ILLEGAL ?GTMES
PARAMETERS

ERICL 000102 000146 ILLEGAL CLI MESSAGE

ERMRD 000103 000147 MESSAGE RECEIVE
DISABLED

ERNAC 000104 000150 NOT A CONSOLE DEVICE

ERMIL 000105 000151 ATTEMPT TO EXCEED MAX
INDEX LEVEL

ERICN 000106 000152 ILLEGAL CHANNEL o
ERNRR 000107 000153 NO RECEIVER WAITING

ERSRR 000108 000154 SHORT RECEIVE REQUEST

ERTIN 000109 000155 TRANSMITTER
INOPERATIVE

ERUNM 000110 000156 ILLEGAL USER NAME

ERLIN 000111 000157 ILLEGAL LINK #

ERDPE 000112 000160 DISK POSITIONING ERROR

ERTXT 000113 000161 MSG TEXT LONGER THAN
SPEC'D

ERSTR 000114 000162 SHORT TRANSMISSION

ERHIS 000115 000163 ERROR ON HISTOGRAM
INIT /DELETE

ERIRV 000116 000164 ILLEGAL RETRY VALUE

ERASS 000117 000165 ASSIGN ERROR - ALREADY
YOUR DEVICE

ERPET 000118 000166 MAG TAPE REQ PAST
LOGICAL END OF TAPE

ERSTS 000119 000167 STACK TOO SMALL (?TASK) (continued)
o

A-a Licensed Material-Property of Data General Corporation 093-000154

System Errors

Parameter Decimal Octal
Message Value Value

ERTMT 000120 000170 TOO MANY TASKS
REQUESTED (?TASK)

ERSOC 000121 000171 SPOOLER OPEN RETRY
COUNT EXCEEDED

ERACL 000122 000172 ILLEGALACL

ERWPB 000123 000173 ?STMAP BUFFER INVALID
OR WRITE PROTECTED

ERINP 000124 000174 IPC FILE NOT OPENED BY
ANOTHER PROC

ERFPU 000125 000175 FPU HARDWARE NOT
INSTALLED

ERPNM 000126 000176 ILLEGAL PROCESS NAME

ERPNU 000127 000177 PROCESS NAME ALREADY
IN USE

EROCT 000128 000200 DISCONNECT ERROR
(MODEM CONTROLLED)

o ERIPR 000129 000201 NONBLOCKING PROC
REQUEST ERROR

ERSNI 000130 000202 SYSTEM NOT INSTALLED

ERLVL 000131 000203 MAX DIRECTORY TREE
DEPTH EXCEEDED

ERROO 000132 000204 RELEASING OUT-OF-USE
OVERLAY

ERROL 000133 000205 RESOURCE DEADLOCK

ERE01 000134 000206 FILE IS OPEN, CAN'T
EXCLUSIVE OPEN

ERE02 000135 000207 FILE IS EXCLUSIVE OPEN,
CAN'T OPEN

ERIPO 000136 000210 INIT PRIVILEGE DENIED

ERMIM 000137 000211 MULTIPLE ?IMSG CALLS TO
SAMEDCT

ERLNK 000138 000212 ILLEGAL LINK

ERIOF 000139 . 000213 ILLEGAL DUMP FORMAT

ERXNA 000140 000224 EXEC NOT A V AILABLE
(MOUNT, ETC.)

ERXUF 000141 000225 EXEC REQUEST FUNCTION
UNKNOWN

(continued)

093-000154 Licensed Material-Property of Data General Corporation A-9

System Errors

Parameter Decimal Octal Message Value Value

ERESO 000142 000225 ONLY EXEC'S SONS CAN
DO THAT

ERRBO 000143 000226 REFUSED BY OPERATOR

ERWMT 000144 000227 VOLUME NOT MOUNTED

ERISV 000145 000230 ILLEGAL SWITCH VALUE
(>65K DECIMAL)

ERIFN 000146 000231 INPUT FILE DOES NOT
EXIST

EROFN 000147 000232 OUTPUT FILE DOES NOT
EXIST

ERLFN 000148 000233 LIST FILE DOES NOT EXIST

ERDFN 000149 000234 DATA FILE DOES NOT
EXIST

ERGFE 000150 000235 RECURSIVE GENERIC FILE
OPEN FAILURE

ERNMW 000151 000236 NO MESSAGE WAITING

ERNUD 000152 000237 USER DATA AREA DOES o
NOT EXIST

ERDVC 000153 000240 ILLEGAL DEVICE TYPE
FROM AOSGEN

ERRST 000154 000241 AOS RESTART OF SYSTEM
CALL

ERFUR 000155 000242 PROBABLY FATAL
HARDWARE RUNTIME
ERROR

ERCFT 000156 000243 USER COMMERCIAL STACK
FAULT

ERFFT 000157 000244 USER FLOATING POINT
STACK FAULT

ERUAE 000158 000245 USER DATA AREA
ALREADY EXISTS

ERISO 000159 000246 ILLEGAL SCREEN-EDIT
REQUEST (PMGR)

ERCPD 000162 000251 CONTROL pOINT
DIRECTORY MAX SIZE
EXCEEDED

ERNSD 000163 000252 SYS OR BOOT DISK NOT
PART OF MASTER LD o

(continued)

A-10 licensed Material-Property of Date General Corporation 093-000154

System Errors

Parameter
Decimal Octal Message

Value Value

ERUSY 000164 000253 UNIVERSAL SYSTEM, YOU
CAN'T DO THAT

EREAD 000165 000254 EXECUTE ACCESS DENIED

ERFIX 000166 000255 CAN'T IN IT LD, RUN FIXUP
ON IT

ERFAD 000167 000256 FILE ACCESS DENIED

ERDAD 000168 000257 DIRECTORY ACCESS
DENIED

ERIAD 000169 000260 ATTEMPT TO DEFINE> 1
SPECIAL PROC

ERIND 000170 000261 NO SPECIAL PROCESS IS
DEFINED

ERPRO 000171 000262 ATTEMPT TO ISSUE MCA
REQUEST WITH

ERDIO 000172 000263 ATTEMPT TO ISSUE MCA
DIRECT I/O WITH

ERLTK 000173 000264 LAST TASK WAS KILLED

ERLRF 000174 000265 RESOURCE LOAD OR
RELEASE FAILURE

ERNNL 000175 000266 ZERO LENGTH FILENAME
SPECIFIED

ERBOV 000176 000267 BUFFER OVERFLOW

ERNAK 000177 000270 TRANSMISSION FAILURE
(NAK) COUNT

ERTOF 000178 000271 TRANSMISSION FAILURE
(TIMEOUTS)

ERDIS 000179 000272 DISCONNECT OCCURRED
ON SYNC LINE

EREOT 000180 000273 EOT CHARACTER
RECEIVED

EROTH 000181 000274 POSSIBLE LOST DATA ON
HASP

ERDCU 000182 000275 DCU INOPERATIVE (CAN'T
BE INITIALIZED)

ERCNV 000183 000276 CONVERSATIONAL REPLY
RECEIVED

EREPL 000184 000277 END OF POLLING LIST
REACHED (continued)

093-000154 Licensed Material-Property of Data General Corporation A-11

System Errors

Parameter Decimal Octal
Message Value Value

ERIRT 000185 000300 ILLEGAL RELATIVE
TERMINAL NUMBER

ERRVI 000186 000301 RVI RESPONSE RECEIVED

ERLIN 000187 000302 ILLEGAL LINE NUMBER

ERPlS 000188 000303 NOT ENOUGH SPACE FOR
POLL LISTS

ERCTN 000189 000304 CONTENTION SITUATION
WHILE BIDDING

ERSEQ 000190 000305 OUT-OF-SEQUENCE GEN
ENTRY DURING SINIT

ERNSl 000191 000306 ATTEMPT TO ENABLE
NON-SYNC LINE

ERIMM 000192 000307 NOT ENOUGH MEMORY
FOR POLL/SELECT LIST

EREPE 000193 000310 LINE ALREADY ENABLED
ON ?SEBL CALL

ERDSl 000194 000311 LINE ALREADY DISABLED
ON ?SDBL CALL

ERlNA 000195 000312 I/O REQUEST FOR
DISABLED LINE

ERLIS 000196 000313 LINE IN SESSION ON ?SSND
INITIAL CALL

ERSCS 000197 000314 ?SSND CONTINUE
WITHOUT LINE IN SESSION

ERBCT 000198 000315 SEND BYTE COUNT
EXCEEDS SYSTEM BUFFER

ERBNK 000199 000316 BID ERROR (TOO MANY
NAKS)

ERWAB 000200 000317 W ABT RECEIVED (HASP
LINE ONLY)

ERBPE 000201 000320 USER BUFFER BYTE
POINTER INVALID

ERBRT 000202 000321 RETRY COUNT EXCEEDED

ERETX 000203 000322 'ETX' CODE RECEIVED

ERISE 000204 000323 INPUT STATUS ERROR
(FORMAT)

ERFCT 000205 000324 FAILURE TO CONNECT

(continued)

A-12 licensed Material-Property of Data General Corporation 093-000154

System Errors

Parameter Decimal Octal Message
Value Value

ERUNI 000206 000325 UN INTERPRETABLE
RESPONSE RECEIVED

ERENQ 000207 000326 ENQ RECEIVED AFTER
TIME-OUT

ERCRC 000208 000327 CRCCHECK

ERINE 000209 000330 INITIALIZATION
PARAMETER ERROR

ERTRF 000210 000331 TRANSMITTER FAILURE
ERROR

ERLNM 000211 000332 LINE NOT MULTIPOINT

ERNCS 000212 000333 NOT A CONTROL STATION

ERNPL 000213 000334 POLLING LIST NOT
DEFINED

ERITF 000214 000335 INCOMPATIBLE LPB TAB
FORMAT

ERPRM 000215 000336 CANNOT DELETE
PERMANENT FILE

ERSCA 000216 000337 SYSTEM CALL ABORT

ERCAD 000217 000340 EXTENDED CONTEXT
ALREADY DEFINED

ERLAB 000218 000341 UNREADABLE TAPE LABEL

ERVOL 000219 000342 INCORRECT LABELED TAPE
VOLUME MOUNTED

ERFSI 000220 000343 INCORRECT LABELED TAPE
FILE SET

ERSEC 000221 000344 INCORRECT LABELED TAPE
FILE SECTION NUMBER

ERGEN 000222 000345 INCORRECT LABELED TAPE
FILE GENERATION
NUMBER

ERVER 000223 000346 INCORRECT LABELED TAPE
FILE VERSION NUMBER

ERNOA 000224 000347 NO OPERATOR A V AILABLE

ERREV 000225 000350 UNKNOWN LABELED TAPE
LABEL REVISION

ERCAI 000226 000351 EXTENDED CONTEXT
ALREADY INITIALIZED o

(continued)

093-000154 Licensed Material-Property of Data General Corporation A-13

System Errors

Parameter Decimal Octal
Message Value Value

ERCNI 000227 000352 EXTENDED CONEXT NOT
INITIALIZED

ERCND 000228 000353 EXTENDED CONTEXT NOT
DEFINED

ERMRL 000228 000354 MEMORY RELEASE ERROR

ERITP 000229 000355 TRANSLATION
(?READ/?WRITE) ERROR

ERNAG 000230 000356 NO SUCH ARGUMENT -
?GTMES

ERNCF 000231 000357 NOT IN CLI FORMAT-
?GTMES

ERBIF 000232 000360 ILLEGAL BIAS FACTOR

ERTLM 000233 000361 CPU TIME LIMIT
EXCEEDED

ERSMX 000234 000362 ERROR IN SETTING MAX
CPU LIMIT

ERSMX 000235 000363 ERROR IN MAX CPU LIMIT

ERNM4 000236 000364 ELEMENT SIZE NOT A o
MULTIPLE OF 4

ERWAK 000237 000365 WACK RESPONSE
RECEIVED (SYNC LINE)

