
t. Data General ,,-
Customer Documentation

Programming with
Business BASIC

o

,

I
-0. 1

Programming with Business BASIC

093-0ob480-00

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

- -

Ordering No. 093-000480
©Data General Corporation, 1986
All Rights Reserved
Printed in the United States of America
Revision 00, July 1986
Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DOC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED
HEREIN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL
NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED
IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC
FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which
governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000. ECLIPSE
MV/6000, ECLIPSE MV/SOOO, INFOS, MANAP, microNOVA, NOVA, PRESENT, PROXI, SWAT
and TlENDVIEW are U.S. registered trademarks of Data General Corporation, and AEC/STAGE,
AI/STAGE, AOSMAGIC, AOS/VSMAGIC, ArrayPlus, AWE/4000, AWE/SOOO, AWE/IOOOO,
BusiGEN, BusiPEN, BusiTEXT, COMPUCALC, CEO Connection, CEO Drawing Board, CEO Wordview,
CEOwrite, CSMAGIC, DASHER/One, DATA GENERAL/One, DESKTOP/UX, DG/GATE, DG/L,
DG/STAGE, DG/UX, DG/XAP, DGConnect, DXA, ECLIPSE MV /2000, ECLIPSE MV /10000,
ECLIPSE MV/20000, Electronic/STAGE, FORMA-TEXT, GATEKEEPER,GDC/IOOO, GDC/2400,
GENAP, GW /4000, GW /8000, GW /10000, Mechanical/STAGE, microECLIPSE, MV lUX, PC Liaison,
lASS, REV·UP, Software Engineering/STAGE, SPARE MAIL, TEO, UNITE, and XODIAC are
trademarks of Data General Corporation.

Programming with Business BASIC
093-000480

Revision 00, July 1986
(Business BASIC Rev. 4.0 (AOS/VS, AOS)

Business BASIC Rev. 8.0 (RDOS))

Copyright ©Data General Corporation 1986
All Rights Reserved
Printed in U.S.A.

Licensed Material - Property of Data General Corporation

r)

Preface

Scope

Data General's Business BASIC is a powerful, interactive programming lan­
guage that runs on the following operating systems: mapped ECLlPSE® RDOS,
DG/RDOS, AOS, AOS/VS, and AOS/WS. Because there is no significant dif­
ference to the programmer, this guide uses the term "AOS" to refer to AOS,
AOS/WS, and AOS/VS and the term "RDOS" to refer to RDOS and DG/
RDOS except where AOS and/or RDOS differ from their companion operating
systems.

This manual is for experienced programmers who have not used Business
BASIC. The purpose of the manual is to acquaint these programmers with
Business BASIC operations and programming procedures. The manual provides
an overview of what commands, functions, subroutines, and utilities are available
to help programmers. It is not intended to provide detailed instructions on how
these features work. Explanations of these Business BASIC features are con­
tained in the Business BASIC reference manuals. This manual also discusses the
file and database structures supported by Business BASIC.

Document Set

Programming with Business BASIC is part of a four-manual set that describes
the language, its utilities and subroutines, and how the system is set up. The
other. manuals in this set are:

• Business BASIC Reference Manual for Commands, Statements, and Func­
tions

• Business BASIC Reference Manual for Subroutines, Utilities, and BASIC
CLI

• Business BASIC System Manager's Guide

The titles and ordering numbers for these documents are listed in "Related
Documents" at the end of this manual.

Organization of This Manual

The manual is divided into eight chapters, a glossary, and three appendixes.

Chapter 1 presents an overview of the Business BASIC software package and
information on the Business BASIC modes of operation.

Licensed Material - Property of Data General Corporation

Chapter 2 discusses program development, execution, debugging, and document­
ing.

Chapter 3 contains information on Business BASIC variables, expressions, and
arithmetic operations.

Chapter 4 discusses Business BASIC subroutines, user-written subroutines, as­
sembly language subroutines, and utilities.

Chapter 5 presents an overview of the Business BASIC file structure and its
input and output operations.

Chapter 6 contains information about the two Business BASIC database struc­
tures.

Chapter 7 deals with the INFOS II® system files (AOS only).

Chapter 8 has information on transporting Business BASIC files between oper­
ating systems.

The glossary contains definitions of terms used by Business BASIC.

Appendix A lists the Business BASIC keywords, subroutines, and utilities.

Appendix B has an ASCII character set chart and an eight-bit character set
chart.

Appendix C contains example programs.

Typographical Conventions .

This manual uses certain conventions and typefaces to represent the various ele­
ments of the Business BASIC language syntax.

Information that is displayed in this typeface indicates a general format for
the Business BASIC language syntax.

Information that is displayed in this typeface indicates a syntax structure that is
exactly as it would appear on your terminal

This manual uses the term "IKEY" to refer to the interrupt or escape key
sequence your Business BASIC system uses. In many cases, this is the
ESCAPE key; however, some systems use contro1jkey combinations. Check with
your system manager to see what your system uses.

Also, this manual uses the term "new line key" to refer to the key you press to
terminate a line. On AOS systems you use the NEW LINE key, and on RDOS
systems you use the CR (carriage return) key.

ii licensed Material - Property of Data General Corporation

The other conventions used In this manual are described below.
-

UPPERCASE Indicates a Business BASIC subroutine, utility, or command.

lowercase Indicates a generic term representing a complete syntactical en­
try to be supplied by the programmer.

End of Preface

Licensed Material - Property of Data General Corporation iii

o

Contents

Chapter 1 - Introduction to Business BASIC
Commands, Statements, and Functions ,..,. ... ,. ,. ,. 1-2
Business BASIC Utility Programs .,.,.,..,. 1-3
Business BASIC Subroutines ,. ... 1-3
BASIC CLI ... 1-3
Business BASIC Operational Modes .. ,. 1-4
File Structures ... 1-5
Logging On and Off Business BASIC ... 1-6

Chapter 2 - Program Development
Writing Business BASIC Programs .. ,. 2-1

Adding Program Statements .. 2-4
Business BASIC Programming Features ,. 2-4

Modifying Your Program ... 2-6
Keyboard Editing Commands ... 2-7
Saving Programs .. 2-10

Executing Business BASIC Programs .. 2-11
Continuing Execution of a Program ... 2-13
Interrupting and Debugging Programs ... 2-14

Debugging Aids ... 2-16
Handling Interrupts from within Programs 2-16

The ON IKEY Statement .. 2-17
The ON ERR Statement .. 2-17

Documenting and Storing Programs ... 2-18
SAVE Files .. 2-19
Listing Files .. 2-19

Chapter 3 - Numeric, Array, and String Variables
Variables .. 3-1
Numeric Data ... 3-2

Numeric Variables ... 3-3
Precision .. 3-3

Storage of Numeric Variables .. 3-3
Data Transfer of Numeric Variables .. 3-3

licensed Material ~ Property 0.1 Data General Corporation

Arrays ... 3-4
Creating Arrays ... 3-5
Default Array Dimensions .. 3-5
Accessing Array Elements .. 3-5
Changing Array Dimensions ... 3-6

Assigning Values to Numeric Elements .. 3-6
Numeric Expressions .. 3-7

Arithmetic Operators ... 3-8
Relational Operators .. 3-9
Boolean Logic Operators ... 3-9

Handling Decimals .. 3-11
Predefined Numeric Instructions ... 3-13
Character Data ... 3-14

String Literals .. 3-15
String Variables ... 3-15
Accessing Strings ... 3-16
Using Strings in Expressions .. 3-17
Assigning Values to Strings ... 3-18
Concatenating Strings ... 3-19
String Functions ... 3-19
Using Variables to Transfer Data ... 3-20
Numeric/String Conversions .. 3-21

Chapter 4 - Subroutines and Utilities

Subroutines .. 4-1
Business BASIC Subroutines .. 4-1
Using Subroutines ... ; 4-2
Writing Business BASIC Subroutines ... 4-3
Errors with Subroutines .. 4-4
Subroutine Example .. 4-4
Assembly Language Subroutines .. 4-6

Utilities ... 4-6
Using Utilities .. 4-6

Common Area .. 4-7

Chapter 5 - File Overview

Operating System Files .. 5-1
RDOS Files .. 5-2

Sequential File Organization .. 5-2
Random File Organization .. 5-2
Contiguous File Organization ... 5-5

AOS Files : .. 5-6
Business BASIC File System .. 5-6

Filename Conventions .. 5-8
Creating Simple Disk Files .. 5-9
File Access ... 5-9
File Types ... 5-11

Licensed Material - Property of Data General Corporation

Simple Disk Files ... 5-11
Linked-Available-Record Files .. 5-11
Index Files .. 5-12
Logical Files and Subfiles .. 5-19

Chapter 6 - Database Structures in Business BASIC
Logical File Database Structure ... 6-2

Creating a Logical File Database .. 6-3
Logical Files ... 6-3
Volume Label File Format ... ~ 6-3
Logical File Table (LFT ABL$) ... 6-4
Logical File Input and Output .. 6-5

PARAM File'Database Structure .. 6-6
Setting up a PARAM Database .. 6-6
The PARAM File ... 6-7
Cl (File Characteristics) Array ... 6-8
Building a Cl Array ... 6-9
Modifying a Record in the C 1 Array .. 6-11
Positioning to a Record .. 6-11
Writing a Record in the PARAM Structure 6-12
Deleting a Record in the PARAM Structure 6-12
Input and Output with the PARAM Database 6-13

Converting from a PARAM Database to a Logical Database 6-14
Comparing Databases ... 6-14

Chapter 7 - The INFOS® II File System (AOS Only)
Introduction to INFOS II ... 7-1
Argument Pairs ... 7-2
Channel Strings ... 7-3
Creating an INFOS II File ... 7-4
Accessing INFOS II Files ... 7-5
Error Handling .. 7-6

Chapter 8 - Transporting Programs between RDOS and
AOS

Transferring Files .. 8-1
Moving Files from RDOS to AOS .. 8-2

Moving Text Files to AOS .. 8-2
Moving Logical Database Files to AOS ... 8-2
Moving SAVE Files to AOS ... 8-2

Moving Files from AOS to RDOS .. 8-3
Moving Text Files to RDOS ... 8-3
Moving Logical Database Files to RDOS .. 8-3
Moving SAVE Files to RDOS .. 8-3

Operating System Differences ... 8-3

Licensed Material - Property of Data General Corporation

Glossary

Appendix A - Subroutine, Utility, and Keyword
Summary

Appendix B - ASCII Tables

Appendix C - Example Programs
Setting Up a Logical File Database .. C-l
Setting Up a PARAM File Database ... C-4
Comparing Logical, PARAM Code ... C-lO
Enlarging a Logical Database .. C-ll

Related Documents

Licensed Material - Property of Data General Corporation

n

o

n

Illustrations

Figure

1-1 Components of the Business BASIC Software Package 1-1

2-1 Business BASIC Program Statement Syntax 2-3
2-2 Flow of Program Control with SWAP Command 2-12
2-3 Flow of Program Control with CHAIN Command 2-12

3-1 One- and Two-Dimensional Arrays .. 3-4

5-1 Format of an RDOS Sequential File .. 5-3
5-2 Format of an RDOS Random File ... 5-4
5-3 Format of an RDOS Contiguous File ... 5-5
5-4 Stages in AOS File Growth ... 5-7

Licensed Material - Property of Data General Corporation

Tables

Table

2-1 Keyboard Editing Commands ... 2-8
2-2 Program Execution Commands .. 2-15
2-3 Commands to Save .Programs ... 2-20

3-1 Precedence of Arithmetic Operations .. 3-8
3-2 Relational Operators .. 3-9
3-3 Hierarchy of Operators in Business BASIC 3-11
3-4 Numeric Functions and Statements ... 3-14
3-5 References to Strings ... 3-16
3-6 Uses of String Expressions ... 3-17
3-7 Assigning Characters to String Locations ... 3-18
3-8 String Functions and Statements ... 3-20

5-1
5-2
5-3
5-4
5-5
5-6
5-7

Filename Extensions .. 5-8
File Input and Output Commands .. 5-10
Contents of Record 0 of a Linked-Available-Record File 5-12
Active Data Record in a Linked-Available-Record File 5-12
Deleted Data Record in a Linked-Available-Record File 5-12
Contents of Block 0 of an Index File ... 5-14
Format of a Block Containing Keys for an Index File 5-15

6-1 Contents of a Volume Label File Record ... 6-3
6-2 LFU Command Summary .. 6-4
6-3 Contents of an LFT ABL$ Record ... 6-5
6-4 I/O Commands Used with Logical Files .. 6-6
6-5 Record 0 of the PARAM File ... 6-8
6-6 Contents of a PARAM File Record ... 6-8
6-7 Column Contents of the C I Array .. 6-9
6-8 I/O Commands Used with PARAM Database Files 6-13
6-9 Logical, PARAM Database Features .. 6-15

7-1 Business BASIC INFOS® II Statements .. 7-2

8-1 Methods of Moving Files between Operating Systems 8-1

A-I Business BASIC Subroutines ... A-I
A-2 Business BASIC Utilities ... A-4
A-3 BASIC CLI Commands ... A-6
A-4 Business BASIC Commands and Statements A-8
A-5 Business BASIC Functions .. A-12

Licensed Material - Property of Data General Corporation

n

A-6 Boolean Logic Operators .. A-13

B-1 Standard ASCII Character Set .. B-I
B-2 DG International Symbols (8-bit ASCII Character Set) B-3

Licensed Material - Property of Data General Corporation

o

I

Chapter 1
Introduction

to Business BASIC

Business BASIC is an interactive programming language that contains many
standard BASIC commands, statements, and functions in addition to specialized.
statements and functions for handling file access, controlling the format of data,
and performing system tasks. Business BASIC supports simple file structures
and database file structures. These file structures include ISAM files, logical
files, a subfile/master file system, and an interface to Data General's
INFOS II® file system.

This chapter provides an overview of the structure and composition of the Busi­
ness BASIC software package. It also presents some general information on
Business BASIC.

The major components of the Business BASIC package are shown In

Figure 1-1.

Business BASIC
Software Package

I I 1 1
BASIC
CLI

Commands' Statements Functions Utilities Subroutines (Command
Line
Interpreter)

OG·25141

Figure 1-1. Components of the Business BASIC Software Package

Licensed Material - Property of Data General Corporation 1-1

The boxes in Figure 1-1 represent tools that you can use when you program
with Business BASIC. These tools can be summarized as follows:

l} The three boxes at the left (Commands, Statements, Functions) make up
the Business BASIC language.

2) The next two boxes represent the utility programs and subroutines provided
by Business BASIC. The utilities and subroutines perform a variety of
tasks to help you use Business BASIC.

3) The BASIC Command Line Interpreter (CLI) simulates the RDOS CLI.
This lets you perform operating system functions without leaving Business
BASIC.

Commands, Statements, and Functions
The commands, statements, and functions that make up the Business BASIC
language are the fundamental tools used in designing and developing application
programs.

By definition, a command is an instruction that is entered without a line num­
ber and is executed immediately.

A statement is preceded by a line number and is not executed until a command
such as RUN is entered.

A function can be either a numeric or string expression. It is used as an
expression within statements or commands.

To enter a statement, command, or function, type in the information and then
press the new line key.

In most cases, statements and functions use arguments. These can include varia­
bles, numeric and string assignments, messages to print, and subroutine destina­
tions.

Business BASIC supports three types of variables - numeric, array, and string.

You can have numeric constants and numeric variables. Since Business BASIC
is an integer language, you cannot assign a fractional number to a variable.
There are no default assignments for numeric variables.

Arrays, like numeric variables, accept only integer values. Business BASIC does
not support string arrays. You can have one-dimensional or two-dimensional ar­
rays.

Strings contain character data. You can use a string constant or assign a string
to a string variable. You must dimension a string variable before you can use
.it.

More information on variables is contained in chapter 3.

1-2 Licensed Material - Property of Data General Corporation

Appendix A contains a summary of the commands, statements, and functions
that are included in your Business BASIC software package. For more informa­
tion on these features, see the Business BASIC Reference Manual for Com­
mands, Statements, and Functions.

Business BASIC Utility Programs
Utilities are Business BASIC programs that perform data processing functions,
such as formatting screens and maintaining your database.

Most utilities are stand-alone programs; they can be executed using the RUN,
CHAIN, or SWAP commands or through the BASIC CLI by entering the
utility name preceded by an exclamation point (!). Some utilities, however, have
restricted execution modes.

Utilities are discussed in chapter 4. A list of the utilities provided with your
software package is in appendix A. For explanations of how individual utilities
work, see the Business BASIC Reference Manual for Subroutines, Utilities, and
BASIC CLI.

Business BASIC Subroutines
The Business BASIC software package contains pre-written subroutines. The
subroutines are specialized portions of Business BASIC code. Their modular de­
sign makes them easy to incorporate in application programs. The Bu~iness
BASIC subroutines help you meet the processing needs of your programs and
reduce the amount of coding you need to do.

The subroutines included in the software package reside in the Business BASIC
library directory. Their filenames have .sL extensions to distinguish them from
utility programs and other files. You execute a subroutine from within a Busi­
ness BASIC program with a GOSUB line number statement. The line number
is the entry point to the subroutine.

You can also write your own subroutines and place them in the library direc­
tory so that you can reuse them. In addition, Business BASIC provides an m­
terface that allows you to use assembly language subroutines.

Subroutines are discussed in chapter 4. A list of the subroutines provided with
your software package is in appendix A. Explanations of individual subroutines
are contained in the Business BASIC Reference Manual for Subroutines, Utili­
ties, and BASIC CLI.

BASIC CLI
Business BASIC also has its own Command Line Interpreter (CLI). The
BASIC CLI simulates the RDOS CLI without forcing you to leave Business
BASIC. This means that you do not need to exit from Business BASIC to
perform processing activities such as creating and deleting files, moving files
between directories, and printing files.

Licensed Material - Property of Data General Corporation 1-3

You start the BASIC CLI by entering RUN CLI, CHAIN CLI, SWAP CLI,
or !CLI. An exclamation point (!) prompt indicates that you are in the BASIC
CLI.

There are two ways to execute a BASIC CLI command:

• Start the BASIC CLI (which puts you in BASIC CLI mode) and then
enter the command.

• Enter the command preceded by an exclamation point at the asterisk
prompt:

* !command

You can also execute programs and utilities through the BASIC CLI by using
one of these two methods. The BASIC CLI performs a SWAP to the file speci­
fied when it does not recognize a command.

To leave the BASIC CLI, use the POP command or the QUIT command, both
of which return you to your previous level, or enter BYE, which logs you off
Business BASIC.

Appendix A contains a list of the BASIC CLI commands. For more informa­
tion on the BASIC CLI, see the Business BASIC Reference Manual for Sub­
routines, Utilities, and BASIC CLI.

Business BASIC Operational Modes
To execute Business BASIC programs, you enter a RUN, SWAP, or CHAIN
command followed by the appropriate argument. You can execute programs
from keyboard mode, BASIC CLI mode, or program mode.

Keyboard mode is indicated by an asterisk (*) prompt while BASIC CLI mode
is indicated by an exclamation point (!) prompt. You can execute a program
using BASIC CLI mode while you are in keyboard mode by entering the pro­
gram name preceded by an exclamation point (i.e., !program-name) or you can
execute the BASIC CLI and then type in the program name. Program mode
occurs when you execute a program and then use it to perform tasks, such as
executing another program. You can enter program mode by executing the pro­
gram from keyboard mode or from BASIC CLI mode. The primary operational
mode when you are working in Business BASIC is keyboard mode. You auto­
matically enter keyboard mode when you log on to Business BASIC. While in
keyboard mode, you can execute commands or you can create and run Business
BASIC programs (unless you are working on a run-only Business BASIC sys­
tem).

Everything you type while in keyboard mode goes into an assigned buffer area
called working storage. This is the area of the computer's memory that holds
your program and data. Anytime you ENTER or LOAD a program, it is stored
in working storage in binary format.

1-4 Licensed Material - Property of Data General Corporation

n

o

n

When a program is in working storage, you can execute it by entering the
RUN command with no arguments or with a line number. You can also exe­
cute a program by entering RUN "program-name. In addition, you can SWAP
"program-name, CHAIN "program-name, or CON (continue) a program.

File Structures
Business BASIC supports the following categories of files:

• Operating system files.

• Business BASIC files (i.e., operating system files containing an embedded
Business BASIC structure).

• INFOS II files (i.e., operating system files containing an embedded
INFOS II structure).

The operating system files are disk files that are physically organized in one of
four ways based on how you created the files and which operating system you
have (RDOS allows three forms of internal structure, while AOS permits only
one).

Under RDOS, each operating system file is organized in one of the following
ways:

• Sequential. RDOS maintains a series of pointers to each block of file in­
formation. The blocks do not have to be adjacent. These files permit only
beginning-to-end input and output access.

• Random. RDOS maintains an index that contains pointers to the data
blocks in a random file. The blocks do not have to be adjacent. These files
permit direct access of data.

• Contiguous. These files consist of a fixed number of disk blocks that are
physically adjacent. These files permit direct access of data.

Under AOS, all operating system files are built from 512-byte disk blocks. AOS
then uses a hierarchical index to connect the disk blocks within files.

With Business BASIC running, you can access any of these files, except the
RDOS sequential files, by using direct random access or sequential access. You
must use sequential access with, the RDOS sequential files.

Business BASIC supports two additional file structures to increase your flexibil­
ity in working with data. These files are operating system files containing an
embedded Business BASIC structure that tells the BASIC interpreter how the
files are organized. The two Business BASIC file types are:

o Linked-available-record files. These files use dynamic record allocation and
allow you to access the records directly.

• Index files. Business BASIC uses the indexed sequential access method
(ISAM) of working with index files.

Licensed Material - Property of Data General Corporation 1-5

On AOS systems, Business BASIC also provides an interface to the IN FOS II
file management system. The INFOS II files are operating system files that
contain an embedded IN FOS II structure. The IN FOS II file system provides
data handling capabilities that let you create, maintain, and use many types of
databases in batch and multiterminal environments.

In addition to the file structures, Business BASIC supports two database struc­
tures for working with files - the logical file database structure and the
PARAM file database structure. These structures increase the number of files
you can open within a program by allowing you to use subsections of a physical
file. These subsections are called logical files in the logical structure and
subfiles in the PARAM structure. Since the operating system does not recognize
subsections of files, the database structures catalog the subsections so that the
Business BASIC system can use them.

Logging On and Off Business BASIC
There are several ways to execute Business BASIC. The method you use is
determined by your operating system and the execution procedure set up by
your system manager. This section provides only a general overview of logging
on and off Business BASIC. More information on the logon procedures is con­
tained in the Business BASIC System Manager's Guide. Consult with your sys­
tem manager to learn your system's Business BASIC logon procedure.

Under AOS, there are several ways to log on to Business BASIC. Logging on
to Business BASIC can be a two-step procedure where first you log on to the
operating system, then you execute Business BASIC. You can also have your
AOS profile set up so that Business BASIC is automatically executed when you
log on to AOS. Once executed, Business BASIC displays information about
your account and then an asterisk prompt (for keyboard mode), indicating you
can start working.

To leave Business BASIC on an AOS system, enter BYE. Generally, this re­
turns you to the AOS CLI. If you logged on with a CHAIN command from
the AOS CLI, then BYE logs you off the AOS system as well as the Business
BASIC system.

Under RDOS, logging on to Business BASIC involves several steps. When you
are on an RDOS system that is running Business BASIC, the banner

DGC BBASIC X.XX

is on your screen. This indicates you can start the Business BASIC logon proce­
dures.First, press the escape key. Business BASIC then prompts you for infor­
mation such as your terminal type, your account, and your password. (This
procedure is described in the Business BASIC System Manager's Guide.) After
you respond correctly to the prompts, the asterisk prompt appears indicating you
are in keyboard mode, and you can begin working in Business BASIC.

1-6 Licensed Material - Property of Data General Corporation

()

n

To leave Business BASIC on an RDDS system, enter BYE.

Under both ADS and RDDS, you are automatically logged off Business BASIC
if you enter BYE while in the BASIC CLI.

End of Chapter

Licensed Material - Property of Data General Corporation 1-7

Chapter 2
Program Development

This chapter uses examples to show you the Business BASIC program develop­
ment phases. The examples are simple so that you can begin working in Busi­
ness BASIC quickly and at the same time extrapolate the information you need
to develop application programs. To perform these examples, you need to be
running Business BASIC and, unless otherwise specified, in keyboard mode (in­
dicated by the asterisk prompt).

Programming with Business BASIC consists of four steps:

• Writing the program.

• Executing the program.

• Interrupting and debugging the program.

• Documenting and storing the program.

These steps are discussed in this chapter.

Writing Business BASIC Programs
Because Business BASIC is an interpreter, not a compiler, executing a single
program generally requires two main steps:

• Getting the program into working storage.

• Entering the command, such as RUN, that begins program execution.

The program can be an existing program that is stored elsewhere (including one
written in an editor) or one that you created by typing in program statements
while in keyboard mode. Each line you type in while in keyboard mode is
stored in working storage and added to the lines already there.

Before you write a program in keyboard mode, enter the NEW command. This
clears working storage.

To create program statements, type in both the statement line number and the
statement contents; then press the new line key. Each time you type in a pro­
gram statement, the Business BASIC interpreter checks the syntax of the line
and reports any errors. If there are none, the system adds the statement to the
others in working storage.

Licensed Material - Property 01 Data General Corporation 2-1

The following is a four-line Business BASIC program that multiplies 3 by 300.
Type in the program and execute it by entering the command RUN. Business
BASIC displays the result on your screen.

* NEW
* 10 LET A = 300
* 20 LET B = 3
* 30 PRINT A*B
* 40 END

* RUN
900

You do not have to use an END statement in Business BASIC programs. Nor­
mal program execution halts when Business BASIC encounters either the last
line of code or an END/STOP statement. However, since Business BASIC exe­
cutes all the program statements in working storage, using an END statement
prevents the system from executing lines left in working storage by an earlier
program. (You can also avoid this problem by clearing working storage with a
NEW command before placing your program in it.)

The program remains in working storage until you replace it with another pro­
gram, clear working storage with the NEW command, or log off Business
BASIC.

Figure 2-1 illustrates the general code syntax you've used in your program. This
syntax is the same for almost all lines of Business BASIC code and consists of
the following:

1) XXXX (LINE NUMBER). Start each line of code with a line number in the
range 1 to 9999. Business BASIC left-pads all line numbers containing
fewer than four digits with zeroes when you LIST the program; thus, a
line number you enter as 1 becomes 0001 when you LIST the program.

2) KEYWORD. Keywords are the instructions that tell the program to perform
an action. The program you just executed contained four keywords - two
LET statements, one PRINT statement, and an END statement.

3) ARGUMENTS. Arguments (also known as parameters) often follow state­
ments. Arguments can include variables, numeric/string assignments, mes­
sages to print, and subroutine destinations. For example, line 10 of the
previous program cOl1tained the argument A = 300.

Working storage holds the values you assigned to variables as well as the pro­
gram. At this point the variable A has a value of 300, which was assigned
when the program was executed. To check this, enter PRINT A; the value 300
appears next to the A:

* PRINT A 300

*

2-2 Licensed Material - Property of Data General Corporation

o

(1\
I

XXXX I KEYWORD I ARGUMENTS

lL _______ Values or parameters to
be acted on by KEYWORD

L... ___________ Instruction

L...---------------Line number

DG-25142

Figure 2-1. Business BASIC Program Statement Syntax

To see the program contents of working storage, use the LIST command:

* LIST
0010 LET A = 300
0020 LET B=3
0030 PRINT A*B
0040 END

*

You could have entered program statements 10 and 20 as:

* 10 A 300

* 20 B 3

because the Business BASIC interpreter inserts optional keywords, such as LET
and removes extra spaces (A = 300). Business BASIC also left-pads any line
numbers that are part of your program statements (i.e., GOTO 10 becomes
GOTO 0010) and, in some cases, inserts spaces. Any omitted keywords, zeroes,
or spaces are displayed when you LIST the program. These characters are also
included when Business BASIC calculates the length of a line. The LIST com­
mand permits up to 132 characters in a line of code. After 132 characters,
LIST truncates the display but not the internal code, which can be longer.
However, if you use the LIST command to store a program on disk, it stores
only the displayed lines, including the ones it truncated, not the internal lines.
ENTER also allows only 132 characters in a line. If you ENTER a program
with longer lines, you receive the message: ERROR 18 -- LINE TOO LONG_

If you need to check a specific program line, you can LIST just that line:

* LIST 30
0030 PRINT A*B

*

Licensed Material - Property of Data General Corporation 2-3

You can also use LIST to display a range of line numbers. LIST is explained
in the Business BASIC Reference Manual for Commands, Statements, and
Functions.

Adding Program Statements
You can add a statement to a program in working storage by typing in the new
statement. The system adds the statement sequentially. Be sure to give the new
statement a unique line number; otherwise, it overwrites any statement with the
same line number.

In the program you now have in working storage, you can add a statement to
change the value of A (currently 300). The value, however, does not change
until you execute the program again.

, 35 A = A'B
, LIST

0010 LET A = 300

0020 LET B=3
0030 PRINT A'B

0035 LET A = A'B
0040 END

, PRINT A 300

, RUN

900

• PRINT A 900

Business BASIC Programming Features
When a program is run, Business BASIC executes the statement with the low­
est line number and then proceeds to the next higher number, unless the state­
ment directs the system elsewhere - as GOTO and GOSUB statements do.

The GOTO statement transfers control to a specific statement. The
GOSUB/RETURN statements transfer program control to a segment of code
(a subroutine) and then return you to the statement following the subroutine
call. These statements, especially the GOSUB/RETURN statements, can in­
crease the modular structure of your program, making it easier to debug. To
make your program modules easy to identify, you can include a REM statement
(remark statement) to describe them.

Business BASIC also provides flow-control constructions such as the
FOR/NEXT and IF statements. The FOR/NEXT statements allow program
looping with the termination test occurring at the top of the loop. The IF state­
ment provides your program with decision-making capability by transferring pro­
gram control based on the value of an expression or the logical answer to a
relational expression.

2-4 licensed Material - Property of Data General Corporation

o

In addition, Business BASIC is structured so that you can use its input/output
capabilities to make your programs interactive. You have already used the
PRINT statement to display information at your terminal. The INPUT state­
ment lets you enter data from the terminal. (Use the INPUT FILE statement
to enter data from a file.) When you use the INPUT statement, you can
supersede its question mark (?) prompt by entering INPUT with a string.

To see a simple example of how the preceding statements can apply to a pro­
gram, modify the previous example by entering the following statements:

* 5 LET X = 0
* 10 INPUT "Enter a number: ",A

* 36 IF A > 250 THEN GoTo 40 ELSE GoSUB 50

* 37 GO TO 3D
* 50 REM *** INCREASE THE VALUE OF A

* 60 FOR J = 1 TO 10
* 70 LET A = A + J
* 80 PRINT "This is the value of A: " A

* 90 NEXT J
* 100 LET X = X + 1
* 110 PRINT "The number of subroutine calls is:" X

* 120 RETURN

Your program now looks like this:

* LIST
0005 LET X=O
0010 INPUT "Enter a number: ",A
0020 LET B=3

0030 PRINT A*B
0035 LET A = A*B
0036 IFA>25o THEN GoTo 0040 ELSE GoSUB 0050 *** INCREASE THE VALUE OF A

0037 GO TO 0030
0040 END
0050 REM *** INCREASE THE VALUE OF A
0060 FOR J = 1 TO 10
0070 LET A=A+J
0080 PRINT "This is the value of A: ", A

0090 NEXT J
0100 LET X=X+1
0110 PRINT "The number of subroutine calls is: ", X

0120 RETURN

*

This program uses the INPUT statement to display a prompt and get a value,
the IF statement to decide where to transfer program control, the GOTO and
GOSUB statements to transfer program control, the REM statement to identify
the subroutine, and the FOR/NEXT statements to increase the value of A.
When you LIST the program, Business BASIC pads all the line number refer­
ences to four digits, appends the text of the REM statement to the subroutine
call, and sets the space indentations in the FOR/NEXT loop.

Licensed Material - Property of Data General Corporation 2-5

To get the line numbers back in a balanced number sequence, use the
RENUMBER command. If you want to renumber only a section of your code,
you can use the RENUM utility.

