
4. Data General
Customer Documentation

Commands, Statements, and Functions
in Business BASIC

Commands, Statements,
and Functions in Business BASIC

093-000351-02

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (OBS-series) supplied with the software.

Ordering No. 093-000351
Copyright © Data General Corporation. 1984. 1989. 1991
All Rights Reserved
Unpublished - All rights reserved under the Copyright laws of the United States
Printed in the United States of America
Rev. 02. May. 1991
Licensed Material - Property of Data General Corporation

Notice
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
ha ve been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

AVIlON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA,
NOVA, PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPius, BaseLink, BusiGEN,
BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board,
CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite.
COBOL/SMART. COMPUCALC, CSMAGIC, DASHER/One, DASHER/286. DASHER/286-12c,
DASHER/286-12J. DASHER/386. DASHER/386-16c, DASHER/386-2S. DASHER/386-2Sk,

. DASHER/386sx, DASHER/386SX-16. DASHER/486-2S, DASHER/LN, DATA GENERAL/One.
DESKTOP/UX. DG/SOO. DG/AROSE. DGConnect. DG/DBUS, DG/Fontstyles, DG/GATE.
DG/GEO, DG/HEO. DG/L. DG/LIBRARY. DG/UX. DG/XAP, ECLIPSE MV/IOOO,
ECLIPSE MV/1400. ECLIPSE MV/2000, ECLIPSE MV/2S00. ECLIPSE MV/3S00,
ECLIPSE MV/SOOO. ECLIPSE MV/SSOO, ECLIPSE MV17800, ECLIPSE MV/9S00,
ECLIPSE MV/IOOOO. ECLIPSE MV/lSOOO. ECLIPSE MV/18000, ECLIPSE MV/20000.
ECLIPSE MV/30000, ECLIPSE MV/40000. FORMA-TEXT. GATEKEEPER. GDC/IOOO,
GDC/2400, InteIlibook, microECLIPSE. microMV. MV/UX. PC Liaison. RASS. REV-UP.
SLATE, SPARE MAIL, SUPPORT MANAGER. TEO, TEO/3D. TEO/Electronics, TURBO/4,
UNITE. WALKABOUT, WALKABOUT/SX. and XODIAC are trademarks of Data General Corporation.

386/ix is a trademark of INTERACTIVE System Corporation.
UNIX is a registered trademark of AT&T.

Restricted Rights Legend: Use, duplication. or disclosure by the U. S. Government is subject to restrictions as
set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at [FAR]
52.227-7013 (May 1987).

Data General Corporation
4400 Computer Drive
Westboro. MA 01580

Commands, Statements. and Functions in Business BASIC
093-000351-02

Revision History:

Original Release - December. 1984
First Revision - December. 1989
Second Revision - May, 1991

Effective with:

Business BASIC for AViiON'" Systems. Rev. 1.10
Business BASIC for INTERACTIVE UNIX Systems,
Rev. 1.10
AOS Business BASIC, Rev. 4.20
AOS/VS Business BASIC, Rev. 5.20
RDOS Business BASIC, Rev. 8.20
DG/RDOS Business BASIC, Rev. 8.30

A vertical bar in the margin of a page indicates substantive technical change from the previous revision.

Preface

This manual describes how to use the commands. statements. and functions available
with Business BASIC. This manual explains these features and how they work on each
of the operating systems supporting Business BASIC-AOS. AOSIVS. AOSIVS II.
DG/RDOS. RDOS. DG/UX™. and INTERACTIVE UNIX® systems.

Since DG/UX and INTERACTIVE UNIX software are related to UNIX software. this
document sometimes refers to those two software products as UNIX products. These
references are solely for the purpose of improved readability and occur only where
there are no significant differences between DG/UX. INTERACTIVE UNIX. and
UNIX software. UNIX® is a registered trademark of AT&T.

This manual is for the experienced Business BASIC programmer who is familiar with
the particular operating system being used. The programmer who is not familiar with
the operating system should consult the documentation related to the system before
using this manual.

NOTE: INTERACTIVE Systems Corporation has replaced the name 386/ix'" with
INTERACTIVE UNIX. References to INTERACTIVE UNIX and 386/ix refer
to the same product line.

Document Set

Business BASIC is documented by a set of manuals that describe the language. the
operating system features that affect its use, and its utilities. This manual is a
companion manual to Subroutines, Utilities, and Business BASIC CLI. Both of these
manuals apply to Business BASIC on all operating system platforms.

Other manuals in the Business BASIC manual set apply only to certain operating
systems. For information on the other manuals in the set and their ordering numbers,
see the "Related Documents" section at the end of this manual.

Scope
Commands, Statements, and Functions in Business BASIC is a reference manual for
experienced Business BASIC programmers. This manual provides the following
information for each command, statement, and function in Business BASIC:

• Which operating systems it works with

• How to code it

• What it does

• How to use it

You can use these commands, statements, and functions to make your Business
BASIC work easier.

093-000351 Licensed Material-Property of Data General Corporation iii

Preface

Organization

The Business BASIC statements, commands, and functions are listed in alphabetical
order in Chapter 1. The commands used to interface with an INFOS® II data base
are listed in Chapter 2.

Terms Used in This Book

I The term" AOS/VS" is used to refer to AOS/VS, and AOS/VS II systems. In cases
where there are differences between these products, the differences will be noted.

Business BASIC supports two database structures: the PARAM file database structure
and the logical file database structure. Certain Business BASIC features work with one
database structure and not the other. To distinguish between the two database
formats, this manual uses the terms master file and sub file to refer to files in the
PARAM structure and database file and logical file to refer to files in the logical file
structure. These terms are defined below:

Master file

Subfile

A physical file in the PARAM database structure

A file within a master file in the PARAM database
structure

Database file A physical file in the logical file database structure

Logical file A file within the a database file in the logical file database
structute

When the term "search path" is used in this book, it has the following meanings:

AOS/VS systems: The directories you have selected using the AOSNS
SEARCHLIST command.

DO/RDOS systems: In DO/RDOS systems, you do not have a search path, so
Business BASIC searches your directory first and· then the library
directory (SLIB or SLIB3 for triple precision);

UNIX systems: The directories you have listed in the UNIX BBPATH
environment variable.

I When the term "switch" is used, it has the following meanings:

AOS/VS and DO/RDOS systems: A switch that is preceded by a slash.

UNIX systems: An option that is preceded by a hyphen.

The phrase "Business BASIC user's guide" refers to Business BASIC System
Manager's Guide if you are using an AOS/VS or DO/RDOS system and Using
Business BASIC on DGIUX™ and INTERACTIVE UNIX® Systems if you are using a
UNIX system.

iv Licensed Material-Property of Data General Corporation 093-000351

Preface

Coding Conventions

The coding conventions used in this manual are described below.

UPPERCASE BOLD

lowercase italics

Indicates a Business BASIC command, statement, or
function.

Indicates a place holder to be replaced by your variable
name or literal.

Hyphen (-) Between italicized words, indicates one complete entry to
be supplied by the programmer. Do not enter the hyphen.

{ } Enclose a part of the format from which you must make a
single selection. Do not enter the braces.

[] Enclose an optional part of the format; do not enter the
brackets.

Indicates that the preceding item can be repeated.

The following boxes indicate whether a command, statement, or function is available
on a particular operating system:

AOSNS I DG/RDOS I UNIX

If only a UNIX box appears above the "Format" section for a command, that
command is available only on UNIX systems. If all three boxes appear, the command
can be used on all operating systems that run Business BASIC.

Contacting Data General
Data General wants to assist you in any way it can to help you use its products. Please
feel free to contact the company as outlined below.

Manuals
If you require additional manuals, please use the enclosed TIPS order form
(United States only) or contact your local Data General sales representative.

Telephone Assistance
If you are unable to solve a problem using any manual you received with your system,
free telephone assistance is available with your hardware warranty and with most Data
General software service options. If you are within the United States or Canada,
contact the Data General Service Center by calling 1-800-DG-HELPS. Lines are
open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center
will put you in touch with a member of Data General's telephone assistance staff who

. can answer your questions.

093-000351 Licensed Material-Property of Data General Corporation v

Preface

For telephone assistance outside the United States or Canada. ask your Data General
sales representative for the appropriate telephone number.

Joining the Users Group
Please consider joining the largest independent organization of Data General users. the
North American Data General Users Group (NADGUG). In addition to making
valuable contacts. members receive FOCUS monthly magazine. a conference discount.
access to the Software Library and Electronic Bulletin Board. an annual Member
Directory. Regional and Special Interest Groups. and much more. For more
information about membership in the North American Data General Users Group. call
1-800-877-4787 or 1-512-345-5316.

End of Preface

vi Licensed Material-Property of Data General Corporation 093-000351

Contents

Chapter 1 Commands, Statements, and Functions

Features Available Only on Some Operating Systems 1-1
How to Use the Examples in This Chapter 1-1
. (period) ... 1-2
.A .. 1-3
.C .. · 1-4
.E .. 1-6
.1 ... 1-8
.P .. 1-9
ABS .. 1-10
AERM$... 1-11
AND .. 1-13
AND ;•............... 1-16
AS .. 1-18
ASX ... 1-22
BBSTAT ... 1-26
BLOCK READ .. 1-28
BLOCK WRITE ... 1-31
BREAK .. 1-34
ByE•... 1-36
CHAIN .. 1-37
CHR$... 1-39
CLOSE .. 1-41
COMP ... 1-43
CON .. 1-45
CRM$... 1-47
DATA ... 1-49
DEF ...•..................... 1-50
DELAy .. 1-52
DELETE ... 1-53
DELREC ... 1-56
DIM ... 1-58
DIR .. ; 1-62
DO WHILE/UNTIL/END LOOP 1-64
END•............................... 1-67
END LOOP .. 1-68
ENTER .. 1-69
EOF ... 1-71
ERASE .. 1-72
ERM$... 1-73
EXTRACT•.. 1-75
FILL$... 1-77
FOR ... NEXT .. 1-79

093;.000351 Licensed Material-Property of Data General Corporation vii

Contents

GETREC ... 1-83
GOSUB ... RETURN ' ',' 1-85
GOTO ... 1-88
GPOS .. 1-89
IF ... THEN ... ELSE ... 1-91
INPUT ... 1-96
INPUT USING ... 1-100
INT .. 1-102
KADD .. 1-103
KDEL .. 1-108
KFIND .. 1-111
KNEXT " .. , " 1-114
KPREV , 1-118
LEN .. 1-121
LET .. 1-123
LIST ... 1-126
LISTH .. : 1.,..128
LOAD .. 1-130
LOCK/UNLOCK. .. 1-131
LOCKS ..•.................. 1-135
LOPEN FILE .. 1-137
LREAD FILE .. 1-141
LWRITE FILE ... 1-143
MAX ... 1-145
MIN .. 1-146
MOD ... 1-147
MSG ... 1-149
MTDIO ... 1-151
NEW ... 1-156
NEXT .. 1-157
NOT ... 1-158
ON ERR , 1-159
ON ... GOTO and ON ... GOSUB .. 1-161
ON IKEY , , ',' 1-163
OPEN FILE ... 1-165
OR ' ' " 1-171
OR , .. 1-173
PACK .. 1-175
PAGE .. 1-177
POS .. 1-178
POSITION FILE .. 1-179
PRINT .. 1-181
PRINT USING ... 1-187
PROGRAM DISPLAY ... 1-19'6
PROTECT ... 1-198
QADD•... 1-199
QDIV ... 1-201
QLOAD ... 1-204

viii Licensed Material-Property of Data General Corporation 093-000351

Contents

QMUL .. 1-205
QSTORE .. 1-207
QSUB .. 1-208
RAISE .. 1-210
RANDOMIZE .. 1-211
READ .. 1-212
READ FILE ... 1-214
REM ... 1-216
RENAME ... 1-218
RENUMBER ... " 1-219
REPLACE ... 1-222
RESTORE , 1-224
RETURN .. 1-226
RFORM ... 1-227
RND ... 1-231
RUN ... 1-233
SAVE .. 1-235
SCANUNTIL .. 1-237
SCANWHILE .. 1-240
SGN " , , 1-242
SHELL ... 1-243
SHFT ... 1-245
SIZE ... 1-247
SQR , 1-249
STEP " " 1-250
STMA .. 1-252
STMB .. 1-273
STMC .. 1-286
STMD .. 1-299
STME .. 1-301
STMU .. 1-314
STOP ... 1-316
STRPOS .. 1-317
SWAP .. 1-319
SYS .. 1-321
TAB ... 1-326
TINPUT .. 1-327
TRACE ... 1-329
TRUN$... 1-331
UCALL ... 1-332
UCM$.. 1-333
UERM$... 1-335
UNPACK ... , 1-336
VAL ... 1-338
VALUE .. , 1-340
VAR DISPLAY ... 1-342
VAR RENAME .. 1-345
WRITE FILE .. 1-346
XOR ... 1-349

093-000351 Licensed Material-Property of Data General Corporation ix

Contents

Chapter 2 Statements Related to INFOS II Files

Argument Pairs ... 2-2
Creating an INFOS II File .. 2-2
Accessing INFOS II Files ... 2-3
DB CLOSE ... 2-5
DBDELETE ... 2-6
DBGET ... 2-7
DBOPEN INFOS ... 2-9
DBREAD ... 2-12
DBREINS .. 2-13
DBRELEASE ... 2-14
DBRETRIEVE HIGHKEY ... 2-15
DBRETRIEVE KEY .. 2-16
DBRETRIEVE SIDEF .. 2-17
DBRETRIEVE STATUS .. 2-18
DBREWRITE ... 2-19
DBSET .. 2-20
DBSUBINDEX DEFINE .. 2-25
DB SUBINDEX DELETE ... 2-26
DB SUBINDEX LINK .. 2-27
DBSUBINDEX LINKINIT .. 2-29
DBSUBINDEX LINKSET ... 2-30
DBWRITE .. 2-31

Appendix A System Call Summary A-1

Appendix 8 Resource Limits . 8-1

Index

Related Documents

x LIcensed Material-Property of Data General Corporation 093-000351

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table B-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10

093-000351

Contents

Tables

AOS/VS and UNIX Access Modes 1-167
DG/RDOS Access Modes 1-168
Summary of STMA Syntax Formats 1-253
Summary of STMB Syntax Formats 1-274
Summary of STMC Syntax Formats 1-287
Summary of STME Syntax Formats 1-303
STMA Summary Table•........... A-1
STMB Summary Table. A-3
STMC Summary Table. .. A-5
STMD Summary Table (DG/RDOS Only) A-8
STME Summary Table (AOSIVS and UNIX Only) A-9
STMU Summary Table (UNIX Only) , A-l1
Business BASIC Resource Limits B-1

Figures

Logical AND of Two Numbers 1-13
Powers of 2 (0 to 63) 1-14
BLOCK READ ... 1-29
BLOCK WRITE .. 1-32
COMP Function in an AND Comparison 1-43
Index File Descriptor String 1-105
MTDIO Status Values 1-153
Logical OR of Two Numbers 1-171
The SHFT Function 1-245
Logical XOR of Two Numbers 1-349

Licensed Material-Property of Data General Corporation xi

Chapter 1
Commands, Statements,

and Functions

The Business BASIC commands. statements. and functions (referred to collectively
here as "commands") can oftenbe used on more than one operating system. The
features of some commands. however. are available only on certain operating systems.
In addition. some examples are coded for a specific operating system but can be
modified to work on other operating systems. while other examples work only on the
operating systems specified in the examples' descriptions. Also. some terms used in
this chapter have different meanings for different operating systems.

Features Available Only on Some Operating Systems

In the "Format" and "Argument" sections of a command description. the features
available only on UNIX systems are called out as follows:

string-expression A string variable. string literal. substring. or string array element
(UNIX only) used to receive the error message; it must be
dimensioned large enough to contain the error message.

In this example. you can use a string array element for string-expression only if you
are using a UNIX system.

In other sections of a command description. information that is applicable only for
specific operating systems is indicated with a phrase like "On AOS/VS and UNIX
systems

How to Use the Examples In This Chapter
Some examples in this chapter use AOS/VS and DG/RDOS conventions. and others
use UNIX conventions. Unless a particular example states otherwise. if a command is
available on all operating systems. its examples work on all operating systems.
provided you make any changes necessary to conform to an operating system's
conventions. For example. pathnames in AOS/VS and DG/RDOS use a colon (:) as
the pathname delimiter. UNIX systems use a slash (I) as the pathname delimiter
unless you specified pathname conversion by including the -P option on the command I
line you used to execute Business BASIC. To run an AOS/VS example on a UNIX
system. you must change the colons to slashes if you did not specify pathname
conversion when you executed Business BASIC.

For some commands. the format line shows part of the format enclosed in parentheses
(). but the example for that command shows the same portion of the format enclosed
in brackets []. In these cases. the Business BASIC interpreter accepts either
parentheses or brackets as input. If parentheses are used. however. the interpreter
changes them to brackets when you save the program.

093-000351 Licensed Material-Property of Data General Corporation 1-1

I

Commands, Statements, and Functions in Business BASIC

. (period) Command

Sends the line in the edit buffer to working storage.

AOSIVS DG/RDOS UNIX

Format
. (period)

What It Does
The . (period) command is a keyboard edit command that works on the edit buffer.
It is part of the "dot editor" group of commands.

When you type a line that causes an error, Business BASIC puts that line into the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed into the edit buffer. The . (period) command sends whatever is currently in
the edit buffer to working storage for interpretation.

How to Use It
Use the . (period) command if you have used .A, .1, or .E to edit the line in the
edit buffer. The . (period) command sends only the current contents of the edit
buffer to working storage.

Example
Correct an incorrect word.

• 10 PRNT "HELLO"
ERROR 2-STATEMENT OR COMMAND SYNTAX IS INVALID
• . E/PRNT/PRINT
10 PRINT "HELLO
•
10 PRINT "HELLO"

• LIST
00010 PRINT "HELLO"

• RUN
HELLO

1-2 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

.A Command

Appends a string literal to the line In the edit buffer.

AOSNS DG/RDOS UNIX

Format
.A string

Arguments
string A string literal (without quotation marks) that you want to append

to the line. You must separate string from .A with a delimiter.
Any character (including a blank space) that appears after the .A
is the delimiter.

What It Does
The .A command is a keyboard edit command that works on the line in the edit
buffer. It is part of the "dot editor" group of commands.

When you type a line that causes an error, Business BASIC puts that line into the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed into the edit buffer. The .A command appends to that line whatever you
type for string, but it does not send the line back into working storage for
interpretation. You can send it back with the. (period) command.

How to Use It
The .A command only affects the line currently in the edit buffer. Use the .P
command to see what is in the edit buffer. If you want to append text to a line that is
not in the edit buffer, use the LIST line-number command to put the line in the edit
buffer. (Business BASIC displays the line at your terminal.)

Example
Append a word to an incomplete line.

• 10 PRINT
• LIST
00010 PRINT
•. P
00010 PRINT
·.A X
00010 PRINT X
•
00010 PRINT X

• LIST
00010 PRINT X

093-000351 Licensed Material-Property of Data General Corporation 1-3

I

I

I

Commands. Statements. and Functions in Business BASIC

.c Command

Changes a string in a line in the edit buffer, and passes the line
to working storage.

AOSIVS DG/RDOS UNIX

Format
AOS/vS and DG/RDOS Systems:

. Clstring] Istring2 [/G]

UNIX Systems:

.ClstringJlsMng2 [{ ;~ }]

Arguments
string]

string2

10

What It Does

A string literal (without quotation marks) that is in the line in the
edit buffer.

A string literal (without quotation marks) to which you want to
change string].

Optional switch to change all occurrences of string] within the edit
buffer to string2. Without this switch. . C changes only the first
occurrence.

Optional switch that allows you to specify which occurrence of
string] you want to change to string2. You supply a value of 1 to
9 for n. The default value is 1. (UNIX only)

The .C command is a keyboard edit command that works on the edit buffer. It is part
of the .. dot editor" group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .C command without IG changes the first occurrence of string] to I string2. The . C command with IG changes all occurrences of string] to string2. On
UNIX systems. you can enter the . C command with In in order to change only the
nth occurrence of string] to string2. Each of these forms automatically passes the line
back to working storage for interpretation. The .C command is the same as the .E
command except that . C passes the line to working storage.

How to Use It
The .C command changes only the line currently in the edit buffer. Use the .P
command to see what is in the edit buffer. Use the LIST command to put a line in
the edit buffer.

1-4 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued .c

Because any character can be used as a delimiter, the . C command can also be used
to change a slash (I). For example, the command line below changes a slash to an
equal sign. A period is the delimiter.

* .C.!.=

Examples
1. Notice in this example that the line number is an integral part of the statement

that is being edited.

* 10 PRINT 10
* LIST
00010 PRINT 10
* .C/10/20
00020 PRINT 10

The first occurrence of a 10 (the line number) is changed to 20. You can use this
technique to duplicate lines of code.

* LIST
00010 PRINT 10
00020 PRINT 10

2. The edit buffer below is empty because . C sent the buffer contents to working
storage.

* 10 LET X=20
* LIST
00010 LET X=20
* .C/20/30
00010 LET X=30
•. P
Error 73 - Edit buffer is empty

Display working storage to see the change.

* LIST
00010 LET X=30

3. This UNIX example uses the In switch to change the second occurrence of stringl
to string2.

* 10 REM STRING1 STRING1
* LIST
00010 STRING1 STRING1
* .C/STRINGlISTRING2/2
00010 REM STRING1 STRING2

093-000351 Licensed Material-Property of Data General Corporation 1-5

I

I

Commands, Statements, and Functions in Business BASIC

.E Command

Changes a string in a line in the edit buffer.

AOSNS DG/RDOS UNIX

Format
AOSIVS and DG/RDOS Systems:

.Elstring1 Istring2 [/G 1

UNIX Systems:

.Elstringllstring2 [{;~ }]

Arguments
string1

string2

10

What It Does

A string literal (without quotation marks) that is in the line in the
edit buffer.

A string literal (without quotation marks) to which you want to
change string1.

Optional switch to change all occurrences of string1 to string2
within the edit buffer. Without this switch, .E changes only the
first occurrence.

Optional switch that allows you to specify which occurrence of
string] you want to change to string2. You supply a value of 1 to
9 for n. The default value is 1. (UNIX only)

The .E command is a keyboard edit command that works on the edit buffer. It is part
of the "dot editor" group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .E command without IG changes the first occurrence of string] to I string2. The .E command with IG changes all occurrences of string1 to string2. On
UNIX systems, you can enter the .E command with In in order to change only the
nth occurrence of string] to string2. The . E command is the same as the . C
command except that .E does not pass the line to working storage.

How to Use It
The .E command changes only the line currently in the edit buffer. The edit buffer
contains either the line you just typed (if it caused an error) or the last line listed.
After using .E, you can use the. (period) command to send the line back to working
storage for interpretation.

1-6 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued .E

Because any character can be used as a delimiter, the . E command can also be used
to change a slash (I). For example, the command line below changes a slash to an
equal sign. A period is the delimiter.

* .E.!.=

Examples
1. Change the character string "20" to the character string "30".

* 10 LET X=20
* LIST
00010 LET X=20
* .E/20/30
00010 LET X=30

*

The. (period) command sends the change to working storage.

* LIST
00010 LET X=30

2. Notice that if the. (period) command is not used, the original value of 20
remains in working storage.

* 10 LET X=20
* LIST
00010 LET X=20

* .P
00010 LET X=20
* .E/20/30

This changes 20 to 30 in the edit buffer.

00010 LET X=30

Display the contents of working storage.

* LIST
00010 LET X=20

3. On UNIX systems, use the In switch to change the second occurrence of stringl
to string2.

* 10 REM STRING 1 STRING 1
* LIST
00010 STRING1 STRING1
* .E/STRINGlISTRING2/2
00010 REM STRINGl STRING2

093-000351 Licensed Material-Property of Data General Corporation 1-7

I

Commands, Statements, and Functions in Business BASIC

.I Command

Changes a line in the edit buffer.

AOSNS DG/RDOS UNIX

Format
.1 string

Arguments
string A string literal (without quotation marks) that you want to replace

the current line in the edit buffer.

What It Does
The .1 command is a keyboard edit command that changes the line in the edit buffer.
It is part of the "dot editor" group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .1 command changes the entire line to string, but it does not pass
the line to working storage for interpretation.

How to Use It
The .1 command changes only the line currently in the edit buffer. After using .1, you
must use the. (period) command to send the line back to working storage.

Example
Substitute correct syntax for incorrect syntax.

• 10 PRINTHELLO
Error 2 - Statement of command syntax is invalid
• .1 10 PRINT "HELLO"
•

The. (period) command sends the change in the edit buffer to working storage. The
corrected command is displayed, and Business BASIC can now execute the command.

00010 PRINT "HELLO"

• RUN
HELLO

1-8 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

AERM$ Function

Puts an error message into a string.

AOSIVS DG/RDOS UNIX

Format
LET string-variable=AERM$ (number)

Arguments
string-variable A string variable, substring, or string array element (UNIX only)

used to receive the error message; it must be dimensioned large
enough to contain the error message.

number The record number in the BASIC.ER file for the error message
you want, or the code associated with an error message in an
AOS/VS parameter file.

What It Does
AERM$ retrieves the error message specified by number. The number typically comes
from SYS(31) or SYS(42) (AOS/VS and UNIX only). •

How to Use It
When you trap errors in your program (by using ON ERR), you can have the
program print the appropriate error message. Also, you can generate your own unique
error messages by adding messages to the end of the BASIC.ER file and then using
number to specify which message you want to retrieve.

You can use AERM$ only in LET statements or commands because you have to
assign the error message to a string variable. The largest error message is 64 bytes
long.

See SYS, ERM$, UERM$ for more information on how to use the error-retrieval
functions.

093-000351 Licensed Material-Property of Data General Corporation 1-11

Commands, Statements, and Functions in Business BASIC

AERM$ continued

Examples
1. When Business BASIC encounters an error in this program, control passes to line

500, where the appropriate error code is selected and the error message associated
with that error code is printed.

00010 ON ERR THEN GOTO 00500
00020 DIM ER$(64)

00500 REM ERROR ROUTINE
00510 IF SYS(7)=-60 THEN
00520 LET ER = SYS(31)
00530 LET ER$ = AERM$(ER)
00540 ELSE
00550 LET ER=SYS(7)
00560 LET ER$-ERM$(ER)
00570 END IF
00580 PRINT "ERROR # ";ER; "_ ";ER$
00590 END

2. This example uses ERM$, AERM$, and UERM$ to retrieve error messages from
SYS(41), SYS (42) , and SYS(43).

01000 REM * error handler
01010 IFSYS(41)=-60 THEN
01012 IF SYS(42)=-276 THEN
01014 LET ER$-UERM$(SYS(43»
01016 ELSE
01020 LET ER$=AERM$(SYS(42»
01025 END IF
01030 ELSE
.01040 LET ER$=ERM$ (SYS (41))
01050 END IF

:Same as SYS(7) and SYS(40)

:Same as SYS(31)

:Same as SYS(7) and SYS(40)

1-12 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

.P Command

Displays the contents of the edit buffer.

AOSNS DG/RDOS UNIX

Format
.P

What It Does
The .P command is a keyboard edit command that displays the contents of the edit
buffer. It is part of the "dot editor" group of commands.

When you type a line that causes an error, Business BASIC puts that line in the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed in the edit buffer. Once a line is in the edit buffer, you can edit it using the
.A, .C, .E, .1, and. (period) commands.

How to Use It
The .P command displays only the contents of the edit buffer. If the edit buffer is
empty, you get Error 73 - Edit buffer is empty. To place a line of code in
the edit buffer, use the LIST command.

Examples
1. In this example, the PRINT command is placed into the edit buffer.

* 10 PRINT X
* LIST
00010 PRINT X
* .P
00010 PRINT X

2. In this example, the buffer is empty because LIST has not been used to put the
statement into the edit buffer.

* 10 PRINT X
* .P
Error 73 - Edit buffer is empty

093-000351 LIcensed Material-Property of Data General Corporation 1-9

I

Commands. Statements. and· Functions in Business BASIC

ABS Function

Returns the absolute value of a number.

AOSIVS DG/RDOS UNIX

Format
AB S (expression)

Arguments
expression Any numeric expression.

What It Does
ABS returns the absolute (positive) value of a negative or positive number. If
expression is a positive number, ABS returns the number. If expression is negative,
ABS strips the negative sign from the number and returns the resulting positive
number.

How to Use It
You can use the ABS function wherever numeric expressions are allowed. expression
can be:

• A number

• A single, double, triple, or quad precision variable assigned a numeric value

• A numeric array element

• A function

• Any combination of these in a numeric expression with arithmetic or relational
operators

Examples
1. Compute and display the absolute value.

• PRINT ABS(-30) 30

2. Use the absolute value in a computation.

00010
00020
00030
00040
00050
"'RUN
? -3,-6
3
4
5
6

INPUT X,Y
FOR I = ABS(X) TO ABS(Y)

PRINT I
NEXT I
STOP

STOP AT 00050

•

1-10 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

AND Function

Logically compares two expressions.

AOSNS DG/RDOS UNIX

Format
AND (expression1 ,expression2)

Arguments
expression 1 ,expression2 Numeric expressions or variables to be compared.

What It Does
The AND function is used to compare the bit patterns of two binary expressions. The
binary representations of the two expressions are compared bit by bit. If a bit is set to
1 in both expressions, that bit is set to 1 in the result.

How to Use It
If, for example, the 16-bit value returned by SYS(30) was examined to determine
whether the system was triple precision, the AND function could be used with
SYS (30) and a mask which had the bit representing the value 2 set. The result would
be 0 if the system was not triple precision, or 2 if the system was triple precision.

To check several bits at once, add the masks for the bits together and check the
result of the AND comparison of the summed mask with the value to be examined.
You can use the AND function in any numeric expression.

Figure 1-1 shows the result when the bit values of two expressions are compared using
AND. Figure 1-2 shows the decimal values for each power of 2 from 0 to 63. •

AND (192. 64)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o Power of 2

00000000 o 0 0 0 0 0 expr1 = 192

000000000 o 0 0 0 0 0 expr2 = 64

--~ 000000000 o 0 0 0 0 0 RESULT = 64

Figure 1-1 Logical AND of Two Numbers

093-000351 Licensed Material-Property of Data General Corporation 1-13

Commands, Statements, and Functions in Business BASIC

AND continued

2 n Decimal Value 2 n Decimal Value

231 2147483648 283 9223372036854775808
230 1073741824 21!2 4611686018427387904

229 536870912 281 2305843009213693952

229 268435456 2110 1152921504606846976

227 134217728 2158 576460752303423488
228 67108864 2158 288230376151711744

22S 33554432 2e7 144115188075855872
224 16777216 2e8 72057594037927936

223 8388608 2e8 36028797018963968
222 4194304 2e. 18014398509481984

221 2097152 283 9007199254740992
220 1048576 21!2 4503599627370496

219 524288 2e1 2251799813685248
219 262144 2150 1125899906842624

217 131072 248 562949953421312
218 65536 248 281474976710656

21e 32768 247 14073748835528
214 16384 248 70368744177664

213 8192 24e 35184372088832
212 4096 244 17592186044416

211 2048 243 8796093022208
210 1024 242 4398046511104

28 512 241 2199023255552

28 256 240 1099511627776

27 128 238 549755813888
28 64 238 274877906944

2s 32 237 137438953472
24 16 238 68719476736

23 8 2311 34359738368
22 4 234 17179869184

21 2 233 8589934592
20 232 4292967296

Figure 1-2 Powers of 2 (0 to 63)

1-14 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

Examples
1. Check whether this is a triple precision system.

00010 IF AND(SYS(30) ,2) THEN
00020 PRINT "This is a triple precision system"
00030 ELSE
00040 PRINT "This is not a triple precision system"
00050 END IF

AND

2. On AOS/vS or DG/RDOS system, check for several of the possible switches used
when Business BASIC was brought up. The IA switch is in the leftmost bit of the
32-bit value returned by SYS (11); this bit is represented by the value 231.

00010 DIM A$(26)
00020 LET SWTCHS-SYS(11)
00030 IF AND(SWTCHS,2 4 28) THEN LET A$[O]="/D"
00040 IF AND(SWTCHS,2 A ll) THEN LET A$[O]="/U"
00050 PRINT "Some of the switches used were: ";A$

On a UNIX system, you would enter the following code for this example:

00010 DIM A$[72]
00020 LET SWTCH=SYS(11)
00030 IF AND(SWTCH,2 4 28) THEN LET A$[O]="D"
00040 IF AND(SWTCH,2 A 60) THEN LET A$[O]'"""d"
00050 PRINT "Some of the switches used were: ";A$

3. If the bits represented by the values 64 and 32 are both set, go to line 100; if one
or the other bit is set, go to line 200; otherwise, fall through to line 50.

00030 IF AND(X,64+32)=64+32 THEN GOTO 00100
00040 IF AND(X,64+32) THEN GOTO 00200
00050 REM Neither of the two bits was set

093-000351 Licensed Material-Property of Data General Corporation 1-15

Commands, Statements, and Functions in Business BASIC

AND Operator

Boolean logical AND - joins two expressions.

AOSIVS DG/RDOS UNIX

Format
expression AND expression

Arguments
expression

What It Does

A numeric or relational expression or a variable. If either
expression evaluates to 0, the result of joining the expressions is
false; otherwise, the result is true.

Relational expressions are two numeric or string expressions
separated by a relational operator. The relational operators are
greater than (», greater than or equal to (>=), less than «), less
than or equal to «=), equal to (=), and not equal to (<».

AND joins two expressions into a single expression. When you execute a LET
statement, the expressions joined by the AND function are evaluated and reduced to ° or 1; the result of the AND is 1 if both expressions are non-zero and is ° otherwise.
When you execute an IF statement, the expressions united by the AND are evaluated.
Any false expression makes the entire AND expression false.

NOTE: An AND function that logically compares two bit patterns is also available
and is described separately.

How to Use It
AND may be used any place a numeric expression is valid.

Before the Boolean logic operator is executed, the expressions are evaluated as true or
false, and the operands are reduced to 1 or 0, respectively.

The precedence of all operators is given below.

highest

lowest

1-16

A (exponential)
unary +, unary - NOT
*, /
+, -
<>, >, >=,
AND

OR

<=, <

Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued AND

Example
When two conditions are met (evaluate to a true value). execute the GOrO.

00010 IF A>1 AND B=2 THEN GOTO 00100

093-000351 Licensed Material-Property of Data General Corporation 1-17

Commands, Statements, and Functions in Business BASIC

Ase Function

Gives the ASCII value of a string.

AOS/vS DG/RDOS UNIX

Format
ASC (string-expression)

Arguments
string-expression A string variable, string literal, substring, or string array element

(UNIX only).

What It Does
The ASC function transfers bytes directlyfroin asirfng to a numeric variable. Each
byte of a string contains the ASCII value of the character it represents; the several
bytes of a numeric variable contain a binary number which translates directly into the
decimal value displayed by PRINT. The number of characters in a string that ASC
can transfer depends on the precision you are using. Numeric variables hold data in
four bytes in a double precision system, six bytes in triple precision, and 8 bytes in
quad precision. If a string field is shorter than the maximum for the variable's
precision, the result is justified toward the low-order bytes of the numeric variable;
thus, ASC("A") is 65 while ASC("A<O><O><O>") is 65*224.

I If you include the -X option when you execute a UNIX system, the ASC function
performs identically to the ASX function.

How to Use It
Use the ASC function wherever numeric expressions are allowed.

ASC may not change the sign of the value in string-expression. If you use CHR$ to
put a negative value in a string, and then use ASC to extract the value and place it in
a variable that is less than four bytes in double precision, six bytes in triple precision,

I or eight bytes in quad precision, you must correct the value's sign. However, on UNIX
systems, when you execute Business BASIC with the -x option, the sign is included.

It is sometimes more efficient to pass data to or from files or the common area as
strings. If you use the CHR$ function to put a binary value into a string, you should
use the ASC function to extract the binary value from that string.

You can use PACK and UNPACK instead of ASC and CHR$. With PACK and
UNPACK, you have more formatting flexibility (you can use RFORM) and you do
not need to convert numeric signs. No matter what precision you use, Business BASIC
retains the sign.

1-18 Licensed Material-Property of Data General. Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued Ase

Examples
1. Line 30 makes a four-byte string of integer B, and line 100 extracts B from A$.

00010 DIM A$(12)
00020 INPUT B
00030 LET A$(1,4)=CHR$(B,4)

00100 LET B=ASC(A$(1,4»

2. Display the decimal ASCII value for the character "A".

• PRINT ASC(" A") 65

•

3. This is an example for a triple precision system.

00010 DIM A$(6)
00020 LET X#=123456789012
00030 LET A$=CHR$(X#,6)
00040 LET ANS = ASC(A$)
00050 PRINT ANS
• RUN
123456789012

4. This example uses a negative number in a double precision system.

00010 DIM X$[9]
00020 LET X$[1,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00040 LET A%=ASC(X$[1,2])
00050 PRINT "ASC value of a negative value stored in a 2-byte

string = ";A%
00060 LET A%=OR(A%,-AND(A%,2 A 15»
00070 PRINT" value AFTER the sign correction = ";A%
00080 LET A=ASC(X$[3,5])
00090 PRINT "ASC value of a negative value stored in a 3-byte

string = ";A
00100 LET A=OR(A,-AND(A,2 A 15»
00110 PRINT" value AFTER the sign correction = ";A
00120 LET A=ASC(X$[6,9])
00130 PRINT "ASC value of a negative value stored in a 4-byte

string = ";A

093-000351 Licensed Material-Property of Data General Corporation 1-19

Commands, Statements, and Functions in Business BASIC

Ase

* RUN

ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44

ASC value of a negative value stored in a 3-byte
string = 16777172
value AFTER the sign correction = -44

ASC value of a negative value stored in a 4-byte
string = -44

S. This example uses a negative number in a triple precision system.

00010 DIM X$[15]
00020 LET X$[l,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00038 LET X$[10,15]=CHR$(-44,6)
00040 LET A%=ASC(X$[l,2])

continued

00050 PRINT "ASC value of a negative value stored in a 2-byte
string = ";A%

00060 LET A%=OR(A%,-AND(A%,2 A 15»
00070 PRINT" value AFTER the sign correction = ";A%
00080 LET A=ASC(X$[3,5])
00090 PRINT "ASC value of a negative value stored in a 3-byte

string = ";A
00100 LET A=OR(A,-AND(A,2 A 15»
001.10 PRINT " value AFTER the sign correction = "; A
00120 LET A=ASC(X$[6,9])
00130 PRINT "ASC value of a negative value stored in a 4-byte

string = ";A
00140 LET A=OR(A,-AND(A,2 A 31»
00150 PRINT" value AFTER the sign correction = ";A
00160 LET A=ASC(X$[10,15])
00170 PRINT "ASC value of a negative value stored in a 6-byte

string = ";A

* RUN

ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44

ASC value of a negative value stored in a 3-byte
string =16777172
value AFTER the sign correction = -44

ASC value of a negative value stored in a 4-byte
string = 4294967252
value AFTER the sign correction = -44

ASC value of a negative value stored in a 6-byte
string = -44

1-20 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued Ase

6. This example uses a negative number in a quad precision system.

00010 DIM X$[23]
00020 LET X$[1,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00038 LET X$[10,15]=CHR$(-44,6)
00039 LET X$[16,23]=CHR$(-44,8)
00040 LET A%=ASC(X$[1,2])
00050 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 2-BYTE

STRING = "; A%
00060 LET A%=OR(A%,-AND(A%,2 A 15»
00070 PRINT" VALUE AFTER THE SIGN CORRECTION = ";A%
00080 LET A=ASC(X$[3,5])
00090 PRINT " ASC VALUE OF A NEGATIVE VALUE STORED IN A 3 -BYTE

STRING = ";A
00100 LET A=OR(A,-AND(A,2 A 15»
00110 PRINT" VALUE AFTER THE SIGN CORRECTION = ";A
00120 LET A=ASC(X$[6,9])
00130 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 4-BYTE

STRING = ";A
00140 LET A=OR(A,-AND(A,2 A 31»
00150 PRINT" VALUE AFTER THE SIGN CORRECTION = ";A
00160 LET A=ASC(X$[10,15])
00170 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 6-BYTE

STRING = ";A
00180 LET A=OR(A,-AND(A,2 A 47»
00190 PRINT" VALUE AFTER THE SIGN CORRECTION = ";A
00200 LET A=ASC(X$[16,23])
00210 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN AN 8-BYTE

STRING = ";A

* RUN

ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44

ASC value of a negative value stored in a 3-byte
string =16777172
value AFTER the sign correction = -44

ASC value of a negative value stored in a 4-byte
string = 4294967252
value AFTER the sign correction = -44

ASC value of a negative value stored in a 6-byte
string = 281474976710612
value AFTER the sign correction = -44

ASC value of a negative value stored in an 8-byte
string = -44

093-000351 Licensed Material-Property of Data General Corporation 1-21

Commands, Statements, and Functions in Business BASIC

ASX Function

Gives the ASCII value of a string with automatic sign correction.

AOSNS UNIX

Format
ASX (string-expression)

Arguments
string-expression A string variable, string literal, substring, or string array element

(UNIX only).

What It Does
The ASX function transfers bytes directly from a string to a numeric variable. Each
byte of a string contains the ASCII value of the character it represents; the several
bytes of a numeric variable contain a binary number that translates directly into the
decimal value displayed by PRINT. The number of characters in a string that ASX
can transfer depends on the precision you are using. Numeric variables hold data in
four bytes in a double precision system, six bytes in triple precision, and eight bytes in
quad precision. If a string field is shorter than the maximum for the variable's
precision, the result is justified toward the low-order bytes of the numeric variable;
thus, ASX("A") is 65 while ASX("A<OxOxO>") is 65*224.

NOTE: On UNIX systems, if you execute Business BASIC with the -X option, the
ASC function and the ASX function perform identically.

How to Use It
Use the ASX function wherever numeric expressions are allowed.

ASX will correct the sign of the value in string-expression if necessary. If you use
CHR$ to put a negative value in a string, and then use ASX to extract the value and
place it in a variable that is less than four bytes in double precision, six bytes in triple
precision, or eight bytes in quad precision, you do not need to correct the sign as you
would with the ASC function. It is sometimes more efficient to pass data to or from
files or the common area as strings. If you use the CHR$ function to put a binary
value into a string, you would use either the ASX or the ASC function to extract the
binary value from that string.

You can use PACK and UNPACK instead of ASX and CHR$. With PACK and
UNPACK, you have more formatting flexibility (you can use RFORM).

1-22 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued ASX

Examples

1. Line 30 makes a four-byte string of integer B, and line 100 extracts B from A$.

00010 DIM A$(12)
00020 INPUT B
00030 LET A$(l,4)=CHR$(B,4)

00100 LET B=ASX(A$(l,4»

2. Display the decimal ASCII value for the character" A" .

* PRINT ASX(" A") 65

*

3. This is an example for a triple precision system.

00010 DIM A$(6)
00020 LET X#=123456789012
00030 LET A$=CHR$(X#,6)
00040 LET ANS = ASX(A$)
00050 PRINT ANS

* RUN
123456789012

4. This example uses a negative number in a double precision system.

00010 DIM X$[9]
00020 LET X$[l,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00040 LET A%=ASX(X$[1,2])
00050 PRINT "ASX value of a negative value stored in a 2-byte

string = ";A%
00080 LET A=ASX(X$[3,5])
00090 PRINT "ASX value of a negative value stored in a 3-byte

string = ";A
00120 LET A=ASX(X$[6,9])
00130 PRINT "ASX value of a negative value stored in a 4-byte

string = ";A

* RUN
ASX value of a negative value stored in a 2-byte string -44
ASX value of a negative value stored in a 3-byte string -44
ASX value of a negative value stored in a 4-byte string -44

093-000351 Licensed Material-Property of Data General Corporation 1-23

Commands, Statements, and Functions in Business BASIC

ASX continued

5. This example uses a negative number in a triple precision system.

00010 DIM X$[15]
00020 LET X$[l,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00038 LET X$[10,15]=CHR$(-44,6)
00040 LET A%=ASX(X$[1,2])
00050 PRINT "ASX value of a negative value stored in a 2-byte

string = ";A%
00080 LET A=ASX(X$[3,5])
00090 PRINT "ASX value of a negative value stored in a 3-byte

string = ";A
00120 LET A=ASX(X$[6,9])
00130 PRINT "ASX value of a negative value stored in a 4-byte

string = ";A
00160 LET A=ASX(X$[10,15])
00170 PRINT "ASX value of a negative value stored in a 6-byte

string = ";A

* RUN
ASX value of a negative value stored in a 2-byte string -44
ASX value of a negative value stored in a 3-byte string -44
ASX value of a negative value stored in a 4-byte string -44
ASX value of a negative value stored in a 6-byte string -44

6. This example uses a negative number in a quad precision system (UNIX systems
only) .

00010 DIM X$[23]
00020 LET X$[1,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(-44,3)
00035 LET X$[6,9]=CHR$(-44,4)
00038 LET X$[10,15]=CHR$(-44,6)
00039 LET X$[16,23]=CHR$(-44,8)
00040 LET A%=ASX(X$[1,2])
00050 PRINT "ASX VALUE OF A NEGATIVE VALUE STORED IN A 2-BYTE

STRING = "; A%
00080 LET A=ASX(X$[3,5])
00090 PRINT "ASX VALUE OF A NEGATIVE VALUE STORED IN A 3-BYTE

STRING = ";A
00120 LET A=ASX(X$[6,9])
00130 PRINT "ASX VALUE OF A NEGATIVE VALUE STORED IN A 4-BYTE

STRING = ";A
00160 LET A=ASX(X$[10,15])
00170 PRINT "ASX VALUE OF A NEGATIVE VALUE STORED IN A 6-BYTE

STRING = ";A
00200 LET A=ASX(X$[16,23])
00210 PRINT "ASX VALUE OF A NEGATIVE VALUE STORED IN AN 8-BYTE

STRING = ";A

1-24 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued ASX

• RUN
ASX VALUE OF A NEGATIVE VALUE STORED IN A 2-byte STRING = -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 3-byte STRING -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 4-byte STRING -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 6-byte STRING -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 8-byte STRING -44

093-000351 Licensed Material-Property of Data General Corporation 1-25

Commands, Statements, and Functions in Business BASIC

BBSTAT Statement and Command

Displays the status of all Business BASIC jobs.

AOSIVS

Format
BBSTAT

What It Does

UNIX

BBSTAT displays the following information about all current Business BASIC processes:

• PIO

• Username

• Console name

• Current program name

How to Use It
BBST AT may be used in keyboard mode or as a statement.

If there is more data than can be displayed on one screen, Business BASIC prompts
you with the word MORE at the bottom of the screen. At this point, press any key to
scroll down one screen.

Examples
1. On AOS/VS systems, BBSTAT produces the following display, which always

includes information on the Business BASIC process issuing the BBSTAT
command. Processes are sorted by PID, in ascending order. Each section is
described after the display.

* BBSTAT
49 FRANK6 VCON4
58 BARRY 8 CON7
61 JOHNS8 CON24
70 TEMP 8 CON32

a. b. c.

SCRATCH
AR002
AP005
MAINMENU

d.

Column Description

The PID number a.
b.
c.
d.

1-26

Business BASIC user name
Console name
Program name

Licensed Material-Property of Data General· Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued BBSTAT

2. This example shows the BBSTAT display that appears on a UNIX system. The
columns and their descriptions are the same as they were in the previous example.

* BBSTAT
7895 BARRY 8 /dev/ttyp1 SCRATCH
8213 FRANK6 /dev/tty01 ARMENU
8226 JOHNS8 /dev/ttyp4 APOO1
8237 MARY 8 /dev/tty10 GLMENU

093-000351 Licensed Material-Property of Data General Corporation 1-27

Commands, Statements, and Functions in Business BASIC

I BLOCK READ Statement and Command

Retrieves blocks from a file or common area.

AOSIVS DG/RDOS UNIX

Format
BLOCK READ [FILE(channel[,start]),]variable

Arguments
channel

start

variable

What It Does

Channel number of a file, expressed as a number or numeric
expression.

Block number from which to start reading, if reading from a file.
start can be a number or numeric expression. This argument is
optional. When it is not given, the value 0 is used to indicate the
beginning of the file.

A string variable or string array element (UNIX only) dimensioned
to at least 512 bytes, or an array variable for an array that holds
at least 512 bytes. Error 55 - Block I/O error is generated if
the variable is less than 512 bytes.

Use BLOCK READ to read data from the common area, and BLOCK READ FILE
to read data from a file. Blocks are 512 bytes. Whenever you use BLOCK READ to
read from a file or common area, you read no less than 512 bytes into your variable.
See Appendix B for the size of the common area on your operating system.

BLOCK READ FILE reads as many blocks from a file as the string variable or array
can hold. If string variable AS is dimensioned to 1,536 bytes, BLOCK READ FILE
reads three blocks into it; however, if AS is 1,535 bytes long, only two blocks are
read. BLOCK READ FILE starts reading blocks sequentially from the block number
you specify·in start. The byte position in the file (CPOS) after a BLOCK READ
FILE is undefined.

Under DO/RDOS, if the string variable is larger than the number of bytes read, the
• variable is padded with nulls; under AOS/VS and UNIX it is not. For example, if you

dimension AS to 512 bytes, but your program reads only 256 bytes, under DO/RDOS I the last 256 bytes of AS contain nulls; under AOSIVS and UNIX, they contain what
they contained prior to the BLOCK READ. If you write programs under AOS/VS or
UNIX, you may want to fill the string with nulls prior to the BLOCK READ to avoid
having garbage in the last part of the string after reading the last block in a file.