ERNAS 000238 000366 PROCESS IS NOT A SERVER

ERCDE 000239 000367 CONNECTION DOES NOT
EXIST

ERCTF 000240 000370 CONNECTION TABLE FULL

ERDIU 000241 000371 DIRECTORY IN USE-
CANNOT DELETE

ERSHG 000242 000372 ATTEMPT TO GROW GHOST
SHARED I/O FILE

ERNIN 000243 000373 ILLEGAL DIRECTORY
SPECIFICATION

ERNNA 000244 000374 NETWORK NOT AVAILABLE

ERHAE 000245 000375 HOST ALREADY EXISTS

ERHID 000246 000376 ILLEGAL HOST
SPECIFICATION

ERHNE 000247 000377 HOST DOES NOT EXIST
(continued)

A-14 Licensed Material-Property of Data General Corporation 093-000154

System Errors

Parameter
Decimal Octal Message Value Value

ERCAH 000248 000400 CAN'T RENAME HOSTS

EREMB 000249 000401 EMPTY MAILBOX ON
?RECNU

ERRRR 000250 000402 REMOTE RESOURCE
REFERENCE MADE

ERCMH 000251 000402 ATTEMPT TO CREATE
MULTIPLE LOCAL HOSTS

ERNAI 000252 000403 NOT AWAITING ?IWKUP

ERIRP 000253 000404 ILLEGAL REMOTE ?PROC
PARAMETERS

ERIHN 000254 000405 ILLEGAL HOST NAME

ERNFC 000255 000406 NOT PROPER FOR A
VIRTUAL CIRCUIT

ERWSZ 000256 000407 HDLC - INVALID WINDOW
SIZE

ERFSZ 000257 000410 INVALID FRAME SIZE

ERSOA 000258 000411 SEND ACTIVE

ERCTY 000259 000412 INVALID CALL TYPE

EROSC 000260 000413 REMOTE IS
DISCONNECTING

ERRIE 000261 000414 LOCAL RECEIVED INVALID
RESPONSE

ERRCE 000262 00415 LOCAL RECEIVED CMDR

ERCSE 000263 000416 LOCAL IS IN "CAN'T" SEND

ERLOC 000264 000417 LOCAL IS DISCONNECTING

ERRES 000265 000420 LOCAL WAS RESET

ERBFO 000266 000421 BUFFER OVERFLOW

ERRCA 000267 000422 RECEIVE ACTIVE

ERINF 000268 000423 INITIALIZATION FAILED

ERINC 000269 000424 LOCAL RECEIVED INVALID
COMMAND

ERNHL 000270 000425 NON-HDLC ENABLE
ATTEMPTED

ERKAO 000271 000426 INTERRUPT WAIT TASK o
ALREADY DEFINED

(continued)

093-000154 Licensed Material-Property of Data General Corporation A-15

System Errors

Parameter Decimal Octal Message
Value Value

EROSE 000272 000427 MAP SLOT ERROR

ERGBE 000273 000430 GET BUFFER ERROR

ERDIE 000274 000431 SYNC DCU INOPERATIVE

ERFOE 000275 000432 ERROR OPENING SLDCU.PR

ERFRE 000276 000433 ERROR READING SLDCU.PR

ERFCE 000277 000435 ERROR CLOSING SLDCU.PR

ERGME 000278 000436 ERROR GETTING MEMORY

ERUNK 000279 000437 UNKNOWN ERROR

ERCBK 000280 000440 CONNECTION HAS BEEN
BROKEN

ERNDC 000281 000441 ATTEMPTED HDLC CALL
WITH NO DCU200

ERCCS 000282 000442 CANNOT CONNECT TO
SELF

ERVNC 000283 000443 NO CONNECTION

ERCDN 000284 000444 CONTROLLER DOES NOT
SUPPORT THIS DENSITIY
MODE

ERITD 000285 000445 INDECIPHERBLE TAPE
DENSITY

ERFTM 000286 000446 FILE/TAPE MISMATCH

(concluded)

End of Appendix

A-16 Licensed Material-Property of Data General Corporation 093-000154

AppendixB
Exceptional Condition Codes

This appendix categorizes and describes the exceptional condition codes (from ERICM
through ER VSY) you receive in ACO when any system call takes an exception return.

Certain exception codes (such as ERMPR, "system call parameter address error") are listed
in several categories. Codes are listed alphabetically in each category. The categories are
listed in the following order:

Channel-Rela ted
File System
Initialization and Release
IPC
Memory
Miscellaneous
Process
System Call
Task
User Device
Synchronous Line

Exceptional conditions are defined parametrically in the user parameter file, PARU.sR. The
system provides an error message file named ERMES which contains a textual description of
each error code; you can read the description associated with an error code by issuing system
call ?ERMSG or CLI command MES.

Channel-Related Codes

Mnemonic Description

ERACU Attempt to close an unopened channel.

ERCIU Channel in use. Attempt to close a channel with shared pages in use. You
must first release the shared pages; only then can you close the channel. In
?GNFN, another system call is outstanding on this channel. You can
receive this error from ?GNFN only in a multi task program.

ERFNO The channel you used in this call is not currently open.

ERICN Attempt to use a channel number outside the legal range, 0 through 77
octal.

ERNDR The channel specified to ?GNFN is not opened on a directory.

ERNMC No free channels. A process cannot have more than 64 channels open at
one time.

(continues)

093-000154 Licensed Material-Property of Data General Corporation 8-1

File System Codes o
Mnemonic Description

ERACL You specified an illegal ACL in an ?SACL cal1.

ERACN File entry has no Access Control List (returned by ?GACL).

ERAWD You attempted to ?CREATE a file without having write-access to the
directory which was to contain the file.

ERBOF You tried to set the file pointer before the beginning of the file
(?IRNH/?IRNL of I/O packet set to too .Jarge a negative value).

ERBSZ Attempted read or write of a block with an odd number of characters.

ERCPD You issued a cal1 which requested more disk space than is available in the
control point directory.

ERDAD Directory access is denied to you.

ERDCT Modem was disconnected before the completion of a ?READ or
?WRITE.

ERDDE Directory does not exist.

ERDTO Device timed out.

EREAD Execute access is denied to you.

EREOF End of file. In ?GNFN, this means that there are no more directory entries. o
ERE01 You attempted to open a file exclusively (?IEXO in the ?OPEN packet),

yet the file was already open.

ERE02 You attempted to open a file which was already opened exclusively
(?IEXO in the ?OPEN packet).

ERFAD File access is denied to you.

ERFDE Filename does not exist. A filename in a pathname was not found, or the
user has no access to that entry. Alternatively, a process's console port
number was requested, and the process has no console.

ERFIL File read error.

ERFTL You used a filename which was too long; 31 characters is the maximum length.
In ?GNFN, your template's length exceeded the 63-character maximum.

ERICB Not enough contiguous blocks to al10cate a disk file element.

ERIFC Illegal filename character. Legal filename characters are limited to the
following: A through Z, a through z, 0 through 9, period (.), dol1ar sign
($), question mark (?), and underscore (SHIFT 0). Illegal template
characters in ?GNFN.

ERIFT Illegal file type. You tried to create a file with an unknown system file type.

ERILB Illegal library number. Perhaps you deleted or altered the symbol table
file (.ST) associated with your program, or you did not make available
one or more shared libraries which were required by your program.
Ensure that required shared libraries are either present in your working o
directory or are listed in your process's search list.

(continued)

8-2 Licensed Material-Property of Date General Corporation 093-000154

File System Codes (continued)

Mnemonic Description

ERILN Illegal MCA link number. Link number is outside the range 1-15 for a
transmitter, or 0-15 for a receiver.

ERILO You attempted to ?SOPEN a file whose element size is not a multiple of 4.

ERIOT Illegal type of I/O, e.g., ?RDB/?WRB to a character device.

ERIRB You supplied a user buffer as a call parameter, and the buffer was too
small.

ERIRL Illegal record length in variable record header. A nondigit was found in
the 4-byte length field of a variable record header.

ERIRV You specified an illegal retry value in ?PRNL to a ?WRB call for MCA
I/O.

ERITC I/O has been terminated by a ?CLOSE call.

ERITF Incompatible tab format. The data channel line printer has received an
unexpected tab character. The I/O request is aborted.

ERLNK Attempt to create a link whose length exceeds 256 bytes.

ERLTL Line too long. On a data sensitive read or write, the maximum line length
was exceeded before a terminator was detected.

o ERLVL You attempted to create a directory at a tree depth which exceeds the
system maximum.

ERMIL Attempt to exceed the maximum index level, or file exceeds its maximum
permissible size.

ERMPR System call parameter address error.

ERNAD Used a nondirectory argument in a pathname. All filenames in a
pathname, except the last filename, must be filenames of directories. For
magnetic tape or MCA units, the last filena~e may have the form unit:n,
where unit is a magnetic tape or MCA unit, and n is a decimal number.
For labeled mag tape, the last two entries must be :volid:fllid.

ERNAE Filename already exists. You attempted to create a directory entry with a
name that is already in use.

ERNRD Insufficient room in directory. Directories can be a maximum of 211
blocks long.

ERNRR MCA transmitter timeout because no ready receiver was found.

ERNSA You requested shared I/O into a nonshared area. Alternatively, memory
addresses and/or I/O size are not entirely within the current shared area.

EROPR You attempted to open a channel that is already open.

ERPAR Parity error.

ERPET You tried to read beyond a double tape mark, the logical end of tape.

o ERPRM Permanent file delete error. The file is permanent and cannot be deleted.

ERPUF Physical unit failure. (continued)

093-000154 Licensed Material-Property of Data General Corporation 8-3

File System Codes (continued) o
Mnemonic Description

ERPWL Physicalwrite lock. Write enable ring is missing from a magnetic tape reel
and writing was attempted.

ERRAD Read access is denied to you.

ERRFM Illegal or unspecified record format.

ERSAL You issued a shared I/O request, and either the memory address to be
used in the transfer does not begin on a 2K-byte boundary or the number
of blocks in the transfer is not a multiple of 4.

ERSIM Simultaneous requests have been made on the same channel; another task
has an active request on this channel.

ERSPC Disk file space is exhausted, or an end-of-tape mark was detected on a
write to magnetic tape.

ERSRE Search list resolution error. Alternatively, some other file system error was
received when the system attempted to resolve a directory name in the pathname.

ERSRR MeA transmission was not completely received because the receiver
requested less than the full transmission.

ERSTR MeA transmission was shorter than requested by the receiver.

ERTIN MeA transmitter failure detected upon an attempted read.

ERUOL Physical unit is offline. o
ERVIU LD is. in use; the attempted release cannot be performed.

ERWAD Write access is denied to you.

Initialization and Release Codes

Mnemonic Description

ERARC Attempt to release the console device.

ERARG Internal system I/O error.

ERARU Attempt to desassign an unassigned device.

ERDAI Device is already in use. You attempted to assign or open a device that
was assigned to another process.

ERDVC Illegal device type. AOSGEN information is inconsistent. Either device
information was entered incorrectly, or it was modified since SYSGEN.

ERFIX LD needs to be fixed (use the FIXUP utility).