FOR/NEXT, INPUT, GOTO, GOSUB/RETURN, LIST, REM, and
RENUMBER are explained in the Business BASIC Reference Manual for
Commands, Statements, and Functions. RENUM is explained in the Business
BASIC Reference Manual for Subroutines, Utilities, and BASIC CLI.

Modifying Your Program
To modify a program in working storage, you can:

• Replace a statement by typing in a new statement with the same line
number or add a new statement by giving it a unique line number.

• Delete statements by using the ERASE command, by typing in a line
number without any information following it, or by typing in either a
range of line numbers (10,20) or a line number followed by a comma
(20,), which removes all the lines from that number through the end of
the program.

• Bring in statements from a listing file with the ENTER command.

• Use Business BASIC keyboard editing commands to change statements.

• On AOS systems, use the AOS SCREENED IT control characters to
change statements.

One way to change a program statement is to retype the line. Whenever Busi­
ness BASIC encounters duplicate line numbers, it overwrites the existing state­
ment with the new statement. This also happens when you ENTER a program
or subroutine into working storage and a program is already there. As Business
BASIC merges the new program statements with the current program, it checks
the line numbers of both pieces of code. Each time it finds duplicate line num­
bers, it replaces the existing statement with the statement being brought into
working storage.

You can also delete program statements. The ERASE command deletes a range
of statements. Another way to delete a range of statements is by typing in the
starting line number and the ending line number separated by a comma (i.e.,
15, 45). To delete all the lines from one line number to the end of your pro­
gram, type in the line number followed by a comma. If you want to delete a
single program statement, type in its line number and press the new line key.
Thus, by typing in 80 by itself, you could remove line 80 of your current
program:

* LIST 80
0080

* 80
* LIST
0005 LET X=O

2-6

PRINT "This is the value of A: ",A

Licensed Material - Property of Data General Corporation

~
\

0010 INPUT "Enter a number: ",A
0020 LET B=3
0030 PRINT A*B
0035 LET A = A*B
0036 IF A:>250 THEN GOTO 0040 ELSE GOSUB 0050 *** INCREASE THE VALUE OF A
0037 GO TO 0030
0040 END
0050 REM *** INCREASE THE VALUE OF A
0060 FOR J=1 TO 10
0070 LET A=A+J
0090 NEXT J
0100 LET X=X+1
0110 PRINT "The number of subroutine calls is: ", X
0120 RETURN

*

Business BASIC does not automatically renumber your program when you de­
lete lines.

Business BASIC provides several methods for changing an incorrect statement
line. If you type a character and then want to erase it, use the DEL key. To
erase an entire line, press CTRL-X on RDOS systems and AOS systems gener­
ated for terminal type 6. On other AOS systems, press CTRL-U. This erases
only the line you are typing in; it does not affect an existing program line. To
tell the system to ignore the line you are typing, press the IKEY.

Keyboard Editing Commands
To modify the contents of program statements, you can use the Business
BASIC keyboard editing commands (the dot editor) or, if you are on an AOS
system generated for either terminal type 8 or 9, the AOS SCREENED IT con­
trol characters. This section deals with the keyboard editing commands; the
AOS SCREENEDIT control characters are discussed in appendix F of the
Business BASIC System Manager's Guide and in the Command Line Inter­
preter (CLI) User's Manual (AOS and AOSjVS).

The keyboard editing commands work with program statements in working stor­
age. To use these commands, the statement you want to modify must be in the
edit buffer, a special buffer that holds one line from working storage at a time.
Lines are placed in the edit buffer in one of three ways:

• Any statement you enter that causes an error is automatically placed In

the edit buffer by the Business BASIC interpreter.

• The last line displayed following a LIST command remains in the edit
buffer.

• Any line specified by the LIST line-number command remains in the edit
buffer.

The line stays in the edit buffer until you replace it with a new line or use a
command to move it to working storage.

Licensed Material - Property of Data General Corporation 2-7

Most of the editing commands echo the edited line on your terminal but do not
change the actual line in working storage. This lets you make additional
changes to the line. When the line is correct, you must move it to working
storage with the . (period) command. This empties the edit buffer. The only
editing command that does not work this way is the .C -command, which always
places the modified line in working storage and leaves the edit buffer empty.

Several of these commands use delimiters to separate the command from the
text. The delimiter is always the first character to follow the command and
must be used consistently in each command line. When a command requires
more than one delimiter, the delimiter must be the same each place it is used
in that command line. Unless otherwise specified, the delimiter can be anything
that is not part of the string of text. Table 2-1 contains a summary of the
keyboard editing commands.

Command

.(period)

.A string

. C / string 1 / string2[/ G]

.E / string 1 / string2[/ GI

.I string

.P

Function

Sends the line in the edit buffer to working storage.

Appends string to the line in the edit buffer. A space
is frequently used as a delimiter with this command.

Changes the first occurrence of string 1 to string2. If
you include the G switch, .C changes all occurrences
of string 1 to string2 in the edit buffer. You cannot use
a space as delimiter with the .C command. The .C
command passes the line to working storage.

Changes the first occurrence of string 1 to string2. If
you include the G switch, .E changes all occurrences
of string 1 to string2 in the edit buffer. You cannot use
a space as a delimiter with the .E command.

Changes the entire line in the edit buffer to string. A
space is frequently used as a delimiter with this com­
mand.

Displays the contents of the edit buffer.

Table 2-1. Keyboard Editing Commands

The . (period) command moves the modified program statement from the edit
buffer to working storage, leaving the edit buffer empty. Use this command in
conjunction with the commands that modify lines (except for .C) to place the
corrected line in working storage. If you do not use the . command, no changes
are made to the actual program statement.

The .P command displays the line in the edit buffer; it does not affect the
contents of the edit buffer or of working storage. To place a line in the edit
buffer and then check it, type in the following two commands:

* LIST 20
0020 LET B=3

* .P
0020 LET B=3

*

2-8 Licensed Material - Property 01 Data General Corporation

The .E and .C commands change text in a program statement. The existing text
(stringl) and the new text (string2) are set off by delimiters. Both .E and .C
accept any character as a delimiter except the space character.

The .E and .C commands differ in that .C places the changed line in working
storage, while the .E command leaves the revised line in the edit buffer. With
the .E command, the actual program statement is not changed unless you use
the . command to move the new line to working storage. If you use the .C
command, the Business BASIC interpreter checks the syntax of the line being
passed to working storage. If the edited line causes an error, the system dis­
plays an error message and returns the line to the edit buffer.

The command formats are:

.E/string1/string2[/G]

.c I string 1 I string2[I G]

Without the G switch, both .E and .C change only the first occurrence of
string! to string2. When the G switch is used, all occurrences of string! are
changed to string2.

To see how .E and .C work, LIST line 50. This places it in the edit buffer.

* LIST 50
0050 REM *** INCREASE THE VALUE OF A

Now use the .E command to change the line:

* .E/INCREASE/MOOIFY
0050 REM *** MODIFY THE VALUE OF A

*

Use the .P command to view the contents of the edit buffer and then the
. (period) command to move the line to working storage.

* .P
0050 REM *** MODIFY THE VALUE OF A

*
0050 REM *** MODIFY THE VALUE OF A

* LIST 50
0050 REM *** MODIFY THE VALUE OF A

If you had used the .C command instead of the .E command, you would have
received the error message - ERROR 73 - Edit buffer is empty - when you used
the .P command.

The keyboard commands .A and .I change lines instead of strings in a line. The
.A command appends a string to the end of a line, and the .I command re­
places the existing line with the line you type in. Both commands leave the new

Licensed Material - Property of Data General Corporation 2-9

line in the edit buffer instead of placing it in working storage. Their formats
are:

.A string

.1 string

To change line 20 of your sample program by appending + A to it, use the .A
command:

* LIST 20
0020 LET B=3

* .A +A
0020 LET B=3+ A

0020 LET B=3+A

*

With the .I command, you type in a string that is identical to the way you
want your program statement to look, including the line number (the edit buffer
treats line numbers as characters in the line). The .I command does not echo
the modified line on your terminal.

* LIST 20
0020 LET B=3+A

* .1 0020 PRINT B*A

*
0020 PRINT B*A

*

In addition to the keyboard editing commands, Business BASIC has an EDIT
utility that you can use to create or edit a text file. To conserve memory, EDIT
uses a disk-resident buffer to hold the lines being modified. The EDIT utility is
explained in the Business BASIC Reference Manual for Subroutines, Utilities,
and BASIC CLI.

Saving Programs
Use either the LIST or SAVE command to save the contents of working stor­
age. LIST by itself displays the contents of working storage at your terminal;
LIST with a filename preceded by a quotation mark creates a listing file (text
file) that contains the program statements in working storage and is stored on
disk. SAVE places the contents of working storage in a SAVE file, which is
stored on disk in binary format. The formats for these commands are:

• LIST "filename

• SAVE "filename

2-10 Licensed Material - Property of Data General Corporation

o

Use the ENTER statement/command to bring a listing file into working stor­
age. Use the LOAD command to bring a SAVE file into working storage. (You
can also execute a SAVE file directly typing in RUN "filename, CHAIN "filen­
ame, SWAP "filename, or !filename.) Before you bring any program into work­
ing storage, clear working storage by executing a NEW command.

• NEW (Clear working storage)

• ENTER "filename (This is a LISTed file)

• LOAD "filename (This is a SAVEd file)

To save the sample program you've been working with, type in the following
command:

* SAVE "SAMPLE

The file SAMPLE now exists in your directory as a SAVE file.

When you create a program in working storage or when a program completes
its execution, it stays in working storage until one of the following is executed:

• A BYE statement/command to log the user off Business BASIC.

• A NEW statement/command to clear working storage.

• A RUN command to execute another program.

• A CHAIN statement/command to execute another program.

• A LOAD command to bring a new program into working storage.

If you use a SWAP command to execut,e another program, the system saves the
current contents of working storage, brings the new program into working stor­
age, executes the new program, clears the new program from working storage,
and places the old contents back in working storage.

RUN, CHAIN, and LOAD clear working storage before bringing in the new
program.

Executing Business BASIC Programs
When you create, ENTER, or LOAD a program into working storage, you can
execute it by typing in:

* RUN

The system clears all values currently assigned to variables and starts executing
the program beginning with the lowest line number. The system stops executing
the program if it encounters a STOP/END statement or the last statement in
the program; it also stops executing the program if an error occurs or if you
press the IKEY. If you resume execution of a program by entering RUN line­
number or the command CON (continue), the system continues executing the
program without clearing the values from the variables.

Licenliled Material - Property of Dala General Corporation 2-11

Other ways to execute programs include typing in SWAP "filename, CHAIN "fi­
lename, and !filename (which uses the BASIC CLI). Also, you can execute a
program by typing in "filename without a command in front of it while in
keyboard mode; this causes Business BASIC to SWAP to that file. In addition,
your system manager can set up your system so that it automatically executes a
program when you log on to Business BASIC.

Both SWAP and CHAIN can be executed in keyboard mode. Generally, how­
ever, they are program statements, and they are used by a program running in
working storage to execute a program stored on disk. SWAP returns control to
the program in working storage, but CHAIN does not. Figures 2-2 and 2-3
show the flow of program control resulting from SWAP and CHAIN.

SWAP D' kfl

~
IS Ie

/
/ ,--.. ------

I / I

I / t
l-_L ___ - I

------~ I

'----- ------

t
10-00136

Figure 2-2. Flow of Program Control with SWAP Command

J
I
I I
I I
I I
I I I I
I I I I
I I I I
I I I I

"
L _____ - I _____ t.. ____ J

~ CHAIN Dlskflle

10-00135

Figure 2-3. Flow of Program Control with CHAIN Command

2-12 Licensed Material - Property of Data General Corporation

n

Continuing Execution of a Program
Business BASIC lets you bring a program into working storage and execute it
from the point where it last stopped. Do this by combining the SWAP or
CHAIN command with the CON command - SWAP THEN CON or
CHAIN THEN CON. niese versions of SWAP and CHAIN, like the RUN
command with a line number, do not clear values from variables when they
continue execution of the target program.

Enter the following program:

* NEW
* 10 LET X=4
* 20 PRINT X
* 30 LET X=100
* 40 STOP
* 50 PRINT "X = "; X
* 60 END

RUN the program. It stops at line 40:

* RUN
4

STOP AT 0040

Now SAVE the program as "PROG2".

* SAVE "PROG2
*

If you use CON to continue executing PROG2, the program displays X with a
value of 100, which was assigned in line 30, and then ends. Instead of continu­
ing PROG2, type in the following program that SWAPs to PROG2.

* NEW
* 10 LET X=2
* 20 SWAP "PROG2 THEN CON
* 30 PRINT "BACK ALREADY!"
* 40 PRINT "X now = "; X
* 50 END

When executed, the new program assigns the value 2 to X and SWAPs to
PROG2. PROG2 displays the value of X:

* RUN

X= 100
BACK ALREADY!
X now = 2

*

Licensed Material - Property of Data General Corporation 2-13

In this example, the SWAP THEN CON statement:

I) Stores the working storage (calling) program and its values, including the
value 2 for X, in a swapping file.

2) Brings PROG2 into working storage from disk.

3) Resumes execution of PROG2 at the point where the program stopped be­
fore it was SAVEd. In this case, PROG2 stopped at line 40 and was
SA VEd so execution resumes with line 50. In addition, the variables in
PROG2 retain the values assigned to them during the last execution.

4) Returns the calling program to working storage when PROG2 ends. The
values assigned in the calling program are retained - they are not affected
by any action PROG2 took.

Therefore, the first time X is printed (by line 50 in PROG2), it equals 100, the
value assigned to it the last time PROG2 ran. The second time X is printed it
equals 2, the value assigned to it in the calling program.

To pass values for variables directly between SWAPping programs, you can use
the BLOCK READ and BLOCK WRITE statements. These statements transfer
data through the common area, a 512-byte memory location used for storing
information (see chapter 4). To transfer single-word values, use STMA 1. The
Business BASIC Reference Manual for Commands, Statements, and Functions
explains the BLOCK READ and BLOCK WRITE statements and STMA 1.

Table 2-2 illustrates the differences between the program execution commands.

Interrupting and Debugging Programs
You can interrupt Business BASIC programs by pressing the IKEY. Normally,
when an interrupt occurs during program execution, the program halts and your
terminal returns to keyboard mode. From keyboard mode, you can check the
values assigned to your program variables. You can also assign new values to
variables by entering a keyboard assignment command, such as LET X=2.
Then you can execute the program from a line number to see what the pro­
gram does with new values.

The CON command is a useful debugging aid. If your program stops for any
reason (a STOP statement, an error, or an interrupt), you can use the CON
command to continue execution at the next higher line. CON does not affect
either the value of the variables or the status of files (i.e., where the file
pointer is or whether the files are open or closed).

2-14 Licensed Material - Property of Data General Corporation

0

0

Site of Program Kept in Variable Values
Command Executed Working Storage Retained from
Format Usage Program after Execution Last Execution

RUN Immediate Working Original No
storage

RUN line # Immediate Working Original Yes
storage

RUN "program Immediate Disk file New No

CHAIN "program Program Disk file New No
statement or
immediate

CHAIN ... THEN Program Disk file New Yes
GOTO ... statement or

immediate

CHAIN ... THEN Program Disk file New Yes
CON statement or

immediate

SWAP "program Program Disk file Original No
statement or
immediate

SWAP ... THEN Program Disk file Original Yes
GOTO ... statement or

immediate

SWAP ... THEN Program Disk file Original Yes
CON statement or

immediate

CON Immediate Working Original Yes
storage

Table 2-2. Program Execution Commands

The following program causes an error because Z has not been assigned a
value:

* NEW
* 10 LET X=2
* 20 LET V=4
* 30 PRINT Z
* 40 PRINT "Z TIMES 10 EQUALS:";Z*10
* 50 STOP
* RUN

ERROR 17 AT 0030--UNASSIGNED VARIABLE

To get around the error temporarily, assign a value to Z from the keyboard
and enter the CON command:

* Z=X+V
* CON

Licensed Material - Property of Data General Corporation 2-15

Z TIMES 10 EQUALS: 60
STOP AT 0050
*

CON started execution at line 40, the line after the one that caused the error.
The program accepted the value you assigned Z in working storage and used it
to calculate the value of Z times 10. However, if you RUN the program again,
you discover:

* RUN

ERROR 17 AT 0030--UNASSIGNED VARIABLE

The error still exists in the program. This is because RUN clears all values for
variables, including the keyboard assignment for Z. To correct the program,
type in a line 25, which assigns a value to Z within the program, and then
RUN the program from line 25.

• 25 LET Z=X+V
• RUN 25

6
Z TIMES 10 EQUALS: 60

STOP AT 0050
•

Debugging Aids
Business BASIC provides several utilities to help you debug programs. These
include:

• PO, which provides information about a SAVE file or the program in
working storage.

o RNAM, which renames program variables in a SAVE file.

• SIZE, which displays the working storage space allocations.

• V AR, which lists the variables in a SAVE file or a program in working
storage.

These utilities are explained in the Business BASIC Reference Manual for Sub­
routines, Utilities, and BASIC CLI.

Handling Interrupts from within Programs
Business BASIC also has two program statements to help you debug your pro­
gram - the ON IKEY statement and the ON ERR statement. If Business
BASIC processes one of these statements before encountering an interrupt or an
error, then the statement directs the action the system takes when an interrupt
or error occurs.

2-16 Licensed Material - Property of Data General Corporation

o

(1\
I

rr
I

The ON IKEY Statement
With the ON IKEY statement, you can trap any interrupts in your program.
An ON IKEY statement has the following form:

ON IKEY THEN statement

where statement is a valid Busines·s BASIC statement excluding FOR, NEXT,
DATA, END, REM, and DEF. The way ON IKEY works is:

1) Place the ON IKEY statement in your program.

2) Business BASIC processes the ON IKEY statement.

3) After that, any time Business BASIC encounters an interrupt, it executes
the THEN statement portion of ON IKEY.

You can suspend the interrupt condition by executing an STMA 6,5. This dis­
ables interrupts so that ON IKEY neither traps an interrupt nor halts the pro­
gram. If an interrupt occurs after STMA 6,5 has been set, Business BASIC
sets SYS(26) to 1. This lets you to see that an interrupt occurred. You can
restore interrupt handling by using STMA 7,5 to re-enable the ON IKEY
statement.

When an interrupt occurs before an ON IKEY statement has been executed,
program execution halts and Business BASIC returns you to keyboard mode.

ON IKEY THEN INT cancels the previous ON IKEY statement and returns
interrupt handling to Business BASIC.

If you interrupt an input/output statement, you risk losing data. You can con­
tinue the program, but CON starts execution only at the next statement and
does not resume interrupted input/output operations.

The ON ERR Statement
The ON ERR statement traps errors in your program the same way ON IKEY
traps interrupts. An ON ERR statement has the following form:

ON ERR THEN statement

where statement is a valid Business BASIC statement excluding FOR, NEXT,
DATA, END, REM, and DEF. The way ON ERR works is:

1) Place the ON ERR statement in your program.

2) Business BASIC processes the ON ERR statement.

Licensed Material - Property of Data General Corporation 2-17

3) After that, any time Business BASIC encounters an error, it executes the
THEN portion of the ON ERR statement and sets SYS(7) and SYS(31)
to the error code of the appropriate error message.

A positive error code indicates a Business BASIC error; a negative error
code indicates an operating system input/output error. Both SYS(7) and
SYS(31) contain the same number when a Business BASIC error occurs. If
an operating system error occurs, SYS(7) holds the code for the RDOS
error message while SYS(31) holds the code for the equivalent native oper­
ating system error message. On an AOS system, SYS(31) contains the code
for an AOS error message; on an RDOS system, SYS(31) contains the
code for an RDOS error message (i.e., the same code that SYS(7) con­
tains). You can use SYS(7) with the ERM$ function or SYS(31) with the
AERM$ function to retrieve the error message. However, if you are on
AOS and SYS(7) contains -60, you must use SYS(31) with AERM$ to
get the appropriate AOS error message.

If an error occurs before the ON ERR statement has been executed, Business
BASIC haIts program execution, displays an error message, and returns you to
keyboard mode. In both cases Business BASIC sets SYS(7) and SYS(31) to the
error code of the appropriate error message.

ON ERR THEN INT cancels the previous ON ERR statement and returns
error handling to Business BASIC.

ON ERR, ON IKEY, SYS, ERM$, and AERM$ are explained in the Business
BASIC Reference Manual for Commands, Statements, and Functions.

Documenting and Storing Programs
Business BASIC stores a program as either a SAVE file or listing file, based
on how you place the file on disk. If you create the file in working storage and
SA VE it, you have a SAVE file; if you LIST it to disk or write it in an editor,
you have a listing file.

The type of file you have and where you created the file (working storage or
an editor) affects the internal documentation of your program. Documentation
in Business BASIC programs takes two main forms - colon comments, which
are in-line comments, and REM statements.

You can include REM comments in any kind of file; however, colon comments
go in listing files only. To include colon comments in a file, you can either:

• Write the file in an editor and type in the colon comments.

• Add colon comments to an existing listing file by using the EDIT utility.

You cannot place colon comments in files in working storage because everything
there is in binary format. Even when you ENTER a listing file, Business
BASIC converts it from ASCII format to binary format and strips out the
colon comments. Thus, if you use the LIST command to display an ASCII file
that contained colon comments or if you type in a program statement in work-

2-18 Licensed Material - Property of Data General Corporation

()

ing storage with a colon comment, none appears on your screen. A line you
type in as:

* 10 A = 12 : one dozen apples

appears on your screen when you LIST the line as:

* LIST
0010 LET A = 12

*

To see a listing file's colon comments, you must either look at the file in an
editor or use the BASIC CLI command TYPE to display the file at your ter­
minal. To avoid losing those comments, do not use the REPLACE command to
store the file on disk. (REPLACE deletes the file on disk and replaces it with
the file in working storage, which is in binary format.) To make changes to a
listing file, use im editor or the EDIT utility.

SAVE Files
The SAVE file is a program that you have stored on disk using either the
SA VE or REPLACE statement/command (i.e., SAVE "filename or REPLACE
"filename). This file is stored in binary Business BASIC SAVE file format. In
this format, each keyword is assigned a number so that the number, not the
larger alphanumeric word, is stored. Using this format reduces the amount of
space a file takes up on disk, but it prevents you from using an editor to
modify the file.

To preserve internal program documentation, use the REM statement or keep a
copy of the program in a listing file.

Listing Files

A listing file is an ASCII format file. To get a listing file, either write the
program in an editor or create it in working storage and then use the command
LIST "filename to store the file on disk. Using LIST "filename always produces
a listing file (i.e., an ASCII text file that contains a program and its REM
comments).

You can create an ASCII version of a SAVE file by LOADing the file into
working storage and then using the LIST command to store the file (with an­
other filename) on disk. You can only LIST a file to disk when there is no file
named filename on disk.

Table 2-3 summarizes the differences between the LIST, SAVE, and RE­
PLACE commands.

Licensed Material - Property of Data General Corporation 2-19

Command

LIST

SAVE

REPLACE

Output

ASCII

BASIC
SAVE
FILE
FORMAT

BASIC
SAVE
FILE
FORMAT

Access
Command

ENTER

LOAD, RUN,
CHAIN, SWAP

LOAD, RUN,
CHAIN, SWAP

Effect

Creates an ASCII format file; the file cannot
exist prior to being LISTed. Does not preserve
variable values or last line number executed.
Allows you to display results of typing and
editing in sequential line number order and to
use keyboard editing commands. Retains REM
comments but not colon comments.

Creates a program in Business BASIC SAVE
file format; the file cannot exist prior to being
SAVEd. Preserves variable values and last line
number executed. Retains REM comments but
not colon comments.

Creates a program in Business BASIC SAVE
file format or overwrites a disk file with the
contents of working storage; Preserves variable
values and last line number executed. Retains
REM comments but not colon comments.

Table 2-3. Commands to Save Programs

End of Chapter

2-20 Licensed Material - Property of Data General Corporation

o

o

Chapter 3
Numeric, Array, and String

Variables

This chapter deals with Business BASIC variables and how they can be used in
your programs. In addition, it describes Business BASIC arithmetic, the use of
expressions in your programs, and string functions.

Variables
Business BASIC uses three types of variables: numeric, array, and string. Nu­
meric values have no default values; you must assign a value to them before
you use them or you will get an error message. Array elements have a default
value of 0 while strings have a default value of' the null string, which has a
length of o.
Normal variable names can be up to six characters long. The first character
must always be a letter; however, the following characters can be letters or
numbers.

In certain cases, a variable name can have up to seven characters. Then the
last character is a special character that provides additional information about
the variable. A special character must always be the last character in a variable
name; when you are using a special character, the variable name can be two to
seven characters long. The special characters are:

• $ to indicate a string variable.

• % to indicate a numeric variable that only allows 2 bytes of data to be
transferred with READ/WRITE FILE statements or PACK/UNPACK
statements.

• # to indicate a numeric variable that only allows 6 bytes of data to be
transferred with READ/WRITE FILE statements or PACK/UNPACK
statements.

licensed Material - Property of Data General Corporation 3-1

Another restriction on variable names is that they cannot be keywords. The file
APERM.PS in the library directory of your Business BASIC system contains a
list of keywords. Here are some examples of legal and illegal variable names:

Legal Illegal Reason

A Variable names must begin with a letter.

A303 1AB Variable names must begin with a letter.

Z6B8 Z2345678 Variable names cannot be longer than six charac-
ters (seven if you end the name with a special
character). Business BASIC truncates variable
names that are too long instead of giving you an
error message and uses the truncated name for
the variable.

WAGE $WAGE Variable names must begin with a letter. In addi-
tion, special characters can be used only as the
last character in the variable name.

WAGE$ #WAGE Variable names must begin with a letter. In addi-
tion, special characters can be used only as the
last character in the variable name.

WAGE# A$%# Special characters can be used only as the last
character in a variable name. All other characters
in a variable name must be either letters or num-
bers.

You can assign a value to a variable or change the value of a variable with the
following statements:

• READ/DATA

• READ FILE

• PACK

• UNPACK

• LET

• INPUT/INPUT USING

• TINPUT

Numeric Data
Numeric data is limited to integers; however, Business BASIC provides format­
ting techniques (such as PRINT USING) that allow you to maintain numeric
precision and print numbers with decimal points. In Business BASIC, numeric
data includes numeric constants, numeric variables, and arrays.

3-2 Licensed Material - Property of Data General Corporation

n

n

r\
\")

A numeric constant (also called a numeric literal) is written as a signed or
unsigned decimal number. Neither commas nor periods are permitted. Examples
of numeric constants are:

59
-771083
+941

Numeric Variables
A numeric variable is a data item that has a numeric value assigned to it
during program execution. Examples of numeric variables include:

A
A3
A#
NUM%
NUMI
OUTPUT

Precision
Precision refers to the number of bytes used to store a numeric variable or
array element. With Business BASIC you can have either a double precision or
triple precision system. The precision of your system is determined by your sys­
tem manager when Business BASIC is generated.

Storage of Numeric Variables

There is a distinction between storage precIsIon and data transfer precision.
Only double and triple precision are available for storage, while single, double,
and triple precision are available for data transfer. Double precision numeric
variables store numbers using 4 bytes and can range in value from
-2,147,483,648 to +2,147,483,647. Triple precision numeric variables store num­
bers using 6 bytes and can range in value from -140,737,488,355,328 to
+ 140,737,488,355,327.

Data Transfer of Numeric Variables

Business BASIC supports three forms for transferring numeric information to
and from a file:

2 bytes of data. Variables used for transferring 2 bytes of data are indi­
cated by a percent sign (%) at the end of the variable name. This is
signed data with a value range of -32768 to 32767.

• 4 bytes of data. Variables used for transferring 4 bytes of data have no
special character at the end of the variable name.

• 6 bytes of data. Variables used for transferring 6 bytes of data are indi­
cated by a pound sign (#) at the end of the variable name.

Licensed Material - Property of Data General Corporation 3-3

This means that for a READ/WRITE FILE statement or a PACK/UNPACK
statement, 2 bytes are read in or written out for each numeric variable whose
name ends with a percent sign; 4 bytes for each numeric variable that has no
special character in its name; and 6 bytes for each numeric variable whose
name ends with a pound sign. Variables that transfer 6 bytes of data cannot be
used in a double precision system, but you can use variables that transfer 4
bytes of data on a triple precision system. Variables that transfer 2 bytes of
data can be used on both systems.

For example, the statement:

* 0010 WRITE FILE (0). VAR#

transfers 6 bytes (triple precision). If the variable name had been simply V AR,
it would transfer 4 bytes, while with the variable name VAR%, it would trans­
fer 2 bytes.

Arrays
An array is an ordered set of integer values. Business BASIC does not support
string arrays. Each member of the set is an array element. BASIC stores each
array element according to the precision of the system. On double precision
systems, an array element holds a 4-byte value; on triple precision systems, an
array element holds a 6-byte value. The only restriction on the number of array
elements you can have is the amount of available memory.

Arrays can have one or two dimensions. Elements of one-dimensional arrays
form one row; elements of two-dimensional arrays form several rows and col­
umns. Indexing for arrays is zero"based; thus, arrays always start at element O.

Figure 3-1 shows how one- and two-dimensional arrays are set up.

*DIM A(5)

*LET A(O)=O

*LET A(1)= 1

*LET A(2)= 2

*LET A(3)= 3

*LET A(4)=4

*LET A(5)= 5

DG-25144

*DIM AB(3,2)

0 1

3 4

6 7

9 10

2

5

8

11

*LET AB(O,O) = 0

*LET AB(O, 1)= 1

*LET AB(0,2) = 2
*LET AB(1,0)= 3

*LET AB(1, 1)= 4
*LET AB(1 ,2) = 5

*LET AB(2,0) = 6

*LET AB(2, 1) = 7

*LET AB(2,2)= 8

*LET AB(3,0)= 9

*LET AB(3, 1)= 10

*LET AB(3,2) = 11

Figure 3-1. One- and Two-Dimensional Arrays

3-4 Licensed Material - Property of Data General Corporation

o

Creating Arrays

You create an array by using the DIM statement to specify the number of
elements in the array. For example:

* 10 DIM A(5).B(2,6)

dimensions array A as a one-dimensional array with six elements and array B
as a two-dimensional array with three rows and seven columns that holds 21
elements.

Default Array Dimensions

If you use an array without dimensioning it, Business BASIC assigns default
dimensions to it. The default dimensions for undeclared arrays are:

8 One-dimensional arrays - 11 elements (column positions 0 to 10) .

• Two-dimensional array - 121 elements (rows 0 to 10, columns 0 to 10).

For example, if you enter the following commands:

* NEW
* LET C(3)=7

you create array C with 11 elements. This is the same as if you had entered
DIM C(10). If you enter these statements:

* NEW
* LET 0(3,2)=6

you create a l21-element array D with a default dimension of (10,10).

You can conserve space by using a dimension statement to declare explicitly an
array requiring fewer than the default number of elements.

Accessing Array Elements

You refer to an array element by specifying the array's name followed by one
or two subscripts enclosed in parentheses or brackets. Subscripts can be num­
bers, variables, or expressions that identify a specific row and column position
of an element. A subscript must evaluate to a number between zero and the
value declared in the array's dimension statement.

One-dimensional array elements are identified by a single subscript. For exam­
ple, elements of an array declared as DIM B(5) are referred to as:

8(0), 8(1), 8(2), 8(3), 8(4), 8(5)

Licensed Material - Property of Data General Corporation 3-5

A two-dimensional array is referred to by two subscripts separated by a comma.
If you use only one subscript to refer to an element in a two-dimensional array,
the system uses a default of 0 for the column subscript. For example, A(1,2)
refers to row 1, column 2, but A(1) refers to row 1, column O. Some elements
of an array declared as DIM E(24,5) are:

E(I-3.5)
E(O.J*K)
E(24.RND(6»

You get an error message if 0, 1-3, or l*K evaluates to a number outside the
array range.

In the third example, RND(6) invokes a system-supplied function to compute a
random number between zero and five (the RND function is explained in the
Business BASIC Reference Manual for Commands, Statements, and Functions).