BLOCK READ (without FILE) reads from the common area. (You cannot specify
start and channel without FILE.) Each job has its own common area that can be
used to pass information between programs during SWAP and CHAIN statements. See
Appendix B for the size of the common area on your operating system.

1-28 licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued BLOCK READ

BLOCK READ FILE is equivalent to DG/RDOS block I/O'-not buffered. There
could be a problem if the same file is opened for another type of I/O that is buffered.
This is not a Business BASIC problem, but rather a problem inherent with combining
buffered and unbuffered I/O to the same file. The statements in Business BASIC that
use buffered 110 are READ FILE, WRITE FILE, LREAD FILE, LWRITE FILE,
PRINT FILE, and INPUT FILE. Do not mix the BLOCK READiWRITE FILE
statements with the buffered 110 statements.

Number of
blocks read 0 1 2 3 4 Into variable

Size of string I I I I
or array variable I I I I
In bytes 511 1023 1535 2047

512 1024 1536 2048

Figure 1-3 BLOCK READ

How to Use It
To read blocks from a file, first open the file and assign a channel number to it. You
can specify the block number at which to begin reading in the start field. BLOCK
READ FILE reads sequentially from that point.

The size of the variable determines the number of blocks that are transferred. String
variables must be dimensioned to at least 512 bytes. If you make them larger,
BLOCK READ FILE reads in as many entire blocks as the string variable can hold.
The same is true for arrays. For numeric arrays, each element holds 4 bytes in a
double precision system, 6 bytes in a triple precision system, and 8 bytes in a
quadruple precision system.

The data you put in the common area stays there until you log off or until a program
overwrites the common area with BLOCK WRITE. Many utilities and CLI commands
use BLOCK WRITE and thus overwrite the common area.

093-000351 Licensed Material-Property of Data General Corporation 1-29

Commands, Statements, and Functions in Business BASIC

BLOCK READ continued

Examples
1. Line 30 sends XS into the common area, where OPEN finds it. OPEN uses a

BLOCK READ to read XS, then puts a new XS back into the common area with
a BLOCK WRITE. Line 50 reads the new XS.

00005 REM--WlUTE X$ TO COMMON
00007 REM--WHERE OPEN MAY FIND IT.
00010 DIM X$(512)
00020 LET X$-"SUB1,5,SUB2,5,PHYS,6",FILL$(0)
00030 BLOCK WRITE X$
00040 SWAP "OPEN"
00050 BLOCK READ X$

2. Line 40 starts at block 0 in file 0 and reads 2 blocks into AR. Array AR is 4
times 64, or 256 elements.

00010 REM -- READ BLOCKS FROM "INFO" INTO ARRAY AR
00020 DIM AR(3,63)
00030 OPEN FILE(O,O),"INFO"
00040 BLOCK READFILE(O,O),AR.
00050 PRINT AR
00060 CLOSE FILE(O)

1-30 Ucensed Materia/-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

BLOCK WRITE Statement and Command

Outputs blocks of data to a file or common area.

AOSIVS DG/RDOS UNIX

Format
BLOCK WRITE [FILE(channel[,start]),]variable

Arguments
channel

start

variable

What It Does

Channel number of a file, expressed as a number or numeric
expression.

The number of the first block in the file to receive output,
expressed as a number or numeric expression. This argument is
optional. When it is not given, the value 0 is used to indicate the
beginning of the file.

A string variable or string array element (UNIX only) dimensioned
to at least 512 bytes, or an array variable that holds at least 512
bytes. Error number 55 is generated if the variable is less than 512
bytes.

BLOCK WRITE writes data to the common area. BLOCK WRITE FILE writes
blocks of data to a file. A block is 512 bytes. Whenever you use BLOCK WRITE to
write to a file or to the common area, you write at least 512 bytes of data. See
Appendix B for the size of the common area on your operating system.

BLOCK WRITE FILE writes blocks to a file indicated by channel beginning at the
block specified by start. BLOCK WRITE FILE writes as many blocks to a file as
variable can hold. If string-variable AS is dimensioned to 1,536 bytes, BLOCK
WRITE FILE writes three blocks into it. However, if AS is 1,535 bytes long, only two
blocks are written.

For numeric arrays, each element holds 4 bytes in a double precision system, 6 bytes
in a triple precision system, and 8 bytes in a quadruple precision system.

You can start at any block number and write sequentially from that point. The file
position pointer (GPOS) is undefined after a BLOCK WRITE FILE statement.

BLOCK WRITE (without FILE) outputs the contents of variable to the common
area. Figure 1-4 shows the number of blocks written from variable, depending on the
number of bytes in the string or array variable.

093-000351 Licensed Material-Property of Data General Corporation 1-31

Commands. Statements, and· Functions in Business BASIC .

BLOCK WRITE continued

Number of 0 1 2 3 4 blocks written
to file

Size of string I I I I
or array variable I I I I
In bytes 511 1023 1535 2047

512 1024 1536 2048

Figure 1-4 BLOCK WRITE

BLOCK WRITE is equivalent to DG/RDOS block 110 (not buffered). A problem
might occur if the same file is opened for another type of 110 that is buffered. This is
not a Business BASIC problem. but rather a problem inherent with combining
buffered and unbuffered 110 to the same file under DG/RDOS. The statements in
Business BASIC that use buffered 110 are READ FILE, WRITE FILE. LREAD
FILE. LWRITE FILE, PRINT FILE, and INPUT FILE. Do not mix the BLOCK
READIWRITE FILE statements with the buffered I/O statements.

How to Use It
To write blocks to a file, you must open the file and assign a channel number to it.
You can specify where to begin the write operation in the file by indicating a block
number in start. The default for start is the first block in the file.

The size of variable determines the number of blocks written. If the variable is 512
bytes or more in length. but less than 1,024 bytes. only one block is written (i.e., only
the first 512 bytes of variable are written). If variable is 1.024 bytes or more. but less
than 1.536 bytes. only two blocks are written. etc.

The information you send to the common area with a BLOCK WRITE stays in the
common area until you do another BLOCK WRITE to the common area or until you
log off. The common area is always open and ready for use. Many utilities and CLI
commands use BLOCK WRITE and thus overwrite the common area.

1-32 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued BLOCK WRITE

Examples
1. Line 30 sends X$ into the common area, where OPEN finds it. OPEN uses a

BLOCK READ to read X$, then puts a new X$ back into the common area with
a BLOCK WRITE. Line 50 reads the new X$.

00005 REM--WRITE X$ TO COMMON
00007 REM--WHERE OPEN MAY FIND IT.
00010 DIM X$(512)
00020 LET X$="SUB1,5,SUB2,5,PHYS,6",FILL$(0)
00030 BLOCK WRITE X$
00040 SWAP "OPEN"
00050 BLOCK READ X$

2. This example reads 2 blocks from TEMP and writes them to FINAL, using N for
a block counter.

00010 OPEN FILE (0,0), "TEMP"
00020 OPEN FILE (l,O),"FINAL"
00030 LET N=l
00040 DIM X$(1024)
00050 BLOCK READ FILE(O,N),X$

00200 BLOCK WRITE FILE(l,N),X$
00210 LET N=N+2
00220 GOTO 00080

093-000351 Licensed Material-Property of Data General Corporation 1-33

I

Commands, Statements, and Functions in Business BASIC

BREAK Statement

Terminates the DO loop currently executing.

I. AOSIVS·· UNIX ··1·

Format
BREAK

What It Does
The BREAK statement terminates the most recently started DO loop and transfers
control to the statement following the end of the loop. If no matching END LOOP,
WHILE, or UNTIL statement terminates the loop, Error 96 - DO wi th no
matching END LOOP, WHILE or UNTIL is raised.

How to Use It
You can code the BREAK statement within or, by using a GOTO statement, outside
the DO loop you want to terminate. In either case, execution resumes at the
statement following the end of the loop. Both methods are illustrated below.

Examples
1. The BREAK statement is within the DO loop.

00010 X=1
00020 DO
00030 PRINT "I'm in the DO loop"
00040 LET X=X+1
00050 IF X=5 THEN BREAK
00060 WHILE (X<10)
00070 PRINT "This line prints after the BREAK statement."
00080 STOP

• RUN
I'm in the DO loop
I'm in the DO loop
I'm in the DO loop
I'm in the DO loop
This line prints after the BREAK statement.
stop at 00080

1-34 Ucensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued BREAK

2. Here BREAK is used to terminate a DO loop that reads single characters from a
data file.

00010 DIM A$[11.ER$[801
00020 OPEN FILE[01."example"
00030 ON ERR THEN BREAK

00040 DO
00050
00060

READ FILE[01 .A$
WRITE A$

00070 END LOOP
00080 IF SYS(7)<>-6 THEN

00090 LET ER$=ERM$(SYS(7»
00100 PRINT "Error: ";ER$
00110 STOP
00120 ELSE

OPEN data file
BREAK out of loop when we get
an error
\

\ DO loop
/

/
Report any errors other than
end of file

00130 PRINT "End of file reached"
00140 CLOSE FILE[01
00150 END IF
00160 END

* RUN
Here is line 1 of the file
Here is line 2 of the file
Here is line 3 of the file
Here is line 4 of the file
Here is line 5 of the file
End of file reached

*

093-000351 Licensed Material-Property of Data General Corporation 1-35

Commands, Statements, and Functions in Business BASIC

BYE Statement and Command

Logs a user out of Business BASIC.

AOSIVS DG/RDOS UNIX

Format
BYE

What It Does
BYE terminates a Business BASIC session. In DG/RDOS, typing BYE returns you to

I the logon banner. In AOSNS and UNIX systems, BYE terminates your current
Business BASIC process. For example, if you go to Business BASIC from the AOSNS
CLI, BYE returns you to the AOS/VS CLI. If you log on to Business BASIC directly,
BYE logs you off. On UNIX systems, BYE returns you to the calling shell process.

How to Use It
Type BYE as a keyboard command, or precede it with a line number as a program
statement.

1-36 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

CHAIN Statement and Command

Executes a utility or another program.

AOSIVS DG/RDOS UNIX

Format

CHAIN { string-eXpreSSion} THEN I { GOTO line-number} I
"filename" CON

Arguments
filename A literal for a saved file but not for an ASCII listing or source

file. The file must contain a Business BASIC program.

string-expression A string variable, string literal, or string array element (UNIX
only) you've already dimensioned and to which you have assigned
the value of filename.

line-number A valid line number in the program you are chaining to. Execution
begins at the line number rather than the beginning of the
program, and the program's variables retain the values they had
when the program was saved.

What It Does
Use CHAIN to execute another program from the program that is running.

CHAIN searches your directory for filename; if the file is not found, it searches the
library directory (in AOS/VS and UNIX systems, it follows your search path). If
Business BASIC finds the new program, it clears your currently running program from
working storage, loads the new program into your working storage, and executes the
new program. If it does not find the new program, your currently running program
remains in working storage, and you get Error 10 - File does not exist.

By default, the program chained to runs from the lowest line number in the program,
and all variables are cleared as if a RUN had occurred. If you specify THEN GOTO
line-number or THEN CON in a CHAIN statement, Business BASIC acts as if you
used the CON command, and all variables retain the values they had when the
program was saved. CHAIN does not change the status of files. Opened files remain
open and current file position pointers are maintained.

Note: During the execution of a CHAIN statement, keyboard interrupts are
ignored. This means that you may not be able to interrupt a series of short
programs executed using SWAP or CHAIN statements.

093-000351 Licensed Material-Property of Data General Corporation 1-37

Commands, Statements, and Functions in Business BASIC

CHAIN continued

How to Use It
CHAIN may be a program statement or a keyboard mode command. To start the new
program at the beginning, use CHAIN without THEN CON or THEN GOTO. To
resume execution of the new program from its point of interruption, use CHAIN
THEN CON. To start execution at a certain line number, use CHAIN THEN GOTO
line-number. If you want the new program to execute and then return to the original
calling program, use SWAP instead of CHAIN.

Examples
1. Executes program PROG 102.

00090 CHAIN "PROG102"

2. Executes SCRATCH from where it stopped before it was saved.

·CHAIN "SCRATCH" THEN CON

3. Executes PROG3 starting at line 100.

00010 DIM NAME$(lO)
00020 LET NAME$="PROG3"
00030 CHAIN NAME$ THEN GOTO 00100

1-38 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

CHR$ Function

Puts the binary value of a number Into a string.

AOSIVS DG/RDOS UNIX

Format
CHR$(expression[,byte])

Arguments
expression

byte

What It Does

Any numeric expression.

Optional number of bytes up to and including the maximum
number of bytes allowed by your operating system (for example,
triple precision). If you do not include byte, a one-byte string is
formed.

The CHR$ function transfers bytes directly from a numeric expression to a string
variable. Each byte of a string contains the ASCII value of the character it represents;
the several bytes of a numeric variable contain a binary number that translates directly
into the decimal value displayed by PRINT. Numeric variables hold data in four bytes
in a double precision system, six bytes in triple precision, and eight bytes in quadruple
precision. See Appendix B to determine the highest precision allowed by your
operating system. Thus, the maximum number of bytes of expression that CHR$ can
place into a string variable depends on the precision you are using. If the byte
argument is not specified, only one byte is transferred. If the number of bytes to be
transferred is less than the size of the numeric expression, the low-order bytes of the
numeric are used.

How to Use It
Use the CHR$ function in a LET statement or command. The string variable may be
a string or substring. For example, if you say LET A$=123, Business BASIC creates a
three-byte string with digits 1, 2, and 3 as ASCII characters in the string. However, if
you say LET A$=CHR$(123), Business BASIC creates a one-byte string containing
the character represented by the decimal ASCII value 123. See ASC for information
about extracting binary values from strings.

093-000351 Licensed Material-Property of Data General Corporation 1-39

I

I

Commands, Statements, and Functions in Business BASIC

CHR$ continued

Examples
1. The comma between arguments .is a required concatenation operator. This

statement makes a string concatenated to two bytes of C%, four bytes of 0, four
bytes of the value R1*50 and two bytes of the value O.

00080 LET DS = CHRS(C%,2),CHRS(0,4) ,CHRS(R1*50,4) ,CHRS(0,2)

2. This example displays the character value of the numbers 65 to 90.

00010 DIM XS(l)
00020 FOR A = 65 TO 90
00030 LET XS = CHRS(A)
00040 PRINT XS;" ";
00050 NEXT A
* RUN
ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

3. YS is a four-byte string containing the binary value" 5" in its fourth byte. lts
ASCII value is printed.

00010 DIM YS(4)
00020 LET YS=CHR$(5,4)
00030 LET V=ASC(YS)
00040 PRINT V
5

*

4. This example puts the record length (length of AS plus four bytes to hold the
value of the length) at the beginning of the record.

00100 LET RECORDS=CHRS(LEN(A$)+4,4),AS

1-40 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

CLOSE Statement and Command

Closes all open files or a specific file.

AOSIVS DG/RDOS UNIX

Format
CLOSE [FILE (channel)]

Arguments
channel

What It Does

Channel number of an open file you want to close. If channel is
16. it refers to all open files at your terminal and is equivalent to
a CLOSE with no arguments.

CLOSE (by itself) closes all open files. thus freeing their channel numbers. CLOSE
FILE channel closes the file specified by channel and frees the channel for you to use
again; CLOSE FILE(16) is equivalent to CLOSE.

On AOS/VS systems. the CLOSE instruction without an argument also causes all open
INFOS II channels to be closed.

In addition. CLOSE frees the physical channel numbers and closes physical files that
were opened using the LOPEN statement or command. However. it does not
reinitialize LFT ABL$ so that another logical file can be opened using the same logical
file number.

How to Use It
Most programs close files when they finish using the files because a job is limited to a
predetermined number of channels (see Appendix B for the maximum number of
channels for your operating system). If you forget to close a file and you try to open
it. you get an error message that says the file is already open. To solve this problem.
issue a CLOSE or CLOSE FILE command while in keyboard mode and then open
the file.

093-000351 Licensed Material-Property of Data General Corporation 1-41

Commands, Statements, and Functions in Business BASIC

CLOSE

Example
Consider the following program:

00010 REM--QPEN "DATA" ON 2
00020 OPEN FILE(2,O) ,"DATA"
00030 REM--PROCESS FILE

00490 REM--CLOSE "DATA"
00500 CLOSE FILE(2)

00999 REM--CLOSE ALL FILES
01000 CLOSE

continued

If an interrupt, error, or STOP statement occurred before line 500 below and you
tried to run the program again from the beginning, Business BASIC would return:

Error 42 - File already opened

since the CLOSE statement at line 500 had not been executed and you were trying to
execute line 20 again. You could then type the command:

·CLOSE

or

·CLOSE FILE(2)

to resume execution of the program.

1-42 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

COMP Function

Performs a one's complement of an expression.

AOSNS UNIX

Format
COMP(expression)

Arguments
expression Numeric expression or variable to be complemented.

What It Does
The COMP function is used to flip the bits of a binary expression. If a bit is set to 1
in the expression, that bit is set to 0 in the result, and vice versa.

How to Use It
Use the COMP function to mask bits in an expression. For example, to clear a bit in
an expression, perform an AND comparison with the one's complement of the value
with that bit set.

Figure 1-5 shows how to clear the ninth bit of the value 192 by comparing it with the
one's complement of 64.

AND (192. COMP(64))

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Power of 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 expr1 =192

0 expr2 =COMP(64)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESULT =128

Figure 1-5 COMP Function in an AND Comparison

093-000351 Licensed Material-Property of Data General Corporation 1-43

I

Commands, Statements, and Functions in Business BASIC

COMP continued

Example
The COMP function is used to clear the ninth bit of X.

00010 INPUT "Initial value of X: ",X
00020 PRINT "Value of AND(X,COMP(64»: ",AND(X,COMP(64»

* RUN
Initial value of X: 192
Value of AND(X,COMP(64»: 128

1-44 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

CON

Continues execution of a stopped program.

AOSIVS

Format
CON

What It Does

DG/RDOS UNIX

Command

CON continues the execution of a program from the point where it last stopped.
CON does not affect either the values of variables or the status of files (Le., open
files remain open, file position pointers stay where they are, and locks are still active).

CON starts execution at the line immediately following the line at which the program
was interrupted or stopped. It is equivalent to RUN line-number, where line-number is
the number of the first line not executed after a STOP or interruption.

How to Use It
Use CON as a keyboard mode command only. If your program stops for any reason
other than normal termination, you can edit it, test variables for their values, etc.,
then type CON to resume execution of the program.

Example
In this example, the program stops if an invalid age is found in the data. The user
prints the count to verify the age against the original figure, then changes the age
value as needed. CON is used to continue the program from the point at which it
stopped.

00010 DATA 2,4,0,6,8,34,76.89.233,77.34.101.765.-1
00020 LET TOTAL=O
00030 LET COUNT=O
00040 READ AGE
00050 IF AGE<O OR AGE>100 THEN GOTO 00200
00060 LET COUNT=COUNT+1
00070 LET TOTAL=TOTAL+AGE
00080 GOTO 00040
00100 LET AVGAGE=TOTAL/COUNT
oono PRINT "TOTAL AGES= "; TOTAL. "NUMBER OF AGES= "; COUNT, "
AVERAGE AGE= "; AVGAGE
00120 END
00200 IF AGE=-1 THEN GOTO 00100
00210 PRINT "INVALID AGE"" ";AGE
00220 STOP
00230 GOTO 00060

093-000351 Licensed Material-Property of Data General Corporation 1-45

Commands. Statements. and Functions in Business BASIC

CON

*RUN
INVALID AGE 233

STOP AT 00220
* PRINT COUNT 8
* AGE = 23
• CON
INVALID AGE 101

STOP AT 00220
* PRINT COUNT 11
* CON
INVALID AGE = 765

STOP AT 00220
• PRINT COUNT 12
* AGE =75
* CON
TOTAL AGES= 529 NUMBER OF AGES= 13

continued

AVERAGE AGE= 40

1-46 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

CRM$ Function

Crams every three bytes of a string Into two bytes.

AOSIVS DG/RDOS UNIX

Format
string-variable] =CRM$ (string-variable2)

Arguments
string-variable]

string-variable 2

A string variable or substring that receives the crammed string.

A string variable or substring you want to cram into
string-variable]; it can be the same as string-variable] .

What It Does
Every three bytes of string-variable2 are crammed into two bytes of string-variable] .
You can cram only· the following 40 characters: uppercase A to Z. 0 to 9. and four
special characters. You can set the four special characters by using STMA 10. or you
can use the default characters-space. comma (.). minus sign (-). and decimal point
(.). Any character in string-variable2 not in this set is converted to the zero value
character. and when string-variable] is uncrammed. the zero value character becomes
a space.

Cramming is done by assigning a number to each character in the string to be
crammed. The table below is an example of that assignment.

0 space 14 = A
1 = comma (,) 15 ... B
2 minus sign (-) 16 = C
3 decimal point (.) 17 = D
4 0 18 = E
5 1 19 - F
6 2 20 = G

13 = 9 39 = Z

This example illustrates CRM$ and UCM$:

00010 DIM X$(6). Y$(4)
00020 X$="ABCD"
00030 Y$=CRM$(X$)
00040 X$=UCM$(Y$)

093-000351 Licensed Material-Property of Data General Corporation 1-47

Commands, Statements, and Functions in Business BASIC

CRM$ continued

During the execution of line 30, the following calculation takes place:

"A" "B" "C"

The binary value 23016 is placed into the first two bytes of Y$ or Y$(l,2).

"D"
17 * 40 A 2 + 0 * 40 A 1 + 0 = 27200

The binary value 27200 is placed into the second two bytes of Y$ or Y$(3,4).

How to Use It
Use the CRM$ function to shorten the amount of space needed to hold a string. You
can use the CRM$ function only in LET statements and commands because, you have
to assign the three bytes to two bytes ofa string. You can make string-variablel and
string-variable2 the same string variable. You must use UCM$ on a crammed string
before you can print the string or perform other string functions on it.

Examples
1. This example shows that a string is unchanged by the cramming and uncramming

process.

00010
00020
00030
00040
00050
00060
*RUN

DIM X$(6),Y$(9)
LET Y$="ABCDEFGHI"
LET X$=CRM$ (Y$)
LET Y$=""
LET Y$=UCM$(X$)
PRINT Y$

ABCDEFGHI

2. This example shows the difference in length between an uncrammed string and a
crammed string.

*DIM X$(6)
*LET X$="SIXCHR"
*PRINT LEN (X$) 6
*LET X$=CRM$(X$)
*PRINT LEN(X$) 4

1-48 Ucensed Material-Property of Data General Corporation 093:"'000351

Commands, Statements, and Functions in Business BASIC

DATA Statement

Specifies values for variables In READ statements.

AOSIVS DG/RDOS UNIX

Format
DATA value[,value ...]

Arguments
value A numeric constant or a string literal in quotation marks.

What It Does
The values in all DATA statements in a program form a single data list. The first
value in the list is the first value in the DATA statement with the lowest line number
and the last value in the list is the last value in the DATA statement with the highest
line number. Each item in the variable list of a READ statement picks up a value
from the data list: the first variable in a READ picks up the first value in the data list,
the next variable picks up the next value, etc. You can make a READ statement start
at a particular line in the data list by using RESTORE.

How to Use It
Use DATA statements with READ statements to provide values for variables quickly
and easily. You can have many DATA statements in a program, and many values of
mixed types (numeric and string) in a single DATA statement, separated by commas.
DATA statements can appear anywhere in a program, even after STOP statements,
because Business BASIC does not execute DATA statements. You cannot use DATA
after THEN in conditional statements such as IF ... THEN, ON ERR THEN, or ON
IKEY THEN.

Example
This example shows both numeric constants and string literals used as DATA values.

00005 DIM A$(20),B$(20)
00010 READ X,Y,A$,B$
00020 PRINT X,Y,A$,B$
00050 END
00060 DATA 2,4, "HELLO", "GOODBYE"
*RUN

2 4 HELLO GOODBYE

093-000351 Licensed Material-Property of Data General Corporation 1-49

Commands, Statements, and Functions in Business BASIC

DEF Statement

Defines your own function.

AOSNS DG/RDOS UNIX

Format
DEF FNa(variable)=expression

Arguments

a

variable

expression

What It Does

A single letter in the range A to Z that serves as the function
name with the FN prefix.

A dummy numeric variable to be replaced with a numeric
expression when you refer to the function. For UNIX only, you
can specify more than one variable delimited by commas. See
Appendix B for the number of variables you can specify on your
operating system.

A numeric expression for the calculation you want to perform.

D EF allows you to define a function that you can refer to in a program without
having to repeat the function specification. This is called a user-defined function.
When you refer to a defined function by its FN-name, the value you supply for the
variable is used in the function's calculations.

How to Use It
When you define a function, you create a name for it: use a single letter with the
prefix FN (Le., FNB). You also supply a variable in parentheses and a numeric
expression that is the calculation you want your function to perform. variable can also
be used in expression.

When you refer to the function by its· FN-name, you supply a value for the variable
(such as FNA(l2) or FNB(X+Y». This value replaces the variable in expression, and
the function performs the calculations using this value. If the variable is not in the
expression, the value you supply is not used, but a value must be supplied.

You can use a function's FN-name with a supplied value for the variable in any
statement in which you can have numeric expressions. Your expression can include
one or more previously defined functions. This is called nesting. See Appendix B for
the number of nesting levels allowed on your operating system. All functions defined
in a program exist only for the program in working storage. DEF limits you to
single-line formulas. For longer formulas, use subroutines.

1-50 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued DEF

Examples
1. This example defines two functions. The second user-defined function uses the

first function in its definition.

00010 DIM A$[l]
00020 INPUT "Enter three numbers and a character: ",X ,Y,Z,A$
00030 DEF FNA(NUM) = X*Y+NUM+ASC(A$)
00040 DEF FNB(NUM) - 2*FNA(3*NUM)
00050 PRINT FNA(Z)
00060 PRINT FNB(Z)

* RUN
Enter three numbers and a character: lO,20,30,B
296
712

2. This example uses more than one variable.

00010 DEF FNA(A,B,C,D)-A+B+C+D
00020 M=2 \ N=10 \ 0=3 \ P-4
00030 X=FNA(M,N,O,P)
00040 PRINT X

• RUN
19

093-000351 Licensed Material-Property of Data General Corporation 1-51

Commands, Statements, and Functions in Business BASIC

DELAY Statement and Command

Delays execution of the next program statement or command.

AOSNS DG/RDOS UNIX

Format
DELAY expression

Arguments
expression A numeric expression that represents the number of lOths of a

second that the program will be delayed. The maximum value
allowed for expression is 32767.

What It Does
DELAY holds up the execution of the next program statement.

How to Use It
You supply expression to define how many lOths of a second the program should
delay. If you press the interrupt key during a delay, you stop the delay and return to
keyboard mode.

For AOS/VS or UNIX, DELAY 0 is valid and results in immediate output to the
terminal. This statement is similar to STMA 8,5.

Examples
1. This statement causes a two-second delay.

00010 DELAY 20

2. The delay between the printing of each number increases proportionately by the
value of that number.

00010 FOR K = 10 TO 30 STEP 5
00020 DELAY K
00030 PRINT K;
00040 NEXT K
*RUN

10 15 20 25 30

1-52 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

DELETE Statement and Command

Deletes a file.

AOSNS DG/RDOS UNIX

Format

DELETE [error-code,] I string-expression I
"filename"

Arguments
error-code An optional variable that receives any error code generated as a

result of the execution of the DELETE statement. If an error
occurs, the number returned in error code will be a negative
number that refers to a DG/RDOS error. Use the ERM$ function I
to retrieve the error message associated with the error returned. It
will return a value of 0 if a successful deletion occurs. This
argument must be initialized (Le., set to some value) before it is
used.

string-expression A string variable, string literal, substring, or string array element
(UNIX only) that represents filename.

filename A string literal in quotation marks that is the name of a file in the
current directory or the directory or subdirectory specified.

What It Does
DELETE searches the current directory for filename (or for the file represented by
the string expression) and erases filename and the file itself. This frees up space used
by the file. The optional variable error-code receives the error code if any problem
occurs during the deletion. The value in error-code is 0 if a successful deletion
occurs. If a problem occurs and the error code argument is not specified, a default
error trap results.

NOTE: The use of the error-code argument suppresses execution of the default error
trap (which would cause the program to halt) or any ON ERR condition. It
returns instead to error-code the same error code as would have been
supplied by the applicable SYS error function. Therefore, you must check
the error-code value to determine whether an error has occurred.

How to Use It
In DG/RDOS systems, you can specify a directory or subdirectory in filename, but you
must follow the DG/RDOS naming conventions. If you use string-expression, it must
already be dimensioned and assigned a value of filename. In AOSNS and UNIX
systems, use your operating system's naming conventions for filenames. In all systems,
if filename is a link, the resolution file is deleted and the link remains.

093-000351 Licensed Material-Property of Data General Corporation 1-53

Commands,Statements, and Functions in Business BASIC

DELETE continued

• NOTE: On UNIX systems, you must use a Business BASIC link.

The error-code argument is useful for setting up your own error routines when a

I deletion error results. This argument receives a negative number representing a
DG/RDOS error code if any problem occurs with the deletion; it is 0 if the deletion is
successful. If a problem occurs and error-code is not present, then an error trap
occurs.

Examples
1.· This example deletes a file.

* DELETE "FILEI01.LS"

2. Note that the error routine used in this example is a very simple one. Many types
of error routines can be used once the value of ERCODE is checked.

00010 LET ERCODE=O
00020 DELETE ERCODE, "TEST"
00030 IF ERCODE<>O THEN GOTO 00060
00040 PRINT "FILE DELETED"
00050 GOTO 00070
00060 PRINT "UNSUCCESSFUL DELETION, ERROR CODE VALUE: ",ERCODE
00070 END

Below are the results of running program 2, first with and then without the
existence of the file named "TEST".

* RUN
FILE DELETED

* RUN
UNSUCCESSFUL DELETION, ERROR CODE VALUE: -10

3. This example is a modification of example 2. It uses DELETE without the
ERCODE argument.

00010 DELETE "TEST"
00020 END

* RUN

* RUN

I/O ERROR 10 AT 00010 - File does not exist

The first run of this program illustrates a successful deletion. The second run
causes Business BASIC to generate a default error message.

1-54 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

4. This error routine uses ERM$.

00010 LET ERCODE=O
00020 DELETE ERCODE,"XXX"
00030 IF ERCODE=O THEN
00040 PRINT "FILE DELETED"
00050 ELSE
00060 DIM A$[100]
00070 LET A$=ERM$(ERCODE)
00080 PRINT "ERROR ";ERCODE;" ";A$
00090 END IF

• RUN

ERROR -10 File does not exist

093-000351 Licensed Material-Property of Data General Corporation

DELETE

1-55

Commands, Statements, and Functions in Business BASIC

DELREC Statement and Command

Deletes a record from a linked-available-record file and adds it to
the deleted-record chain.

AOSNS DG/RDOS UNIX

Format
D ELREC logical-file-number ,record-number

Arguments
logical-file-number A numeric expression yielqing the logical file number of a data file

opened using LOPEN FILE.

record-number

What It Does

The relative record number (1 to end of file) of the record that is
to be deleted.

DELREC deletes data records in dynamically allocated files to recover dynamic space.
DELREC flags as deleted the record specified by record-number in the file specified
by logical-file-number and adds the record to the deleted-record chain. DELREC flags
the record by changing the value of the first two bytes in the record (the status bytes)
to zero.

NOTE: This statement is preferable to the DELREC.SL subroutine since it performs
automatic locking, is faster. and frees the code space normally occupied by
the DELREC.SL subroutine. However, the DELREC statement does not
work with files in the PARAM file database structure. For PARAM files, you
must use the DELREC.SL subroutine instead unless you use the physical
format of LOPEN.

How to Use It
Before using DELREC to delete a record, you should check the status bytes to make
certain the record has not been deleted. Deleting the same record twice corrupts the
deleted~record chain. The LRELINK utility program can correct the problem, but you
can avoid using it by ensuring that the record being deleted is the one you want to
delete. Record 0 of a linked available record file is automatically locked during the
execution of the DELREC statement.

1-56 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

Example

00130 DIM LFTABL$(78),T9$(544)
00140 LET LFTABL$=FILL$(O)
00150 LOPEN FILE[2,T9$) ,"MYINDEX"
00160 LOPEN FILE[3,T9$) ,"MYDATA"
00170 LET RECNO=-l

00300 INPUT "CUSTOMER # :",CNUM
00310 LET KEY$=CHR$(CNUM,4)
00320 KFIND 2,T9$,KEY$,RECNO
00330 IF RECNO<=O THEN GOTO 04000
00340 LOCK l,3,RECNO
00350 LREAD FILE[3,RECNO) ,MYDATA$

00360 UNPACK "J",MYDATA$,STATUS%

DELREC

:Open MYINDEX as an index file.
:Open MYDATA as database file.

:Get customer number as key.
:Convert to key string.
:Find this customer.
:Didn't find him.
:Lock it before reading.
:Read his record.
:Validate record for deletion.

00370 IF STATUS%<=O THEN GOTO 05000 :Record already deleted.

00500 KDEL 2,T9$,KEY$,RECNO
00510 DELREC 3,RECNO
00520 UNLOCK 1
00530 END
04000 PRINT "CUSTOMER NOT FOUND"

:Delete key from MYINDEX.
:Delete data record from MYDATA.
:Unlock data record now.

093-000351 Licensed Material-Property of Data General Corporation 1-57

Commands, Statements, and Functions in Business BASIC

DIM Statement and Command

Sets dimensions for arrays and/or strings.

AOSIVS DG/RDOS UNIX

Format
AOSNS and DG/RDOS Systems:

I string-variable(n) I
DIM numeric-array (column)

numeric-array (row, column)

UNIX Systems:

DIM

string-variable (n)
numeric-array (column)
numeric-array (row, column)
numeric-array (dimenO, ... ,dimen7)

string-array (n ,'dimenO, ... , dimen 7)

Arguments
string-variable

numeric-array

string-array

n

column

row

dimen

1-58

A string variable name ending with a $ symbol.

Variable name for an array.

A string array name ending with a $ symbol.

The maximum string length of string-variable or of an element of
string-array. It can be a variable or a numeric expression.

A numeric expression or a variable that specifies the number of
elements in a one-dimensional array or the array position of the
last element in a two-dimensional array. Start with 0 in
determining the count to specify in column.

A numeric expression or variable that specifies the array position
of the last row in a two-dimensional array. Start with 0 in
determining the count to specify in row.

The number of elements in a numeric-array or string-array
dimension, beginning with dimension O. dimen can be a numeric
expression or a variable. You can specify up to eight dimensions.
(UNIX only)

Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued DIM

What It Does
Business BASIC uses the information you supply in a DIM statement or command to
allocate storage. The value of column defines how many column positions a
one-dimensional array needs with one element per column position. If you specify row
and column, these values determine how many row and column positions a
two-dimensional array can contain. All numeric arrays start at column position O. For
example, a one-dimensional array with 16 elements starts at column position 0 and
ends at column position 15. This array is dimensioned using" 15" as the value of
column.

For string arrays on UNIX systems, use dimen to specify the number of elements in
each dimension. Code one dimen parameter for each dimension. Each string array
dimension starts at position 1.

How to Use It
If you use a numeric array but do not declare it in a DIM statement, Business BASIC
sets aside 11 elements (column positions 0 to 10) for a one-dimensional array and
121 elements (columns 0 to 10 and rows 0 to 10) for a two-dimensional array. An
undeclared one-dimensional array cannot have more than 11 elements, and an
undeclared two-dimensional array cannot have more than 121 elements. If you need
more space, dimension the array with DIM. The number of elements you can place in
an array is restricted only by the amount of available memory.

You must dimension string variables and string arrays; no default exists. The value of
n defines how many characters you will have in a string. For string variables and string
arrays, n begins with 1, not 0, so AS(10) has 10 characters.

You can dimension a numeric array and a string variable or several numeric arrays
and string variables in the same DIM statement in any order. On UNIX systems, you
can combine string arrays with string variables and numeric arrays. You can also use
separate DIM statements. Use parentheses or square brackets to enclose your
subscripts. Express the values for row and column as variables or numeric expressions;
if you use variables, they must have pre-assigned values. Your variable for an array
must follow the naming rules for Business BASIC variables.

Your string-variable must follow the rules governing string variables. The value you
supply for n (string length) can be a variable or a numeric expression. Again, use
either parentheses or square brackets to enclose your subscripts.

See Appendix B for the maximum string length, variable name length, and number of
program variables allowed on your operating system.

To refer to any element of an array or any character of a string, use the name of the
array or the string variable and supply the identifying subscript.

On UNIX systems, to refer to the entire string in a string array element, do not
specify a length (n), but do include a semicolon. For example, the command
X$=A$ (; 1,1) refers to the entire string at element 1, 1. You can refer to a substring of
a particular element's string by specifying the range of bytes before the semicolon. For
example, the command X$=A$(4,9;3,4) places bytes 4-9 of the string at element 3,4
into XS.

093-000351 Licensed MaterIal-Property of Data General CorporatIon 1-59

Commands, Statements, and Functions in Business BASIC

DIM continued

Use DIM as either a program statement or a keyboard mode command. If you use
subscripted variables in a DIM statement or command, you must supply values for the
variables before executing DIM. If used as a command, DIM applies only to a
program already executing (Le., you must use DIM before using CON), because a
RUN resets all program variables.

You can redimension a previously dimensioned array or string variable during
execution of a program, but you cannot alter the size of the storage space already
allocated for it. Numeric arrays, string arrays, and string variables can be
redimensioned only to the same number of elements or fewer; if fewer, you cannot
use or refer to locations in the original array that are not used in the redimensioned
array. Use redimensioning primarily to change the subscripts of arrays with two or
more dimensions.

Examples
1. SALES is a 6x7 element two-dimensional array. C is a 21-element

one-dimensional array. STRING$ is a 30-character string variable.

00010 DIM SALES(S,6),C(20),STRINO$(30)

2. This statement redimensions SALES to a 7x6 two-dimensional array, redimensions
one-dimensional array C of 21 elements to be a 3x7 two-dimensional array, and
changes the length of STRING$ to 28 characters.

00020 DIM SALES(6,S) ,C(2,6) , STRINO$ (28)

3. This example stops a program and dimensions arrays using variables with
pre-assigned values.

STOP AT 00070
* DIM SALES(X,Y),C(J),STRING$(Z)
* CON

4. This statement dimensions a 1x2 two-dimensional string array with 80-byte
elements.

* 10 DIM SA$(80;0,1)

S. This UNIX example uses string arrays to determine which offices are occupied in
two buildings. Each building has three halls with 20 offices on each hall.

00010 DIM LOCAT$[2S;1,2,19] , NAME $ [2S]
00020 INPUT "Enter Employee Name or 'END'; ",NAME$
00030 IF NAME$[1,3]="END" THEN GOTO 00090
00040 INPUT "Enter Building #; ", B, " Hall #; ", H," Office #; ",0
OOOSO PRINT
00060 LET B=B-1 \ H=H-1 \ 0=0-1
00070 LET LOCAT$[;B,H,O]=NAME$
00080 GOTO 00020
00090 REM Display only the offices that are occupied
00100 FOR B=O TO 1
00110
00120

1-60

PRINT
PRINT "Building "; B+1 ;

Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

FOR H=O TO 2
PRINT TAB (5) ,"Hall "; H+1
FOR 0=0 TO 19

00130
00140
00150
00160
00170
00180
00190

IF LOCAT$[l,l;B,H,O]="" THEN COTO 00180
PRINT TAB(23);"Office ";0+1;LOCAT$[1,25;B,H,0]

NEXT 0
NEXT H

00200 NEXT B

• RUN
Enter Employee Name or 'END' : Barry
Enter Building #: 1 Hall #: 1 Office #: 1

Enter Employee Name or 'END' : Wendy
Enter Building #: 1 Hall #: 1 Office #: 2

Enter Employee Name or 'END': Keith
Enter Building #: 1 Hall #: 1 Office #: 3

Enter Employee Name or 'END' : Steve
Enter Building #: 1 Hall #: 2 Office #: 1

Enter Employee Name or 'END' : Diana
Enter Building #: 1 Hall #: 2 Office #: 2

Enter Employee Name or 'END': Priscilla
Enter Building #: 1 Hall #: 3 Office #: 1

Enter Employee Name or 'END': Caroline
Enter Building #: 1 Hall #: 3 Office #: 2

Enter Employee Name or 'END': Debbie
Enter Building #: 2 Hall #: 1 Office #: 1

Enter Employee Name or 'END': END

Building 1 Hall 1
Office 1 Barry
Office 2 Wendy
Office 3 Keith

Hall 2
Office 1 steve
Office 2 Diana

Hall 3
Office 1 Priscilla
Office 2 Caroline

Building 2 Hall 1
Office 1 Debbie

Hall 2
Hall 3

*

093-000351 Licensed Material-Property of Data General Corporation

DIM

1..,.61

Commands, Statements, and Functions in Business BASIC

OIR Statement and Command

Displays the current directory or moves to another directory.

AOSIVS DG/RDOS UNIX

Format

[{ "pathname" }]
DIR string-variable

Arguments
pathname

string-variable

What It Does

The name of a directory or a path to a directory expressed as a
string literal in quotation marks. For rules about AOS/VS
pathnames, see the AOS/vS CLI User's Manual. For rules about
UNIX pathnames, see your programmer's reference manual. In
DG/RDOS, this is a directory specifier. See Using the DGIRDOS
Command Line Interpreter for more information.

Variable to represent pathname or to receive a value of pathname.

DIR without an argument displays the current directory's name.DIR with a pathname
argument (or a string variable representing a pathname) changes the current directory
to the directory specified in pathname. However, if the string variable is a null string,
it receives a value of the pathname of the current directory. Only "AA" accounts can
use a DIR statement or command, unless your Business BASIC system has been
generated to allow all users to use privileged statements and commands. In DG/RDOS,
DIR changes the system directory as well as the user's current directory.

How to Use It
Use DIR as a keyboard mode command or a program statement. To specify a
directory that is within the current directory (i.e., a subdirectory), specify the
directory's name. To specify a directory that is not within the current directory,
specify a pathname. To find out the current directory in a DIR program statement,
use a null string variable as an argument (as shown in the example below).

1-62 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued DIR

Example
Line 20 of this example gets the current directory and assigns it to AS. Line 30
displays the current directory name. Line 40 moves to directory DEPT43. Line SO
swaps to and executes the program ACCT.PY. Line 60 moves to the previous
directory (its name is still in AS). A subdirectory is necessary in AOS/VS and UNIX
systems.

00010 DIM A$(20)
00020 DIR A$
00030 PRINT A$
00040 DIR "DEPT43"
00050 SWAP "ACCT.PY"
00060 DIR A$

093-000351 Ucensed Material-Property of Data General Corporation 1-63

I

Commands. Statements. and Functions in Business BASIC

DO WHILE/UNTIL/END LOOP Statement

Defines a program loop.

AOSNS UNIX

Formats
1. Condition at the top or condition not used.

DO [WHILE expression]

(Block of executable statements)

END LOOP

2. Condition at the bottom.

DO

(Block of executable statements)

I WHILE I
UNTIL

expression

Arguments
expression A Boolean expression that is evaluated each time the loop is

executed. If expression is true. the loop is executed; if it is false,
the loop is exited.

What It Does
If you code a WHILE or UNTIL condition. Business BASIC performs the block of
executable statements either while expression is true or until expression is true. When
you use WHILE or UNTIL at the bottom of the loop. the END LOOP statement is
not required.

When WHILE expression appears at the top of the loop. a matching END LOOP
statement is required. If no matching END LOOP statement is found. Error 96 -
DO with no matching END LOOP. WHILE or UNTIL is raised. You cannot code an
UNTIL condition at the top of a DO loop.

If expression appears at the top of the loop. it is evaluated before any of the loop
body is executed. If expression is false when it is first evaluated. the loop is not
executed. As long as expression is true. the loop is executed. When expression
becomes false. control is transferred to the statement following the matching END
LOOP statement. and the loop becomes inactive.

1-64 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued DO WHILE/UNTIL/END LOOP

If WHILE expression or UNTIL expression appears after the body of executable
statements, the loop is executed at least one time before expression is evaluated. If
Business BASIC encounters a WHILE statement at the top of the loop and a WHILE
or UNTIL statement at the bottom of the same loop, it returns Error 98 - DO with
conditional at top and bottom.

An END LOOP, WHILE or UNTIL statement without a corresponding DO statement
causes Error 97 - END LOOP, WHILE or UNTIL with no matching DO.

How to Use It
You can nest up to 32 levels of DO loops.

You can enter and exit DO loops without affecting loop execution. When you exit a
loop (using a GOTO or GOSUB statement), the loop remains active. To terminate
the loop before exiting, use the BREAK statement or STMA 8,6.

If a Business BASIC program ends while one or more DO loops are still active (that
is, their END LOOP statements have been omitted), no error is generated but the
loops remain active.

You can code a DO loop without a condition at the top or bottom of the loop. This
creates an endless loop unless you include code that allows you to break out of the
loop.

Examples
1. This program is an endless DO loop.

00010 DIM NAME $ [30] , NAME 2 $ [30]
00020 OPEN FILE[O,l] ,"VISITOR_LOG"
00030 DO
00040 PRINT @(-30)
00050 PRINT @(3,25);" V I SIT 0 R ' S LOG"
00060 INPUT @(13,14),"ENTER YOUR NAME: ",NAME$
00070 IF NAME$="END OF DAY" THEN BREAK
00080 INPUT @(15,10),"PERSON TO MEET WITH: ",NAME2$
00090 PRINT FILE[O] ,"VISITOR NAME: ";NAME$
00100 PRINT FILE[O],"MET WITH: ";NAME2$
00110 PRINT FILE[O] ,"DATE: ";SYS(2);"/";SYS(1);"/";SYS(3)
00120 PRINT FILE[O] ,"TIME: ";SYS(14);":";SYS(13)
00130 PRINT FILE[O]
00140 END LOOP
00150 CLOSE FILE[O]
00160 END

093-000351 Licensed Material-Property of Data General Corporation 1-65

Commands, Statements, and Functions in Business BASIC

DO WHILE/UNTIL/END LOOP continued

2. This DO WHILE loop has the condition at the bottom of the loop. The loop is
executed once before the condition is checked.

00010 LET X=5
00020 DO
00030 PRINT "This line prints once before the condition is
checked."
00040 WHILE (X < 5)

* RUN
This line prints once before the condition is checked.

3. In this example, the WHILE condition is at the top of the loop. Because the
WHILE condition is evaluated before the loop is executed, an error occurs when
this program is run.

• 10 DATA 1,2,3,0,4
* 15 X=-1
* 20 DO WHILE X<>O
* 30 READ X
* 40 Y = 10/X
* 50 PRINT Y
* 60 END LOOP
* RUN
10

5
3
Error 16 at 40 - Arithmetic

4. This example uses an UNTIL condition at the bottom of the loop.

* 10 LET X=1
* 20 LET POWERS_OF_TWO=O
* 30 DO
* 35 LET POWERS_OF_TWO=POWERS_OF_TWO+l
* 40 LET X=SHFT(X,I)
* 70 UNTIL X=512
* 80 PRINT "512 = 2 raised to the";POWERS_OF_TWO;"th power"

• run
512 = 2 raised to the 9th power

1-66 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

END Statement

Terminates program execution.

AOSNS DG/RDOS UNIX

Format
END

What It Does
END terminates program execution. Without an END or STOP statement, the
program terminates after its highest numbered statement.

END does not cause a message to be written to the terminal, but a STOP statement
does.

How to Use It
Use END only as a program statement. It does not have to be the last statement in
your program, but it does terminate the program when it is executed.

093-000351 Licensed Material-Property of Data General Corporation 1-67

I

Commands. Statements. and Functions in Business BASIC

END LOOP

Terminates DO loop execution.

AOSIVS

Format
END LOOP

What It Does

UNIX

END LOOP terminates execution of the last active DO loop.

How to Use It

Statement

Use END LOOP only as a program statement. It should follow the DO loop that it
terminates. For more information. see DO WHILE/UNTIL/END LOOP.

1-68 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

ENTER Statement and Command

Merges· program source statements with working storage.

AOSIVS DG/RDOS UNIX

Format

{ "filename" }
ENTER . . bl strmg-varla e

Arguments
filename The name of a disk file or device, expressed as a string literal in

quotation marks, containing BASIC source statements in character
(ASCII) format.

string-variable

What It Does

A string variable already dimensioned and assigned a filename
value.

ENTER is the command to merge programs. Any program that you list to a file is in
ASCII (readable) format and can be entered. ENTER searches the current directory
for filename; if it does not find it, it searches the library directory (in AOS/VS and
UNIX systems. it follows your search path). If it does not find filename there, it gives
you an error message. If it does find filename, ENTER brings the new program
statements into working storage. When a line number of the entered program matches
a line number of the program currently in working storage, the entered statement
replaces the current program statement. For line numbers that do not have a match,
Business BASIC inserts the entered statement into the proper sequence of current
program statements. If you do not want to merge the entered file with working
storage, then you must execute a NEW statement before the ENTER statement.

ENTER does not restore DATA statements; to restore DATA statements, use
RESTORE. In a partially executed program that you have listed, variable assignments
and file status do not remain fixed when you enter the program.

How to Use It
Use ENTER either as a keyboard mode command or a program statement. Your
filename is a source file created by listing a program to a file or by using an editor. In
addition. the source file can be a file. in character format, that was created outside
the Business BASIC system.

Because a subroutine is a source file (with an .SL extension) and not a program file,
you must enter a Business BASIC subroutine into your program to use it. See LIST
for more information about character format programs, listing files, and source files.

093-000351 Licensed Material-Property of Data General Corporation 1-69

Commands, Statements, and Functions in Business BASIC

ENTER continued

Example
In this example, two programs are merged. Note that line 10 is overwritten by the
second program.