ERIBS The device you attempted to initialize is already initialized.

ERIDD The system found inconsistent data in a system database called a Disk
Information Block (DIB); your LD cannot be initialized.

ERIDT You attempted to initialize a spooled device (e.g., @LPT).
(continued)

o
8-4 Licensed Material-Property of Data General Corporation 093-000154

Initialization and Release Codes (continued)

Mnemonic Description

ERIOU The set of disks you tried to initialize do not form the complete LD which
was specified to the DFMTR utility.

ERILO The set of disks you tried to initialize belong to two or more different LDs.

ERMIS The disk revision number and file system revision number do not match.

ERIPO Initialization privilege denied. You tried to initialize an LD, but you do not
have owner access to its root directory and you were not in superuser mode.

ERVIU You tried to release an LD that is in use.

ERVNI LD is not initialized, so it cannot be released.

IPC Codes

Mnemonic Description

ERIOP Illegal destination port number.

ERIOP Illegal origin port number.

ERIVP Invalid port number. Either the number is outside the legal range, or it is
not assigned.

ERMPR System call address error (see also System Call Codes).

ERNEF IPC message was longer than the buffer that was to receive it.

ERNMS No matching send request in IPC spool file, and the receiver did not
specify ?IFBNK, i.e., that it should be suspended if no message was ready.

ERNOR No outstanding receive request, and the sender does not want the message
to be spooled.

Memory Codes

Mnemonic Description

ERAOR Illegal starting address. The program file's starting address does not lie
within its address space.

ERMEM Insufficient amount of memory available. Possibly you have attempted to
exceed the maximum amount of core memory which was allotted to your
process when it was created.

ERNSW Out of swap file space. Contiguous disk space for this image cannot be allocated.

EROVN Illegal overlay number; the overlay area is not currently occupied by the
specified overlay; or, the overlay number could not be found in the overlay
directory.

ERROL Resource deadlock. (For further information, see the general procedure
call ?KCALL.) (continued)

093-000154 Licensed Material-Property of Data General Corporation 8-5

Memory Codes (continued)

Mnemonic Description

ERROO Attempt to release an overlay (by ?OVREL, ?OVEX, or ?OVKIL) that
was not in use.

ERSEN The external reference you specified in a shared routine call did not exist
in the system tables found in user space (you may have overwritten the
area below ?USTART inadvertently).

ERSHP Error upon setting a shared partition. The pages you specified are already
in an unshared area, or are otherwise illogical.

ERSRL Attempt to release a shared page via ?RPAGE when that page is not in use.

Miscellaneous Codes

Mnemonic Description

ERASS You tried to assign a device which was already assigned.

ERBSZ Illegal block size for device.

ERCGF Indeterminate internal system error upon either an attempted ?PROC or
?OPEN of a generic filename. If upon a ?PROC, the new process will not
be created. If upon an ?OPEN, a fatal system error is indicated, perform
a memory dump for system analysis.

ERDID You tried to delete a directory containing entries of one or more inferior
directories, or you tried to delete the working directory (" = ").

ERDIF Illegal dump format, a fatal system error, was detected during the initial
system load. Try cleaning the tape heads and repeat the load procedure. If
this fails to help, you probably have a bad system tape.

ERDIO Attempt to issue MCA direct I/O request while device queue contains an entry.

ERESO You attempted to issue ?EXEC from a process which was not created by EXEC.

ERFUR Fatal user runtime error. This error indicates an internal system error
detected by a routine from URT.LB. Contact your local Data General
representative.

ERGES Internal system error; process is terminated.

ERHIS Illogical histogram packet, or attempt to start a second histogram when a
first already exists.

ERIBM Inconsistent data in block allocation map; a fatal system error. This error
can occur when disk blocks are allocated or deallocated.

ERICL Message targeted by ?GTMES has an illegal format.

ERIGM You used an illegal parameter in a ?GTMES call.

ERISV You attempted to pass a switch whose value exceeds 216 -1.

ERLRF Resource load or release failure.
(continued)

8-6 Licensed Material-Property of Data General Corporation 093-000154

Miscellaneous Codes (continued)

Mnemonic Description

ERMPR System call parameter address error.

ERMRD Attempt to issue ?SEND to a console which has ?CNRM set in its
characteristics.

ERNAC Attempt to issue ?SEND to a nonconsole device.

ERNSD In response to "Specify Master Logical Disk" upon a program load, you
specified a logical disk which did not contain the system disk. Specify the
proper logical disk.

ERPDF System detected an error in one or more words in the User Status Table.

ERPRO Attempt to issue an MCO I/O request while direct MCO I/O is in
progress.

ERPRV You are not privileged to perform this action or issue this call.

ERRBO The operator refused your ?EXEC request.

ERRMP Internal system error; process is terminated.

ERRST This error code is used only by the system and you should never receive it.
If you do, contact your local Data General representative.

ERSOC Internal system error; process is terminated.

ERSTO System stack overflow (an internal system error).

ERTIM Attempt to set the system clock to an illegal time, or the system calendar
to an illegal date.

ERTXT The actual error message length exceeds the one which was requested.
This code is returned only by ?ERMSG.

ERVSY There are several operations which you cannot perform when using the
universal system (supplied on the system tape or diskette). These are
described in How to Load and Generate Your AOS System.

You attempted to perform one of these illegal operations.

ERWMT You requested the dismounting of an already dismounted tape reel or disk.

ERXMT Signal to address already in use. You attempted to transmit a message to
a nonzero mailbox.

ERXMZ Attempt to issue ?XMIT with an invalid message. Message must be
nonzero.

ERXNA EXEC module is not present in the system, yet you issued ?EXEC.

ERXUF You requested an unknown function in the ?EXEC parameter packet,
offset ?XRFNC.

(continued)

093-000154 Licensed Material-Property of Data General Corporation 8-7

Process Codes

Mnemonic Description

ERBLR Attempt to block a resident process (?BLKPR).

ERBMX Attempt to create a process with an illegal maximum size. The size of the
created process cannot exceed the size of the calIer's process.

ERCON Console device specification error. Either the named device is nota
console device, or it is a device which is currently in use by another
process.

ERDFN Upon a ?PROC, the generic DATA file you specified does not exist.

EREXC A resident process attempted to issue ?PROC and block on its son.

ERG FE You specified one or more generic files circularly. For example, you
specified OUTPUT to be equal to LIST, and LIST equal to INPUT. Or,
you specified a generic file to be set to itself (e.g., DATA to DATA).

ERIFN Upon a ?PROC, the generic INPUT file you specified does not exist.

ERIPR Illegal ?PROC parameter. Packet defaulted the IN, OUT, DATA or
LIST generic filenames, but specified that the father was not to block its
son.

EROFN Upon a ?PROC, the generic OUTPUT file you specified does not exist.

ERLFN Upon a ?PROC, the generic LIST file you specified does not exist.

ERMPR System calI parameter address error.

ERPDF The system detected an error in a program's User Status Table.

ERPNM Illegal process name (e.g., too long or uses illegal characters).

ERPNU A process name specified in a ?PROC calI is in use by another process.

ERPRH Attempt to access a process which is not in the tree.

ERPRN Attempt to create a process when the maximum, 64, already exist.

ERPRP Illegal process priority. You attempted to specify a process priority
greater than your own, and you were not privileged to do so.

ERPTY Illegal process type. You tried to change a target process's type to one
which is different from your own (via ?CTYPE) or you tried to create a
process (?PROC) of a type different from your own, when you lack
privilege ?PVTY.

ERSNM You tried to create more processes than you are entitled to create (see
?PPCR in the ?PROC parameter packet).

ERUNM Attempt to assign a username, other than that of the calIing process, and
calIer lacks privilege ?PVUI.

(concluded)

End of Appendix

8-8 Licensed Material-Property of Data General Corporation 093-000154

o Appendix C
Calls to the Runtime Routines

Call Chapter Page Call Chapter Page

AKILL 15 2 DIR 9 4

APPEND 11 3 DVDCHK 7 1

ARDY 15 3 DVF 24 11

ASSOCIATE 18 4 EBACK 23 2

ASUSP 15 4 ERDB 24 4

BACKSPACE 11 4 ERROR 23 3

CANCL 18 5 EST 20 3

CDIR 9 2 EWRB 24 5 o CFILW 10 2 EXIT 23 3

CHAIN 22 3 FCHAN 22 8·

CHECK 23 1 FCLOSE 11 8

CHRST n 5 FDELAY 21 1

CHSAV 11 6 FDELETE 10 5

CHSTS 10 3 FGDAY 13 3

CLOSE 11 7 FGTIME 13 4

COMARG 22 4 FOP EN 11 9

COMINIT 22 6 FRENAME 10 6

COMTERM 22 7 FSDAY 13 5

CPART 9 3 FSEEK 11 10

CVF 24 11 FSTIME 13 6

CYCLE 18 6 FSWAP 22 <)

DATE 13 2 FTASK 14 2

DCVF 24 11 GCIN 12 I

DFILW 10 4 GCOUT 12 2

(continues)

093-000154 Licensed Ma1erial-PrOp.rty of Data General Corporation C-1

Call 'Chapter Page Call Chapter Page

GDIR 9 5 OVCLOSE 20 4

GETERR 23 4 OVERFL 7 2

GETEV 16 1 OVEXIT 20 5

GETPRI 16 2 OVKILL 20 6

GHRZ 21 2 OVLOD 20 7

lAND 8 2 OVOPN 20 8

ICLR 8 3 OVREL 20 9

INIT 9 6 PRI 15 5

lOR 8 4 RDBLK 11 12

ISET 8 5 RDLIN 11 13

ISHIFT 8 6 RDSEQ 11 14

ITASK 14 3 READRW 11 15

ITEST 8 7 REC 17 2

IVF 24 11 RELEASE 9 7

IXOR 8 8 REMAP 24 8 o
KILL 15 4 RENAME 10 8

LINK 10 7 RESET 11 16

MAPDF 24 6 REWIND 11 17

MESSAGE 23 5 SDATE 13 7

MULTITASK 19 2 SINGLETASK 19 2

MYEV 16 2 START 18 7

MYID 16 3 STIME 13 8

MYPRI 16 3 SUSP 15 5

NOT 8 9 SWAP 22 10

ODiS 12 2 TIDK 15 6

OEBL 12 3 TIDP 15 7

OPEN 11 11 TIDR 15 8

(continued)

C-2 Licensed Material-Property of Data General Corporation 093-000154

Call Chapter Page Call Chapter Page

TIDS 15 9 VOPEN 24 17

TIME 13 9 VSTASH 24 18

TRNON 18 8 WAIT 21 3

UNLINK 10 9 WRBLK II 18

VCLOSE 24 10 WRITRW II 19

VDUMP 24 II WRLlN II 20

VF 24 II WRSEQ II 21

VFETCH 24 II XMT 17 3

VLOAD 24 15 XMTW 17 4

VMEM 24 16

(concluded)

o End of Appendix

o
093-000154 Licensed Material-Property of Data General Corporation C-3

o

o

o

o

o

Appendix 0
Alphabetized List of FORTRAN 5

Statements

Statement Function

ACCEPT Allows input/output of data from input console upon prompt.

ANTICIPATE Associates an event with a task in order to register a WAKEUP on
the event that occurs before the WAIT or SUSPEND task.

ASSIGN Associates a statement label with an integer variable.

Assignment, arithmetic Assigns the value of an expression to a specified entity.

Assignment, logical Assigns the value of an expression to a specified logical entity.

BACKSPACE Backspaces a file's record pointer and positions it to the beginning of
the previous record.