Changing Array Dimensions

You can change the dimensions ofa declared array by issuing a DIM com­
mand. This lets you redimension an array to the same number of elements or
fewer elements; you cannot make an array larger than its original dimension.
For example, you can redimension an array declared as B(2,3) to B(1,2) or
B(3,2), but not to B(3,3) since that array would be greater than the original
array.

Redimensioning alters the way you refer to array elements. It does not change
the values in the array or the amount of storage the array occupies. If you
make an array smaller, you do not free unused memory locations; you just
make it impossible to refer to them. If you change the one-dimensional array E
from 11 elements to 10:

* DIM E(10)
* DIM E(9)

the element E(10) cannot be accessed. In addition, references to subscripts out­
side the newly defined range of subscripts cause an error.

Assigning Values to Numeric Elements
You can assign values to array elements and other numeric variables by using
one of the Business BASIC statements - LET, READ/DATA, READ FILE,
INPUT, INPUT USING, TIN PUT, PACK, and UNPACK. The following ex­
ample uses LET statements to assign values to elements in the arrays A and
AB.

* 0010 DIM A(8)
* 0020 LET A (4) = 5
* 0030 LET AB(4.4)=6
* 0040 LET AB(2 .1) = 7

This example uses the DIM statement to explicitly dimension array A as (8),
but it implicitly dimensions array AB as (10,10), the default dimension for two-

3-6 Licensed Material - Property of Data General Corporation

i

dimensional arrays. The LET statement operates the same regardless of how the
array is dimensioned.

This example uses the READ command to assign values to the variables X and
Y as weB as array element (1,3). The values are obtained from line 80, which
has the data command. You can also use the INPUT, INPUT USING, and
TINPUT statements to assign values to these variables.

* 0010 DIM ARA(12,12)
* 0020 READ X,V
* 0030 READ ARA(1,3)
* 0040 PRINT "X="X
* 0050 PRINT "V=";V
* 0060 PRINT "ARA(1,3)=";ARA(1,3)
* 0070 STOP

* 0080 DATA 32,46,1400
* RUN
X=32
V=46
ARA(1, 3) = 1400

STOP AT 0070
*

Use different variable names when you use numeric variables and arrays in the
same program. Business BASIC is structured so that you can refer to a simple
variable using zero subscripts. This means that when you have a variable and
an array with the same name, the simple variable and element 0 of the array
have the same value.

* 10 DIM X(5)
* 20 X=9
* 30 X(O) =3
* 40 PRINT "The variable X is ",X
* 50 PRINT "Element 0 of array X is ", X(O)
* 60 END
* RUN
The variable X is 3
Element 0 ·of array X is 3

*

The value in both X and in X(O) is always the value that was assigned most
recently.

Numeric Expressions
A numeric expression is any combination of numbers, numeric variables, array
elements, and numeric functions linked together by arithmetic operators and pa­
rentheses. Business BASIC supports expressions that use arithmetic operators,
relational operators, and Boolean logic operators.

Licensed Material - Property of Data General Corporation 3-7

Arithmetic Operators
You can use arithmetic operators in any numeric expression to add, subtract,
divide, multiply, and perform exponentiation. Business BASIC evaluates numeric
expressions according to the precedence shown in Table 3-1.

Precedence Operator Action That Is Performed Example

() Any expression in parentheses; (5-(1 + 1»
the innermost expression in
nested parentheses.

2 Exponents A"'B

3 +,- Unary plus, Unary minus. A-(+B)
A+(-B)

4 ',I Multiplication, Division. A'B
AlB

5 +- Addition, Subtraction. A+B
A-B

Table 3-1. Precedence of Arithmetic Operations

When two operators have equal precedence, Business BASIC evaluates them
from left to right. If you enter the statement:

* LET X=Z+(-A)+B*C"'D

Business BASIC calculates ,X in the following order:

1) A is negated.

2) C is raised to the power of D.

3) B is multiplied by the result of step 2.

4) The result of step 1 is added to Z.

5) The result of step 3 is added to the result of step 4.

Using parentheses changes the order of numeric operations. For example, when
you enter the statement:

* LET X=Z-((A+B)*C)"'D

Business BASIC evaluates X as follows:

1) A + B is evaluated.

2) The result of step 1 is multiplied by C.

3) The result of step 2 is raised to the power D.

4) The result of step 3 is subtracted from Z.

3-8 Licensed Material - Property of Data General Corporation

o

Relational Operators
Business BASIC expressions accept relational operators. These operators can be
used wherever an expression is valid. All relational operations are evaluated as
true or false and reduced to a value of 1 (true) or 0 (false). Business BASIC
executes an action based on how the relational operator evaluates. These opera­
tors are often used in decision-making statements, such as the IF statement.
Using these operators can reduce the amount of code you need to perform var­
ious functions. Table. 3-2 summarizes the relational operators.

Operator Meaning Example

Equals A=B
< Less than A<B
<= Less than or equal to A<=B
> Greater than A>B
>= Greater than or equal to A>=B
<> Not equal A<>B

Table 3-2. Relational Operators

The following program lines use relational operators as part of an assignment
statement:

* 40 LET A=(X>10)
* 50 LET B=10*(A$>B$)+20*(A$=B$)+30*(A$<B$)

Line 40 results in A = 1 if the variable X is greater than 10, otherwise A = O.
Carrying this one step further, line 50 results in B = 10 if only A$> B$ is true,
B=20 if only A$=B$ is true, and B=30 if only A$<B$ is true.

You can also use relational operators to determine what action your program'
takes.

* 0010 IF A"B> =32767 THEN GO TO 0300
* 0020 IF ABS(X*V)<>A THEN GOSUB 0900

When the expression A"B> = 32767 evaluates to true, program control goes to
line 300. Line 20 is executed only when the expression A"B>=;32767 evaluates
to false. In line 20, program control goes to the subroutine that starts at line
900 when the expression ABS(X*Y) <> A evaluates to true; otherwise, the
next sequential statement is executed.

Boolean Logic Operators
Business BASIC contains three Boolean logic operators: AND, OR, and NOT.
(Business BASIC also has the functions AND and OR, which work with binary
expressions. The system determines whether you are using the Boolean operator
or the function based on the placement of AND or OR in the statement.) The
Boolean operators can be used anywhere an expression is valid.

Licensed Material - Property of Data General Corporation 3-9

Before the Boolean operator is executed, the expressions to be tested are evalu­
ated as true or false, and the operands are reduced to 1 or O. In Boolean
evaluation, a value of 0 is considered false, and any other value is considered
true. Thus, when you use Boolean operators,

• 3 AND 0 is the same as 1 AND 0 (TRUE and FALSE)

• -1 OR 0 is the same as 1 OR 0 (TRUE or FALSE)

• -1 AND 3 is the same as 1 AND 1 (TRUE and TRUE)

The Boolean operators work in the following way:

• NOT reverses the logical value of an expression (i.e., if an expression eval­
uates to true, NOT causes it to evaluate to false).

• AND evaluates to true only if the two expressions it is used with both
evaluate to true; if either expression is false, then AND evaluates to false.

• OR evaluates to true if either or both of the two expressions it is used
with evaluate to true; OR evaluates to false only if both expressions are
false.

You can use the Boolean operators in a variety of statements. They are often
used in connection with decision-making statements, such as IF. For example,
with the statement:

* 0010 IF A>1 AND B=2 THEN GOTO 0100

Business BASIC checks to see whether the expression A> 1 is true or false.
The expression is true when A is greater than 1 and false when A is less than
or equal to 1. Next, Business BASIC evaluates the expression B= 2. This
expression is true only when B has a value of 2. If both expressions evaluate to
true, Business BASIC executes the GOTO 100. If either expression or both
expressions evaluate to false, Business BASIC executes the next sequential state­
ment.

You can also combine Boolean operators in a statement.

* 0020 IF C AND NOT D GOSUB 0200

This statement is set up so that expression C evaluates to false only when C
equals 0; otherwise, it is considered true. The expression NOT D evaluates to
true only when D equals O. This is because NOT changes the value of 0 (false)
to non-zero (true). The GOSUB 200 is executed only when C is a non-zero
value and D is O.

The following statement uses NOT to evaluate an OR expression:

0030 IF NOT (E OR F) GOTO 0100

Control goes to line 100 when both E and F equal 0, thus making the OR
expression evaluate to false.

You can also use Boolean operators in assignment statements.

0040 LET G=NOT (H AND I)

3-10 Licensed Material - Property of Data General Corporation

n

(\. ,

~\

This statement assigns G a value of 0 when both H and I are non-zero and a
value of 1 when either or both H and I equal O.

The next example uses an OR expression to determine what value to print.

0050 PRINT J OR K

Business BASIC prints 0 when both J and K equal 0; otherwise, if either or
both variables are non-zero, Business BASIC prints 1.

Table 3-3 summarizes the precedence in Business BASIC of Boolean operators,
relational operators, and arithmetic operators.

Precedence

2

3

4

5

6

7

8

Operator

Parentheses

Exponentiation

Unary plus, Unary minus, NOT

Multiplication, Division

Addition, Subtraction

Not equal, Greater than, Greater than or equal to, Equal,
Less than or equal to, Less than

AND

OR

Table 3-3. Hierarchy of Operators in Business BASIC

You need to use parentheses with Boolean operators only when you are using a
Boolean operator to evaluate an expression involving another Boolean operator
or when you want to make the statement more readable. This means the state­
ment LET A=(B=C), which sets A equal to 1 if B equals C and A equal to 0 if
B does not equal C, can also be expressed without parentheses: LET A=B=C.
This is not equivalent to the multiple assignment syntax: LET A. B = C.

Handling Decimals
All numbers in Business BASIC are 4-byte or 6-byte integers, depending on
whether your system uses double precision or triple precision. Use the following
procedures when you are working with decimals:

• To add decimals, multiply by an appropriate power of 10.

• To dispose of decimals, divide by an appropriate power of 10.

• To multiply, remember that the number of decimal places in the multi­
plier, plus the number of decimal places in the multiplicand equals the
number of decimal places in the product.

Licensed Material - Property of Data General Corporation 3-11

• To divide, remember that the dividend must have as many decimal places
as are needed in the quotient.

The following is an example of adding and dropping decimals:

This program adds two numbers X and Y and prints the result with
two decimal places and again with one decimal place.

X= .73 and Y=47.S

0010 DATA 73,47S,73,47S
0020 READ X,Y
0030 LET X=X+Y*10
0040 PRINT USING "ES.2,T10,Z",X
0050 READ X,Y
OOSO LET Y= ex + (S*SGN(X)))/10+ Y

:for two decimal places

:for one .decimal place

: Note the rounding that adjusts for the correct sign:
-73.SS rounded -73.7 not -73.S
88.05 rounded = 88.1 not 88.0

0070 PRINT USING "ES.1",Y

: When this program is run the following appears on the screen:
: 48.33 48.3

The next example involves multiplying with decimals:

This program multiplies two numbers X and Y and prints the
result with one decimal place and again with two decimal places.

X= .73 and Y=47.S
X*Y=34.748

0010 LET X = 73
0020 LET Y = 47S

: Z will have 1 decimal place

0030 LET Z= ((X*y) + (SO*SGN(X))*SGN(Y))/100
0040 PRINT USING "ES.1,T10,Z",Z

: Z will have 2 decimal places.

0050 LET Z = ((X*y) + (S*SGN(X))*SGN(Y))/10
OOSO PRINT USING "ES.2",Z

When this program is run the following is shown on the screen:
34.7 34.75

3-12 Licensed Material - Property of pata General Corporation

The next code segment illustrates dividing with decimals:

This program divides two numbers X and V. First X is divided by V;
then V is divided by X. The result is always shown with one decimal

: place.

: X=84.73 and V=47.S
: X/V=1.78

V/X= .5S1
: Z will always have 1 decimal place

0010 LET X = 8473
0020 LET V = 47S
0030 LET Z = XIV : XIV unrounded
0040 PRINT USING "ES.1,T10,Z",Z
0050 LET Z= (((X*10)/V) +SGN(X)*SGN(V)*5)/10 : XIV rounded
OOSO PRINT USING "ES.1,T10,Z",Z
0070 LET Z=V*100/X : V/X un rounded
0080 PRINT USING "ES.1,T10,Z",Z
0090 LET Z=(((V*1000)/X)+(SGN(X)*SGN(V))*5)/10 : V/X rounded
0100 PRINT USING "ES.1",Z

: When this program is run the following is shown on the screen:
: 1.7 1.8 0.5 O.S

: Note that in the unrounded examples the answer is not accurate
: beyond the integer portion. If accuracy is important, then
: rounding is required.

Predefined Numeric Instructions
Business BASIC provides several functions and one statement that deal with
numeric computations. These are summarized in Table 3-4. You can use these
features in any Business BASIC statement that allows numeric expressions.
They are explained in the Business BASIC Reference Manual for Commands.
Statements. and Functions.

Licensed Material - Property of Data General Corporation 3-13

Format

ASS

AND

ASC

CHR$

DEF

INT

LEN
MAX

MIN

MOD

OR

POS

RND

SGN

SHFT

SQR

VAL
VALUE

Usage

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Statement

Description

Computes the absolute value of a numeric
expression.

Sets bits based on the result of the logical AND
of two expressions.

Returns the ASCII value for a string.

Places the binary value of a number into a
string.

Creates user-defined functions.

Truncates a number to make it an integer.

Finds the current length of a string.

Finds the larger of two numeric expressions.

Finds the smaller of two numeric expressions.

Finds the remainder after dividing two nume.ric
expressions.

Sets bits based on the result of a logical inclu­
sive OR of two expressions.

Determines the position of substring in a string.

Produces a random number.

Determines the sign of a numeric expression.

Shifts bits left or right.

Computes the square root of a numeric expres­
sion.

Converts a string to a number.

Converts a string to a number.

Table 3-4. Numeric Functions and Statements

Character Data
Business BASIC uses strings to handle character data. A string is a combina­
tion of characters. It can include letters, digits, spaces, special characters, and
sometimes binary values. You can have a string variable or a string literal (also
called a string constant).

Anytime you use a string variable, you must dimension it first. Business BASIC
does not provide default dimensioning for strings as it does for arrays. After
you dimension a string, it has a default value of the null string until you assign
it a value.

3-14 Licensed Material - Property of Data General Corporation

String Literals
A string literal is a combination of characters that use quotation marks as a
delimiter. For example:

"Data General Corporation"

You can include a special character or control codes in string literals. Do this
by using the character's ASCII decimal equivalent value in angle brackets in
the string. Use the form <n>, where n is a number from 0 to 255. The angle
brackets do not appear when the string is displayed. When you type in:

* PRINT "At the sound of the tone <7>"

the string At the sound of the tone is displayed and the terminal bell rings
(7 is the ASCII code for bell).

Just as you can assign numeric constants to numeric variables, you can also
assign string literals to string variables. To do this, use one of the Business
BASIC assignment statements, such as LET or READ/DATA. In addition,
string literals are often used with INPUT statements as user prompts. This
string assignment includes a string literal as a prompt as well as a value for a
string variable:

* 10 DIM A$(20),B$(20)
* 20 INPUT "Enter your string: ", B$
* 30 LET A$="This is a string: <10>"
* 40 PRINT A$,B$
* 50 END
* RUN
Enter your string: Good morning.
This is a string:

Good morning.

*

The string literal in line 30 also included the ASCII code for a new line. Thus,
line 40 printed the value of the string variable and then moved the cursor to
the next line before printing the value of B$.

You can also use string literals with PRINT:

* PRINT "THIS IS A STRING LITERAL" THIS IS A STRING LITERAL

*

String Variables
String variables are data items that have string values assigned to them. Busi­
ness BASIC requires that the names of string variables end in dollar signs (i.e.,
A$). String variables use 1 byte to hold the ASCII code for each character of
the string, Unlike arrays, string variables start with an index of 1 (i.e., positions
1-8 instead of 0-7).

Since Business BASIC does not provide a default dimension for strings, you
must use the DIM statement to allocate the maximum number of characters
(bytes) for the string variable before you assign a string value to it.

* DIM A$(25),B3$(215)

Licensed Material - Property of Data General Corporation 3-15

This statement dimensions two string variables: A$ has a maximum of 25 bytes
(1-25) and B3$ has a maximum of 215 bytes (1-215). You can redimension a
string; however, the new maximum length must be less than or equal to the
original maximum length.

You can dimension both arrays and strings in a single line of code:

* 0010 DIM ARRAY(5.6).C(20).STRNG$(30)

Line 10 dimensions ARRAY as a 42-element (6 by 7), two-dimensional array;
C as a 21-element, one-dimensional array; and STRNG$ as a 30-character
string variable. To change these dimensions, enter:

* 0020 DIM ARRAY(6.5).C(2.6).STRNG$(28)

This statement redimensions ARRAY to a 7 by 6, two-dimensional array (still
42 elements), redimensions C to a 3 by 7, two-dimensional array (still 21 ele­
ments), and redimensions STRNG$ to a maximum of 28 characters.

Accessing Strings
Business BASIC allows you to access entire strings and subsections of the
strings (called substrings). You refer to the complete string by specifying the
name of the string variable. To access a substring, specify the string variable's
name followed by a subscript. Subscripts indicate the character locations of the
substring within the string. Use only one subscript if your substring continues to
the end of the string. Use two subscripts if your substring ends before the main
string. The first subscript specifies the starting character position of the
substring and the second one specifies the ending character position.

A subscript can be a number, a numeric variable, or an expression that evalu­
ates to a number between 0 and the value declared in the string's dimension
statement. The subscript 0 refers to the position that follows the last character
of the string (use this to add a substring to the end of a string). Table 3-5
illustrates different ways to refer to a string.

Reference

A$

A$(2)

A$(R)

A$(3.7)

A$(I.J)

A$(O)

What It Specifies

Entire string.

Second through last character.

Rth through last character. where R is a number in the range
1 to the maximum length of the string.

Third through seventh character.

Ith through Jth character. where I and J are both numbers in
the range 1 to the maximum length of the string and where I
is less than or equal to J. If I is greater than J. this is a null
string.

The position immediately following the last character in A$ (a
string can contain fewer than the maximum number of characters
allowed). This is equivalent to A$(LEN(A$)+ 1).

Table 3-5. References to Strings

3-16 Licensed Material - Property of Data General Corporation

o

Using Strings in Expressions
You can use string expressions (string constants, string variables, and sub­
scripted string varibles) in LET, PRINT, INPUT, and READ statements, and
in relational expressions in IF statements. Table 3-6 contains examples of how
string expressions are used.

Statement

PRINT A$(1,4)

Action

Prints first four characters of A$.

Assigns a string literal to B$. LET B$= "RESULTS ARE: "

IF A$(I) = B$(J) GOTO 10 Transfers program control to line 10 if the Ith
through the last character of A$ is the same
as the Jth through the last character of B$.

INPUT C$, 0$(1,1) Lets you enter a string literal for C$ and a
single character for 0$.

Table 3-6. Uses of String Expressions

Business BASIC does not support string arrays. You can create the equivalent
of a string array, though, by dimensioning a string that is large enough to hold
all the data that would normally go in the string array and then loading the
data into the string. You can use the following algorithm to simulate a string
array with N items, each having a length of SIZE characters:

1) Dimension a string to N*SIZE characters:

• DIM STRING$[N' SIZE]

2) Access the Ith array item as:

• STRING$[(I-1)' SIZE + 1,(1-1)' SIZE + SIZE]

or equivalently as:

• STRING$[(I-1)'SIZE+ 1, I'SIZE]

You can use a similar procedure to create a multidimensional string array. The
following example translates a month's numeric code into its three-letter abbre­
viation:

* LIST
0010 DIM MoNTHS$[36],oUT$[30]
0020 LET MoNTHS$ =" JanFebMarAprMayJunJulAugSepoctNovDec"
0030 INPUT "Enter a number between 1 and 12: ",I
0040 IF I> 12 OR 1<1 THEN GoTo 0100
0050 LET oUT$=MoNTHS$((I-1)*3+1,(I-1)*3+3]," represents month number ",I
0060 PRINT OUTS
0070 PRINT
0080 GO TO 0030
0100 END

*

Licensed Material - Property of Data General Corporation 3-17

Assigning Values to Strings

Use Business BASIC assignment statements to assign values to entire strings or
to store characters into different locations of a string.

With the LET and READ statements, you can use:

• String variables

• Subscripted string variables

• String functions

• The concatenation operator (comma)

The PRINT, INPUT, PACK, and UNPACK statements work with all variable
forms except string functions. (A string function is a built-in Business BASIC
function that evaluates to a string value.)

There are two restrictions on string assignments:

• You cannot assign more characters to a string than the string was dimen­
sioned to hold. When you try to assign too many characters, Business
BASIC truncates the data to fit the string. You do not receive an error
message.

• Strings must be filled beginning from positIOn 1. For example, you cannot
assign A$(3,5)="ABC" if A$(l,2) are empty.

Table 3-7 contains examples of string assignments.

Assignment

LET A$=B$

LET A$=""

LET A$=A$,B$

LET A$(O) = B$

LET A$=FILL$(O)

LET A$=B$,A$

LET A$=4+5

LET A$= 12345

LET A$=CHR$(12,4)

Action

Replaces the contents of A$ with the contents of B$.

Sets the length of A$ to o.
Appends the contents of B$ to the current contents of
A$.

Appends the contents of B$ to the current contents of
A$.

Fills A$ to its dimensioned length with nulls.

This produces unpredictable results because A$ has
been changed by the time it is to be appended.

Replaces the contents of A$ with the string constant
9.

Replaces the contents of A$ with the string of digits
12345, not the number 12345.

Replaces the contents of A$ with a 4-byte string holding
the binary value of the number 12.

Table 3-7. Assigning Characters to String Locations

3-18 Licensed Material - Property of Data General Corporation

Concatenating Strings
You can concatenate a string in an assignment statement by separating the
string expressions with commas. In the following program, commas are used to
concatenate strings A$ and B$ when string C$ is formed:

• LIST
0010 DIM A$(16).B$(23).C$(SO)

0020 LET A$ = "THE YEAR IS 19XX"

0030 LET B$= "THE MONTH IS XXXXXXXXXX"

0040 LET C$=A$(1.14). "86; ... B$(1.13). "JUNE"

0050 PRINT C$

0060 END

• RUN
THE YEAR IS 1986; THE MONTH IS JUNE

String Functions
Business BASIC supplies several functions and statements that provide addi­
tional string assignment capabilities. The functions can be used as assignment
statements or commands. Table 3-8 lists these features. They are explained in
the Business BASIC Reference Manual for Commands, Statements, and Func­
tions.

Business BASIC also provides two string functions that deal with error mes­
sages:

• AERM$, used with SYS(31).

• ERM$, used with SYS(7).

When a Business BASIC error occurs, both functions return the same Business
BASIC error message. When an operating system input/output error occurs,
ERM$ used with SYS(7) returns the RDOS error message while AERM$ used
with SYS(31) returns the equivalent native operating system error message. On
an AOS system, this is an AOS error message; on an RDOS system, this is an
RDOS error message (i.e., this message is the same as the one that ERM$
used with SYS(7) returns). If you are on an AOS system and SYS(7)equals
-60, indicating there is no equivalent RDOS error message, you must use
AERM$ with SYS(31) to get the appropriate AOS error message.

Licensed Material - Property of Data General Corporation 3-19

Format

ASC

CHR$

CRM$

EXTRACT

FILL$

PACK

POS

SCANUNTIL

SCANWHILE

STRPOS

TRUN$

UCM$

UNPACK

VAL

VALUE

Usage

Function

Function

Function

Statement

Function

Statement

Function

Statement

Statement

Statement

Function

Function

Statement

Function

Statement

Description

Return the ASCII value of a string.

Place the binary value of a number in a
string.

Cram (store) 3 bytes of a string into 2 bytes.

Extract the next field from a string.

Finds the current length of a string.

Encode string and numeric information into a
string variable known as a record string.

Determine the position of a substring in a
string.

Scan a string until characters in a substring
are found.

Scan a string while characters match those in
a substring.

Find the starting position of a substring in a
string.

Truncate a string.

Expand a crammed string so that 2 bytes are
again stored in 3 bytes.

Take information from a record string contain­
ing binary information and place it in separate
variables.

Convert a string of digits to a number.

Convert a string of digits to a number.

Table 3-8. String Functions and Statements

Using Variables to Transfer Data
File access statements (READ FILE, LREAD FILE, WRITE FILE, LWRITE
FILE, BLOCK READ FILE, BLOCK WRITE FILE, INPUT FILE, and
PRINT FILE) use variables to transfer data to and from files. BLOCK READ
and BLOCK WRITE use variables to transfer data to and from the common
area (a 512-byte memory location used for storing data that is being tranferred
between programs). These methods for transferring variables apply to string var­
iables as well as to numeric variables and arrays.

The size of the variables you supply in the arguments determines the number of
bytes transferred. String variables transfer their maximum (dimensioned) length
even when they are only partially filled with data (empty string bytes transfer
as null bytes). Substrings transfer the number of bytes specified in their sub­
scripts. Both substrings and entire strings transfer one byte per character.

3-20 Licensed Material - Property of Data General Corporation

n

o

o

rr
I

Numeric jString Conversions
There are three Business BASIC functions and three statements that convert
numeric data to string data and vice versa. These are:

• CHR$, which puts the binary value of a number into a string.

• ASC, which returns the ASCII value of a string.

• PACK, which encodes string and numeric information into a single string
variable, known as a record string.

• UNPACK, which decodes string and numeric information from a record
string.

V AL, which converts a string of digits to a number.

• VALUE, which converts a string of digits to a number.

These functions are explained in the Business BASIC Reference Manual for
Commands. Statements. and Functions.

End of Chapter

Licensed Material - Property of Data General Corporation 3-21

Chapter 4
Subroutines and Utilities

The Business BASIC software package contains subroutines and utilities to aid
you in programming. A subroutine is a segment of code that is designed to
perform a specific function from within a program. A utility is a Business
BASIC program that performs a specialized task.

This chapter discusses the subroutines and utilities that come with the Business
BASIC package. In addition, it covers writing your own subroutines and utili­
ties, modifying existing ones, and creating assembly language subroutines.

Subroutines
Subroutines fall into three categories:

Pre-written subroutines. These are the subroutines that come with
the Business BASIC software package. They
are located in the library directory. Use the
ENTER command to place them in working
storage and merge them with your program.

User-created Business BASIC These are the subroutines that you write for
subroutines. your own specialized processing require­

ments. You can store them in the library
directory and then access them repeatedly
just as you access the Business BASIC-sup­
plied subroutines.

Assembly language subroutines. These are subroutines written in assembly
language. To use them with your programs,
you must add them (or have your system
manager add them) to your Business
BASIC system when the system is gener­
ated.

Business BASIC Subroutines
Business BASIC features a number of pre-written subroutines that can be used
within application programs. These subroutines have .sL extensions on their fi­
lenames to distinguish them from utility programs and other files.

Licensed Material - Property of Data General Corporation 4-1

The Business BASIC subroutines, their entry points, and the line numbers they
occupy are listed in appendix A. These· subroutines are explained in the Busi­
ness BASIC Reference Manual for Subroutines. Utilities. and BASIC CLI.

Using Subroutines
There are two general procedures for using subroutines:

• Write them as elements of a specific program and type in the program
and its subroutines at the same time.

• Write them as individual code segments, test them, and then store them in
the library directory until you need them. You can add them to your pro­
gram later.

The second method helps you debug your program because you have program
elements that you know work. Error tracing is more difficult when you debug a
complete Business BASIC program at one time.

To use an existing subroutine, it must be merged with a program. Thus, you
need to:

1) Place the main program in working storage (either by creating it there or
by loading it).

2) Use the ENTER command to load the subroutine into working storage and
merge it with the main program.

3) Use the SAVE command to store the now-complete program. This makes
the subroutine a permanent part of the program so that you no longer need
to enter the subroutine each time you run the program.

Instead of performing the last two steps, you can include an ENTER subrou­
tine-name statement in your program. Then the subroutine is automatically
added each time you RUN the program. You no longer need to SAVE the
program to retain the subroutine. The disadvantage to this method is that add­
ing subroutines at runtime slows down program execution. The advantage is
that, since the pre-written subroutines can change each time a new revision of
Business BASIC is released, you will always have the most up-to-date version of
the subroutine.

If you ENTER the Business BASIC-supplied subroutines into your program
once and then SAVE the program, you should keep track of which programs
use which subroutines. This aids you in replacing subroutines that have been
updated when you get a new revision of Business BASIC. Another way to
maintain up-to-date subroutines is to keep a copy of your program with state­
ments that ENTER your subroutines. Place a STOP statement after the EN­
TER statements. Only run this version of your program when you get a new
revision of Business BASIC. Then delete the ENTER statements through the
STOP statement and SAVE the program with the new subroutines in it.

Before you ENTER a file into working storage, check its line numbers to see if
they are identical to the line numbers of the program already there. If the line
numbers are the same, Business BASIC replaces the existing program state-

4-2 Licensed Material - Property of Data General Corporation

o

ments with the program statements that are being ENTERed. You can use the
Business BASIC CLI TYPE command to check the line numbers of a subrou­
tine. For example:

* !TYPE subroutine-name.SL

The TYPE command displays the subroutine at your terminal. It also displays
the colon comments that are included with Business BASIC subroutines to ex­
plain how they work. These comments are stripped from the subroutine when it
is ENTERed into working storage. You can also use the BASIC CLI PRINT
command to print the subroutines with their comments. In addition, two other
BASIC CLI commands work together to create a file containing only program
comments. These are BLDCOM and PRTCOM. The BASIC CLI commands
are explained in the Business BASIC Reference Manual for Subroutines, Utili­
ties, and BASIC CLl.

To execute a subroutine from within a program, use the GOSUB statement or
the ON GOSUB statement. Your program can contain several GOSUB state­
ments to the same subroutine. Each subroutine has RETURN statements that
return control to the statement immediately following the GOSUB statement.

Writing Business BASIC Subroutines
Business BASIC lets you write your own subroutines or modify the subroutines
supplied with the software package. The following list contains guidelines for
writing or changing subroutines:

• Always include a RETURN statement. This returns program control to the
line after the GOSUB statement. You can have more than one RETURN
statement in your subroutine. This enables you to use program logic that
has the subroutine end at different places, according to which conditions
are met.

• Start your subroutine with a REM statement that describes the subroutine.
When a program is LISTed, Business BASIC displays REM comments
from the entry point of the subroutine next to the GOSUB statement call­
ing the subroutine. This helps you follow the flow of your program.

• Select line numbers for your subroutine that are outside the range nor­
mally used in your programs. This makes it easier to merge your subrou­
tine with other programs by reducing the chance that the subroutine line
numbers will overlap with the program line numbers. The subroutines sup­
plied with your Business BASIC software package all use high line num­
bers since most application programs start with low line numbers.
Appendix A lists the line numbers used by these subroutines.

• Use the .sL extension on the filename to identify it as a subroutine. Your
subroutine will work without this extension; however, this is the naming
convention used with the subroutines supplied by Business BASIC.

• If you want to use your subroutine with other programs, store it in the
library directory. RDOS users have access to the library directory without
having to specify the directory's name. AOS users need to include the

Licensed Material - Property of Data General Corporation 4-3

pathname to the library in the subroutine name when they LIST the sub­
routine to disk. This means AOS users need to have the pathname to the
library directory in their search lists.

Business BASIC lets you nest subroutines up to a depth of eight. Nesting oc­
curs when one subroutine calls another subroutine. If you nest more than eight
subroutines or disrupt the logic of a nested subroutine, an error occurs. The
GOSUB/RETURN stack can be reset by using the STMA 8 statement/com­
mand.

To add a subroutine to your program, follow the steps listed in the previous
section, "Using Subroutines."

Errors with Subroutines
When you use subroutines in a program, certain errors can occur; in particular,
ERROR 13 -- LINE NUMBER and ERROR 19 -- RETURN - NO GOSUB.

If a GOSUB statement is used when the subroutine has not been ENTERed,
ERROR 13 occurs. The GOSUB refers to a line number that doesn't exist in
working storage. This can be prevented by saving the program once its subrou­
tines have been added.

ERROR 19 occurs whenever BASIC executes a subroutine that was not called
by a GOSUB statement. This can happen if you write a program or ENTER a
program into working storage without issuing a NEW command to clear work­
ing storage. A subroutine could have been left in working storage by a previous
program. Then, since Business BASIC executes all working storage program
statements sequentially, it also executes the subroutine. You can avoid this error
by clearing working storage before writing programs and including an END
statement in all programs. Both the END and STOP statements halt program
execution.