• NEW
10 PRINT "THIS IS LINE 10."
20 PRINT "THIS IS TEST 1. "
30 PRINT
• LIST "TEST1"

• NEW
10 PRINT "THIS IS THE NEW LINE 10."
100 PRINT "THIS IS TEST2."
• LIST "TEST2"

• NEW
• ENTER "TEST1"
• ENTER "TEST2"
• LIST
00010 PRINT "THIS IS THE NEW LINE 10."
00020 PRINT "THIS IS TESTl."
00030 PRINT
00100 PRINT "THIS IS TEST2." .

1-70 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

EOF Function

Checks for end of file.

AOSNS DG/RDOS UNIX

Format
EOF(channel)

Arguments
channel A numeric expression for the channel number of a file opened for

reading (input or input/output).

What It Does
The EOF function returns 1 if it detects an end of file; otherwise it returns O. The
EOF function cannot detect the end of a subfile, only the end of a physical file.
POSITION FILE resets the end-of-file flag.

NOTE: If you use EOF for an unused channel (i.e., one without an open file), -1 is
returned in EOF.

How to Use It
EOF is used frequently in IF ... THEN statements to make a conditional transfer at the
end of a file. An IF EOF(channel) THEN statement executes statement when the
EOF returns 1. Put your EOF statement after your READ FILE or INPUT FILE
statement. You must keep track of a subfile's length to detect its end, since EOF does
not work with subfiles. Use the status word described in MTDIO to detect the end of
a tape file.

The EOF flag is set on the first attempt to read or input beyond the end of the file.

Example
00010 OPEN FILE (1, 3) , '1 INPUTFILE"
00020 READ FILE(l),A,B,C,D,E
00030 IF EOF(l) THEN GOTO 00200
00040 PRINT A,B,C,D
00050 GOTO 00020
00200 PRINT "END OF FILE"
00210 CLOSE FILE(l)

093-000351 licensed Material-Property of Data General Corporation 1-71

Commands, Statements, and Functions in Business BASIC

ERASE Statement and Command

Erases program statements.

AOSIVS DG/RDOS UNIX

Format
ERASE linenumber 1, [linenumber2]

Arguments
linen umber A valid line number in your program or a valid range of lines

(linenumber doesn't have to be an exact line number in the
program).

What It Does
ERASE removes linenumber 1 through linenumber2 inclusively from your program. If
no lines exist in your program in the range linen umber 1 to linenumber2, you get an
error message. If linenumberl and/or linenumber2 do not exist but there are lines with
numbers iIi betweeri them, Business BASIC erases those lines. If a linenumberl is
foll()wed by a comma, all lines from linenumber 1 to the end of the program are
erased.

How to Use It
Use ERASE either as a program statement or a keyboard command. As a command
you do. not have to type the keyword ERASE. When using ERASE as a statement,
give the line number twice to erase a single line;

Examples
1. This erases lines 1500 through 1900.

00010 ERASE 1500,1900

2. This command erases line 100 of the program curreritly in working storage.

* ERASE 100,100

3. This command erases from line 600 to the end of the program currently in
working storage.

* ERASE 600,

1-72 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

ERM$ Function

Retrieves an error message.

AOSNS DG/RDOS UNIX

Format
LET string-variable=ERM$ (number).

Arguments
string-variable

number

What It Does

A string variable, substring, or string array element (UNIX only)
used to receive the error message; it must be dimensioned large
enough to contain the error message.

The record number in the BASIC.ER file for the error message
you want.

ERM$ retrieves the error message specified by number. The number typically comes
from SYS(7), SYS(40) , or SYS(41).

NOTE: SYS(40) and SYS(41) are available only on AOSNS and UNIX systems. I

How to Use It
When you trap errors in your program (by using ON ERR), you can have the
program print the appropriate error message. Also, you can generate your own unique
error messages by adding messages to the end of the BASIC.ER file and then using
number to specify which message you want to retrieve.

You can use ERM$ only in LET statements or commands because you have to assign
the error message to string-variable. The largest error message is 64 bytes long.

See SYS, AERM$, and UERM$ for more information about using error functions.

093-000351 Licensed Material-Property of Data General Corporation 1-73

Commands, Statements, and Functions in Business BASIC

ERM$ continued

Examples
1. When Business BASIC encounters an error in this program, control passes to line

500, where the appropriate error code is selected and the error message associated
with that error code is printed.

00010 ON ERR THEN GOTO 00500
00020 DIM ER$(64)

00500 REM ERROR ROUTINE
00510 IF SYS(7)=-60 THEN
00520 LET ER = SYS(31)
00530 LET ER$ = AERM$(ER)
00540 ELSE
00550 LET ER = SYS(7)
00560 LET ER$ = ERM$(ER)
00570 END IF
00580 PRINT "ERROR # ";ER; "= ";ER$
00590 END

2. This example uses ERM$, AERM$, and UERM$ to retrieve error messages from
SYS(41), SYS(42), and SYS(43).

01000 REM * error handler
01010 IF SYS(41)=-60 THEN :Same as SYS(7) and SYS(40)
01012 IF SYS(42)=-276 THEN
01014 LET ER$=UERM$(SYS(43»
01016 ELSE
01020 LET ER$=AERM$(SYS(42» :Same as SYS(31)
01025 END IF
01030 ELSE
01040 LET ER$=ERM$(SYS(41» :Same as SYS(7) and SYS(40)
01050 END IF

1-74 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

EXTRACT Statement

Extracts the next field from a string.

AOSIVS DGIRDOS UNIX

Format
EXTRACT field,input-string,delimiters,position

Arguments
field

input-string

delimiters

A string variable receiving the field extracted from input-string.

A string expression containing the field to be extracted.

A string expression containing characters or nulls to be recognized
as delimiters for the fields in input-string.

position A numeric variable pointing to the last delimiter processed in
input-string. It must be initialized toO before the initial EXTRACT
statement. When EXTRACT reaches the end of input-string or I
when EXTRACT ends without finding a match, position is set
to -1. .

What It Does
EXTRACT scans input-string for each character listed in delimiters . . Scanning starts
with the relative location indicated by position plus 1 (skipping leading blanks). The
substring beginning with the first nonblank character and continuing through the last
nonblank character that is not the set indicated by delimiters is placed in field. The
relative location of the terminating character (a blank or a character in delimiters) is
placed in position. When EXTRACT reaches the end of the input-string or when
EXTRACT ends without finding a match, position is set to -1.

How to Use It

Enter EXTRACT as a program statement. Make sure the position argument is
initialized to 0 before EXTRACT executes.

Example
This program prompts the user to enter an input string and the field delimiters. It
then uses EXTRACT to remove the fields from the input string until EXTRACT
reaches the end of string. Each time it executes EXTRACT, the program displays the
position of the delimiter that marked the end of the substring and the substring that
was moved into the field argument (CS). When the end of the string is reached in the
first pass through the program, the position argument is set to -1; the substring is Z.
The program then returns to line 00020 and prompts to user to enter another input
string and delimiters. This continues until the interrupt key is pressed.

093-000351 Ucensed Materlal~Property of Data General Corporation 1-75

I

I

Commands, Statements, and Functions in Business BASIC

EXTRACT

00010 DIM AS [100] ,BS[100] ,CS[20]
00020 INPUT AS," DELIMITERS: ",BS
00030 LET P=O
00040 EXTRACT CS,AS,BS,P
00050 PRINT "P= "; P," ARG="; CS
00060 IF P>O THEN GOTO 00040
00080 GOTO 00020
00090 REM USE ESCAPE OR OTHER INTERRUPT KEY TO EXIT

? ABCDE1FGHIJ2KL3MNOP4XY6Z DELIMITERS: 124567
P= 6 ARG=ABCDE
P= 12 ARG=FGHIJ
P= 20 ARG=KL3MNOP
p... 23 ARG=XY
P= -1 ARG=Z

continued

I This time the user enters an input string but no delimiters. Since there are no blanks
in the input string and no other delimiters were entered, the substring that is moved to
the field argument (CS) is identical to the input string, and the position argument (P)
is set to -1. The following examples show the results you get based on other input
strings and delimiter combinations. . .

? 123456567789 DELIMITERS:
P= -1 ARG-123456567789

? 123 4567 890 DELIMITERS:
P= 4 ARG=123
P= 9 ARG=4567
P= -1 ARG=890

? 12.45 -64.34 DELIMITERS: .
P= 3 ARG",,12
P= 6 ARG=45
P= 10 ARG=-64
P= -1 ARG=34

?RUN DELIMITERS:
P= -1 ARG=RUN

? 12/31184 DELIMITERS: 1-
P= 3 ARG=12
P= 6 ARG=31
P= -1 ARG=84

? 31/12/84 DELIMITERS: 1 -
P= 3 ARG=31
P= 6 ARG=12
P= -1 ARG=84
?
IKEY AT 00020

1-76 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

FILLS Function

Fills a string or substring with a value.

AOSNS DG/RDOS UNIX

Format
string-variable=FILL$ (ascii [,bytes 1)

Arguments
string-variable

ascii

bytes

What It Does

The string variable or substring you want filled.

The numeric expression for the decimal ASCII value of the
character with which you want to fill the string.

An optional numeric expression for the number of bytes in
string-variable that you want to fill.

FILL$ without bytes fills string-variable from the current position in the string variable
(or the beginning byte of the substring represented by the string variable) to the
dimensioned length of the string variable (or the ending byte of the substring
represented by the string variable). The string variable is filled with the ASCII
character whose decimal code is represented in the field labeled ascii.

FILL$ with bytes fills the string variable from the current position in the string
variable (or the beginning byte of the substring) to the number of bytes you specify.
For example, if the current position of the string variable is 30 and you specify 10
bytes, FILL$ fills the string with ascii from position 30 to position 39 inclusive unless
the dimensioned length of the string variable is less than 39, in which case it only fills
the string to its dimensioned length.

How to Use It
Use FILLS only with LET statements and commands. You can concatenate several
string functions and string expressions in one assignment statement. Your
string-variable can be a regular string variable, a string variable with a subscript that
refers to a byte position within its dimensioned length, or a substring whose subscripts
refer to the beginning and ending bytes of a substring.

093-000351 Licensed Material-Property of Data General Corporation 1-77

Commands, Statements, and Functions in Business BASIC

FILLS continued

Examples
1. The string A$ is filled. Notice the difference in length before and after the

FILLS.

00005 REM--FILL A$ TO END WITH BLANKS
00010 DIM A$(512)
00020 LET A$="ABCDE"
00030 PRINT LEN(A$)
00040 LET A$=A$,FILL$(32)
00050 PRINT LEN(A$)
* RUN
5
512

2. This example uses substring designations to indicate the positions to be filled.

* DIM BS(S12)
* LET BS=AS(1,S)
* PRINT LEN(BS)
5
* LET BS(6,lS)=FILLS(32,4)
* PRINT LEN(BS)
9
* LET BS(9,lS)=FILLS(32)
* PRINT LEN(BS)
15
* LET BS(O)=FILLS(32,S)
* PRINT LEN(BS)
20
* LET BS(O)=FILLS(32)
* PRINT LEN (BS)
512

NOTE: In Business BASIC, B$ (0) refers to the position following the current length
(returned by LEN) up to the dimensioned length of B$.

1-78 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

FOR ••• NEXT Statement

Defines a program loop.

AOSIVS DG/RDOS UNIX

Format
FOR control-variable=expression] TO expression2 [STEP expression3]

. (Block of executable statements)

NEXT control-variable

Arguments
control-variable

expression]

expression2

expression3

What It Does

A· simple, nonsubscripted numeric variable that controls the loop
by being increased or decreased. You must use the same variable
in FOR and NEXT statement pairs.

The first value assigned to the control-variable when a loop is
encountered. It can be a numeric expression or a variable.

The last value assigned to control-variable and the terminating
value of the loop. It can be a numeric expression or a variable.

The amount. by which you want to increase or decrease
control-variable after each loop execution. A positive (+) value
increases control-variable, while a negative (-) value decreases
it. If you do not specify expression3, the default value is + 1.

FOR ... NEXT statements define a loop. The FOR statement defines how many loops
to perform and the NEXT statement marks the end of the loop. A FOR ... NEXT loop
can execute Business BASIC statements any number of times (including zero times).
The loop can assign increasing or decreasing values to variables and perform a variety
of tasks.

When Business BASIC first encounters a FOR statement, it evaluates expression],
expression2, and expression3. If you omit STEP expression3, the assumed step value
is + 1. The control-variable is set to the value of expression], and loop operation
proceeds as follows:

1. The control-variable is tested: if expression3 is positive (increasing) and
control-variable is greater than expression2, the loop immediately terminates.
Control then passes to the statement following the corresponding NEXT statement.
control-variable retains the last value it had during loop execution.

If expression3 is negative (decreasing) and control-variable is less than
expression2, then ,the loop immediately terminates. Control then pa!$ses to the
statement follOwing th~· corresponding NEXT statement. control-variable ,retains
the last value it had during loop execution.

093-000351 Licensed Material-Property of Data General Corporation 1-79

Commands. Statements. and Functions in Business BASIC

FOR ... NEXT

If control-variable passes the loop execution test. the following steps are
performed:

continued

2. Business BASIC executes the block of executable statements in the FOR ... NEXT
loop.

3. When Business BASIC reaches the corresponding NEXT statement
control-variable is set to the value of control-variable + expression3. Business
BASIC then returns to step 1 above and repeats the loop.

How to Use It
You cannot use FOR ... NEXT statements as keyboard mode commands.

You can execute FOR ... NEXT loops repeatedly by nesting one loop within another.
Every FOR statement must have a matching NEXT statement and vice versa, or you
get an error message. See Appendix B for the maximum nesting depth allowed on
your operating system.

To properly nest a loop within another loop. make sure that the FOR and NEXT
boundaries of the outer loop contain the FOR and NEXT boundaries of the inner
loop. For example:

Legal Nesting

FOR X =
FOR Y

FOR Z
NEXT Z

NEXT Y
NEXT X

Illegal Nesting

FOR X =
FOR Y

NEXT X
NEXT Y

If you use numeric variables for your expressions, you must assign values to them
before using them. Give expression 1 • expression 2 , and expression3 positive or negative
values, but note that expression3 cannot be O. If you want to loop one time, just set
expression2 equal to expression1.

The values of expression2 and expression3 are calculated before the loop begins, so if
you use any variables in these expressions and change their values in an instruction
within the loop. termination of the loop is not affected in any way. To alter the loop's
termination, change the value of the control-variable with an iI1struction within the
loop. '

1-80 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued FOR ... NEXT

If Business BASIC exits from a loop before completing the loop (using GOTO or
GOSUB), the FOR statement of that loop remains active until Business BASIC
executes another FOR statement with the same control-variable. You can return to
the loop if no other loop in the program has the same control-variable or if another
loop with the same control-variable has not executed yet. When another loop with the
same control variable is executed, the first loop is discarded. In this case, the NEXT
statement for the discarded FOR statement causes Error 22 - NEXT - no FOR to
be generated.

Branching in and out of a FOR ... NEXT loop is possible, but if you skip a NEXT
statement and return to the loop without restarting it, you get unpredictable results. If
you branch out of a loop and then want to return and resume execution of the loop,
you should return to the NEXT statement and execute it. If you do not, and you try
to execute a FOR statement, it might be interpreted as a new nested loop within your
unfinished loop and could cause problems.

Examplt~s

1. The control variable J equals last value assigned during execution of loop, before
expression2 was exceeded.

* 10 FOR J = 1 TO 10 STEP 2
* 20 PRINT J,
* 30 NEXT J
* 40 PRINT
* 50 P~INT" J NOW HAS THE VALUE:";J
* RUN
1 3 5 7 9
J NOW HAS THE VALUE:9

2. The loop counter begins at 10 and is decremented by 2 until the counter reaches
2.

* 10 FOR J=10 TO 2 STEP-2
* 20 PRINT J,
* 30 N,EXT J
* 40 PRINT
* 50 PRINT "LAST VALUE OF J: ";J
* RUN·
108642
LAST VALUE OF J: 2

093-000351 Licensed Material-Property of Data General Corporation 1-81

Commands, Statements, and Functions in Business BASIC

FOR ... NEXT continued

3. The loop counter begins at 12 and is incremented by 1 until 18 is reached.

* LIST
00010 LET X=12
00020 LET Y=18
00030 FOR NUMBER=X TO Y
00040 PRINT NUMBER,
00050 NEXT NUMBER
00060 STOP
* RUN
12 13 14 15 16 17 18
STOP AT 00060

1-82 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

GETREC Statement and Command

Gets an available record from a data file opened using
LOPEN FILE.

AOSIVS DG/RDOS UNIX

Format
GETREC logical-file-number, record-number

Arguments
logical-file-number A numeric expression that represents the logical file number of a

data file opened using LOPEN FILE.

record-number

What It Does

The relative (1 to end of file) record number returned as available
by GETREC. This argument must be initialized.

GETREC retrieves the next available record number in a type L (linked-available­
record) logical data file. GETREC first examines record 0 of the data file to
determine if any records have been deleted. If records have been deleted, the next
available record number is that of the last record in the deleted-record chain. If there
are no deleted records, GETREC returns the next available record number. Once the
record number has been determined, GETREC updates record 0 to reflect the new
status of the file. If a record of -1 is returned, no available records exist, and the file
is full.

NOTE: This statement is preferable to the GETREC.SL subroutine since it performs
automatic locking, is faster, and frees the code space normally occupied by
the GETREC.SL subroutine. However, the GETREC statement does not
work with files in the PARAM file database structure. For PARAM files, you
must use the GETREC.SL subroutine instead unless you use the physical
format of LOPEN.

How to Use It

Enter GETREC as a program statement. GETREC can only be used with files in the
logical database file structure that have been opened with the LOPEN FILE
statement. After the record-number has been retrieved, you should make sure that the
file is not full. If a valid record-number was returned, the record can be written to the
file using the LWRITE FILE statement.

093-000351 Licensed Material-Property of Data General Corporation 1-83

I

Commands, Statements, and Functions in Business BASIC

GETREC

Examples
1. Allocate a record.

00200 LOPEN FILE[3,T9$] , "MYDATA"

00460 RECNO = 0
00470 GETREC 3,RECNO
00475 IF RECNO<O THEN GOTO 01000

00480 LWRITE FILE[3,RECNO] ,MYDATA$

2. Compose a keyed record.

00010 DIM RECNO(O)

continued

:Open MYDATA as database
: file

:Initialize record number
:Allocate a record in MYDATA
:No available records, so
:go to end program routine.
:Add new record to file

00020 DIM LFTABL$(78) ,CNAM$(20),BUF$(544),KEYID$(6),RECORD$(24)
00030 LET LFTABL$=FILL$ (0) : Ini tialize localfile table.
00040 LOPEN FILE (2,BUF$), "CUDATA" :Open customer data file.
00050 LOPEN FILE (3,BUF$), "INDEX" :Open index file.
00060 INPUT "CUSTOMER ID NUMBER: ",CNUM
00070 LET KEYID$=CHR$(CNUM,4) :Compose key string.
00090 REM ADD RECORD
00100 INPUT USING "", "COMPANY NAME: " , CNAM$
00110 PACK "ZJJA20",RECORD$,l,CNUM,CNAM$:Compose RECORD$ from

: CNUM and CNAM$.
00120 GETREC 2,RECNO :Allocate record in CUDATA file.
00125 IF RECNO<O THEN GOTO 00200 :No available records, so

:go to end of program.
00130 LWRITE FILE (2,RECNO),RECORD$
00140 LET KEYID$=CHR$(CNUM,3)

00150 KADD 3,BUF$,KEYID$,RECNO
00190 CLOSE
00200 END

:Write it out.
:Add customer number in
:CNUM to index.

1-84 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

GOSUB ••• RETURN Statement

Transfers control to and from a subroutine within a program.

AOSNS DG/RDOS UNIX

Format
GOSUB line-number 1

line-number 1

. (subroutine statements)

RETURN

Arguments
line-number 1 The line number entry point of a subroutine; it must exist as a

program line number.

What It Does

GOSUB immediately transfers control to the line number specified by line-number 1.
Business BASIC executes the statements of the subroutine one by one, beginning at
line-number 1 until Business BASIC reaches the RETURN statement. The RETURN
statement returns control to the statement immediately following the GOSUB
statement that provided an entry point for the subroutine.

How to Use It
Enter a subroutine only by using GOSUB. Without GOSUB, the RETURN statement
causes an error when executed.

Many GOSUB statements can branch to the same subroutine. A RETURN occurring
in that subroutine returns control to the statement immediately following the specific
GOSUB that last branched to the subroutine.

You can also use more than one RETURN statement in a subroutine if program logic
requires the subroutine to terminate at several different places depending on a
condition.

You can nest subroutines. See Appendix B for the maximum nesting depth allowed on
your operating system. Nesting occurs when a subroutine is called during the execution
of another subroutine. Upon execution of the first RETURN statement, control passes
to the statement immediately following the GOSUB statement last executed. The next
RETURN statement passes control to the next to last executed GOSUB statement and
so on.

093-000351 Licensed Material-Property of Data General Corporation 1-85

Commands. Statements, and Functions in Business BASIC

GOSUB ... RETURN continued

Business BASIC also provides special prewritten subroutines to handle special
functions. You may take advantage of these subroutines by using ENTER to merge
them with your program. Be careful, however; because these subroutines have
predefined line numbers I Use GOSUB to transfer to the predefined entry points of
these subroutines. All line numbers for Business Basic subroutines fall between 7500
and 9999.

Examples

1. Use GOSUB to enter the same FOR ... NEXT loop twice.

00010 DIM REPLY$[l]
00020 INPUT "INPUT ANY NUMBER BETWEEN 1 - 10: ",A
00030 GOSUB00100
00040 LET A=A+5
00050 GOSUB 00100
00060 INPUT "RUN THIS EXAMPLE AGAIN (Y OR N) 1: " , REPLY$
00070 IF REPLY$="N" THEN STOP ELSE GOTO 00020
00100 FOR 1=1 TO A STEP 2
00110 PRINT I;
00120 NEXT I
00130 PRINT
00140 RETURN
• RUN
INPUT ANY NUMBER BETWEEN 1 - 10: 5
135
13579
RUN THIS EXAMPLE AGAIN (Y OR N) 1: N
STOP AT 00050

2. Nested subroutines.

• LIST
00500 GOSUB 00530
00510 PRINT "EXAMPLE"
00520 STOP
00530 PRINT "NEST";
00540 GOSUB 00570
00550 PRINT "TINE ";
00560 RETURN
00570 PRINT "ED ";
00580 GOSUB 00610
00590 PRINT "ROU";
00600 RETURN
00610 PRINT "SUB";
00620 RETURN

• RUN
NESTED SUBROUTINE EXAMPLE
STOP AT 00520

1-86 Licensed Material-Property of Data General Corporation 093..;.000351

Commands. Statements. and Functions in Business BASIC

continued GOSUB ... RETURN

3. This example shows how to use the prewritten subroutine-DELREC.SL. First you
must use ENTER "DELREC.SL" to merge it with your current program. The·
subroutine takes up line numbers 8600 through 8695. but 8600 is the only entry
point. DELREC.SL. like all the prewrittensubrciutines. already has a RETURN
statement-you need not provide one. F% holds the logical file number. and Rl
holds the record number.

• ENTER "DELREC.SL"
• LIST 1200.1220
01200 LET F%=2
01210 LET R1-X3
01220 GOSUB 08600 \ DELREC.SL
•

093-000351 Ucensed Material-Property of Data General Corporation 1-87

Commands. Statements, and Functions in Business BASIC

GOTO Statement

Goes to a specific statement.

I· AOSIVS DG/RDOS UNIX

Format
GOTO line-number

Arguments
line-number An existing program statement line number.

What It Does
GOTO transfers control to the statement specified by line-number. If the statement at
that line number is executable, then the statement and those following it are executed
in sequential order. If the statement at line-number is a nonexecutable statement (like
DATA or REM), then Business BASIC executes the first executable statement
following the statement at line-number.

How to Use It
If line-number is not a line number in the program, an error occurs when you execute
the GOTO statement. If line-number is the same as the line number of the GOTO
statement, the program will be in an infinite loop (a GOTO should never "go to"
itself). See Appendix B for the range of line numbers allowed on your operating
system.

Example
In this example, control passes back to line 40 until all values for AGE in the file
AGES have been read. Then the average age is calculated.

00010 LET TOTAL=O
00020 LET COUNT=O
00030 OPEN FILE[0,3] ,"AGES"
00040 READ FILE[O],AGE
00050 IF EOF(O) THEN GOTO 00100
00060 IF AGE<l THEN GOTO 00200
00060 LET COUNT=COUNT+1
00070 LET TOTAL=TOTAL+AGE
00080 GOTO 00040
00100 LET AVGAGE=TOTAL/CQUNT

.00110 PRINT TOTAL,COUNT,AVGAGE
00120 END
00200 PRINT "ILLEGAL AGE = ";AGE
00210 GOTO 00040

1-88 Licensed Materlaj,.·Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

GPOS Function

Returns the current file pOinter position.

AOSIVS DG/RDOS UNIX

For~at

GPOS(channel)

Arguments
channel A numeric expression for the channel number of a file opened for

sequential or random access.

What It Does

GPOS returns the relative byte number in the file (specified by channel) to which the
file pointer is positioned. Note that the last access to the file sets the file pointer's
current position. GPOS returns -1 if the file specified by channel is not open. Since
the byte position after a BLOCK READ FILE is undefined, you cannot use BLOCK
1/0 with this function.

How to Use It
Use GPOS to determine the byte to which the file pointer is positioned after a file
access. An input or output to a file causes the file pointer to move to the byte
immediately following the last byte read or written. GPOS indicates where the next
input or output starts.

Use GPOS as a numeric expression wherever numeric expressions are permitted. For
example. you may use it with IF; .. THEN statements to conditionally transfer to
another routine, depending on the value of the file pointer.

On UNIX systems, in order to obtain a 0 when using GPOS on a device file or a
queue file, you must place the device or queue filename in the DEVICE_MAP file.

Examples
1. GPOS refers to an unopened file.

00030 LET B
00040 PRINT B
00050 END
* RUN
-1

*

GPOS(O)

093-000351 Licensed Material-Property of Data General Corporation 1-89

I

Commands, Statements, and Functions in Business BASIC

GPOS

2. GPOS references an open file.

• LIST
00010 DIM X$(512)
00020 OPEN FILE(l,O),"JUNK"
00030 WRITE FILE (1), "THIS IS A JUNK FILE"
00040 CLOSE
00050 OPEN FILE(l,O)"JUNK"

continued

00060 PRINT "THIS IS THE GPOS OF FILE 1 AFTER THE OPEN: ";GPOS(l)
00070 READ FILE(l),X$
00080 PRINT "THIS IS THE GPOS OF FILE 1 AFTER THE READ: ";GPOS(l)
• RUN
THIS IS THE GPOS OF FILE 1 AFTER THE OPEN: 0
THIS IS THE GPOS OF FILE 1 AFTER THE READ: 19
•

1-90 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

IF ••• THEN ••• ELSE Statement

,.

Transfers to or executes a statement if a condition Is true.

AOSIVS DG/RDOS UNIX

Formats
1. Single-Line Format

IF expression [THEN] statement [ELSE statement]

2. Block Structured Format

IF expression THEN

(Block of executable statements)

[ELSE

• (Block of executable statements)
.]

END IF

Arguments
expression

statement

line-number

A numeric expression or variable, but not a string. If the
expression is 0, the condition is false; if the expression does not
equal 0, the condition is true.

Any legal Business BASIC statement except CON, DATA,
DOIWHILE/UNTIL, END, END LOOP, FOR, MSG, NEXT,
ON ERR, ON IKEY, REM, and RFORM. You can use ON
GOTO, ON GOSUB, DIM, and any commands you use as
statements.

Any line number that exists in your program.

What It Does
IF makes a decision based on the value of an expression or the logical answer to the
relational expression. For example, if expression equals 0, the condition is false; if the
expression is non-zero, the condition is true. If the relational expression A>B is true,
then the condition is true; if not, then the condition is false. If the condition is true,
the statement after THEN is executed; if it is false, control passes to the statement
following the IF statement. Also note that the statement

093-000351 Ucensed Material-Property of Data General Corporation 1-91

Commands, Statements, and Functions in Business BASIC

IF ... THEN ... ELSE continued

IF variable THEN GOTO line-number

is the same as

IF variable <> 0 THEN GOTO line-number

How to Use It
Use IF only as a program statement. You can use line-number or GOTO line-number
after THEN: it's still a simple GOTO transfer. To make a GOSUB transfer, you must
specify both THEN and GOSUB. Otherwise, you can use most Business BASIC
statements after THEN, including another IF statement. If you have a GOSUB
transfer, the subroutine's RETURN statement returns control to the statement
immediately following the IF.

The expressions in the relational expression can be numeric or. string, but you can
only compare numeric to numeric and string to string-never. numeric to string. When
comparing strings or substrings using the equal (=) sign, IF matches the strings
character by character until it finds a difference, if any. If you're comparing strings
using the greater than (» or less than «) signs, IF compares the ASCII code value
of the first characters of each string. To be equal, both strings must have the same
characters in the same order and must have the same length. Even one extra null at
the end of one of two otherwise identical strings makes the strings unequal.

The rules for IF ... THEN ... ELSE are the same as for IF plus the following:

1. Each ELSE must have a corresponding IF.

2. ELSE refers to the most recent IF condition before the ELSE.

CAUTION: When nesting IF ... THEN ... ELSE statements, you can make subtle logic
errors that will not give you syntax errors. For example, suppose you wish
to print GREATER when A is greater than 0 and EQUAL when A equals
O. If you enter:

1-92

* 10 IF A <> 0 THEN IF A> 0 THEN PRINT "GREATER" ELSE
PRINT .. LESS It

LESS prints when A is less than zero because ELSE refers to the most
recent IF. Business BASIC processes ELSE when the IF condition is
false. In this example, the false condition of IF A > 0 is A <= O. You
will not get a syntax error but your results will be incorrect. For the
correct results enter:

* 10 IF A = 0 THEN PRINT "EQUAL" ELSE IF A > 0 THEN
PRINT "GREATER"

Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued IF ... THEN ... ELSE

Block Structured Format

The block structured IF ... THEN and IF ... THEN ... ELSE statements allow groups of
statements to be conditionally executed where the group is bounded by the END IF
statement. This format requires the IF (expression) THEN sequence to be alone on a
line (not the object of a simple IF) and the word THEN is not optional. The ELSE
and END IF statements must appear alone on lines. The END IF statement is always
expected to mark the end of the group of statements controlled by a block IF. When
expression is true, subsequent statements are executed until a matching ELSE
statement or an END IF statement is encountered. Encountering an ELSE causes
subsequent statements to be skipped until a matching END IF statement is found.

If expression is not true, subsequent statements are skipped until a matching ELSE or
END IF statement is found. Encountering an ELSE causes subsequent statements to
be executed until a matching END IF statement is found. Both simple IF statements
and block IF statements can be used inside of the blocks of statements bounded by
THEN and ELSE or THEN and END IF or ELSE and END IF. Mismatching
IF ... THEN and END IF pairs or IF ... THEN ... ELSE and END IF sets may result in
runtime errors. Extra END IF statements are ignored. An unexpected ELSE (no
active IF block) causes an error. Reaching the end of a program when an ELSE or
END IF is expected (false block IF) causes an error.

Examples

1. This example compares two strings.

* LIST
00010 DIM A$[29], B$[29]
00020 LET A$="ABCDEFGHIJKLMNOPQRS"
00030 LET B$="ABCDEFGHIJKLMNOPQRS"
00040 IF A$=B$ THEN PRINT "TRUE" ELSE PRINT "FALSE "
00050 END
* RUN
TRUE

2. This example uses the Boolean operator AND in an IF statement. For other
examples see AND, NOT, and OR.

* LIST
00010
00020
00030
00040
00050
00060
00070
* RUN

LET A=l
LET B=O
IF A AND B THEN GOTO 00060
PRINT "EITHER A OR B IS ZERO"
STOP
PRINT "BOTH A AND B ARE NON-ZERO"
STOP

EITHER A OR B IS ZERO
STOP AT 00070

093-000351 Licensed Material-Property of Data General Corporation 1-93

Commands, Statements, and Functions in Business BASIC

IF ... THEN ... ELSE continued

3. This IF statement uses ON GOTO statements.

* LIST
00005 INPUT A,B,C
00010 IF A=l THEN ON B THEN GOTO 00110, 00120 ELSE ON C THEN
GOTO 00130, 00140
00040 PRINT "PART OF LINE 00010.IS FALSE"
00050 PRINT "EITHER B > 2 OR C > 2"
00060 PRINT "B = ";B, tIC ";C
00070 STOP
00110 PRINT "TRUE A = 1
00115 STOP
00120 PRINT "TRUE A ... 1
00125 STOP
00130 PRINT "FALSE A<>
00135 STOP
00140 PRINT "FALSE A <>
00145 STOP
* RUN
727272
FALSE A <> 1 C 2
STOP AT 00145
* RUN
727174

B

B

1

1

PART OF LINE 00010 IS FALSE
EITHER B > 2 OR C > 2
B=l C=4
STOP AT 00070

1"

... 2"

C = 1"

C ... 2"

4. If A=l then Business BASIC sets B=2. If A <> 1 then Business BASIC checks if
A=2. If A=2 then BASIC sets C=4; if A <> 2 then Business BASIC sets C=99.

* LIST
00010 LET A,B,C=O
00020 INPUT "ENTER VALUE FOR A: ",A
00030 IF A=l THEN LET B-2 ELSE IF A-2 THEN LET C-4 ELSE LET C=99
00040 PRINT "VALUE FOR A IS NOW ";A
00050 PRINT "VALUE FOR B IS NOW ";B
00060 PRINT "VALUE F'OR C IS NOW "; C
00070 END
* RUN
ENTER VALUE FOR A: 3
VALUE FOR A IS NOW 3
VALUE FOR B IS NOW 0
VALUE FOR C IS NOW 99

1-94 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued IF ... THEN ... ELSE

5. Block IF statement.

* LIST
00010 LET X,Y,Z=O

FOR X: ",X
FOR Y: ",Y

00020 INPUT "ENTER VALUE
00030 INPUT "ENTER VALUE
00040 IF X=Y THEN
00050 LET Z=7

:Block IF executes statements 00050
:and 00060 (and associated GOSUB

00060 GOSUB 00200 X EQUALS Y :statement) when X equals Y
00070 END IF
00080 END
00200 PRINT "X IS EQUAL TO Y, Z IS EQUAL TO: ";Z
00220 RETURN

6. This example is a modification of example 4 to show the use of ELSE in a block
IF.

* LIST
00010
00020
00030

LET X,Y,Z=O
INPUT "ENTER VALUE
INPUT "ENTER VALUE

FOR X: ",X
FOR Y: ",Y

00040
00050

IF X=Y THEN
LET Z=7

:Block IF executes statements 00050
:through 00060 when X equals Y

00060 GOSUB 00200
00070 ELSE

00080 LET Z=3
00090 GOSUB 00300
00100 END IF
00110 END
00200 REM X EQUALS Y

:X EQUALS Y
:and statements 00080
:through 00090

:when X does not equal Y
: X DOES NOT EQUAL Y

00210 PRINT "X IS EQUAL TO Y, Z IS EQUAL TO:";Z
00220 RETURN
00300 REM X DOES NOT EQUAL Y
00310 PRINT "X IS NOT EQUAL TO Y, Z IS EQUAL TO :";Z
00320 RETURN

093-000351 Licensed Material-Property of Data General Corporation 1-95

Commands, Statements, and Functions in Business BASIC

INPUT Statement and Command

Enters data-sensitive Input from a terminal or file.

AOSNS DG/RDOS UNIX

Format

INPUT I FILE(channel) I variable [,variable ...] [;]
[@(number),]["prompt" ,]

Arguments
channel

@(number)

prompt

variable

What It Does

The channel number of a file if inputting from a file; the file must
be in character format.

Cursor positioning and terminal control expressions (@
expressions) are described with PRINT.

A string literal in quotation marks that is output as a prompt for
an input request from a terminal. This prompt replaces the
question mark (7) prompt. On AOS/VS and DG/RDOS systems,
you can enclose ASCII values in angle <> brackets within the
string literal.

Note: Not all terminals use the same ASCII values to perform the
same functions.

A numeric variable, string variable, or array variable, depending
on the values you want to input. You can also use subscripted
string variables and array variables. Dimension string variables and
arrays before using them. Any combination of the above is
allowed.

A semicolon at the end of an INPUT positions the cursor to the
space immediately following the input prompt.

INPUT enters numeric and string data from a terminal or file. INPUT and INPUT
FILE(16) perform terminal input; INPUT FILE(channel) performs file input.

INPUT reads text that is terminated by special characters and is meant to be used
with PRINT on text files and for terminal 110. To perform binary I/O on data and
other types of files, use READ and WRITE.

How to Use It
When terminal input is requested, the prompt argument is displayed on the screen and
Business BASIC waits until the input is terminated, usually by an unpend key. If no
prompt is specified, a question mark is used. Respond to the prompt by entering
values.

1-96 LIcensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued INPUT

If the INPUT statement has only one variable, enter only one value. If the INPUT
statement has more than one variable and you enter only one value, Business BASIC
requests more values by outputting more prompts (INPUT USING gives an error in
this case). You can supply values by answering each prompt, or you can type all the
values at once by separating them with commas. If the input is of the wrong type (Le.,
a string response to a numeric input), a bell is rung and a prompt (\7) is displayed
to indicate a request for a valid response (during file input or INPUT USING, an
error occurs).

Prompt arguments and terminal control functions are ignored by INPUT FILE (except
INPUT FILE(16».

The terminators for INPUT FILE are null, form feed, Carriage Return, and New
Line. The primary and secondary unpend keys defined by STMA 4 are used by
INPUT and INPUT FILE(16). Also, several terminal control functions are available
to position on the screen, to specify the maximum length of an input, to define
whether echo is allowed, etc. (Refer to PRINT for a description of these functions.)

All forms of INPUT ignore leading blanks and assume commas indicate the end of
one variable and the beginning of the next variable. To input a string containing
leading blanks or commas, enclose the string in quotation marks or use INPUT
USING. INPUT converts values enclosed in angle brackets « » to the ASCII
character indicated by the value.

Examples
1. Use INPUT to request data.

00010 INPUT A,B,C
00020 PRINT A+B,B+C
* RUN
71,2,3
3 5

*

2. Use INPUT to display a prompt requesting data.

00010 INPUT "A,B,C:",A,B,C
00020 PRINT A+B,B+C
* RUN
A,B,C: 1,2 73
3 5

*

3. This example shows use of the semicolon at the end of the INPUT statement to
allow the next output to appear on the same line.

00010 INPUT A,B,C;
00020 PRINT "SAME LINE"
* RUN
7 A \ 7 1 7 2, 3 SAME LINE

*

093-000351 Licensed Material-Property of Data General Corporation 1-97

I

Commands, Statements, and Functions in Business BASIC

INPUT

4. This example uses triple precision and INPUT FILE~

00010 DIM X$[32]
00020 OPEN FILE [O,O],"JUNK"
00030 POSITION FILE [0,0]
00040 INPUT "Double Precision: ",A
00050 INPUT "Triple Precision: ",BI
00060 INPUT "Single Precision: ",C~

00070 PRINT FILE[O],A,BI,C%
00080 LET X=GPOS(O)
00090 PRINT "file position after PRINT FILE: ";X
00100 POSITION FILE [0,0]
00110 INPUT FILE[O],X$
00120 PRINT "data after INPUT FILE"
00130 PitINT X$
* RUN
Double Precision: 20
Triple Precision: 300
Single Precision: 1
file position after PRINT FILE: 32
data after INPUT FILE
20 300 1

S. This is another example using triple precision.

00020 OPEN FILE [O,O],"JUNK"
00030 POSITION FILE [0,0]
00040 INPUT "Double Precision: ",A
00050 INPUT "Triple Precision: ",BI
00060 INPUT "Single Precision: ",C",
00070 PRINT FILE [0], A
00080 PRINT FILE [O],BI
00090 PRINT FILE [0] ,C",
·00100 LET X=GPOS(O)
00110 PRINT "file position after PRINT FILE: ";X
00120 POSITION FILE [0,0]
00130 INPUT FILE [O],D,EI,~

00140 PRINT "DATA AFTER INPUT FILE"
00150 PRINT "D IS ";D
00160 PRINT "EI IS ";EI
00170 PRINT "F", IS ";~
00180 STOP

1-98 Ucensed Material-Property of Data General Corporation

continued

093-000351

Commands, Statements, and Functions in Business BASIC

continued

* RUN
DOUBLE PRECISION: 20
TRIPLE PRECISION: 300
SINGLE PRECISION: 1
FILE POSITION AFTER PRINT FILE: 15
DATA AFTER INPUT FILE
D IS 20
EN IS 300
F% IS 1
STOP AT 00180

*

093-000351 Licensed Material-Property of Data General Corporation

INPUT

1-99

Commands, Statements, and Functions in Business· BASIC

INPUT USING Statement and Command

Inputs character data from a terminal or file allowing an error
and a delimiter trap.

AOSIVS ·1 DG/RDOS UNIX

Format

INPUT [FILE(channel)] USING"",[prom t,] I va~iable[,.variable] . .} [;]
p strzng-varzable} [,strzng-varzable2]

Arguments
channel

prompt

variable

string-variable1

string-variable2

What It Does

The channel number of an opened file if inputting from a file; file
must be in character format.

A string literal in quotation marks that is output as a prompt for
an input from the terminal (replaces the question mark (7)
prompt). You can enclose ASCII values in angle brackets (<»,
and you can use unquoted @ cursor positioning and terminal
control expressions (described with PRINT).

Note: Not all terminals use the same ASCII values to perform
the same functions.

A numeric variable or array (already dimensioned) depending on
the values you want to input. Any combination of the above is
allowed if you repeat the variable.

Only one string variable or substring is allowed; a second string
variable or substring would automatically be treated as
string-variable2; a third would cause an error. String variables
must be dimensioned.

A special string variable or substring after string-variable} that
receives the value of the delimiter.

A semicolon at the end of an INPUT positions the cursor to the
space immediately following the input prompt.

INPUT USING works similarly to INPUT FILE, with the following differences:

• All values must be input at once. Multiple numeric values must be separated by
commas.

• If the input value to variable cannot be converted into a number, INPUT USING
causes a normal error that you can trap with an ON ERR statement. If you use
string-variable}, the entire input list of values is transferred unedited to
string-variable} (i.e., punctuation marks included), up to the maximum that
string-variable} can hold.

1-100 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued INPUT USING

• If string-variable2 is included in the INPUT USING statement, Business BASIC
places the terminating character in string-variable2, which can be a string
expression or a string variable dimensioned to at least one byte.

How to Use It
Use INPUT USING just like INPUT FILE, with these exceptions:

• If you do not satisfy the input request, a normal error occurs that you can trap
with an ON ERR statement.

• If you use string-variable2, it receives the delimiter.

• For AOS/VS systems, when you are using terminal type 8 and the AOS
characteristic FKT is on, the two-byte sequence generated by a function key is
placed in string-variable2. This is also true for UNIX systems when you are using I
terminal type 8 and you include the - F option on the command line when you
execute Business BASIC.

Examples
1. This example demonstrates INPUT USING from a file. A$(LEN(A$)+l) is the

expression for string-variable2. It puts the delimiter immediately after the rest of
the data in A$.

00010 DIM A$ (132)
00020 OPEN FILE (0,0), "ASCIIDATA"
00030 INPUT FILE (0), USING "", A$, A$(LEN(A$)+l)
00040 IF EOF(O) GOTO 00300
00050 OPEN FILE (1,1), "NEWFILE"
00060 PRINT FILE (l),A$
00070 GOTO 00030
00300 CLOSE
00310 STOP

2. In this example, the input is provided by the user. Notice that the numeric input
values are separated by commas.

00010 DIM X$(50),A$(1)
00015
00020
00025
00030
* RUN

INPUT USING "","INPUT NUMBERS FOR A, B AND C: ",A,B,C
INPUT USING "","TYPE ANYTHING HERE! ",X$
PRINT "A IS ";A, "B IS ";B, "c IS ";C
PRINT X$

INPUT NUMBERS FOR A, B AND C: 1
ERROR 46 AT 00015 - INPUT INVALID
* RUN
INPUT NUMBERS FOR A, B AND C: 1,2,3
TYPE ANYTHING HERE ! ASDFGHJKL;?!@#$ %&*+=
A IS 1 B IS 2 C IS 3
ASDFGHJKL;?!@#$%&*+=

093-000351 Licensed Material-Property of Data General Corporation 1-101

Commands, Statements, and Functions in Business BASIC

INT Function

Truncates a number to make it an integer.

AOSIVS DG/RDOS UNIX

Format
INT(expression)

Arguments
expression A numeric expression or variable.

What It Does
Since Business BASIC allows only integer data. this function has no effect. Business
BASIC supplies the INT function to enhance the compatibility of the product.

INT truncates the expression to form the greatest integer not larger than the
expression. It does not round. For example, if the value of an expression is 8.9999,
the INT function returns 8. not 9.

How to Use It
Use the INT function as a numeric expression wherever you are permitted to use
numeric expressions.

Example

• PRINT INT(7/4) 1

1-102 Lloensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

KADD Statement and Command

Adds a key to an index file.

AOSIVS DG/RDOS UNIX

Format

I descriptor-string I . .
KADD .. , buffer-strmg, key-strmg, record-number

logzcal-fzle-number

Arguments
descriptor-string A regular or subscripted string variable. To be able to lock

records, dimension this variable to, or provide a substring of, at
least 18 bytes. The variable or substring contains the channel
number, a byte offset, an automatic lock flag, and the name of
the index file. If you do not need to lock records, the string
variable or substring must be at least 8 bytes long.

logical-file-number A numeric expression representing the logical file number of an
index file that has been opened with the LOPEN FILE statement.

buffer-string

key-string

record-number

What It Does

A regular or subscripted string variable dimensioned to, or having
a substring length of, at least 544 bytes. This argument is used as
a buffer to hold an index block while performing 110 to an index
file.

A regular or subscripted string variable that is the key entry. It
must be dimensioned to, or have a substring length of, exactly the
same number of bytes as the key (or the length of the key when
crammed, if you are using the CRM$ function). The maximum
key length is 122 bytes.

A numeric variable for a data record number greater than zero to I
which you want the key to point. The data file need not exist yet.

Use KADD to add key entries to an index file. KADD adds key-string and
record-number to the index file described in descriptor-string or represented by
logical-file-number. KADD pulls index blocks into buffer-string and searches them to
find the proper location for the key entry. The index is sorted in ascending order. If I
you attempt to add a -1 key to the index, the key is not added and record-number is
returned with a value of zero. If duplicate keys are not allowed and KADD finds a
duplicate key, the new key is not added and record-number is returned with a value
of zero. If you are using duplicate keys, the key is added. You select duplicate key
usage when you create the index file.

093-000351 Licensed Material-Property of Data General Corporation 1-103

I

I

Commands. Statements. and Functions in Business BASIC

KADD

NOTE:

continued

Because KADD does not check for duplicate record numbers, duplicate keys
can specify the same record number. The programmer supplies the record
number.

How to Use It

You must create and open an index file before adding keys to it.

NOTE: There are two restrictions on using a 2048-byte index block. First, all opens
on 2048-byte indexes must be in a shared mode (4 or 5). You cannot access
a 2048-byte index that you have opened exclusively. If you open this kind of
index file exclusively and then try to execute a KADD statement, Error 89
- Illegal file type is displayed. You can get exclusive access to a
2048-byte block index by using Access Control Lists (AOS/VS) or
permissions (UNIX) to the file. Second, if you use the logical file approach
to Business BASIC file usage or have sub files within a master file, you must
ensure that the index file begins on a sector boundary that is a multiple of
four in the physical file. (Under the 512-byte index structure, it is only
necessary that the index file begin on a sector boundary.) Place all
2048-byte index files at the beginning of the physical file to avoid wasting
unused sectors between a data file and an index file.

For Accessing Logical Index Files

To use KADD to access an index file that is part of a logical file database structure,
you must have a logical-file-number, dimension buffer-string to 544 bytes, and supply
key-string and record-number.

For Accessing Index Files Defined in PARAM

To use KADD to access an index file that is part of a PARAM file database structure,
you must have a descriptor-string, dimension buffer-string to 544 bytes, and supply
key-string and record-number. You can build one descriptor-string in your program
and use it for any KADD, KDEL, KFIND, or KNEXT. Your descriptor-string must
include the following 18 bytes of information:

• The physical channel number of the index file (two bytes).

• The byte offset to block zero of the index file in the physical file, or zero if index
file is not a subfile (four bytes).

o A zero when you want automatic locking of the index file to occur or a one for no
automatic locking (two bytes). If you request automatic locking, then block 0 of
the index is locked.

• The logical filename for the index file (not needed if you don't use automatic
locking) padded with nulls to the end of the string (ten bytes).

Figure 1-6 defines each byte location of the index file descriptor string.

1-104 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued

DESCRIPTOR STRING BYTE LOCATIONS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I I

I I

I

I

I

I I I I I I

2 4 2 at least 10

NUMBER OF BYTES

where byte locations:

1-2 = physical channel number of Index file

3-6 = byte offset to block 0 of Index In physical file If Index Is a subflle.
or 0 If Index Is not a subflle

7 -8 = flag for Index auto-lock Is 0 If lock Is to occur and you need the
filename; 1 If no lock and you do not need the filename

9-18+ = logical filename (string). padded with nulls

Figure 1-6 Index File Descriptor String

All Uses of KADD

I

KADD

I

For all uses of KADD. you must dimension key-string to the maximum number of
bytes per key entry for the particular index file. The maximum legal dimension for
key-string is 122 bytes. Key entries to the same index file always have the same
maximum number of bytes. Keys can be alphanumeric. concatenated subkeys.
crammed strings (using the CRM$ function). or any combination of these assigned to
ke.y-string. (See CHR$ for information on putting the binary value of a numeric key
into key-string.)