BLOCK DATA Assigns values to variables and arrays in both named and blank
COMMON blocks.

CALL Invokes a subroutine, transferring control from one program unit to
another.

CLOSE Closes an opened file.

COMMON Allocates an area of data storage accessible to mUltiple program
units, and names the variables and arrays which will reside in this
area.

COMPILER Permits you to specify the compile-time options STATIC, FREE,
and DOUBLE PRECISION.

COMPLEX Specifies a symbolic name to have the data type COMPLEX.

CONTINUE Provides a place for a label.

DATA Defines initial values for variables and array elements.

DECODE Performs data transfers according to a format specification.

DELETE Deletes a file from disk.

DIMENSION Names arrays and specifies their dimensions.

DO Executes a group of statements one or more times.

DOUBLE PRECISION Specifies a symbolic name to have the data type DOUBLE
PRECISION.

DOUBLE PRECISION COMPLEX Specifies a symbolic name to have the data type DOUBLE
PRECISION COMPLEX.

(continues)

093-000154 Licensed Material-Property of Data General Corporation 0-1

Statement Function o
ENCODE Performs data transfers strictly between variables or arrays internal

to your program according to a format specification.

END Marks the end of a program unit.

ENDFILE Closes an opened file.

EQUIVALENCE Associates two or more entities in the same storage area.

EXTERNAL Allows you to use an externally defined subprogram name or overlay
name as an argument.

FORMAT Designates the structure of the records and the form of the data
fields within the records of a file.

FUNCTION Begins and defines a function subprogram.

GO TO, assigned Transfers control to a previously ASSIGNed statement label.

GO TO, computed Transfers control to one of several specified statements depending on
the value of a specified variable.

GO TO, unconditional Transfers control unconditionally to a specified statement.

IF, arithmetic Transfers control conditionally to one of three statements based on
the value of an arithmetic expression.

IF, logical Conditionally executes and transfers control to a statement based on
the value of a logical expression. o

IMPLICIT Changes or confirms the default data type of symbolic names.

INCLUDE Allows you to insert a FORTRAN 5 source file in the current
FORTRAN 5 program.

INTEGER Specifies a symbolic name to have the data type INTEGER.

KILL Terminates a task.

LOGICAL Specifies a symbolic name to have the data type LOGICAL.

OPEN Assigns a unit number to a file and creates the file, if necessary,
according to specifications given.

OVERLAY Specifies a subprogram as an overlay and names it.

PARAMETER Assigns a symbolic name to a constant or to an expression.

PAUSE Temporarily suspends program execution, waiting for operator
intervention.

PRINT Transfers data between internal storage and the line printer.

PUNCH Transfers data between internal storage and the paper tape punch.

READ Transfers data from a file to internal storage according to
specifications in the corresponding FORMAT statement.

READ, simple Transfers data between internal storage and the card reader. o
(continued)

0-2 Licensed Material-Property of Data General Corporation 093-000154

o Statement Fundion

READ BINARY Transfers a single data record from a file to internal storage with no
interpretation.

READ FREE Transfers and converts externally recognizable data to their internal
computer representation, providing a standard formatting without
programmer intervention.

READ INPUT TAPE Alternate form of READ.

READ TAPE Alternate form of READ BINARY.

REAL Specifies a symbolic name to have the data type REAL.

RENAME Changes the name assigned to an existing file.

RETURN Marks the logical end of a function or subprogram and returns
control from that subprogram to the calling program unit.

REWIND Repositions the record pointer to the beginning of a specified file.

STATIC Places specified variables and arrays in a fixed area in memory
rather than on the runtime stack.

STOP Causes unconditional termination of program execution.

SUBROUTINE Begins and defines a subroutine.

o SUSPEND Allows a task to suspend itself or another task.

TASK Initiates a task.

TYPE Allows interaction between you and, your program using the console
for output.

WAIT Allows a task to suspend itself.

WAKEUP Readies a task suspended by aWAIT or SUSPEND statement.

W.RITE Writes data from internal storage to a file or device specified by a
unit number.

WRITE BINARY Transfers a single data record from internal storage to a file with no
interpretation.

WRITE FREE Transfers and converts data according to a standard field format.

WRITE OUTPUT 'rAPE Alternate form of WRITE.

WRITE TAPE Alternate form of WRITE BINARY.

(concluded)

End of Appendix

o
093-000154 licensed Material-Property of Data General Corporation 0-3

o

o

o

o

Appendix E
Fortran 5 Runtime Databases

This appendix describes how the AOS resource manager implements the load-on-call overlay
facility that FORTRAN 5 supports. It describes in detail the layout of the data areas AOS
and the Fortran 5 runtime environment routines use to manage the user's program and its
I/O operations. Specifically, it describes the relationships between the User Status Table
(UST), the Task Control Blocks (TCBs), the TCB Extension, the Stack Partition, the Task
Global Area, the Overlay Directory, the Bookkeeping Area, the File Table, and the I/O
Control Block (IOCB).

This appendix describes the layout of each of these areas in more detail than Chapters 3 and
5, and depicts some of the relationships diagrammatically. You can use this information to
debug your programs and examine AOS break files. The information may also be of use to
you in understanding the Fortran 5 and AOS parameter files.

Please be aware that the information in this appendix is only intended to give a general
description of these data areas, not depict their exact layout. This information may change
between revisions of Fortran 5 or AOS.

Before you read this appendix, please read Chapter 3, "Runtime Environment
Fundamentals" and Chapter 5, "The Fortran 5 Assembly Language Interface".

Runtime Environment Data Areas
The following sections describe the internal layout of important databases that AOS and the
FORTRAN 5 runtime environment maintain in the program. These descriptions are specific
to ECLIPSE AOS, although we mention differences between AOS and AOS/VS.

User Status Table
The UST contains information on the state of the process, including the number of tasks the
process contains. The UST begins at location 400 8 in the user address space. Offsets within
the UST are defined in PARU.SR in AOS andPARU.16.SR in AOS/VS. The symbols all
have names beginning with "UST" (e.g., "USTEZ").

Offset USTTC (location 413 8 in AOS) contains the number of Task Control Blocks (TCBs)
that Link allocated for the program. This is the largest number of tasks that may exist
simultaneously. In AOS/VS, the TCB's are located in the Agent ring (ring 3), outside of the
user's ring of execution (ring 7).

093-000154 Licensed Material-Property of Data General Corporation E-1

The following offsets apply only to AOS:

Offset Location

USTCT 414 8

USTAC 415 8

USTFC 416 8

Contents

The address of the TCB for the currently active task.

The address of the first TCB in a linked list of TCBs
for active tasks (the active TCB chain).

The address of the start of the available TCB chain.
TCBs with no task associated with them arelinked on
this chain and are ready for use.

The first word in each TCB (offset 0) is a link address to the next TCB chain. A minus one
(1777778) in this TCB offset indicates the end of the chain.

Offset USTOD (location 4208) contains the address of the overlay directory, which is
described later in this appendix.

Task Control Blocks
AOS assigns a TCB to each task when the task is created. Single-task programs have only
one TCB. Multitask programs have a number of TCBs allocated to them. Link's ITASKS=
function switch specifies this number. The TCB stores information about the state of the task.
AOS saves the contents of the accumulators (ACs), program counter (PC), and stack control
locations (.SP, .FP, .sSE, .sOV) in the TCB for the task whenever that task is not executing.

Under AOS, the TCBs are allocated in the user address space, above the UST. Under
AOSjVS, the TCBs are allocated in the Agent ring (ring 3). Offsets within the TCB are
defined in PARU.sR in AOS and PARS.sR in AOSjVS. These offsets are symbols that
begin with ?T (?LlNK).

The following information applies to AOS only. The first word in each TCB, offset ?TLNK ,
contains the address of the next TCB in either the active TCB chain (for active TCBs) or the
free TCB chain (for available TCBs). A minus one (177777 8) indicates the end of a chain.
Offset ?TSTAT (offset 1) contains 16 status bits. These status bits are also defined in
PARU.SR, and have symbol names beginning with ?TS ; e.g., "?TSPN". Each of the status
bits in word ?TST AT specifies a different state for the task. For example, if bit "?TSSP" is
set (is one) that task has suspended itself by execution of the ?SUS (Suspend the calling
task) system call. Bit ?TSIG indicates whether the task is presently executing in the Ghost
context (bit 1) or executing in the primary (user) context (bit 0). Bit ?TSUF is set by the
Fortran 5 runtime environment routines when a task executes the Fortran 5 WAIT or
SUSPEND statements. Bit ?TSXR is set when the task is waiting as the result of a ?XMTW
(Transmit a message and wait) or ?REC (Receive a message) system call. TCB offsets ?TSP,
?TFP, ?TSL, and ?TSO (offsets 1 through 5) contain the contents of locations .sp, .FP,
.sSE, and .SOV when the task is not executing. Offsets ?TACO, ?TAC1, ?TAC2, ?TAC3
and ?TPC (offsets 68 through 128) contain the contents of the task's ACs and PC when the
task is not executing. Offset ?TELN (offset 148) contains the address of the task's TCB
extension, described later in the appendix. Offset ?TFPS (offset 15 8 contains the address of
an 18-word floating point save area that maintaines the state of the floating point ACs, PC,
and Status when the task is not executing. Offset ?TIDPR (offset 208) contains the task's ID
number in the left byte, and the task's priority in the right byte.

Figure E-1 depicts the relationship between the UST, TCB and TCB Extensions in
ECLIPSE under AOS.

E-2 Licensed Material-Property 01 Data General Corporation 093-000154

o

o

Figure E-1. The Relationship Between UST, TCB and TCB Extensions

o
093-000154 Licensed Material-Property of Data General Corporation E-3

Task Control Block Extensions
The Fortran 5 runtime environment routines maintain additional information about a task in
an area known as the TCB extension. Offsets within the TCB extension are defined in
F5SYM.SR. The offset symbols have names beginning with "E."; e.g., "E.PSZ". Offset
E.PSZ (offset -1) contains the size of a runtime stack partition associated with that TCB
extension. Offset E.GP contains the address of a Task Global Area associated with that TCB
extension. When the task is executing, page zero symbol (.GP) contains the address of this
global area. Since the global area is at the bottom addresses of the stack partition, E.GP
represents not only the address of the task global area, but also the stack partition which
contains the global area.

Each TCB extension is associated with a runtime stack partition. The runtime stack partition
contains both the task global area and the runtime stack that the task owning the TCB will
use. When a task is initiated by the program, the Fortran 5 runtime environment routines will
allocate a stack partition for the new task. If the calling program specifies a stack size for the
task, the runtime routines must find a a stack of that exact size. If the calling program does
not specify a stack size, the runtime routines allocate a default size partition.

A 3-word data area called the TCB extension header contains the addresses of the fixed-size
partition list and the default size partition list. The third word in the header is the size of a
default size partition stack. The Fortran 5 runtime initializer creates the TCB extension
header and the TCB extension pool. All of the fixed size stack partition extensions are
allocated together by the runtime initializer, followed by all of the default size partition
extensions. Each TCB extension contains a word that specifies the size of the stack in the
stack partition associated with that TCB extension.

Offset E.PSZ (offset -1) within each TCB extension contains the size of the runtime stack in
the stack partition that is associated with that TCB extension. Offset E.GP (offset 0) within
the TCB extension contains the base address of the associated stack partition. E.GP contains
the value of .GP when the task is not executing. Offset E.RP (offset 1) contains the value of
the page-zero symbol .RP when the task is not executing. The FORTRAN 5 runtime.
environment routines use .RP to maintain return addresses. Offset E.EV is used to maintain
Event Numbers for the Fortran 5 event number suspension mechanism (the ANTICIPATE,
WAIT, and WAKEUP statements).