Errors also occur when you do not provide proper values for variables or proper
variable names for the subroutine variables. Each subroutine requires specific
input variables and returns specific output variables.

You must also supply the proper entry point to the subroutine. Most subroutines
have more than one entry point.

Subroutine Example
The following program, GET, uses the Business BASIC supplied subroutine
GETCM.sL to create a BASIC CLI command. This program returns the com­
bined values of the switches /B and /C. To use the subroutine, you have to
dimension T9$ (GETCM.sL's input variable) and X$ (GETCM.SL's output
variable) in your main program. GET has one GOSUB 7550 to initialize the
GETCM.sL values. Then, in line 0060, GET loops back to the GOSUB 7500
until S (another of GETCM.sL's output variables) returns with a -1. In line
0050, GET prints the BASIC CLI command and the value of S.

* LIST
0010 DIM T9$[S12].X$[24]

4-4 Licensed Material - Property of Data General Corporation

r-

0020 GOSUB 7550
0030 GOSUB 7500
0040 IF S = -1 THEN STOP
0050 PRINT X$, TAB(35),S
0060 GO TO 0030

* ENTER "GETCM.SL
* SAVE "GET
* LIST
0010 DIM T9$[512],X$[24]
0020 GOSUB 7550
0030 GOSUB 7500
0040 IF S = -1 THEN STOP
0050 PRINT X$, TAB(35),S
0060 GO TO 0030
7500 REM GETCM.SL
7505 IF T9$[09,09]= "<255>" THEN GO TO 7540
7510 LET X$=TRUN$(T9$[09])
7512 IF X$ =" " THEN GO TO 7540
7515 LET 09=09+LEN(X$)
7520 IF 09>508 THEN STOP
7525 UNPACK L ,T9$[09+ 1], S
7530 LET 09=09+5
7535 RETURN
7540 LET S =-1
7545 RETURN
7550 REM \ INITCM
7552 LET 09 = 1
7554 BLOCK READ T9$
7556 RETURN
7559 REM * END GETCM.SL

* !GET/B/C

GET 1610612736

STOP AT 40

Since you ENTERed GETCM.sL into the program in working storage and
then SAVEd the complete program, you don't have to ENTER the subroutine
each time you execute the program. However, when you ENTERed the subrou­
tine, Business BASIC stripped out the colon comments explaining GETCM.sL.
To see those, you need to !TYPE the subroutine. (Note: Instead of saving GET
with GETCM.SL in it, you could include the statement 0005 ENTER
GETCM.SL in your program. This would merge GETCM.sL into your program
each time you executed GET.)

For more information on GETCM.SL and other Business BASIC subroutines,
see the Business BASIC Reference Manual for Subroutines, Utilities, and
BASIC CLI. In addition, the entries in the manual for the screen utilities CSM
and SM both contain examples of programs that use subroutines.

Licensed Material - Property of Data General Corporation 4-5

Assembly Language Subroutines
You can also use Business BASIC to call assembly language subroutines. As­
sembly language programs must be put into the Business BASIC interpreter at
the time your system is generated.

Assembly language subroutines usually perform tasks that Business BASIC can't
do and, as a result, should be executed judiciously. Improper use of assembly
language subroutines, system calls, or task calls can crash the system.

More information on assembly language subroutines is included in the Business
BASIC System Manager's Guide. Information on calling these subroutines is in
the Business BASIC Reference Manual for Commands, Statements, and Func­
tions under the UCALL entry.

Utilities
Utility programs written in Business BASIC are included in your software pack­
age. These programs are designed to help with file processing tasks and main­
taining databases. Appendix A lists the utilities supplied with your Business
BASIC software package. These utilities are explained in the Business BASIC
Reference Manual for Subroutines, Utilities, and BASIC CLI.

Using Utilities
Business BASIC provides two types of utilities - those that can be executed in
a variety of ways and those that must be executed by using the SWAP com­
mand.

In general, you can execute the first kind of utility by entering RUN "utility­
name, CHAIN "utility-name, or SWAP "utility-name. These utilities can also be
executed through the BASIC CLI by entering either the utility name while in
the BASIC CLI or !utility-name while in keyboard mode. When you use the
BASIC CLI, it executes the utility by performing a SWAP to the program
named in addition to closing any open files.

Some utilities are run-only. Do not use any of the three modes of executing the
SWAP command (SWAP "utility-name, !utility-name, or "utility-name) with
these utilities. For example, you should only execute the DBGEN utility by
entering:

* RUN DBGEN

The second kind of utility must be run in conjunction with another program.
Information is passed to it, and it returns the results through the common area.

When utilities return information to the calling program or use the common
area to pass information to programs, they need to be executed with a SWAP.
They do not work properly unless they can read the common area with a
BLOCK READ statement and interpret its data. If you CHAIN to one of

4-6 Licensed Material - Property of Data General Corporation

o

these utilities, the information passed from the utility to the common area must
be retrieved using keyboard mode commands. The following is a list of the
SW AP-only utilities:

• FILESORT

• IBUILD

• OPEN

• QFILESORT

• SIZE

• TBUILD

e XBUILD

You also need to SWAP to a utility if that utility works with open files. This
is the case with the LOCKS utility. LOCKS, like some other utilities, is struc­
tured internally so that it checks to see how it was executed. If it was not
executed by a SWAP command, LOCKS issues a NEW command to close all
open files. You cannot execute these utilities through the BASIC CLI because
the BASIC CLI issues a CLOSE command to close all open files.

Common Area

The common area is a 512-byte memory location used to store information and
pass it from one program to a subsequently running program. You can access
the common area directly by using the GETCM.SL subroutine or the BLOCK
READ and BLOCK WRITE commands.

Each user has only one common area. Data cannot be sent into another user's
common area. Use the BLOCK WRITE statemen!t/command to put data into
the common area and the BLOCK READ statement/command to retrieve that
data.

With BLOCK WRITE and BLOCK READ, you can use a string to hold the
information going into or coming from the common area. The string must be
dimensioned to at least 512 bytes because BLOCK WRITE and BLOCK
READ each transfer a 512-byte block.

Each SWAP-only utility uses a string to access the common area. This string
must be built according to the instructions given with that utility. When a
string of information from a utility is retrieved from the common area, you can
use the UNPACK statement/command or the ASC function to extract the bi­
nary values from the string.

Some utilities, like OPEN, require literal filenames and numbers in the string.
Others, like FILESORT, require binary values in the string. Use the CHR$
function to put a binary value in a string.

Licensed Material - Property of Data General Corporation 4-7

You can also use an array with BLOCK READ and BLOCK WRITE for
passing data to and from the common area; again, the array must be able to
hold at least 512 bytes. With a triple precision system, each array element
holds 6 bytes. Therefore, the array used for transferring information to and
from the common area must have at least 86 elements (516 bytes), since 85
elements use only 510 bytes. When this information is retrieved from the com­
mon area, the last 2 bytes will contain meaningless information.

In a double precision system, each array element holds 4 bytes; therefore, the
array used for passing information to and from the common area must have at
least 128 elements (512 bytes).

End of Chapter

4-8 Licensed Material - Property of Data General Corporation

Chapter 5
File Overview

Business BASIC supports the following categories of files:

• Operating system files.

• Business BASIC files (i.e., operating system files containing an embedded
Business BASIC structure).

• INFOS II files (i.e., operating system files containing an embedded
INFOS II structure).

Business BASIC places restrictions on naming files. Any file, however, that fol­
lows the Business BASIC filename conventions can be used by Business BASIC
programs and can be accessed using one of these three methods:

• Sequential access.

• Direct or random access.

• Indexed sequential access.

This chapter provides an overview of files and file handling under Business
BASIC. The chapter discusses:

• Operating system files.

• Filename conventions required by Business BASIC.

• File access.

• Business BASIC system files.

Information on INFOS II files is contained in chapter 7.

The information in this chapter is general; in some cases you will need to con­
sult the Business BASIC reference manuals to determine which commands, util­
ities, and subroutines work with your Business BASIC system. Business BASIC
supports two database structures, and some commands, utilities, and subroutines
only work with one of the structures. Information on file structures and file
access methods specific to these database structures is in chapter 6.

Operating System Files
Operating system files are disk files. They differ according to their internal
organization; i.e., how the operating system stores them on disk. RDOS systems
support three internal file formats; AOS systems support one internal file for­
mat.

Licensed Material - Property of Data General Corporation 5-1

RDOS Files
Under RDOS, each operating system file is organized in one of the following
ways:

• Sequential.

• Random.

• Contiguous.

The next three sections describe these methods of file organization.

Sequential File Organization

Sequential files use a flexible file structure but a very rigid access method.

In a sequential file, the system maintains a series of pointers to each block of
file information. RDOS stores information on the disk in blocks of 512 bytes.
The last 2 bytes of each block contain a pointer to the next block of data in
the file. These blocks can be anywhere on the disk; they do not have to be
adjacent blocks.

To build a sequential file, the system appropriates the next available disk block
when it needs space and constructs a pointer to that block. Figure 5-1 illus­
trates how a sequentially organized file looks on the disk.

The disadvantage to sequential files is that they permit only beginning-to-end
input and output access. After processing any given block of a sequential file,
the system can step either to the previous block or to the next block in the
series. For example, to access a record in the tenth block of a sequential file
after accessing a record in the first block, the system must read all the inter­
vening blocks. This makes data access for sequential files more time-consuming
than data access for either random or contiguous files. The advantage to se­
quential files is that, since they appropriate space as it is needed, you can
always append records to a file. Also, you can have variable length records.

Random File Organization

Random file organization provides a flexible file structure and easily accessible
data.

With random organization, RDOS maintains an index file that contains pointers
to data blocks in the random file. To find a record, the operating system gets
the location of the block holding the record from the index file. The system
then accesses the block directly, resulting in faster access than a sequential file
provides.

Like a sequential file, a random file allocates space as it needs it, so you can
always append records to it. However, maintaining the index file means that
random files require more disk space than sequential files.

Figure 5-2 shows how a random file works.

5-2 Licensed Material - Property of Data General Corporation

Sequential Files

Block 0 Block 1 Block 2 Block 5

,/ "'-
I \
f t

t t t t
data

~
f1\ data data data

. !

~ ~ ~
Pointer to Pointer to Pointer to

block 1 block 2 block 3

t \
\ /

"'- ,/

Space is allocated as needed.

Records must be processed in sequence.

Slow access for individual records.

10-00137

Figure 5-1. Format of an RDOS Sequential File

Licensed Material - Property of Data General Corporation 5-3

Random Files

File Index Block

Pointer to Blk 0

Data Block 0
Pointer to Blk 1 ------ Data Block 1
Pointer to Blk 2

~ Data Block 2
Pointer to Blk 3

Data Block 3
Nulls

•
•
•
•
•

Pointer to next
File index Block

Space is allocated as needed.
Direct record access.

10-00139

Figure 5-2. Format of an RDOS Random File

5-4 Licensed Material - Property of Data General Corporation

10-00138

Contiguous File Organization

Contiguous files have a rigid structure, but they provide the fastest access to
data of the three RDOS file formats.

Contiguous files consist of a fixed number of disk blocks that are physically
adjacent on the disk. This allows the operating system to calculate the location
of a record and access it directly. Figure 5-3 provides an example of contiguous
file organization.

The disadvantage to contiguous files is that you must allocate all the disk space
that the file will require when you create the file. These files occupy a fixed

Contiguous Files

o

Block 0

Block 1

Block 2 Fixed file size.
Fastest access to data.

•
•
•
•
•

Block n

Figure 5-3. Format of an RDOS Contiguous File

Licensed Material - Property of Data General Corporation 5-5

series of disk blocks, so you cannot expand or shrink the files. In addition, a
contiguous file can be created only when the required number of contiguous
disk blocks is available.

AOS Files
AOS builds a disk file from one or more 512-byte disk blocks. The system uses
a hierarchical index to connect the disk blocks within files. These files are simi­
lar to the RDOS random organization files, except that AOS uses a file ele­
ment size.

The file element is the basic unit of storage. It consists of one or more contig­
uous blocks (blocks with sequential physical addresses). You can specify the file
element size when you create a file using the BASIC CLI command CCONT,
or you can use the system default value. On AOSjVS systems, the default file
element size is four; you can change this default value when you generate your
system. On AOS systems, the default value is one. The system allocates file
space in multiples of file elements. Thus, a file with an element size of eight
grows in units of eight blocks.

If you create an AOS file with an element size of two, the file initially contains
two contiguous blocks (see figure 5-4). If file storage requirements exceed the
two blocks, the system allocates an index block that contains the addresses of
each of the file elements. The index element provides no data storage for itself.
Each index element is one disk block (not one file element size) in length.

As data storage requirements grow, more file elements are allocated and added
to the list maintained in the index. When the index space is exhausted, another
level of indexing is added. Pointers in the top index element then point to fur­
ther index elements.

The system handles the storage and retrieval of information; however, you
should consider the trade-offs of changing the file element sizes when you de­
sign your file structures. For example, large file element sizes could be used for
creating data storage in contiguous disk areas that do not need indexes; these
could be accessed quickly. Smaller file element sizes require more disk accesses
but permit more efficient utilization of disk storage.

Business BASIC File System
The Business BASIC file system requires you to follow certain conventions re­
garding filenames. If you follow these conventions, Business BASIC lets you
create simple disk files and access them. It also lets you create and access file
types that are specific to Business BASIC.

5-6 Licensed Material - Property of Data General Corporation

n

(1'1
I

El} D .. ,

Index

} Data

} Data

Initial File Element File Grows and Needs Separate Index

} Data

} Data

Two-Level Index } Data

More Indexes Are Added As File Data Grows

10-00140

Figure 5-4. Stages in AOS File Growth

Licensed Material - Property of Data General Corporation 5-7

Filename Conventions
The Business BASIC filename conventions were originally imposed under
RDOS, which was developed prior to AOS. Under RDOS, the filename conven­
tions are:

• The filename must not exceed 10 characters in length. The filename and
its extension must not exceed 13 characters. A filename extension consists
of a period (.) and up to two alphanumeric characters. RDOS Business
BASIC truncates filenames that exceed 13 characters.

• The filename can consist of uppercase and lowercase letters (these are
equivalent under RDOS), numbers, and a dollar sign ($). The period can
be used only to indicate a filename extension.

Under AOS, the filename conventions are:

• Filenames have a maximum length of 31 characters. However, many Busi­
ness BASIC utilities restrict you to 10-character filenames followed by an
extension consisting of a period and up to two characters. This is to main­
tain compatibility with RDOS.

• Filenames can consist of uppercase and lowercase letters (these are equiva­
lent under AOS), numbers, period (.), dollar sign ($), question mark (?),
and underscore (_).

You can use filename extensions to help organize your files. For example, list­
ing files are often indicated by using a .LS extension. In addition, your Business
BASIC software package follows certain conventions in using extensions. Table
5-1 lists these extensions and their meanings.

Extension

.BA

.DB

. LS

.SF

.SL

.Sn

.SP

. TB

.VL

Meaning

A utility source file listing that has comments. The .BA files are
contained in the $DOC directory, which was supplied with your
Business BASIC software.

A database file in the logical file database structure. Business
BASIC appends this extension to the filename you supply.

A listing file .

A file used with the Business BASIC Data Dictionary.

A Business BASIC subroutine file in ASCII format.

A screen file. This is a file used with the Conversational Screen
Maintenance (CSM) utility or the Screen Management (SM) utility.
The n represents the terminal type.

A commented utility source file module that is accessed by one
or more .BA files .. SP files are contained in the $DOC directory,
which was supplied with your Business BASIC software.

A table file. Used with the File Maintenance (FM) utility .

A volume label file in the logical file database structure. Business
BASIC appends this extension to the filename you supply.

Table 5-1. Filename Extensions

5-8 Licensed Material - Property of Data General Corporation

n

Creating Simple Disk Files
There are four ways fo create simple disk files with Business BASIC:

• The BASIC CLI command CCONT.

• The BASIC CLI command CRAND.

• The BASIC CLI command CREATE.

• The OPEN FILE command.

Under RDOS, the CCONT command sets up a contiguous file; the CRAND.
command, a random file; and the CREATE command, a sequential file. These
commands set up random files under AOS.

The OPEN FILE command creates files in your directory only if you open the
file in mode 0, 1, or 2. These modes also specify the type file you have.

The BASIC CLI commands are explained in the Business BASIC Reference
Manual for Subroutines, Utilities, and BASIC CLI. The OPEN FILE com­
mand is discussed in the Business BASIC Reference Manual for Commands,
Statements, and Functions.

File Access
Business BASIC file access involves several steps. You need to open the files
you are going to use as well as set up the variables you will use in transferring
information between files. With numeric variables, the amount of data you can
transfer depends upon the variable's precision, while with string variables, the
amount is determined by the string's dimension.

When you open a file, you must associate its name with a channel number and
specify an access mode.

The channel number represents the line of communication from your working
storage area to the data file or device. Channel numbers can range from 0 to
16; however, channel 16 always refers to the terminal. A channel number can
be associated with only one file at a time. The channel number cannot be used
again until the file is closed with a CLOSE FILE statement. Once a file has a
channel number, you use the channel number instead of the filename when
reading from or writing to a file. Any file assigned to channel 16 reads data
from and writes data to the terminal.

The file access mode is determined in part by the file organization (i.e., sequen­
tial, random, or contiguous). You specify a file access mode with the OPEN
FILE statement. When a data file uses sequential file organization, you must
open it in sequential access mode. You can open files using random or contig­
uous organization in either random or sequential access mode.

To access data in the file, use the file pointer. It moves each time you access a
record. At the end of the operation, the file pointer points to the byte immedi­
ately after the last byte that was read or written. (You can use the GPOS, or
get position, function to check the position of the file pointer.)

Licensed Material - Property of Data General Corporation 5-9

With files opened in random mode, use the POSITION FILE statement to
move the file pointer. POSITION FILE lets you go directly to the record you
want. This statement does not work with sequentially opened files, since sequen­
tial access mode does not allow direct access of records.

To access a record directly, use the record's relative position to place the file
pointer. With fixed-length records, you calculate the record's relative position as:

record number • record length

To use the sequential access method with data files that are randomly or con­
tiguously organized, position the file pointer to byte 0 of the file. Then process
the records according to their order in the file. The file pointer moves with
each read or write, so it is automatically positioned and ready to access the
next record. You can also position the file pointer to any record in the file and
read the file sequentially from that point.

With sequential files, you can use the end of file function (EOF) to determine
when the data has ended.

Since random access mode lets you access files faster, it is usually used for files
containing records that require frequent updating, such as a store billing pro­
gram. Sequential mode is used for files to which new records are constantly
being added; for example, a list of company products.

Table 5-2 lists the commands provided for file input and output. These com­
mands are explained in the Business BASIC Reference Manual for Commands,
Statements, and Functions.

Keyword

BLOCK READ FILE

BLOCK WRITE FILE

CLOSE

CLOSE FILE

EOF

GPOS

INPUT FILE

INPUT FILE USING

LOPEN FILE

LREAD FILE

LWRITE FILE

OPEN FILE

POSITION FILE

PRINT FILE

PRINT FILE USING

READ FILE

WRITE FILE

Purpose

Get data from a file in multiples of 512 bytes.

Place data in a file in mulvples of 512 bytes.

Close all opened files.

Close a specific file.

Check for end of file.

Determine the current position of the file pointer.

Get ASCII data from a file.

Get ASCII data from a file and allow an error and a
terminator trap.

Open a database file.

Get binary data from a record.

Place binary data in a record.

Open a file.

Position the file pointer.

Send ASCII data to a file, terminal, or device.

Send ASCII data according to a format to a file, terminal,
or device.

Get binary data from a file.

Output binary data to a file.

Table 5-2. File Input and Output Commands

5-10 Licensed Material - Property 01 Data General Corporation

File Types
Since Business BASIC supports operating system files and files specific to the
Business BASIC system, files used on a Business BASIC system fall into one of
three file types:

• Simple disk files (including direct random format data files).

• Linked-available-record format data files.

• Index files.

These file types give you the flexibility to select a method of data file organiza­
tion that is appropriate for your needs - from simple to complex. With the
exception of RDOS sequential files, you can use any access method with these
files. The last two categories (linked-available-record files and index files) both
contain embedded Business BASIC structure that tells the BASIC interpreter
how the file is organized.

Simple Disk Files

Simple disk files are flat files or operating system files. These files consist of a
stream of bytes that you can access at any point. The internal organization of
the files can be sequential, random, or contiguous. You must access RDOS
sequentially organized files using sequential access; however, you can use se­
quential or direct random access with files that are organized randomly or con­
tiguously.

If you are using direct random access with your files, then you handle all re­
cord assignments. These files must contain fixed-length records. You can posi­
tion directly to a specific record.

Linked-A vailable-Record Files

The linked-available-record format uses dynamic record allocation, which allows
a file to reuse space left by deleted records. Each deleted record contains a
pointer to the next available record in the file. Use either the LFU utility or
the INITFILE utility to create linked-available-record files.

The first record (record 0) in this type of file is reserved by Business BASIC
and holds information on the next available record. The rest of the records
contain user data.

Business BASIC uses the first 2 bytes of each record to store information on
whether a record is active or deleted. Then, for each active record after record
0, data is stored in bytes 2 through the end of the record. In a deleted record,
bytes 2-5 point to the next record available to receive data, thus creating the
deleted-record chain.

Record 0 is always the same size as the other records in the file. The minimum
record size for a linked-available-record file is 6 bytes. If the record size is less
than 6 bytes, the information normally contained in bytes 2-5 of record 0 will
be corrupt. Table 5-3 describes the contents of record o.

Licensed Material - Property of Data General Corporation 5-11

When the record size is less than 10 bytes, all of the data records are initially
linked together and then allocated from the deleted-record chain.

Bytes

0-1

2-5

6-9

10-13

14-end

Description

Status flag (always equal to -2).

Record number of next available record (-1 if no records are on the
deleted-record chain).

Record number of last record used in the file (present only when the
record size is > = 10 bytes).

Active record count, initially 0 (present only when record size is
> = 14 bytes). This value is incremented by the GETREC statement
and decremented by the DELREC statement.

Reserved (present only when record size is greater than 14 bytes).

Table 5-3_ Contents of Record 0 of a Linked-Available-Record File

The format of an active data record is shown in Table 5-4, and the format of a
deleted data record is shown in Table 5-5.

Bytes

0-1

2-end

Description

Status flag (greater than 0 when the record is active).

User data.

Table 5-4. An Active Data Record in a Linked-Available-Record File

Bytes

0-1

2-5

6-end

Description

Status flag (usually 0, though it can also be less than 0).

Record number of next deleted record in deleted chain or -1 if last
value in chain.

Unused; it contains old data from when record was active.

Table 5-5. A Deleted Data Record in a Linked-Available-Record File

If the deleted-record chain for your linked-available-record file is destroyed, you
can rebuild it using either the LRELINK utility or the RELINK utility. You
should also run one of these utilities if a system crash occurs while a linked­
available-record format file is being updated. These utilities are explained in the
Business BASIC Reference Manual for Subroutines, Utilities, and BASIC CLI.

Index Files

An index file provides fast access to information in a data file independent of
the information's physical location. An index file does not contain user data;
instead, it contains keys that point to entries in a data file.

Business BASIC uses the indexed sequential access method (lSAM) of working
with index files. Usually, an index file and its corresponding data file are re-

5-12 Licensed Material - Property of Data General Corporation

ferred to collectively as an ISAM file. In Business BASIC, an ISAM file con­
sists of a data file and one or more index files. (The DBGEN and FM utilities
limit you to three index files per data file.)

Some additional characteristics of index files include:

• More than one index file can point to the same data file.

• Duplicate key values are permitted, but only when you specify that they
are allowed. These are keys with identical values that point to different
data file entries.

• The key values are maintained in sorted order, thus allowing you to read a
data file sequentially without going through the time-consuming task of
sorting the data file.

• The maximum key size is 122 bytes.

• The maximum index file size is 65535 blocks (0-65534).

• Unlike data files, index files are organized internally into fixed-length
blocks, not records.

Creating Index Files

There are three major steps to setting up an index:

1) Calculate the index file parameters.

2) Create and initialize the index.

3) Build the index by adding keys.

Business BASIC provides several utilities and subroutines for you to use in per­
forming these steps.

INDEXCALC computes and prints information for the index, including the
maximum number of keys per index block, the number of keys per block with
the user-specified blocking factor, the number of blocks at level 0 (one, two,
etc. for as many levels as needed), the number of blocks (either 512 or 2048
bytes per block), the number of sectors in the index, and the number of sectors
in the associated data file.

The LFU and INITFILE utilities create and initialize an index file or a linked­
available-record file by writing the first record with header information.

IBUILD creates an index file from a sorted data file, a sorted tag file, or an
index file.

TBUILD creates a temporary (tag) file from a linked-available-record data file
or an index file. A tag file is sorted faster than a data file. The final index file
is maintained in sorted order.

XBUILD creates an index file with a blocking factor of 50%. Use INDEXBLD
or IBUILD to create an index file with a different blocking factor.

Licensed Material - Property of Data General Corporation 5-13

LINDEXBLD and INDEXBLD create an index file from an unsorted data file,
tag file, or another index file, or re-create an index file. (Each of these pro­
grams use IBUILD, XBUILD, and TBUILD, depending on the options you
select when you execute the program.)

IREBLD rebuilds an index file.

LINITINDEX.sL and INITINDEX.sL initialize an index file but do not ini­
tialize a data file. If you use these subroutines with existing index files, the
index files are initialized and any data that had been in them is lost.

These utilities and subroutines are explained in the Business BASIC Reference
Manual for Subroutines, Utilities, and BASIC CLI.

Index File Formats - Index files differ from data files in their internal makeup.
Instead of being organized in records, they contain fixed-length blocks of 512
bytes (RDOS and AOS) or 2048 bytes (AOS only) each. You specify the index
block size when you use the LFU utility or the INITFILE utility to create the
index.

The first block, block 0, is reserved as a header block that describes the index
file. Business BASIC sets up this block when you create the index. Table 5-6
describes the format of block O. The remaining index file blocks contain key
and pointer information. The format for these blocks is illustrated in Table 5-7.

Bytes

0-1

2-3

4-5

6-7

8-9

10-11

12-13

14-end

Description

Number of bytes per entry (key and pointer).

Number of keys per block.

Last usable block number.

Next available block.

Level 0 block number (sometimes referred to as a root node).

Blocking factor.

Bit flags. These determine whether the index allows 512-byte or 2048-
byte blocks and whether duplicate keys are allowed. The flags can
have these meanings:

o 512-byte blocks, no duplicates
1 512-byte blocks, duplicates allowed
2 2048-byte blocks, no duplicates
3 2048-byte blocks, duplicates allowed

Reserved.

Table 5·6_ Contents of Block 0 of an Index File

5-14 Licensed Material - Property of Data General Corporation

o

Bytes

0-1

2-3

Description

Number of entries in the block.

Number of the next block in sequence.

If this is a 512-byte block index then:

4-end Key entries. Consists of a key and a record pointer to the data file.
Keys are fixed length in size and must be an even number of bytes.
Record pointers require 4 bytes and must be a positive signed number.

If this is a 204S-byte block index then:

Reserved

Update counter

4-5

6-7

8-end Key entries. These consist of a key and a record pointer to the data
file, if duplicates are not allowed. If duplicates are allowed, the key
entry consists of a key, an occurrence number, and a record pointer
to the data file. Keys are fixed length in size and must be an even
number of bytes. The occurrence number requires 2 bytes and is
used to distinguish between duplicate keys. Record pointers require
4 bytes and must be a positive signed number.

Table 5-7. Format of a Block Containing Keys for an Index File

The blocks that make up an index file are created and maintained by Business
BASIC when you use any of the keywords for creating and initializing index
files or when you add a new key or delete an existing key with the KADD and
KDEL keywords. A block always contains at least one· available entry. If an
addition uses the last available entry, the block is divided into two new blocks.
When a block with an odd number of keys is split, the extra key is in the
original block.

If you add keys using KADD and the block needs to split, the blocking factor
is automatically 50 percent.

Using Index Files

Business BASIC provides four K commands for working with existing index
files:

• KADD adds a key.

• KFIND finds a key.

• KNEXT finds the next key.

• KDEL deletes a key.

These statements use block 0 of an index file.

KADD adds a key entry (string and record pointer) to the index file described
in a descriptor string. KADD searches the index to find the proper location for

Licensed Material - Property of Data General Corporation 5-15

the key. If you did not allow duplicate keys in the file and attempt to add one,
KADD returns the record pointer with a value of 0 and does not add the new
key.

KFIND searches the index file for a match to the key you supply. If KFIND
finds an exact match, it returns the data record pointer associated with the key.
If KFIND cannot find the exact key, it finds the first key with a value great~r
than the specified key and returns the negative value of the record pointer
associated with the key found. Suppose you specify key ABC and there is no
ABC, but two keys, ABCA and ABCB exist. KFIND locates the key ABCA. If
KFIND cannot find a key value equal to or greater than the key you supply, it
returns a value of 0 for the record pointer.

KNEXT locates the next key in sequence. You must execute a KFIND before
your first KNEXT. After that, just execute KNEXT. KNEXT returns the re­
cord pointer associated with the key found. If KNEXT reaches the end of the
index, it returns a 0 for the record pointer.

Use KNEXT to read an index sequentially from a given key. For example, use
KFIND with a null key to return the first key in the index. Then use KNEXT
repeatedly to reach the key you want. You can also use KNEXT to find all
occurrences of duplicate keys.

KDEL deletes keys from an index file. If KDEL does not find a match for the
key you entered, it returns 0 for the record pointer. If it does find a key, it
returns the record pointer of the deleted key.

These commands are described in the Business BASIC Reference Manual for
Commands, Statements, and Functions.

When you add keys to and delete keys from an index file, the multi-leveled
ISAM key structure dynamically expands, but it does not dynamically contract.
Business BASIC reuses space freed· by deleted keys; however, the index file can
become full, even when there appears to be room for the key entries. This
occurs when a large number of keys are deleted and then replaced by new keys
with a different range of values. When this happens, rebuild the index file.
Several Business BASIC utilities rebuild index files. These utilities accept an
unsorted data file, a tag file, or another index as input files for the new index.

When a data file is used as the input file, the location of a key field must be
the same in each data record, and there can only be one key per record per
index. This is also true when building tag files from a data file.

If the data file contains multiple record types with a separate index for each
type, then the data file cannot be used as an input file with the ISAM utilities
In this case, use the old index file as the input file unless the structure of the
old index file is corrupt. If the structure is corrupt, you need to write a pro­
gram to rebuild the index.

You also need to write your own program if you want an index that contains
several keys for each data record. INDEXBLD, for example, asks for the num­
ber of fields in the key and the starting byte locations within the data record
for each field in the key. It writes one key in the index for each record, regard­
less of type, and it uses the same locations within each data record. FM is the

5-16 Licensed Material - Property of Data General Corporation

only Business BASIC utility that supports multiple record types in one data file
with separate indexes for each type.

Two utilities that you can use once you have built an index are INDEXPRT
and INDEXVRFY. These help you check an existing index.

Index File Example

The following example sets up a small database that uses an index file. The
data file is EMPDATA and the index file is EMPINDX. To set up EMPINDX
and EMPDATA, first run INDEXCALC to determine information needed to
create the index file, including the number of keys per index block and the
number of blocks in the index, and then to determine the number of sectors
needed by EMPDA T A. After you get this information, run INITFILE to create
these two files.