Add keys after you write their data records. This prevents other users from trying to
read the record to which the keys point before that data record is written. In
multiple-user systems, allow automatic locking of the index file and lock the data file.
The GETREC statement automatically locks record 0 of the data file. If your program
does not use the GETREC statement. use LOCK for this purpose.

093-000351 Licensed Material-Property of Data General Corporation 1-105

Commands, Statements, and Functions in Business BASIC

KADD continued

Examples
1. This example illustrates the use of the KAD D statement to add a key to an index

file that is part of a PARAM file database structure.

00010 DIM D$[18],B$[544],KEYID$[10] :For descriptor, buffer, key
00020 DIM X$[5l2],Cl[1,3],RECORD$[28] :For Cl array, record, OPEN
00030 LET X$="DATAl,6,INDEXl,6",FILL$(0):Files to open in mode 6
00040 BLOCK WRITE X$:String to send to OPEN
00050 SWAP "OPEN" : OPEN opens files.
00060 BLOCK READ X$:Returns Cl information.
00070 LET K=l :Initialize pointer.
00080 FOR 1=0 TO 1 :For each row of Cl,
00090 FOR J=O TO 3 :and for each column,
00100 LET Cl[I,J]=ASC(X$[K,K+3]) :get information for Cl.
00110 LET K-K+4 : Increment pointer.
00120 NEXT J
00130 NEXT I
00140 REM *fill descriptor string*
00150 LET D$=CHR$(Cl[l,O],2),CHRS(Cl[l,l]4):Channel and offset,
00160 LET DS[O]=CHRS(O,2) ,"INDEXl",FILL$(O):auto-lock of INDEXl.
00170 INPUT "Type key: ", KEYID$: Input key.
00180 INPUT "Type record: ",RECORDS : Input record.
00190 LET F%=O : Logical file 0 is DATAl.
00200 LOCK 2, "DATAl" , 0 ,Cl [0,3] : Lock record 0 of DATAl.
00210 GOSUB 08400: GETREC :Get available record of DATAl.
00220 UNLOCK 2 :Unlock record 0 of DATAl.
00230 GOSUB 09610: POSFL :Position using Rlfrom GETREC.SL.
00240 WRITE FILE[C%],RECORDS:Write record using C% from: POSFL. SL.
00250 KADD DS,BS,KEYIDS,Rl : Add new key, Rl is record pointer.
00260 IF Rl<=O THEN GOTO 00500 :If KADD not successful, go

:to 500. (Rl<-O if error

1-106

: occurred, or if duplicate
:keys are not allowed and
:you gave KADD one.
: Otherwise, Rl equals the
:record in DATAl).

Licensed Material-Property of Data.·General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued KADD

2. This example illustrates the use of the KADD statement to add a key to an index
file that is part of. a logical file database structure.

00005 DIM KEYID$[101,RECORD$[281,T9$[544},RECNO[01
00010 DIM 1.FTABL$[521
00020 LET LFTABL$=FILL$(O)
00030 LOPEN FILE[1,T9$1,"DATA1"
00040 LOPEN FILE[2,T9$1 , "INDEX1"
00050 INPUT "Type key: ",KEYID$
00060 INPUT "Type record: ",RECORD$
00080 GETREC 1,RECNO
00090 LWRITE FILE [1,RECN01 ,RECORD$

:Initialize local file table.
:Open logical data file.
:Open logical index file.
:Input key.
: Input record.
:Get the next available
:record in DATAl, write the
: record.

00100 KADD 2,T9$,KEYID$,RECNO :Add key-string to INDEX1.
00110 IF RECNO<=O THEN GOTO 00500 ELSE GOTO 00600
00500 PRINT "KADD WAS NOT SUCCESSFUL" : If key was not

00600 CLOSE
00610 END

093-000351

: added, recno<=O.

Licensed Material-Property of Data General Corporation 1-107

Commands. Statements. and Functions in Business BASIC

KDEL Statement and Command

Deletes a key from an Index file.

AOSIVS DG/RDOS UNIX

Format

{
deScriPtor-string} . .

KDEL . 1.1" , buffer-strzng,key-strzng.record-number
loglca -Jlle-number .

Arguments
descriptor-string A regular or subscripted string variable. To be able to lock

records. dimension this variable to. or provide a substring of, at
least 18 bytes. The variable or substring contains the channel
number. a byte offset, an automatic lock flag, and the filename of
the index file. If you do not need to lock records. the string
variable or substring must be at least 8 bytes long.

I IOgiCal-file-number A numeric expression that represents the logical file number of an
index file opened using LOPEN FILE.

buffer-string

key-string

record-number

What It Does

A regular or subscripted string variable dimensioned to, or having
a substring length of. at least 544 bytes. This argument is used as
a buffer to hold an index block while performing 110 to an index
file.

A regular or subscripted string variable. that is the key entry. It
must be dimensioned to. or have a substring length of. exactly the
same number of bytes as the key (or the length of the key when
crammed. if you are using the CRM$ function). The maximum
key length is 122 bytes.

An initialized numeric variable that receives the record pointer.
You need to specify record-number only if you are using duplicate
keys in the index file. record-number is returned by KDEL with
the value of the record pointer if KD EL was successful or zero if
KDEL did not find the key.

KDEL searches for key-string and then. if duplicate keys are allowed, for
record-number. If it does not find a match for key-string or for key-string and
record-number. it returns record-number with a value of zero; otherwise. Business
BASIC deletes key-string and record-number entries in the. index and returns
record-number with the record pointer.

1-108 Licensed Material-Property of Data General·Corporatlon 093-000351

Commands, Statements, and Functions in Business BASIC

continued KDEL

How to Use It

To use KDEL, put the index file information into descriptor-string or the logical file
represented by logical-file-number (see KADD) , dimension buffer-string to 544 bytes,
supply a value for key-string, and, if your index file has duplicate keys, supply a value
for record-number. Otherwise, supply an initialized variable for record-number so that
it can return with a value for you to check.

NOTE: There are two restrictions on using a 2048-byte index block. First, all opens
on 2048-byte indexes must be in a shared mode (4 or 5). You cannot access
a 2048-byte index that you have opened exclusively. You can get exclusive
access to a 2048-byte block index by using Access Control Lists (AOS/VS)
or permissions (UNIX) to the file. Second, if you use the logical file
approach to Business BASIC file usage or have sub files within a master file,
you must ensure that the index file begins on a sector boundary that is a
multiple of four in the physical file. (Under the 512-byte index structure, it
is only necessary that the index file begin on a sector boundary.) Place all
2048-byte index files at the beginning of the physical file to avoid wasting
unused sectors between a data file and an index file.

When you delete the index key for a data record, first lock the record to make sure
no one is using it and to prevent anyone from locking it. Then delete the index entry
and the data record respectively so that no one can use the key to access the record.

Examples

1. This example illustrates the use of the KDEL statement to delete a key from an
index file that is part of a PARAM file database structure.

00010 DIM D$[18] ,B$[544] ,KEYID$[10] :DIM for descriptor,
:buffer and key.

00020 DIM X$[512] ,C1[1,3],RECORD$[128] :DIM for C1 array, record,
:and OPEN.

00030 LET X$="DATA1, 6, INDEX1, 6", FILL$ (0) : Files to open in

00040 BLOCK WRITE X$
00050 SWAP "OPEN"
00060 BLOCK READ X$
00070
00080
00090
00100
00110
00120

LET K=l
FOR I=O TO 1

FOR J=O TO 3
LET C1[I,J]=ASC(X$[K,K+3])
LET K=K+4

NEXT J
00130 NEXT I
00140 REM *fill descriptor string*

:mode 6.
:String to send to OPEN.
:OPEN opens files,
:Returns C1 information.
:Initialize pointer.
:For each row of C1,
:and for each column
:extract info for C1.

:Bump pointer.

00150 LET D$=CHR$(C1[1,0] ,2),CHR$(C1[1,1] ,4) :Channel and
:offset,

093-000351 Licensed Material-Property of Data General Corporation 1-109

I

Commands, Statements, and Functions ill Business BASIC

KDEl continued

00160 LET D$ [0] =CHR$ (0,2) , "INDEX1", FILL$ (0) : auto-lock of
:INDEX1.

00170 INPUT "Type key to be deleted: ",KEYID$:Input key to be
:deleted.

00180 LET R=O :Initialize R (no duplicates).
00190 KDEL D$,B$,KEYID$,R :Delete key in key-string, return R.
00200 IF R=O THEN COTO 00400:If key not found, go to 400.
00210 PRINT "Deleted key was for record #";R

2. This example shows an example of a delete with locking. This example only works
for a logical index file with no duplicate keys allowed.

00130 DIM LFTABL$(78),T9$(544)
00140 LETLFTABL$=FILL$(O)
00150 LOPEN FILE[2,T9$] , "MYINDEX"
00160 LOPEN FILE[3,T9$] , "MYDATA"
00170 LET RECNO=-l

00300 INPUT "CUSTOMER # :",CNUM
00310 LET KEY$=CHR$(CNUM,4)
00320 KFIND 2,T9$,KEY$,RECNO
00330 IF RECNO<=O THEN COTO 04000
00340 LOCK 1,3,RECNO
00350 LREAD FILE[3,RECNO] ,MYDATA$

00360 UNPACK "J",MYDATA$,STATUS%

:Open MYINDEX as an index file.
:Open MYDATA as database file.

:Get customer number as key.
:Convert to key string.
:Find this customer.
:Didn't find him.
:Lock it before reading.
:Read his record.
:Validate record for deletion.

00370 IF STATUS%<=O THEN COTO 05000 :Record already deleted.

00500 KDEL 2,T9$,KEY$,RECNO
00510 DELREC 3,RECNO
00520 UNLOCK 1
00530 END
04000 PRINT "CUSTOMER NOT FOUND"

:Delete key from MYINDEX.
:Delete data record from MYDATA.
:Unlock data record now.

1-110 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

KFIND Statement and Command

Finds a key in an index file.

AOSNS DG/RDOS UNIX

Format

{
deScriPtor-string} .

KFIND .. ,buffer-strmg,key-string, record-number
logical-file-number

Arguments
descriptor-string A regular or subscripted string variable. To be able to lock

records, dimension this variable to, or provide a substring of, at
least 18 bytes. The variable or substring contains the channel
number, a byte offset, an automatic lock flag, and the filename of
the index file. If you do not need to lock records, the string
variable or substring must be at least 8 bytes long.

logical-file-number A numeric expression representing the logical file number of an
index file that has been opened using the LOP EN FILE

buffer-string

key-string

record-number

What It Does

statement.

A regular or subscripted string variable dimensioned to, or having
a substring length of, at least 544 bytes. This argument is used as
a buffer to hold an index block while performing 110 to an index
file. buffer-string must be unique to this index file if you plan to
use KNEXT statements.

A regular or subscripted string variable that is the key entry. It
must be dimensioned to, or have a substring length of, exactly the
same number of bytes as the key (or the length of the key when
crammed, if you are using the CRM$ function). The maximum
key length is 122 bytes.

An initialized numeric variable that receives the record pointer.

KFIND searches the index file described by descriptor-string or logical-file-number by
reading blocks into buffer-string. If KFIND locates an exact match for key-string,
record-number contains the record pointer associated with that key. If KFIND reaches
a value greater than key-string (i.e., no exact match is found), KFIND returns that
value in key-string. To indicate that this match is approximate rather than exact,
record-number returns the record pointer for that key as a negative number. If
KFIND reaches the end of the index without finding either an exact match or an
approximate match, it returns -1 in key-string and 0 in record-number.

093-000351 Licensed Material-Property of Data General Corporation 1-111

I

Commands, Statements, and Functions in Business BASIC

KFIND

NOTE:

continued

If you are going to use KNEXT after KFIND, do not delete buffer-string.
KNEXT uses the same buffer string as KFIND.

How to Use It

Use KFIND to find any key in an index file or to find the first key in an index file.
You can then use KNEXT to read the index file sequentially from the key found by
KFIND.

NOTE: There are two restrictions on the use of the 2048-byte index block. First, all
opens on 2048-byte indexes must be in a shared mode (4 or 5). You cannot
access a 2048-byte index that you have opened exclusively. If you open this
kind of index file exclusively and then try to execute a KFIND statement,
Error 89 - Illegal file type is displayed. You can get exclusive
access to a 2048-byte block index by using Access Control Lists (AOS/VS)
or permissions (UNIX) to the file. Second, if you use the logical file
approach to Business BASIC file usage or have sub files within a master file,
you must ensure that the index file begins on a sector boundary that is a
multiple of four in the physical file. (Under the 512-byte index structure, it
is only necessary that the index file begin on a sector boundary.) Place all
2048-byte index files at the beginning of the physical file to avoid wasting
unused sectors between a data file and an index file.

You must build a descriptor-string or supply a value for logical-file-number, dimension
buffer-string, and supply a value for key-string. After using KFIND, check
record-number. If record-number is negative, an approximate match was found. You
can use KNEXT to get the next key in sequence. If record-number is zero, nothing
like key-string was found in the index; if record-number is a positive record pointer,
then you found the key you were looking for.

Examples

1. This example illustrates the use of the KFIND statement to find a key in an index
file that is part of a PARAM file database structure.

00010 DIM D$[18] ,B$[544] ,KEYID$[10] :For descriptor, buffer,
:and key.

00020 DIM X$[512] ,C1[l,3] ,RECORD$[28] :For C1 array, record,
:and OPEN.

00030 LET X$="DATA1,6,INDEX1,6",FILL$(0):Files to open in mode 6.
00040 BLOCK WRITE X$:String to send to OPEN.
00050 SWAP "OPEN" : OPEN opens files.
00060 BLOCK READ X$:Returns C1 information.
00070 LET K=l
00080 FOR 1=0 TO 1
00090 FOR J=O TO 3

:Initialize pointer.
:For each row of C1,
:and for each column,

00100 LET C1[I,J]=ASC(X$[K,K+3]) :extract information for C1.

1-112 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

00110
00120

LET K=K+4
NEXT J

00130 NEXT I
00140 REM *fill descriptor string*

KFIND

:Bump pointer.

00150 LET D$=CHR$(C1[1,0] ,2),CHR$(C1[1,1] ,4):Channel and offset,
00160 LET D$[0]=CHR$(0,2) ,"INDEX1",FILL$(0):auto-lock of INDEXl.
00170 INPUT "Type key: ", KEYID$: Input key to find.
00190 LET R=O :Initialize record pointer.
00200 KFIND D$,B$,KEYID$,R :Find key return RI.

:If R is 0,
00210 IF R=O THEN GOTO 00800

00220 IF R<O THEN GOTO 00400

:nothing found, go to 800.
:If R is negative,
:approximate match found,
:go to 400.

00230 PRINT "record is: ";R
00240 LET R1=R

:KFIND successful--print R.
:Set R1 to R for POSFL.SL
: routine.

00250 LET F%=O :Logical file 0 in C1 array
: (for data file).

00260 GOSUB 09610: POSFL

2. This example illustrates the use of the KFIND statement to find a key in an index
file that is part of a logical file database structure.

00005 DIM KEYID$ [10],RECORD$ [28] ,T9$[544] ,RECNO[O]
00010 DIM LFTABL$[52]
00020 LET LFTABL$=FILL$(O) :Initialize local file table.
00030 LOPEN FILE [1, T9$] , "DATAl" : Open logical data file.
00040 LOPEN FILE[2,T9$] ,"INDEX1" :Open logical index file.
00050 INPUT "Type key: ", KEYID$: Input key.
00060 INPUT "Type record: ",RECORD$:Input record.
00080 KFIND 2,T9$,KEYID$,RECNO:Find key, return record-number.
00090 IF RECNO=O THEN GOTO 00800 :Ifrecord not found

:go to 800.
00100 IF RECNO<O THEN GOTO 00400 :Approximate match found

:go to 400.
00110 PRINT "record is: "; RECNO : Key was found.

093-000351 Licensed Material-Property of Data General Corporation 1-113

Commands. Statements. and Functions in Business BASIC

KNEXT Statement and Command

Locates the next key in an Index file after a KFIND.

AOSNS DG/RDOS UNIX

Format

I descriptor-string I
KNEXT I . 1.1"1 b , buffer-string, key-string, record-number

oglca -Jl e-num er

Arguments
descriptor-string A regular or subscripted string variable. To be able to lock

records. dimension this variable to. or provide a substring of. at
least 18 bytes. The variable or substring contains the channel
number. a byte offset. an automatic lock flag. and the filename of
the index file. If you do not need to lock records. the string
variable or substring must be at least 8 bytes long.

logical-file-number A numeric expression representing the logical file number of an
index file that has been opened using LOPEN FILE.

buffer-string

key-string

record-number

What It Does

A regular or subscripted string variable dimensioned to. or having
a substring length of. at least 544 bytes. This argument is used as
a buffer to hold an index block while performing 110 to an index
file. buffer-string must be unique to this index file.

A regular or subscripted string variable that is the key entry. It
must be dimensioned to. or have a substring length of. exactly the
same number of bytes as the key (or the length of the key when
crammed. if you are using the CRM$ function). The maximum
key length is 122 bytes.

An initialized numeric variable that receives the record pointer.

KNEXT returns. in key-string, the next key after a KFIND and. in record-number,
the key's associated record pointer from the index file described in descriptor-string or
logical-file-number. KNEXT pulls an index block into buffer-string and uses
buffer-string each time KNEXT is executed. so do not disturb buffer-string between
KNEXT statements. When KNEXT reaches the last index entry. a subsequent KNEXT
returns record-number with a 0 value; any additional KNEXT statements cause an
end-of-file error.

1-114 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued KNEXT

How to Use It
To use KNEXT, first use KFIND. You must have descriptor-string or
logical-file-number, buffer-string, and key-string dimensioned to the maximum length
of your keys in the index and record-number initialized to some value. KNEXT
returns key-string and record-number, but you should check record-number to see if
you reached the end of the index. KNEXT must have a separate buffer-string for
each index because it needs to preserve the information in buffer-string for the next
KNEXT to the same index.

NOTE: There are two restrictions on the use of the 2048-byte index block. First, all
opens on 2048-byte indexes must be in a shared mode (4 or 5). You cannot
access a 2048-byte index that you have opened exclusively. You can get
exclusive access to a 2048-byte block index by using Access Control Lists
(AOS/VS) or permissions (UNIX) to the file. Second, if you use the logical
file approach to Business BASIC file usage or have subfiles within a master
file, you must ensure that the index file begins on a sector boundary that is
a multiple of four in the physical file. (Under the 512-byte index structure, it
is only necessary that the index file begin on a sector boundary.) Place all
2048-byte index files at the beginning of the physical file to avoid wasting
unused sectors between a data file and an index file.

Use KNEXT after KFIND to find the next key in sequence, and use subsequent
KNEXT statements (or a KNEXT loop) to read the index sequentially from that point.
A common use of KNEXT is to find duplicate keys or approximate matches; another
is to process a data file in a sorted order by reading an index sequentially from the
beginning.

When using KNEXT after a KFIND on a 512-byte block index, it is important to
realize that the pointer for the KNEXT is set when the KFIND is done. The KNEXT
pointer is not reset by adding or deleting an intervening key.

In AOS/VS, when using KNEXT after a KFIND ana 2048-byte block index, the
pointer for the KNEXT always returns the next key in the index. This includes the
keys added by others after the user did his original KFIND. In addition, KNEXT used
with 2048-byte index blocks does not return keys deleted by another user after the
original KFIND.

To process an entire index sequentially, call KFIND with a null key, thus returning
the first key in the index, and then access the remainder of the index with KNEXT.

093-000351 Licensed Material-Property of Data General Corporation 1-115

I

Commands, Statements, and Functions in Business BASIC

KNEXT continued

Examples

1. This example illustrates the use of the KNEXT statement to access a key in an
index file that is part of a PARAM file database structure.

00010 DIM D$[18] ,B$[544] ,KEYID$[10] :For descriptor,
:buffer and key

00020 DIM X$[512] ,C1[l,3] ,RECORD$[128] :For C1 array,
:record and OPEN.

00030 LET X$="DATA1,6,INDEX1,6",FILU(0):Files to open in mode 6.
00040 BLOCK WRITE X$:String to send to OPEN.
00050 SWAP "OPEN"
00060 BLOCK READ X$
00070 LET K=l
00080 FOR I=O TO 1
00090 FOR J=O TO 3
00100 LET C1[I,J]=ASC(X$[K,K+3])
00110
00120

LET K=K+4
NEXT J

:OPEN opens files,
:Returns C1 information.
:Initialize pointer.
:For each row of C1,
:and for each column,
:extract info for C1.
:Increment pointer.

00130 NEXT I
00140 REM *fill descriptor string*
00150 LET D$=CHR$(C1[l,O] ,2),CHR$(C1[l,l] ,4):Channel and offset,
00160 LET D$ [0] =CHR$ (0,2) , "INDEX1", FILL$ (0) : auto-lock of INDEXl.
00170 INPUT "Type key: ", KEYID$: Input key to find.
00180 LET R=O :Initialize record pointer.
00190 KFIND DS,BS,KEYID$,R :Find key, return R. If R is 0,

:nothing was found and goto 800.
00200 IF R=O THEN GOTO 00800:If R is negative, an approximate
00210 IF R<O THEN GOTO 00400:match was found, and go to 400.
00220 PRINT "record is: ";R
00230 LET R1=R
00240 LET F%=O

:Set R1 to R for POSFL.SL routine.
:Logical file 0 in C1 array (for
: data file).

00250 GOSUB 09610 POSFL :00 to POSFL.SL to position to
:record R1.

00400 PRINT "Approximate Match! Key found is: ";KEYID$
:Approx. key's record negative.

00410 PRINT "Record associated with approximate key: ";ABS(R)
00420 INPUT "Keep looking? YES (0), No (1) :",N
00430 IF N THEN GOTO 00800
00440 KNEXT D$,B$,KEYID$,R :Find next key and return R.
00450 IF R=O THEN GOTO 00800:If end-of-index go to 800.
00460 PRINT "Key found is: ";KEYID$,"It's record is" ;R

:R is positive.
00470 INPUT "Is this it? yes(O), no(l): ",N
00480 IF N THEN GOTO 00420
00490 PRINT "OK. YOU GOT IT."
00500 GOTO 00230 :00 back to position routine.

1-116 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued KNEXT

2. This example illustrates the use of KNEXT to access an index file that is part of a
logical file database structure. This example assumes the data records are being
read only, with no updating of the record. If the records were to be updated, then
the record should be locked prior to reading and unlocked after rewriting.

00400 LET K$=""
00410 KFIND 2,BUF2$,K$,RNO
00420 LET RNO=ABS(RNO)

00430 GOTO 00510

:Null key to retrieve first entry.
:Logical file 2
:Negative (not found) pointer
: expected.
:Process key and pointer for first
:record before calling KNEXT.

00500 KNEXT 2,BUF2$,K$,RNO :Get next entry in index.
00510 IF RNO<=O THEN GOTO 01900 :End of index?
00520 LREAD FILE(3,RNO),RECORD$:Read data record on logical

:file 3. Process data record
:Loop back for another record. 01000 GO.TO 00500

093-000351 Licensed Material-Property of Data General Corporation 1-117

Commands, Statements, and Functions in Business BASIC

KPREV Statement and Command

Locates the preceding key In an Index file after a KFIND.

AOSIVS UNIX

Format

I descriptor-string I
KPREV I . 1.1'.'1 b , buffer-string, key-string, record-number

oglca -Jl e-num er

Arguments
descriptor-string A regular or subscripted string variable. To be able to lock

records, dimension this variable to, or provide a substring of, at
least 18 bytes. The variable or substring contains the channel
number, a byte offset, an automatic lock flag, and the filename of
the index file. If you do not need to lock records, the string
variable or substring must be at least 8 bytes long.

logical-file-number A numeric expression representing the logical file number of an
index file that has been opened using LOPEN FILE.

buffer-string

key-string

record-number

What It Does

A regular or subscripted string variable dimensioned to, or having
a substring length of, at least 544 bytes. Business BASIC uses this
buffer to hold an index block while performing I/O to an index
file. buffer-string must be unique to this index file.

A regular or subscripted string variable that is the key entry. It
must be dimensioned to, or have a substring length of, exactly the
same number of bytes as the key (or the length of the key when
crammed, if you are using the CRM$ function). The maximum
key length is 122 bytes.

An initialized numeric variable that receives the record pointer.

KPREV returns in key-string the value of the key preceding the one you just located
with a KFIND command. And in record-number, KPREV returns a pointer to the
record that contains key-string. KPREV pulls an index block into buffer-string and
uses buffer-string each time KPREV is executed, so do not disturb buffer-string
between KPREV statements. When KPREV reaches the first index entry, a
subsequent KPREV returns 0 in record-number; any additional KPREV statements
cause an end-of-file error.

1-118 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued KPREV

How to Use It
To use KPREV, first use KFIND. Then, on your KPREV command line, include (1)
a descriptor-string or logical-file-number that identifies the index from which you want
to read, (2) a buffer-string, (3) a key-string dimensioned to the maximum length of
the keys in the file, and (4) a record-number. KPREV returns key-string and
record-number. After each KPREV, you should check record-number to see if you
have reached the beginning of the index. KPREV must have a separate buffer-string
for each index because it needs to preserve the information in buffer-string for the
next KPREV involving the same index.

NOTE: There are two restrictions on the use of the 2048-byte index block. First, all
opens on 2048-byte indexes must be in a shared mode (4 or 5). You cannot
access a 2048-byte index that you have opened exclusively. You can get
exclusive access to a 2048-byte block index by using Access Control Lists
(AOS/VS) or permissions (UNIX) to the file. Second, if you use the logical
file approach to Business BASIC file usage or have subfiles within a master
file, you must ensure that the index file begins on a sector boundary that is
a multiple of four in the physical file. (Under the S12-byte index structure, it
is only necessary that the index file begin on a sector boundary.) Place all
2048-byte index files at the beginning of the physical file to avoid wasting
unused sectors between a data file and an index file.

KPREV is valid only with 2048-byte block indexes.

Use KPREV after KFIND to find the immediately preceding key. Use subsequent
KPREV statements (or a KPREV loop) to read the index sequentially from that point.
You can use KPREV to find duplicate keys or approximate matches; or to process a
data file in a sorted order by reading an index sequentially from the end.

When you use KPREV after a KFIND, the pointer for the KPREV always returns the
preceding key in the index. This includes the keys added by others after you did your
original KFIND. In addition, KPREV will not return keys deleted by another user
after the original KFIND.

Examples
1. This example illustrates the use of the KPREV statement to access a key in an

index file that is part of a PARAM file database structure. (Compare this example
with example 1 for the KNEXT statement.)

00170 INPUT "Enter a Key: ",KEYID$
00180 LET R=O
00190 KFIND D$,B$,KEYID$,R
00200 IF R=O THEN GOTO 00800

00210 IF R<O THEN GOTO 00400

00220 PRINT "RECORD IS: ";R

:1nput key to be found.
:Initialize record pointer.
:Find key, return R.
:1f R is 0, then nothing was
: found.
:If R<O, an approximate
:match was found.
:Match was found.

093-000351 Licensed Material-Property of Data General Corporation 1-119

I

Commands, Statements, and Functions in Business BASIC

KPREV continued

00400 PRINT "Approximate Match! Key found is: ";KEYID$
00420 INPUT "Keep Looking? YES (0), NO (1) :",N
00430 IF N THEN GOTO 00800
00433 LET R=ABS(R)
00435 INPUT "Search index for NEXT (0), or PREVIOUS (1) key :",N
00437 IF N=O THEN
00440
00442

KNEXT D$,B$,KEYID$,R
GOTO 00455

00445 ELSE
00447 KPREV D$,B$,KEYID$,R

00450 END IF
00455 IF R=O THEN GOTO 00800

:Find next key and return R.

:Find previous key and
:return R.

:If end/beginning of index
:go to 00800.

00460 PRINT "Key found is: ";KEYID$,"Its record is";R

2. This example illustrates the use of the KPREV statement to access a key in an
index file that is part of a logical database structure. (Compare this example with
example 2 for the KNEXT statement.)

00170 INPUT "Enter a Key: ",KEYID$
00180 LET R=O
00190 KFIND 2,B$,KEYID$,R

00200 IF R=O THEN GOTO 00800

00210 IF R<O THEN GOTO 00400

00220 PRINT "RECORD IS: ";R

:Input key to be found.
:Initialize record pointer.
:Find key in logical file 2
:and return R.
:If R is 0, then nothing was
:found.
:If R<O, an approximate
:match was found.
:Match was found.

00400 PRINT "Approximate Match! Key found is: ";KEYID$
00420 INPUT "Keep Looking? YES (0), NO (1) :",N
00430 IF N THEN GOTO 00800
00433 LET R=ABS(R)
00435 INPUT "Search index for NEXT (0) or PREVIOUS (1) key :",N
00437 IF N=O THEN
00440
00442

KNEXT 2,B$,KEYID$,R
GOTO 00455

00445 ELSE
00447 KPREV 2,B$,KEYID$,R

00450 END IF
00455 IF R=O THEN GOTO 00800

:Find next key and return R.

:Find previous key and
:return R.

:If end/beginning of index
:go to 00800.

00460 PRINT "Key found is: ";KEYID$,"Its record is";R

1-120 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

LEN Function

Finds the current length of a string.

AOSNS DG/RDOS UNIX

Format
LEN (string-variable)

Arguments
string-variable A string variable, substring, or string array element (UNIX only).

What It Does
Although a string has a maximum dimensioned length, its dynamic length (the number
of characters currently in the string) may be less than its dimensioned length. LEN
returns the number of characters currently in string-variable, including spaces,
punctuation, special characters and nulls. If nothing is in the string (including no
nulls), LEN returns O.

How to Use It
Use LEN as a numeric expression wherever Business BASIC allows numeric
expressions. If a string is padded with nulls or spaces (after the data), you can use the
TRUN$ function (see TRUN$) and then LEN to determine where the data stops in
the string.

Examples
1. LEN checks the length of a string.

00005 DIM A$(100)
00010 INPUT "TYPE 4 CHARACTERS: ",A$
00020 IF LEN(A$)=4 THEN GOTO 00040
00025 PRINT "YOU BLEW IT, TRY AGAIN."
00030 GOTO 00010
00040 END

2. LEN checks the length of a dimensioned string.

*DIM A$(512)
*PRINT LEN(A$)
o

3. LEN checks the length of an empty string.

*LET A$= ""
*PRINT LEN(A$)
o

093-000351 Licensed Material-Property of Data General Corporation 1-121

Commands, Statements, and Functions in Business BASIC

LEN

4. LEN checks the length of a string assignment.

*LET A$=12345
*PRINT A$
12345
*PRINT LEN(A$)
5

5. LEN checks the length of a filled string.

*LET A$=FILL$(O,30)
*PRINT LEN(A$)
30

6. LEN checks the length of a completely filled string.

*LET A$=FILL$(O)
*PRINT LEN(A$)
512

1-122 Licensed Material-Property of Data General Corporation

continued

093-000351

Commands, Statements, and Functions in Business BASIC

LET Statement and Command

Assigns a value to a variable.

AOSIVS DG/RDOS UNIX

Format
Simple Assignments

[LET] variable=expression

Multiple Assignments

[LET] variable [, variable ...] =expression

Multiple Statement/Command

[LET] variable [, variable ...] =expression [, variable [, variable . ..] =expression]

Arguments
variable

expression

What It Does

A numeric or string variable that can be subscripted. If you use a
numeric variable, LET initializes the variable. If you use a string
variable, you must have already dimensioned it.

A numeric or string expression. If variable is numeric, expression
must be numeric. Numeric expressions and relational expressions
can contain subscripted numeric variables, numeric functions,
user-defined functions, and constants. If variable is a string,
expression can include string variables, string array elements
(UNIX only), string functions, string literals in quotation marks,
and· even numeric expressions without quotation marks in order to
make a string of digits.

You can use LET to create a numeric variable and assign a value to it. For multiple
assignments, the variables on the left side of the LET statement must be of the same
data type. You can also use LET statements to create an 11-element, one-dimensional
array or a 121-element, two-dimensional array without having to dimension the arrays.
However, do not assign a string value to a string variable without dimensioning the
string variable first.

Use an ampersand (&) suffix as part of your variable name to indicate a quadruple
precision variable (such as FOUR&), a pound sign (#) to indicate a triple precision
variable (such asTHREE#), and a percent sign (%) to indicate a single precision
variable (such as ONE%). No suffix is required for double precision variables. If your
variable holds a value that occupies four words, use a quad precision variable to
transfer the value to or from a file. If the value occupies three words, use a triple
precision variable. If your system does not use triple precision, use only double and
single precision variables. See Learning Business BASIC or Programming with Business
BASIC for the range of values allowed with each precision.

093-000351 Ucensed Material-Property of Data General Corporation 1-123

Commands, Statements, and Functions in Business BASIC

LET continued

How to Use It
Use LET as a keyboard command to perform quick calculations or assignments when
debugging a program. Entering the keyword LET is optional; the system inserts any
missing LET statements when the program is listed.

Numeric expressions can have constants, variables, subscripted variables, numeric
functions, user-defined functions, relational expressions, and arithmetic symbols.

String expressions can have string literals in quotation marks, string variables,
subscripted string variables, string functions, string operators, and string array elements
(UNIX only). See DIM for the syntax to use for string array elements.

On UNIX systems, to refer to the entire string in a string array element, do not
specify a length (n), but do include a semicolon. For example, the command
XS=AS (; 1,1) refers to the entire string at element 1,1. You can refer to a substring of
a particular element's string by specifying the range ·of bytes before the semicolon. For
example, the command XS=AS(4,9;3,4) places bytes 4-9 of the string at element 3,4
into XS.

You can assign a numeric expression to a string variable without using quotation marks
(e.g., LET AS=1234, LET BS=3+4: AS contains the string 1234 and BS contains the
string 7). The assignment creates a string of digits that you can convert back to a
number with the VAL function or the VALUE statement.

Your variable must always be on the left of the equal sign (=) and the value you
assign to it must always be on the right.

See Appendix B for the maximum number of characters allowed in a variable name
and the maximum number of variables allowed in one program on your operating
system.

Any place that an expression is valid, you can use a relational operator. For example:

00340 LET A= (X>10)
00350 LET A= 10· (AS>BS)+20· (AS=BS)+30· (AS<BS)

All relational operations are evaluated as true or false and reduced to a value of 1 or
O. Thus, line 340 results in A=1 if the variable X is greater than 10; otherwise, A=O.
If you carry this one step further, line 350 results in A=10 if A$>BS is true, A=20 if
AS=BS is true, and A=30 if AS<BS is true.

You can append the contents of string BS to string AS using this command:

LET AS(O)=BS

Examples
1. When using LET as a command, the word "LET" is optional.

• X=2
• Y=1495
• LET X=X·Y

1-124 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

2. Determine the length of a filled and an unfilled string.

00010 DIM AS(10),BS(20),CS(20)
00020 LET AS="ABC"
00030 PRINT LEN (AS)
00040 LET BS="ABC",AS,FILLS(O)
00050 PRINT BS;
00060 PRINT LEN (BS)
00070 LET CS=542
00080 PRINT CS
00090 END

• RUN
3
ABCABC 20
542

3. Be careful with multiple string assignments because expressions are evaluated
individually for each· variable.

• DIM A$(10),B$(10)
• LET A$="AB"
• LET B$=" CD"
* LET A$,B$=A$,B$
• PRINT A$ ABCD
• PRINT B$ ABCDAB

4. In this example B(3) is set to 7 (not B(7».

00010 LET A=3
00020 LET A,B(A),C=7

5. Subscript errors are checked before the LET is performed.

* DIM 1(10)
• A=100
* LET A, I (A)=2
Error 31 - Subscript

6. Using LET for multiple assignments:

10 LET A,B,C=3

is equivalent to

10 LET C=3 \ B=3 \ A=3

7. Using LET with relational operators:

10 LET A=B=C=O

is equivalent to

10 IF B=C THEN LET A=O ELSE A=l

093-000351 Licensed Material-Property of Data General Corporation

LET

1-125

Commands, Statements, and Functions in Business BASIC

LIST Command

Lists the character contents of a program to a file or a terminal.

AOSIVS DG/RDOS UNIX

Format

LIST !
line-number 1
[TO line-number2]

line-number 1 [{ T,O } line-nUmber2]
["filename"]

Arguments
line-number

line-number 1

line-number2

filename

What It Does

A line number (when you want only one line listed).

The line number of the first line in a range of lines you want
listed. If it does not exist, the range begins at the next higher line
number.

The line number of the last line in a range of lines you want
listed. If it does not exist, the range terminates at the next lower
line number.

The name of a disk file or device expressed as a string literal in
quotation marks. If the filename already exists, you get an error
message.

LIST writes all of a program or the lines specified to the disk file or device specified
by filename. If you do not specify a filename, LIST displays the program or the lines
specified on your terminal. If a program is listed to a disk file, filename is put in your
directory, and you can retrieve it by using filename with the ENTER command. If
filename is a device, the output goes to the device in character format.

How to Use It
To send part or all of a program to a disk file, specify filename as the new file. To
output part or all of the current program· to the line printer, specify its device name as
your filename. To specify part or all of the current program in working storage, use
the following formats:

LIST

LIST line-number

LIST TO line-number2

This outputs the entire program starting at the lowest
numbered line.

This outputs only that line.

This outputs all lines from the lowest line number
through line-number2.

1-126 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued

LIST line-number 1 TO line-number2
or

LIST line-number 1. line-number2

These both output all lines starting at
line-number 1 through line-number2.
Line-number2 must be greater than
line-number 1.

LIST

When you list only one line. Business BASIC automatically puts it in the edit buffer so
that you can use keyboard editing commands on it (all keyboard editing commands
are in this manual). When you list a range of lines or all the lines. the last line listed
remains in the edit buffer.

Examples
1. List from one line number to another.

*LIST 10.40
00020 INPUT BAL
00030 INPUT PAY
00040 LET BAL=BAL-PAY

2. List from the beginning.

*LIST TO 30
00010 LET X=10
00020 INPUT BAL
00030 INPUT PAY

3. List a particular line to change. ".C" is a keyboard editing command.

* LIST
00010 LET X=10
*.C/X=10/X=10
00010 LET X=20

4. You can list a Business BASIC program on a line printer. This example shows
how to list a program on a DG/RDOS system printer.

*LIST TO 30
00010 LET X=20
00020 INPUT BAL
00030 INPUT PAY
*LIST "SLPT"

5. List part of a program to a disk file.

*LIST 10 TO 100 "JUNK.LS"

093-000351 Licensed Material-Property of Data General Corporation 1-127

Commands. Statements. and Functions in Business BASIC

lISTH Command

Lists the character contents of a program with header
Information to a file or a terminal.

AOSIVS DG/RDOS UNIX

Formats

I line-number I
[TO line-number2]

LISTH TO
line-number 1 ({ • } line-number2!

["filename"]

Arguments
line-number

line-number 1

line-number2

filename

What It Does

A line number (when you want only one line listed).

The line number of the first line in a range of lines you want
listed. If it does not exist. the range begias at the next higher line
number.

The line number of the last line in a range of lines you want
listed. If it does not exist. the range terminates at the next lower
line number.

The name of a disk file or device expressed as a string literal in
quotation marks. If the filename already exists. you get an error
message.

LISTH works like LIST. except LISTH prints a header containing the user's account
name. the date. the time. and the name of the program. If the program is not a saved
program. its name will be SCRATCH.

How to Use It
See LIST.

1-128 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

Example
LISTH generates a header before displaying the text of the file.

*LOAD "test"
*LISTH

: ACCOUNT
:PHIL 6

DATE
22-APR-91

00010 REM THIS IS A TEST
00020 INPUT X
00030 PRINT XA 2
00040 END

TIME
14:57:23

PROGRAM
TEST

093-000351 Licensed Material-Property of Data General Corporation

LISTH

1-129

Commands, Statements, and Functions in Business BASIC

LOAD Command

Retrieves a saved program.

AOSIVS DG/RDOS UNIX

Format

LOAD "filename"

Arguments
filename A filename in quotation marks for a program file created by a

previous SAVE or REPLACE.

What It Does
LOAD clears the current program and data from working storage (like the NEW
command) and retrieves the program named by filename. The new program becomes
the current program in your working storage. LOAD searches first your directory for
filename, and then the library directory; if it does not find filename, you get an error
message. Under UNIX and AOS/VS systems, LOAD's search follows your search path
if the program cannot be found in either your current directory or your library
directory.

Do not confuse this LOAD with the BASIC CLI command LOAD, which is used to
restore files from a magnetic tape backup.

How to Use It
Use LOAD to retrieve a saved or replaced program. Use LOAD only as .a keyboard
mode command. You must specify filename. Load only programs that were created by
a SAVE or REPLACE, or Business BASIC utility programs that are already saved.
RUN filename and CHAIN filename perform a LOAD automatically as part of their
execution.

1-130 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements, and Functions in Business BASIC

LOCK/UNLOCK Statement and Command

Locks/unlocks files and records.

AOSNS DG/RDOS UNIX

Format

OC ' rr I "filename", star(,record-sjze I
L K IdentlJler, [,time]

logjcal-file-number,record-number

UNLOCK [identifier]

Arguments
identifier

filename

start

record-size

A numeric expression used to identify a specific lock in a
program. This is local to a given job. The maximum identifier is
32,700. Negative numbers are not permitted as values for
identifier.

Note: The interpreter does not prevent you from using lock IDs
higher than 32,700; however, to avoid conflicts with lock
IDs generated by Business BASIC, you should observe this
restriction.

A string literal in quotation marks that is the logical or physical
name of the file you want locked. All users must use the same
filename convention. In other words, all must specify physical files
or logical files, or use some other convention established for your
system. Do not use logical and physical filenames that are the
same.

A numeric expression for the logical or physical starting byte
number of the lock area: the convention you use (logical or
physical) must be consistent with every user.

A numeric expression for the size (in bytes) of the record in the
lock area (Le., the record you want to lock).

logical-file-number A numeric expression that evaluates to a file number for a data
file of type "0" or "L" that has been previously opened using
LOPEN FILE.

record-number

093-000351

The record number of a logical record to be locked in the data
file represented by logical-file-number that has been opened using
LOPEN FILE.

Licensed Materlal,-Property of Data General Corporation 1-131

Commands, Statements, and Functions in Business BASIC

LOCK/UNLOCK continued

time

What It Does

A numeric variable (optional) containing the amount of time
(specified in tenths of a second) to wait for an unlock before
abandoning the lock attempt. In a successful lock, time is set to
-1; on an unsuccessful lock, an error code is returned in time.
The maximum value for time is 32767.

LOCK/UNLOCK is essentially a communications device-it doesn't prevent anyone
from accessing the file area. LOCK prevents anyone else from using a LOCK on the
same file area. If all users follow the convention of trying to lock a record before
accessing it, LOCK prevents another user from using a lock on the same file area by
warning the user not to access the record. You should not use LOCK for record 0 of
a data file that you will access with the GETREC statement. GETREC provides
automatic locking of record O.

The LOCK statement/command locks the number of bytes that contain the record.
LOCK uses the numeric expression represented by start to get the starting byte
number and record-size as the number of bytes that define an area to be locked.
LOCK then examines the lock table (a list of locks for the entire system) to see if
any other job locked that filename (the first 10 characters of filename are compared
to filenames in the lock table). If another job also locked filename, Business BASIC
compares the starting and ending block numbers of the lock area you supplied with
the starting and ending block numbers of the lock area already locked. If there is an
overlap, your LOCK will not be successful.

Your job is suspended either for the value put in time, until the other user unlocks
that filename, or until an interrupt occurs. In all cases, if your LOCK is suspended,
the time variable returns with a value of 57. If there is no overlap or if filename does
not exist in the lock table, then your LOCK is successful and the filename with your
lock area is recorded in the lock table.

UNLOCK removes your filename and lock area from the lock table so that someone
else can lock that file. UNLOCK with an identifier refers only to the LOCK with the
same identifier; UNLOCK without an identifier unlocks all locked files in your
program.

Lock identifiers are unique to each job; for. example, you can have 1 through 32,700
identifiers, each of which is unique to your terminal. Another terminal's identifier of
the same value does not refer to the idenlifier of your LOCK/UNLOCK. Business
BASIC reserves lock identifiers 32,701 through 32,767; however, no error occurs if
you use an identifier in this range in a LOCK or UNLOCK statement. To avoid
potential conflicts, though, stay within the 1 to 32,700 range. On AOS/VS and
DG/RDOS systems, to find out which locks you have set at your terminal, run the
LOCKS utility program. Use the LOCKS command on UNIX systems to display the
current locks on your system. Error 56 - Attempt to LOCK same area twice
occurs if you try to perform two LOCK statements at your terminal with the same
identifier without an intervening UNLOCK. You can lock the same or overlapping
areas as long as you use different lock identifiers. If you supply a time variable, the
value 56 is returned in time.

1-132 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued LOCKIUNLOCK

On AOS/VS systems, RLS2 must be running and must be on your search path. On
UNIX systems, rlsx must be running and must be on your search path. Error 91 -
Attempt to issue LOCK/UNLOCK without lock server running occurs if a
lock is attempted when the lock server is not running.

How to Use It
A LOCK only prevents another user from locking the same file area, so to control file
access using file locking, everyone must agree to the same lock conventions and must
also agree to attempt to lock a record before accessing the record. You should use
only one type of filename in a LOCK statement: physical or logical, preferably logical
filenames. Otherwise, if someone tries to lock a file area in a physical file and another
user tries to lock the same file area using the logical (subfile) filename instead, both
LOCK statements are successful, although you only want one of them to be
successful.

You must decide which convention to use for start: the logical starting byte within a
logical file (this can be a sub file) or the physical starting byte in a physical file,
whether or not sub files exist. Otherwise, the same area can be represented differently
and locked by different users, which defeats the purpose of LOCK.

Use time to specify how many tenths of a second a LOCK should wait for an
UNLOCK or interrupt. When that amount of time .has elapsed, control returns to
your program, and you should check the value in time. A 57 means an UNLOCK has
not yet occurred to unlock the file area you want to lock. Use time to avoid "deadly
embraces" that occur when you want to lock an area that is already locked by
another user and the user wants to lock an area you have already locked. Neither of
you can perform an UNLOCK while your jobs are suspended.

Error 56 - Attempt to LOCK same area twice is issued if you attempt to lock
more than one area with the same lock identifier. This error is not returned if you try
to lock an area overlapped by an area that is already locked when different lock
identifiers are specified. Also, an area that is already locked can be locked again
when different lock identifiers are used.

Error 93 - Maximum number of locks has been exceeded occurs if no lock
buffers are available. Error 34 - Function argument occurs if you use an
identifier greater than 32767.

093-000351 Ucensed Material-Property of. Data General Corporation 1-133

Commands, Statements, and Functions in Business BASIC

LOCK/UNLOCK continued

Example
00010 DIM D$[18] ,B$[544] ,KEYID$[lO]:For descriptor,»uffer, and key.
00020 DIM X$[5l2] ,Cl[l,3] ,RECORD$[28] :For Cl array, record, and OPEN
00030 LET X$="DATA1,6,INDEX1,6",FILL$(0):Files to open in mode 6.

00170 INPUT "Type key: ",KEYID$
00180 INPUT. "Type record: ",RECORD$
00190 LET " ... 0
00200 LOCK 2, "DATAl", 0, Cl [0,3]
00210 GOSUB 08400: \GETREC
00220 UNLOCK 2
00230 GOSUB 09610:\POSFL

: Input key.
:Input record.
: Logical file 0 is DATAL
:Lock record 0 of DATAl.
:Get available record of DATAl.
:Unlock record 0 of DATAl.
:Position using Rl from GETREC.

1-134 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

LOCKS Command

Displays Information about current file locks.

UNIX

Format

LOCKS

What It Does
The LOCKS command displays information about the file locks that have been set
using the LOCK command.

Each file lock has a unique set of identifiers. including a lock ID. The LOCKS
command displays the lock ID for each locked file area. The associated filename.
process ID. and parameters for the locked area are also displayed. If you are running I
Business BASIC in DG mode (i.e .• you included the -D option when you executed
Business BASIC), then your screen clears and the lock information is displayed at the
top of the screen. If you are running Business BASIC in non-DG mode, then the lock
information is displayed at the right of the screen.

If an UNLOCK command is issued while you are viewing the LOCKS display, the
lock associated with that UNLOCK command disappears from the display. (See the
LOCK/UNLOCK command description.)

How to Use It
Use the LOCKS command in keyboard mode.

The column headings in the LOCKS display have the following meanings:

S

PID

LID

093-000351

Status of the lock

F = free

I = invalid

L = active lock

W = waiting for access to an area that is already locked

U = unlocked

Process ID of the Business BASIC process that issued the lock

Lock ID; the identifier used in the LOCK statement that issued the
lock.

Ucensed Material-Property of Data General Corporation 1-135

I

Commands, Statements, and Functions in Business BASIC

LOCKS

START

LEN

FILENAME

Starting byte of the locked area

Length (in bytes) of the locked area

continued

Name of the file containing the area for which the lock has been
issued.

When you are running LOCKS in non-DG mode, then if all the output from a
LOCKS command cannot fit in the display window, the word MORE appears in the
bottom border of the display. To scroll down one line in the output, press the New
Line key. To scroll down a full screen, press the space bar. To quit the LOCKS I display process and return to the prompt, press the interrupt key or the q key.

NOTE: An I or F in the status column indicates that there is a problem you need to
check into.