The leftmost bit of E.EV is used to indicate that a wakeup for an anticipated event occurred
before the corresponding wakeup. The remainder of E.EV contains the event number for
which the task anticipates or waits;

Offset E.FPB is the first word of the IS-word floating point save area in AOS. This area
contains the contents of the floating point accumulators (FPACs), the floating point program
counter (FPPC), and the floating point status register (FPSR) when the task is not executing.
No floating point save area is required within the user address space under AOSjVS.

When the runtime environment allocates a TCB extension and stack partition for a new task,
it obtains a pointer to either the fixed-size partition extensions or the default-size partition
extensions from the TCB extension header (the address of the TCB extension header is
.HDXT). The runtime environment routine that allocates stack partitions then looks at the
partition size of the appropriate list of TCB extensions (either for fixed-size stacks or
default-size stacks) until either a match is found or a zero-:size stack partition (indicating an
end of list) is found. .

The leftmost (high-order) bit of the size word (offset E.PSZ) indicates that the corresponding
stack partition was previously allocated. This use-bit is set (1) to indicate that the stack
partition is in use, or cleared (0) to indicate that the partition is available for use. When the
runtime environment routine finds an unused stack partition of the proper size, it sets the
use-bit for that partition.

E-4 Licensed Material-Pro":,erty of Data General Corporation 093-000154

o

o

o

Under AOS, the runtime environment routines then place the address of the TCB extension
for that partition into the TCB extension offset (?TELN) of the TCB for the new task. Under
AOS/VS, the address of the TCB extension is maintained in location 16 8 (?USP), which
AOS/VS maintains on a per-task basis. The runtime environment routines set the leftmost
(high-order) bit to one to distinguish FORTRAN 5 tasks from non-FORTRAN 5 tasks. A
non-FORTRAN 5 task must never set the high-order bit of ?USP to one. When a task is
terminated, the runtime environment routines clear the use-bit of the TCB extension
associated with the terminated task.

Stack Partition
The stack partition allocated to a task by Fortran 5 when the task begins execution consists of
three parts:

• A Task Global Area
• A Runtime Stack
• An End Zone

The runtime stack is the stack that the task will use while it executes. The stack control
locations (.SP, .FP, .SSE) all point into this runtime stack. These stack control locations are
maintained in the TCB when the task is not executing.

The stack must contain a small number of words beyond the stack limit because the stack
fault mechanism of the ECLIPSE R pushes a return block onto the stack, and the
FORTRAN 5 error reporter pushes several words onto the stack. These words are called the
End Zone, and insure that a stack overflow in one task will not destroy information in the
stack partition immediately following the stack limit of the faulting task.

Task Global Area
Certain per-task information used by FORTRAN 5 is maintained in a data area at the
bottom of the stack partition known as the Task Global Area. Page-zero symbol (.GP) points
at this area. Offsets within the Global Area are defined in F5SYM.SR. Offset IOCBP (offset
0) in the Global Area contains the address of an I/O Control Block (IOCB) that the
FORTRAN 5 I/O routines use.

The remainder of the words in the Global Area act as information transfer buffers between
the time the options of an OPEN statement or TASK statement are processed and an 10CB
or ?TASK packet is created. For example, the "ERR=" option of the OPEN statement is
processed by the generated code before the I/O initializer is called to allocated an IOCB.
During this time, the Task Global Area is used to maintain the ERR = branch address and
the stack pointer and frame pointer at the time of the OPEN. The proper environment can
then be restored after an error. Likewise, the task ID specified by the 10= option of the task
statement must be maintained until a ?T ASK packet is created by the Fortran 5 runtime
environment routines. Again, the Global Area is used for this purpose.

Offset ATTEQ (offset 1) contains 16 bit flags that represent the possible values ATT option
that the OPEN statement specifies. The symbols that specify these bit attributes are also
defined in F5SYM.SR. These symbols have names beginning with FA ; e.g., FALIN. Offsets
LENEQ (offset 3) through XTSKF(offset 128) consist of temporary storage for information
passed between the I/O and tasking programmed operator routines and the FORTRAN 5
runtime environment routines. Offset LASTE contains the last runtime error detected
(without the ISA offset of 3), for use by the GETERR runtime routine.

093-000154 Licensed Material-Property of Data General Corporation E-5

Input-Output Control Block
An 10CB is a large data area that the FORTRAN 5 I/O routines use during data transfer
operations. An 10CB is allocated by the I/O initialization routine executed by the generated
code at the beginning of a READ or WRITE statement. The 10CB consists of three primary
areas:

• A runtime database of conversion information
• A data buffer
• An I/O packet

The offsets within the 10CB are defined in F5SYM.sR. Space for the 10CB is allocated on
the runtime stack.

The 10CB allocation routine alters the current stack pointer to leave room for an 10CB
between the current stack frame and the stack pointer. When the 10CB is removed at the end
of an I/O statement, the stack pointer is restored to its previous value. The size of an 10CB
depends on the size of the buffer required for the I/O statement. The buffer size depends on
the length specified by the "LEN=" option for the OPEN statement. By default, the buffer
is large enough for a 136-byte record.

Bookkeeping Area
If routines in your program are compiled for line number traceback at the start of every
executable statement, the generated code stores the current line number in an extra word
allocated in each stack frame. This extra word is called the Bookkeeping Area, and is the last
word in the stack frame. If line number traceback is not used, this word is available.

Overlay Directory
In order to support the load-on-call overlay facility of the AOS resource manager, Link builds
a database in the address space of every program that contains overlays. This database, called
the Overlay Directory, is used by the ?RCALL processing code in URT.LB. The layout of
this directory is described-in an appendix of the ADS Programmer's Manual (093-000120):
The Overlay Directory address is stored in offset USTOD (location 4208) in the UST.

File Table
The Fortran.5 runtime environment routines maintain information about open files in a data
area called the file table. This area consists of 3 major parts:

• A record length table
• A file lock table
• A channel table

The symbol .FT contains the address of the file table. Each entry in the file table consists of a
single word, indexed by unit number, that contains 3 bits of flag information and 13 bits of
record length. The three bits, FALIN, FAPRT, and FPBPD indicate whether or not the file
is line-oriented, prepared-for-printing (Le. recognizes ANSI carriage control) or
blank-padded, respectively. The remaining 13 bits of the word contain the record length for
the file (136 by default).

The file lock table consists of 64 bits of information (1 per unit number). Each bit in the lock
table indicates that the corresponding unit number has been opened. The bit is set (1) if the
unit has been opened, or is clear (0) if it has not been opened.

The third portion of the file table, the channel table contains the AOS channel number that is
associated with the Fortran 5 unit number once the file is opened. Entries for unopened units
are set to minus one (177777 8).

E-6 Licensed Material-Property of Date General Corporation 093-000154

o

o

o

o

o

o

In addition to the file information mentioned above, the file table contains several additional
data words that may conveniently be accessed relative to the file table. These additional
words contain conversion constants for time units, an argument number holder for the
COMARG routine and a holder for the overlay file channel number. Figure E-2 depicts the
layout of the file table.

Figure E-2. File Table

Preconnection Table
Preconnected I/O in FORTRAN 5 requires a table of unit number and filename associations.
The preconnection table (peT) consists of 3 parts:

• Error file descriptors
• A statement association table
• A preconnected association table

The error file descriptors are actually ?WRITE system call packets. When a runtime error is
reported, each error file descriptor is used to write all error message output. Offset EFPTR
(offset -7) contains the offset of the first error file descriptor. These desriptors are
contiguously allocated and have a length of EFLEN. The list terminates when the first word
of a descriptor is minus one (1777778). Offset EFBUF (offset -6) contains the address of an
output buffer used for writing the error messages.

093-000154 Licensed Material-Property of Data General Corporation E-7

The Statement Association Table provides the mapping between various I/O statements that
provide no unit number, and the unit number to which I/O should be performed. Offsets
FNREA (offset -5) through FNACC (offset -1) contain the unit numbers for the various I/O
statements; e.g., the PUNCH statement code refers to offset FNPUN.

The Preconnection Association Table contains the mapping between the unit numbers and
the file names. This determines which unit numbers should be opened by preconnection. Each
preconnection entry is four words long, and contains a unit number, a pointer to a file name, a
pointer to an attribute string, and a record length.

Figure E-3 depicts the preconnection table. The first preconnection entry is used as a default.
If no explicit entry for a given unit number is found in the remaining entries, this first entry is
examined. If the unit number of the default entry is not minus one (1777778), then the
default preconnected file is opened. If the unit. number is minus one, then no default
preconnection exists, and no open is performed. The preconnection entries are terminated by
a null entry containing minus one (177777 8) as the unit number.

Figure E-3. The Preconnection Table

End of Appendix

E-8 Licensed Material-Property of Data General Corporation 093-000154

o Appendix F

o

CLRE Math Routines

The internal names of the CLRE math routines are derived from the following template:

<BASICNAME> <VERSION> <ENTRY>?<RESDT> <ARGDT>

< BASICNAME >
A three character name assigned from the following list:

TRN
CEL
FLR
FRC
NIN
ABS
REM
MOD
SXN
PDF
MAX
MIN
IMG
REL
CJG
SQR
EXP
LGN
LGD
LGE
SIN
COS
TAN
ASN
ACS
ATT
HSN
HCS
HTN
AND
lOR
XOR
NOT
PWR
NEG
SGN
CVT

093-000154

TRUNCATION
CEILING
FLOOR
FRACTIONAL PART
NEAREST WHOLE #
ABSOLUTE VALUE
REMAINDER
MODULO (ANSI)
SIGN TRANSFER
POSITIVE DIFFER
MAXIMUM
MINUMUM
IMAGINARY PART
REAL PART
COMPLEX CONJUGATE
SQUARE ROOT
EXPONENTIAL
NATURAL LOG
COMMON LOG 1
LOG BASE 2
SINE
COSINE
TANGENT
ARCSINE
ARCTANGENT
ARCTANGENT2
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TAN
LOGICAL AND
LOGICAL OR
LOGICAL XOR
LOGICAL NOT
POWER
NEGATION
MULTIPLE OF SIGNS
TYPE CONVERSION

Licensed Material-Property of Data General Corporation F-1

< VERSION>
A one digit specifier for the version of the routine with the following meaning:

o This version does not use floating point hardware and does not check its arguments.

1 This version does not use floating point hardware and does check arguments.

2 This version uses floating point hardware and does not check arguments.

3 This version uses floating point hardware and does check arguments.

The FORTRAN math library does not contain all versions of all routines.

To check an argument, the system tests whether the argument is within range of a given
routine. Those routines that do not check will produce undefined results for arguments out of
range.

< Entry>
A one digit entry descriptor with the following meaning:

This is the entry point for the actual code for this routine.

2 This is the entry point for the page zero entry to the routine.

3 This is the entry point for the ?RCALL version of this routine.

4 This is the entry point used when the specified routine is passed as an argument in a
subroutine call and then is called by that subroutine.

The NREL and ZREL parts of an intrinsic function are now separated into two separate
binaries. Because of this, you can invoke an intrinsic function without using any ZREL
locations (by means of a EJSR). The ZREL entry point routine consists of a single ZREL
location that contains the address of the actual address of the code for the routine.

< ARGOT>
A one digit specifier of the result and the argument, respectively, from the following list:

1 16-bit integer
3 real
4 double precision
5 complex
6 double precision complex

If the data types of the argument and the result are identical, use only one digit.