The dialog for INDEXCALC, which calculates numbers for EMPINDX and
EMPDA T A files, is:

* RUN "INDEXCALC
INDEXCALC VERSIDN X.XX

BYTES PER KEY : 4
BYTES PER DATA RECDRD : 25
MAXIMUM NUMBER OF DATA RECORDS : 100
INDEX BLOCKING FACTOR (% PERCENT) [50]: 50
INDEX BLOCK SIZE (512 or 2048) [512]: 512
DUPLICATE KEYS ALLOWED? (Y or N) [N]: N

63 MAXIMUM KEYS PER INDEX BLOCK
32 KEYS PER BLOCK WITH A 50 PERCENT BLOCKING FACTOR
4 BLOCK(S) AT LEVEL 1
1 BLOCK(S) AT LEVEL 0
6 BLOCKS (512 bytes each) IN INDEX
6 SECTORS IN INDEX
5 SECTORS IN DATA FILE

CALCULATE THE INDEX INFORMATION FOR ANOTHER FILE (Y or N) [N]: N

The dialogue for INITFILE, which creates and initializes EMPINDX and
EMPDA T A, is:

* RUN "INITFILE
INDEX (0). DATA (1). STOP(2) [0]: 0
SUB FILE NAME EMPINDX
FILE NOT IN PARAM FILE!
DO YOU WISH TO ADD? (Y OR N) [Y]: N
MASTER FILE NAME: EMPINDX
INDEX BLOCK SIZE (512 or 2048) [512]: 512
BYTE OFFSET TO SUB FILE: 0
MAXIMUM NUMBER OF INDEX BLOCKS: 6
BYTES PER KEY: 4
BLOCKING FACTOR (% PERCENT) [50]: 50

Licensed Material - Property of Data General Corporation 5-17

DUPLICATE KEYS ALLOWED? (Y OR N) [N]: N
INDEX (0), DATA (1), STOP(2) [0]: 1
SUB FILE NAME EMPDATA
FILE NOT IN PARAM FILE!
DO YOU WISH TO ADD? (Y OR N) [V]: N
MASTER FILE NAME: EMPDATA
BYTE OFFSET TO SUB FILE: 0
BYTES PER DATA RECORD: 25
MAXIMUM NUMBER OF DATA RECORDS: 100
SHOULD FILE BE NULL FILLED: N
INDEX (0), DATA (1), STOP(2) [0]: 2

The following program uses the two files you have set up to add information on
employees at Widget Supply Co. As data is added to EMPDA T A, keys are
added to EMPINDX.

* LIST
0010 DIM NAME$[25],X$[512],KEY$[4],BUF$[544],DESC$[18],C1[1,3]
0020 ON ERR THEN GO TO 9900
0030 RSIZE=25 \ R1=0 \ IFILE=1 \ DFILE=2
0499 REM * Control module
0500 GOSUB 1000 * Open Files
0600 GOSUB 2000 : * Input data & write data records & keys
0999 END
1000 REM * Open Files
1010 CLOSE
1020 OPEN FILE(IFILE, 5), "EMPINDX"
1030 OPEN FILE(DFILE,5). "EMPDATA"
1040 DESC$ = CHR$(IFILE, 2), CHR$(O, 4) , CHR$(O, 2), "EMPINDX", FILL$(O)
1190 RETURN
2000 REM * Input data & write data records & keys
2010 R1=R 1+1
2020 IF R1:>100 THEN 2900
2030 GOSUB 6000 : * Input screen
2040 INPUT USING "" ,@(10,41),@(-10,6),EMPNO
2050 IF EMPNO=O THEN GOTO 2900 : * Exit
2060 INPUT USING "" ,@(12,41),NAME$
2070 LET KEY$=CHR$(EMPNO,4)
2080 POSITION FILE(DFILE,RSIZE*R1)
2090 WRITE FILE[DFILE],NAME$
2100 KADD DESC$,BUF$,KEY$,R1
2110 REM * Force error if any problem on KADD
2120 IF R1 < = 0 THEN STMA 19,67
2130 GOTO 2000 : * Input data & write data records & keys
2900 REM * Exit
2910 PRINT @(22,1)
2950 RETURN
6000 REM * Input screen
6010 PRINT @(-30);@(1,18);"W I D GET SUP PLY CO M PAN Y"
6020 PRINT @(3,28);"Employee Information"
6030 PRINT @(10,2); "Employee Number:"

5-18 Licensed Material - Property of Data General Corporation

6040 PRINT @(12,2);"Name:"
6090 RETURN
9900 REM * Error handler
9910 PRINT "<7> ** Error at line"; SYS(20); "-";
9920 IF SYS(7)<>-60 THEN LET X$=ERM$(SYS(7)) ELSE X$=AERM$(SYS(31))
9930 PRINT X$
9940 END

Logical Files and Subfiles
Files in the Business BASIC file structure can be physical (disk) files or logical
subsections of a physical file. These subsections are called logical files or
subfiles. The distinction between the two terms is that logical files are used
with the Business BASIC logical database structure and subfiles are used with
the PARAM database structure (database structures are discussed in chapter
6).

The advantage to using logical files and subfiles is that by dividing a physical
file into subsections, Business BASIC lets you simultaneously open an unlimited
number of files in the same program. Business BASIC restricts the number of
physical files you can open in one program to 16. Each logical file or subfile
has a fixed size and begins where the previous one ends.

Use the LFU utility or the INITFILE utility to create these files.

End of Chapter

Licensed Material - Property of Data General Corporation 5-19

n

n

Chapter 6
Database Structures
in Business BASIC

Business BASIC supports two database structures - the logical file database
structure and the PARAM file database structure. These structures increase the
number of files you can access from one program by letting you set up files
that are subsections of a physical (disk) file. The subsections are called logical
files or subfiles. Business BASIC permits you to open only 16 physical files
(channels 0-15) simultaneously in a BASIC program; however, you can open an
unlimited number of logical files or subfiles simultaneously in a program. Since
the operating system does not recognize logical files or subfiles, the database
structures catalog the logical files and the subfiles by noting their names, their
locations within the physical file, the size of their records, and the maximum
number of records they contain. You use this information to acces,s these files.
To distinguish between the two database structures, this manual uses the terms
"database file" and "logical file" only with the logical structure and "master
file" and "subfile" only with the PARAM structure.

While the logical structure and the PARAM structure both perform the same
function, not all Business BASIC features work with both structures (i.e., some
work only with the logical structure while others work only with the PARAM
structure). Both structures, however, support data and index files. The data files
can use either direct-access format or linked-available-record format while the
index files provide Indexed Sequential Access Method (ISAM) for data records.

You can create files that are not in either database structure, but not all Busi­
ness BASIC features will work with these files.

This chapter describes the two Business BASIC database structures and how to
set up and use files with them. The logical file database structure is more
recent than the PARAM structure, and some of its features are more efficient
and easier to use than the PARAM features. For example, the logical structure
computes the byte offset for each record in a logical file; the PARAM structure
does not. If you are preparing to set up a database, use the logical database
structure. If you are already using the PARAM structure, you should consider
whether it's feasible for you to use the PARAMCON utility to convert your
database to a logical database. Switching database structures requires some pro­
gram modifications, such as using the LREAD statement instead of the READ
statement.

licensed Material - Property of Data General Corporation 6-1

Logical File Database Structure
The logical file database structure consists of a file set made up of a database
file (indicated by a .DB extension) and a volume label file (indicated by a .VL
extension). Both the .DB file and the .VL file are physical files. The .DB file
contains the actual data. The .VL file contains information on each logical file
in the .DB file and maps each logical file to the .DB file. Logical files appear
on disk as links to the volume label file.

If you had a simple logical file database named CUST that contained a data
file with two indexes, you would have on disk the following two physical files:

CUST.DB
CUST.VL

(the database file)
(the volume label file)

and the following three logical files:

CUSTOMER
CUSTI1
CUSTI2

(the data file)
(an index file)
(an index file)

Each of the three logical files is linked to the volume label file, CUST.VL.
When you execute a program using these files, the information in the volume
label file is copied into the logical file table string (LFTABL$). Both the vol­
ume label file and LFT ABL$ are discussed later in this chapter.

Creating a Logical File Database
Setting up a database involves the following steps:

I) Design your database so that you know the record size and the number of
records you want in the data file.

2) Execute the INDEXCALC utility to determine the number of keys per
index block and the number of blocks (sectors) needed for the index file
and the number of sectors needed for the data file.

3) Create the logical and physical files using the Logical File Utility (LFU).

To use the information in the database, you need to:

I) Dimension the string variable LFT ABL$ and fill it with nulls to a length
of at least 26 times the highest logical file number to be used.

2) Use the LOPEN statement to open your logical files.

3) Access the files by using the input/output statements listed in Table 6-4.

An example of setting up a database and a program that uses that database is
in appendix C.

6-2 Licensed Material - Property of Data General Corporation

n

r!',
\ I

Logical Files
You can define your logical files as one of three types:

D Direct random file. The user handles all record assignments.

L Linked-available-record file. Record allocation assignments are made dy­
namically by Business BASIC.

Index file. These files are maintained via the ISAM statements.

Logical data files are allocated in 512-byte increments. Index files are allocated
in either 512-byte or 2048-byte increments. The increment used depends on the
index block size you enter when you LFU LCREA TE the index. Only AOS
supports 2048-byte index blocks.

Volume Label File Format
The volume label file contains records that describe the size and location of the
logical files in the database file. Each record is 32 bytes long. Table 6-1 de­
scribes the contents of a volume label file record.

Bytes

0-9

10-12

13-14

15

16-19

20-21

22-31

Description

Name of the logical file.

Starting sector number of a logical file in the database file. The
formula for calculating the starting sector is:

Maximum starting sector number + «Last valid record # + 1) •
record length + 511) / 512 < = 4194303

Record length in bytes.

File type (D, L, I).

Last valid record number of logical file.

Revision mark.

Unused.

Table 6-1. Contents of a Volume Label File Record

You use the LFU utility to maintain the volume label file. When you create
logical files with LFU, the utility checks the information in the volume label
file to determine what file space is available. If you delete a logical file using
LFU, the utility places *DEL in the field on the volume label file where the
logical name should appear. LFU reuses this space if another logical file of the
same size is created.

LFU consists of a series of commands that let you perform these maintenance
tasks. The commands are listed in Table 6-2 and are explained under the LFU
entry in the Business BASIC Reference Manual for Subroutines, Utilities, and
BASIC CLI.

Licensed Material - Property of Data General Corporation 6-3

Command

LCREATE

LDELETE

UNIT

LUST

LRENAME

PCREATE

PDELETE

PUST

PRENAME

STOP

Function

Creates a logical file of type D, L, or I.

Deletes a logical file.

Initial.izes a type D, L, or I logical file.

Displays the type, location in the database file, size in blocks
(sectors), record length, last valid record number, and size in
bytes of the logical file.

Renames a logical file.

Creates physical database and volume label files associated
with a logical database file set.

Deletes the database and volume label file.

Displays information on the logical files within a database file.

Changes the names of the database and volume label files.

Terminates LFU.

Table 6-2. LFU Command Summary

Logical File Table (LFTABL$)
The logical file table string (LFT ABL$) is a string variable you dimension that
stores the definitions of all the logical files opened with the LOPEN statement.
The information in LFTABL$ is used by the logical input/output statements.

LFT ABL$ consists of a series of 26-byte records, where each record holds infor­
mation on a logical file. The LOPEN statement places the logical file defini­
tions in LFT ABL$. LOPEN gets the logical file characteristics from the volume
label file.

Since LOPEN places information in LFT ABL$, you must dimension LFT ABL$
and fill it with nulls to a length at least 26 times the highest logical file num­
ber before you use an LOPEN FILE statement in your program. Once a file
has an entry in LFTABL$, you can refer to it with the input/output statements
listed in Table 6-4.

The LFDA TA.sL subroutine enables you to access information in LFT ABL$;
however, you should not change this information. Changing data in LFT ABL$
can cause the logical input/output statements to perform incorrectly.

Table 6-3 describes the contents of an LFT ABL$ record.

6-4 Licensed Material - Property of Data General Corporation

n

i
~=======================================-===---~ .. ~

Bytes

1-2

3-6

7-8

9-18

19-20

21-24

25

26

Description

Channel number on which the file was opened with LOPEN.

Starting byte.

Flags. These are set when you LOPEN the file.

Name of the logical file.

Record length in bytes of the logical file.

Last valid record number of the logical file.

Record type (0, L, or I).

Reserved.

Table 6-3. Contents of an LFTABL$ Record

Logical File Input and Output
Business BASIC provides several commands (i.e., commands, statements, and
subroutines) that perform input and output operations on logical files. Some of
the commands are tailored to the logical file database while others can be used
with both databases. Commands that work only with the logical file database
require you to open the file using the LOPEN statement.

To perform input and output operations in your program:

• First OPEN all the files that are not part of the logical database struc­
ture.

• Then LOPEN the files in the logical database structure.

You open files in this order because the OPEN statement makes you assign a
channel number to the file. With the LOPEN statement, the system assigns the
channel number, and you do not have access to which channels are free to be
used with the OPEN statement. If you try to OPEN a file on a channel that is
in use, an error occurs.

Table 6-4 lists the input and output commands that you can use with logical
files. These commands are explained in the Business BASIC Reference Manual
for Commands, Statements, and Functions.

Licensed Material - Property of Data General Corporation 6-5

Command

DELREC

GETLAST.SL

GETREC

KADD

KDEL

KFIND

KNEXT

LOCK/UNLOCK

LOPEN FILE

LREAD FILE

LWRITE FILE

Action

Delete a logical record in a linked-available-record file.
(Logical database only)

Retrieve the number of active records and the highest record
in use in a linked-available-record file. (Logical database
only)

Allocate a logical record from a linked-available-record file.
(Logical database only)

Add a key entry to an index file.

Delete a key entry from an index file.

Find a key entry in an index file.

Return the next key entry in an index file.

Synchronize the updating of files that are shared between
programs.

Open and / or define a logical file. (Logical database only)

Read a logical record. (Logical database only)

Write a logical record. (Logical database only)

Table 6-4. 1/0 Commands Used with Logical Files

P ARAM File Database Structure
The PARAM file database structure consists of a file set that includes a
PARAM file and a master file. Both files are physical files. The PARAM file
contains information on the subfiles, which are logical subsections of the master
file.

The PARAM structure permits three types of subfiles:

• Direct random files. The user handles all record assignments. You cannot
create this type of file using INITFILE.

• Linked-available-record files. Record allocation assignments are made dy­
namically by Business BASIC.

• Index files. These files are maintained via the ISAM statements.

Setting up a P ARAM Database
To set up a PARAM database structure, perform the following steps:

I) Design your database so that you know the record size and the number of
records you want in the data file.

2) Run INDEXCALC to determine the number of keys per index block, the
number of blocks (sectors) needed in the index file, and the number of
sectors needed for the data file.

6-6 licensed Material - Property of Data General Corporation

n

n

3) Create the PARAM file. (You only need to create the PARAM file once.)

4) Run INITFILE to initialize the files and enter the necessary information In

the P ARAM file.

5) Use the input/output commands in Table 6-8 to access your database.

An example of setting up a PARAM database and a program that uses it is In

appendix C.

The P ARAM File
The PARAM file consists of records that specify the size and location of
subfiles. After you set up the PARAM file, you use the OPEN utility to ex­
tract the subfile information and place it in the Cl (file characteristics) array.
Your program then uses the information in the Cl array to locate records in
the subfile.

Each record in the PARAM file is 42 bytes long and contains information on
only one subfile. Record number 0 is reserved for information describing
PARAM itself.

The Business BASIC software package includes an empty PARAM file. This
file is in the library directory and contains 10 records, three of which are
blank. To increase the number of records available, change the record limit in
record 0 (see Table 6-5). You can use one PARAM file for all programs, or
you can have as many as one PARAM file per directory.

On AOS systems, when you use more than one PARAM file, include the direc­
tory containing the PARAM file you need on your search list. Also, be sure
that your program uses the correct PARAM; using the wrong PARAM file can
destroy parts of your database.

To set up a PARAM file, follow these steps:

• Use a BASIC CLI command such as CCONT or CRAND to create the
PARAM file.

• Initialize record 0 of the PARAM file using the File Maintenance (FM)
utility. (Table 6-5 contains a description of record 0 and appendix C dis­
cusses using FM to set up record 0.)

• Use the interactive utility INITFILE to add information describing each
physical file and subfile.

In addition to INITFILE, you can also add entries to the PARAM file by
using:

• The FM utility.

• A user-written utility.

CCONJ, CRAND, FM, and INITFILE are explained in the Business BASIC
Reference Manual for Subroutines. Utilities. and BASIC CLl.

Licensed Material - Property of Data General Corporation 6-7

Table 6-5 describes record ° of a PARAM file, and Table 6-6 describes the
record structure for the rest of the P ARAM file.

Bytes

0-1

2-11

12-21

22-25

26-27

28-31

32-35

36-41

Contents

1; this is the active record status indicator.

PARAM (the rest of the string is filled with nulls).

PARAM (the rest of the string is filled with nUlls).

0; this is the beginning byte of t~e PARAM file.

42; this is the length of each record in the PARAM file.

Maximum number of records to be kept in the PARAM file.

Highest record number in use. (When records are added in the
PARAM file, this number should be incremented. However, this number
should not be decremented when a record is deleted. If you are
adding records directly to the PARAM file or if you are using FM
to add records, you must increment this number yourself; it is not
done automatically in those cases.)

Unused.

Table 6-5_ Record 0 of the PARAM File

Bytes

0-1

2-11

12-21

22-25

26-27

28-31

32-35

36-41

Description

Status indicator; must equal 1.

Name of the subtile or physical file.

Name of the physical file that holds the subfile.

Byte pointer to the start of the subfile or physical file.

Record length of the subfile or physical file.

Last record number of the subfile or physical file.

Number of the last record containing data.

Unused.

Table 6-6. Contents of a PARAM File Record

Cl (File Characteristics) Array

The C 1 or file characteristics array is set up in your program and contains
information about your master files and subfiles. This information is used by
the subroutines GETREC.SL, DELREC.SL, andPOSFL.SL to compute the po­
sition of records within a linked-available-record file.

The CI array is a two-dimensional array with four columns (0, I, 2, 3) and n
rows, where n is the number of subfiles used in your program. Remember that
arrays are zero-based; thus, if you have n fites, the maximum row number you
have is n-I (i.e., ° to n-l). Table 6-7 explains how the columns in the CI array
are used.

6-8 Licensed Material - Property of Data General Corporation

n

Column Description

o Contains the number of the channel you used to open a master
file. (The channel number is the number you associate with a file
for all file access.)

Contains the byte offset relative to 0 to the beginning of the subfile
within the master file. (The master file always starts at byte 0.)

2
3

Contains the file size (Le., the number of records in the file).
Contains the record size (Le., the bytes per record).

Table 6-7. Column Contents of the C1 Array

Building a Cl Array
You dimension the Cl array from within your program. There are three ways
to build the Cl array and add information to it:

• The OPEN utility.

• The FINDFILE.SL subroutine.

• The LET statement.

Both OPEN and FINDFILE.SL use the PARAM file to get the information
necessary to build a Cl array. With the LET statement, you assign values to
the array.

In the example that follows, the record size, channel number, or file size of any
file can be changed by changing the values in the Cl array. This example uses
the LET statement to build the Cl array.

0010 DIM C1(2,3)
0020 LET C1(O,O)=2
0030 LET C1(O,1)=0
0040 LET C1(O,2)=400
0050 LET C1(O,3)=128
0060 LET C1(1,O)=2

0070 LET C1(1,1) = 51712
0080 LET C1(1,2)=15
0090 LET C1(1,3)=512
0100 LET C1(2.0) =3
0110 LET C1(2.1) =0
0120 LET C1(2.2)=100
0130 LET C1(2.3)=50
0140 REM -- TIME TO OPEN FILES
0150 LET C%=C1(0.0)
0160 OPEN FILE(C%,O)."EMPLOYEE"·

0170 LET C2%=C1(2.0)
0180 OPEN FILE(C2%. 0), "FEDTAX"

:Dimension C1 to be 3*4 array.
:File 0 (EMPDATA) opened on channel 2,
:and begins at byte 0 of EMPLOYEE.
:and contains a maximum of 400 records.
:with 128 bytes in each record.
:File 1 (EMPIX) also opened on channel 2
:because EMPDATA and EMPIX are in the
:same physical file EMPLOYEE. opened on
:channel 2.
:EMPIX begins at byte 51712 (block 101).
:and contains 15 index blocks
:with 512 bytes in each block.
:File 2 (FEDTAX) ~.s opened on channel 3.
:starts at byte 0 since it is a
:physical file and contains a max of 100
:records with 50 bytes in each record.

:Channel number now in C%.
:This will allow access to both EMPDATA
:and EMPIX.
:Channel number of FEDTAX now in C2%

Licensed Material - Property of Data General Corporation 6-9

You can use the subroutine FINDFILE.sL to have your program automatically
build the Cl array. FINDFILE.SL creates a Cl array without opening your
files. It also returns the next available channel number. If no PARAM file
entry exists for the file, FINDFILE.SL treats the file as a physical file and
asks you for the byte offset, record size, and file size. It does not create a
PARAM entry.

When FINDFILE.SL ends, you have a Cl array with:

• The 0 column (channel number) blank.

• A variable X$ (an output variable required by FINDFILE.SL) with the
filename for the subfile or physical file.

• A variable C% (an output variable required by FINDFILE.SL) with the
next available channel number you can use with an OPEN FILE state­
ment.

The following program uses FINDFILE.SL to fill the Cl array with the same
values used in the previous C 1 array example.

0010 DIM C1(2,3)
0020 DIM X$(10)
0030 LET X$ = "SUB1"
0040 LET F%=O
0045 DIM T9$(42)
0050 GOSUB 7800
0060 GOSUB 0200
0070 LET X$ = "SUB2"
0080 LET F% = 1
0090 GOSUB 7800
0100 GOSUB 0200
0110 LET X$ = "PHYS"
0120 LET F% = 2
0130 GOSUB 7800
0140 GOSUB 0200
0150 STOP

:Dimension C1 to be a 3*4 array.
:Dimension X$ to max filename size.
:SUB1 is a subfile in MASTER,
:and is logical file O.
:Dimension T9$ to 42 bytes.
:Go to FINDFILE.SL subroutine.
:Go to verification routine.
:SUB2 is in MASTER,
:and is logical file 1.
:Go to FINDFILE.SL subroutine.
:Go to verification routine.
:PHYS is a physical file,
:and is logical file 2.
:Go to FINDFILE.SL subroutine.
:Go to verification routine.

0200 REM -- VERIFICATION ROUTINE
0210 PRINT X$:Print name of physical file.
0220 LET C%=C1(F%,0) :Assign channel number to 0 column.
0230 PRINT C1(F%,0),C1(F%,1),C1(F%,2),C1(F%,3)
0240 RETURN

You can also use the OPEN utility to find a channel for your file and to
supply the information you need for the Cl array. OPEN gets the information
for the Cl array from the PARAM file. When you set up a Cl array with
OPEN, you are restricted to a maximum of 32 subfiles. This is because OPEN
passes the information for the Cl array through the common area, which holds

6-10 licensed Material - Property of Data General Corporation

n

II
I

(!\" ,'.
, '

r

only 512 bytes, Each entry in the C 1 array has four elements, and each ele­
ment is 4 bytes long.

OPEN and FINDFILE.SL are explained in the Business BASIC Reference
Manual for Subroutines, Utilities, and BASIC CLI.

Modifying a Record in the Cl Array
Business BASIC provides three access routines that you can use to modify a
record in the Cl array:

• GETREC.SL to access an available record in order to write to it.

• POSFL.SL to position to any record in the subfile or physical file.

• DELREC.SL to delete any record in the subfile or physical file.

GETREC.SL and DELREC.SL both maintain record 0 of a
linked-available-record file.

All three subroutines are explained in the Business BASIC Reference Manual
for Subroutines, Utilities, and BASIC CLI.

Positioning to a Record
Use POSFL.SL to position to a record or to a byte offset in the record.
POSFL.SL requires the variables F% for the file number, R 1 for the record
number you want, and, optionally, V% for the byte location in Rl.

POSFL.SL returns three values: C% for the channel number of the file to be
used with READ FILE or WRITE FILE, R9 for the byte position in the mas­
ter file where record R 1 starts; and R8 for the byte position of the subfile
where record R 1 starts.

You can use the variable R9 or R8 with the POSITION FILE statement and
follow it with a WRITE FILE statement to do a quick rewrite of the record.
You can also use POSFL.SL to position to the data record and execute a
READ FILE to read the record found.

This program positions to a record, reads the record, and uses POSITION
FILE with R9 to go back to rewrite the record. Note that code that opens the
files and fills the C 1 array was not deleted.

0010 DIM X$(512),C1(2,3),REC$(48) :Record size of SUB2 is 48.
0020 LET X$= SUB1,5,SUB2,5,PHYS,6 ,FILL$(O)
0030 BLOCK WRITE X$:Send file info into common area.
0040 SWAP "OPEN" :OPEN will return X$ with C1 array.
0050 BLOCK READ X$:Retrieve info from common area.
0060 LET K= 1
0070 FOR I = 0 TO 2
0080 FOR J=O TO 3
0090 LET C1(l,J) =ASC(X$(K,K+3))
0100 LET K=K+4
0110 NEXT J

:Pointer to first element in string.
:For each file, 0, 1 and 2,
:and for each dimension of C1 array,
:extract element, put in C1 array.
:Bump pOinter 4 bytes.

Licensed Material - Property of Data General Corporation 6-11

0120 NEXT I
0130 INPUT "RECORD NUMBER OF SUB2 TO BE REWRITTEN: ", NUM
0140 LET R1=NUM
0150 LET F% = 1
0160 GOSUB 9610

0170 READ FILE (C%),REC$
0180 DIM NEWREC$(48)

0210 POSITION FILE (C%,R9)
0220 WRITE FILE (C%), NEWREC$

:Give POSFL.SL a record number R1.
:F% used by POSFL.SL for logical file.
:Position to record R1 in file F%
:using POSFL.SL, returns C%, R8 and R9.
:C% is channel number.
:For new record.
:Code to build NEWREC$ for new record.

:Use R9 from POSFL.SL to position
:a~d rewrite record R1.

Writing a Record in. the P ARAM Structure
To write a record to a subfile, use the subroutine GETREC.SL to get the
number of the next available record. GETREC.SL finds a record in the
deleted-record chain, then updates record 0, and returns the record number. Use
this record number with POSFL.SL to position to the record before writing to
it. Then use WRITE FILE to modify the new record.

GETREC.SL allocates a new record in random files if the deleted-record chain
contains no more records. If you run out of deleted records in a contiguous file,
and you've used up all the space allotted to the file, you must copy your file
into a larger contiguous file or into a random file.

Deleting a Record in the P ARAM Structure
Use DELREC.SL to delete subfile records and place them on the deleted-record
chain so that you can reuse the space. DELREC.SL automatically updates re­
cord 0 and then deletes the record by setting its status (the first 2 bytes) to O.
DELREC.SL uses the CI array and calls POSFL.SL.

The following code segment shows a partial update session. The record is de­
leted using DELREC.SL, and a new one is added using GETREC.SL. This
update technique is good to use when the placement of new records does not
matter. With indexed data files, placement is not important as long as you use
KADD to add the new key to the index.

0130 INPUT "RECORD OF SUB2 TO BE DELETED: ",NUM
0140 LET R1=NUM
0150 LET F%= 1
0160 GOSUB 8600
0170 GOSUB 8400
0180 GOSUB 9610

6-12

:SUB2 is logical file 1 in C1 array.
:Go to DELREC.SL to delete record.
:Go to GETREC.SL to find next available record.

licensed Material - Property of Data General Corporation

n

0190 WRITE FILE (C%),NEWREC$
:Go to POSFL.SL using R1 returned by GETREC.SL.
:C% is channel number returned by POSFL.SL.

Input and Output with the P ARAM Database
Business BASIC provides several commands (i.e., commands, statements, and
subroutines) for performing input and output operations on subfiles. Some com­
mands are tailored to the PARAM file database while others can be used with
both databases. To perform input and output operations on your subfiles, you
must OPEN them and set up the Cl array.

In the PARAM structure, much of the linked-available-record access is done
through the GETREC.SL, DELREC.SL, and POSFL.SL subroutines. Table 6-8
lists the input and output commands you can use with PARAM database files.

Command

DELREC.SL

FINDFILE.SL

GETREC.SL

KADD

KDEL

KFIND

KNEXT

LOCK / UNLOCK

OPEN

OPEN FILE

POSFL.SL

READ FILE

WRITE FILE

Action

Delete a record in a linked-available-record subfile. (PARAM
database only)

Find a subfile and build a C1 array. (PARAM database only)

Get the number of the next available record in a
linked-available-record chain. (PARAM database only)

Add a key entry to an index file.

Delete a key entry from an index file.

Find a key entry in an index file.

Return the next key entry in an index file.

Synchronize the updating of files that are shared between
programs.

Open physical files and subfiles.

Open a physical file.

Position the file pointer to a record in a data file. (PARAM
database only)

Read binary data from a file or record.

Write binary data to a file or a record.

Table 6-8. 1/0 Commands Used with PARAM Database Files

Licensed Material - Property of Data General Corporation 6-13

Converting from a P ARAM Database
to a Logical Database
Business BASIC provides the PARAMCON utility to allow you to convert from
the PARAM file database to the logical file database. When you use
PARAMCON, you need to make whatever changes are necessary to your data­
base so that the files meet the requirements for logical files. These are primar­
ily filename changes and are explained in the Business BASIC Reference
Manual for Subroutines. Utilities. and BASIC CLI under PARAMCON.

After you convert your files, you can use the logical file input and output state­
ments to access them. This means you will need to modify your programs; for
instance, change the READ FILE statements to LREAD FILE. However, you
can still use the OPEN utility with these files.

You can also use a special form of the LOPEN statement to define physical
files that are not part of the logical structure. This lets you use the logical
input and output statements with these files.

To maintain your converted files, use the Logical File Maintenance (LFM).

PARAMCON and LFM are explained in the Business BASIC Reference Man­
ual for Subroutines. Utilities. and BASIC CLI.

Comparing Databases
In many cases, the logical file database structure and the PARAM file database
structure have features that perform similar operations but have different
names. A major difference between the two structures is that the logical data­
base calculates the byte offset to each logical file; the PARAM database does
not do this with its subfiles. In addition, you can use the GETREC and DEL­
REC statements with the logical database, whereas the PARAM database uses
the GETREC;SL and DELREC.SL subroutines. The advantages of the state­
ments over the subroutines are that the statements perform automatic LOCK­
ing, they are faster than the subroutines, and they free the code space normally
used by the subroutines. The three subroutines use a total of 55 lines of code.

Table 6-9 compares some of the features of the two database structures.

6-14 Licensed Material - Property of Data General Corporation

()

Logical Database

Database file

Volume label file

Logical file

LFTABL$

PARAM Database

Master file

PARAM file

Subfile

C1 array

Table 6-9. Logical, PARAM Database Features

Description

Physical file that contains the
actual data.

Physical file that contains in­
formation on locating the logi­
cal files or subfiles.

A subsection of a physical file.

LFT ABL$ is a string variable
that holds the information on
the logical files. C 1 array is an
array that holds information on
subfiles. In both cases, this in­
formation is used by input and
output commands.

End of Chapter

Licensed Material - Property of Data General Corporation 6-15

n

Chapter 7
The INFOS II® File System

(AOS Only)

This chapter provides an overview of the AOS INFOS II file management sys­
tem. It discusses:

• The components of the INFOS statements, such as argument pairs and
channel strings.

• Accessing INFOS statements.

• Error handling.

Introduction to INFOS II
Data General's AOS INFOS II file management system lets you create, main­
tain, and use many types of databases in batch and multiterminal on-line envi­
ronments. The INFOS II system's data handling capabilities make it suitable
for diverse applications in manufacturing, payroll, accounting, inventory, sales,
credit, insurance, and distribution management.

The Business BASIC interface to the INFOS II system allows Business BASIC
programs to use the INFOS II facilities. The interface consists of a set of
statements that are used like other Business BASIC statements, although their
formats are different. These interface statements can be used as statements or
commands. Collectively, they are referred to as DB statements, since each one
begins with the letters DB.

Table 7-1 lists the DB statements with brief descriptions. For complete descrip­
tions of the statements and their formats, see the section titled "Statements
Related to INFOS II Files" in the Business BASIC Reference Manual for
Commands, Statements, and Functions. The AOS INFOS II System User's
Manual also contains information on the interface.

The Business BASIC INFOS II interface imposes some restrictions on working
with INFOS II files. You cannot create INFOS II files through the interface;
you must use the INFOS II ICREATE utility. In addition, INFOS II files are
included in Business BASIC's 16-channel limit; thus, you are restricted to a
maximum of 16 open INFOS II files at anyone time. If you exceed this limit,
the error message NO MORE CHANNELS AVAILABLE appears.