Example

I The LOCKS command produces the following display in non-DG mode. All of the
processes that are attempting to lock the same area of a file will be displayed after the
active record (indicated by an L or U in the status column). The lock ID is the
identifier used in the LOCK statement/command.

*LOCKS

LOCKS Command Display

S PID LID START LEN FILENAME

L 3 15 0 2047 datal
L 7 34 1024 8191 report3
L 18 35 2048 4096 data5
W 25 41 1024 8191 report3

MORE

1-136 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

LOPEN FILE Statement and Command

Opens a logical file.

AOSIVS DG/RDOS UNIX

Format
LOPEN [error-code,] FILE (logical-file-number ,buffer-string [Jlags]), "logical-file-name"

or

LOPEN [error-code,] FILE (logical-fiLe-number, channel [Jlags]), " logical-file-name" ,
"file-type" ,record-length [, last-record-number [,offset]]

Arguments
error-code An optional numeric variable that receives any error code

generated as a result of the execution of the LOPEN FILE
statement. This argument must be initialized (Le., set to zero)
before it is used.

logical-file-number A numeric expression yielding the logical file number of a data file
opened using LOPEN FILE. This number must be greater than or I
equal to 1.

buffer-string

flags

A regular or subscripted string variable dimensioned to (or with a
substring length of) at least 512 bytes. It is used as a buffer while
LOPEN scans the volume label.

An optional numeric expression used to signal whether automatic
locking of linked (type L) and index (type I) files should occur
and whether the physical file should be exclusively opened.

Bits

o
1
0&1

Mask Value

1
2
3

Effect if Set

Do not automatically lock this file
Exclusively open physical file
Both exclusive open and no lock

A value of 0 (default when flags is missing) signals locking should
automatically occur for GETREC, DELREC, KADD, KDEL, and
KFIND statements, and that the file is to be shared. When bit 0
is set, it signals that locking is not needed. When bit 1 is set, the
physical file is exclusively opened, which is useful for updates
where shared access of any kind is inappropriate.

logical-file-name The name of the logical file in quotation marks.

093-000351 Licensed Material-Property of Data General Corporation 1-137

I

Commands, Statements, and Functions in Business BASIC

LOPEN FILE continued

last-record-number A numeric expression which represents the last record number that
should be used. This argument is required for the second form of
the LOPEN FILE statement, when the file to be opened is type I,
index file. If the file is an index file, you must specify a value that
is less than or equal to 65535. If you are opening a file other than
type I, this argument is optional and defaults to 16777215.

file-type

channel

record-length

offset

What It Does

A string expression in quotation marks that defines the type of
logical file being accessed: "D" for a direct (no automatic record
allocation) file, "I" for an index file, and "L" for a linked
available record file (automatic record allocation).

The Business BASIC channel on which the physical file containing
the logical file being defined is opened.

A numeric expression that defines the record length. When
omitted, this argument defaults to 1. For an index file, this must
be 512 or 2048 (AOS/VS and UNIX only).

An optional numeric expression that defines the byte position in
the physical file where the logical file begins. When omitted, this
argument defaults to O.

The LOPEN FILE statement links a logical file name with an identifying logical file
number for further 110 referencing. .

For the first LOPEN FILE format, the volume label file is used by the LOPEN FILE
statement to determine the characteristics of a logical file being opened. This
information is then copied into LFTABL$, which controls the operation of the other
logical 110 statements. LFTABL$ is described under "How to Use It."

The second format of the LOPEN FILE statement allows you to open a physical file.
When using this format, you must first open the physical file. You supply all the
information in the LOPEN FILE statement instead of reading the volume label file.
The arguments you supply al·e then copied into LFTABL$.

In either format, after the LOPEN FILE has been performed, program execution
proceeds in the same manner.

NOTE: The use of the error-code argument suppresses execution of the system's
default error trap or any ON ERR condition (which causes the program to
halt) and instead returns to error-code the same error code as would be
supplied by the appropriate SYS error function. Therefore, you must check
the error-code value to determine whether an error has occurred in opening
a logical file.

1-138 Licensed Material-Property of Data General Corporation . 093-000351

Commands, Statements, and Functions in Business BASIC

continued LOPEN FILE

How to Use It
You must use LOPEN to define and/or open logical files prior to their use in other
logical 110 statements; i.e., LREAD, LWRITE, GETREC, DELREC, LOCK,
UNLOCK, KADD, KDEL, KFIND, and KNEXT.

Use the first syntax for LOPEN when opening a database file created by the LFU
LCREATE utility. Use the second syntax when you have opened a physical file and
want the convenience of the logical 110 statements; therefore, you must provide the
logical file definition.

Befote executing the first LOPEN statement, dimension the string variable LFTABL$
and fill it with nulls to a current length of at least 26 times the highest logical file
nwnber to be used. LFT ABL$ is used to obtain the definition of any logical file
referenced by any logical 110 statement. Within LFTABL$ are entries of 26 bytes for
each logical file. Each 26-byte entry contains the following fields at the specified
relative positions:

Field Position Length

Channel number 1 2
Starting byte 3 4
Flags 7 2
Logical filename 9 10
Record length 19 2
Last record number 21 4
File type(D,L,or I) 25 1
Reserved 26 1

The CLOSE statement frees the physical channel numbers and closes physical files
that were opened using the LOPEN FILE statement, but CLOSE does not reinitialize
LFT ABL$ so that another logical file can be opened using the same
logical-file-number. However, you can reinitialize the 26 bytes allocated in LFTABL$
for the logical file numbers associated with the physical file that was closed.

The information in LFT ABL$ can be accessed to obtain any information desired. This
is supported by the subroutine LFDATA.SL. You should not change the information
in LFTABL$ after its initial FILLS. Altering this information can cause logical I/O
statements to produce unpredictable results.

Refer to your Business BASIC user's guide for the maximum number of open files
allowed on your operating system.

093-000351 Licensed Material-Property of Data General Corporation 1-139

Commands, Statements, and Functions in Business BASIC

LOPEN FILE

Example
00010 DIM T9$[512] ,LFTABL$[52]

00020 LET LFTABL$=FILL$[O]
00030 LOPEN FILE[1,T9$],"EMPDATA"
00040 OPEN FILE[15,0],"TMP"

continued

:Dimension required strings.
:LFTABL$ is dimensioned to 26*2
:because highest logical file
:number is 2.
:Initialize logical file table.
:Open employee data file.
:Use open to open temporary file
:for index.

00050 LOPEN FILE[2,15] , "TMP", "I",512,65000 :Open TMP as logical
:index file. Assign values to
:variables required by the
:LINITINDEX.SL subroutine.

00100 GOSUB 07700 :Call LINITINDEX.SL to initialize

1-140

:TMP. Index is now ready to use.
: Use. KAnD, KNEXT, etc. as
: necessary.

Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

LREAD FILE Statement and Command

Reads a logical record.

AOSIVS DG/RDOS UNIX

Format

LREAD FILE [logical-file-number,record-number,]string-variable

Arguments
logical-file-number A numeric expression yielding the logical file number of a data file

opened using LOPEN FILE.

record-number

string-variable

What It Does

A numeric expression indicating a record number from 1 to the
end of file for a type L file or 0 to the end of file for a type D
file.

A string variable of sufficient size to receive the record pointed to
by record-number.

The LREAD FILE statement causes data in binary format to be read from a file into
the string variable listed in the statement.

NOTE: LREAD FILE will read logically deleted records without issuing an error
message.

How to Use It
LREAD FILE reads from the file the number of bytes required to fill string-variable
up to the defined logical record size specified.in the previous LOPEN. A record string
that is dimensioned longer than defined by record size will receive only the number of
bytes defined by record size. Its current length will be set tothis value. An error
occurs if an attempt is made to issue an LREADstatement using. a record string of
insufficient length to contain the defined record.

In a random access file, reading a record that has not been written inputs a record of
all Os (null bytes).

093-000351 Licensed Material-Property of Data General Corporation 1-141

I

Commands, Statements, and Functions in Business BASIC

LREAD FILE continued

Example
This example shows an LREAD from a logical database file and a physical file.

00100 LOPEN FILE [1,5$], "TDATA" :Open logical database file.
00110 FOR RECNO=l TO 100 :Scan file.
00120 LREAD FILE [l,RECNO] ,RECORD$:Read record from TDATA.
00130 UNPACK "JA20L",RECORD$,STAT%,NAME$,AMOUNT

:Parse into fields.
00140 IF STAT%<=O THEN GOTO 00800 :Check for deleted record.

00200 OPEN FILE [2,0], "MYFILE" :Open the physical file.
00210 LOPEN FILE [5, 2] , "MYFILE" , "L" , 40 : Def ine in LFTABL$

00400 LREAD FILE [5,RNUM],MYREC$:Read record from MYFILE.

1-142 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

LWRITE FILE Statement and Command

Writes a logical record.

AOSIVS DG/RDOS UNIX

Format

LWRITE FILE [logical-file-number ,record-number,] string-variable

Arguments
logical-file-number A numeric expression yielding the logical file number of a data file

opened using LOPEN FILE.

record-number

string-variable

What It Does

A numeric expression indicating a record number from 1 to the
end of file for a type L file or 0 to the end of file for a type D
file.

A string variable large enough to receive the record pointed to by
record-number.

The L WRITE FILE statement outputs data in binary format to the logical record of
the file referenced by the logical-file-number.

How to Use It
The number of bytes transferred to a file by L WRITE is the defined logical record
size. If the record string is less than the defined record length, then the output record
is padded with nulls. An error occurs if a record string with a current length greater
than the logical record length is used.

093-000351 Licensed Material-Property of Data General Corporation 1-143

I

Commands, Statements, and Functions in Business BASIC

LWRITE FILE continued

Example
In this example, a record is locked,· read (using LREAD FILE), unpacked, updated,
repacked, written (using LWRITE FILE), and unlocked.

00200 LOPEN FILE [l,T$], "DATAS" :Open DATAS as a logical
:database file.

00400 LOCK 2,1,RECNO :Lock and
00410 LREAD FILE [l,RECNO], DATAS$:Read record into DATAS$.
00420 UNPACK 00430,DATAS$,STAT%,NAME$,ADR$:Break into fields.
00430 RFORM JA20A30 :Format for above UNPACK and

:the PACK below.
:Update fields as needed.

00712 PACK 00430,DATAS$,STAT%,NAME$,ADR$:Recompose record
:from fields.

:Rewrite record 00720 LWRITE FILE[l,RECNO],DATAS$
00730 UNLOCK 2 :and unlock it.

1-144 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

MAX Function

Finds the largest expression.

AOS/vS DG/RDOS UNIX

Format

MAX (expression 1 ,expression2)

Arguments
expression Numeric expressions or variables that you want to compare.

For UNIX only, you can compare more than two expressions;
delimit them with commas.

What It Does
MAX returns the largest value of the expressions you specify. See Appendix B for the
number of expressions you can specify on your operating system.

How to Use It
Use MAX as a numeric expression wherever numeric expressions are allowed.

Examples
1. Print the maximum of two variables.

00010 INPUT X, Y
00020 PRINT MAX(X,Y)
* RUN
7-3,7
7

2. Print the maximum of two expressions.

00010 DIM X$(100),Y$(100)
00020 INPUT X$,Y$
00030 PRINT MAX(LEN(X$),LEN(Y$»
* RUN
7ABC,ABCDEF
6

093-000351 Licensed Material-Property of Data General Corporation 1-145

Commands, Statements, and Functions in Business BASIC

MIN Function

Finds the smallest expression.

AOSIVS DG/RDOS UNIX

Format

MIN (expression 1 ,expression2)

Arguments
expression Numeric expressions or variables that you want to compare.

For UNIX only, you can compare more than two expressions;
delimit them with commas.

What It Does
MIN returns the smallest value of the expressions you specify. See Appendix B for
the number of expressions you can specify on your operating system.

How to Use It
Use MIN as a numeric expression wherever numeric expressions are allowed.

Example
Determine the smaller of two values and display the value.

00010 INPUT X,Y
00015 IF X=Y THEN COTO 00050
00020
00030
00035
00040
00045
00050
• RUN
78,S

IF MIN(X,Y)=X THEN
PRINT "Y(" ;Y; ") is
STOP
PRINT "X("; X; ") is
STOP
PRINT "X and Y a:.:'e

Y(5) is the minimum.

COTO 00040
the minimum."

the minimum."

equal."

...

1-146 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

MOD Function

Finds the remainder after dividing two expressions.

AOSIVS DG/RDOS UNIX

Format

MOD (expressionl ,expression2)

Arguments
expressionl A numeric expression or variable; the dividend.

expression2 A numeric expression or variable; the divisor.

What It Does
MOD divides expressionl by expression2 using this formula:

remainder= ABS(expressionl - INT (expression 1 /expression2) • expression2)

For example, MOD(17,5) equals 2. If the remainder is 0, then expressionl is a
multiple of expression2 (and expression2 is a factor of expressionl).

How to Use It
Use MOD as a numeric expression wherever numeric expressions are allowed.

Examples
1. MOD displays the remainder after dividing Xby 10.

00010 INPUT X
00020 LET Y=10
00030 PRINT "REMAINDER AF.'l'ERDIVIDINGX BY 10:";
00040 PRINT MOD(X,Y)
* RUN
? 47
REMAINDER AFTER DIVIDING X BY 10:
7

2. For this example, the remainder is O.

00010 X=4
00020 PRINT MOD(X,4)
* RUN
o

093-000351 Licensed Material-Property of Data General Corporation 1-147

Commands, Statements, and Functions in Business BASIC

MOD continued

3. For this example, the remainder is O.

00010 X=8
00020 PRINT MOD(X,4)

• RUN
o

4. In this example, the user inputs values for the expressions to be divided in the
MOD statement.

00010 INPUT X
00020 INPUT Y
00030 PRINT MOD(X,Y)
RUN
1-10
1-"3
1
RUN
110
1-3
1
RUN
110
13
1

1-148 Licensed Materl!ill-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

MSG Command

Sends a message to another terminal or process.

RDOS

Format
MSG, [terminal,] "message"

Arguments
terminal

message

What It Does

The port number of the terminal to receive message. This can be
a number, numeric expression or variable. You can find out which
terminals are logged on and what their numbers are by using the
Business BASIC CLI command STAT. If you do not specify
terminal, the message is sent to the OP user with the lowest job
number. If no OP user is logged on, Error 51 - User not on
system is displayed.

The text of the message you want to send, expressed as either a
string literal in quotation marks or a predefined string variable.

MSG sends message to the terminal specified or to the OP user with the lowest job
number if no terminal is specified. The receiving terminal displays the usemame of the
sender along with the message, unless the receiving terminal set a no-message flag with
STMA 6,4.

How to Use It
Use MSG as a keyboard command only. First, find out which terminals are logged on
and their numbers by using the utility STAT. Your message may be a string literal in
quotation marks or a previously dimensioned and assigned string variable.

Examples
*MSG,2, "WHAT ABOUT LUNCH?"

This message would appear at terminal 2.

FROM 4:AATLB6 WHAT ABOUT LUNCH?

AATLB6 is the use marne for the message-sender, and 4 is AATLB6's terminal
number. AATLB is the user that signed on at terminal 4; the appended "6" means
that terminal 4 is a type 6 terminal.

*MSG,4, "YOUR TREAT? OK!"

At terminal 4, the reply would come back from account ABSCR:

FROM 2:ABSCR6 YOUR TREAT? OK!

093-000351 Licensed Material-Property of Data GeneralCorporatlon 1-149

Commands. Statements. and Functions in Business BASIC

MSG

*MSG. "LET'S GO EVERYBODY!"

This message would be received by the OP user with the lowest job number.
Presumably the system operator would gather everyone for lunch.

. 1-150 Licensed Material-Property of Data General Corporation

continl)sd

093-000351

Commands, Statements, and Functions in Business BASIC

MTDIO Statement and Command

Directs 1/0 control of magnetic tape and cassette.

AOSNS DGIRDOS UNIX

Formats
Format 1: Read from or write to a tape.

MTDIO channel,function,string-variable,error-code

Format 2: Skip records forward or backward.

MTDIO channel,function,records, record-count, error-code

Format 3: Rewind a tape.

MTDIO channel,/unction, error-code

Arguments
channel

function

string-variable

093-000351

A numeric expression for the channel number of a file opened in
mode 7 (magnetic tape 110).

A code number indicating one of the following functions:

Code Function

1 Read a tape record into string-variable (format 1).

2 Rewind the tape to the beginning (format 3).

3 Not used.

4 Skip records number of records in tape, moving
forward (format 2).

5 Skip records number of records in tape, moving
backward (format 2).

6 Write a tape record from string-variable (format 1).

7 Write an end-of-file mark on the tape (format 3).
(ROOS and UNIX only)

8 Read the tape drive status into error-code (format 3).

The default parity is odd. Make your function code negative if the
tape requires even parity, but ask your system manager first.

Note: On UNIX systems, there is no difference between
negative and positive codes.

A string variable or subscripted string variable that contains data
bound for output to tape or receives data input from tape. You
must have already dimensioned string-variable.

Licensed Material-Property of Data General Corporation 1-151

•

Commands, Statements, and Functions in Business BASIC

MTDIO

error-code

records

record-count

What It Does

continued

The numeric variable that receives the tape status or error code as
bit flags in the right-most two bytes of the variable. This variable
receives one of the errorstatus codes listed in Figure 1-7. If some
other error occurs, then a Business BASIC error is generated.

A numeric expression for the number of records to skip; it must
be in the range of 0 to 4095. (If you specify 0, then 4096 records
are skipped; otherwise, the number of records skipped equals the
value you specify.)

A numeric variable that receives the count of the actual number of
records skipped.

MTDIO reads from and writes to magnetic tapes. You can read data, write data, skip
records, and rewind the tape using MTDIO statements in your program or MTDIO
commands at your terminal. MTDIO can handle any tape format, since it reads in
records whose size you determine by dimensioning string-variable. Under AOS,
AOSNS, and RDOS systems, your record size can range from 2 to 8192 bytes.
Under DG/RDOS systems only, this value can range from 2 to 16384 bytes. Under
UNIX systems, the maximum record size is 32768.

On DG/RDOS systems only, the .MTDRW system call allows support for 16-Kbyte
records. Use this feature by dimensioning the data string in the MTDIO read/write
command to a value greater than 8192 and less than or equal to 16384.

UNIX, AOS/VS, and DG/RDOS tape formats require an even number of bytes
because all tape transfers are word (two-byte) transfers. Also, on UNIX systems, a
150-MB cartridge tape only supports records that are a multiple of 512 bytes. If your
tape is not in the proper format, you may get transfers with an odd number of bytes;
this condition is indicated· in.error-"code.

When MTDIO is reading from a tape and you have dimensioned string-variable to be
larger than the number of bytes actually read, string-variable is truncated to the actual
n~mber of bytes found. If you have dimensioned string-variable to be less than the
number of bytes in the tape record, string-variable is filled to capacity, and you lose
the excess bytes (error-code will not indicate this).

When you are writing a tape record, the size of the record equals the dimensioned
size of string-variable or the specified length of string-variable if string-variable is a
substring, regardless of the current length of string-variable. Under DG/RDOS,
dimensioning the string variable to a value greater than 8192 and less than or equal to
16384 bytes causes 16-Kbyte records to be used. When you are skipping tape records,
a value of 0 for records causes the maximum of 4096 records to be skipped either
forward or backward. Otherwise, a value from 1 to 4095 for records causes the
specified number of records to be skipped, forward or backward. If the number of

1-152 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued MTDIO

records you want to skip is greater than the number remaining in the file (moving
forward), the tape stops when it encounters the end-of-file marker. You can test for
an end of file by checking the status word returned in error-code.

After an MTDIO execution, error-code contains the status word for the tape drive
unless an error occurs. An error returns the appropriate error code in error-code.
End of file, end of tape, parity, and other DG/RDOStape drive errors can only be
determined by checking bits of the status word. These errors are not returned as
Business BASIC errors. The status values as well as what each bit value signifies are
shown in Figure 1-7.

VALUE

32768

16384

8192

4096

2048

1024

512

256

128

64

32

16

8

4

2

BIT POSITION

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 • 0 • 0 • • • • 0 • 0 0 0 • 0

• 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

• 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

• 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

• 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

• 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

• 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

• 0 0 0 0 0 0 0 0 0 1 0 0 0 0 {}

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 {) 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

• 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

SIGNIFIES

Error. (Bits 1, 3, 5, 6, 7, 8,
10 and 14 are the error bits;
at least one Is set.)
Data late; also sets bit 0
(RDOS and DG/RDOS only).
Tape rewinding (RDOS and
DG/RDOS only).

Illegal command (also sets
bit 0).

High density (always set for
cassettes & UNIX systems) .

Parity error (also sets bit 0).

End of tape (also sets bit 0).

End of file (a!so sets bit 0).

Beginning of tape (also sets
bit 0).
Nine track tape (always set for
cassettes & UNIX systems).

Bad tape (also sets bit 0).

Send clock (RDOS and
DG/RDOS only).
First character (RDOS and
. DG/RDOSonly) .

Write protected. Cannot be
written to. .

Odd character (odd
byte)thllt also sets bit O.

UNIT READY.

A "1" In a bit signifies that the bit Is set, and the "value" Is the value you use (with AND) to
check if only that bit Is set. Normally you only check one bit at a time, but If you want to check
more than one bit, add the values together and use the total value to AND with er. A " • " In a
bit signifies that the bit In this word Is set (signified by a "1"), at least one of the " • " bits Is
also set (If one· •• bit, It Is set).

Figure 1-7 MTDIO Status Values

093-000351 Licensed Material-Property of Data General Corporation 1-153

Commands. Statements. and Functions in Business BASIC

MTDIO continued

How to Use It
To use MTDIO. first open the desired tape device in mode 7 on channel. When
reading a tape with MTDIO. your string variable should be of sufficient size to
contain the largest expected record. You will lose any bytes that do not fit. You must
request an even number of bytes. If you know your tape ends on an odd byte. you
should read in the number of bytes plus one to make it even and then discard the last
byte (it will be a duplicate of the one before it).

Determine any error or tape drive status condition (like end of file. end of tape. or a
parity error) by checking bits of the status word (see Figure 1-7). The variable
error-code receives the status word. so you can use the AND function (AND
error-code) with the value of the bit flag you want to check. To check more than one
bit flag at once. add the values of the bit flags together and use the total value in the
AND function with error-code. If you are reading a tape whose records were written
by the DO/RDOS CLI XFER command or the Business BASIC CLI XFER command
(XFER writes 512-byte blocks). you must dimension string-variable to 512 bytes for
each MTDIO read. When reading into a substring. the substring must begin on an
odd byte (1.3.5 ...) and must be an even number of bytes long.

When you write a tape record from string-variable. string-variable must be an even
number of bytes in length. If string-variable isa substring. it must start on an odd
byte (1.3.5 ...) and be an even number of bytes long. Remember to check for an
end-of-tape condition in the status word in error-code when writing long tape files;
otherwise. the tape could run off the reel. On DO/RDOS systems. after writing all
your· records to the tape. you should write an end-of-file mark using function 7 to
prevent attempts to read beyond the end of file when the tape is ~sed later. On
AOSNS systems. you must close the tape file to write an end-of-file mark. Business
BASIC expects two end-of-file marks after the last file on a tape.

When skipping forward or backward to records on a tape. specify the records as a
number from 1 to 4095. If.you specify O. the maximum number of records (4096) are
skipped. Use 0 in records with a forward skip to get to the end of file quickly (the
tape stops at.the end-of-file marker). and use 0 in records with a backward skip to
return to the ;exact beginning of the tape file (it stops. at the beginning-of-tape
marker). If there are multiple tape files. then the only time you go to the
beginning-of-tape marker .is when you space backward while in tape file 1. If you
space backward while in any other tape file. it stops after crossing an end-of-file
marker. Thus. to get to the beginning-of-tape marker. you need to use rewind.

When you rewind a tape in DO/RDOS Business BASIC. use a loop to check the status
word in error-code to see if the tape is still rewinding or if the unit is ready. Tape
drives are not as fast as MTDIO. and you do not want to try reading from or writing
to a tape that is still rewinding.

NOTE: Even if the rewinding bit is never set on your tape drive. you should still
check the ready bit.

In UNIX and AOS/VS Business BASIC. you cannot check the tape status as the tape
rewinds. because the rewinding is handled by the operating system.

1 ... 154 Lloensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued MTDIO

Example
This example uses MTDIO on DG/RDOS and UNIX with a magnetic tape.

Under AOS/VS Business BASIC, you cannot write EOF marks (as in lines 560 and
570). Also, you cannot check the tape status when rewinding the tape (as in lines 590
and 620). EOF marks and tape status are handled by AOSNS.

00010 DIM RECORD$(80) :Tape records are 80 bytes long.
00020 OPEN FILE (1,7), "MTO: 0" : Tape device MTO, file O.
00025 LET ER%=O :Initialize ER% to receive status.
00030 MTDIO 1,1,RECORD$,ER% :Read tape record into RECORD$,and tape

:status into ER%.
00040 IF AND(ER%,256) THEN GOTO 00300 :Test for an end-of-file

:process record; go read next record.

00300 MTDIO 1,5,Q,NUMSKP,ER%:back up 4096 records or to beginning
:of file.

00310 INPUT "REC NUMBER OF NEW REC: ", NUM
00320 MTDIO 1,4,NUM-1,NUMSKP,ER% :go forward to record NUM.
00330 INPUT "TYPE NEW RECORD: ",RECORD$
00340 MTDIO 1,6,RECORD$,ER% :write new record.

00500 REM-- WRITE NEW LAST RECORD AND NEW EOF MARK
00510 INPUT "TYPE LAST NEW RECORD: ",RECORD$
00520 MTDIO 1,4,O,ER% :Go forward to the end-of-file.
00530 MTDIO 1,6,RECORD$,ER% :Overwrite end-of-file mark with new

00540 MTDIO 1,8,ER%
00550 IF AND(ER%,32768)
00560 MTDIO 1,7,ER%
00570 MTDIO 1,7,ER%
00580 MTDIO 1,2,ER%

: record.
:Read tape drive status only into ER%

THEN GOTO 01000 :if error, go to line 1000.
:Write an end-of-file mark on the tape.
:Write another endo-of-file mark.

00590 IF NOT(AND(ER%,8192»
:Rewind the tape.

THEN GOTO 00600 :Set up loop to check
:if tape is still

00592 DELAY 50
00594 GOTO 00580

: rewinding.

00600 CLOSE FILE (1) :Tape rewound, close the file
00610 STOP
00620 GOTO 00590 :This loop will continue until tape is

: rewound.

01000 IF AND(ER%,16384) THEN PRINT "DATA LATE"
01010 IF AND(ER%,512) THEN PRINT "END OF TAPE"

093-000351 Licensed Material-Property of Data General Corporation 1-155

•

Commands, Statements, and Functions in :ausine~s BASIC

NEW Statement and Command

Clears your working storage.

AOSNS DG/RDOS UNIX

Format
NEW

What It Does
NEW clears all currently loaded statements and variables from working storage, leaving
the working storage empty for new programs. It also closes any open file channels,
and unlocks any locked files. NEW does not clear the common area.

The NEW instruction causes all open INFOS II channels to be closed.

How to Use It
Use NEW as a program statement or as a keyboard command. NEW clears your
working storage so that you can load or enter a program, or you can prevent someone
from listing the contents of the current program in working storage. You can make
NEW a program statement that executes when the program finishes, preventing anyone
from listing the program after it has run. You can also use NEW with ON ERR and
ON IKEY to prevent the unauthorized listing of a program when an error or interrupt
occurs.

Examples
1. NEW as a keyboard command.

• NEW

2. NEW prevents the listing of a program on an interrupt.

00010 ON IKEY THEN NEW

3. You can use NEW to prevent anyone from listing a program after it has run. For
example:

00900 IF DONE$="NO" THEN GOTO 00500
00950 NEW

1-156 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

NEXT
Defines the end of a program loop and increments or
decrements loop control variables.

AOSIVS DG/RDOS UNIX

Format
NEXT control-variable

Arguments

Statement

control-variable A nonsubscripted numeric variable that controls the loop by being
increased or decreased. It must be the same variable used in the
FOR statement.

What It Does
The NEXT statement must always be the last statement of a FOR ... NEXT loop.
When Business BASIC reaches the NEXT statement, it increases or decreases the
control-variable, according to the STEP expression in the FOR statement. Control
then passes back to the beginning of the loop where the control-variable is tested.

See FOR ... NEXT for more information.

093-000351 Licensed Material-Property of Data General Corporation 1-157

Commands, Statements, and Functions in Business BASIC

NOT Operator

Evaluates an expression using the Boolean logical NOT.

AOSNS DG/RDOS I UNIX

Format
NOT expression

Arguments
expression Numeric expression or variable. If expression is 0, then NOT

expression is true; if expression is not equal to 0, then NOT
expression is false.

What It Does
NOT gives an expression the opposite Boolean value. NOT can be combined with
AND and OR. NOT modifies the expression it immediately precedes.

How to Use It
NOT can be used any place a numeric expression is valid.

Before the Boolean Logic operator is executed, the expressions are evaluated and
reduced to zero or one. Zero is false. Thus, NOT zero is true. Any non-zero value is
true, so NOT non:"'zero is false.

The precedence of all operators is given below.

highest

lowest

Examples

- (exponential)
unary +, unary - NOT
*, /
+. -
<>, >, >=,
AND
OR

<=, <

1. When A is true (not equal to zero) and B is false (equal to zero), begin execution
at line 200.

00010 IF A AND NOT B GOSUB 00200

2. When both Band C are false (equal 0), begin execution on line 100.

00010 IF NOT (B OR C) GOTO 00100

1-158 Licensed· Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

ON ERR Statement

Traps an error In your program.

AOSIVS DG/RDOS UNIX

Format

ON ERR THEN I ~~ment I
Arguments
statement Any Business BASIC statement except FOR ... NEXT. DATA.

MSG. END. REM. and DEF.

INT The word INT resets to normal error handling.

What It Does
Normally when an error occurs during program execution. the program halts. Business
BASIC prints the error message. and your terminal returns to keyboard mode. If
Business BASIC encounters an ON ERR statement first. that statement tells Business
BASIC what to do if an error occurs. If an error occurs after the ON ERR statement.
the statement following THEN executes.

Use ON ERR with the SYS error functions and ERM$. AERM$. and UERM$. See
SYS for more information.

ON ERR THEN INT resets the error trap to normal error handling by Business
BASIC.

How to Use It
Use ON ERR only as a program statement. Since ON ERR traps only errors that
occur after it executes. you may want to place an ON ERR statement at the beginning
of your program. If you place the ON ERR statement anywhere else in your program.
it traps all errors that occur from that point· on. . .

Examples
1. If an error occurs go to subroutine at 200.

00010 ON ERR THEN GOSUB 00200

2. If an error occurs, stop the program but don't print the error message.

00010 ON ERR THEN STOP

093-000351 Licensed Material-Property of Data General Corporation 1-159

Commands, Statements, and Functions in Business BASIC

ON ERR continued

3. If an error occurs, go to the routine at 500, which dimensions AS, assigns the
error message to AS, and prints the error message.

00010 ON ERR THEN GOTO 00500

00500 DIM A$(64)
00510 LET A$=ERM$(SYS(7»
00520 PRINT A$

1-160 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

ON •.. GOTO and ON .•• GOSUB Statement

Conditionally transfers control to other statements.

AOSIVS DG/RDOS UNIX

Format

ON expression [THEN][{GOTO }] line-number} [,line-number2 ...]
GOSUB

Arguments
expression

line-number

What It Does

A numeric expression that evaluates to an integer. If expression
does not evaluate to an integer, it is truncated automatically as if
you had used the INT (Integer) function.

A valid line number for a statement or subroutine in the program
you want to execute. See Appendix B for the range of line
numbers allowed on your operating system.

The line to which you transfer control depends on the computed value of expression
when the statement is executed.

ON ... THEN ... GOTO and ON ... THEN do the same thing: expression evaluates to an
integer and control passes to the first line number in the ON statement ii the
expression evaluates to 1. Control passes to the second line number if the expression
evaluates to 2, or the third line number if the expression evaluates to 3, or the tenth
line number if the expression evaluates to 10, etc. ON ... GOSUB works the same way
except that the line numbers refer to subroutines with RETURN statements that return
control to the statement immediately following the ON ... GOSUB statement.

If the value of expression is greater than the number of lines you specify in the ON
statement or less than or equal to 0, then control passes over the ON statement to the
next statement.

How to Use It
UseON ... GOTO or ON ... GOSUB to transfer control to one of several lines in a
program. You can place these transfer points anywhere in a program to redirect
program execution. Use ON ... GOTO (or ON ... THEN) to transfer control to another
line and use ON ... GOSUB to transfer control to a subroutine that returns you to the
line after the ON ... GOSUB.

If you do not type either GOTO or GOSUB, you get the default option-GOTO. You
can also enter ON expression GOTO or ON expression GOSUB without entering
THEN; however, Business BASIC inserts any missing THEN statements when the
program is listed.

093-000351 Licensed Material-Property of Data General Corporation 1-161

Commands, Statements, and Functions in Business BASIC

ON ... GOTO/GOSUB· continued

Examples
1. In this example, if M=l, control passes to the subroutine at 100; if M=2 control

passes to 200. If M>4, it falls to the next ON ... GOSUB statement; if M>8, it falls
to the last ON ... GOSUB statement.

00010 INPUT "TYPEMONTH (1-12):",M
00020 ON M THEN COSUB 00100,00200,00300,00400
00025 ON M-4 THEN COSUB00500,00600,00700,00800
00030 ON M-8 THEN COSUB 00900,01000,01100,01200
00040 REM--ROUTINES RETURN TO HERE

00100 PRINT "JANUARY"
00110 RETURN

00200 PRINT· "FEBRUARY"
00210 RETURN

00300 PRINT "MARCH"
00310 RETURN

2. In this example, if X=l, control passes to line 100; if X=2 control passes to 200.
If X>5, it falls to the next ON ... THEN ... GOTO statement.

00005 RANDOMIZE
00010 LET X=RND(ll)
00020 ON X THEN COTO 00100,00200,00300,00400,00500
00030 ON X-5 THEN COTO 00600,00700,00800,00900,01000
00040 PRINT "X=O"
00050 STOP
00100 PRINT "X=l"
00120 STOP
00200 PRINT "X=2"
00210 STOP
00300 PRINT "X=3"
00310 STOP
00400 PRINT "X=4"
00410 STOP

3. These two lines function identically:

00100 IF A>B THEN COTO 02000

00100 ON A>B THEN GOTO 02000

When A>B, execution resumes at line 2000; otherwise, the next line after 100 is
executed.

1-162 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

ONIKEV

Traps an interrupt in your program.

AOSNS DG/RDOS

Format

ON IKEY THEN I statement I
INT

Arguments

UNIX

Statement

statement Any Business BASIC statement except FOR ... NEXT, DATA,
DO ... WHILE/uNTIL, END, END LOOP, REM, and DEF.

INT The word INT resets to normal error handling.

What It Does
The interrupt key is usually Escape, Line Feed, or a key you or your system manager
set using STMA 4,6 or the TERM utility program.

Normally, when an interrupt occurs during program execution, the program halts,
SYS(26) is set to 1, and your terminal returns to keyboard mode. Under normal
conditions, an ON IKEY statement handles any interrupt that occurs after Business
BASIC encounters it. When an interrupt occurs after an ON IKEY statement,
Business BASIC executes the statement following THEN. If the statement is a
GOSUB, control passes to the subroutine and RETURN returns control to the

I statement immediately following the statement where the interrupt occurred. ON IKEY
THEN INT resets the error trap to normal error handling by Business BASIC. The
values for IKEY are in your Business BASIC user's guide.

How to Use It
Use ON IKEY as a program statement. Since ON IKEY only traps interrupts that
occur after it has been exec'lted, you may want to place an ON IKEY statement at
the beginning of your program. You can restore normal handling of interrupts with an
ON IKEY THEN INT statement. If you disable interrupts with an STMA 6,5, then
an interrupt will not be trapped in an ON IKEY nor will it stop the program. You can
then test SYS(26), the IKEY indicator, for a value of 1; if SYS(26) is 1 you can
re-enable interrupts with an STMA 7,5, and the interrupt will then be trapped in the
ON IKEY statement.

Examples
1. If an interrupt occurs, this statement clears working storage.

00005 ON lKEY THEN NEW

093-000351 Licensed Material-Property of Data General Corporation 1-163

Commands, Statements, and Functions in Business BASIC

ONIKEV continued

2. While this program is running, the user presses the interrupt key. Nothing happens
while file I/O is executing because line 20 sets the no-I KEY flag. When Business
BASIC reaches line 400, it tests SYS(26) to see if an interrupt has occurred. Line
400 resets the no-IKEY flag to allow an interrupt to occur and prints the message
from line 10.

00010 ON lKEY THEN PRINT "IKEY OCCURRED"
00020 STMA6,5

(file I/O statements might go here)

(user presses the interrupt key)

01000 IF SYS(26)=1 THEN STMA 7,5

02000 STOP

• RUN
(press interrupt key)
IKEY OCCURRED

STOP AT 02000

1-164 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

ONIKEV Statement

Traps an interrupt In your program.

AOSIVS DG/RDOS UNIX

Format

ON IKEY THEN! ~~ment I
Arguments
statement Any Business BASIC statement except FOR ... NEXT, DATA,

DO ... WHILE/UNTIL, END, END LOOP, REM, and DEF.

INT The word INT resets to normal error handling.

What It Does
The interrupt key is usually Escape, Line Feed, or a key you or your system manager
set using STMA 4,6 or the TERM utility program.

Normally, when an interrupt occurs during program execution, the program halts,
SYS(26) is set to 1, and your terminal returns to keyboard mode. Under normal
conditions, an ON IKEY statement handles any interrupt that occurs after Business
BASIC encounters it. When an interrupt occurs after an ON IKEY statement,
Business BASIC executes the statement following THEN. If the statement is a
GOSUB, control passes to the subroutine and RETURN returns control to the

• statement immediately following the statement where the interrupt occurred. ON IKEY
THEN INT resets the error trap to normal error handling by Business BASIC. The
values for IKEY are in your Business BASIC user's guide.

How to Use It
Use ON IKEY as a program statement. Since ON IKEY only traps interrupts that
occur after it has been exec'lted, you may want to place an ON IKEY statement at
the beginning of your program. You can restore normal handling of interrupts with an
ON IKEY THEN INT statement. If you disable interrupts with an STMA 6,5, then
an interrupt will not be trapped in an ON IKEY nor will it stop the program. You can
then test SYS(26), the IKEY indicator, for a value of 1; if SYS(26) is 1 you can
re-enable interrupts with an STMA 7,5, and the interrupt will then be trapped in the
ON IKEY statement.

Examples
1. If an interrupt occurs, this statement clears working storage.

00005 ON IKEY THEN NEW

093-000351 Licensed Material-Property of Data General Corporation 1-163

Commands, Statements, and Functions in Business BASIC

ONIKEY continued

2. While this program is running, the user presses the interrupt key. Nothing happens
while file 1/0 is executing because line 20 sets the no-I KEY flag. When Business
BASIC reaches line 400, it tests SYS(26) to see if an interrupt has occurred. Line
400 resets the no-IKEY flag to allow an interrupt to occur and prints the message
from line 10.

00010 ON IKEY THEN PRINT "IKEY OCCURRED"
00020 STMA 6,5

(file IIO statements might go here)

(user presses the interrupt key)

01000 IF SYS(26)-1 THEN STMA 7,5

02000 STOP

• RUN
(press interrupt key)
lKEY OCCURRED

STOP AT 02000

1-164 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

OPEN FILE Statement and Command

Opens a file or device In an access mode and gives It a
channel number.

AOSNS DG/RDOS UNIX

Format

! "filenamell I OPEN [error-code,] FILE(channel[,modeJ), . . bl
strmg-vana e

Arguments
error-code

channel

mode

I filename

string-variable

An optional variable that receives any error code generated as a
result of the execution of the OPEN FILE statement. If a
Business BASIC error occurs, error-code returns a positive
number. If error-code returns a negative number, then it
represents a DG/RDOS error code. Use the ERM$ function to
retrieve the error message associated with the error returned. A 0
in error-code meansno error occurred. You must assign
error-code a value before using it.

A numeric expression for the channel you use to refer to the file
in subsequent file 110. See Appendix B for the range of channel
numbers allowed on your operating system. Channel 16 is the
console in all cases.

A numeric expression for the access mode you assign to the file in
the range 0 through 7. mode is an optional argument; it defaults to
O.

A string literal in quotation marks for the pathname or filename of
a disk file or device; a device name (or link) must already exist.

A string variable that represents filename.

What It Does
OPEN FILE assigns the channel and mOde.of access you specify to filename or
string-variable. You can then use channel ina. file VO statement. to refer. to . this file
or device.

I NOTE: To find the next available channel number on an AOS/VS or UNIX system,
use SYS (34).

093-000351 Licensed Material-Property of Data General Corporation 1-165

Commands, Statements, and Functions in Business BASIC

OPEN FILE continued

The types of open are:

Exclusive

Non-exclusive
(shared)

Shared Page

For AOS/VS and UNIX systems, this mode means exclusive read
and write access. For DG/RDOS systems, it means exclusive write
access but non-exclusive read access.

Multiple users can access the file. This does not mean users are
given shared page I/O.

You are opening a file for shared page (memory resident) access.

The types of access are:

Random

Sequential

You can use POSITION FILE and a byte offset argument.

You cannot use POSITION FILE and a byte offset argument.

The access modes you can use with each type of open in Business BASIC on AOS/VS
and UNIX systems are described in Table 1-1.

The access modes you can use with each type of open in DG/RDOS Business BASIC
are described in Table 1-2.

NOTE: For DG/RDOS systems, modes 0, 1, 2, 6, and 7 refer only to write access.
Since exclusive access only applies to write access, you can use modes 3 and
4 to read a file that has been opened exclusively by another user.

Use of the error-code argument suppresses execution of Business BASIC's default
error trap or any ON ERR condition which would cause the program to halt and
instead returns to error-code the same error code as would have been supplied by the
SYS(7) function. Therefore, you must check the error-code value to determine
whether an error has occurred in opening a file.

Mode 0

Opens disk files in random mode only. This opens the file exclusively for you (you do
not need to lock it) and allows for both input and output. If filename is not found in
your directory or in a directory in your search path, Business BASIC creates filename
in your directory as a random file. If filename is a link to a file that does not exist,
the resolution file is created as a random file under DG/RDOS. Under AOS/VS, if the
link file is in the working directory, the error message File already exists is
returned.

NOTE: Mode 1 and mode 2 are the only modes appropriate for Business BASIC
spooler output, i.e., the opening of "?queuename". Other modes of open
cause an error when the "?" queue indicator is present in the name. Note
that the spooler is used only for DG/RDOS systems and that when used to
open the spooler, modes 1 and 2 operate identically.

1-166 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued OPEN FILE

Table 1-1 AOSIVS and UNIX Access Modes

Mode Type of Open Input/Output Type of Access Rule

o Exclusive Input/Output Random

1 Exclusive Output only Sequential

2 Exclusive Output only Sequential

3 Non-exclusive Input only Random

4 Shared page Input only Random

5 Shared page Input/Output Random

6 Exclusive Input/Output Random

I 7 Exclusive use Input/Output MTDIO access
of magnetic or
cassette tape

Mode 1

Create if file does not exist.
Links to non-existent files
are not resolved on this
type of open.

Delete file; then create file.

Append to existing file or
create file.

File must exist.

File must exist. User must
have write access to the
file. For AOSNS, file
must have an element
size of 4. On UNIX
systems, a member of a
group can use mode 4 if
the group has write access
to the file.

File must exist. User must
have write access to the
file. For AOS/VS, file
must have an element
size of 4.

File must exist.

Tape drive must exist. Tape
file can be created,
deleted, or appended to.

Opens either a disk file or an output device for exclusive output. Mode 1 permits only
WRITE FILE, PRINT FILE, and BLOCK WRITE FILE statements. If filename
exists in your directory, Business BASIC deletes it. In any case, Business BASIC
creates filename in your directory as a sequential file. OPEN FILE with mode 1 does
not search directories in your search path except when used for the Business BASIC
spooler, in which case all files are in $SPL.

093-000351 Licensed Material-Property of Data General Corporation 1-167

Commands, Statements, and Functions in Business BASIC

OPEN FILE continued

Table 1-2 DG/RDOS Access Modes

Mode Type of Open Input/Output Type of Access Rule

0 Exclusive Input/Output Random Create if file does not exist.

1 Exclusive Output only Sequential Delete file; then create file.

2 Exclusive Output only Sequential Append to existing file or
create file.

3 Non-exclusive Input only Sequential File must exist.
(shared)

4 Non-exclusive Input only Random File must exist.
(shared)

5 Non-exclusive Input/Output Random File must exist.
(shared)

6 Exclusive Input/Output Random File must exist.

7 Exclusive use Input/Output MTDIO access Tape must exist. Tape file
of magnetic or can be created, deleted, or
cassette tape appended to.

Mode 2

Opens any output device or file in exclusive append mode. OPEN FILE positions the
file pointer to the end of the current file so that you can append to it. If filename
does not exist in your directory, or in a directory in your search path, filename is
created as a sequential file. Mode 2 allows only sequential output.

NOTE: BLOCK WRITE FILE never appends data to the end of a file. Using mode
2 does not give you this feature, because you must specify the block number
on the BLOCK WRITE FILE in order to write to a block other than block
O.

Mode 3

Opens any input device or file in non-exclusive· (shared) mode. filename must exist in
your directory or in a directory on your search path. With this mode, you can use
READ FILE, INPUT FILE, or BLOCK READ FILE statements. Shared mode
means that another user can open filename at the same time, so use file locking.

In AOS/VS and UNIX systems, mode 3 also allows random input and use of the
POSITION FILE statement. This mode does not require that the file have an
element size of 4 on AOS/VS or write-access privileges.

1-168 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued .OPEN FILE

NOTE: Programs using mode 3 to read a file that was being updated by another
program using mode 5 (shared 110) cannot be guaranteed to read current
record information.

On DO/RDOS systems, mode 3 can access exclusively opened files. POSITION FILE
cannot be used in mode 3 on DO/RDOS systems.

Mode 4

Opens only disk files for shared random input. Random access allows you to position
to a byte or a record within a random file. filename must exist in your directory or in
a directory in your search path .. Only random input is allowed.

On DO/RDOS systems, mode 4 can access exclusively opened files.

On AOS/VS and UNIX systems, mode 4 requires that the file have write-access
privileges. On AOS/VS systems, the file must also have an element size of 4. These
are operating system requirements for files opened in shared mode. This gives users an
input-only mode that can read current record information in a file being accessed and
modified by another program in mode 5.

Mode 5

Opens only disk files for shared random access. In Mode 5 you can input data from
and output data to a random file. filename must exist in your directory or in a
directory in your search path.

On AOS/VS and UNIX systems, mode 5 requires that the file have write-access
privileges. On AOS/VS systems, the file must also have an element size of 4. These
are operating system requirements for files opened in shared mode.

Mode 6

Opens only disk files for exclusive random access. This mode allows you to input data
from and output data to a random file, and you have exclusive use of the file.
filename must exist in your directory or in a directory in your search path.

Mode 7

Opens only tape and cassette devices for direct tape access. The tape device is
exclusively opened for use with MTDIO.

How to Use It
In multiuser environments, be careful when using exclusive access, especially to
devices. Business BASIC allows you to open any file in any mode, but some access
modes are useless for certain files. If you open a file in mode 1, 2, 3 (DG/RDOS
only), or 7, you cannot use the POSITION FILE statement. You can open remote
files through XODIAC"" in modes 0, 1, 2, 3, and 6.

093-000351 Licensed. Material-Property of Data General Corporation 1-169

Commands, Statements, and Functions in Business BASIC

OPEN FILE

Examples
1. This statement opens the line printer for output (OG/ROOS).

00010 OPEN FILE(O,l), "$LPT"

2. This statement opens the sPQoler queue for output (OG/ROOS}.

00010 OPEN FILE(15,1), "?LPT"

3. This opens file EMPDATA on channel 4 for exclusive I/O.

* OPEN FILE(4,O),"EMPDATA"

1-170 Licensed Materlal;';Property of Data General Corporation

continued

093-000351

Commands, Statements, and Functions in Business BASIC

OR Function

Performs an Inclusive logical OR of two expressions.

AOSNS DG/RDOS UNIX

Format
OR (expression 1 ,expression2)

Arguments
expression1 and expression2 The numeric expressions or variables you want

compared.

What It Does
The inclusive OR function is used to set bits in a binary expression. The binary
representations of the two arguments are compared bit by bit. If a bit is set to 0 in
both expressions, that bit is set to 0 iIi the result. If a bit is set to 1 in either or both
expressions, that bit is set to 1 in the result.

How to Use It
Use the OR function to set bit flags or to combine two sets of flags into a single
expression. You can use the OR function in any numeric expression.

Figure 1-8 shows the result when the bit values of two expressions are compared using
OR.

Figure 1-8 Logical OR of Two Numbers

093-000351 Ucensed, Material-Property of Data General Corporation 1-171

Commands, Statements, and Functions in Business BASIC

OR continued

Example
The OR function is used to display the value obtained by setting the rightmost seven
bits in addition to any other bits set in the initial value of X.

00010 INPUT "Initial value of X: ",X
00020 PRINT "Value of OR(X,127): ",OR(X,127)

* RUN
Initial value of X: 192
Value of OR(X,127): 255

1-172 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

OR Operator

Performs a Boolean logical OR of two expressions .

AOSNS . DGIRDOS UNIX

Format
expression OR expression

Arguments
expression

What It Does

A numeric or relational expression or variable. If expression is
zero, the condition is false; otherwise the condition is true.