For power routines, the two digits represent base and exponent respectively.

Examples:

SIN21 ? 3 is the name of the entry point for the single precision SIN routine.

SIN22?3 is the name of the ZREL entry point for the above routine. A call to the SIN
routine could take these forms:

JSR @SIN22?3

?RCALL SIN23?3

EJSR SIN21?3

F-2 Licensed Material-Property 01 Data General Corporation 093-000154

o

o

o

0'· , .

< RESDT >
See description for <ARGOT>

Calling Sequence
The way in which the calling routine passes the arguments to and from the routines depends
upon the data types of the following entities.

Integer
Single Argument The calling routine passes the address of the argument in ACl and

returns the result in ACl.

Two Arguments The calling routine passes the address of the first argument in ACl, the
second argument in AC2, and returns the result in ACl.

> Two Arguments The calling routine pushes the addresses of all arguments and the result
onto the stack.

Real and Double Precision
Single Argument The calling routine passes the address of the argument in the FPAC

(FPACO on the ECLIPSE), and returns the result in the FPAC.

Two Arguments The calling routine passes the address of the first argument in the FPAC,
the secpnd argument in AC2, and returns the result in the FPAC.

> Two Arguments The calling routine passes the addresses of all arguments and the result
onto the stack.

The MAX and MIN functions are treated as > 2 arguments.

The conversion functions, that have different argument and result data types, pass
parameters according to the above specifications for each parameter. Therefore, the
conversion from REAL to INTEGER passes the argument in the FPAC and the result is
returned in ACl.

Complex
The calling routine passes the addresses of all arguments onto the stack.

End of Appendix

093-000154 Licensed Material-Property of Date Generai Corporation F-3

o

o

o

Appendix G
ASCII Table

To find the o('lal value of a character, locate the character, and
combine the first two digits at the top of the character's column
with the third digit in the far left column.

SO-00217 Character code in octal at top and left of charts.

LEGEND:

Character code in decimal
EBCDIC equivalent hexadecimal code
Character

End of Appendix

093-000154 Licensed Material-Property of Data General Corporation

9

<

>

?

x

y

z

(TILDE)

DEL
(RUBOUT)

1 means CONTROL

G-1

o

o

o

o

o

Appendix H
Entry points for FORTRAN 5 Runtime

Environment Routines

Link loads runtime routines from the FORTRAN 5 runtime libraries to perform actions
specified by the source code in your program. Link also loads runtime routines for each
program in order to support the program's runtime environment.

In Table H-I, we list the entry points of the majority of these runtime environment routines.
This list will assist you in debugging your FORTRAN 5 programs and in computing the size
of your program's runtime code. You can also use it when you write assembly language
routines.

In the right-hand column is a code number or letter which refers to a note at the end of the
Appendix. These notes indicate the type of the calling convention you use for the routine. The
calling conventions may change between revisions of FORTRAN 5. Entry points are defined
as a page zero (.ZREL) entry except those listed as.NREL. (See the "Notes" section of this
Appendix.)

Table H-1. Runtime Routine Entry Points

Entry Point Description Calling
Name Sequence

.ANTI Perform the ANTICIPATE statement 1

.BITR I-bit FLD reference (RHS of assignment) 2

.BITW 1-Bit FLD assignment (LHS of assignment) 2

.BKSP Perform the BACKSPACE statement 2

.BRDC Perform a binary read of a complex entity 3

.BRDD Perform a binary read of a double precision entity 3

.BRDI· Perform a binary read of an integer entity 3

.BRDL Perform a binary read of a logical entity 3

.BRDR Perform a binary read of a real entity 3

.BRDX Perform a binary read of a double precision complex entity 3

.BWRC Perform a binary write of a complex entity 3

.BWRD Perform a binary write of a double precision entity 3

.BWRI Perform a binary write of an integer entity 3

(continues)

093-000154 Licensed Material-Property of Data General Corporation H-1

Table H-1. Runtime Routine Entry Points

Entry Point Description Calling
Name Sequence

.BWRL Perform a binary write of a logical entity 3

.BWRR Perform a binary write of a real entity 3

.BWRS Perform a binary write of a character string 3

.BWRX Perform a binary write of a double precision complex entity 3

.BYTR BYTE function reference (RHS of assignment) 2

.BYTW BYTE function assignment (LHS of assignment) 2

.CACC Accept an input line up to a NEWLINE 0

.CGO Perform the computed GO TO statement 4

.CNMO Write a decimal number to the error files 4

.CNMO Write an octal number to the error files 4

.CRLF Write a NEWLINE to the error files 0

.CVB Internal conversion of ASCII characters to binary 5

.CVO Internal conversion of binary to ASCII characters 5

.CWCH Write a single character to the error files 6

.CWRL Write a null-delimited string to the error files 7

.ERET Internal invocation of the runtime error reporter 6

.F5INIT Entry point for the FORTRAN 5 runtime initializer A

.F5PC Entry point for task initialization code A

.F5PX Entry point for task initialization code A

.FCLO Perform the CLOSE statement 1

.FOEL Perform the DELETE statement 1

.FIOPREP I/O unit number to channel number translation 1

.FKILL Perform the KILL statement 1

.FLOR FLD function reference (RHS of assignment) 9

.FLOW FLD function assignment (LHS of assignment) 9

.FOP Internal file open 10

.FOPE Perform the OPEN statement 10

.FPTRAP Entry point for the floating point fault handler A

.FROC Perform a formatted read of a complex entity 3

(continued)

H-2 Licensed Material-Property of Data General Corporation 093-000154

Table H-1. Runtime Routine Entry Points

Entry Point Description Calling
Name Sequence

.FRDD Perform a formatted read of a double precision entity 3

.FRDI Perform a formatted read of an integer entity 3

.FRDL Perform a formatted read of a logical entity 3

.FRDR Perform a fQrmatted read of a real entity 3

.FRDX Perform a formatted read of a double precision complex entity 3

.FREN Perform the RENAME statement 10

.FSUS Perform the SUSPEND statement 10

.FTAS Perform the TASK statement for parametric entry points 11

.FTSK Perform the TASK statement 12

.FWAI Perform the WAIT statement 1

.FWRC Perform a formatted write of a complex entity 3

.FWRD Perform a formatted write of a double precision entity 3

o .FWRI Perform a formatted write of an integer entity 3

.FWRL Perform a formatted write of a logical entity 3

.FWRR Perform a formatted write of a real entity 3

.FWRS Perform a formatted write of a character string 3

.FWRX Perform a formatted write of a double precision complex entity 3

.GCH Internal routine to get a character from a buffer 6

.GMEM Internal routine to increase the unshared area by one page 0

.GREC Internal routine to read a record from a file 5

.IACC Initialization for the ACCEPT statement 0

.IATT Process the ATT= option of the OPEN statement 4

.IBRD Initialization for a binary read 4

.IBWR Initialization for a binary write 4

.IDEC Initialization for the DECODE statement 10

.IENC Initialization for the ENCODE statement 10

.IEND Process for the END= option for I/O statements 1

.IERR Process for the ERR= option for I/O statements 1

.IFILE Perform an implicit open of a preconnected file 6
~. '

(continued)

093-000154 Licensed Material-Property of Data General Corporation H-3

Table H-1. Runtime Routine Entry Points o
Entry Po-int Description Calling
Name Sequence

.IFRO Initialization for the formatted read statement 10

.IFWR Initialization for the formatted write statement 10

.IIBAOOR INFOS® interface routine 8

.110 Process the 10= option for the TASK statement 1

.IINOSTR INFOS interface routine 8

.llEN Process the lEN = option for the OPEN statement 1

.I0CB Internal routine to allocate an 10CB A

.IOPREP Internal routine to convert a unit number to a channel 1

.IPRI Process the PRI = option for the TASK statement 1

.IPRT Initialization for the PRINT statement 13

.IPUN Initialization for the PUNCH statement 13

.IREA Initialization for the READ statement without format 13

.IREC Process the REC= option for the OPEN statement 1

.ISAERR Set the ISA error return variable to an error code 6 o

.ISANORM Set the ISA error return variable for a normal return 0

.ISTK Process the STK = option for the TASK statement 1

.ITYP Initialization for the TYPE statement 0

.IURO Initialization for the unformatted READ statement 1

.IUWR Initialization for the unformatted WRITE statement 1

.LlERR Language Independent Error Reporting Routine A

.LlNO Perform initialization for line-number traceback 0

.LlNE Perform line number indication for traceback 12

.NCAl Perform NREL internal call 0

.NFMT Process a formatted I/O item 5

.PAUS Perform the PAUSE statement 11

.PCH Internal routine to output a character 6

.PCR Internal routine to output a line terminator 6

.PNM Internal routine to output a digit 6

.PREC Internal routine write a record to a file 0 o
(continued)

H-4 Licensed Material-Property of Data General Corporation 093-000154

o Table H-1. Runtime Routine Entry Points

Entry Point Description Calling
Name Sequence

.RLEF Internal routine to turn off LFE mode A

.ROUND Internal routine to perform number rounding 5

.RTER The runtime error reporter 6

.RTRN Perform an alternate RETURN statement 6

.RWND Perform the REWIND statement 1

.SBCH Perform a subscript check operation 14

.SEEK Process the REC= option for READ and WRITE statements 10

.SLEF Internal routine to turn on LEF mode A

.SOVL Entry point for the stack fault handler A

.STOP Perform the STOP statement 11

.TACC Perform termination for the ACCEPT statement 0

.TBRD Perform termination for the binary READ statement 0

o .TBWR Perform termination for the binary WRITE statement 0

.TDEC Perform termination for the DECODE statement 0

.TENC Perform termination for the ENCODE statement 0

.TFRD Perform termination for the formatted READ statement 0

.TFWR Perform termination for the formatted WRITE statement 0

.TPRT Perform termination for the PRINT statement 0

.TPUN Perform termination for the PUNCH statement 0

.TRACE VAL invocation of the runtime error traceback routine B

.TREA Perform termination for the READ statement without format 0

.TRTN Internal routine for return address resolution A

.TTYP Perform termination for the TYPE statement 0

.TURD Perform termination for the unformatted READ statement 0

.TUWR Perform termination for the unformatted WRITE statement 0

.UFMT Process an unformatted I/O item 5

.VIOPREP Open routine for virtual data file 0

.WAKE Perform the WAKEUP statement 1

.XTPP .NREL routine for passing parameters to a new task A o
(continued)

093-000154 Licensed Material-Property of Date General Corporatfon H-5

Table H-1. Runtime Routine Entry Points

Entry Point Description Calling
Name Sequence

.IACC .NREL entry for ACCEPT initialization (.IACC) A

?DIOCB .NREL entry to free an I/O control block (entered via a JMP) A

?IDEC .NREL entry for DECODE initialization (.IDEC) A

?IENC .NREL entry for ENCODE initialization (.IENC) A

?IFRD .NREL entry for formatted READ initialization (.IFRD) A

?IFWR .NREL entry for formatted WRITE initialization (.IFWR) A

?IPRT .NREL entry for PRINT initialization (.IPRT) A

?IPUN .NREL entry for PUNCH initialization (.IPUN) A

?IREA .NREL entry for READ initialization (.IREA)

?ITYP .NREL entry for TYPE initialization (.ITYP) A

?IURD .NREL entry for unformatted READ initialization (.IURD) A

?IUWR .NREL entry for unformatted WRITE initialization (.IUWR) A

?TACC .NREL entry for ACCEPT termination (.TACC) A

?TFRD .NREL entry for formatted READ termination (.TFRD) A

?TFWR .NREL entry for formatted WRITE termination (.TFWR) A

?TTYP .NREL entry for TYPE termination (.TTYP) A

?TURD .NREL entry for unformatted READ termination (TURD) A

?TUWR .NREL entry for unformatted WRITE termination (.TUWR) A

?UKIL Task kill post-processing routine A

?UTSK Task initialization pre-processing routine A

(concluded)

End 9f Appendix

H-6 Licensed Material-Property of Data General Corporation 093-000154

Index

Within this index, "r' or "fr' after a page number
means "and the following page" or "pages",
respectively. In addition, primary page references of the
runtime routines appear in italics. Commands, calls, and
acronyms are in uppercase letters (e.g. OPEN); all
others are lowercase.