Licensed Material - Property of Data General Corporation 7-1

Statement

DBCLOSE

DBDELETE

DBGET

DBOPEN INFOS

DBREAD

DBREINS

DBRELEASE

DBRETRIEVE HIGHKEY

DBRETRIEVE KEY

DBRETRIEVE STATUS

DBREWRITE

DBSET

DBSUBINDEX DEFINE

DBSUBINDEX DELETE

DBSUBINDEX LINK

DBSUBINDEX LlNKINIT

DBSUBINDEX LlNKSET

DBWRITE

Description

Closes an open INFOS II file.

Deletes a key and/or record.

Gets values returned by INFOS II.

Opens an INFOS II database file.

Reads from an INFOS Ii file.

Reinstates a logically deleted record.

Releases locks and / or current position in the file.

Retrieves the high key.

Retrieves a subindex definition.

Returns the INFOS II status.

Rewrites an INFOS II database record.

Sets an INFOS II parameter.

Defines a subindex.

Deletes a subindex.

Links a subindex.

Initializes a link subindex string.

Sets parameters in link subindex string.

Writes to an INFOS II file.

Table 7-1. Business BASIC INFOS II Statements

Argument Pairs
Each INFOS II statement has a set of arguments called argument pairs. Argu­
ment pairs are comparable to switches; they alter the statements. Most argu­
ment pairs are optional, though some DB statements require certain argument
pairs. In many cases, the argument pairs have default values that are supplied
if they are not used. You can use the DBSET statement to redefine the default
values.

Argument pairs fall into the following categories:

I) Selecting INFOS II options.

2) Passing numeric values to INFOS.

3) Receiving numeric values from INFOS.

4) Specifying where information is going to or coming from (strings).

5) Handling errors.

Argument pairs use the format:

keyword = value

7-2 Licensed Material - Property of Data General Corporation

o

~,
where value sets a parameter for INFOS II. The parameter is set only when
the statement affected by the argument pair is executed. Depending on the ar­
gument pair, the value can be numeric or string. You can use a DBWRITE to
set the value. Some examples of argument pairs are:

• ACCESS=REL, which indicates relative access.

• DUPKEY = NO, which indicates the specified key is not a duplicate.

• MOTION = BACK, which indicates the direction of relative motion IS

backward.

With an argument pair that receives information from INFOS II (category 3),
value can be a subscripted variable. You use a DBREAD to place the informa­
tion in the variable.

Category 4 argument pairs always use string variables for value. You cannot
use a subscripted string in these pairs. Once the string is associated with the
INFOS channel string, the string variable - not its current contents - is
transmitted to INFOS II. In the example:

0100 LET KVAR$="XYZZY Computers"
0110 DBSET F$, KEY = KVAR$, REC = RVAR$
0120 LET KVAR$="Data General"
0130 DBREAD F$, ACCESS = KEY

0140 PRINT RYAR$

the value of KV AR$ when the DBSET statement is executed is not significant,
only the current value of KV AR$ is significant.

Hence, when line 130 is executed, it uses KV AR$ with the contents of "Data
General" - not "XYZZY Computers," which KV AR$ contained when the
DBSET statement was executed.

Channel Strings
Channel strings under INFOS II are analogous to channel numbers used by
Business BASIC when physical files are opened. The INFOS II channel strings
identify a particular INFOS II channel and supply Business BASIC with the
information it needs to access INFOS II.

To use a channel string, you must first dimension it. The formula for this is:

1) Multiply the argument to the MAX KEYS argument pair by 16.

2) Add 56 to that number.

After you dimension the channel string, use the DBOPEN statement to initial­
ize it. As long as the file that the channel string refers to is open, do not
modify the channel string. Also, until the file is closed, use the channel string
with INFOS II statements only.

Licensed Material - Property of Data General Corporation 7-3

When the INFOS II files have been DBOPENed in one program, that program
can CHAIN or SWAP to other programs, passing the channel string through
the common area. The program that has been called can then use the channel
string to access the INFOS II file without issuing another DBOPEN.

Creating an INFOS II File
When you create an INFOS II file, two logical structures are defined: an index
file and a database file. INFOS II automatically links these structures to form
a single ISAM file and, using AOS, allocates space and physically constructs
the file.

To create an INFOS II file, use the AOS INFOS II utility ICREATE. You
must execute ICREATE from the AOS CLI. Type in:

ICREATE filename

where filename is the name of the index file. If you do not specify filename,
INFOS II prompts you for it. Below is a sample ICREA TE dialog.

ICREATE ACCOUNTS

****** INFOS FILE CREATION 04/18/86 09:21:21 ******

ACCESS METHOO (I = ISAM. D=DBAM) [D]:

****** DEFINE INDEX FILE ******

PAGE SIZE (BYTES) [2048]: 2048
PARTIAL RECORD LENGTH [0]: 0
ROOT NODE SIZE [2042]: 2042
MAXIMUM KEY LENGTH [255]: 10
ALLOW DUPLICATE KEYS IN THIS INDEX? (Y OR [N]): N
ENABLE SPACE MANAGEMENT? (Y OR [N]): N
ENABLE KEY COMPRESSION? (Y OR [N]): N
OPTIMIZE RECORD DISTRIBUTION? (Y OR [N]): N

****** DEFINE INDEX VOLUME(S) ********

NUMBER OF VOLUMES TO DEFINE [1]: 1
VOLUME 1 NAME [VOL01]: VOL01

SPECIFY MAXIMUM SIZE? (Y OR [N]): N
SPECIFY FILE ELEMENT SIZE? (Y OR [N]): N

****** DEFINE DATABASE FILE ******

7-4

DATABASE FILE NAME [ACCOUNTS.DB]: ACCOUNTS.DB
PAGE SIZE (BYTES) [2048]: 2048
ENABLE SPACE MANAGEMENT? (Y OR [N]): N
ENABLE DATA RECORD COMPRESSION? (Y OR [N]): N
OPTIMIZE RECORD DISTRIBUTION? (Y OR [N]): N

licensed Material - Property of Data General Corporation

n
, _./

(f\
I

****** DEFINE DATABASE VoLUME(S) ******

NUMBER OF VOLUMES TO DEFINE [1]: 1
VOLUME 1 NAME [VoL01]: VoL01

SPECIFY MAXIMUM SIZE? (Y OR [N]): N
SPECIFY FILE ELEMENT SIZE? (Y OR [N]): N

Accessing INFOS II Files
To access an INFOS II index file, you must set up a channel string and then
open the file using the DBOPEN statement. This example opens the INFOS II
file ACCOUNTS, which was created in the previous example, and assigns it to
the channel string MASTER$, which is then used each time the file is referred
to.

: Dimension channel string, string for data record, and key string

0010 DIM MASTER$[72],MDATA$[2o],K$[1o]

: Open the INFoS II database and set default parameters

0020 DBoPEN INFoS "ACCoUNTS",MASTER$
0030 DBSET MASTER$, ACCESS = KEY, KEY = K$, REC = MDA TA$

: Enter information and write it to the INFoS II database

0040 FOR I = 1 TO 5
0050 INPUT "Enter ACCOUNT NUMBER: ",K$
0060 INPUT "Enter ACCOUNT NAME: .. ,MDATA$
0070 DBWRITE MASTER$
0080 PRINT
0090 NEXT I

: Retrieve selected information from the database

0100 FOR I = 1 TO 5
0110 LET MDATA$=
0120 INPUT "Retrieve account name for ACCOUNT NUMBER: ",K$
0130 DBREAD MASTER$
0140 PRINT "ACCOUNT NAME: ";MDATA$
0150 PRINT
0160 NEXT I

: Close the database

0170 DBCLoSE MASTER$
0180 END

Once you have opened a file, you can use any INFOS II statement to manipu­
late the file. This example uses DBSET to set the INFOS II file parameters,

Licensed Material - Property of Data General Corporation 7-5

DBWRITE to place data in ACCOUNTS, and DBREAD to get data from
ACCOUNTS. Then DBCLOSE is used to close the INFOS II file. Each of the
statements accesses ACCOUNTS by using the channel string MASTER$.

Other common INFOS II operations include deleting keys (DBDELETE) and
reinstating logically deleted records (DBREINS). You can also perform more
advanced INFOS II features. These include defining subindexes (DBSUBIN­
DEX DEFINE), retrieving subindex definitions (DBRETRIEVE SIDEF), and
linking subindexes (DBSUBINDEX LINK).

Error Handling
Error handling for INFOS II files is done by using the optional argument pair
ERR = line-number. This argument pair can be used with all INFOS II state­
ments. Line-number represents any valid statement number.

When an INFOS II statement detects a user error, it starts the following se­
quence of actions (these actions halt when a true condition is met):

1) If the user issued the DB statement as a command, the appropriate error is
issued at the terminal.

2) If the user's statement contained ERR = line-number argument pair, the
system executes a GOTO line-number; if no line-number exists, the system
generates a line number error.

3) If the program had an ON ERR condition in effect, the program executes
the THEN clause of that statement.

4) If all of the above conditions fail, the error is directed to your terminal.

Two errors are generated by the interface:

• ERROR 82 (Parameter Range Error)

This error is issued when you attempt to set an INFOS II parameter to a
value that is beyond the range allowed by INFOS II. INFOS II supports
32 levels of subindexes.

• ERROR 83 (INFOS II Error)

7-6

Whenever an INFOS II error occurs, SYS(7) returns a value of 83, and
SYS(31) contains an error code indicating the actual INFOS II error
code. SYS(3l) returns a negative, decimal number. To convert it to the
INFOS II error code, make it positive and change it to octal. For example:

1) SYS(3l) = -3705

2) Change this to a positive number: 3705

I
licensed Material - Property of Data General Corporation

o

()

n l . I
. -- I

,I
I'
II

II

(f\
I

3) Convert it to an octal number: 7171

4) Look up 7171 in the INFOS II manual to get the error message; In

this case, it is NOT AN INFOS II INDEX FILE.

End of Chapter

Licensed Material - Property of Data General Corporation 7-7

(j.

n

Chapter 8
Transporting Programs

between RDOS and AOS

It is possible to transfer Business BASIC files between RDOS and AOS sys­
tems. This chapter discusses what you need to do to move files between operat­
ing systems and what compatibility issues you should keep in mind to make
your programs portable.

Transferring Files
The commands you use in moving files between operating systems are deter­
mined by:

• The sending and receiving operating systems.

• The medium that the file is placed on when it is moved off one system
(magnetic tape or diskette).

Table 8-1 summarizes the commands that are used to load files to media and
then unload them on other operating systems.

Sending Medium Command to Receiving Command to
Operating Holding Move File to Operating Move File from
System File Medium System Medium

RDOS Tape RDOS eLi DUMP AOS Execute ,RDOS.PR
command program with

LOAD command

DG/RDOS Tape IMOVE AOS AOS eLi LOAD
command

DG/RDOS Diskette IMOVE AOS, AOS/WS MMOVE
(Not AOS/VS)

AOS Tape Execute RDOS.PR RDOS RDOS eLi LOAD
program with command
DUMP command

AOS Tape AOS eLi DUMP DG/RDOS IMOVE
command

AOS, AOS/WS Diskette MMOVE DG/RDOS IMOVE
(Not AOS I VS)

Table 8-1. Methods of Moving Files between Operating Systems

Licensed Material - Property of Data General Corporation 8-1

Moving Files from RDOS to AOS
To transfer files from an RDOS system to an AOS system, certain conversion
steps are necessary. These steps vary according to the type of file you move.

Moving Text Files to AOS
To move text files to an AOS system, you need to convert the carriage returns
to new lines. When you use the RDOS.PR program to LOAD a Business
BASIC text file onto the AOS system, you do this by adding a local IC switch
to the command line (this switch is only used with text files):

) X RDOS LOAD/V ®MTxn:O filename/C

where x is the tape controller type and n is the tape unit. When you use
IMOVE to move RDOS text files to AOS, IMOVE handles the conversion.

Moving Logical Database Files to AOS
To move database files and volume label files to an AOS system, you do not
use any special switches when you LOAD the files onto AOS. However, unlike
text files, you must convert database files and volume label files to the correct
AOS file type and element size. Use the BASIC CLI command DBFIX to do
this.

DBFIX converts the element size of a database file or a volume label file to a
multiple of four and adjusts the file type to DBF for a database file and VLF
for a volume label file. It also provides links for the logical files.

You can LOAD logical files that are linked to the volume label file; however,
the links may not apply to the AOS directory where you place the files. For
example, if you are in a directory called :UDD:USERFILES and a link for a
logical file has been loaded as:

DATA1 LNK TEST:PRODUCT.VL

then, if DATAl and PRODUCT.VL are in the same directory, the link needs
to be changed to

DATA1 LNK PRODUCT.VL

Moving SA VE Files to AOS
To move a SAVE file to an AOS system, you do not use any special switches
when you LOAD the file onto AOS. However, unlike text files, you must con­
vert the SAVE file to the correct AOS file type and element size. Use the
BASIC CLI command FIX FILE to do this.

FIX FILE adjusts the AOS file type of a file to the type you specify (for a
SA VE file, this is BBS) and converts the element size to a multiple of four.

FIXFILE and DBFIX are explained in the Business BASIC System Manager's
Guide.

8-2 Licensed Material - Property of Data General Corporation

n
.--~

Moving Files from AOS to RDOS
To transfer files from an AOS system to an RDOS system, certain conversion
steps are necessary. These steps vary according to the type of file you move.

Moving Text Files to RDOS
To move text files to an RDOS system, you need to convert the new lines to
carriage returns. When you use the RDOS.PR program to DUMP an AOS
Business BASIC text file, you can change the new lines by adding a local IC
switch to the command line (this switch is only used with text files):

) X RODS OUMP/V @MTxn:D filename/C

where x is the tape controller type and n is the tape unit. When you use
IMOVE to LOAD the files onto RDOS, IMOVE handles the conversion.

Moving Logical Database Files to RDOS
To move database files and volume label files to an RDOS system, you do not
need any special switches when you DUMP the files from AOS. However, un­
like text files, once the logical database files are on the RDOS system, you
need to perform two steps before you can use the database:

1) If you moved the links connecting the logical files to the volume label file,
then you must DELETE the logical filenames and recreate the links. This
is because the link file is loaded as a random file. If you did not DUMP
the links, then you must create the links to the volume label file. (Remem­
ber a link exists to the volume label file for each logical file contained in
the database.)

2) You must set certain attributes on the .DB and .VL files. To do this enter
the following:

CHLAT filename.DB +P
CHATR filename.VL +&
CHLAT filename.VL +PW

Moving SAVE Files to RDOS
To move a SAVE file to an RDOS system, you do not need any special
switches when you DUMP the files from AOS. However, unlike text files, once
the SAVE file is on the RDOS system, you need to set certain attributes for it:

CHATR filename + SW

Operating System Differences
The different features of the AOS and RDOS operating systems can affect how
you structure your programs. You can have common programs for RDOS and
AOS that contain parts that are specific to the operating system you are using.

Licensed Material - Property of Data General Corporation 8-3

Use the SYS(30) function to do this; SYS(30) detects which operating system
you are using.

If you plan to transport your programs between operating systems, consider
these differences as you prepare your programs:

• Under RDOS, Business BASIC runs in either the foreground or the back­
ground, and it handles multiplexors for multiple users. In addition, the
RDOS Business BASIC system has special requirements for stacks, cells,
and buffers. You specify the type of system you need when Business
BASIC is generated, and you generate this support in Business BASIC
rather than in RDOS. Business BASIC becomes a subsystem running in
an RDOS environment. It has its own CLI to handle accessing devices,
files, and RDOS CLI operations, as well as an OPCLI program to handle
operator responsibilities.

• AOS is a multiprogramming system that allows many programs to run
concurrently. Each executing program and its set of system resources is a
process. Each user's process resembles a complete computer system: it
often has a distinct programming console; it can use all system devices;
and, in some cases, it can create many son processes that have their own
resources. Under AOS, processes are independent of each other; individual
processes usually cannot affect other processes. Each process offers multi­
tasking, so that each user can perform several different tasks concurrently,
and each task can respond individually to its own environment. Different
processes can execute different versions of Business BASIC (including a
run-only version) as well as other AOS utility programs. Business BASIC
security under AOS is handled primarily by the operating system. The
operating system maintains a username/password security scheme, where
any son process you create bears your username. Business BASIC main­
tains a User Status Table associated with your username.

• System input/output errors are reported with RDOS error codes or their
equivalents. SYS(7) holds the RDOS error code and SYS(31) holds the
code for the equivalent native operating system error. On an AOS system,
SYS(31) has the code of an AOS error message; on an RDOS system,
SYS(31) has the code for an RDOS error message, which is the same as
the code in SYS(7). You can use SYS(7) with the ERM$ function or
SYS(31) with the AERM$ function to retrieve the error message. If an
AOS error cannot be translated to an equivalent RDOS error code, the
error code -60 is returned in SYS(7).

• AOS has two additional terminal types - 8 and 9. Terminal type 6 on
AOS is very compatible with terminal type 6 on RDOS. Terminal type 8
on AOS offers greater functionality with a minor loss of compatibility.

8-4

On AOS, output to the terminal is not performed immediately but is accu­
mulated in a 5 I 2-byte buffer. The buffer is written to the terminal under
the following conditions: an INPUT statement, a program change (such as
SW AP), IKEY, a DELAY statement, a STOP/END statement, or a full
buffer. You can force data from the buffer to the terminal by executing
the STMA 8, 5 statement.

Licensed Material - Property of Data General Corporation

nl
I

I

\ i
======================================--~~------------------~

~,
I

Appendix F in the Business BASIC System Manager's Guide contains In­

formation on terminal types.

• AOS restricts the IKEY to either the excape key or a two-character con­
trol sequence, CTRL-C CTRL-x, where x is any character except C, D,
0, P, Q, S, T, U, V. ESC and CTRL-C CTRL-A are equivalent.

• AOS uses new line as the default primary unpend character. In addition,
on AOS Business BASIC, text file records must end with new line and, in
general, programs that contain carriage return characters in string literals
or in numeric variables must be changed to use new line. On RDOS Busi­
ness BASIC, carriage return is the default primary unpend character.

• AOS Business BASIC handles links the way they are handled under
RDOS. To delete a link, use the BASIC CLI command UNLINK. On
AOS, the Business BASIC DELETE command deletes the resolution file
only, not the link file. Deleting a link deletes the resolution file. Links
should contain complete pathnames to the resolution file. In many cases,
the AOS search list feature eliminates the need for links.

• AOS does not allow you to run detached jobs.

• AOS systems allow a file to be deleted even if the file is opened by the
process doing the delete or by another user. At the time of the DELETE
call, AOS systems mark the file for deletion. The file is not actually de­
leted until the final CLOSE of the file. RDOS returns an error message
when you attempt to delete an open file.

• The Business BASIC spooler is not implemented on AOS systems.

• Some features of Business BASIC exist in both RDOS and AOS but do
not perform the same function. For example:

SYS(4)

STAT

Under RDOS Business BASIC, SYS(4) returns the terminal
port number:

o = background console
1 = foreground console
2 to n = multiplexor consoles

Under AOS Business BASIC, SY.S(4) returns the console num­
ber or a zero if the console is not a son process of EXEC.

Under RDOS Business BASIC, STAT displays the status of all
jobs on the system including the Business BASIC program
name executing on each terminal port number.

Under AOS Business BASIC, STAT invokes the AOS utility
PED.PR. (On AOS, there is no way to see which Business
BASIC program a process is running.)

STMC 14 Under RDOS Business BASIC, STMC 14 issues an .FGND
system call to determine whether a foreground program is al­
ready running.

Licensed Material - Property of Data General Corporation 8-5

Under AOS a ?PSTA T system call is issued to determine
whether a process has sons.

DELETE Under RDOS, you receive an error message when you try to
delete an open file.

Under AOS, you can delete a file even if it is open (either by
the process doing the delete or by another user). At the time
of the DELETE call, AOS systems mark the fiie for deletion.
The file is not actually deleted until the final CLOSE of the
file.

GPOS(n) Under RDOS, GPOS(n) returns a ° when a device is opened
on channel n.

Under AOS, GPOS(n) causes an error when a device is opened
on channel n.

Under RDOS, when you use mode ° of OPEN to open a link
to a non-existing resolution file, RDOS creates the resolution
file.

Under AOS, the message FILE ALREADY EXISTS is re­
turned when you use mode ° of OPEN to open a link to a
non-existing resolution file.

• In addition, there are a number of commands, statements, functions, sub­
routines, and utilities that are specific to an operating system.

8-6

ROOS-only subroutines, utilities, and BASIC CLI commands:

ASG
ATTACH
CHATR
CHLAT
DBMOVE
EQUIV
FDUMP

FLOAD
FREE
GSDIR
GSYS
INIT
LSPEED
MDIR

PED
RELEASE
SDIR
SLINE
SPDIS
SPEBL
SPKILL
START

ROOS-only commands, statements, and functions:

MSG
STMA 3,0
STMA 4,0

STMA 16
STMA 17
STMA 18

ROOS-only privileged system calls:

STMB 6 - 8 STMC 2 - 4
STMB 14 - 15 STMC 10
STMB 19 STMC 18 - 20

STMC 23 - 24
STMC 26 - 27
STMC 29 - 34
STMC 45 - 48
STMC 51
STMC 53

STMD °
STMD 1

Licensed Material - Property of Data General Corporation

"
',1

rr"

rT' , I

RDOS-only system manager utilities:

ACCOUNT
i CNTNGROLL
ACNTNGRPT
ANALYZE

KILL
LOGDISP
LOGIN IT
NEWS

OPCL!
QUICKILL
SPOOLER
VACUUM

AOS-only subroutines, utilities, and BASIC CLI:

AOS PORTS

AOS-only commands, statements, and functions:

STMA 8,5 All INFOS II statements

AOS-only privileged system calls:

STMB 22-24 STME 0-27

AOS-only system manager utilities:

DBFIX FIXFILE

End of Chapter

Licensed Material - Property of Data General Corporation 8-7

(

(J' ~-..,-.
I

,",,-,

Glossary

arithmetic operator
A symbol used in a numeric expression. The following symbols are valid opera­
tors: + (unary plus or addition), - (unary minus or subtraction), * (multiplica­
tion), / (division), and A (exponentiation). See also expression.

array
An ordered set of integer values. Each array element is stored according to the
precision of your Business BASIC system. Business BASIC allows you to use
one-dimensional arrays (vectors) with rows only (each element is a row), and
two-dimensional arrays (matrices) with rows and columns. Rows start at row 0,
and columns start at column o. The default dimension for a one-dimensional
array is 10 for II elements. For a two-dimensional array, the default is 10 by
10 for 121 elements.

ASCII code
The decimal code number assigned to a character (unless octal is specifically
stated). All printable characters, nonprintable characters, and other keys on the
terminal's keyboard have ASCII code numbers. See also characters.

attributes
All RDOS files can have attributes. The BASIC CLI command CHA TR
changes a file's resolution attributes (permanent, read-protected, and write-pro­
tected). The BASIC CLI command CHLAT changes a file's link access attri­
butes.

BASIC eLi (command line interpreter)
A utility program that emulates an operating system CLI. You can RUN,
SWAP, or CHAIN to the BASIC CLI. You can execute BASIC CLI com­
mands interactively, or you can SWAP to the CLI from a program that passes
the command through the common area. The BASIC CLI prompt is an excla­
mation point.

bit
An element of storage. Eight bits make I byte, and 2 bytes make 1 word. Use
the AND, OR, and SHFT functions to move bits around in a word or to
compare the bits in one word to those in another word (sometimes called bit
checking).

Boolean logic operators
Operators that evaluate an expression as either true (1) or false (0). Business
BASIC supports the Boolean logic operators NOT, AND, and OR.

Licensed Material - Property of Data General Corporation Glossary-1

byte
A sequence of eight adjacent bits (locations 0 to 7).

Cl array
A Business BASIC convention necessary for using the GETREC.SL,
DELREC.SL, and POSFL.SL subroutines, which provide fast access to subfiles.
The CI array is used with the PARAM file database structure. The CI array
contains the channel number of the physical file for each subfile, the byte offset
in the physical file to the beginning of each subfile, the file size, and the record
size. Also called the file characteristics array.

carriage return (CR)
A key on some terminals that is used to signal the end of an entry; a line
terminator. This manual uses the term new line key to represent both the car­
riage return key and the new line key. When you see new line, use the line
terminator key that is appropriate for your system.

character
A character is stored as an ASCII code number in I byte (see also byte). The
term character data is used to mean string literals.

command
An instruction directing the system to do something immediately. You execute
BASIC commands from keyboard mode (indicated by an asterisk prompt).
Some BASIC statements can also be commands.

common area
A 512-byte storage area unique to each job (process). You use it to store infor­
mation temporarily so that you can SWAP to another program that picks up
that information. To access the commo.~ area, use the BLOCK READ and
BLOCK WRITE statements/commands. You can pass only strings and arrays
that are 512 bytes long to and from the common area.

concatenation operator
You can concatenate strings by using a comma to separate them in an assign­
ment statement.

database file
A physical file in the logical file database structure that contains logical files
(subsections). A database file is indicated by a .DB extension on its filename
and is always associated with a volume label file.

delimiter
A character that indicates the start of a character string. Most keyboard editing
commands require delimiters. Generally, the delimiter can be any character that
is not part of the character string. When a command uses more than one de­
limiter, the delimiter must be same in each place it is used in the command
line.

device name
The name assigned to a device, such as a line printer or tape drive. Under
AOS, the names usually begin with an at (@) sign. For example, @LPT is the
line printer. Under RDOS, devices have four-character names that begin with a

Glossary-2 Licensed Material - Property of Data General Corporation

o

o

~
l !

dollar sign or end with a colon. For example, $LPT is the line printer, and
MTO: refers to a magnetic tape drive.

directory
A file that contains entries (pointers) called filenames. Under AOS Business
BASIC, directories are DIR-type files or CPD-type files, and you refer to one
using a pathname. Under RDOS, directory names have a .DR extension that
you need to specify only if you are accessing the directory as a file. You do not
have to specify the .DR extension when referring to the file in a pathname
argument.

dynamic allocation
A form of allocating records to a file by allowing the file to reuse space left by
deleted records. Under dynamic allocation, a file maintains a deleted-record
chain to indicate which records can be reused. Business BASIC has commands
GETREC and DELREC (logical database) and subroutines GETREC.SL, DEL­
REC.SL, and POSF.SL (PARAM database) that access and allocate dynamic
file space for random files. See also linked-available-record format.

edit buffer
A one-line buffer that is used by the keyboard editing commands .P, .A, .C, .E,
and .I to modify a single line. The edit buffer contains the last ~tatement
LISTed, the last statement typed in, or the last statement that caused an error
message to appear.

enter
The act of typing in data and then pressing a line terminator key to signal the
end of the input, thus sending the data to the system. For example, to enter a
program statement, you type in the statement line number followed by the
statement contents and then press the new line or carriage return key. You can
enter data while in keyboard mode or in response to a program query. Business
BASIC also provides a command/statement called ENTER that is used to place
programs in working storage.

expression
A numeric expression that consists of some combination of Boolean operators,
numbers, numeric variables, array elements, and numeric functions linked to­
gether by arithmetic operators and parentheses. A string expression is a combi­
nation of string literals, string variables, substrings and string functions,
separated by the concatenation operator (,).

file
A collection of data. Business BASIC has program files, listing files, source
files, text files, data files, subfiles of data files, logical files, index files, tag
files, table files, log files, documentation files, and screen files. Directories and
devices are also files.

file characteristics (el) array
See Cl array.

filename
A name that refers to a file. Filenames in RDOS can have up to 10 alphanu­
meric charactcrs and an extension of up to two characters after a period.

Licensed Material - Property of Data General Corporation Glossary-3

Filenames in AOS can have up to 31 alphanumeric characters including under­
scores and extensions. (Some Business BASIC utilities require that filenames
follow the RDOS length conventions. These utilities truncate filenames that ex­
ceed this limit. Business BASIC does not warn you when a filename is trun­
cated.)

(SAM file
A file containing records that use the Indexed Sequential Access Method. Each
file has a unique key, which enables fast reading for selected records. An
ISAM file set consists of two files. The actual data file is contained in a data­
base file. Another file, called an index file, contains the key and a pointer to
the record number in the data file.

interrupt key
The key(s) you press to interrupt a program or a command execution. It is
frequently the ESC key. You can define an interrupt key by using STMA 4,6
and STMA 4,7. This is explained in the Business BASIC Reference Manual for
Commands. Statements. and Functions.

(KEY
This is the term used by this manual to designate an interrupt key. See inter­
rupt key.

keyboard mode
A Business BASIC operational mode. In keyboard mode, you can enter a com­
mand for immediate execution or enter program statements to create a program
in working storage. The asterisk prompt indicates you are in keyboard mode.

library
The Business BASIC library contains the prewritten subroutines and utilities.
These subroutines and utilities are contained in the $LIB directory (or $LIB3
for triple precision systems) on RDOS and the $SYSLIB (or $SYSLIB3 for
triple precision systems) on AOS. All users should have access to it.

linked-available-record format
A method of disk storage that provides dynamic record allocation for random
files. It allows a file to reuse space left by deleted records. Each record contains
a pointer that points to the next available record in the file.

listing file or list file
A text file. This can be a file created by the LIST command; i.e., an ASCII
listing of the program currently in working storage or a file you created in an
editor. You can use the BASIC EDIT utility or any system editor to modify a
listing file. You use the command ENTER to bring a listing file into working
storage.

log file
A file containing a record of all access to a data file in the utility FM (File
Maintenance). Each data file can have a log file defined by its table file. The
utility FMLOG maintains this log file.

logging off
The process of terminating Business BASIC by typing in BYE.

Glossary-4 Licensed Material - Property of Data General Corporation

o

o

\ ,

logging on
The process of executing Business BASIC.

logical file
A logical subsection of a physical file. The term logical file is used to indicate
files in the logical file database structure.

logical file database structure
One of Business BASIC's two database structures. The logical file database al­
lows you to open more than 16 files simultaneously in one program by using
logical files, which are subsections of physical files. See also PARAM file data­
base structure.

master file
A physical file In the PARAM file database structure that contains subfiles.

new line
A key used on some terminals to signal the end of an entry; a line terminator.
This manual uses the term new line key to represent both the carriage return
key and the new line key. When you see new line, use the line terminator key
that is appropriate for your system.

numeric function
A function that always returns a numeric value. It can be used as a numeric
expression in most statements/commands.

PARAM file
A file that contains the information you need for using subfiles and the OPEN
utility program. The PARAM file for your system can be in the library, or you
can set up a PARAM file in a directory you specify. You can have more than
one PARAM file.

PARAM file database structure
One of Business BASIC's two databases. The PARAM file database structure
enables you to open more than 16 files simultaneously in one program by using
subfiles.

pathname
A name that uses directory names to identify the location of a file within the
system files.

precision
The number of bytes used to store or transfer a numeric variable or array
element. The precision is set when your system is generated. You can have
either a double precision system or a triple precision system. A double precision
system stores numeric values in 4 bytes and transfers numeric variables using
either 2 bytes (if the variable name ends in a percent sign) or 4 bytes. Triple
precision Business BASIC stores numeric variables in 6 bytes and transfers each
variable as 2 bytes (when the variable name ends in a percent sign), 4 bytes
(when there is no special character at the end of the variable name), or 6 bytes
(when the variable name ends in a pound sign).

prompt
A character output to your terminal to signify that you must enter something.

Licensed Material - Property of Data General Corporation Glossary-5

An asterisk prompt specifies BASIC's keyboard mode. An exclamation point
prompt signifies that you are running the BASIC CLI program. Other types of
prompts include the line number prompt (000:) in the EDIT utility.

random file
A file that allows random reading and writing and dynamic space allocation.
The system maintains a small file of pointers to data blocks in the random file
that find and directly access the block and the record within it. A file com­
posed of contiguous elements is a random file.

record
A collection of related data fields that are treated as one unit.

relational operator
A symbol used to compare two expressions. The relational operators are:
(equal), < (less than), > (greater than), < = (less than or equal to), > =

(greater than or equal to), and <> (not equal).