Relational expressions consist of two numeric or string expressions
separated by a relational operator. The relational operators are:
greater than (», greater than or equal (>=), less than «), less
than or equal «=), equal to (=), and not equal to (<». The
expressions can also be subscripted variables.

OR joins two expressions into a single expression. When executing an IF statement,
all the expressions united by the OR are evaluated and reduced to 0 or 1; if either
expression is non-zero (true), the result of the OR is 1 (true); otherwise, the result is
o (false).

Note that the OR function which checks bits set to one is also available and is
described separately.

How to Use It
OR may be used any place an expression is valid.

Before the OR Boolean Logic operator is executed, the expressions are evaluated as
true or false, and the operands are reduced to zero or one. Any non-zero evaluation
makes the expression true.

The precedence of all operators is given below.

highest

lowest

093~000351

~ (exponentiation)
unary +, unary -, NOT
*, I
+, -
<>, >, >=,
AND

OR

< ... , <

Licensed Material-Property of Data General Corporation 1-173

Conunands, StatementS, and Functions in Business BASIC

OR continued

Examples
1. If either variable B or C is not zero, then begin execution at line 100. ,

00030 IF B OR C THEN OOTO 00100

2. If either expression evaluates to true then execute the subroutine that begins at
line 300.

00060 IF X>12 OR Y=l THEN GOSUB 00300

.") :'

Ucensed Material-Property of Data General. Corporation 093-000351

Commands,Statements, and Functions in Business BASIC

PACK Statement and Command

Composes a record string.

AOSNS DG/RDOS UNIX

Format

I format-string-variable I .
PACK format-string-literal ,string-variable, varia. ble-list

line-number

Arguments
format-string-variable A string variable containing the format information that

describes the composition of string-variable.

format-string-literal

line-number

A string literal in quotation marks that specifies format
information describing the composition of string-variable.

The statement number of an RFORM statement.

string-variable A string variable or a string array element (UNIX only) to
contain the encoded variable-list.

variable-list

What It Does

A list of string and/or numeric expressions to be encoded into
the string-variable argument.

PACK encodes string and numeric information into a single string variable that is
treated as a· record for I/O purposes.

How to Use It
The string-variable must be filled through the last byte to be used with a PACK
statement. The expression list can contain string literals, numeric literals, numeric
expressions, string variables, substrings, numeric variables, and arrays. The format
string contains format characters that define how the expression list should be encoded
into the string-variable. The line-number, which can replace the format string, must
be an RFORM statement with an appropriate format string. See RFORM for the
formatting characters and their interpretation .

• On AOS/VS and UNIX systems, you can repeat a PACK statement by enclosing the
format in parentheses and specifying the number of repeats outside the
parentheses-for example, 3 (AS).

093-000351 Licensed Material-Property of Data General Corporation 1-175

Commands,. Statem«mts, and Functions in Business BASIC

PACK COntinued

Example
Pack a record string and a compound key.

:Compose and write a record string containing record status, name
: address , city, state, zip code, balance, and age.

00220 RFORM ZJA20A30A12A2DLB
I I I I I I I 1*I-byte unsigned integer for AGE%
I I I I I I 1*4-byte signed integer·for BAL
I I I I I I *3-byte unsigned integer for ZIP
I I I I I *2-byte truncated string for STTE$
I I I I *12-byte truncated string for CITY$
I I I *30-byte truncated string for ADR$
11*20-byte truncated string for NAME$
1*2-byte signed integer for STATI
*nullf i 11 CUSREC$··

00870 PACK 00220,CUSREC$,STATI,NAME$,ADR$,CITY$,STTE$,ZIP,BAL,AGE%
00880 LWRITE FILE[4,record-numberJ,CUSREC$

:Compose a compound key for an index consisting of customer number,
: order number, type code, and order line item number.

01280 PACK "ZLDAB" , ORDRKY$, C!'ruMBR, ONUMBR, OTYPE$,OLNNtJMII,
I I I 1*I-byte unsigned integer for OLNNtJMII,
I I 1*I-bytestring for OTYPE$
I 1*3-byte unsigned integer for ONUMBR
1*4-byte signed integer for CNUMBR
*null fill ORDRKY$ to ensure it is long enough

01290 KFIND 18~BUF$,ORDRKY$,ORECNO :Firid order key in index
:LOPENed as logical file 18

1-176 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

PAGE Command

Sets the page width for output on a terminal.

AOSIVS DG/RDOS I UNIX

Format
PAGE=width

Arguments
width An integer expression in the range from 14 to 132 that specifies

the number of columns (characters) allowed on a print line.

What It Does
PAGE limits or expands the number of characters permitted on a line. Your width
ranges from 14 to 132 characters. If output exceeds page size, a Carriage Return/New
Line is inserted, and the remaining output is displayed on the following lines.

How to Use It
PAGE is a keyboard mode command. Set width equal to the maximum number of
characters you allow on a line at your terminal. To set the page width in a program
statement, use STMA 4,8.

Example
Set page width at 132 characters.

* PAGE=132

093-000351 Licensed Material-Property of Data General Corporation 1-177

Commands, Statements, and Functions in Business BASIC

p~S Function

Determines the position of a substring in a string.

AOSNS DG/RDOS UNIX

Format
POS (string-expression 1 , string-expression2, expression)

Arguments
string-expression 1 The primary string, which can be expressed as a string variable, a

string array element (UNIX only). a string literal in quotation
marks, or a subscripted string variable.

string-expression2 The substring whose position you want to determine, expressed as
a string variable, a string array element (UNIX only), a string
literal in quotation marks, or a subscripted string variable.

expression A numeric expression for the position in the string-expression1 to
start the search for string-expression2.

What It Does
Starting at position expression in a string (string-expression1), POS searches for the
specified substring (string-expression2), and returns the first position of the substring
in the string as a numeric value. If POS cannot find the substring. it returns zero. If
your expression is less than 0, an error message occurs. If your expression is greater
than the string's current length, POS returns zero. If expression equals zero, the
search begins at the first position of the string.

Example
In this example POS starts the search at position 6 ("F") of string A$, thereby
missing the first "MNOP" and finding the second "MNOP" starting at position 13.

00005
00010
00020
00030
* RUN
13

1-178

DIM A$(25)
LET A$="AMNOPFGHIJKLMNOPQRS"
LET X=POS (A$, "MNOP" , 6)
PRINT X

Licensed Material-Property of Data General Corporation 093-00M.!;1

Commands. Statements. and Functions in Business BASIC

POSITION FILE Statement and Command

Positions the file pointer to a byte In a disk file.

AOSNS DG/RDOS UNIX

Format
POSITION FILE(channel,byte)

Arguments
I channel

byte

The channel number of a file opened in mode O. 3 (AOSNS and
UNIX). 4. S. or 6 (for random access); a numeric eXpression.

A numeric expression or variable for the relative byte within a file
to which you want to position the file pointer; for example:
(record-number • record-size). In AOSNS and UNIX. byte can
be -1. This automatically positions the pointer at the end of the
file.

I

What It Does
POSITION FILE moves the file pointer to a specific byte relative to byte 0 of the
file. Your byte expression can contain a record size multiplied by the number of
records it takes to get to the specific relative byte where the record starts. (The
POSFL.SL subroutine uses this form of POSITION FILE. POSITION FILE also
resets the end-of-file flag for the EOF function.) File input/output statements move
the file pointer whenever they transfer data.

How to Use It
Use POSITION FILE to move the file pointer quickly and accurately. You must
know either the relative byte you want or the size of the fixed-length records and the
number of the record you want. In some environments. relative byte locations are not
known. If you are using sub files. it is easier to use the POSFL. SL subroutine with the
file characteristics array. You must open your file for random access to use
POSITION FILE.

Examples
1. Position the file pointer to a place in the file calculated from the record number

and the record size.

00005 DIM RECORD$[100]
00010 OPEN FILE[O,5], "RANDOM"
00020 INPUT "RECORD NUM TO READ:", RNUM
00030 LET RSIZE=100
00040 LET BYTE=RNUM*RSIZE
00050 POSITION FILE[O,BYTE]
00060 READ FILE[O],RECORD$

093-000351 Licensed Material-Property of Data General Corporation 1-179

Commands, Statements, and Functions in Business BASIC

POSITION FILE continued

2. First, we move the file pointer to byte 1084 in file QUICK. Then we read 50
bytes (bytes 1084-1134) into RECORD$.

* OPEN FILE(l,O),"QUICK"
* POSITION FILE(l,1084)
* DIM RECORD$(50)
* READ FILE(1),RECORD$

1-180 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

PRINT Statement and Command

Prints output to a terminal or file.

AOSNS DG/RDOS UNIX

Format

I P~INT I [FILE (channel),] If ; } expression] [{ ; } expression ...] [{ ; }]

Arguments
channel

expression

,A numeric expression for the channel number of a file if you are
outputting to a file or device; the file must be opened for output.

The item to be printed. Numeric or string expressions (variables,
numbers, array elements, string literals, string variables), @

expressions (terminal control and cursor positioning) , TAB
expressions, numeric functions, but not string functions. You can
repeat expression. If you omit expression in a PRINT or a PRINT
FILE statement, a blank line is output. TAB and @ expressions
are discussed below.

If expression is a string, the current length of the string is used to
determine the number of bytes to be transferred.

A semicolon prints the next· expression immediately after the
previous output. If you use the semicolon at the end, it applies to
the next PRINT (unless you use a TAB expression) .

. A comma places the next expression in the next tab zone; if you
use a comma at the end, it applies to the next PRINT.

What It Does
PRINT outputs numeric and string data to a terminal or file. PRINT and PRINT
FILE(16) perform terminal output; PRINT FILE(channel) performs file output.

PRINT outputs text with automatically generated delimiters and is meant to be used
with INPUT on text files and for terminal I/O. To perform binary I/O on data and
other types of files, use READ and WRITE.

Numeric values are displayed with leading space or minus sign and a trailing space.
When separated by commas, multiple expressions are displayed in the tab zones (set
by the TAB command.or STMA 4,9). When separated by semicolons in the PRINT
statement, multiple expressions follow each other immediately.

093-000351 Licensed Material-Property of Data General Corporation 1-181

Commands. Statements. and Functions in Business BASIC

PRINT continued

A comma or semicolon at the end of the PRINT statement causes the next PRINT
statement to begin displaying data without moving to the next line. When nothing
follows the last expression. an end-of-line character (Carriage Return on DO/RDOS
systems; New Line on AOSNS and UNIX systems) is generated automatically. Output
reaches the page width (set by the PAGE command or STMA 4.8) unless the column
counter is disabled (by STMA 6.3). A single PRINT statement can output up to 132
characters unless you used STMA 6.13 to extend this limit to 255 characters.

Because the PRINT statement is data sensitive. it interprets and acts on certain special
characters. including null. form feed (Erase Page). and end-of-line. After carrying out
the action denoted by the special character. PRINT continues its processing. PRINT
FILE. however. stops its processing when it encounters a null. a form feed. an
end-of-line, or another special "terminator" character. To output special characters,
use WRITE.

PRINT FILE ignores terminal control (@) functions except for @(-30). which
generates a form feed. Expressions to be printed should not contain embedded control
characters if you want your program to be portable.

How to Use It
When you type a PRINT FILE statement or command, you can enter a semicolon (;)
in place of PRINT. as follows: : FILE (0). "expression".

You select 7- or 8-bit operation mode by setting the hardware switches at the back of
the terminal or by choosing the mode from the terminal keyboard using the menus for
terminal configuration setup. In addition. on AOSNS and DO/RDOS systems, if the
hardware switch is set for 8-bit mode. you can change the operation mode by using a
software command. When you use Business BASIC in 8-bit mode, only characters in
the range 200-237 octal (128-159 decimaI) have their high bit stripped by Business
BASIC. All other characters with the high bit set in the range 240-377 octal (160-255
decimal) are printed exactly as specified. When you use Business BASIC in 7-bit
mode, all characters in the range 200-377 octal (128-255 decimal) have their high bit
stripped by the terminal at the time of output from a PRINT statementandthen are
displayed on the screen.

On UNIX systems. 8-bit mode is only supported when you are using DO mode. You
specify DO mode by including the -Doption when you execute Business BASIC.

You can set the tab zones at your terminal using the TAB statement or accept the
default tab setting (14 columns).

To Print in Tab Zones

Use commas between each expression if you want to print in tab zones. A comma
prints the next expression in the first column of the next tab zone. PRINT checks to
see if expression's output fits on the line; if not, it starts printing in the first column of
the next line (the next tab zone). A comma at the end of the list of expressions (at
the very end of the PRINT statement) will output the next PRINT statement to the

1-182 Licensed Material-Property of Data General CorporatIon 093-000351

I

Commands. Statements. and Functions in Business BASIC

continued PRINT

same line in the next tab zone. If there is no punctuation at the end of the PRINT
statement. the next PRINT statement outputs to a new line.

For a Compact Output

Use semicolons between expressions if you want compact output. A semicolon prints
the next expression in the next column. Characters take up only one column position;
if you want a space between characters. put the space in a string literal. Numeric
output results in a space for a minus sign. the number of digits. and one trailing
space. If you separate numeric output with a semicolon; a space still occurs between
each number in the output. A semicolon at the end of a PRINT statement (after all
the expressions) outputs the next PRINT statement to the same line in the next
column position; whereas. without the semicolon the next PRINT statement outputs to
a new line.

To Print a Blank Line

You can print a blank line using any of the following methods:

• Use PRINT without expressions or punctuation.

• Use terminal control and cursor positioning (@) expressions.

• Use the TAB expression.

The TAB Expression

Move the next expression's output to column n on the same line by using a TAB(n)
expression. where n is an integer . TAB numbers columns from 0 to page width-1. If n
is an integer greater than the page width. n is reduced to the remainder after dividing
n by the page width: MOD(n.w). For example:

00030 PRINT TAB(99);"TESTCASE"

would cause TESTCASE to· print starting at position 19.

Terminal Control and Cursor Positioning

Always separate @ expressions from expression by following them with a semicolon.
because a comma can put the cursor in the wrong position. Also disable the column
counter (STMA 6.3). Otherwise. the extra characters output by @ expressions can
cause the line to appear as if it exceeds the current page width causing an unwanted
carriage returnlline feed. These extra characters are sent to the terminal by Business
BASIC. and they have a special meaning that is understood by the terminal.

PRINT FILE statements ignore all @ expressions except @(-30). which generates a
form feed to skip to the next page. You can also use terminal control and cursor
positioning expressions in INPUT USING statements.

093-000351 Licensed Material-Property of Data General Corporation 1-183

Commands, Statements, and Functions in Business BASIC

PRINT continued

Here are formats for terminal control and cursor positioning expressions:

@(line,column)
@(item, value)
@(item)

For cursor positioning
For terminal characteristics
For terminal control characters

Cursor Positioning

Use the format @(line,column) where line is the line number to which you want to
position the cursor on the terminal (from one to 24) and column is the column
position where you want to start the next output (from one to the page width). For
example:

PRINT @(3,15)

positions the cursor to line 3, column 15. When you only specify a line number with
this command, Business BASIC positions the cursor to column 1 of that line number.
Thus,

PRINT 411(14)

positions the cursor to line 14, column 1.

Terminal Characteristics

You can temporarily manipulate some terminal characteristics using STMA and
PRINT @ statements. (See STMA 4.) We list each item below with the appropriate
STMA reference. For terminal characteristics use the format:

@(item,value)

where value is the ASCII value of the character you want to assign to item, and item
is one of the following (always negative):

-1

-2
-3
-4
-5
-6
-7
-8
-9
-10

-11

1-184

Line cancel key, see STMA 4, 1.
Character delete echo, see STMA 4,2.
Character delete key, see STMA 4,3.
Primary unpend key, see STMA 4,4.
Secondary unpend key, see STMA 4,5.
Primary interrupt key, see STMA 4,6.
Secondary interrupt key, see STMA 4,7.
Page width, see PAGE and STMA 4,8.
Tab size, see TAB and STMA 4,9.
Maximum number of characters allowed on input. This allows you
to fix the number of characters a typist could type to the next
input request. Unpending occurs on the last character if you set the
maximum number of characters in value to a negative number.
Reserved.

Licensed Material-Property of Data General Corporation 093-000351

I

Commands. Statements. and Functions in Business BASIC

continued PRINT

-12
-13
-14
-15
-16
-17
-18

First-echoed character when line cancel occurs, see STMA 4.12.
Second-echoed character when line cancel occurs. see STMA 4.13.
Pad character. sent after all line feeds. see STMA 4.14.
Number of pad characters to send. see STMA 4.15.
Reserved.
Reserved.
Set or clear the indicated job status bit (see STMA 6 and 7).
A positive bit number sets the specified· bit while a negative bit
number clears the specified bit. The format is PRINT @(-IS.n).

Terminal Control Characters

NOTE: Not all functions work for a given terminal type. Implementation depends on
the capabilities of the terminal type. On AOS/VS and DO/RDOS systems.
see the CRT source modules· in the SDOC directory to determine which
functions wor\{ with each terminal type. On UNIX systems. see the
information on tuning the terminfo files in the DOC directory that is
supplied with the release.

You can output some control characters before and after expressions in a PRINT
statement to perform special terminal functions. Use the format:

@(item)

where item is one of the following (always negative):

-19

-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31

-32
-33
-34

093-000351

Reset items -1 to -15 to their default values for your terminal.
If you changed your terminal type with
STMA 2.0 and you warltthe new
terminal type's default characJeristics. you must immediately
follow the STMA 2.0 with this PRINT @(-19) reset.
Move cursor to "home" (top line. first column of CRT screen).
Move cursor right one column.
Move cursor down one line.
Move cursor lE~ft one column.
Move cursor up one line.
Sound the bell or audible alarm on the terminal.
Tab to next field on screen.
Return cursOr to first column of current line.
Move cursor to beginning of next line (new line).
Reserved.
Clear entire screen (or generate a form feed in a file).
Clear unprotected positions of the screen-high intensity (not available
on UNIX systems).
Clear to end of the line.
Clear to end-of-screen.
Lock keyboard (not available on UNIX systems).

Licensed Material-Property of Data General Corporation 1.;..185

Commands, Statements,. and· Functions in Business BASIC

PRINT continued

-35 Unlock keyboard (not available on UNIX systems).
-36 Insert a line.
-37 Delete a line.
-38 Start low-intensity field.
-39 Start high-intensity field.
-40 Start blinking field.
-41 End blinking field.
-42 Roll disable (page mode).
-43 Roll enable (tum off page mode).
-44 Set program mode (not available on UNIX systems).
-45 Clear program mode (not available on UNIX systems).
-46 Set block mode (not available on UNIX systems).
-47 Clear block mode (not available on UNIX systems).
-48 Set flag 1 (not available on UNIX systems).
-49 Clear flag 1 (not available on UNIX systems).
-50 Send line (unprotected fields) (not available on UNIX systems).
-51 Send line (all fields) (not available on UNIX systems).
-52 Start underscored field.
-53 End underscored field.
-54 Turn underscore and bright on.
-55 Tum underscore and bright off.
-56 Restore default display enhancement.
-57 Reverse video on.
-58 Reverse video off.
-59 to -256 Reserved.

Examples
1. Here's an example of how to display a blinking underscored message:

* PRINT @(-40);@(-Sl);"HI! I'M YOUR CRT!";@("-S3);@(-41)

2. This example clears the screen and displays powers of 2 and their values in
columns.

00010 PRINT .(-30);.(l,10);"POWERS OF 2";CP(l,30);"VALUE"
00020 FOR 1=0 T07
00030 PRINT .(I+2,15);I;.(I+2,30);2 A I
00040 NEXT I
* RUN

POWERS OF 2 VALUE
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

1-186 Licensed Material-Property of Data General c:arporatlon 09!M)()0351

Commands, Statements, and Functions in Business BASIC

PRINT USING Statement

Formats output to a terminal, file, or device.

AOSIVS DGIRDOS UNIX

Format

I RINT I I "formats"· I . . . P: - [FILE(channel),] USING string-variable expresslOn[expresslOn ...]

Arguments
channel

formats

string-variable

expression

What It Does

A numeric expression for the channel number of a file or device
opened for output when you are outputting to a file.

A string literal in quotation marks that contains any number of
formats used to output expression; formats are described in "What
It Does."

A regular or subscripted string variable assigned the value of
formats.

Numeric and string expressions (variables, numbers, array
elements, string literals, and string variables) and numeric
functions but not string functions; you can repeat expression with
any combination of these. This is an optional argument.

PRINT USING enhances computer output significantly. This statement is similar to
the FORMAT statement in FORTRAN and the PICTURE statement in COBOL. TAB
expressions and semicolons are not permitted with this statement.

When executing a PRINT USING statement, Busiriess BASIC uses a 132-character
buffer to format the text for display unless you used STMA 6,13 to specify a

• 2SS-character buffer for the statement (AOSNS and UNIX only). You can use a
variety of format arguments to put this text into the buffer. You can use arguments to
specify that a string or numeric expression is displayed, that the output starts at a new
position in the buffer, that characters are printed only if they match a specified
character, or that a certain character is used for padding. When you use the format
arguments, remember that spaces serve as delimiters where a number is required. This
differs from the rest of Business BASIC, where spaces are ignored in numeric values.
The following arguments are used to format the buffer:

093-000351

A single quotation mark places a string literal in the buffer. Use
another single quotation mark to terminate this string literal.

Licensed Material-Property of Data GQneral Corporation 1-187

Commands, Statements, and Functions in Business BASIC

PRINT USING

An

continued

Outputs n characters from a string expression. n has no default
value; therefore, if you need only one character, you must specify
At. If the string is less than n characters, spaces are put to the
right of the string. Spaces replace nulls in the string.

Cn Centers a format string in the amount of space specified by n.
(AOS/VS, UNIX) •

Dw.d

Ew.d

Fw.d

Kw

1-188

Outputs a numeric expression using a total of w columns with d

digits to the right of the decimal point. No decimal point is printed
if d is O. If the numeric expression is negative, Business BASIC
places a minus sign in the leftmost position of the field. Leading
characters are suppressed, and the output is right-justified.

The same as Dw. d except the minus sign or space is printed in the
rightmost position.

The same as Dw.d except the minus sign is printed immediately to
the left of the number and does not fill characters to the left of
the sign.

Outputs the equivalent octal number using w columns for
expression. The expression must be in the range -2,147,483,648 to
2,147,483,647. Note that this affects only triple and quad
precision.

Sets the floating fill character to c; the floating fill character is a
space by default. If the number you are printing does not fill the
field, BASIC uses the floating fill character. The form L6_c is
required if c is numeric in order to separate c from "6".

Designates c as the overwrite character. BASIC replaces any c
character in the buffer with numeric digits. The overwrite
character is a space by default. The form L 7 _c is required if c is
numeric in order to separate c from "7".

Sets the fill character to c. The fill character is a space by
default. The fill character replaces leading zeros in Dw.d and
Ew.d formats unless the STMA 6,7 flag is set. If this flag is set,
the fill character replaces all characters not used in Dw.d and

Licensed Material-Property of Data General Corporation 093-000351

continued

L9

LI0

Lll

o

P

Rn

Sn

Tn

nX

z

Commands. Statements. and Functions in Business BASIC

PRINT USING

Ew.d formats. The format L8_c is required if c is numeric in
order to separate c from L8.

For example. the following statement:

PRINT USING

.. ('JJJ-JJ-JJJJ' .L8_0.L 7 j.TO.Ol1.0)" .12

will by default print:

000-00-1234

but if preceded by an STMA 6;7. the following will be printed:

00000001234

Used in place of repeat count. BASIC uses the next expression in
expressions as the repeat count to repeat use of formats.

Copies the edited contents of the buffer to a string variable in the
expression.

Copies the string expression in expression into the buffer.

Used immediately in front of Ow.d. Ew.d and Fw.d formats to
suppress printing if expression is 0.

Ends the .line in the buffer with a form feed instead of a carriage
return (skip to top of next page on a OASHER® display terminal).

The same as An except any fill characters required are placed on
the left. making the output string right justified.

The same as An except no filling is done if the string is less than
n.

Sets the column pointer to the nth position of the buffer. where
0<= n <= 132 (unless you used AOSNS' STMA 6.13 to extend
the limit from 132 to 255). If n + (length of formatted output) >
132 (or 255). you get Error 60 - Line too long. If n > 132
(or 255). Business BASIC displays Error 50 - Invalid
operator command.

Moves the column pointer n positions relative to its location in the
buffer; n may be negative.

Ends the line in the buffer with a null instead of a carriage return.

How to Use It
Enclose the list of arguments (strings and formats) following the PRINT USING
statement in double quotation marks ("). Indicate each string argument by enclosing it
in single quotation marks ('). You can mix strings and formats in any order as long as

093-000351 Licensed Material-Property of Data General Corporation 1-189

Commands, Statements, and Functions in Business BASIC

PRINT USING continued

you separate them with either commas or spaces. You can also repeat an expression if
you precede it with a number indicating how many times you want it to repeat; for
example, 306.2 repeats three times. To make the expression easier to read, you can
enclose it in parentheses; for example, 3(06.2). If the format string is exhausted
before the expression list is, Business BASIC repeats the format string for the
remaining expressions.

Examples
1. An Rn

Notice that A3 limits the output from the buffer to three characters left justified.
The RIO right justifies the five characters from the buffer with five additional
spaces.

00010 DIM A$(5)
00020 LET A$="ABCDE"
00030 PRINT USING "A3",A$
00040 PRINT USING "R10",A$
• RUN
ABC
ABCDE

2. Sn Z
Here, the Z format is used with both AIO and SlO. In the case of AIO,
additional printing is done after a fill of five spaces (creating a 10-character
output). With S 10 there is no fill and the second string is printed immediately
after the first.

00010 DIM A$(5)
00020 LET A$="ABCDE"
00030 PRINT USING "A10",A$
00040 PRINT USING "A10,Z",A$
00050 PRINT "THIS PHRASE WAS ADDED AFTER 'AN' FORMAT"
00060 PRINT USING "S10",A$
00070 PRINT USING "S10,Z",A$
00080 PRINT "THIS PHRASE WAS ADDED AFTER 'SN' FORMAT"

* RUN
ABCDE
ABCDE
ABCDE

THIS PHRASE WAS ADDED AFTER 'AN' FOR MAT

ABCDETHIS PHRASE WAS ADDED AFTER' SN' FORMAT

3. Ow.d
The format 08.2 implies that the value of N has a total of eight characters (7 +
the decimal point) with two of these characters after the decimal point.

00010 LET N=1234567
00020 PRINT USING "D8.2",N
• RUN
12345.67

1-190 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued PRINT USING

4. Dw.d
When the value of N is negative, the minus sign is the first character of the D15.2
field.

00010 LET N = -1234567
00020 PRINT USING "D15.2",N
* RUN

12345.67.

5. Ew.d
When the value of N is negative, the minus sign is the last character of the E15.2
field.

00010 LET N = -1234567
00020 PRINT USING "E15.2",N
* RUN

12345.67-

6. Fw.d
When the value of N is negative, the minus sign is immediately to the left of the
value.

00010 LET N = -1234567
00020 PRINT USING "F15.2",N
* RUN

-12345.67

7. Kw
This format produces the octal equivalent of the value of N.

00010 LET N = 123
00020 PRINT USING "K4",N
* RUN
173

8. L6
BB-BBBB is a mask for the value of X. The mask calls for six characters, while
the value of X only provides five. L6 provides the fill character, which is given as
O. L 7 identifies the character (B) as the overwrite character for the value of X.
TO begins the formatting with the first character in the buffer (zero character).
Notice that the mask is contained in single quotation marks (').

00010 LET X = 12345
00020 PRINT USING "'BB-BBBB' ,L6_0,L7B, TO,D11. 0" ,X
* RUN
01-2345

093-000351 Ucensed Material-Property of Data General Corporation 1-191

Commands, Statements, and Functions in Business BASIC

PRINT USING continued

9. L7
JJJ-JJJJ is a mask for the value of N. Notice the mask is contained in single
quotation marks ('). L 7 identifies (J) as the overwrite character in the mask. The
TO format identifies the first (zero) character in the buffer as the beginning of
output. The D format calls for a total of eight characters (seven from the value of
N plus a dash).

00010 LET N = 1234567
00020 PRINT USING "'JJJ-JJJJ'/,L7J,TO,DB.0",N
* RUN

123-4567

10. L8
BBB-BB-BBBB is a mask for the value of X. L 7 identifies the overwrite character
in the mask. If the value of X does not contain enough digits to fill the mask, the
L8 format provides the fill character. TO identifies the first (zero) character in the
buffer as the beginning of output. The D format declares a total of 11 characters
to be printed with no implied decimal point.

00010 LET X = 12345
00020 PRINT USING "'BBB-BB-BBBB' ,LB_0,L7B,TO,Dll.0",X
* RUN
000-01-2345

11. L8 STMA 6,7
Option 7 of STMA 6 provides leading zeros for the D format. See Example 10 for
an explanation of L8_0, TO, and Dl1.0.

00010 STMA 6,7
00020 LET X = 12345
00030 PRINT USING "'BBB-BB-BBBB' ,L7B, LB_O, TO, Dl1.0", X
* RUN
000001-2345

12. This technique is used for asterisk protection in check writing. To eliminate the
comma embedded in the field of asterisks, use STMA 6,7.

00010 LET N = 1234567
00020 PRINT USING "'$','SSS,SSS,SSS.SS',L7S, TO, LB*. D15 . O",N
* RUN
$***, *12, 345.67

13. Repeat Count

00010 LET X=12345 \ Y=67890 \ Z=55555
00020 PRINT USING "D8.2",X
00030 PRINT USING "3(DB.2)", X, Y, Z
* RUN

123.45
123.45 678.90 555.55

1-192 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued PRINT USING

14. Z "string"

00010 DIM NAME$(25)
00020 LETNUM=12345
00030 LET NAME$="DATA GENERAL"
00040 PRINT USING "A25,Z",NAME$
00050 PRINT USING "'ACCOUNT NUMBER: ',D5.0",NUM
* RUN
DATA GENERAL ACCOUNT NUMBER: 12345

15. Formats
See Example 10 for an explanation of L7_0, TQ, and 08.0.

00010 DIM FORMAT$(22)
00020 LET PHONE = 3668911
00030 LET FORMAT$="'000-0000',L7_0, TO, D8.0"
00040 PRINT USING FORMAT$,PHONE
* RUN
366-8911

16. Tn
See Example 10 for an explanation of L7_0, TO, and 08.0.

00010 LET PHONE=5551605
00020 PRINT USING "T15,'000-0000',L7_0,TO,D8.0",PHONE
* RUN

555-1605

17. PRINT FILE
A20 formats NAME$ and 02.0 formats GRAOE.

00010 OPEN FILE(O,O), "DATA"
00020 DIM NAME$(20)
00030 READ NAME$,GRADE
00040 IF NAME$ = "DONE" THEN GOTO 00070
00050 PRINT FILE(O) , USING "A20,D2.0",NAME$,GRADE
00060 GOTO 00030
00070 CLOSE FILE(O)
00080 PRINT "JOB IS DONE"
00090 DATA "ABBOT", 95
00100 DATA "BROWN", 84
00110 DATA "MORGAN", 72
00120 DATA "DONE",O
* RUN
JOB IS DONE
* !TYPE DATA
ABBOTT
BROWN
MORGAN

093-000351

95
84
72

Licensed Material-Property of Data General Corporation 1-193

Commands, Statements, a.nd Functions in Business BASIC

PRINT USING continued

18. L9
L9 allows a format to be repeated a different number of times each time PRINT
USING is executed, depending on a variable's contents.

00010 LET PSIZE=4
00020 GOSUB 00100
00030 LET PSIZE=8
00040 GOSUB 00100
00050 END
00100 PRINT USING "L9'X''',PSIZE
00110 RETURN

• RUN
XXXX
XXXXXXXX

19. Ll0
L lOis used here to move an edited value to a string variable that has been
dimensioned to 132 bytes, the size of the print buffer.

00010 DIM OUT$[132]
00020 LET AMOUNT=312298
00030 PRINT USING "D10.2,L10",AMOUNT,OUT$
* RUN

3122.98
* PRINT OUTS

3122.98

20. In this second Ll0 example, data from the NUM variable and the NAMES string
variable are copied into the LINES string variable.

* LIST
00010 DIM NAME$[25),LINE$[80)
00020 LET NUM=12345
00030 LET NAMES="Data Qeneral Corporation"
00040 PRINT USING "A25,lX,D5. 0, L10, ZIt ,NAME$,NUM, LINE$
00050 PRINT "LINES now contains the data that is in NAME$ and
NUM"
00060 PRINT LINE$

• RUN
Data General Corporation 12345
LINE$ now contains the data that is in NAME$ and NUM
Data General Corporation 12345

1-194 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued PRINT USING

21. Cn
Cn is used here to center the text "QUARTERLY REPORT" in a 50-space field.

00010 DIM STR$[50]
00020 LET STR$="QUARTERLY REPORT"
00030 PRINT USING "C50";STR$

'" RUN
QUARTERLY REPORT

22. Lll
The Lll format is used here to concatenate LllPT2$ with LllPT1$ so their
contents can be printed together.

'" LIST
00010 DIM L11PT1$[19] ,L11PT2$[10]
00020 LET LllPT1$="CONCATENATE USING "
00030 LET LllPT2$="Lll WORKED"
00040 PRINT USING "Lll,T19,A10",LllPT1$,LllPT2$

'" RUN
CONCATENATE USING L11 WORKED

093-000351 Licensed Material-Property of Data General Corporation 1-195

Commands. Statements. and Functions in Business BASIC

PROGRAM DISPLAY Command

Displays information about a program in working storage or In a
SAVE file.

UNIX

Format
PROGRAM DISPLAY [[input-file], [output-Jile]. variable-toggle]

Arguments
input-Jile

output-Jile

variable-toggle

What It Does

A string expression or string literal containing the name. of the
SAVE file program about which you want to display information.
This argument is optional.

A string expression or string literal containing the name of the file
to which you want the PROGRAM DISPLAY output written. This
argument is optional.

A numeric expression that is evaluated by PROGRAM DISPLAY
to determine whether the variable count and listing should be
displayed. If. variable-toggle is 0, the variable count and listing are
not displayed. The default is O. If variable-toggle is any other
value. the variable information is displayed.

PROGRAM DISPLAY displays the following information about the program in
working storage or a SAVE file (if you specify program-name):

• An optional variable count and listing of the variables

• The GOSUB stack status

• The line number of the last executed line

• The line number of the next line to execute

• The last error number and. the line number where it occurred

• The channel number of the last file accessed

• The line number of the active ON ERR, if defined

• The line number of the active ON IKEY, if defined

• The name of any user-defined functions, and the line number where each is
defined

• The FOR ... NEXT stack status

1-196 Licensed Material-Property of Data General Corporation 093-000351

•

Commands. Statements. and Functions in Business BASIC

continued PROGRAM DISPLAY

• The DO stack status

• Program and data size information

• The current DATA line

• The SAVE file format of the program (native or non-native format)

How to Use It
Use PROGRAM DISPLAY in keyboard mode.

You can specify PROGRAM DISPLAY arguments in any combination. If you specify
only one or two of the arguments. you must use a comma in the place of any
argument you do not use. However. you do not need to specify ending commas.

When you are executing Business BASIC in DG mode. then PROGRAM DISPLAY
produces output that is similar to the output of the PD utility.

When you are executing in non-DG mode. PROGRAM DISPLAY produces output in
a window. If there is more data than can be displayed on one screen, Business BASIC
prompts you with the word MORE in the bottom border of the window. At this point.
you can press the q key to quit the display, New Line to scroll down one line in the
display, or the space bar to scroll down one screen.

Examples
1. This statement writes information about the program in working storage to the file

OUTFILE. In this case, the program information would not include a variable
count and listing.

* PROGRAM DISPLAY,"OUTFILE"

2. This statement displays on your screen information about a SAVE file called
RPTI. A variable count and listing would be included in the display.

* PROGRAM DISPLAY "RPT1",,1

093-000351 Licensed Material-Property of Data General Corporation 1-197

Commands, Statements, and Functions in Business BASIC

PROTECT Command

Protects Business BASIC SAVE files.

UNIX

Format
PROTECT "filename"

Arguments
filename The name of the SAVE file you want to protect.

What it Does
PROTECT modifies a SAVE file so that users cannot use the LIST command to
display the file. You can use the LOAD, RUN, CHAIN, and SWAP commands on a
protected file.

PROTECT does not change a program's line numbers.

How to Use It
There is no way to "unprotect" a SAVE file once you protect it. Therefore, keep
an unprotected copy of the file in a secure location. You can then modify the
unprotected program, if necessary.

Use this command in keyboard mode. Business BASIC displays an error message if
you omit the filename.

Example
This example protects PROG 1.

* PROTECT "PROGl"

*

1-198 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

QADD Statement and Command

Adds using quad precision.

AOSIVS DG/RDOS UNIX

Format
QADD string-variable 1 ,string-variable2 ,string-variable3

Arguments
string-variable 1

string-variable2

string-variable3

What It Does

The string variable that stores the sum of string-variable2 and
string-variable3.

The string variable that is added to string-variable3.

A string variable that is added to string-variable2.

The QADD statement (and all of the "Q" statements-QLOAD, QSTORE, QSUB,
QMUL, and QDIV) allows for the manipulation of very large numbers in the range
+/-9,223,372,036,854,775,807 by operating on eight-byte (64-bit) binary integers
stored in string operands. Numbers in this format are often referred to as quad
precision since they occupy four words in the processor (see QLOAD and QSTORE).

The QLOAD and QSTORE statements allow for conversion of a normal four-byte
Business BASIC number into and from the eight-byte quad precision number format.

The first eight bytes of string-variable 1 contain the sum of the first eight bytes of
string-variable2 and string-variable3. Consequently, the statement

QADD A$,B$,C$

implies A$=B$+C$, where each string variable is eight bytes. If any of these strings
contain less than eight bytes, it is treated as if it were padded with nulls. No indication
of overflow is given.

How to Use It
When the value of a string variable is written to a program's symbol table, all eight
bytes are written. For this reason, all string variables used in a quad precision
statement must be dimensioned to at least 8 bytes. Violating this rule could cause
Business BASIC to write the value into the location of the string variable being
written, as well as into the bytes adjacent to that location. This error could result in
overwriting another variable in the symbol table and lead to undesirable results.

093-000351 Licensed Material-Property of Data General Corporation 1-199

Commands, Statements, and Functions in Business BASIC

QADD continued

NOTE: Do not use any of the arithmetic string functions (such as ASC, ASX,
CRRS, CRMS, UCMS) on a string variable to be used in a quad precision
arithmetic statement.

Example
Refer to the example for QDIV.

1-200 Licensed Material-Property of Data General Corporation 093-000351

I

Commands, Statements, and Functions in Business BASIC

QDIV

Divides using quad precision.

AOSIVS DG/RDOS UNIX

Format
QD IV numeric-variable] ,string-variable, numeric-expression

[,numeric-variable 2, numeric-variable3]

Arguments

Statement and Command

numeric-variable] The numeric variable that stores the quotient of string-variable
divided by numeric-expression.

string-variable The string variable that is to be divided by numeric-expression.

numeric-expression The numeric expression or variable that is used as the divisor.

numeric-variable2 The numeric variable that holds the remainder of the QDIV
operation. numeric-variable2 is optional. When it is omitted, the
remainder is lost, and no error is returned.

numeric-variable3 The numeric variable that returns an error code if an illegal
division is attempted. numeric-variable3 is an optional argument.
This argument must be initialized (Le., set to zero) before it is
used.

What it Does
The QDIV statement (and all of the "0" statements-QLOAD , QSTORE, QSUB,
OMUL, and QADD) allows for the manipulation of very large numbers in the range
-/+9,223,372,036,854,775,807 by operating on eight-byte (64-bit) binary integers
stored in string operands. Numbers in this format are often referred to as quad
precision since they occupy four words of space (seeOLOAD and QSTORE).

The QLOAD and QSTORE statements allow for conversion of a normal four-byte
Business BASIC number into and from the eight-byte quad precision number format.

The first eight bytes of string-variable are divided by numeric-expression, producing
numeric-variable] as the quotient and numeric-variable2 as the remainder. The
optional numeric-variable3 returns an error code if an illegal divide is attempted.

Consequently, the statement

QDIV A,B$,C,D

implies that A=B$/C and D=MOD(B$,C).

093-000351 Licensed Material-Property of Data General Corporation 1-201

Commands, Statements, and Functions in Business BASIC

aOlv continued

If the length of string-variable is less than eight bytes, it is treated as if it were padded
with nulls. If the division results in either numeric-variable 1 or numeric-variable2
having a value outside the range for four-byte integers, Error 16 - Arithmetic (an
overflow error) occurs. Rather than requiring an error trap, the optional argument of
numeric-variable3 returns the arithmetic error code.

How to Use It
When the value of a string variable is written to a program's symbol table, all eight
bytes are written. For this reason, all string variables used in a quad precision
statement must be dimensioned to at least eight bytes. Violating this rule could cause
Business BASIC to write the value into the location of the string variable being
written, as well as into the bytes adjacent to that location. This error could result in
overwriting another variable in the symbol table and lead to undesirable results.

All string variables must be loaded (using QLOAD) from numeric variables before the
string variable can be used in a quad precision arithmetic statement.

NOTE: Do not use any of the arithmetic string functions (such as ASC, ASK,
CHR$, CRM$, UCM$) on a string variable to be used in a quad precision
arithmetic statement.

The use of the numeric-variable3 argument suppresses execution of Business BASIC's
default error trap or any ON ERR condition (which causes the program to halt) and
instead returns to numeric-variable3 the same error code as would be supplied by the
appropriate SYS error function. Check the numeric-variable3 value to determine
whether an errOr has occurred.

Example
This example sums and averages four double precision numeric variables. If the
average is within the range of a double precision number, it will be computed
correctly, even if the sum of the four numbers is larger than the greatest double
precision number.

1-202 Licensed Material-Property of Data General Corporation 093-000351

I

Commands, Statements, and Functions in Business BASIC

continued

00010 DIM A$[8] ,B$[8] ,C$[8] ,D$[8] ,E$[8] ,ER$[64]
00020 INPUT "Four numbers to sum: ",A,B,C,D

QDIV

00030 LET E,F,G,ER=O :Numeric variables must be initialized
00040 QLOAD A$,A :Get the numbers into quad variables
00050 QLOAD B$,B
00060 QLOAD C$,C
00070 QLOAD D$,D
00080 ON ERR THEN GOTO 00180
00090 QADD E$,A$,B$:Sum them into E$
00100 QADD E$,E$,C$
00110 QADD E$,E$,D$
00120 QDIV E,E$,4,F :Divide; remainder goes into F
00130 IF F>=2 THEN LET E=E+1:Round 0.5 up to 1
00140 PRINT "Average is";E
00150 QSTORE G,E$:We may get an error, even if we didn't on
00160 PRINT "Sum is";G :QDIV, if the sum but not the average is
00170 END :too large
00180 PRINT "Error";SYS(7);"occurred at line";SYS(20)
00190 LET ER$=ERM$(SYS(7»
00200 PRINT "The error message is ";ER$

• RUN
Four numbers to sum: 10,10,11;11
Average is 11
Sum is 42

• RUN
Four numbers to sum: 2000000000,2000000000,1000000000,1000000000
Average is 1500000000
Error 16 occurred at line 150
The error message is Arithmetic.

Also refer to the example for QMUL.

093-000351 Licensed Material-Property of Data General Corporation 1-203

Commands, Statements, and Functions in Business BASIC

QLOAD Statement and Command

Loads a numeric expression Into a string variable.

AOSIVS DG/RDOS UNIX

Format
QLOAD string-variable I numeric-expression

Arguments
string-variable The string dimensioned to at least eight bytes, that receives the

four-byte value of numeric-expression. The sign bit of
numeric-expression is extended across the high order four bytes of
string.

numeric-expression The numeric expression to be loaded into string.

What It Does
The four-byte value of numeric-expression is loaded into the first eight bytes of
string-variable with the sign bit of numeric-expression being extended across the high
order four bytes of string-variable.

The length of string-variable following the QLOAD is updated the same as for the
corresponding LET statement. If the maximum length of string-variable is less than
eight, an overflow results, and no error is indicated.

How to Use It
When the value of string-variable is written to a program's symbol table, all eight
bytes are written. For this reason, all string variables used in a quad precision
statement must be dirriensioned to at least eight bytes. Violating this rule could cause
Business BASIC to· write the value into. the location of the string variable being
written, as well as into the bytes adjacent to that location. This error could result in
overwriting another variable in the symbol table and lead to undesirable results.

NOTE: . Do notulle any of the arithmetic string functions (such as ASC, ASX, I
CHRS, CRMS, UCMS) on a string variable to be used in a quad precision
arithmetic statement.

Example
Refer to the example for QDIV.

1-204 Lloensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

QMUl Statement and Command

Multiplies using quad precision.

AOSNS DG/RDOS UNIX

Format
QMUL string-variable, numeric-expressioni, numeric-expression2

Arguments
string-variable The string variable that receives the product of

numeric-expressioni • numeric-expression2.

numeric-expression1 The numeric expression that is used as the multiplier.

numeric-expression2 The numeric expression that is used as the multiplicand.

What It Does
The QMUL statement (and all of the "Q" statements-QLOAD, QSTORE, QSUB,
QDIV, and QADD) allows for the manipulation of very large numbers in the range
-/+9,223,372,036 ,854,775,807 by operating on eight-byte (64-bit) binary integers
stored in string operands. Numbers in this format are often referred to as quad
precision since they occupy four words of space.

The QLOAD and QSTORE statements (see QLOAD and QSTORE) allow for
conversion of a normal four-byte Business BASIC number into and from the
eight-byte quad precision number format.

The full eight-byte product of the multiplication of numeric-expressioni and
numeric-expression2 is placed in the first eight or fewer bytes of string. This allows
multiplication of normal four-byte numbers to take place without the danger of
overflow when using large numbers. If the length of string-variable is less than eight
bytes, the string is treated as if it were padded with nulls.

How to Use It
When the value of a string variable is written to a program's symbol table, all eight
bytes are written. For this reason, all string variables used in a quad precision
statement must be dimensioned to at least eight bytes in length. Violating this rule
could cause Business BASIC to write the value into the location of the string variable
being written, as well as the bytes adjacent to that location. This error could result in
overwriting of another variable in the symbol table and lead to undesirable results.

All string variables must be loaded (using QLOAD) from numeric variables before the
string variable can be used in a quad precision arithmetic statement.

Do not use any of the arithmetic string functions (such as ASC, ASX,
CHR$, CRM$, UCM$) on a string variable to be used in a quad precision
arithmetic statement.

093-000351 Licensed Material-Property of Data General Corporation 1-205

Commands, Statements, and Functions in Business BASIC

QMUL continued

Examples
The examples below show two subroutines which work with two numbers and a third
which is a representation of the percentage that one number is of the other. This
percentage can range from 0 to 10,000; a value of 5,000 means that one number is
50% of the other.

MUL - Compute X = Y * PCNT

Calling sequence
Y Multiplicand
PCNT Multiplier
GOSUB 7500
X Result
Temporary QTMP$ must be dimensioned to at least 8 bytes

07500 REM \ MUL
07510 LET X=O
07520 QMUL QTMP$,Y,PCNT
075.30 QDIV X, QTMP$, 10000

07540 RETURN

In case the user didn't initialize it

10000 because that is how 100%
is represented

DIV - Compute PCNT = (X * 10000 / Y without overflow

Calling sequence
X Dividend
Y Divisor
GOSUB 7550
PCNT Percentage X is of Y

Temporary QTMP$ must be dimensioned to at least 8 bytes

07550 REM \ DIV
07560 LET PCNT=O
07570 QMUL QTMP$,X,10000

07580 QDIV PCNT,QTMP$,Y
07590 RETURN

In case the user didn't initialize it
10000 because that is how 100% is
represented

1-206 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

QSTORE Statement and Command

Converts a quad precision string Into a double precision
variable.

AOSIVS DG/RDOS UNIX

Format
QSTO RE numeric-variable ,string-variable

Arguments
numeric-variable A numeric variable that receives the value of the first eight bytes

of string-variable. numeric-variable must be assigned a value prior
to being used in a QSTORE statement.

string-variable A quad precision string that will be converted to double precision
in numeric-variable.

What It Does
Numeric-variable is set to the value of the first eight bytes of string-variable. If this
number is outside the range -2,147,483,648 to +2,147,483,647, an arithmetic error
results.

If the length of string-variable is less than eight bytes, then the string is treated as if it
were padded with nulls.

I NOTE' Do not use any of the arithmetic string functions (such as ASC, ASX,
CHR$, CRM$, UCM$) on a string variable to be used in a quad precision
arithmetic statement.

Example
Refer to the example for QDIV.

093-000351 Licensed Material-Property of Data General Corporation 1-207

Commands. Statements, and Functions in Business BASIC

QSUB Statement and Command

Subtracts using quad precision.

AOSNS DG/RDOS UNIX

Format
QSUB string-variable 1 ,string-variable2 ,string-variable3

Arguments
string-variable 1

string-variable2

string-variable3

What It Does

The string variable receiving the result of subtracting
string-variable3 from string-variable2.

String variable from which string-variable3 is subtracted.

A string variable used as the subtrahend.

The QSUB statement (and all of the "Q" statements-QLOAD, QSTORE, QADD,
QMUL, and QDIV) allows for the manipulation of very large numbers in the range
-/+9,223,372,036,854,775,807 by operating on eight-byte (64-bit) binary integers
stored in string operands. Numbers in this format are often referred to as quad
precision since they occupy four words of space (see QLOAD and QSTORE).

The QLOAD and QSTORE statements allow for conversion of a normal four-byte
Business BASIC number into and from the eight-byte quad precision number format.

How to Use It
All string variables must be loaded (using QLOAD) from numeric variables before the
string variable can be used in a quad precision arithmetic statement.