A?TASK 5-12
address in memory 3-4
address space 3-5, 3-12

A

in main memory (figure) 3-5
AF5SYM.SR 5-7
aggregate, ASCII characters in an 6-2
aggregates 6-2
AKILL 15-1 15-2
AND, logical 8-1
AOS assembly language system calls 6-1

channel number, converting FORTRAN unit
number into 5-16

errors 5-14
multitask scheduler 3-2
AOS system calls 3-5

APPEND 11-1, 11-2,11-3
ARDY 15-1, 15-13
argument switches, F5LD LINK 1-7
arguments 6-1

typed 6-1
ASCII characters in an aggregate 6-2
assembling your assembly language routines 5-5f
assembly language

initiating tasks from 5-12 5-1
programming example 5-8ff
routines 5-1

why write 5-1
system calls, AOS 6-1, 5-12
what it is 5-1

ASSOCIATE 4-3, 18-3,18-4
ASUSP 15-1, 15-4
ATT=, to specify line-oriented file organization 1-10

B

BACKSPACE 11-2, 11-4

c

call-by-reference technique 5-4
CANCL 18-3, 18-5
CDIR 9-1, 9-2
CFILW 10-1,10-2
CHAIN 22-2, 22-3
?CHAIN 22-3, 22-8
chained program 22-1
channel number 3-5

AOS, converting FORTRAN unit number into 5-16
CHECK 23-1
CHRST 11-2,11-5
CHSA V 11-2,11-6
CHSTS 10-1,10-3
clock ticks 21-1
CLOSE 11-1, 11-2,11-7
close a file 3-9, 11-1
?CLOSE 11-7, 11-16
code

definition of 3-2
runtime 3-2
shareable 1-1, 3-2
user 3-2

code partitions
shared 3-12
unshared 3-11

codes, exceptional condition 6-2
COMARG 22-2, 22-4
COMINIT 22-2, 22-6
command line information, accessing
command line interpreter macro files 1-2
common block, aligning 24-1
COMMON blocks 3-11
common language runtime environment (CLRE) 1-1
COMMON storage, accessing 5-13
communication, interprocess, through shared data 24-3
compilation

definition of 3-1
examples 1-3

compiler, definition of 3-1
compiling a FORTRAN 5 program under AOS 1-3
COMTERM 22-2, 22-7
console interrupts 12-1
constants, shared 3-2
CPART 9-1,9-3

093-000154 Licensed Material-Property of Data General Corporation Index-1

CPU
control, tasks compete for 19-1
definition of 3-3
interacting with a process in main memory, (figure)

3-4
registers 5-2
time, definition of 3-3

?CREATE 9-2,9-3,10-2,10-7
CVF 24-3
CYCLE 18-Iff, 18-6

o
data files, virtual 24-3
Data General preconnections 1-11
data partitions

data

shared 3-12
unshared 3-11

definition of 3-2
extended memory 24-3
preprocess 3-8
runtime 3-2
shareable 3-2
shared, interprocess communication through 24-3
system 3-2
unshared 3-2
user 3-2

data-initialized storage, accessing 5-13
databases, runtime, FORTRAN 53-12
DATE 13-1
date

obtain the current 13-1
set the 13-1

dates, valid 13-1
DAY 13-2
DCVF 24-3
default memory partitions, changing 4-2
default size stack 14-1
?DELAY 21-Iff
delayed initiation 18-1
DELETE statement 2-1
?DELETE 1O-4f, 10-9
DFILW 6-2, 10-1,10-4
DGCPCT preconnections (table) 1-12
DIR 9-1,9-4
?DIR 9-4
direct block mode 11-1
disabling the multitask environment 19-1
DMEM.SR 1-9
DPART.SR 4-3
?DQTSK 18-5
DVDCHK 7-1
DVF 24-3

EBACK 23-1,23-2
EBID.sR 5-7
ECID.sR 5-7

E

ECLIPSE architecture introduction 5-1
enabling the multi task environment 19-1
END = clause

error handling 2-2
I/O statements that have 2-1

ERDB 24-3, 24-4
ERR = clause

error handling 2-2
I/O statements that have 2-1

ERROR 23-1,23-3
error

codes, FORTRAN 5, to access 5-15
conditions

for each runtime routine 6-2
line length 1-10

conventions, ISA (Instrument Society of America)
2-2

error files, directing error message output to 2-5
error handling, Chapter 2
errors and messages, runtime, reporting 5-13
errors

fatal 2-1
floating-point 2-4
recoverable 2-1
reporting 23-1
transparent 2-1

EST 20-2, 20-3
EWRB 24-3, 24-5
exceptional condition codes 6-2
exclusive OR 8-1
executable program, definition of 3-1
executable segments 22-1
EXIT 23-1
extended memory 24-Iff

data 24-3
mapping 24-1
using, in a multitask environment 1-9, 24-1

F

F5.ERR 5-14
ACO format for (table) 5-14
invocations, two types of 5-15

F5ERR.FR 6-2
F5LD

command 3-1
LINK argument switches 1-7
LINK function switches 1-6
LINK overlay designators 1-8

Index-2 Licensed Material-Property of Data General Corporation 093-000154

o

o

o

o

o

F5LD.CLI switches 1-8
FMAC.SR5-7
F5SYM.sR 5-7
fatal errors 2-1
FCALL macro, in assembly language routines 5-4
FCHAN 22-2, 22-8
FCLOSE l1-lf, 11-8
?FCLOSE 11-8
FDELAY 21-1
FDELETE 10-1,10-5
FGDAY 13-1, 13-3
file

files

control tables 3-12
input/output 3-9

blank-padded 3-12
close a 3-9,11-1
data, virtual 24-3
FORTRAN 5 symbol 5-7
line-oriented 3-12
maintaining 10-1
opening a 3-9,11-1
reading a 3-9, 11-1
write to a 3-9

.FIOPREP 5-16
floating-point

errors 2-4
changing default actions 2-4
default actions 2-4
explicit check for 7-1

registers 5-2
trap handler 2-4
trap mechanism, substituting routines for 7-1
unit 2-4

?FLUSH 24-5
FOPEN l1-lf, 11-9
FORTRAN 5

built-in and math routines, calling 5-15
defined symbols 5-7
environment, memory available to, limiting amount

1-9
error codes, to access 5-15
input/output preconnections 1-11
named COMMON block, refer to a 5-13
permanent symbol file 5-5
permant symbol file, files that make up 5-7
program

that contains overlays, linking a 1-8
under AOS, compiling a 1-3
under AOS, linking a 1-6

runtime databases 3-12
runtime stack discipline 5-2
symbol files 5-7
under AOS, using, Chapter 1
unit numbers 1-11,3-5, 11-1

FPTRAP.SR 2-5
FRENAME 10-1,10-6
FSDAY 13-1, 13-5
FSEEK 11-2,11-10
?FSTAT 10-3
FSTIME 13-1, 13-6
FSW AP 22-2, 22-9
FTASK 4-3, 14-1,14-2
function switches (table) 1-4

F5LD LINK 1-6
functions, intrinsic 6-3

GCIN 12-1
GCOUT 12-1,12-2
?GDAY 13-3
GDIR 9-1,9-5
GETERR 2-2, 23-1, 23-4
GETEV 16-1
GETPRI 16-1,16-2
GHRZ 21-1
?GHRZ 21-2
?GNAME9-5
?GPOS 11-6
?GTMES 22-5
?GTOD 13-4, ·13-9

G

I/O control block (lOCB) 3-13
lAND 8-1, 8-2
IBMPCT preconnections 1-11 (table) 11-12
ICLR 8-lf, 8-3
identification number, optional 14-1
?IDKIL 15-6
?IDPR115-7
?IDRDY 15-8
?IDSUS 15-9
IER, as the last argument for many routines 6-2
inclusive OR 8-1
INIT 9-1, 9-6
?INIT 9-6
.IUNIT 5-16
initiate a task 14-1
initiation

delayed 18-1
periodic 18-1

input/output
file 3-9
channels 3-5
operation (figure) 3-9
unit numbers 1-11

093-000154 Licensed Material-Property of Data General Corporation Index-3

input/output preconnections
changing default 1-11
FORTRAN 51-11

int9ger variables, manipulation of the bits of 8-1
interprocess communication through shared data 24-3
interrupts, console 12-1
intrinsic functions 6-3
IOPROG 4-3
lOR 8-1£, 8-4
ISA (Instrument Society of America)

error conventions 2-2
status codes 6-2

ISET 8-1£, 8-5
ISHIFT 8-2, 8-6
ITASK 4-3, 14-1,14-3
ITEST 8-1£, 8-7
IVF 24-3
IXOR 8-1£, 8-8

KILL 15-1, 15-4
?KILL 15-4

K

L

LEN =, to specify line length 1-10
line mode 11-1
line length

default, changing the 1-10
error conditions 1-10
for output, setting a maximum 1-10

libraries of runtime routines 6-1
LINESIZE.SR 1-10
LINK 10-1, 10-7
Link utility 3-1

output of 3-1
linking a FORTRAN 5 program that contains overlays

1-8
linking a FORTRAN 5 program under AOS 1-6
linking examples 1-8
load-on-call overlays 1-1
logical AND 8-1
logical operations 8-1
longtrace 2-3

M

machine code 5-1
macroassembler, assemble assembly language source

files 5-5
main memory 3-4ff

address space in (figure) 3-5
configuration of 3-10
layout of (figure) 3-10

for multitask programs 3-10
for singletask programs 3-10

maintaining files 10-1
MAPDF 24-1,24-3,24-6

mapping, extended memory 24-1 O· ..
MASM command, format of 5-6
MASM.PS 5-7
memory

available to FORTRAN 5 environment, limiting 1-9
extended, mapping 24-1
management hardware (MAP) 24-1
partitions 4-3 ff

. allocating 4-3
default, changing 4-2
in multitask environment 4-2

runtime, allocation 3-8
MESSAGE 23-1,23-5
messages

receiving 17-2
reporting 23-2
transmitting 17-1

MULTITASK 19-1, 19-2
multitask environment, Chapter 3

disabling 19-1
enabling 19-1
memory partitions in 4-2
normal 19-1
using extended memory in 24-1

multitask programming in FORTRAN 5 Chapter 4
multitask programs

definition of 3-2
layout of main memory for 3-10
memory usage in 1-9 0 ..