SAVE file
An executable file that is stored in binary format. You create a SAVE file
when you SAVE (or REPLACE) a program in working storage. You can
LOAD, RUN, CHAIN, and SWAP these files.

screen field
An area on your terminal's screen. Use the Conversational Screen Maintenance
(CSM) utility or the Screen Maintenance (SM) utililty to define screen fields
in screen files.

screen file
A file created by the Conversational Screen Maintenance (CSM) utility or the
Screen Maintenance (SM) utility; it usually has an .Sn extension, where n IS

the terminal type. A screen file can hold multiple screens.

search list
A list of directories that the AOS CLI scans if it cannot find the file you
specified in the current directory. You can display and change your search list
with the AOS CLI command SEARCH LIST. Search list applies only to AOS
systems. See also pathname.

source file
An ASCII text file containing a LIST of a program (created by LIST, the
EDIT utility, or some other program such as an editor). Usually a source file
contains comments entered with the EDIT utility or any system editor, and a
listing file is a program LISTed to file without comments. Source files usually
have an .BA extension.

statement
An instruction in a program. Each Business BASIC statement has a line num­
ber, a Business BASIC keyword, and arguments.

string
A combination of characters (letters, digits, spaces, and special characters).

subfile
A file that exists as a logical subsection of a physical file. To set up and use

Glossary-6 Licensed Mal~rial - Properly of Data General Corporation

subfiles, you need a record in the PARAM file for the subfile and a file char­
acteristics (CI) array in your program.

subroutine
A section of Business BASIC code that performs a specialized task. Subroutines
are executed using the GOSUB and RETURN commands.

table file
A file used by the FM utility. A table file contains user IDs and passwords for
each data file (not log-on passwords), screen formats for pages and data, and
descriptors for keys. If you use FM, you need a table file (with a .TB exten­
sion) to describe the multiple fields and pages of your datafile and types of
data.

tag file
A temporary index file that is accessed like a regular file. Its records are fixed
in length, consisting of a key (string value) and record pointer (integer value).
You usually create a tag file in sorted order using the TBUILD utility.

template
A character or a group of characters used to match several filenames. You can
use a hyphen to represent any string of characters except a period and an
asterisk to represent any single character except a period. On AOS Business
BASIC systems you can use a plus to represent any string of characters in a
filename or extension.

utility
A Business BASIC program that performs a specialized task. Utilities are
SA VEd in the library. You can RUN, CHAIN, or SWAP to some utility pro­
grams; others require arguments passed through the common area, and you can
only SWAP to them.

variable
An expression that represents a value. There are three kinds of variables: nu­
meric, array, and string. You assign values to variables using LET, INPUT,
READ and DATA, INPUT USING, TlNPUT, PACK, and UNPACK. Varia­
ble names must begin with a letter, and can have up to five alphanumeric
characters after the first letter, plus a special sign ($, %, #) at the end.

volume label file
A file used in the logical file database structure to hold the information about
the logical file. The volume label file maps the logical file to the database file,
which contains the actual data. A volume label file is indicated by a .VL exten­
sIOn.

word
A sequence of two adjacent bytes (bit locations 0-15).

working storage
The portion of memory used to develop programs and where programs that are

Licensed Material - Property of Data General Corporation Glossary-7

ENTERed or LOADed are stored. All programs and data stored in working
storage are stored in SAVE file (binary) format. You can restore a program to
ASCII format by LISTing it to a file.

End of Glossary

Glossary-8 Licensed Material - Property of Data General Corporation

o

Appendix A
Subroutine, Utility,

and Keyword Summary

This table describes the Business BASIC subroutines that come with the soft­
ware package, their entry points, and the line numbers they occupy. When a
subroutine occupies several sections of line numbers, a range of line numbers is
given. This does not mean that subroutine occupies every line number within
that range. The entry point is the beginning line number of the subroutine
unless otherwise specified.

Subroutifle

DELREC.SL

FINDFILE.SL

FORM.SL

FORMIO.SL

GETCM.SL

GETLAST.SL

Line
Numbers

8600-8699

7800-7831

9300-9544

9300

9500

9000-9079

7500-7560

7500

7550

9950-9976

Description

Deletes a record in a linked-available-re­
cord file (PAR AM file structure) and
places it on the deleted-record chain.

Finds a file (PAR AM file structure) and
builds a C 1 array.

Handles formatted screen fields for SM
screens.

Entry point to input the screen field to
X$ (if a string field) or to X (if a nu­
meric field).

Entry point to output X$ (if string) or X
(if numeric) to a screen field.

Displays edited screen input / output for
CSM screens.

Creates a BASIC CLI command.

Entry pOint to read a field pointed to by
09; -1 returned in S if at end of com­
mand line.

Entry pOint to initialize routine variables
and to read the common area into T9$.

Retrieves the number of active records
and the highest record in use in a
linked-available-record file. (Logical file
structure).

Table A-1. Business BASIC Subroutines (continues)

Licensed Material - Property of Data General Corporation A-1

Subroutine

GETREC.SL

INITINDEX.SL

LFDATA.SL

LlNITINDEX.SL

POSFL.SL

PROTFORM.SL

SCRNIO.SL

SFORM.SL

Line
Numbers

8400-8499

7700-7799

9900-9915

7700-7749

9610-9649

9610

9612

9200-9269

9200

9250

9200-9262

9100-9899

9100

9150

9175

9500

9650

9700

9722

9750

9775

9800

Description

Gets the number of the next available
record in a linked-available-record file
(PARAM file structure).

Initializes an index file (PARAM file
structure).

Gets the file description for a file (logi-
. cal file structure).

Initializes an index file that was opened
with the LOPEN file statement.

Positions the file pointer to a record in
a data file. (PARAM file structure).

Entry point to position the pointer to the
beginning of record R 1.

Entry point to position the pointer to the
byte offset in record R 1.

Makes an SM formatted screen field
protected or unprotected.

Entry point to convert a field to an un-
protected field.

Entry point to convert a field to a pro-
tected field.

Enables edited screen input / output.

Uses several subroutines to provide for-
matted handling of CSM screens.

CLEARFORM clears all unprotected
fields.

INITFORM sets the necessary STMAs
and initializes variables.

ENDFORM resets the STMAs.

WRITEFORM outputs string and numeric
fields.

READFUNC reads function keys.

OUTSCRN displays screen number X
from the file opened on channel 15 and
loads SCRN$.

Entry point in OUTSCRN to reread
SCRN$ without displaying it.

WAITFUNC waits for a function key to
be pressed and call READFUNC.

WAITCLEAR waits for function key F 16
and clears the command line.

SCRNSET converts a field in F, or in F
and R (if O<F> 100), into XROW,
XCOL, XPOS, XWID, XFLGS, and XDEC.

Table A-l. Business BASIC Subroutines (continues)

A-2 Licensed Material - Property of Data General Corporation

n

0

n
/

(r\
\ !

Subroutine

UNFORM.SL

Line
Numbers

9850

9890

9100-9899

9100

9150

9155

9175

9400

9550

9650

9700

9735

9750

9800

9850

9890

Description

ERROUT outputs an error message on
the command line.

ERRCLEAR clears the error message
from the screen.

Uses several entry points to position the
cursor to the input! output f.ields and
handles unformatted fields.

Clears all unprotected fields.

Sets the necessary STMAs and block
mode, and locks the keyboard.

(Used when lowercase is not needed.)
Sets the necessary STMAs and block
mode, and locks the keyboard.

Resets the STMAs, turns the interactive
mode back on, and clears the terminal
screen.

Reads a field from the screen and re­
turns it in X$. Use 9650 and F (or F
and R) to position to the screen field
first. If the line is already in LlNE$
(known by XLROW), screen field is not
read. XLROW is reset whenever you
output a field or allow the user to input
a field, and whenever LlNE$ is de­
stroyed. Trailing spaces are truncated.

Outputs X$ to the field requested, left
justifies, and handles screen overflow.

Positions the cursor to the requested
field.

Displays screen number SCRN from the
file opened on channel 15 and loads
SCRN$.

Rereads SCRN$~ (The screen is not dis­
played.)

Reads a function key.

Converts a field in F, or in F and R if
F < 100, into XROW, XCOL, XPOS,
XWID, XFLGS, and XDEC.

ERROUT places an error message on
the command line.

ERR CLEAR clears the error message
from the screen.

Table A-1. Business BASIC Subroutines (concluded)

Licensed Material - Property of Data General Corporation A-3

This table summarizes the utility programs supplied with the Business BASIC
software package.

Utility

ATTACH

CLI

CSM

DBGEN

DOC

DOCTOC

EDIT

FILES

FILESORT

FM

FMLOG

FMPRINT

FMTABPRINT

IBUILD

INDEXBLD

INDEXCALC

INDEXPRT

INDEXVRFY

INITFILE

IREBLD

LFM

LFU

LIBRARY

LlNDEXBLD

LOCKS

LRELINK

LSPEED

LXFER

MOVETABREC

OPEN

PARAMCON

PARAMPRT

Description

Links your terminal to a detached job.

Executes BASIC CLI program.

Creates and maintains a screen file.

Builds files for the PARAM file structure.

Produces printable document files.

Prepares the table of contents for a document file set up
using DOC.

Creates and / or edits text files.

Displays the names of files in the current directory.

Sorts a data file.

Provides file maintenance functions for data files and table
files (PAR AM file structure).

Displays an FM log file.

Displays an FM data file.

Prints the records in an FM table file.

Builds an index file from a sorted tag file, a sorted data file,
or an index file.

Builds or rebuilds an index file (PARAM file structure).

Calculates index and data file information.

Prints an index file for a logical or PARAM file database
structure.

Verifies the structure of an index file.

Creates aod/or initializes index or data files (PARAM file
structure).

Rebuilds an index file (logical file structure).

Provides file maintenance functions for the logical file structure.

Creates and manipulates files (logical file structure).

Displays the names of files in the library directory.

Builds or rebuilds an index file (logical file structure).

Displays your current locks.

Recreates a deleted-record chain for a linked-available-record
file (logical file structure).

Changes the default line speeds.

Copies one logical file to another logical file (logical file
structure).

Copies FM table file records.

Opens files in the PARAM file structure.

Converts a PARAM file structure into a logical file structure.

Prints the contents of the PARAM file.

Table A-2. Business BASIC Utilities (continues)

A-4 Licensed Material - Property of Data General Corporation

n

0 ..
I

t!\
\ '

Utility

PO

PED

PORTS

QFILESORT

RELINK

RENUM

RNAM

SCHANS

SIZE

SM

STAT

TABBUILD

TBUILD

TERM

UCHANS

VAR

XBUILD

Description

Displays information about a program in working storage or
in a SAVE file.

Displays the system status.

Displays processes on the system.

Quickly sorts a data file.

Recreates deleted-record chain of linked-available-record file
(PARAM file structure).

Renumbers selective lines of a program listing file.

Renames program variables.

Displays system channel assignments.

Displays the working storage space allocations.

Creates and maintains screen files.

Displays the status of all jobs.

Defines arrays for FM table file.

Builds a tag file.

Changes certain terminal key functions.

Displays your channel assignments.

Lists the variables in a SAVE file or a program in working
storage.

Builds an index file from a data file.

Table A-2. Business BASIC Utilities (concluded)

Licensed Material - Property of Data General Corporation _ A-5

This table summarizes the commands used with the BASIC CLI.

Command

AOS

APPEND

ASG

ATTACH

BLDCOM

BUILD

BYE

CCONT

CDIR

CHAIN

CHATR

CHLAT

CPART

CRAND

CREATE

DBMOVE

DELETE

DIR

DISK

DUMP

EOUIV

FDUMP

FILCOM

FLOAD

FPRINT

FREE

GDIR

GOUE

GSDIR

GSYS

GTOD

INIT

LINK

LIST

LOAD

LSTCOM

LSTMERGE

Description

Enables you to access the AOS CLI (AOS only).

Appends a file to another file.

Assigns a device for exclusive use (RDOS only).

Attaches your terminal to a detached job (RDOS only).

Builds a documentation file for PRTCOM.

Builds a command file.

Terminates Business BASIC.

Creates a contiguous RDOS file or a random AOS file.

Creates a subdirectory.

Executes a program.

Changes a file's attributes (RDOS only).

Changes a file's link access attributes (RDOS only).

Creates a secondary partition (RDOS) or a control point directory
(AOS).

Creates a random file.

Creates a random file (AOS) or sequential file (RDOS).

Moves logical file structures from one directory to another.

Deletes a file, directory, or partition.

Changes the current directory.

Displays the amount of disk space used and remaining.

Copies one or more disk files in DUMP format to an output file.

Renames a device (RDOS only).

Fast dumps one or more files to magnetic tape (RDOS only).

Compares two files word by word.

Fast loads FDUMPed files (RDOS only).

Displays the contents of a disk me.

Releases a device from exclusive use (RDOS only).

Displays the current directory name.

Gets the default queue name.

Displays the current system directory name (RDOS only).

Displays the current system name (RDOS only).

Displays the time and date.

Initializes a device (RDOS only).

Links an alternate name to a file.

Lists information for files in the current directory.

Reloads dumped files.

Compares two listing files character by character.

Merges two listing files.

Table A-3. BASIC Cli Commands (continues)

A-6 Licensed Material - Property of Data General Corporation

n

o

Command

MDIR

MOVE

POP

PRINT

PRTCOM

QUIT

RELEASE

RENAME

SDIR

SLiNE

SPDIS

SPEBL

SPKILL

SQUE

START

TABLE

TCOPY

TFER

TPRINT

TYPE

UNLINK

VFU

VLPRINT

XFER

Description

Displays the master directory name (RDOS only).

Moves files from one directory to another.

Exits from the BASIC CLI and clears the common area.

Prints a file to the default output queue.

Prints a BLDCOM documentation file.

Exits from the BASIC CLI but retains the common area.

Releases a device or a directory (RDOS only).

Changes the name of a file.

Sets the system directory (RDOS only).

Selects a line (terminal) and attaches a job to it (RDOS only).

Disables device spooling (RDOS only).

Enables device spooling (RDOS only).

Deletes the spool queue (RDOS only).

Sets the default queue.

Starts a detached job (RDOS only).

Prints a program cross-reference.

Copies from tape to tape.

Copies a file between tape and disk.

Prints the tuning report (RDOS only).

Displays a file on your terminal.

Removes link entries from a directory.

Edits a format control file for a data channel line printer.

Displays the contents of a volume-label (. VL) file.

Copies one file to another file.

Table A-3. BASIC CLI Commands (concluded)

Licensed Material - Property of Data General Corporation A-7

This table summarizes the commands and statements that make up the Business
BASIC language.

Keyword

. (period)

.A

.C

.E

.1

.P

BLOCK READ

BLOCK WRITE

BYE

CHAIN

CLOSE

CON

DATA

DEF

DELAY

DELETE

DELREC

DIM

DIR

END

ENTER

ERASE

EXTRACT

FOR/NEXT

Usage

Command

Command

Command

Command

Command

Command

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command

Statement

Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Statement

Command,
Statement

Command,
Statement

Statement

Statement

Description

Sends the line in the edit buffer to working
storage.

Appends a string to a line in the edit
buffer.

Changes a string in a line in the edit buffer
and passes the line to working storage.

Changes a string in a line in the edit
buffer.

Changes a line in the edit buffer.

Displays the contents of the edit buffer.

Retrieves blocks from a file or common
area.

Places blocks of data in a file or the com­
mon area.

Logs you off Business BASIC.

Executes a program.

CLoses all open files or a specific file.

Continues execution of a stopped program.

Specifies values for variables in READ
statements.

Defines your own functions.

Delays execution of the next program
statement or command.

Deletes a file.

Deletes a record from a logical file and
puts it on the deleted-record chain.

Sets dimensions for arrays and strings.

Displays the current directory or moves
you to another directory.

Terminates program execution.

Brings program source statements into
working storage and merges them with the
statements already there (if any).

Deletes program statements.

Extracts the next field from a string.

Defines a program loop.

Table A-4_ Business BASIC Commands and Statements (continues)

A-8 Licensed Material - Property of Data General Corporation

n

01
i
I

Keyword

GETREC

GOSUBI
RETURN

GOTO

IF

INPUT

INPUT USING

KADD

KDEL

KFIND

KNEXT

LET

LIST

LlSTH

LOAD

LOCKI
UNLOCK

LOPEN FILE

LREAD FILE

LWRITE FILE

MSG

MTDIO

NEW

Usage

Command,
Statement

Statement

Statement

Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command

Command

Command

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command

Command,
Statement

Command,
Statement

Description

Gets an available record from a data file
that was LOPENed.

Transfers program control to and from a
subroutine.

Transfers program control to a specific
statement.

Transfers program control or executes a
statement if a condition is true.

Enters numeric and string data from a ter­
minal or a file.

Enters character data from a terminal or a
file and allows an error and a delimiter
trap.

Adds a key to an index file.

Deletes a key from an index file.

Finds a key in an index file.

Locates the next key in an index file (ini­
tially used after a KFIND).

Assigns a value to a variable.

Lists the character contents of a program
to a file or a terminal.

Lists the character contents of a program
with header information to a file or termi­
nal.

Places a SAVE file in working storage.

Locks or unlocks files and records.

Opens a logical file.

Reads a logical record.

Writes a logical record.

Sends a message to another. terminal or
process.

Directs input and output control of a mag­
netic tape or cassette.

Clears working storage.

Table A-4. Business BASIC Commands and Statements (continues)

Licensed Material - Property of Data General Corporation A-9

Keyword

NEXT

ON ERR

ON GOTO,
ON GOSUB

ONIKEY

OPEN FILE

PACK

PAGE

POSITION FILE

PRINT

PRINT USING

QADD

QDIV

QLOAD

QMUL

QSTORE

QSUB

RANDOMIZE

READ

READ FILE

REM

RENAME

RENUMBER

REPLACE

RESTORE

Usage

Statement

Statement

Statement

Statement

Command,
Statement

Command,
Statement

Command

Command,
Statement

Command,
Statement

Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Command,
Statement

Statement

Command,
Statement

Statement

Command,
Statement

Command

Command,
Statement

Command,
Statement

Description

Defines the end of a program loop and in­
crements or decrements loop control varia­
bles.

Traps an error in your program.

Conditionally transfers control to other
statements.

Traps an interrupt in your program.

Opens a file or a device in an access
mode and gives it a channel number.

Composes a record string.

Sets the page width.

Positions the file pointer to a byte in a
disk file.

Sends numeric and string data to a termi­
nal or a file.

Formats output to a terminal, file, or de­
vice.
Quad precision addition.

Quad precision division.

Loads a numeric expression into a string
variable.

Quad precision multiplication.

Converts a quad precision string into a
double precision variable.

Quad precision subtraction.

Reseeds the random number generator.

Assigns DATA statement values to varia­
bles.

Reads data from a file.

A remark statement.

Changes the directory entry for a file.

Renumbers lines in the current program.

Replaces a SAVE program with a new pro­
gram.

Resets the DATA list pointer.

Table A-4. Business BASIC Commands and Statements (continues)

A-10 Licensed Material - Property of Data General Corporation

n - /

o

o

Keyword

RETURN

RFORM

RUN

SAVE

SCANUNTIL

SCANWHILE

SIZE

STMA

STOP

STRPOS

SWAP

TAB

TINPUT

UCALL

UNPACK

VALUE

WRITE FILE

Usage

Statement

Statement

Command

Command.
Statement

Statement

Statement

Command

Command.
Statement

Statement

Command.
Statement

Command.
Statement

Command

Command.
Statement

Command.
Statement

Command.
Statement

Command.
Statement

Command.
Statement

Description

Transfers control from a subroutine back to
its calling point.

Defines a record string format.

Executes a program.

Saves a program and its variables.

Scans a string until characters in a sub­
string are found.

Scans a string while characters match
those in a substring.

Determines the size of a program in work­
ing storage.

User system calls to examine or modify
some aspects of a job.

Halts program execution.

Finds the starting position of a substring in
a string.

Executes a program; then returns to the
original program.

Sets the tab width.

Performs an INPUT instruction in a speci­
fied amount of time.

Calls an assembly language subroutine
from Business BASIC.

Decodes a record string.

Converts a string to a number.

Sends length-sensitive data to a file or ter­
minal.

Table A-4. Business BASIC Commands and Statements (concluded)

licensed Material - Property of Data General Corporation A-11

This table summarizes the functions that are supported by Business BASIC.

Keyword

ABS

AERM$

AND

ASC

CHR$

CRM$

EOF

ERM$

FILL$

GPOS

INT

LEN

MAX

MIN

MOD

OR

POS

RND

SGN

SHFT

SQR

SYS

TRUN$

UCM$

VAL

Description

Returns the absolute value of a number.

Puts an error message into a string~

Sets bits based on the result of a logical AND of two expressions.

Gives the ASCII value of a string.

Places the binary value of a number in a string.

Crams every three bytes of a string into two bytes.

Checks for the end of the file.

Retrieves an error message.

Fills a string or substring with a value.

Returns the current position of the file pointer.

Truncates a number to make it an integer.

Finds the current length of a string.

Finds the larger of two expressions.

Finds the smaller of two expressions.

Finds the remainder after dividing two expressions.

Sets bits based on the result of a logical inclusive OR of two
expressions.

Determines the position of a substring in a string.

Produces a pseudo-random integer.

Determines the sign (positive or negative) of an expression.

Moves the bits of an expression left or right with zero fill.

Finds the square root of an expression (truncated to an integer).

Returns system information.

Truncates a string.

Uncrams a crammed string.

Converts a string of digits to a numeric value.

Table A-5_ Business BASIC Functions

A-12 Licensed Material - Property of Data General Corporation

o

This table summarizes the Boolean logic operators supported by Business
BASIC.

Operator

AND

NOT

OR

Description

Joins two expressions into a single expression and reduces that
expression to either 1 (true) or 0 (false). The expression is true
only if both expressions evaluate to true.

Gives an expression the opposite Boolean value.

Joins two expressions into a single expression and reduces that
expression to either 1 (true) or 0 (false). The expression is true
when either both expressions evaluate to true or when one expres­
sion evaluates to true.

Table A-S. Boolean Logic Operators

End of Appendix

Licensed Material - Property of Data General Corporation A-13

o

o

..•• ~.,~I

Appendix B
ASCII Character Sets

Key(s) Definition Octal Decimal

A@ Null 000 000
AA Print form 001 001
AB 002 002
AC Enable blink 003 003
AD Disable blink 004 004
AE Read cursor addr 005 005
AF 006 006
AG Bell 007 007
AH Cursor home (HOME) 010 008
AI Tab (TAB) OIl 009
AJ New line (NEW LINE) 012 010
AK Erase to EOL (ERASE EOL) 013 OIl
AL Erase page (ERASE PAGE) 014 012
AM Carriage return (CR) 015 013
AN Start blink 016 014
AO End blink 017 015
Ap Position cursor 020 016
AQ Print 021 017
AR Roll enable 022 018
AS Roll disable 023 019
AT Start underscore 024 020
AU End underscore 025 021
AV 026 022
AW Cursor up 027 023
AX Cursor right 030 024
Ay Cursor left 031 025
AZ Cursor down 032 026
AI Escape (ESC) 033 027
A\ Start dim 034 028
A] End dim 035 029
AA Function key prefix 036 030
A Cursor addr response 037 031 -

Table B-1. Standard ASCII Character Set (continues)

Licensed Material - Property of Data General Corporation

Hexadecimal

000
001
002
003
004
005
006
007
008
009
OOA
OOB
OOC
OOD
OOE
OOF
010
011
012
013
014
015
016
017
018
019
01A
01B
OIC
OlD
OlE
01F

8-1

Key Octal Decimal Hexadecimal Key Octal Decimal Hexadecimal

space 040 032 020 0 117 079 04F
bar P 120 080 050
! 041 033 021 Q 121 081 051
" 042 034 022 R 122 082 052
043 035 023 S 123 083 053
$ 044 036 024 T 124 084 054
% 045 037 025 U 125 085 055
& 046 038 026 V 126 086 056
,

047 039 027 W 127 087 057
(050 040 028 X 130 088 058
) 051 041 029 Y 131 089 059
* 052 042 02A Z 132 090 05A
+ 053 043 02B [133 091 05B
,

054 044 02C \ 134 092 05C
- 055 045 02D 1 135 093 05D

056 046 02E A 136 094 05E
/ 057 047 02F - 137 095 05F
0 060 048 030

, 140 096 060
1 061 049 031 a 141 097 061
2 062 050 032 b 142 098 062
3 063 051 033 c 143 099 063
4 064 052 034 d 144 100 064
5 065 053 035 e 145 101 065
6 066 054 036 f 146 102 066
7 067 055 037 g 147 103 067
8 070 056 038 h 150 104 068
9 071 057 039 i 151 105 069

072 058 03A J 152 106 06A
, 073 059 03B k 153 107 06B n
< 074 060 03C I 154 108 06C
= 075 061 03D m 155 109 06D
> 076 062 03E n 156 110 06E
? 077 063 03F 0 157 111 06F
@ 100 064 040 P 160 112 070
A 101 065 041 q 161 113 071
B 102 066 042 r 162 114 072
C 103 067 043 s 163 115 073
D 104 068 044 t 164 116 074
E 105 069 045 u 165 117 075
F 106 070 046 v 166 118 076
G 107 071 047 w 167 119 077
H 110 072 048 x 170 120 078
I I I 1 073 049 Y 171 121 079
J 1 12 074 04A z 172 122 07A
K 113 075 04B 1 173 123 07B
L 114 076 04C I 174 124 07C
M 115 077 04D 1 175 125 07D
N 116 078 04E - 176 126 07E

DEL 177 127 07F

Table B-1. Standard ASCII Character Set (concluded)

8-2 Licensed Material - Property of Data General Corporation

Character Octal Decimal Character Octal Decimal

space 240 160 6 325 213
space 241 161 0 326 214
space 242 162 <E 327 215
space 243 163 U 330 216
space 244 164 U 331 217
space 245 165 (] 332 218
):(246 166 0 333 219
¢ 247 167 space 334 220
£ 250 168 space 335 221
space 251 169 space 336 222
space 252 170 space 337 223
! 253 171 a 340 224
i, 254 172 a 341 225
space 255 173 a 342 226
,,' .. , a 343 227
space 271 185 ii 344 228

272 186 a 345 229
§ 273 187 re 346 230

274 188 9 347 231
.. 275 189 e 350 232

276 190 e 351 233
1 277 191 e 352 234
A 300 192 e 353 235
A 301 193 i 354 236
A 302 194 i 355 237
A 303 195 i 356 238
A. 304 196 'j 357 239
A 305 197 Ii 360 240
IE 306 198 6 361 241
C 307 199 (; 362 242
E 310 200 6 363 243
E 311 201 0 364 244
E 312 202 6 365 245
E 313 203 0 366 246
i 314 204 ce 367 247
i 315 205 U 370 248
i 316 206 U 371 249
'j 317 207 U 372 250
N 320 208 ii 373 251
6 321 209 {3 374 252
6 322 210 space 375 253
6 . 323 211 space 376 254
6 324 212 space 377 255

Table 8-2_ DG International Symbols (a-bit ASCII Character Set)

End of Appendix

Licensed Material - Property of Data General Corporation 8-3

o

n

Appendix C
Example Programs

This appendix contains examples of programs in the logical database structure
and the PARAM database structure.

Setting Up a Logical File Database
This example creates a logical database that can be used with the mailing list
program that follows. The one physical file and three logical files are created
with the logical file structure commands LFU PCREA TE and LFU LCREA TE.
You use these commands after you define your file layout and run INDEX­
CALC to determine the number of sectors you need. The Business BASIC Ref­
erence Manual for Subroutines, Utilities, and BASIC CLI contains explanations
of LFU and INDEXCALC.

The logical files consist of two index files, MEMBER and NAME, and one
linked-available-record file, CLUB. They have been designed so that MEMBER
uses a 4-byte key field and does not allow duplicate keys while NAME uses a
24-byte key field and permits duplicate keys. Both use a 50 percent blocking
factor. CLUB holds 200 records, each 110 bytes long. The physical file,
CLUB FILE, is a random file.

Once you have designed your files, run INDEXCALC to calculate the numbers
for the index files MEMBER and NAME (in that order). This also provides
you with the number of sectors required by the data file CLUB.

* RUN "INDEXCALC
INDEXCALC VERSION X.XX

BYTES PER KEY : 4
BYTES PER DATA RECORD : 110
MAXIMUM NUMBER OF DATA RECORDS : 200
INDEX BLOCKING FACTOR (% PERCENT) [50]: 50
INDEX BLOCK SIZE (512 or 2048) [512]: 512
DUPLICATE ~EYS ALLOWED? (Y or N) [N]: N

63 MAXIMUM KEYS PER INDEX BLOCK
32 KEYS PER BLOCK WITH A 50 PERCENT BLOCKING FACTOR
7 BLOCK(S) AT LEVEL 1
1 BLOCK(S) AT LEVEL 0
9 BLOCKS (512 bytes each) IN INDEX
9 SECTORS IN INDEX

Licensed Material - Property of Data General Corporation C-1

44· SECTORS IN DATA FILE

CALCULATE THE INDEX INFORMATION FOR ANOTHER FILE (Y or N) [N]: Y

BYTES PER KEY : 24
BYTES PER DATA RECORD : 110
MAXIMUM NUMBER OF DATA RECORDS : 200
INDEX BLOCKING FACTOR (% PERCENT) [50]: 50
INDEX BLOCK SIZE (512 or 2048) [512]: 512
DUPLICATE KEYS ALLOWED? (Y or N) [N]: Y

18 MAXIMUM KEYS PER INDEX BLOCK
9 KEYS PER BLOCK WITH A 50 PERCENT BLOCKING FACTOR
23 BLOCK(S) AT LEVEL 2
3 BLOCK(S) AT LEVEL 1
1 BLOCK(S) AT LEVEL 0
28 BLOCKS (512 bytes each) IN INDEX
28 SECTORS IN INDEX
44 SECTORS IN DATA FILE

CALCULATE THE INDEX INFORMATION FOR ANOTHER FILE (Y or N) [N]: N

*

Next, use this information from INDEXCALC and type in the following com­
mands to create the physical file and the three logical files (this example is
executing LFU from the BASIC CLI and using its command line format):

* !LFU PCREATE CLUBFILE 0

* !LFU LCREATE MEMBER CLUBFILE I 512 8 4 50 N

* !LFU LCREATE NAME CLUBFILE I 512 27 24 50 Y

* !LFU LCREATE CLUB CLUBFILE L 110 200 N

These command lines created:

• A physical file CLUB FILE.

• An index file MEMBER with 512-byte blocks, a last usable block number
of 8 (since the 9 blocks in: the index mean blocks 0-8), a 4-byte member
number field, a 50 percent blocking factor, and no duplicate keys.

• An index file NAME with 5I2-byte blocks, a last usable block number of
27 (since the 28 blocks in the index mean blocks 0-27), a 24-byte name
field, a 50 percent blocking factor, and duplicate keys are allowed.

• A linked-available-record file CLUB with records of 110 bytes each, 200
records in the file, and no null filling of the file.

The following program can be used to add records to the database you created.