The first eight bytes of the string indicated by string-variable 1 contain the result of
subtracting the first eight bytes of string-variable3 from string-variable2. Therefore,

QSUB A$,B$,C$

implies A$=B$-C$ and each string variable is eight bytes in length.

If any of these strings contain less than eight bytes, the string is treated as if it were
padded with nulls.

1-208 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued asue

When the value of a string variable is written to a program's symbol table, all eight
bytes are written. For this reason, all string variables used in a quad precision
statement must be dimensioned to at least eight bytes. violating this rule can cause
Business BASIC to write the value into the location of the string variable being
written, as well as into the bytes adjacent to that location. This error could result in
overwriting another variable in the symbol table and lead to undesirable results.

I NOTE: Do not use any of the arithmetic string functions (such as ASC, ASX,
CHR$, CRM$, UCM$) on a string variable to be used in a quad precision
arithmetic statement.

Example
This example is a portion of a general ledger balance sheet allowing large totals. The
code shown below illustrates adding of debits and subtracting of credits.

01370 QADD GTOTAL$,GTOTAL$,DEBIT$
01380 QSUB GTOTAL$,GTOTAL$,CREDIT$

093-000351 Licensed Material-Property of Data General Corporation 1-209

Commands, Statements, and Functions in Business BASIC

RAISE Statement

Forces an error.

AOSIVS UNIX

Format

RAISE err-type, error-number

Arguments

err-type A number or variable that represents one of the following values:

o Business BASIC error
1 DO/RDOS error
2 AOS/VS error
3 UNIX error (UNIX systems only)

For information about these errors, see Using Business BASIC on
DGIUX and INTERACTIVE UNIX Systems or Business BASIC
System Managers Guide.

error-number A number or variable that represents the code for the error you
want to generate. error-number must be coded as a positive
number.

What It Does
The RAISE statement generates an error. If an ON ERR trap has been set, it is
executed.

RAISE sets SYS(20).

How to Use It

RAISE p~ovides a way of generating errors from within a Business BASIC program.
These errors can then be processed by an error routine.

You can use RAISE in conjunction with the error. code functions SYS (7), SYS (31),
SYS (40) , SYS(41), SYS(42), and SYS(43).

Example

This example raises the error FILE DOES NOT EXIST on UNIX systems.

00010 LET UNIX-3
00020 LET FILE_DOES_NOT_EX~ST=2
00030 RAISE UNIX,FILE_DOES_NOT_EXIST

* RUN
I/O Error 10 at 30 - File does not exist

1-210 Weenaed Materlal-Prop.rty of Cata G.n.ral Corporation 093-000351

I

I

I

•

Commands, Statements, and Functions in Business BASIC

RANDOMIZE Statement and Command

Reseeds the random number generator.

AOSIVS DG/RDOS UNIX

Format

RANDOMIZE

What It Does

Normally, the RND function generates the same sequence of random numbers each
time a program runs. RANDOMIZE reseeds the random number generator with a
different base number according to the time of day, thereby producing different
random numbers for each program run.

How to Use It

Start your program with a RANDOMIZE statement to initialize the random number
generator, and then execute RANDOMIZE every time you want a different sequence
of random numbers.

Example

Line 20 picks a number from 0 to 10. If the random number is 0, the program will
stop.

00010 RANDOMIZE
00020 LET X=RND(ll)
00030 PRINT X;
00040 IF X=O THEN STOP
00050 GOTO 00020

• RUN
6 9 5 4 3 0
STOP AT 00040

093-000351 Ucensed Material-Property of Data General Corporation 1-211

Commands, Statements, and Functions in Business BASIC

READ Statement

Assigns DATA statement values to variables.

AOSIVS DG/RDOS UNIX

Format

READ variable [, variable ...]

Arguments

variable

What It Does

A numeric or string variable, depending on the corresponding
value in the DATA statement. The sequence of variables in READ
must match the sequence of values in the data list formed by
DATA statements.

DATA statements store values in a data list before the program is executed. The
READ statement retrieves these values. A data element pointer moves to the next
value in the data list after a value is assigned to a READ variable. If the number of
variables in READ exceeds the number of values in the data list, an error occurs.
Since DATA values form a sequential data list, the first value in the data list is always
the first value of the DATA statement with the lowest line number. If you want to
restart the data list, use RESTORE.

How to Use It

Use READ only as a program statement. Normally, you place READ statements in a
program at points where data is to be manipulated, whereas DATA statements can go
anywhere. You can subscript the numeric and string variables in READ. These
variables must match (numeric or string) the corresponding values in the DATA
statement, or an error occurs. READ is executable, so if you want to start reading
variables at a specific point in your program, place the READ statement there.

1-212 Lloen.ed Material-Property of Data aeneral Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

Example

Assign the values in-the DATA statement to variables.

00010 DIM A$(10),ARA(12,12)
00020 READ X,Y
00030 READ A$,ARA(1,3)
00040 PRINT"X = ";X
00050 PRINT "Y= ";Y
00060 PRINT "A$ is: ";A$
00070 PRINT "ARA(1,3) = ";ARA(1,3)
00080 STOP
00090 DATA 32,46, "T. BONE", 1400

• RUN
X = 32
Y = 46
A$ is: T.BONE
ARA(1,3) = 1400
STOP AT 00080

I

I

093-000351 Licensed Material-Property of Data G~neral Corporation

I

READ

1-213

Commands, Statements, and Functions in Business BASIC

READ FILE Statement and Command

Manages length-sensitive Input.

AOSIVS DG/RDOS UNIX

Format

READ FILE (channel [, byte-position]), variable [. variable ...]

Arguments

channel

byte-position

variable

What It Does

A numeric expression for the channel number of a file opened for
random or sequential access and input.

A numeric expression or variable for the relative byte within a file
to which you want to position the file pointer.

A numeric or string variable that you can subscript; you can also
repeat any combination. The size of variable determines the
number of bytes input.

The size of the variable determines the number of bytes of input. For each variable
you supply in a READ FILE statement, a specific input occurs. If you have five
variables in a READ FILE, five separate inputs occur in sequential order. For each
input, READ FILE reads in the number of bytes needed to fill the variable and move
the file pointer to where the next input will start.

How to Use It

You can read a file opened for sequential access from the beginning only. You can
read a file opened for random access from any byte position in the file. If your file is
a subfile and/or in linked-record format, then you have "records" that are fixed in
length. A record is the result of a read or write. It is usually a fixed size in random
files, and it must be a fixed size in linked available record files, subfiles, and index
files. When records are fixed in length, you can easily determine which byte to
position to: multiply the total number of bytes per record by the number of the record
you want.

You can read part of a record or an entire record into one or more variables. Since
each variable in a READ FILE statement is a specific input, you can avoid an
interrupt that occurs between inputs of a single READ FILE by using one large
variable in READ FILE. Use the EOF function to detect the end of the file.

The byte-position argument enables you to use POSITION FILE and READ FILE in
a single program line. This argument is ignored on statements that perform terminal
110 via channel 16. If you specify the argument when the file has been opened in a
mode that does not allow POSITION FILE, a runtime error is generated.

1-214 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued READ FILE

Examples

1. This program opens the file JUNK, and reads in four bytes for each variable. If
an end of file occurs, control passes to line 200.

00010 OPEN FILE(1,3) ,"JUNK"
00020 READ FILE(l),A,B,C,D,E,F,G
00030 PRINT A,B,C,D,E,F,G
00040 IF EOF(l) THEN GOTO 00200

2. Line SO reads the first two bytes into STAT%, the next six bytes into X# and the
rest into RECORDS. If the status of the record is less than or equal to 0, control
passes to line 200.

00010 DIM RECORD$(42)
00020 OPEN FILE(2,0) ,"FILE301"
00030 INPUT "RECORD?",R
00040 POSITION FILE (2,50*R)
00050 READ FILE (2),STATI,X#,RECORD$
00060 IF STATI < = 0 THEN GOTO 00200

3. Read SO bytes of input.

00010 DIM RECORD$(50)
00020 OPEN FILE (2,0),"DATA"
00030 INPUT "RECORD YOU WANT TO READ: ", R
00040 POSITION FILE (2,50*R)
00050 READ FILE (2),RECORD$
00060 LET STAT%=ASC(RECORD$(1,2»
00070 LET STAT% =OR(STATI ,-AND(STATI,32768»
00080 PRINT STAT%,RECORD$(3,50) ...

4. Read SO bytes of input, but do the position in the READ FILE statement.

00010 DIM RECORD$(50)
00020 OPEN FILE(2,0) ,"DATA"
00030 INPUT "RECORD YOU WANT TO READ: ", R
00040 READ FILE(2,50*R),RECORD$
00050 LET STAT%=ASC(RECORD$(1,2»
00060 LET STATI=OR(STATI,-AND(STAT%,32768»
00070 PRINT STAT%,RECORD$(3,50)

093-000351 Licensed Material-Property of Data General Corporation 1-215

Commands, Statements, and Functions in Business BASIC

REM Statement

Creates a remark (or comment) statement.

AOSIVS DG/RDOS UNIX

Format

REM text of remark

Arguments

text of remark The remark you want to make.

What It Does

The text following REM is stored with the program and reproduced exactly when you
list the program. Although REM statements are not executable, they do require
storage space.

When you use a GOTO or GOSUB statement to refer to a line that is a REM
statement, the text of the REM statement is also put as a comment next to the
GOTO or GOSUB that calls it. Labeling of GOTO and GOSUB statements happens
when you list the .program, unless you suppress this feature using STMA 6,6. Only the
target REM statement requires space for the comment.

How to Use It

Use REM for comments. You can save space at execution time by keeping another
copy of the program as a source file. You can maintain this second file by using the
EDIT utility's comment mode or by using the: (colon) convention in a source file.
These comments are dropped when the source file is entered. They cannot be listed,
but they do remain in the source file.

REM is a program statement only. Use it sparingly, and use it as the destination of a
GOSUB or GOTO, if you want the GOTO or GOSUB statement labeled, as in the
example.

1-216 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

Example

GOSUB and GOTO are automatically labeled when REM is the destination.

• LIST
00010 GOSUB 01000
00020 GOTO 02000

••• PERFORM CALCULATIONS
INSUFFICIENT FUNDS ROUTINE

01000 REM ···PERFORM CALCULATIONS

01050 RETURN
02000 REM INSUFFICIENT FUNDS ROUTINE

093-000351 Licensed Material-Property of Data General Corporation

REM

1-217

Commands, Statements, and Functions in Business BASIC

RENAME Statement and Command

Changes the directory entry for a file.

AOSNS DG/RDOS UNIX

Format

I"oldname'" II"newname" I RENAME [error-code,] . . bl . . bl strmg-varza e, . strmg-varza e

Arguments
error-code

oldname

newname

string-variable

What It Does

An optional· variable that receives any error code generated during
the execution of the RENAME statement. This argument must be
initialized (i.e., set to zero) before it is used.

A string literal within quotation marks naming a file that is in your
directory or is a link entry.

A string literal within quotation marks for the new filename you
want to give the file.

A string variable that represents a filename.

RENAME looks for oldname, which is either a directory entry for a file in your
directory or a link entry for a file in another directory, and changes it to newname.
RENAME does not change the contents of the file.

How to Use It
If you use string-variable, you must dimension it and supply a filename's value.

Since a saved file has the program name stored internally, it is better to load a saved
file and save it under the new name, rather than to just rename it from the eLI or
using RENAME.

NOTE: The use of the error-code argument suppresses execution of Business
BASIC's default error trap or any ON ERR condition (which causes the
program to halt) and instead returns the same error-code as would be
supplied by the appropriate SYS error function. You must check the value of
error-code to determine whether an error has occurred in renaming a file.

Example
00010 DIM OLD$(10),IMPROVED$(10)
00020 LET OLD$="NAME"
00030 LET IMPROVED$ = "NAME1"
00040 RENAME OLD$,IMPROVED$

1-218 Licensed Material-Property of Data General Corporation 093-000351

I

Commands, Statements, and Functions in Business BASIC

RENUMBER Command

Renumbers lines in the current program.

AOSNS DG/RDOS UNIX

Formats

RENUMBER [line-number] [STEP increment]

Arguments

line-number The first statement in the program to be renumbered. The default
is 10.

increment The increment to be added to line-number when renumbering
program statements. The default is 10.

What It Does

RENUMBER renumbers every statement in your program. It also renumbers the
destination line numbers of IF ... THEN, GOTO, GOSUB, and ERASE statements to
coincide with the renumbered lines.

NOTE: If the target line of a GOTO, GOSUB, or ERASE statement does not exist,
the GOTO, GOSUB, or ERASE argument is set to 00000 and Error 53 -
Renumber ing error (s) is generated.

How to Use It

If you execute a RENUMBER that exceeds the line number limit for your operating
system, Business BASIC performs an automatic RENUMBER 1 STEP 1. See
Appendix B for the maximum number of program lines allowed on your operating
system.

You can use RENUMBER in the following ways:

RENUMBER
Starting at the first line (which will be assigned the line number 10), renumbers all
lines in increments of 10.

RENUMBER line-number
Sets first line of your program equal to line-number, then renumbers all lines in
increments of line-number.

RENUMBER STEP increment
Starting at the first line, renumbers all lines in increments of increment.

093-000351 Licensed Material-Property of Data General Corporation 1-219

Commands, Statements, and Functions in Business BASIC

RENUMBER continued

RENUMBER line-number STEP increment
Sets first line of program equal to line-number, then renumbers all lines in increments
of increment.

Examples

1. Renumber using the default numbering system.

* RENUMBER

00010 REM--THIS PROGRAM COMPUTES BALANCE
00020
00030
00040
00050

INPUT "TYPE BALANCE: $" , BAL
IF BAL=O THEN STOP
INPUT "AMOUNT OF CHECK:$",CHK
IF CHK=O THEN STOP

00060 LET BAL=BAL-CHK
00070 PRINT "BALANCE IS:$",BAL
00080 GOTO 00040

2. Renumber beginning with 20.

* RENUMBER 20

00020 REM--THIS PROGRAM COMPUTES BALANCE
00040 INPUT "TYPE BALANCE: $" , BAL
00060 IF BALaO THEN STOP
00080 INPUT "AMOUNT OF CHECK:$",CHK
00100 IF CHK=O THEN STOP
00120 LET BAL=BAL-CHK
00140 PRINT "BALANCE IS:$",BAL
00160 GOTO 00080

3. . Renumber using increments of S.

* RENUMBER STEP 5

00010 REM--THIS PROGRAM COMPUTES BALANCE
00015 INPUT· "TYPE BALANCE: $" , BAL
00020 IFBAL=O THEN STOP
00025 . INPUT "AMOUNT OF CHECK:$",CHK
00030 IF CHK=OTHEN STOP
00035 LET BAL=BAL-CHK
00040 PRINT "BALANCE IS:S",BAL
00045 GOTO 00025.

1-220 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

4. Renumber beginning at 5 with increments of five.

* RENUMBER 5 STEP 5

00005
00010
00015
00020
00025

REM--THIS PROGRAM COMPUTES BALANCE
INPUT "TYPE BALANCE:$",BAL
IF BAL=O THEN STOP
INPUT "AMOUNT OF CHECK:$",CHK
IF CHK=O THEN STOP

00030 LET BAL=BAL-CHK
00035 PRINT "BALANCE IS:$",BAL
00040 GOTO 00020

093-000351 Licensed Material-Property of Data General Corporation

RENUMBER

1-221

Commands, Statements, and Functions in Business BASIC

REPLACE Statement and Command

Replaces a saved program with a new program.

AOSIVS DG/RDOS UNIX

Format

AOSNS and DG/RDOS:

REPLACE! I"fi~ename:' 1·1
string-variable

UNIX:

[I "filename" II REPLACE [byte-format,] . . bl
string-varia e

Arguments

filename

string-variable

byte-format

What It Does

The filename of a program you want to replace. If not specified,
Business BASIC uses the filename last loaded or run.

A string variable already dimensioned and assigned a filename
value.

Either 0 or 1 to indicate whether you want to save the file in
DG/UX format (0) or INTERACTIVE UNIX format (1). The
default for a file that you loaded using LOAD is that file's current
SA VE file format. The default for a file that you created while in
Business BASIC input mode or entered using ENTER into
Business BASIC is the native format for the operating system.

REPLACE performs a SAVE on the program you have in working storage and uses it
to replace the program specified by filename or the current program name if you do
not specify filename. If a file exists with the name filename, REPLACE overwrites
that file. If you did not load or run the program, and you do not specify a filename,
the new program is saved with the filename SCRATCH. The new program does not
have to be saved before you replace it.

NOTE: Do not enter REPLACE "filename" if the file being replaced is currently
stored or listed in ASCII source format. This causes the file to reformat in a
binary Business BASIC SAVE file format. Instead, you can use REPLACE
with a new filename to save the file in binary format or LIST with a new
filename to save a source listing of the new program.

1-222 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued REPLACE

How to Use It

Use REPLACE as a keyboard mode command or a program statement. Either way, it
saves the current program. If you load or run a program so that it is in working
storage, then you can update the program and replace the old program without having
to specify filename. If you do not load or run an existing program, but create a new
one in working storage, you can replace any program with this new program by
specifying the old program's name as filename in a REPLACE statement.

A program's filename is carried internally within the SAVE file. If you rename a
saved file, the old name still exists within the SAVE file. Therefore, if you load and
then replace a renamed SAVE file without giving a filename, Business BASIC saves
the program under its old filename.

The complete pathname is not stored within a SA VE file; so if you execute a
REPLACE without supplying a pathname, Business BASIC saves the file in your
current directory.

On UNIX systems, you can use the optional byte-format argument to specify whether
the SAVE file format is the DG/UX format or the INTERACTIVE UNIX format.
(DG/UX systems and INTERACTIVE UNIX systems differ with respect to the
ordering of bytes within a word.) Enter 0 when you want to use the native SAVE file
format for DG/UX systems and 1 when you want to use the native SA VE file format
for INTERACTIVE UNIX systems.

Examples

1. If you load or run a program, and then modify it,this statement saves the
modified one under the old name. If you create a new program in working
storage, this saves it under the name SCRATCH.

* REPLACE

2. This command replaces old PROG3 with the current program.

* REPLACE "PROG3"

3. This statement replaces NEWPROG with the current program.

00900 LET NAME$="NEWPROG"
00910 REPLACE NAME$

093-000351 Licensed Material-Property of Data General Corporation 1-223

Commands, Statements, and Functions in Business BASIC

RESTORE Statement and Command

Resets the list pointer for a DATA statement.

AOSIVS DG/RDOS UNIX

Format

RESTORE [line-number]

Arguments

line-number Any valid line number in your program.

What It Does

RESTORE without line-number resets the pointer to the beginning of the data list.
The first element in the data list is the first value in the DATA statement with the
lowest line number. RESTORE with line-number resets the pointer to the first value in
the DATA statement specified by line-number. If you specify a line number that does
not exist in your program or is not a DATA statement, RESTORE will find the next
DATA statement following line-number and reset the pointer to the first value in it.

How to Use It

When you want a READ statement to go back to the beginning of a DATA statement
to pick up values for its variables, use RESTORE. You can use RESTORE as a
program statement or a keyboard command. If you want to reuse the entire data list,
do not specify line-number. If you want to reuse the values in a particular DATA
statement, specify the DATA statement byits line number.

If you include line-number, RESTORE resets the data list pointer to the first value for
the DATA statement at that line number. See Appendix B for the range of line
numbers allowed on your operating system.

Example

This example includes a RESTORE to a line number and a RESTORE using the
default.

00005 READ A,B,C
00010 READ D,E,F
00015 RESTORE 00040
00020 READ G,H,!
00025 RESTORE
00030 READ J,K,L
00035 DATA 2,4,6
00040 DATA 8,10,12

1-224 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued REPLACE

How to Use It

~se REPLACE as a keyboard mode command or a program statement. Either way, it
saves the current program. If you load or run a program so that it is in working
storage, then you can update the program and replace the old program without having
to specify filename. If you do not load or run an existing program, but create a new
one in working storage, you can replace any program with this new program by
specifying the old program's name as filename in a REPLACE statement.

A program's filename is carried internally within the SAVE file. If you rename a
saved file, the old name still exists within the SAVE file. Therefore, if you load and
then replace a renamed SAVE file without giving a filename, Business BASIC saves
the program under its old filename.

The complete pathname is not stored within a SAVE file; so if you execute a
REPLACE without supplying a pathname, Business BASIC saves the file in your
current directory.

On UNIX systems, you can use the optional byte-format argument to specify whether
the SAVE file format is the DG/UX format or the INTERACTIVE UNIX format.
(DG/UX systems and INTERACTIVE UNIX systems differ with respect to the
ordering of bytes within a word.) Enter 0 when you want to use the native SAVE file
format for DG/UX systems and 1 when you want to use the native SA VE file format
for INTERACTIVE UNIX systems.

Examples

1. If you load or run a program, and then modify it, this statement saves the
modified one under the old name. If you create a new program in working
storage, this saves it under the name SCRATCH.

• REPLACE

2. This command replaces old PROG3 with the current program.

• REPLACE "PROG3"

3. This statement replaces NEWPROG with the current program.

00900 LET NAME$="NEWPROG"
00910 REPLACE NAME$

093-000351 Licensed Material-Property of Data General Corporation 1-223

Commands, Statements, and Functions in Business BASIC

RESTORE Statement and Command

Resets the list pointer for a DATA statement.

AOSNS DG/RDOS UNIX

Format

RESTORE [line-number]

Arguments

line-number Any valid line number in your program.

What It Does

RESTORE without line-number resets the pointer to the beginning of the data list.
The first element in the data list is the first value in the DATA statement with the
lowest line number. RESTORE with line-number resets the pointer to the first value in
the DATA statement specified by line-number. If you specify a line number that does
not exist in your program or is not a DATA statement, RESTORE will find the next
DATA statement following line-number and reset the pointer to the first value in it.

How to Use It

When you want a READ statement to go back to the beginning of a DATA statement
to pick up values for its variables, use RESTORE. You can use RESTORE as a
program statement or a keyboard command. If you want to reuse the entire data list,
do not specify line-number. If you want to reuse the values in a particular DATA
statement, specify the DATA statement by its line number.

If you include line-number, RESTORE resets the data list pointer to the first value for
the DATA statement at that line number. See Appendix B for the range of line
numbers allowed on your operating system.

Example

This example includes a RESTORE to a line number and a RESTORE using the
default.

00005 READ A,B,C
00010 READ D,E,F
00015 RESTORE 00040
00020 READ G,H,I
00025 RESTORE
00030 READ J,K,L
00035 DATA 2,4,6
00040 DATA 8,10,12

1-224 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

continued RESTORE

In the example. the variables are assigned values as follows:

Variable Value

A 2

B 4

C 6

D 8

E 10

F 12

G 8

H 10

I 12

J 2

K 4

L 6

093-000351 Licensed Material-Property of Data General Corporation 1-225

Commands. Statements. and Functions in Business BASIC

RETURN Statement

Transfers control from a subroutine back to its calling pOint.

AOSIVS DG/RDOS UNIX]

Format

RETURN

What It Does

RETURN transfers control to the line following the last GOSUB executed. Since
GOSUB transfers control to a subroutine. a RETURN statement anywhere within that
subroutine returns control to the line following that GOSUB. You can have more than
one RETURN in a subroutine. For more information. see GOSUB ... RETURN.

1-226 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

RFORM Statement

Defines a record string format.

AOSNS DG/RDOS UNIX

Format

RFORM format-string

Arguments

format-string A string literal without quotation marks that contains format
information describing the composition of a string variable.

What It Does

RFORM allows you to define record formatting information outside the PACK and
UNPACK statements. With RFORM, you can also define a record's format at a
single location and refer to it in multiple PACK and UNPACK statements.

How to Use It

The format string is composed of the characters listed below. Embedded spaces and
commas are allowed.

Format Item

B,C,D,E,F

G

H

I,J,K,L,M,N

o
p

Sn

An

093-000351

Field Type Defined

Defines a 1-, 2-, 3-, 4-, or 5-byte unsigned integer field
respectively. In AOS/VS Business BASIC, the F format is valid in
triple precision only. In AOS/VS and DG/RDOS Business BASIC,
the E and F formats are valid in triple precision only.

Defines a 6-byte unsigned integer field (valid only in quad
precision) .

Defines a 7-byte unsigned integer field (valid only in quad
precision) .

Defines a 1-, 2", 3-, 4-, 5-, or 6-byte signed integer field
respectively. M and N formats are valid in triple precision only.

Defines a 7-byte signed integer field (valid only in quad precision).

Defines a 8-byte signed integer field (valid only in quad precision).

Defines an n-byte string field. Trailing or embedded nulls are
significant and are transferred within the field.

Defines an n-byte string field. (For UNPACK statements only,
trailing or embedded nulls are used as terminators of the field
transfer.)

Licensed Material-Property of Data General Corporation 1-227

Commands, Statements. and Functions in Business BASIC

RFORM

Format Item

+n

@n

*n

Un

continued

Field Type Defined

Skips n bytes of the record string.

Position to byte n of the record string before the next action. The
bytes of the record string are numbered from 1.

Repeat the immediately preceding format (B, C, D, I, J, K, or L)
n times for a numeric array. This transfers successive elements of
the array beginning with the element specified in the variable list.
The number of elements transferred must be within the
dimensioned bounds of the array.

Defines a one-bit field in a numeric variable or array. element.
You must specify a separate Un argument for each bit you want to

pack or unpack. The bit indicated by 2n (O<=n<=7) is set by
PACK when the source value is non-zero or is tested by UNPACK
placing 0 (cleared) or 1 (set) into the destination field.

NOTE: The pointer into the record string is not moved, thus
allowing multiple fields to correspond to a single byte.

Zn. Fill the record string with nulls and set current length to n on
PACK. This format item is ignored by UNPACK. It is only valid
as the first descriptor of a format string.

NOTE: The format elements were chosen to keep the string as short as pos~ible to
reduce the memory requirements. The following defaults were chosen for n
on those elements used frequently:

Element

U

S,A,+,@,*

Z

Default Elements

o
1

unlimited (max. length of string)

The format elements must match the expression or variable list in the· PACK or
UNPACK statement in data type and number of items. An example using the
RFORM and PACK statements is presented in the PACK description.

On AOSNS and UNIX systems, you can repeat any format argument by putting the •
argument in parentheses and specifying outside the parentheses the number of times to
repeat the argument-for example, 3(A5) repeats the An argument three times.

1-228 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued RFORM

Examples

1. RFORM is used here to format a record.

:Compose and write a record string containing record status, name
: address , city, state, zip code, balance, and age.

00220 RFORM ZJA20A30A12A2DLB
I I I I I I I l*l-byte unsigned integer for AGE%
I I I I I I 1*4-byte signed integer for BAL
I I I I I I *3-byte unsigned integer for ZIP
I I I I I *2-byte truncated string for STTES
I I I I *12-byte truncated string for CITYS
I I I *30-byte truncated string for ADRS
I 1*20-byte truncated string for NAMES
1*2-byte signed integer for STAT%
*null fill CUSRECS

00870 PACK 00220,CUSRECS,STAT%,NAMES,ADRS,CITYS,STTES,ZIP,BAL,AGE%
00880 LWRITE FILE[4,record-number],CUSRECS

2. This example reads and decodes an employee record into fields: employee
number, pay rate, overtime rate, deduction array, and tax array.

00320 RFORM JLL+8L*10@179L*6
I I I I I I *6 4-byte signed integer elements
I I I I I I into TAXES
I I I I I *pick next field starting with byte 179
I I I I *10 4-byte signed integer elements into DEDNS
I I I*skip 8 bytes of record string
I 1*4-byte signed integer for OTRATE
1*4-byte signed integer for REGRAT
*2-byte signed integer for EMPNO

01100 LREAD FILE[5,EMPRNO] ,EMPRECS
01110 UNPACK 00320 , EMPRECS , EMPNO,REGRAT,OTRATE,DEDNS [1] ,TAXES

:The array TAXES must have already been dimensioned

093-000351 Ucensed Material-Property of Data General Corporation 1-229

Commands, Statements, and Functions in Business BASIC

RFORM continued

3. This program sets bits 0, 2, 5, and 7 in a PACK statement. The result of the
PACK statement is that the ASCII value of RECORDS is 165. The UNPACK
statement is used to see which bits are set.

00010 DIM RECORDS[l]
00020 LET RECORD$=FILLS(O)
00030 RFORM UOU2U5U7
00040 RFORM UOU1U2U3U4U5U6U7
00050 PACK 00030,RECORDS,l,l,l,l
00060 UNPACK 00040,RECORDS,BITO,BIT1,BIT2,BIT3,BIT4,BIT5,BIT6,BIT7
00070 PRINT BITO;BIT1;BIT2;BIT3;BIT4;BIT5;BIT6;BIT7

* RUN
1 0 1 0 0 1 0 1

1-230 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

RND Function

Produces a pseudo-random integer.

AOSIVS DG/RDOS UNIX

Format

RND(expression)

Arguments

expression A numeric expression or variable that is one greater than the
highest integer you want the RND function to generate. expression
sets the ceiling for randomly generated integers. It must be greater
than or equal to 0 and less than or equal to 65535.

What It Does

Each time you use the RND function, it produces an integer n such that
o <= n < expression. If you do not use a RANDOMIZE statement at the beginning of
your program, you get the same sequence of random numbers each. time you run the

• program. This sequence of numbers is different under AOS/VS and UNIX.
RANDOMIZE causes the starting point in the set of random numbers to change. The
RND function produces one set of random numbers on AOSNS and DG/RDOS
systems, a second set on DG/UX systems, and a third set on INTERACTIVE UNIX
systems.

How to Use It

RND is a numeric expression and can be used wherever numeric expressions are
allowed. If you want to repeat a series of random numbers, do not use
RANDOMIZE.

Examples

RND is demonstrated with and without RANDOMIZE.

00010 FOR I = 1 TO 4
00020 PRINT RND(100)
00030 NEXT I
* RUN
4
14
15
85

093-000351 Ucensed Material-Property of Data General Corporation 1-231

Commands, Statements, and Functions in Business BASIC

RND continued

If you run the same program again, you get the same series of random numbers.

* RUN
4
14
15
85

Now add a RANDOMIZE statement.

00005 RANDOMIZE
00010 FOR I = 1 TO 4
00020 PRINT RND(100)
00030 NEXT I

* RUN
43
86
14
23

RANDOMIZE results in a different random series for each RUN statement.

* RUN
45
19
82
37

1-232 Licensed Material-Property of Data General Corporation 093-000351

Commands. Statements. and Functions in Business BASIC

RUN Command

Executes a program.

AOSNS DG/RDOS I· UNIX

Format

RUN [{ line-number I]
"filename"

Arguments

line-number

filename

A statement line number of the program in working storage where
execution begins.

A literal filename within quotation marks for a program file that
has been saved or replaced and that you want to load and
execute. Do not use line-number with filename.

You can prefix the filename argument with a "#" to reference a
program from the system library (BASIC.PL). In addition. you can
access a program from the user's program library (if it has been
established via STMA 20) by prefixing the "filename" argument
with "%".

What It Does

The variations of the RUN command are below.

RUN
RUN clears all variables. undimensions all arrays and strings. executes a RESTORE
statement. initializes the random number generator. and then executes the current
program from the first line number. It does not close or unlock files. nor does it move
the file pointer.

RUN line-number
Retains current values for variables. maintains the positions of file pointers. keeps
locks active. and executes the current program beginning at line-number; it does not
perform a RESTORE statement. This form is equivalent to CON if line-number is the
line following the last point of interruption.

RUN "filename"
Searches the current directory for the file specified in filename; if not found. it
searches the library directory for filename. It also clears working storage. brings
filename into working storage. and then executes filename from the first line. You can
specify only a saved program in RUN "filename". not a listed program. If you try to
run a listed file, Business BASIC generates Error 48 - Not a save file.

093-000351 Licensed Material-Property of Data General Corporation 1-233

Commands, Statements, and Functions in Business BASIC

RUN continued

How to Use It

You must type RUN with "'filename" to run a program; otherwise, "filename" by itself
performs a SWAP. Use the RUN line-number form to help debug your programs.

Examples

1 ~ This executes the program currently in working storage, from the first line.

• RUN

2. This clears working storage, brings NEWPROG into working storage, and then
executes NEWPROG from the first . line.

• RUN "NEWPROG"

3. This executes a program that contairis year-end statistics. The program, called
YREND, has been placed in the system library BASIC.PL.

• RUN "#YREND"

1-234 Ucensed Material-Property of Data. General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

SAVE Statement and Command

Saves a program and its variables.

AOSIVS DG/RDOS UNIX

Format

AOS/VS and DG/RDOS:

SAVE I "filename" I
string-variable

UNIX:

I "filename" I
SAVE [byte-format, J . . bl

stnng-vana e

Arguments

filename

string-variable

byte-format

What It Does

A filename (in quotation marks) for your program file. It should
be a new filename; if filename already exists, you get an error
message.

A string variable that you have already dimensioned and assigned
a filename.

Either 0 or 1 to indicate whether you want to save the file in
DG/UX format (0) or INTERACTIVE UNIX format (1). The
default for a file that you loaded using LOAD is that file's current
SA VE file format. The default for a file that you created while in
Business BASIC input mode or entered into Business BASIC using
ENTER is the native format for the operating system.

SAVE writes the contents of working storage (statements and values for variables) in
internal code to a disk file it creates using the name filename. If filename already
exists in your directory, you get an error message. filename is stored internally in the
program file, so if you want to rename your program file, save the program under a
new name. SAVE does not preserve the file status of files in your program.

How to Use It

You must supply filename either in quotation marks or as a string variable that holds a

I value of filename. To maintain compatibility across operating systems, limit the
filename to a maximum of 13 characters. When you save a program, the current
values of all variables are stored with the program as well as the location where the
program last stopped.

093-000351 Licensed Material-Property of Data General, Corporation 1-235

Commands, Statements, arid Functions in Business BASIC

SAVE continued

Saved programs can be chained to, swapped· to, run,and replaced. You can also save
a program that has partially executed, and later resume execution of the program by
using a CON or RUN line-number statement. The program retains the values that the
variables had when you saved it.

To replace a saved program with a new· one (perhaps an edited version of the old),
use REPLACE. (RENAME does not change the internal name of the program file.)
Load your program, edit it, then use REPLACE (without a filename if you want to
keep the same name).

On UNIX systems, you can use the optional byte-format argument to specify whether
the SAVE file format is the DG/UX format or the INTERACTIVE UNIX format.
(DG/UX systems and INTERACTIVE UNIX systems differ with respect to the
ordering of bytes within a word.) Enter 0 to use the native SAVE file format for
DG/UX systems and 1 to use the native SAVE file format for INTERACTIVE UNIX
systems.

Examples

1. Save the following statements and values in a program file called PROG 1.

* NEW
* 10 LET X=1
* 20 LET Y=2
* RUN

* SAVE"PROG1"
* NEW
* LOAD"PROG1"

* PRINT X;Y 1 2

2. Lines can be added to the file PROG1, and the program can be replaced to
retain the same name.

* LOAD"PROG1"

* LIST
00010 LET X=l
00020 LET Y=2

* 30 PRINT X;Y
* SAVE"PROG1"
I/O ERROR 9 - File Already Exists
* REPLACE
* NEW
* LOAD "PROGl"
* LIST
00010 LET X=l
00020 LET Y=2
00030 PRINT X;Y

*

1-236 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

SCANUNTIL Statement

Scans a string until characters In a substring are found.

AOSNS DG/RDOS I, UNIX

Format

SCANUNTIL position, string-variable] ,string-variable2 [,start]

Arguments

position

string-variable]

string-variable2

start

What It Does

Numeric variable that receives a value representing the string
position of the last character in string-variable] that was not in the
set of characters in string-variable 2.

String expression to be scanned until a character in it matches a
character in string-variable2.

String expression containing the set of characters to be searched
for in string-variable] .

Optional numeric expression indicating the location in
string-variable] to begin scanning. start must be assigned a value
of at least 1 prior to statement execution.

I SCANUNTIL lets you locate a specified substring of characters in a string. It returns
location in the string of the last character before it finds the substring.

String-variable] is scanned beginning at relative position start, if you include this
argument. Position is incremented as a relative pointer until a character in
string-variable2 is found. The location of the last character in string-variable] that is
not in string-variable2 is returned in position.

Start is an optional argument; if you do not specify start, the scan starts at the first
character. If start is greater than the length of string-variable], then position is· set to
O. If the pointer reaches the end of string-variable] before a match is found in
string-variable2, position is set to the length of string-variable]. SCANUNTIL checks
to see if string-variable] contains anyone element of string-variable2, not the entire
substring.

How to Use It

I Enter SCANUNTIL as a statement. You must supply values for the arguments
position, string-variable], and string-variable2. If you use the start argument, you
must supply it with a value of at least 1 prior to executing SCANUNTIL.

093-000351 Licensed Material-Property of Data General Corporation 1-237

Commands, Stat~ments •. and Functions· in BuSiness BASIC

SCANUNTIL continued

Examples

1. Find the position of the last character in AS that occurs bef()re a match with BS.
Begin scanning AS at SLOC.

00010 DIM A$[100] ,B$[100]
00020 LET P=O
00025 PRINT "INPUT VALUES FOR A$. B$, AND START LOCATION, PRESS
ESC TO EXIT"
00030 INPUT A$,B$," START AT: ",SLOC;
00040 SCANUNTIL P,A$,B$,SLOC
00050 PRINT ," P="; P
00060 GOTO 00030

• RUN
INPUT VALUES FOR A$, B$, AND START LOCATION, PRESS ESC TO EXIT
? ABCDEFGHIJK ? XYZ START AT: 1 P= 11
? ABCDE ? XYZ START AT: 8 P= 0
? ABCDEFGHI ? XYFG START AT: 1 P== 5
? ABCEFGHI ? ABC START AT: 1 P= 0
?
IKEY AT 00030

*

2. Scan a string and remove characters.

• LIST
00010 DIM DATE$[8] ,DELM$[3],X$[6] ,Y$[2],NUM$[10]
00020 LET DELM$="/ _II \ NUM$="0123456789"
00030 LET P=O \ SLOC=l \ X$=""
00040 INPUT USING "","DATE: ",DATE$
00050 SCANUNTIL P,DATE$,DELM$,SLOC
00060 IF P=O THEN GOTO 00120
00070 LET Y$[1,2]=DATE$[SLOC,P]
00080 IF SLOC==P THEN LET Y$[1,2]="0",DATE$[SLOC,P]
00090 LET X$=X$,Y$
00100 LET SLOC=P+2
00110 GOTO 00050
00120 PRINT "DATE WITHOUT DELIMITERS = ",X$
001.30 LET P=O
00140 SCANWHILE P,X$,NUM$
00150 IF P=6 THENGOTO 00180
00160 PRINT "INVALID DATE - ENTER AGAIN"
00170 GOTO 00030
00180 END

• RUN
DATE: 12/31/91
DATE WITHOUT DELIMITERS = 123191

1-238 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

• RUN
DATE: 1-A-91
DATE WITHOUT DELIMITERS = 01A91
INVALID DATE - ENTER AGAIN
DATE: 1 1 91
DATE WITHOUT DELIMITERS = 010191

•

093-000351 Licensed Material-Property of Data General Corporation

SCANUNTIL

1-239

Commands,- Statements, and Functions in Business BASIC

SCANWHILE Statement

Scans a string while characters match those in a substring.

AOSIVS DG/RDOS UNIX

Format

SCANWHILE position, string-variable] ,string-variable2 [,start]

Arguments

position

string-variable]

string-variable 2

start

What It Does

Numeric variable that receives a value representing the string
position of the last character in string-variable] that is also in the
set of characters in string-variable2.

String expression to be scanned while its characters match
characters in string-variable 2.

String expression containing the set of characters to be passed over
in string-variable].

Optional numeric expression indicating the location in
string-variable] to begin scanning. start must be assigned a value
of at least 1 prior to statement execution.

SCANWHILE scans the string you supply as long as the characters in it match the I
characters in the substring you supply. It returns location in the last character in the
string that is also in the substring.

String-variable] is scanned beginning at relative position start, if you include this
argument. Position is incremented as a relative pointer. The character pointed to in
string-variable] is in the set indicated by string-variable2. Scanning stops when the
first non-matching character is found, regardless of whether later characters in
string-variable] match those of string-variable2. The location of the last character in
string-variable] that is also in string-variable2 is returned in position.

Start is an optional argument; if you do not specify start, the scan starts at the first
character. If start is greater than the length of string-variable], then position is set to
O. If the pointer reaches the end of string-variable] before a non-matching character
is found in string-variable2, position is set to the length of string-variable 1.

How to Use It

Enter SCANWHILE as a statement. You must supply values for the arguments I
position, string-variableT, and string-variable2. If you use the start argument. you
must supply it with a value of at least 1 prior to executing SCANWHILE.

1-240 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued SCANWHILE

Examples

1. Find the position of the last occurrence of any character in A$ that occurs in B$.
Begin scanning A$ at SLOC.

00010 DIM A$[100] ,B$[100]
00020 LET P=O
00025 PRINT "INPUT VALUES FOR A$, B$, AND START LOCATION, PRESS

ESC TO EXIT"
00030 INPUT A$, B$, " START AT: ", SLOC;
00040 SCANWHILE P,A$,B$,SLOC
00050 PRINT ," P="; P
00060 GOTO 00030

* RUN
INPUT VALUES FOR A$, B$, AND START LOCATION, PRESS ESC TO EXIT
? ABBCCCDDDDEEEEE ? ABCE
? 12345.65 ? 0123456789
? ABCDE ? ABCDEF
? ABCDE ? ABCDEF
?
IKEY AT 00030

*

2. Allow only selected characters in a date string.

* LIST
00010 DIM DATE$[8] ,NUM$[13]
00020 LET NUM$="/- 0123456789"
00030 LET P=O \ SLOC=l
00040 INPUT USING "","DATE: ",DATE$
00050 SCANWHILE P,DATE$,NUM$,SLOC

START AT: 1
START AT: 1
START AT: 8
START AT: 1

00060 IF P=LEN(DATE$) THEN GOTO 00090
00070 PRINT "INVALID DATE - ENTER AGAIN"
00080 GOTO 00030

P=
P=
P=
P=

00090 PRINT "THIS DATE DOES NOT CONTAIN INVALID CHARACTERS"
00100 END

* RUN
DATE: 112/91
THIS DATE DOES NOT CONTAIN INVALID CHARACTERS

* RUN
DATE: l-A-91
INVALID DATE - ENTER AGAIN
DATE: 12291
THIS DATE DOES NOT CONTAIN INVALID CHARACTERS

*

093-000351 Licensed Material-Property of Data General Corporation

6
5
0
5

1-241

Commands. Statements. and Functions in Business BASIC

SGN Function

Determines the sign (positive or negative)of an expression.

AOSNS I· DGIRDOS UNIX

Format

SGN(expression)

Arguments

expression A numeric expression or variable for the number whose sign you
want to know.

What It Does

SGN returns a value of 1 if expression is positive. -1 if expression is negative. and 0 if
expression is O.

How to Use It

Use SGN as a numeric expression wherever numeric expressions are allowed.

Example

Determine the sign of X.

• LIST
00010 INPUT X
00020 IF SGN(X)=-l THEN PRINT "NEGATIVE"
00030 IF SGN(X)=l THEN PRINT "POSITIVE"
00040 IF SGN(X)=O THEN PRINT "EQUALS ZERO"

• RUN
1-20
NEGATIVE

• RUN
10
EQUALS ZERO

. 1-242 Ucensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

SHELL Statement and Command

Calls the UNIX shell.

UNIX

Format

• SHELL [error-variable, command [, buffer]]

Arguments

error-variable

command

I buffer

What It Does

A variable that receives an error code if an error occurs during
creation of the shell process.

A string variable or string literal containing the command you want
to execute from the UNIX shell and any options you want to
specify for the command.

A string variable that receives the output (both standard output
and standard error) of the SHELL command.

The SHELL statement calls either the Bourne shell or the C shell, depending on the

I value in the optional environment variable BBSHELL. To specify the BOURNE shell.
BBSHELL should contain /bin/sh. If BBSHELL is not set, SHELL calls your initial
shell program. If you specify a command, that command is executed and you return
to the Business BASIC prompt. Otherwise, you remain in the shell. You cannot pass
information from the UNIX shell back to Business BASIC.

I If a buffer string variable is provided. the command's output is written to the buffer;
otherwise. the output is written to the screen.

How to Use It

SHELL assumes that the directory Ibin is on the search path defined by your PATH
variable. Also, you must have started Business BASIC with the -c option; otherwise,
SHELL returns without executing any commands.

Error-variable must be a numeric variable and must be initialized. This argument
receives an exceptional status code if the UNIX fork or exec call fails, a zero if the
-c option was not specified, or a -1 if the command was successful. The exceptional
status code is the value the shell returns. For a list of UNIX error codes and
messages, see Using Business BASIC on DGIUX™ and INTERACTIVE UNIX Systems.

The command line you specify using the SHELL statement must be in shell format
instead of Business BASIC CLI format. You must terminate the string variable or
literal with a null character. If you omit the null character, Business BASIC displays
Error 34 - Function argument.

093-000351 Licensed Material-Property of Data General Corporation 1-243

Commands, Statements, and Functions in Business BASIC

SHELL continued

When you include the buffer variable, make sure it is large enough to hold all the
output from the command. If buffer is too small, the command's output is truncated
to the dimensioned length of buffer and the value returned in the error variable is
unpredictable.

If you omit the arguments, SHELL creates a subordinate shell, from which you can
execute any number of shell commands. To return to the Business BASIC prompt,log
out of the shell as you normally would.

Examples

1. This example executes one command at the shell and then returns you to the
Business BASIC prompt.

00010 DIM A$ (20)
00020 ER=O
00030 A$="pwd<O>"
00040 SHELL ER,A$

* RUN
/usr/bbusers/debbie/programs

*

2. This example creates a subordinate shell process and starts a vi editing session.

* SHELL
% vi

% logout
•

3. This example executes two commands at the shell and then returns you to the
Business BASIC prompt. The output of the commands is written to BUF$.

00010 DIM BUF$(1024)
00020 ER=O
00030 SHELL ER, "cd;pwd<O>",BUF$

1-244 Ucensed Material-Property of Data General COrpOration 093-000351

I

Commands, Statements, and Functions in Business BASIC

SHFT Function

Performs a shift left or right with zero fill.

AOSIVS DG/RDOS UNIX

Format

SHFT (expression, bits)

Arguments

expression A numeric expression or variable; the number you want to shift.

bits The number of bits you want to shift. A negative (-bits) shifts bits
number to the right (less), and a positive (+bits) shifts bits number
to the left (greater).

What It Does

SHFT moves all of the bits of expression, whether it is single, double, triple, or
quadruple precision. SHFT with a negative number in bits moves the expression bits
number of bits to the right. SHFT with a positive number in bits shifts the expression
bits number of bits to the left. SHFT with a zero in bits does nothing.

How to Use It

Use SHFT as a numeric expression, wherever numeric expressions are allowed.

Figure 1-9 shows the bit positions that result when an expression is shifted using
SHFT.