multi task stack partitions, 3-8
multitasking (figure 3-3)

concepts of 4-1
MYEV 16-1,16-2
MYID 16-1,16-3
MYPRI 16-1,16-3

N

named COMMON 24-1
non-FORTRAN 5 tasks 4-1
NOT 8-1£, 8-9
notrace 2-3f

o
object modules, definition of 3-1
ODIS 12-1,12-2
?ODIS 12-2
OEBL 12-1, 12-3
?OEBL 12-3
OPEN 11-1£,11-11
?OPEN 11-3, 11-9, 11-11
opening files 11-1
operating system defined symbols 5-7
operating system independent source routines 5-7
OR

exclusive 8-1
inclusive 8-1

OVCLOSE 20-2, 20-4
0-

Index-4 Licensed Malerlal-Property of Data General Corporation 093-000154

o OVERFL 7-1,7-2
overlay area 3-12, 20-1
overlay

designators, F5LD LINK 1-8
directory, 3-11
file 20-1
management, explicit 20-1
name 20-2
routine 20-1

overlays 20-1 (figure) 20-1
linking a FORTRAN 5 program that contains 1-8
load -on-call 1-1
loading 20-2
releasing 20-2

OVEXIT 20-2, 20-5
OVKILL 20-2, 20-6
?OVKIL 20-6
OVLOD 20-2, 20-7
?OVLOD 20-3, 20-7
OVOPN 20-2, 20-8
OVREL 20-2, 20-8
?OVREL 20-9, 20-5

page zero 3-11
state variables 5-2

parametric programs 5-6

p

partition specification table, creating 4-2
partition specifier 14-1
partitions 4-2ff

default size 4-2
fixed size 4-2
memory, allocating 4-3

PARU.16.SR 5-7
PARU.SR 5-7
per-process activation 3-8
per-process data 3-8
per-routine activation 3-8
per-task activation 3-8
periodic initiation 18-1
permanent symbol file 5-5ff

FORTRAN 5 5-5
files that make up 5-7

what it is 5-6
physical resources, in multitask environment 4-1
pop 3-6
premature termination of a request 18-2
PRI 15·1,15-5
?PRKIL 15-2
?PROC 22-9, 22-10
priority, task 14-1
process, definition of 3-2
program

chained 22-1
compiling a FORTRAN 5 under AOS 1-3ff
development cycle, example 1-13
file 22-1
variables, copies of 3-7

programs, parametric 5-6
?PRRDY 15-3
?PRSUS 15-4
?PRT 15-5
pseudo-ops, switches for use with 5-7
push 3-6

operation (figure) 3-7

QCALLS 6-1
QDCC 18-2
QDCII8-2
QDSH 18-2
QSYM.FR 9-1
queue tables 18-1, 18-3

?RCALL 5-4
RDBLK 11-2, 11-12
RDLIN 11-2, 11-13
read a file 3-9, 11-1
ready tasks 18-Iff
RDSEQ 11-2, 11-4
re-entrancy 3-7

Q

R

? READ 11-12ff, 24-4 f, 24-15
READRW 11-2,11-15
REC 17-1,17-2
?REC 17-2
record mode 11-1
recoverable errors 2-1
registers

CPU 5-2
floating-point 5-2

RELEASE 9-1, 9-7
?RELEASE 9-7
REMAP 24-3, 24-8
RENAME 10-1, 10-8
?RENAME 10-8
RENAME statement 2-1
reporting runtime errors and messages 5-13
RESET 11-2f, 11-16
resources 3-3ff

definition of 3-3
physical, in a multitask environment 4-1

?RETURN 23-2, 23-3
REWIND 11-2,11-17
routines

calling other 5-11
that have a variable number of arguments, writing

5-11
source, operating system independent 5-7

RT.ERR
forms of 5-14
to invoke error reporter for AOS errors 5-14

093-000154 Licensed Material-Property of Data General Corporation Index-5

runtime
data 3-2
databases, FORTRAN 5 3-12
environment 3-6ff
errors and messages, reporting 5~ 13
memory allocation 3-8
routines, Chapter 6

error conditions for each 6-2
examples 6-3
libraries of 6-1

runtime stack 3-6
at various stages of a subroutine call (figure) 5-5
discipline, FORTRAN 5 5-2

S?ATTR, about 5-11
S?QTSK 5-12
S?TASK 5-12
SAVE instruction 5-3f
?SCLOSE 24-10
SDATE 13-1, 13-7
?SDA Y 13-5, 13-7
segments, executable 22-1
sequential mode 11-1
shareable code 1-1
short form traceback 2-3
single-task program 3-2

s

layout of main memory 3-10
SINGLETASK 19-1, 19-2
?SPAGE 24-1,24-4,24-9, 24-11, 24~15
?SOPEN 24-17
?SPOS 11-4f, 11-10, 11-17
stack (figure) 5-3

discipline, FORTRAN 5 runtime 5-2
frame 5-2
overflow 3-6 3-8
partitions

about 3-8
multi task 3-8

space, required by a called FORTRAN 5
subprogram 4-3

using the 5-4
START 18ff, 18-7
state variables, page zero 5-2
statement file preconnections (table) 1-12
statement preconnections 1-11
STATIC storage, accessing 5-13
status variables 2-2

with CHECK routine 2-2
STIME 13-1, 13-8
?STOD 13-6, 13-8
subprogram linkage conventions 5"4
?SUS 15-5
SUSP 15-1, 15-5

suspend tasks 18-1 ff
suspensions, classes of 4-3
SWAP 22-2, 22-10
swapping 22-1
symbols

FORTRAN 5 defined 5-7
operating system defined 5-7

SYSID.16.SR 5-7
SYSID.sR 5-7
system calls, assembly language, AOS 6-1

T

task
completion 18-2
control block (TCB) 3-11
descriptions 18-1
global area 3-13
ID 14-1
initiation 18-If
priority 14-1

TASK statement 4-3
?TASK 14-2f, 18-6ff
tasks

and their resources 4-1 ff
compete for CPU control 19-1
definition of 3-2
initiate a 14-1
initiating from assembly language 5-12
non-FORTRAN 5 4-1
ready 15-1
suspend 15-1
terminate 15-1

TCB extensions 3-11
termination, premature, of a request 18-2
TIDK 15-1, 15-6
TIDP 15-1, 15-7
TIDR 15-1, 15-8
TIDS 15-1, 15-9
TIME 13-1, 13-9
time initiation 18-2
time, set the 13-1
time-sharing 3-3
timing 18-2
traceback error handling 2-3f

short form 2-3
transfer completion 24-2
transparent errors 2-1
TRNON 18-1, 18-3,18-8

unallocated region 3-12

u

unit numbers, FORTRAN 51-11,3-5
UNLINK 10-1, 10-9
user status table (UST) 3-11

Index-6 Licensed Material-Property of Data General Corporation

o

o

o
093-000154

v

variables
integer, manipulation of the bits of 8-1
page zero state 5-2

VCLOSE 24-3, 24-10
VDUMP 24-3, 24-11
VF 24-3
VF5SYM.sR 5-7
VFETCH 24-2f, 24~12
virtual data file 24-3

closing 24-3
opening 24-3

VLOAD 24-3, 24-15
VMEM 24-3, 24-16
VOPEN 24-2f, 24-17
VSTASH 24-2, 24-18

W

WAIT 21-1, 21-3
WAKEUP statement 2-1

window block 0 24-1£
window block, scratch 24-2
window maps 24-1£

separate 24-2
window size, defining 24-1
word in memory 3-4
WRBLK 11-2, 11-18
write to a file 3-9
?WRITE 11-18ff, 24-11
WRTRW 11-2, 11-19
WRLIN 11-2,1l-20
WRSEQ 11-2, 11-21

X

XMT fREC mechanism 19-1
XMT 17-1, 17-3
?XMT 17-3
XMTW 17-1, 17-4

093-000154 Licensed Material-Property of Data General Corporation Index-7

o

o

o

o

o·

o

o

~
..J

§
I-

8
~
..J o <
I- ' a

o

_. Data General TP ____ _

TIPS ORDER FORM
Technical Information & Publications Service

SHIP TO: (if different)

COMPANY NAME

ADDRESS

CITY

ZIP STATE ZIP

ATTN:

MODEL # DESCRIPTION UNIT LINE TOTAL
QTY PRICE DISC PRICE

(Additional items can be included on second order form) [Minimum order is $50.00) TOTAL

Tax Exempt # Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (V.P.S or Postal)

For orders less than $100.00
o Other:

o Charge my 0 Visa 0 MasterCard o V.P.S. Blue Label
Acc't No. ____ Expiration Date. ___ _ o Air Freight

o Other
o Purchase Order Number: _______ _

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING. ______ --'

Person to contact about this order ____________ Phone ______ _

Mail Orders to:

Data General Corporation
Attn: Educational ServicesrrIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366-8911 ext. 4032

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

DGC Sales Representative (If Known)

012·1780

Extension

Date

Badge #

[~l

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's ord~r or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof. Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

o

o

t. DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service's Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal"
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS
Educational Services - M.S. F019
Data General Corporation
4400 Computer Drive
Westboro, MA 01580

8. We'll take care of the rest!

o [~l

134-784-01

o

o

fold

o

moisten & seal

CUSTOMER DOCUMENTATION COMMENT FORM
Your Name ____________________ Your Title ___________ _
Company __ _

Street ___ __

City __ State ____________ Zip __ __

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a
few minutes to respond. Thank you.

Manual Title ______________________________________ Manual No. ___________________ __

Who are you? DEDP /MIS Manager
DSenior Systems Analyst
o Engineer

o Analyst/Programmer
o Operator
DEnd User

How do you use this manual? (List in order: Primary Use)

_ Introduction to the product
_Reference

_ Tutorial Text
_ Operating Guide

About the manual: Is it easy to read?
Is it easy to understand?
Are the topics logically organized?
Is the technical information accurate?
Can you easily find what you want?
Does it tell you everything you need to know?
Do the illustrations help you?

o Other ______ _

_Other

Yes
o
o
o
o
o
o
o

No
o
o
o
o
o
o
o

U you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Comments:

.. t

o

o
1 O-J>BL -J>£ 1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA 01772

Postage will be paid by addressee

4. DataGeneral
Customer Documentation
62 T. W. Alexander Drive
Research Triangle Park, NC 27709-9990

1 •• 1.11 ••• 11 ••• 111 ••• 1.1 •• 1.1111.1 •• 1.1 •• 11 ••• 1 •• 1.1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

134-784-01

o

o

fold

o

moisten & seal

CUSTOMER DOCUMENTATION COMMENT FORM
Your Name ____________________ Your Title ___________ _

Company _________________________ ~ _______ _

Stteet _________________________________ ~---

City ______________________ State ______ Zip __ _

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a
few minutes to respond. Thank you.

Manual Title ___________________ Manual No. __________ _

Who are you? DEDP /MIS Manager
DSenior Systems Analyst
o Engineer

o Analyst/Programmer
o Operator
DEnd User

How do you use this manual? (List in oroer:

_ Introduction to the product
_Reference

Primary Use)

___ Tutorial Text
___ Operating Guide

About the manual: Is it easy to reag?
Is it easy to understand?
Are the topics IQgically organized?
Is the technical information accurate?
Can you easily find what you want?
Does it tell you everything you need to know?
Do the illustrations help you?

o Other ____ '-_

_Other

Yes
o
o
o
o
o
o
o

No
o
o
o
o
o
o
o

If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Comments:

/at

1 O-l'BL -l'£ 1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA 01772

Postage will be paid by addressee

4. DataGeneral
Customer Documentation
62 T.W. Alexander Drive
Research Triangle Park, NC 27709-9990

1111.11 ••• 11 ••• 111 ••• 1.1 •• 1.1111.1 •• 1.1 •• 1111.1 •• 1.1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o

o

o

o

Data General Corporation, Westboro, MA 01580
IIII~IWIII~~II~III~I~II 0

12193-121121121154-1212