0010 REM * PROGRAM ID: LCREATE - Using a logical file database structure
0020 ON ERR THEN GO TO 0880
0030 CLOSE

C-2 Licensed Material - Property of Data General Corporation

0040 DIM LFTABL$[78],B$[544],X$[30],ER$[132],MKEY$[4],REC$[110]
0050 DIM LAST$[24],FIRST$[16],ADDR$[25],CITY$[25],STATE$[3],ZIP$[5]
0055 DIM PHONE$[8]
0060 LET MKEY$, REC$ = FILL$(O)
0070 REM
0080 REM ** Routine to OPEN files and set up the C1 array
0090 LET LFTABL$=FILL$(O)
0100 LOPEN FILE[1, B$J, "CLUB"
0110 LOPEN FILE[2,B$], "MEMBER"
0120 LOPEN FILE[3,B$], "NAME"
0130 RFORM ZJLA24A16A25A20A3A5A8
0140 REM
0260 LET R1 =-1
0270 REM
0280 REM ** Input variables
0290 PRINT @(-30);@(4,15);"lnput Screen"
0300 PRINT
0310 INPUT "Member #: ", MEM
0320 INPUT "Last Name: ",LAST$
0330 INPUT "First Name: ",FIRST$
0340 INPUT "Address: ",ADDR$
0350 INPUT "City: ", CITY$
0360 INPUT "State: ", STA TE$
0370 INPUT "Zip: ",ZIP$
0380 INPUT "Phone: ",PHONE$
0390 REM
0400 REM ** SETUP RECORD
0410 PACK 0130,REC$,1,MEM,LAST$,FIRST$,ADOR$,CITY$,STATE$,ZIP$,PHONE$
0420 REM
0510 PACK "L" ,MKEY$,MEM
0520 REM
0530 REM ** UPDATE FILES
0540 GETREC 1,R1
0545 IF R1<:0 THEN GOTO 680
0550 LET SR1 = R1
0560 LET T = 30
0570 LOCK 1,1,R1,T
0580 IF T = 57 THEN GOTO 0560
0590 REM
0600 LWRITE FILE[1,R1],REC$
0610 KADD 2,B$,MKEY$,R1
0620 IF R1 <: = 0 THEN GOTO 0700 ERROR IN AODING KEY TO MEMBER INDEX FILE
0630 KADD 3,B$,LAST$,R1
0640 IF R1<: =0 THEN GOTO 0760 ** ERROR IN ADDING RECORD TO NAME INDEX
0650 UNLOCK
0660 REM
0670 GOTO 0280 *. Input variables
0680 CLOSE
0690 END
0700 REM ** ERROR IN ADDING KEY TO MEMBER INDEX FILE
0710 LET R1 = SR1

Licensed Material - Property of Data General Corporation C-3

0720 DELREC 1. R1
0730 PRINT @(20.5);"ERROR IN MEMBER INDEX-KEY & DATA RECORD NOT ADDED"
0740 GO TO 0840 : ** ERROR ROUTINE FOR FILE HANDLING
0750 REM
0760 REM ** ERROR IN ADDING RECORD TO NAME INDEX
0770 LET R1 = SR1
0780 DELREC 1.R1
0790 LET R1 = SR1
0800 KDEL 2.B$.MKEYS.R1
0810 PRINT @(20.5);"ERROR IN NAME INDEX - KEYS & DATA RECORD NOT ADDED"
0820 GOTO 0840 : ** ERROR ROUTINE FOR FILE HANDLING
0830 REM
0840 REM ** ERROR ROUTINE FOR FILE HANDLING
0850 PRINT @(21.5);"MEMBER NO.: ";MEM;" ~ast Name: ";LAST$
0860 GOTO 0970
0870 REM
0880 REM ** GENERAL ERROR ROUTINE
0890 IF SYS(30)~63 AND SYS(7)~0 THEN
0900 LET ER=SYS(31)
0910 LET ER$=AERM$(SYS(31))
0920 ELSE
0930 LET ER=SYS(7)
0940 LET ER$=ERM$(SYS(7))
0950 END IF
0960 PRINT @(20.5);"ERROR # ";ER;"= ";ERS
0970 INPUT USING @(23.5) ... RECORD ERROR INFORMATION & PRESS
0980 CLOSE
0990 END

'NL'" .X$

Setting Up a PARAM File Database
Creating a PARAM file database involves multiple steps. You must design your
database. If you do not have a PARAM file, you must create one and then use
the File Maintenance (FM) utility to build record 0 of the file. (A detailed
explanation of FM is supplied in the Business BASIC Reference Manual for
Subroutines, Utilities, and BASIC CLI.) You must also run INDEXCALC to
determine the number of keys per index block, the number of blocks needed for
the index files, and the number of sectors needed for the data file. Next, you
must create your subfiles and then run INITFILE to initialize them and enter
the necessary information in the PARAM file.

To create a PARAM file, type in:

* !CRAND PARAM
* RUN "FM

When FM prompts you for a filename, type in PARAM. FM then clears the
screen and displays a series of prompts for you to fill in. To set up record 0,

C-4 Licensed Material - Property of Data General Corporation

o

n

r"\
I

you must ADD a record (for this example, press function key 4) and then
supply the following answers:

Parameter record #
Sub file name
Master file name
Sub file position
Sub file record length
Last record number
Highest record number used

o
PARAM
PARAM
o
42
100
o

The subfile position prompt is asking for the byte pointer to the start of the
subfile in the physical file; in this case, it's the beginning of the file. The last
record number prompt refers to the number of subfiles that will be catalogued
in the PARAM file. Since you are just setting up the file, no records have been
used, which is why the highest record number used is set to O.

When you finish building record 0, you must STOP FM (in this example, press
function key 10).

When you have the PARAM file set up, you can create your database. This
database contains three subfiles and one master file. The subfiles consist of two
index files, MEMBER and NAME, and one linked-available-record file, CLUB.
They have been designed so that MEMBER uses a 4-byte key field and does
not allow duplicate keys while NAME uses a 24-byte key field and permits
duplicate keys. Both use a 50 percent blocking factor. CLUB holds 200 records,
each 110 bytes long. The master file, CLUB FILE, is a random file.

Run INDEXCALC to calculate the numbers for the index files MEMBER and
NAME (in that order). This also provides you with the number of sectors re­
quired by the data file CLUB.

* RUN "INDEXCALC"
INDEXCALC VERSION X.XX

BYTES PER KEY : 4
BYTES PER DATA RECORD : 110
MAXIMUM NUMBER OF DATA RECORDS : 200
INDEX BLOCKING FACTOR (% PERCENT) [50]: 50
INDEX BLOCK SIZE (512 or 2048) [512]: 512
DUPLICATE KEYS ALLOWED? (Y or N) [N]: N

63 MAXIMUM KEYS PER INDEX BLOCK
32 KEYS PER BLOCK WITH A 50 PERCENT BLOCKING FACTOR
7 BLOCK(S) AT LEVEL 1
1 BLOCK(S) AT LEVEL 0
9 BLOCKS (512 bytes each) IN INDEX
9 SECTORS IN INDEX
44 SECTORS IN DATA FILE

CALCULATE THE INDEX INFORMATION FOR ANOTHER FILE (Y or N) [N]: Y

BYTES PER KEY : 24
BYTES PER DATA RECORD 110

Licensed Material - Property of Data General Corporation C-5

MAXIMUM NUMBER OF DATA RECORDS : 200
INDEX BLOCKING FACTOR (% PERCENT) [50]: 50
INDEX BLOCK SIZE (512 or 2048) [512]: 512
DUPLICATE KEYS ALLOWED? (Y or N) [N]: Y

18 MAXIMUM KEYS PER INDEX BLOCK
9 KEYS PER BLOCK WITH A 50 PERCENT BLOCKING FACTOR
23 BLOCK(S) AT LEVEL 2
3 BLOCK(S) AT LEVEL 1
1 BLOCK(S) AT LEVEL 0
28 BLOCKS (512 bytes each) IN INDEX
28 SECTORS IN INDEX
44 SECTORS IN DATA FILE

CALCULATE THE INDEX INFORMATION FOR ANOTHER FILE (Y or N) [N]: N

*

Now run INITFILE to create these files.

* RUN .. INITFILE
INDEX (0). DATA (1). STOP (2) [0]: 0
SUB FILE NAME: MEMBER
FILE NOT IN PARAM FILE!
DO YOU WISH TO ADD? (Y OR N) [Y]: Y
MASTER FILE NAME: CLUBFILE
INDEX BLOCK SIZE (512 or 2048) [512]: 512
BYTE OFFSET TO SUB FILE: 0
MAXIMUM NUMBER OF INDEX BLOCKS: 9
BYTES PER KEY: 4
BLOCKING FACTOR (% PERCENT) [50]: 50
DUPLICATE KEYS ALLOWED? (Y OR N) [N]: N
INDEX (0). DATA (1). STOP (2) [0]: 0
SUB FILE NAME: NAME
FILE NOT IN PARAM FILE!
DO YOU WISH TO ADD? (Y OR N) [Y]: Y
MASTER FILE NAME: CLUBFILE
INDEX BLOCK SIZE (512 or 2048) [512]: 512
BYTE OFFSET TO SUB FILE: 4608
MAXIMUM NUMBER OF INDEX BLOCKS: 28
BYTES PER KEY: 24
BLOCKING FACTOR (% PERCENT) [50]: 50
DUPLICATE KEYS ALLOWED? (Y OR N) [N]: Y
INDEX (0). DATA (1). STOP (2) [0]: 1
SUB FILE NAME: CLUB
FILE NOT IN PARAM FILE!
DO YOU WISH TO ADD? (Y OR N) [Y]: Y
MASTER FILE NAME: CLUBFILE
BYTE OFFSET TO SUB FILE: 18944
BYTES PER DATA RECORD: 110
MAXIMUM NUMBER OF DATA RECORDS: 200

C-6 Licensed Material - Property 01 Data General Corporation

o

~,

SHOULD FILE BE NULL FILLED? N
INDEX (D), DATA (1), STOP (2) [0]: 2

You now have in your database the following files:

• A master file CLUBFILE. It contains the subfiles MEMBER, NAME,
and CLUB.

• An index file MEMBER with nine 5l2-byte blocks, a 4-byte member
number field, a 50 percent blocking factor, and no duplicate keys.

• An index file NAME with 28 5l2-byte blocks, a 24-byte name field, a 50
percent blocking factor, and duplicate keys are allowed.

• A linked-available-record file CLUB with 200 records of 110 bytes each.

The following program can be used to add records to the database you created.

0010 REM ** PROGRAM ID: CREATE
0020 PRINT @(-30);@(S,2o);"FILES ARE BEING CREATED"
0030 CLOSE
0040 DIM C1[2,3],B$[S44].MX$[18],NX$[18]
0050 DIM X$[3O]
0060 DIM LAST$[24],FIRST$[16],AoDR$[2S],CITY$[2S],STATE$[3],ZIP$[S],PHoNE$[8]
0070 DIM MKEY$[4],NKEY$[24],LNAME$[24],FNAME$[24]
0080 DIM REC$[110]
0090 REM
0100 REM ** Routine to OPEN files and set up the C1 array
0110 LET B$="CLUB,S,MEMBER,S,NAME,S" ,FILL$(o)
0120 BLOCK WRITE B$
0130 SWAP "OPEN"
0140 BLOCK READ B$
0145 UNPACK "JJ", B$, ERRIN, ERRNo
0150 IF ERRIN <>-1 THEN GoTo 0180
0160 PRINT "ERROR # " ;ASC(B$[3,4]);" - ";B$[S,S12]
0170 END
0180 LET K=1
0190 FOR 1=0 TO 2
0200 FOR J=o TO 3
0210 LET C1[I,J]=ASC(B$[K,K+3])
0220 LET K=K+4
0230 NEXT J
0240 NEXT I
0250 LET MX$ = CHR$(C1[1, 0],2), CHR$(C1[1.1] ,4) , CHR$(o, 2) , "MEMBER" , FILL$(o)
0260 LET NX$ = CHR$(C1[2, 0] ,2). CHR$(C1[2, 1] .4), CHR$(o, 2). "NAME" , FILL$(o)
0270 LET F%,R1=0
0280 REM
0290 REM ** Input variables
0300 INPUT "Member #: ",MEM
0310 INPUT "Last Name: ",LAST$
0320 INPUT "First Name: ",FIRST$
0330 INPUT "Address: ",ADDR$
0340 INPUT "City: ", CITY$

Licensed Material - Property of Data General Corporation C-7

0350 INPUT "State: ",STATE$
0360 INPUT "Zip:", ZIP$
0370 INPUT "Phone: ",PHONE$
0380 REM

This example uses LET statements to set up the record;
: however, you could have used the PACK statement instead,
: which would reduce the amount of code you have.
0390 REM ** SETUP RECORD
0400 LET REC$[1,2]==CHR$(1,2),FILL$(0)
0410 LET REC$[3,6]==CHR$(MEM,4)
0440 LET REC$[7,30]==LAST$,FILL$[0]
0450 LET REC$[31,46]==FIRST$,FILL$[0]
0460 LET REC$[47,71]==ADDR$,FILL$[0]
0470 LET REC$[72,96]==CITY$,FILL$[0]
0480 LET REC$[97,99]==STATE$,FILL$[0]
0490 LET REC$[100,104]==ZIP$,FILL$[0]
0500 LET REC$[105, 112] ==PHONE$,FILL$[O]
0510 LET REC$[113,120]==FILL$(0)
0520 LET MKEY$ == REC$ [3, 6]
0530 LET NKEY$ == REC$ [7, 30]
0540 REM
0550 REM ** UPDATE FILES
0560 GOSUB 8400 : \ GETREC.SL
0570 LET SR1 == R1
0580 LET T == 30
0590 LOCK 1, "CLUB" ,R1*C1[F%,3],C1[F%,3], T
0600 IF T==57 THEN GOTO 0580
0610 GOSUB 9610 : \ POSFL.SL
0620 WRITE FILE[C%],REC$
0630 KADD MX$,B$,MKEY$,R1
0640 IF R1< ==0 THEN GOTO 0720 ** ERROR IN ADDING KEY TO MEMBER INDEX FILE
0650 KADD NX$,B$,NKEY$,R1
0660 IF R1< ==0 THEN GO TO 0810 ** ERROR IN ADDING RECORD TO NAME INDEX
0670 UNLOCK
0680 REM
0690 GOTO 0290 ** Input variables
0700 CLOSE
0710 END
0720 REM ** ERROR IN ADDING KEY TO MEMBER INDEX FILE
0730 LET R1 == SR1
0740 GOSUB 8600 : \ DELREC.SL
0750 PRINT @(20,5);"ERROR OCCURRED IN MEMBER INDEX - DATA RECORD NOT ADDED"
0760 PRINT @(21, 5); "Member No.: "; MEM," Last Name: "; LNAME$
0770 INPUT USING "" ,@(23,5),"DEPRESS 'NL' TO RETURN TO MENU" ,X$
0780 CLOSE
0790 END
0800 REM
0810 REM ** ERROR IN ADDING RECORD TO NAME INDEX
0820 LET R1 == SR1
0830 GOSUB 8600 : \ DELREC.SL
0840 LET MKEY$==REC$[3,6]

C-8 Licensed Material - Property of Data General Corporation

o

I

0\
\ '

0850 LET R1 = SR1
0860 KDEL MX$.B$.MKEY$.R1
0870 PRINT @(20. 5) ; "ERROR OCCURRED IN NAME INDEX; NO RECORD ADDED TO DATA FILE"
0880 PRINT @(21.5),·Member No.; .. ;MEM." Last Name: ";LNAME$
0890 INPUT USING ·"·.@(23. 5) . "DEPRESS . NL' TO RETURN TO MENU". X$
0900 CLOSE
0910 END
0920 REM
8400 REM \ GETREC.SL
8405 LET C% = C1[F%. 0]
8410 LET WO = C1[F%. 1]
8415 POSITION FILE[C%.WO]
8420 READ FILE[C%].XO%.YO.ZO
8430 IF YO = -1 THEN GOTO 8472
8440 LET R1 = YO
8450 GOSUB 9610 ; \ POSFL.SL
8460 READ FILE[C%].YO%.XO
8470 IF YO%> 0 THEN LET YO% = 1/0
8471 GOTO 8480
8472 IF ZO = -1 THEN GO TO 8494
8474 LET ZO=ZO+1
8475 LET XO = YO
8476 LET YO = ZO
8478 IF ZO>C1[F%.2] THEN GO TO 8496
8480 POSITION FILE[C%.WO]
8491 WRITE FILE[C%].XO%.XO.ZO
8492 LET R1 = YO
8493 RETURN
8494 LET R1 = ZO
8495 RETURN
8496 LET R1=-1
8497 RETURN
8499 REM * END GETREC.SL
8600 REM \ DELREC.SL
8602 LET XO = R1
8605 IF R1 < = 0 THEN LET XO = 1/0
8610 LET C%=C1[F%.0]
8615 LET WO=C1[F%.1]
8620 POSITION FILE[C%.WO]
8630 READ FILE[C%].XO%.YO
8650 GOSUB 9610 : \ POSFL.SL
8652 READ FILE[C%].YO%
8655 IF YO%<>O THEN GOTO 8658
8656 PRINT @(25.50); RECORD ALREADY DELETED
8657 RETURN
8658 GOSUB 9610 : \ POSFL.SL
8660 LET YO% = 0
8670 WRITE FILE[C%].YO%.YO
8680 POSITION FILE[C%.WO]
8692 WRITE FILE[C%].XO%.XO
8695 RETURN

Licensed Material - Property of Data General Corporation C-9

8699 REM * END DELREC.SL
9610 REM \ POSFL.SL
9611 LET V%=O

9612 REM \ POSFL WITH OFFSET V%
9613 LET C%=C1[F%.0]
9615 IF R1<0 THEN LET V%=1/0

9620 IF R1>C1[F%.2] THEN LET V%=1/0
9625 LET R8=R1*C1[F%.3]

9630 LET R9=C1[F%.1]+R8+V%
9640 POSITION FILE[C%.R9]
9645 RETURN

9649 REM * END POSFL.SL

Comparing Logical, P ARAM Code
There is a marked difference in the code needed to open files in the logical file
database structure and the PARAM file database structure. The logical files
require less code. These next two pieces of code illustrate opening files in the
logical database and in the PARAM database.

Code to open files in the logical file database structure:

0010 DIM LFTABL$[78].B$[544]
0020 LET LFTABL$=FILL$(O)

0030 LOPEN FILE[1.B$]. "CLUB"
0040 LOPEN FILE[2.B$]. "MEMBER"
0050 LOPEN FILE[3. B$]. "NAME"

Code to open files in the PARAM file database structure:

0010 DIM C1[2.3].B$[544].MX$[18].NX$[18]
0020 LET B$= CLUB.5.MEMBER.5.NAME.5 .FILL$(O)
0030 BLOCK WRITE B$
0040 SWAP "OPEN
0050 BLOCK READ B$

0060 IF ASC(B$[1.2])<>-1 THEN GOTO 0090
0070 PRINT "ERROR # ";ASC(B$[3.4]);" - ";B$[5.512]
0080 END
0090 LET K=1
0100 FOR 1=0 TO 2

0110 FOR J=O TO 3

0120 LET C1[I.J]=ASC(B$[K.K+3])
0130 LET K=K+4
0140 NEXT J
0150 NEXT I

0160 LETMX$ = CHR$(C1[1. 0].2). CHR$(C1[1. 1] .4). CHRS(O. 2). "MEMBER" • FILL$(O)
0170 LET NX$ = CHR$(C1[2. 0].2) • CHR$(C1[2. 1].4) • CHR$(O. 2). "NAME" • FILL$(O)

In terms of code, another difference between the logical structure and the
PARAM structure is the use of the DELREC and GETREC statements as
opposed to the DELREC.SL, GETREC.SL, and POSFL.SL subroutines. The

C-10 Licensed Material - Property of Data General Corporation

()

(1"'\
, '

(1\
,

logical structure uses the statements, which also perform automatic locking of
record 0, while the PARAM structure uses the subroutines. The three subrou­
tines occupy a total of 55 lines of code compared to the 2 lines required by the
statements.

Enlarging a Logical Database
If you discover that your logical database is too small for your needs, you can
enlarge it by following these steps:

1) Use LFU PCREA TE to create a dummy database of the desired size.

2) Use LFU LCREA TE to create a dummy logical file in this database for
each logical file in your current database. You can increase the size of the
files. (Note that the dummy logical filename for each file must be different
from the original logical filename.)

3) Use the Business BASIC utility LX FER to copy each logical file in the
current database to the corresponding logical file in the larger dummy da­
tabase. You can only copy one file at a time. (LXFER is explained in the
Business BASIC Reference Manual for Subroutines. Utilities. and BASIC
CLI.)

4) Use LFU PDELETE to delete the old database.

5) Use LFU PRENAME to rename the dummy database to the old database
name.

6) Use LFU LRENAME to rename the logical files to the same names that
existed in the old database.

In this example, a database named CUSTDB needs to be enlarged so the fol­
lowing is done:

* !LFU PLIST CUSTOB
DB file: CUSTOB

File File Starting
Name Type Sector

CUST L 0
CUSTNO 10

Total Sectors:

of Record Last # of
Sectors Length Record Bytes

10 50 100 5050
6 512 5 3072

16 Bytes: 8122

Currently, this database holds 100 records. To expand the data file and the
index file to allow 500 records, you run INDEXCALC to determine the number
of sectors needed for the new database file. Then you create a dummy database
file named TEMPDB and dummy logical files named TCUST and TCUSTNO.

* !LFU PCREATE TEMP DB 67
* !LFU LCREATE TCUST TEMP DB L 50 500 N
* !LFU LCREATE TCUSTNO TEMP DB I 512 17 4 50 N
* !LFU PLIST TEMP DB

Licensed Material - Property of Dala General Corporation C-11

DB file: TEMPDB
File File Starting # of Record Last # of
Name Type Sector Sectors Length Record Bytes

TCUST L 0 49 50 500 25050
TCUSTNO 49 18 512 17 9216

Total Sectors: 67 Bytes: 34266

Next use the LXFER utility to copy the original logical files to the new logical
files and then delete the old database.

* ILXFER/V CUST TCUST
5120 bytes transferred

,Copies old data file into new file

* ILXFER/V CUSTNO TCUSTNO :Copies old index file new index file;
3072 bytes transferred :Last~available~block pOinter in 0 is adjusted.

* ILFU PDELETE CUSTDB :Delete the old database.

* ILFU PRENAME TEMPDB CUSTDB :Rename new database with the old name.

* ILFU LRENAME TCUST.CUST :Rename new data file with the old name.

* ILFU LRENAME TCUSTNO CUSTNO :Rename new index file with the old name.

* ILFU PlIST CUSTDB :Get a listing of the enlarged database.

DB file: CUSTDB
File File Starting # of Record Last # of
Name Type Sector Sectors Length Record Bytes

CUST L 0 49 50 500 25050
CUSTNO 49 18 512 17 9216

Total Sectors: 67 Bytes: 34266

To see how the database has changed, compare the output of INDEXVRFY on
the CUSTNO index file before it was moved to the new database with the
output of INDEXVRFY on the new CUSTNO index file. This is the original
CUSTNO file:

* IINDEXVRFY CUSTNO

INDEX FILE NAME CUSTNO
** VERIFYING **

Index file size - 6 512 byte blocks
Number of index blocks used - 5
Empty index blocks - 0
Key length - 4 Duplicates not allowed
Max keys per block - 63
Min key count - 3
Max key count - 37
Avg key count - 26
Total keys at bottom level - 100

C-12 licensed Material - Property of Data General Corporation

n
". -""

o

Number of index levels - 2
INDEX STRUCTURE VERIFIED CDRRECT

******* VERIFY COMPLETE ******

This is the output from INDEXVRFY on the new CUSTNO index file:

* IINDEXVRFY CUSTNO

INDEX FILE NAME == CUSTNO
** VERIFYING **

Index file size - 18 512 byte blocks
Number of index blocks used - 5
Empty index blocks - 0
Key length - 4 Duplicates not allowed
Max keys per block - 63
Min key count - 3
Max key count - 37
Avg key count - 26
Total keys at bottom level - 100
Number of index levels - 2
INDEX STRUCTURE VERIFIED CORRECT

****** VERIFY COMPLETE ******

End of Appendix

Licensed Material - Property of Data General Corporation C-13

n

o

o
I

fTl
,

(T\
, ,

Related Documents

Business BASIC Reference Manual for Commands, Statements,
and Functions 093-000351-00

An alphabetical directory of Business BASIC statements, commands, and func­
tions. It is intended to be used as a reference manual for programmers.

Business BASIC Reference Manual for Subroutines, Utilities,
and BASIC CLI 093-000389-00

An alphabetical directory of Business BASIC subroutines, utilities, and BASIC
CLI commands. It is intended to be used as a reference manual for program­
mers.

Business BASIC System Manager's Guide 093-000388

Describes how to load and generate Business BASIC on AOS, AOS/VS,
AOS/WS, RDOS, and DG/RDOS systems. It is intended for the system man­
ager or system operator.

AOS INFOS® II System User's Manual 093-000152

Provides information on how to use the AOS INFOS II file management sys­
tem.

AOS/VS INFOS® II System User's Manual 093-000299

Provides information on how to use the AOS/VS INFOS II file management
system.

Business BASIC (AOS/RDOS) Reference Card 069-705010

A pocket-sized reference card for Business BASIC programmers on AOS/VS,
AOS, RDOS or DOS.

DASHER D2 File Maintenance and Screen Maintenance Template 093-000212

DASHER D200 File Maintenance and Screen Maintenance Template 093-000265

DASHER DI00 CFM and CSM Template

DASHER D2 CFM and CSM Template

DASHER D3 CFM and CSM Template

DASHER D200 CFM and CSM Template

Licensed Material - Property of Data General Corporation

093-000329

093-000330

093-000331

093-000332

Business BASIC Report Writer User's Manual 093-000333

Describes how to use the Business BASIC Report Writer software to design
report writer programs.

Business BASIC Data Dictionary User's Manual 093-000334

Describes how to use the Business BASIC Data Dictionary software to create,
maintain, and access one or more data dictionaries.

Licensed Material - Property of Data General Corporation

o

o

*DEL 6-3

. (period) command 2·8

.A command 2-9

.C command 2-8, 2-9

.DB file 6-2

.E command 2-9

.I command 2-9

.P command 2-8, 2-9

.SL 4-1

.VL file 6-2

AND 3-9
AOS file types 8-2
Arguments 1-2
Arithmetic operators 3-8
Arrays 1-2, 3-4

indexing 3-4
ASC 4-7

A

B

BASIC CLI 1-3, 4-3, 4-6, 4-7
BASIC CLI commands 1-4
BBS 8-2
Binary format 1-4, 2-18, 2-19
BLOCK READ 2-14, 4-8
BLOCK WRITE 2-14, 4-8
Boolean logic operators 3-9
BYE 1-6, 1-7 .

Cl array 6-8, G-2
Carriage return ii, G-2
CHAIN 2-12
Channel 5-9, 6-1, 6-9
Channel strings 7-3
CHR$ 4-7
CLI 1-3, 1-4

C

Index

Colon comments 2-18, 4-3
Command 1-2
Comments, program 2-18
Common area 2-14, 3-20, 4-8
CON 2-14

debugging aid 2-17
Continuing a program 2-13
CTRL-U 2-7
CTRL-X 2-7

D

Data transfer 5-9
Database file 6-1, 6-2, 8-2, 8-3
DB statements 7-1
DBF 8-2
DBFIX 8-2
Decimals 3c 11
DEL 6-3
DEL key 2-7
Deleted-record chain 5-11
Delimiter 2-8, G-2
DELREC.SL 6-8, 6-12, 6-13, 6-14, C-I0
Direct random access files 5-11

EDIT 2-10
Edit buffer 2-7
END 2-2
ENTER 2-3, 2-6, 4-2

E

Error messages 2-18, 3-19, 8-4
ESCAPE key ii, G-4

File attributes 8-3
Files

deleting 6-3, 8-5
limits 6-1, 7-1

FINDFILE.SL 6-10
FIXFILE 8-2
Flat files 5-11

F

Flow-control constructions 2-4

Licensed Material - Property of Data General Corporation Index-1

FOR/NEXT 2-4
Function 1-2

G

GETREC.SL 6-12, 6-14, C-lO
GOSUB 2-4, 4-3
GOTO 2-4

I

IF 2-4, 3-10
IKEY ii, G-4, 2-7, 2-11, 2-14
IMOVE 8-2, 8-3
Indexing, strings 3-15
INFOS II files 7-1
INPUT 2-5, 3-15
Integer 1-2
Interactive programs 2-5
Interrupts 2-14, 2-16
ISAM 5-12

Keyboard mode 1-4, 2-1

LET 3-11, C-8
LFTABL$ 6-4
LFU 6-3
Line length 2-3
LIST 2-3, 2-5, 2-10, 2-19
Listing file 2-10, 2-19
LOAD 2-11
LOCKS 4-7
Logical files 6-1, 6-2
LOPEN 6-4
LRELINK 5-12

K

L

M

Master file 6-1, 6-6

Nesting subroutines 4-4
New line ii, G-5
NOT 3-9
Null string 3-14

N

Numeric variables 1-2, 3-3

ON GOSUB 4-3
OPEN 6-13

o

Open files 5-7, 6-1, 7-1
Operations, precedence 3-14
Optional keywords 2-4
OR 3-9

Index-2

P ARAM file 6-1, 6-6, 6-7
PARAMCON 6-14
Physical files 6-1
Portability 8-1

p

POSFL.SL 6-11, 6-14, C-10
POSITION FILE 5-10, 6-11
Precedence of operations 3-11
Precision 3-3
PRINT 2-2, 2-5
Program comments 2-18
Program statement,

maximum length 2-3
Program statements 2-2

RDOS.PR 8-2, 8-3
Records, deleting 6-12
Relational operators 3-9
Relative position 5-10
RELINK 5-12
REM 2-4, 2-18
RENUM 2-6
RENUMBER 2-6

R

Renumbering statements 2-6, 2-7
RETURN 4-3
RUN 2-11

S

SAVE 2-10
SAVE file 2-10, 2-19, 8-2, 8-3
Sharing program data 2-14
Special characters 3-1
Statement 1-2
STMA 1 2-14
String arrays 3-17
String functions 3-19, 3-21
String literals 3-15
String variables 3-15
Strings 1-2, 3-14

concatenating 3-19
storage 3-15

Subfiles 6-1
limits 6-10

Subroutine 1-3, 2-4, 4-1
Subroutine comments 4-3
Subscripts 3-5, 3-16
Substrings 3-16
SWAP 2-12, 4-6

sharing program data 2-14

Licensed Material - Property of Data General Corporation

(1\
SW AP THEN CON 2-13
SYS(30) 8-4

I SYS(31) 2-18, 3-19, 8-4 I

SYS(7) 2-18, 3-19, 8-4
System library 4-3

T

Text files 2-19, 8-2, 8-3
Truncation 2-3
TYPE 4-3

U

Utilities
run-only 4-6
SW AP-only 4-6
stand-alone 4-6

V

Variable names 3-1
Variables 1-2

changing values 2-14
numeric 3-3
values 2-2, 2-11, 2-13, 2-14

VLF 8-2
Volume label file 6-2, 8-2, 8-3

W

0 Working storage 1-4, 2-7, 2-18

Licensed Material - Property of Data General Corporation Index-3

()

o

t. DataGeneral TP ____ _

TIPS ORDER FORM
Technical Information & Publications Service

BILL TO: SHIP TO: (if different)

COMPANYNAME ____________________________ __ COMPANYNAME ____________________________ __

ADDRESS ADDRESS
CITY __________________________________ ___ CITY ________________________________ ___

STATE ______________ _ ZIP ________________ __ STATE ____________ __ ZIP _______________ __

ATTN: __________________________________ _ ATTN: ________________________________ ___

QTY MODEL # DESCRIPTION
UNIT LINE
PRICE DISC

(Additional items can be included on second order form) [Minimum order is $50.00) TOTAL

Tax Exempt # Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (U.P.S or Postal)

For orders less than $100.00
o Other:

o Charge my 0 Visa 0 MasterCard o U.P.S. Blue Label
Acc't No.________ Expiration Date ______ _ o Air Freight

o Other
o Purchase Order Number: ______________ __

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Person to contact about this order _______________ Phone ______ _

Data General Corporation
Educational Services/TIPS
MS G214
2400 Computer Drive
Westboro, MA 01580
(617) 366-8911, Extension 1610

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

Extension

TOTAL
PRICE

Date

DGC Sales Representative (If Known) Badge #

DISCOUNTS APPLY TO
MAIL ORDERS ONLY 012·1780 (~l

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof: Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub· licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY .
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT·
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (1) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC·
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN·
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con·
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi·
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCOUNTS APPLY .TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5·14 manuals of the same part number· 20%
15 or more manuals of the same part number· 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

t. DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service's Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal"
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified, o orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

8.

Data General Corporation
Educational Services/TIPS
MS G214
2400 Computer Drive
Westboro, MA 01580
(617) 366-8911, Extension 1610

We'll take care of the rest!

o

o

U i

l

11I1 111111111111111111111111111111 11111111
Data General Corporation, Westboro, MA 01580 B93-BBB48B-BB

(j"
'. ,
'~ .. ~ !

11

I

II

II
fl

II
I'
ii
!

0'
• I

o