3130292827262524232221201918171615141312111098765432 0 Powerof2
~~~--~~~~~~~~~~~~~~~~~~~~~~~~~ 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X = 32768, or 215 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SHFT(X, -1) = 214 

000000000000000 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SHFT(X, +2) = 216 

Figure 1-9 The SHFT Function 

093-000351 Licensed Material-Property of Data General Corporation 1-245 



Commands, Statements, and Functions in Business BASIC 

SHFT 

Example 

This program displays the system status. 

00010 DIM D$[40] 
00020 LET STAT=SYS(30) 
00030 FOR 1=15 TO 0 STEP -1 
00040 READ D$ 
00050 IF AND(STAT,l) THEN PRINT "Bit";I;"means ";D$ 
00060 LET STAT=SHFT(STAT,-l) 
00070 NEXT I 

continued 

00080 DATA "Double Precision", "Triple Precision", "Quad Precision" 
00090 DATA "UNIX", "N/A", "RDQS", "AOS", "N/A" 
00100 DATA "AOS/VS","Single-user system", "N/A", "Virtual console" 
00110 DATA "N/A", "N/A", "N/A", "N/A" 

* RUN 
Bit 15 means Double Precision 
Bit 9 means AOS 

* 

1-246 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements. and Functions in Business BASIC 

SIZE Command 

Determines the size of the program in working storage. 

AOSIVS DG/RDOS UNIX 

Format 

SIZE 

What It Does 

SIZE tells you how many bytes of working storage the current program occupies and 
how many bytes are still available. Both values are decimal. 

I For UNIX systems executing in DO mode, SIZE displays output similar to the output 
it displays for AOS/VS. For UNIX systems executing in non-DO mode, SIZE displays 
its output in a window on the right side of the screen. The window occupies rows 2-13 
and columns 45-80. The program name, the sizes of the program and data segments, 
the total space used, and the space remaining are shown. 

How to Use It 

SIZE is used in keyboard mode. 

Example 

1. In this DO/RDOS example, the current program and values held by variables 
occupy 6700 bytes of working storage; 8077 bytes remain. 

* SIZE 
USED: 6700 BYTES 
LEFT: 8077 BYTES 

2. In this AOS/VS example, the current program and data occupy 2536 bytes; 
259234 bytes remain. 

* SIZE 
Used: 

Left: 

093-000351 

2400 bytes (Program) 
136 bytes (Data) 

2536 bytes (Total) 

128534 bytes (Program) 
130700 bytes (Data) 
259234 bytes (Total) 

Licensed Material-Property of Data General Corporation 1-247 



Commands, Statements, and Functions in Business BASIC 

SIZE continued 

3. In this example on a UNIX system executing in non-DO mode, PROGI is loaded I 
into working storage and the SIZE command is issued before the program is 
executed. 

1-248 

* load "PROG1 

* size 

.---- Program/Data Size Information ---I 
Program Name 
Maximum size 
Used 

Program size 
Data size 
Total size 

Remaining 

• 

PROG1 
524288 bytes 

380 bytes 
1720 bytes 
2100 bytes 
522188 bytes 

'--___ Press any key to continue--~ 

Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

SQR Function 

Square root of an expression (truncated to an Integer). 

AOSIVS DG/RDOS UNIX 

Format 

SQR (expression) 

Arguments 

expression The numeric expression or variable whose square root you want to 
find. 

What It Does 

SQR finds the square root of expression. It truncates any fraction, making the value 
an integer. 

How to Use It 

Use SQR as a numeric expression, wherever numeric expressions are allowed. If you 
want more precision, multiply the expression by a suitable power of 10 (see example). 

Example 

Print the square root of two and the square root of two to the third decimal place. 

* LIST 
00010 LET X=2 
00020 PRINT SQR(X) 
00030 PRINT USING "D5.3",SQR(X*(10 A3)A2) 

* RUN 
1 
1.414 

* 

093-000351 Licensed Material-Property of Data General Corporation 1-249 



Commands. Statements. and Functions in Business BASIC 

STEP 

Executes the next statement of the program currently in 
memory. 

AOSIVS UNIX 

Format 

STEP [number] 

Arguments 

Command 

number The number of statements to execute with this STEP command. 

What It Does 

The STEP command is a debugging tool. When you issue this command. Business 
BASIC executes the next statement of the program currently in memory. Using the 
optional number argument. you can request that more than one statement be 
executed. The default is one statement. As STEP executes a line. it displays the line 
number in brackets. 

If Business BASIC reaches the end of the program before finishing the execution of a 
STEP command. it displays the remaining lines and then displays the message END OF 

PROGRAM. A STEP command with an argument of 0 produces no output but causes 
the line counter to be reset to the start of the program currently in memory. 

How to Use It 

Issue the STEP command from keyboard mode. 

STEP is always available on UNIX systems. On AOS/VS systems. the STEP command 
is available ·only when you include the debugging features in your Business BASIC 
interpreter during system generation. For information about generating a Business 
BASIC system. see your Business BASIC user's guide. 

1-250 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued. 

Example 

This program illustrates the use of the STEP command . 

... LIST 
00010 REM ... STE~ example 
00030 LET X=O 
00040 PRINT "X_ ";X 
00045 LET X=X+1 
00050 IF X<2 THEN GOTO 00040 

... STEP 0 

... STEP 

[10] 
... STEP 3 

[30] 
(40)X = 0 
[45] 
... STEP 1 

[50] 
... STEP 3 

[40]X = 1 
[45] 
[50] 
End of program 

093-000351 Licensed Material-Property of Data General Corporation 

STEP 

1-251 



Commands, Statements. and Functions in Business BASIC 

STMA Statement and Command 

Performs system calls that examine or modify aspects of a job, a 
terminal, or the system. . 

AOSIVS DG/RDOS UNIX 

Format 

STMA type, argument (, argument . .. ) 

Arguments 

type 

argument 

What It Does 

A numeric expression or number designating the type of parameter 
that is being examined or modified. Each type is discussed below. 

A number, numeric expression, or variable that further defines the 
system call. The meaning of argument depends on the type you 
specify. Each STMA requires one or more arguments. For an 
explanation of the required arguments for each system call, see the 
explanation for that type of STMA in Table 1-3. 

STMA statements and commands are system calls that examine and modify a wide 
range of parameters related to the system, a specific job, or a terminal. The "How To 
Use It" section gives you a general idea of how each STMA is used. 

NOTE: Table 1-3 lists the syntax formats for each STMA. In this table, each string, 
string expression, or substring argument ends with a dollar sign ($); all other 
arguments are numeric. In addition, a string variable or numeric variable 
(numeric-variable) is a value that the STMA returns. A string expression or 
numeric expression (numeric-expression) is a value that you assign before 
executing the STMA; both the string expression and the numeric expression 
can be either an expression or a variable. Since the arguments are not all 
fully explained in the "How To Use It" section, check the statement's syntax 
in Table 1-3 if you have a question about whether an argument requires a 
numeric or string argument. 

1-252 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

Table 1-3 Summary of STMA Syntax Formats 

STMA Data Type 
Parameter of Its Arguments 

STMA 1, item, numeric-variable 

STMA 2, item, numeric-expression 

STMA 3, item, numeric-variable 

STMA 4, item, numeric-expression 

STMA 5, examine-flag, numeric-variable 

STMA 6, turn-flag-on 

STMA 7, turn-flag-off 

STMA 8, item 

STMA 9, item, string-variable$ 

STMA 10, item, string-expressionS 

STMA n, Julian-date, numeric-variable1, numeric-variable2, numeric-variable3 

STMA 12, numeric-variable4, month, day, year 

STMA 13, string-variable$, table-stringS 

STMA 14, string-variable$, type 

STMA 15, string1 $, string2$, numeric-variable 

STMA 16, numeric-expression 

STMA 17, port, error 

STMA 18, filenameS, numeric-variable 

STMA 19, error-number 

STMA 20 [,channel] 

STMA 21, string$, numeric-expression, numeric-variable 1, numeric-variable2 
[,numeric-variable3 (,numeric-variable4) (,numeric-variableS)] 

STMA 22, item, [length, width, start-row, start-column, border, titleS] 

093-000351 Licensed Materiai-Property of Data General Corporation 1-253 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

How to Use It 

This section includes a description of each STMA, its required arguments, and any 
special considerations for performing a particular system call. 

NOTE: Before you specify a numeric variable in an STMA statement, you must 
assign a value to the variable. All numeric values used in STMA statements 
are 16-bit values. 

STMA 1 and 2 

STMA 1 and STMA 2 are related; STMA 2 sets the value of item and STMA 1 
receives the value of item. These items include terminal type, error code, passed 
variables, and security code. Before you execute an STMA 1, your variable must be 
initialized. After the STMA execution, your variable will hold the value you're 
requesting. The variables in STMA 1 and STMA 2 pass 16-bit values, or 1-word 
allocations. 

STMA 1, item, variable 
STMA 2, item, value 

variable 

value 

item 

A simple numeric variable that receives a value when you execute the call. 

A numeric expression for the value you want to set the item to. 

A number indicating one of the available items: 

o Terminal type. 

1 Error code passed between programs that are using SWAP and/or 
CHAIN statements. 

2 Available for you to pass or retrieve information between programs 
(1-word allocations). 

3 Same as 2. You may need more than one place to pass or retrieve 
information. 

4 Reserved. 

For example: 

STMA 1,O,X gives you the terminal type in X. 
STMA 1,1, ER gives you the error code passed to your program from another program 
that used STMA 2,1 and a SWAP or CHAIN to your program. Error code will be in 
ER. 

STMA 1,2,VARIABLE or STMA 1,3,VARIABLE gives you the data in VARIABLE 
that is passed to your program from another program that used STMA 2,2 or STMA 
2,3 and a SWAP or CHAIN to your program. 

1-254 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

STMA 2 can be used to set your terminal type. Note that if you set a new terminal 
type, and you want to set the default terminal characteristics for the new type, you 
must do a PRINT @ (-19). 

The STMA 2 example of the program called HOME.BB passes a SYS(7) error code 
and data using STMA statements to the program REMOTE.BB. 

In HOME.BB, if an error occurred on input, the error code would be in SYS(7) and 
an error message would appear at the terminal. To pass this error to the other 
program, pass only the value of SYS(7). The input value is passed using VARIABLE 
and retrieved in O. Each transfer is a two-byte transfer. 

STMA 1 and 2 Examples 

1. Use STMA 2 to pass an error code and to pass data. 

00010 REM THIS IS HOME.BB 
00020 ON ERR THEN STMA 2,1,SYS(7) :If error, pass the error code. 
00030 INPUT USING "", VAR : Incorrect input will cause error. 
00040 STMA 2,2,VAR :Pass data in VAR. 
00050 SWAP "REMOTE.BB" :Execute REMOTE.BB and return. 

2. Use STMA 1 to pass an error code and to pass data. 

00010 REM THIS IS REMOTE.BB 
00020 DIM ERR$(30) 
00030 LET D = 0 
00040 LET ER = 0 
00050 STMA 1,1,ER 
00060 IF ER <> 0 THEN GOSUB 
00070 STMA 1,2,D 
00080 PRINT D 
00090 STOP 

:Initialize error string. 
:Initialize variables. 

:Get error code, if any. 
00100:Routine to print error, if any. 
:Receive data passed from HOME.BB. 
:Print data. 

00100 REM ROUTINE TO PRINT ERROR 
00105 PRINT "THERE IS 
00110 LET ERR$=ERM$(ER) 
00120 PRINT ERR$ 
00130 RETURN 

STMA 3 and 4 

AN ERROR HERE." 
:Use the ERM$ function to get error. 
:Print error message. 

STMA 3 and STMA 4 are related; STMA 4 sets the value of item and STMA 3 
examines it. Among the items accessed by STMA 3 and STMA 4 are the detach key 
(ROOS only), line cancel key, unpend keys, and the interrupt keys. 

STMA 3, item, variable 
STMA 4, item, value 

I variable 

093-000351 

A numeric variable that receives the value of item when item is 
retrieved. 

LIcensed Material-Property of Data General Corporation 1-255 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

value A numeric expression for the value you want to set the item to 
(usually an ASCII value). 

item A number indicating one of the available options. 

o (RDOS only) Detach key. Striking this key while executing a job causes the job to 
detach from the terminal and leaves the terminal free for other uses. The job will 
continue to run in a detached state. The default key is Ctrl-D. 

1 Line cancel key. Strike this key to cancel an erroneous line you just typed. The 
default key for terminal type" 6 is Ctrl-X. The default key for terminal type 8 is 
Ctrl-U. You can reset this key only if you are using terminal type 6. 

2 Character delete echo. This character is sent to the terminal whenever you delete 
a character. If you set it to a value greater than 127, then the sequence 
(value-128), space, (value-128) will be echoed on the terminal. This is how it 
appears to erase a character: the cursor backs up, prints a space, and backs up 

I 

3 

again. In this way, you would set your value to the ASCII decimal value of a 
backspace plus 128. You can reset this value only if you are using terminal type 6'1 
Character delete key. Default is DELETE. Useful only as a statement. You can 
reset this key only if you are using terminal type 6. 

4 

5 

Primary unpend key. Carriage Return or New Line. Useful only as a statement. 
See explanation of the secondary unpend key. 

Secondary unpend key. Useful only as a statement. When a program stops on an 
INPUT statement, it is waiting for an answer. An unpend key terminates your 
input. For example, when you enter a statement or command line, you usually 
end the line with a carriage return. 

In many DG/RDOS systems, the carriage return (ASCII decimal value <13» is the 
default primary unpend character. However, if you are using a D200, D400, 
D450, or G300 terminal, the New Line is the default primary unpend character 
on all but the master console, which will use carriage return. In AOSNS and 
UNIX systems. the default primary unpend character is New Line (ASCII decimal 
value <10». For more information about the UNIX unpend characters, see the 
on-line file TERMINALS. DOC in the DOC directory. 

When a program stops running, the primary unpend character (no matter what it's 
currently set at) and the secondary unpend character are both returned to their 
default values. The secondary unpend character is typically set to a New Line if 

I 

the primary unpend character is Carriage Return or Carriage Return if the primary I 
unpend character is New Line. 

This is automatic in case you forget which key to press when you want to unpend. 
When the program stops, you can set the unpend keys and unpending will occur if 
you strike one of those keys. The unpend key is converted to a carriage return 
(or New Line) before it is placed in the 110 buffer. 

If an INPUT statement is terminated by a secondary unpend key, SYS(lO) will 
equal 1 (see the SYS function). 

1-256 Licensed Material-Property of Data General Corporation 093.,.000351 



I 

I 

Commands, Statements, and Functions in Business BASIC 

continued STMA 

If you set both unpend keys to the ASCII value <255> (nonenterable character), 
then unpending occurs on the next character you input and the character is put in 
the I/O buffer. This is useful for allowing only one-character inputs. 

When you set both unpend keys to <255>, control characters and lowercase 
characters are recognized, and the line cancel and character delete keys are not 
processed. Unpend characters are never echoed on the terminal. 

NOTE: Function keys on a Data General DASHER® terminal actually send a 
two-character sequence where the first character on DG/RDOS systems is 
<30> for all function keys and the second character is a lowercase 
character from q to z. You can use a function key as a secondary unpend 
key by setting the secondary unpend key to <30>. On AOS/VS and 
UNIX systems, use SYS(50) instead of <30>. 

6 Primary interrupt key. This is usually the Escape key. You can change its 
function. 

7 Secondary interrupt key. This also can be the function of any key you choose. 
Interrupts stop a program's execution and return to keyboard mode unless you 
handle the interrupts in your program with ON IKEY statements. It is also 
possible to test whether an interrupt occurred without enabling interrupts-see 
STMA 5, 6, and 7 and SYS(26). SYS(10) indicates what kind of interrupt 
occurred. 

A zero value is a primary interrupt, and a one value is a secondary interrupt. 

NOTE: If you are using AOS/VS, the key you set is the second in a sequence 
beginning with Ctrl-C. The second key must also be a Ctrl-key 
combination. 

8 Page width or number of characters allowed on a line at your terminal. See the 
PAGE command for more information. 

9 Tab size. This sets tabs of equal length on a line for spacing your output. A tab 
should not be longer than the current PAGE width setting. See the TAB statement 
for more information. 

10 Maximum number of characters allowed on input. Useful only as a statement. 
This allows you to fix the number of characters a terminal operator can type as 
input. Any additional characters are neither echoed nor stored. The maximum 

I number of characters is always reset to 255 whenever the program stops. If you 
set it to a negative number, the absolute value of the number will be the number 
of characters allowed on input and unpending will occur on the last character. 

11 Used only in the HELLO program to set the push level to O. 

12 First-echoed character when a line cancel occurs. This is usually set to a backslash 
(\), which is an ASCII <92>.When you press the line-cancel key, you usually get 
two characters echoed: the first character is the backslash (\), and the second 
character is usually the default primary unpend key (see discussion above). This 
character is used to return the cursor to the beginning of a new line. 

093-000351 Licensed Material-Property of Data General Corporation 1-257 



Commands, Statements, and Functions. in· Business BASIC 

STMA continued 

13 Second-echoed character when a line cancel occurs. This is usually the same as 
.the primary unpend key. See explanation for first-echoed character (STMA 4,12). 

14 Pad character. This character is sent after all line feeds to prevent you from typing 
anything before the cursor returns to the home position. This is useful on 
terminals with a slow line feed action. 

15 Number of pad characters to send. Normally you don't need any pad characters 
for fast terminals; e.g., DASHER display terminals. 

16 Returns a 0 value. 

17 Returns aO value. 

18 The default primary unpend key. The primary unpend key will be set to the 
specified value (for the issuing user), the next time you either return to the 
Business BASIC prompt or return from a program to which you swapped. This 
item is not destroyed by PRINT @(-19), which resets terminal characteristics to 
system default values. 

19 The default secondary unpend key. 

Items 18 and 19 are copied into items 4 and 5 (described above) when PRINT 
@(-19) is executed or if· the system returns to the Business BASIC prompt, unless 
both 18 and 19 contain the ASCII value <255>. If both 18 and 19 contain <255>, a 
PRINT @(-19) causes the defaults for the terminal type to be copied into items 4 and 
5 respectively. 

STMA 5, 6, and 7 

STMA 5, 6, and 7 are related; the items involved in these system calls are flags. They 
are set to one by STMA 6, set to zero by STMA 7 and may be examined by using 
STMA S. The status flags accessed by these calls include character code, lowercase or 
uppercase, and column counter. 

STMA 5, examine-flag, numeric-variable 
STMA 6, turn-flag-on 
STMA 7, turn-flag-off 

numeric-variable A numeric variable that receives the value of flag and must be 
initialized before use. 

flag is one of the following available status flags: 

o No echo. Also called half-duplex. Input characters are not sent back (echoed) 
to the terminal. 

1 Allow lowercase characters to be input alorig with uppercase characters. 

1-258 

Remember some data must be. typed in uppercase when lowercase is enabled. 
For example, Business BASIC programs that test strings and only test for an 
uppercase value will fail if the string contains lowercase. In addition, reserved 

Licensed Material-Property of Data General Corporation 093-000351 



I 

Commands, Statements, and Functions in Business BASIC 

continued STMA 

filenames must be uppercase. (STMA 14 can be used to convert lowercase to 
uppercase. ) 

2 Allow control characters to be input. Normally, control characters (except line 
and character deletes) are ignored on input. In AOS/VS (terminal type 6), 
you cannot input certain characters unless you precede them with a Ctrl-P. 
These characters are AC, AO, AP, AQ, AS, AU, AT. 

3 Disable the column counter. Normally, when enough characters have been 
output to equal the page width, Business BASIC inserts a carriage return to 
put the cursor at the beginning of the next line. Setting this flag inhibits that 
action. 

4 (DG/RDOS only) No messages allowed. STMD 1 and certain OPCLI 
commands may override this flag; STMD 0 and MSG will not. 

S No IKEY. This flag does not allow an interrupt to stop your program or to 
catch it in an ON IKEY trap. It only allows the IKEY indicator, SYS(26), to 
be set to 1 to indicate that an interrupt occurred. If you cleared this flag and 
SYS (26) equaled 1, then an interrupt would occur immediately. You can reset 
SYS(26), without enabling interrupts, by using STMA 8,3. 

6 Suppress listing of labels on GOTO and GOSUB. If the destination of a 
GOTO or GOSUB is a REM comment, then the comment appears after the 
GOTO or GOSUB when the program is listed. This always occurs when you 
use GOSUB to branch to one of the Business BASIC subroutines because 
each subroutine begins with a REM statement. To prevent it from occurring, 
set this flag. 

7 When set, this flag indicates that fill characters in PRINT USING statements 
are to overwrite all characters not used in Dw.d and Ew.d formats. When 
cleared (default), fill characters will overwrite only the leading zeros in Dw.d 
and Ew.d formats. 

8 No echo. Also called half~duplex. Input characters are not sent back (echoed) 
to the terminal. 

9 Allow listing of eight-bit characters. Normally, characters with ASCII values 
greater than 127 decimal will be listed as the ASCII value enclosed in angle 
brackets. If this flag is set, they will be output literally. Eight-bit characters 
that can output literally to seven-bit terminals will often erroneously appear as 
the seven-bit character made by stripping the eighth bit. For example, this 
occurs when a listing file is created and then displayed to a seven-bit device 
using TYPE or PRINT. 

10 Allow users who select operating system multiplexor support to disable or 
enable operating system interrupts for the multiplexor line. If an interrupt 
character must be passed to Business BASIC on a read, this statement should 
be used. When set, this flag indicates that Ctrl-C Ctrl-x interrupts for the line 
are disabled. When cleared (this is the default), Ctrl-C Ctrl-x interrupts for 
the line are enabled. This item is available only in a DG/RDOS Business 

093-000351 Licensed Material-Property of Data General Corporation 1-259 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

BASIC system that has been generated with operating system multiplexor 
support. 

11 (DO/RDOS only) Allow users who select operating system multiplexor support 
to disable the operating system Ctrl-S (suspend processing) and Ctrl-Q 
(resume processing) functions for the multiplexor line. 

12 (UNIX only) Perform pathname conversion. When set, pathnames in either 
UNIX or AOS/VS format are accepted. The AOS/VS pathnames' colons (:) 
are converted to slashes (/), and all characters are converted to upper case. 
When cleared, AOS/VS-style pathnames are rejected. 

13 (AOS/VS and UNIX only) Allow 255 characters on INPUT and PRINT. • 
When this value is not set, only 132 characters are allowed. 

Example 
Check the message flag; if it is set, clear it. Check the IKEY flag; if it is clear, set it. 

00010 LET VARIABLE = 0 :Initialize variable. 
00020 STMA 5,4,VARIABLE :Is no message flag set? 
00030 IF VARIABLE = 1 THEN STMA 7,4 :If set, clear it. 
00040 STMA 5,5, VARIABLE :Is no-ikey flag set? 
00050 IF VARIABLE = 0 THEN STMA 6,5 :If not, set it. 

00100 IF SYS(26) = 1 THEN STMA 7,5 :If an interrupt occurred, then 
:re-enable interrupts to process IKEY. 

STMA 8 

STMA 8 is used to reset the FOR ... NEXT stack, GOSUB ... RETURN stack, IKEY 
indicator and clear the input buffer. If you nest FOR ... NEXT loops or 
GOSUB ... RETURN routines beyond their legal nesting limits, you get Error 18 -
GOSUB nesting or Error 20 - FOR nesting. 

STMA 8, item 

, 
item is one of the following values: 

o Resets the FOR ... NEXT and GOSUB ... RETURN stacks. On AOS/VS and UNIX 
systems, this also resets the DO ... WHILE stack. 

1 Resets the FOR ... NEXT stack. 

2 Resets the GOSUB ... RETURN stack. 

3 This resets the SYS(26) IKEY indicator. Use it with STMA 6,5 and the SYS 
function described in this chapter. Normally, you use STMA 8,3 to test whether an 
interrupt occurred without enabling interrupts. 

1-260 Licensed Material-Property of Data General Corporation 093-000351 

I 



I 

Commands, Statements, and Functions in Business BASIC 

continued STMA 

4 This clears, or "flushes," the input buffer. It is useful in heavy key-entry 
environments where operators may key ahead rapidly. If an operator makes an 
error, the input buffer should be flushed before having the operator rekey the 
information; otherwise there is "gllrbage" in your. input buffer. This causes 
everything uP. until the next INPUT statement to be flushed. 

5 This clears, or "flushes," the output buffer during heavy output. (This applies only 
to AOS/VS and UNIX; it is ignored by DG/RDOS.) For example, if you executed 
the following lines of code: 

10 FOR I=l TO 100 
20 PRINT I 
30 NEXT I 

Processing these lines would take less than one second; but since Business BASIC 
tries to store, under certain conditions, up to 512 bytes of information in its 
internal output buffer, output can· be sporadic and might not be synchronized with 
the execution of the statements. Insert an STMA 8,5 at line 25 of the program to 
overcome this problem. 

• 6 (AOSNS and UNIX) Resets the DO ... WHILE stack. 

STMA 9 

This statement examines the following information: account or username, name of the 
current directory, name of the current program, current default output device name, 

I name of the system library directory, name of the system directory, and complete 
account name. 

STMA 9, item, string-variable$ 

I string-variable$ 

item 

I 

I 
093-000351 

A string variable (already dimensioned) that receives the string 
value of item. 

One of the follOwing options: 

o Account, login name, or username; i.e., the name you used to 
log on. This name is truncated to five bytes and the terminal 
type. resides in the sixth byte. If the account name is less than 
five bytes, it fills the remaining bytes with spaces. 

1 Name of the current directory. 

2 Name of the current program, set by a SAVE command. 

3 Current default output device name. 

4 Name of the system library directory. 

5 Name of system directory. 

6 (UNIX only) Complete account name up to 32 characters. This 
does not have the terminal type appended to it. 

Licensed Material-Property of Data General Corporation 1-261 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

STMA 10 

This sets the special characters allowed in crammed strings (i.e., CRM$/UCM$ 
conversions) or sets the default output file. 

STMA 10, item, string-expression$ 

string-expression $ A string literal in quotation marks or a string variable or string 
array element (UNIX only) already dimensioned and aSsigned a 
string value. 

item One of the following options: 

o The CRM$ function crams three. bytes of. a string into two bytes of the resulting 
string. You may cram and uncram a string accurately if the string has any of these 
characters: uppercase A-Z, 0-9, and four special characters: space, comma (,), 
dash (-), and period or decimal point (.). These are the default special characters, 
but you can specify your own CRM$/UCM$ characters with thisSTMA. Your 
string, as either a string literal in quotation marks or a string variable, must contain 
the special characters you want to specify. See the ·CRM$ and UCM$ functions. 

NOTE: If you use STMA 10,0 to change the special characters, the first special 
character in your list (for example the $ in a list of "$+-,") is the one 
that will be used in place of an invalid character. If you use STMA 10,0 
to restore the default special characters, you should· use a space as the 

. first character in the list, so that a space replaces an invalid character. 

1 The value of string-expression becomes the default output file as returned by 
STMA 9,3,string-variable$. This is the same function that is performed by the 
Business BASIC CLI SQUE command. STMA 10,1, string-expression resets 
standard output. 

Examples 
Both these examples define the special characters as a plus (+), minus (-), dollar sign 
($) and equal sign (=). Now these characters can be used instead of the default 
characters in CRM$/UCM$conversions. 

00010 DIM A$(4) 
00020·LET A$="+-$=" 
00030 STMA 10,0,A$ 

or 

00010 STMA 10,0,"+-$=" 

1-262 Licensed Materlal-Propertv of Data General Corporation 093-.000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

STMA 11 and 12 

STMA 11 converts a Julian date to a month/day/year format, and STMA 12 reverses 
this process. 

STMA 11, Julian-date, variable], variable2, variable3 
STMA 12, variable4, month, day, year 

variable] Receives the value for month. 

variable2 Receives the value for day. 

variable3 Receives the value for year. 

Julian-date A numeric expression or variable for the number of days since 
110/68 (January 0, 1968). 

variable4 Receives the value for the Julian date (days since January 0, 
1968) . 

month, day, year Numeric expressions or variables for the date you specify. 

Initialize all variables before using them. 

A Julian date is the number of days from a base year; we use Data General's birth 
year as the base year: January 0, 1968. Any input to STMA 12 that attempts to set a 
date prior to January 0, 1968, returns invalid results. STMA 12 converts a date in the 
form month/day/year to a Julian date. Valid months are 1 through 13, where 13 
returns a date 12 months from the date entered. If you enter a number outside this 
range, the results are unpredictable. You can refer to the previous month by supplying 
a value of 0 .or a negative value for the day argument. A value of 0 for day returns 
the last day of the previous month, a value of -1 returns the next to last day of the 
previous month, and so on. You can determine a date 60 days from a date by adding 
60 to the day argument. Valid years begin at 68. 

By using the CHR$ function, a Julian date can be stored in two bytes of a string 
variable thus saving four bytes in a record being written to a disk file. The Julian date 
is returned in variable. You can get the day of the week by using the MOD function 
with variable; e.g., MOD (variable,7) would return a 0 for Sunday, 1 for Monday, 
and so forth. 

Two-digit year designations are only appropriate for the twentieth century. For the 
year 2000 and beyond, the year variable is 100 and beyond. For the year 2100 and 
beyond, the year variable is 200 and beyond. 

093-000351 Licensed Material-Property of Data General Corporation 1-263 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

Examples 
1. This program will print the result 8/9/83, the date translated from the Julian date 

5700. 

00010 LET MONTH=O 
00020 LET DAY=O 
00030 LET YEAR=O 
00040 LET JULIAN=5700 
00050 STMA 11,JULIAN,MONTH,DAY,YEAR 
00060 PRINT MONTH; "/";DAY; "/";YEAR 

2. Determine the day of the week of a date by converting the date to Julian. MOD 
is then used to determine the remainder after dividing by seven. 

00010 DIM D$[10] ,M$[10] 
00020 LET JULIAN=O 
00030 DATA "SUNDAY", "MONDAY" , "'l'UESDAY" , "WEDNESDAY" , "THURSDAY" , 
"FRIDAY" ,"SATURDAY" 
00040 INPUT "MONTH: ",MONTH 
00050 INPUT "DAY: ",DAY 
00060 INPUT "YEAR: ", YEAR 
00070 RESTORE 00030 
00080 STMA 12,JULIAN,MONTH,DAY,YEAR 
00090 LET D=MOD(JULIAN,7) 
00100 FOR 1=0 TO D 
00110 READ D$ 
00120 NEXT I 
00130 PRINT "THIS IS A ";D$ 
00140 END 

Sample use of this program is shown below. Note that the year 2005, below, 
is input as 1 05 . 

* RUN 
MONTH: 6 
DAY: 11 
YEAR: 84 
THIS IS A MONDAY 

* RUN 
MONTH: 4 
DAY: 12 
YEAR: 105 
THIS IS A TUESDAY 

* RUN 
MONTH: 10 
DAY: 5 
YEAR: 83 
THIS IS A WEDNESDAY 

* 

1-264 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

3. By using 0 as the day with valid month and year numbers, STMA 12 and STMA 
11 return the last day of the previous month. 

00010 LET MO=2 \ DAY=O \ YR=88 \ JULIAN=O 
00020 STMA 12,JULIAN,MO,bAY,YR 
00030 STMA 11,JULIAN,MO,DAY,YR 
00040 PRINT MO;"/";DAY;"/";YR :displays 1/31/88 

To find the last day of the year, use 13 as the month number. In addition, you 
can determine a date 60 days from another date by adding 60 to the DAY 
variable. 

STMA 13 and 14 

STMA 13 and 14 are related; STMA 13 is used to translate a string of characters 
using a table which is set up by the user. STMA 14 is a special case of STMA 13; it 
translates ASCII to EBCDIC, EBCDIC to ASCII, lowercase to uppercase and 
uppercase to lowercase. 

STMA 13, string-variableS, table-stringS 
STMA 14, string-variableS, type 

string-variable $ 

table-stringS 

type 

093-000351 

A string variable that contains the string to be translated and 
receives the translation. Any character in the string variable whose 
code is greater than the length of the table-string translates to the 
last character in the table-string. 

Another string variable or string literal in quotation marks 
containing the table with a maximum of 256 characters. 

A number indicating one of the following available translation 
types: 

o Upper and lowercase alphabetic ASCII characters to uppercase 
alphabetic ASCII characters. 

1 ASCII code to EBCDIC code. 

2 EBCDIC to ASCII. 

3 Uppercase ASCII characters to lowercase. 

4 Characters with eighth bit to space. 

5 Characters without eighth bit to space. 

6 Eighth bit is cleared. 

7 Eighth bit is set. 

8 Characters without eighth bit to space and eighth bit is cleared 
on those where set. 

Licensed Material-Property of Data General Corporation 1-265 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

You must dimension string variables before using them. 

Ina computer, a character exists as a coded number. Each character (including 
uppercase and lowercase letters, control characters, symbols, and even unprintable 
characters) corresponds to one of 256 codes. Different computer systems may use 
different code systems. STMA 13 and 14 translate a string variable from one code 
system to another. . 

Use STMA 14 to translate between ASCII and EBCDIC, and between uppercase and 
lowercase. Use STMA 13 to translate from a table you create. 

When you use STMA 13 to translate an ASCII character string, each ASCII 
character's numeric code represents an offset in the translation table (string) you 
defined. The base (first) character is at offset O. If the code exceeds 255, the last 
character in the translation table is used. 

For example, if the first character in a string variable has a code number 5, STMA 
13 counts five positions (from 0) into the table string and arrives at the sixth character 
position. The character in this position becomes the first character in the translated 
string. Therefore, you count "code+l" positions into the table string to find a 
character. 

Examples 
1. In this example, a character with a code of 2 translates to a 3. A character with a 

code of 5 translates to a 6, and a character with a code of 8 translates to a 9. 

00010 DIM TRANS$(50),TABLE$(256) 
00020 LET TABLE$="1234567890" 
00030 LET TRANS$:"<2><4><B>" 
00040 STMA 13,TRANS$,TABLE$ 
00050 PRINT TRANS$ 

* RUN 
369 

2. In this example, the program allows any ASCII character input to translate to the 
same ASCII character except the ampersand (&) sign (ASCII 38). which 
translates to a comma (ASCII 44). Line 30 fills the table with ASCII values. Line 
50 changes the ampersand to a comma in the table. Line 60 allows for the input 
of data, which is translated on line 70. 

00010 DIM TRANS$(256) ,TABLE$(256) 
00020 FOR J:O TO 255 
00030 LET TABLE$(J+1):CHR$(J) 
00040 NEXT J 
00050 LET TABLE$(39,39)=CHR$(44) 
00060 INPUT USING "",TRANS$ 
00070 STMA 13,TRANS$,TABLE$ 
00080 PRINT TRANS$ 

1-266 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

3. This program reads data from tape in EBCDIC format and converts EBCDIC to 
ASCII. 

00010 OPEN FILE(0,7), "MTO:O" 
00020 DIM TRANS$(80) 
00030 MTDIO O,l,TRANS$,EI 
00040 STMA 14-, TRANS$ , 2 
00050 OPEN FILE(1,2), II OUTPUT II 
00060 PRINT FILE(l),TRANS$ 

STMA 15 

This compares two strings and retrieves a match or no match variable. 

STMA 15, stringl$, string2$, variable 

stringl $ and string2$ String variables, string literals, string expressions, or string array 
elements (UNIX only). 

variable A simple numeric variable that receives either a 1 (match) or 0 
(no-match) value. 

The characters in stringl are compared with those in string2 returning a value of 1 in 
variable if they match, or 0 if they don't match. The strings must be equal in length 
and must match character-by-character for a match to occur. unless you use dash (-). 
asterisk (*) and plus (+) conventions, (only allowed in stringl). 

Here is a summary of the dash. asterisk. and plus conventions: 

A dash (-) matches any number of characters, including none, but does not match a 
decimal point (used also for filename extensions). Here are examples: 

string1 string2 

"-AB-" II CLASSABII Match! 

"-AB-" "FABRST" Match! 

"-AB-" "CABR.ST" No match. (Forgot extension.) 
"_AB_._" "CABRST.UVWXYZ II Match! 

Plus (+) matches any number of characters including a decimal point. Here are 
examples: 

string1 

II +AB+ II 

"+AB+" 

"-AB+" 

"+AB_" 

093-000351 

string2 

"CLASSAB" 

"CLSS.AB" 

"CL.AB" 

"CL.ABSS" 

Match! 

Match! 

No match. 

Match! 

Licensed Matenal-Property of Data General Corporation 1-267 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

Asterisk (*) matches any character which is in the same place as the asterisk. Only 
one character matches per asterisk. Here are examples: 

string1 

"*AB**" 

"*L*B***" 

"*CD**" 

II*CD-" 

II-CD-.*" 

"-CD-.*" 
11*****11 

Example 
00005 LET NUM=O 

string2 

"CABRS" 

"AL BOVE" 

"RSTCDEF" 

"RCDEFGH I J" 

"UVWCDRST.A" 

"UVWCDRS.TA" 

"1234" 

00010 DIM A$(20),B$(20) 
00020 OPEN FILE(O,O), IIMYFILEII 
00030 READ FILE(O),A$ 
00040 OPEN FILE(l,O), IIYOURFILEII 
00050 READ FILE(l),B$ 
00060 STMA 15,A$,B$,NUM 

Match! 

Match! 

No match. 

Match! 

Match! 

No match. 

No match. (string1 greater) 

00070 . IF NUM THEN PRINT "MATCH!II ELSE PRINT IINO MATCH." 

STMA 16 and 17 (DG/RDDS only) 

STMA 16 and 17 are related; STMA 16 detaches a job while STMA 17 attaches a 
job or process to a specified port. 

STMA 16, value 
STMA 17, port, error 

value A number, numeric expression or variable that has a value of 0 or 1 as 
follows: 

o When the current job detaches, the terminal remains inactive until you 
log on again; i.e., the HELLO program is not called. 

1 When the current job detaches. it calls the HELLO program, which 
automatically starts the logon procedure at your terminal. 

port A number, numeric expression, or variable indicating a terminal number 
(use STAT or PORTS to find the ones in use). 

error A numeric variable, already initialized, that receives the error code if an 
error occurs. 

Use STMA 16 in your program to detach your terminal from your job. When you 
make value a 0, you leave the terminal inactive until someone else logs on by pressing 
the escape key. If you want the HELLO program to start the logon procedure 
automatically, make value a 1. 

1-268 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued STMA 

STMA 17 attaches the current job to the terminal indicated by port, leaving the 
current terminal inactive. The current terminal may be logged on again. If the port 
already has a job attached to it or if the port is invalid, STMA 17 returns an error 
code in error. If operating system multiplexor support has been generated, Error 24 
- No available channels is returned if no channel is available to open the 
multiplexor line for the target terminal. This is useful for starting a print job on a 
receive-only terminal that you cannot log on to otherwise. 

Use STMA16 and STMA 17 in your program to detach the program and attach to 
another port. A practical application is to have a large print program detach itself 
from your terminal and attach itself to a receive-only port that has no keyboard and 
cannot be logged on. 

Example 
In this example, line 20 detaches the job and calls HELLO to log on automatically. 
Line 30 attaches the job to port 5. If there is an error, call the STAT program. 

00010 LET ERROR=O 
00020 STMA 16,1 
00030 STMA 17,5,ERROR 
00040 IF ERROR THEN SWAP "STAT" 

STMA 18 (DGIRDOS only) 

This examines. assigns, or frees a reserved file or device; 

STMA 18, filename$, variable 

filename$ 

variable 

093-000351 

The name of a reserved file or device (reserved files are set up 
during BASIC system generation). 

A numeric variable that returns a specific value when you assign a 
specific value to it. The available values are: 

o To examine a device or reserved file's condition. It returns a 0 
in variable if filename is free; otherwise, it returns a number 
greater than 512 that is the base address in the user status 
table of the job that has the file reserved. 

1 To free filename from the job executing the STMA so that 
other jobs may use the file or device. If the call is successful, it 
returns a 1 in variable; otherwise it returns a value greater than 
512-the base address in the user status table of the job that 
has the file reserved. 

2 To assign filename to the job executing the STMA so that no 
one else may access that device or file. If the call is successful, 
it returns a 2 in variable; otherwise it returns a value greater 
than 512-the base address in the user status table of the job 
that has the file reserved. 

Licensed Material-Property of Data General Corporation 1-269 



Commands, Statements, and Functions in Business BASIC 

STMA continued 

If /ilenameis not a valid reserved file or device, STMA 18 returns a value of-1 in 
variable. 

Use· STMA 18 to control access to reserved files and devices. To determine the 
reserved filenames in your system, examine the systemname.SG audit file created 
during BASIC system generation. 

Example 
00010 LET VARIABLE = 0 : Initialbe variable .. 
00020 STMA 18,"$LPT", VARIABLE :Exam~ne the printer. 
00030 IF VARIABLE > 512 THEN GOTO 00010 :If not free, try again . 
00040 PRINT "DEVICE READY" 
00050 LET VARIABLE = 2 
00060 STMA 18, "$LPT", VARIABLE :Assign printer to my job. 
00070 IF VARIABLE = 2 THEN OOTO 00090 :If successful, continue. 

00090 REM -- PRINT ROUTINE 

00300 REM -- END OF PRINT ROUTINE 
00310 LET VARIABLE = 1 

:Error code goes here. 

00320 STMA 18, "$LPT" ,VARIABLE : Free the line printer. 
00330 IF VARIABLE = 1 THEN OOTO 00400 : If successful, OOTO· 

:end of program. 
00340 PRINT "~SERVED FILE NOT FREE; WILL TRY AGAIN" 
00350 GOTO 00310 

STMA 19 

STMA 19 generates system errors. 

STMA 19, error-number 

error-number A positive error-number indicates a Business BASIC error. The 
value is placed in SYS(31) and SYS (7). If the error number is a 
negative DG/RDOS error, the value is placed in SYS(7) only. To 
generate an AOSNS error, subtract 65536 from the negative 
AOS/VS error number and use the result as the error-number 
argument. This action causes SYS(7) andSYS(31) to be set. 

STMA 19 sets SYS(10). 

STMA 19 results in an error interrupt or the execution of an ON ERR trap. This 
provides a convenient way of generating errors from within a Business BASIC program 
that can be handled by a generalized error processing routine. 

1-270 Ucensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMA 

I On AOS/VS and UNIX systems, the RAISE statement can be used for the same 
purposes as STMA 19. 

This program uses STME 4 to return the complete pathname of a file. The error 
results because the file does not exist. 

00010 ON ERR THEN GOTO 00090 
00020 DIM FILENM$[321 ,PATH$[1321 ,ER7$[1321,ER31$[1321 
00030 LET FILENM$="TEST" \ PATH$=FILL$(O) \ ERROR=O 
00040 STME 4,ERROR,FILENM$,PATH$ 
00050 PRINT "The error returned from STME 4. is: "; ERROR 
00060 IF ERROR <>-1 THEN STMA 19,-ERROR-65536 
00070 PRINT "The pathname of the file is: ";PATH$ 
00080 END 
00090 REM ** Error Routine 
00100 LET ER7$=ERM$(SYS(7» \ ER31$=AERM$(SYS(31» 
00110 PRINT SYS(7);ER7$,SYS(31);ER31$ 
00120 END 

* RUN 
The error returned from Sl~ 4 is: 21 
-10 File does not exist -21 File does not exist 

STMA 20 

STMA 20 passes a user library file to BASIC by opening the file and passing its 
channel number. 

STMA 20 [,channel] 

channel An optional numeric expression for the channel number of a file opened 
for random or sequential access and input. 

STMA 20 passes to Business BASIC the channel number of a user program library 
file that was opened for reading. The specified BASIC channel then becomes a 
BASIC reserved channel and appears to be closed, so that it can be used and opened 
again for another file. If the user already had a library channel assigned to his job, it 
is closed before making the specified channel the new library file channel for the job. 
Calling STMA 20 without the channel argument causes the user's current library file 
channel to be closed. 

Example 
00010 OPEN FILE [1, 41 , "MYLIB . PL" : Open the user Ii brary 
00020 STMA 20,1 :Indicate that it is a user library 
00030 SWAP "%ADVENTURE" 
00040 END 

093"000351 Licensed Material-Property of Data General Corporation 1-271 



Commands. Statements. and Functions in Business BASIC 

STMA continued 

STMA 21 

STMA 21 is a helper for the SFORM.SL subroutine. which is a part of the CSM 
utility. It is used in displaying a CSM screen file. 

STMA 21. string$,numeric-expression, numeric-variable}, numeric-variable2 
[,numeric-variable3 (.numeric-variable4) (.numeric-variableS) ] 

STMA 21 corresponds to the variables used in SFORM.SL as follows: 

string A string that is expected to be in the format· of the variable 
SCRN$. 

numeric-expression A numeric expression that is treated as the variable F where F<O 
is interpreted as relative field number (1-n). When F>100. it is 
interpreted as a number representing row and field in the format 
RRFF. When F<100 and F>O. it is interpreted as the field number 
only. 

numeric-variable} A numeric variable that corresponds to the variable XROW. 
Numeric-variable} is optionally considered to be the input variable 
R when F>O and F<100. otherwise numeric-variable} is ignored as 
input. 

numeric-variable2 A numeric variable that is returned as the position of field F in a 
row corresponding to XPOS. Numeric-variable2 is returned as -1 
when the specified field does not exist. 

numeric-variable3 A numeric variable that corresponds to the variable XCOL. 

numeric-variable4 A numeric variable that corresponds to the variable XWID. 

numeric-variableS A numeric variable that corresponds to the variable XFLGS. 

1-272 Licensed Material-Property of Data General Corporation 093-000351 



) 

) 

Commands, Statements, and Functions in Business BASIC 

STMB Statement and Command 

Performs system calls that examine or modify portions of 
memory. 

AOSNS DG/RDOSI UNIX 

Format 
STMB type ,argument (,argunient ... ) 

Arguments 
type 

argument 

What It Does 

A numeric expression or number designating the system call to be 
performed. Each type is discussed below. 

A number, numeric expression, or variable that ·further defines the 
system call. The pleaning of argument depends on the type you 
specify. Each STMB requires one or more arguments. For an 
explanation of the required arguments for each system call, see the 
explanation for that type of STMB in Table 1-4. 

The STMB calls allow you to access and modify portions of memory. When you alter 
memory contents, you must be extremely careful to ensure that you are actually 
modifying the locations you want. 

NOTE: Table 1-4 lists the syntax formats for each STMB. In this table, each string, 
string expression, or substring argument ends with a dollar sign ($); all other 
arguments are numeric. In addition, a string variable or numeric variable 
(numeric-variable) is a value that the STMB returns. A string expression or 
numeric expression (numeric-expression) is a value that you assign before 
executing the STMB; both the string expression and the numeric expression . 
can be either an expression or a variable. Since the arguments are not all 
fully explained in the "How to Use It'~ section, check the statement's syntax 
in Table 1-4 if you have a question about whether an argument requires a 
numeric or string argument. 

How to Use It 
This section includes a description of each STMB, its required arguments, and any 
special considerations for performing a particular system call. 

093-000351 Licensed Material-Property. of Data General Corporation 1-273 



Commands, Statements, and Functions in Business BASIC 

STMB 

Table 1-4 Summary of STMB Syntax Formats 

STMB Data Type 
Parameter of Its Arguments 

item, address 

wordcount, address, destination 

wordcount, address, source 

byteaddress, destination$ 

address, destination$ 

byteaddress, source$ 

address, source$ 

wordsize, address, destination 

job-number, error 

wordsize, address, source 

job-number, error 

job-number, error 

function, address, mask 

(DGIRDOS) 

(AOSIVS and UNIX) 

(DGIRDOS) 

(AOSIVS and UNIX) 

(DGIRDOS) 

(AOSIVS and UNIX) 

continued 

STMB 0, 

STMB 1, 

STMB 2, 

STMB 3, 

STMB 3, 

STMB 4, 

STMB 4, 

STMB 5, 

STMB6, 

STMB 6, 

STMB 7, 

STMB 8, 

STMB 10, 

STMB 11, 

STMB 12, 

STMB 13, 

STMB 14, 

STMB 15, 

STMB 16, 

STMB 18, 

STMB 19, 

STMB 22, 

STMB 23, 

STMB 24, 

STMB 25, 

string$, numeric-variable 1, numeric-variable2, numeric-variable3 

job-number 

1-274 

job-number, error, /lag, string$ 

job-number, error, /lag 

port-number, characteristics 

flag 

address, numeric-expression 

port-number, modem-status 

byte-address, string-variable$ 

address, numeric-variable 

error, accumulator$ [Jlag) 

user-channel, system-channel 

Licensed Material-Property of Data General Corporation 093-000351 



\ 
\ 

) 

Commands, Statements, and Functions in Business BASIC 

continued STMB 

STMB 0, item, address 
Retrieves a word address. Items that are undefined return a value of 65535. 

I DG/RDOS systems, the word address is a single word; on AOS/VS and UNIX systems, 
it is a double word.· 

address A variable that receives the word address of item. 

item A number indicating one of the available items: 

o 

1 

2 

3 

4 

5 

6 

Returns the memory address of a 21-element array. Each element of this array is 
the address returned by the corresponding STMB 0, item, address call. On UNIX 
systems, this call is not supported and always returns 65535. 

(DG/RDOS only) Returns the memory address of the line table address. The line 
table is an array where the first line is port O. Each element in the table 
represents the word address of the start of the User Status Table for a given line. 
Note that detached jobs are not reflected in this array. 

(DG/RDOS only) Returns the memory address of· the job table address. The job 
table is an array. Each element in the table represents the word address of the 
start of the User Status Table for a given job number. Note that the number of 
entries corresponds with the number of jobs specified when Business BASIC was 
executed; i.e., an address is reserved in the User Status Table even if the job is 
not running. 

(DG/RDOS only) Returns the memory address of a word indicating the highest 
multiplexor line number available to Business BASIC. This number is two more 
than the number of multiplexor lines generated into Business BASIC. 

Reserved. 

Reserved. 

For DG/RDOS: 

Returns the memory address of the channel table. The channel table is an array 
of n elements, where n is the number of channels specified in your BSG. Each 
value of n corresponds to an RDOS channel number. The value contained in an 
array element is either: 

• The User Status Table address of the user who has a file opened on that 
channel. 

• The Business BASIC system address, if Business BASIC has opened a file on 
that channel. 

093-000351 Licensed Material-Property of Data General Corporation 1-275 



Commands. Statements. and Functions in Business BASIC 

STMB continued 

For AOSNS: 

Returns the memory address of a word containing the address of the user channel 
table. The channel table contains four words for each of the 150 user channels 
that can be opened. The first four words apply to user channel 0; the next four 
words apply to user channel 1; etc. For each channel number. the meanings of·· 
the words are: 

• System channel number 

• Mode of open 

• current file position-high 

• current file position-low 

This information corresponds to the first two columns of information returned by 
the utility program SCHANS. 

For UNIX: . 

On UNIX systems. this feature is not supported and always returns 65535. 

7 (DO/RDOS only) Returns the memory address of the reserVed file table. This 
table contains the reserved filenames generated by the options chosen in the BSG 
program (for example. SLPT) and any additional reserved filenames specified in 
the BSO questions. 

8 Returns the memory address of a word containing the maximum amount of 
memory available for the current job. On UNIX systems. this call is not Supported 
and always returns 65535. 

9 Returns the memory address of a two-element array that represents the global 
switches on Business BASIC. On UNIX systems. this call is not supported and 
always returns 65535. 

10 (DO/RDOS only) Returns the memory address of a word containing the number 
of jobs specified when Business BASIC was executed. 

11 Reserved. 

12 (DO/RDOS only) Returns the memory address of the lock buffer area. which is an 
array of 11 by n elements. where n is the number of locks specified·in the BSO. 
Words in each lock buffer have the following meanings: 

1 Reserved 

2 Reserved 

3 User job number 

4 Lock number assigned by user 

5 Filename (10 characters) 

6 Filename (10 characters) 

1-276 Licensed Material-Property of Data General Corporation 093.,;.000351 

I 



Commands, Statements, and Functions in Business BASIC 

continued STMB 

7 Filename (10 characters) 

8 Filename (10 characters) 

9 Filename (10 characters) 

10 Starting sector number 

11 Ending sector number 

13 Reserved. 

14 (DG/RDOS only) Returns the memory address of a word that indicates the length 
in blocks of one segment of the push file (BASIC.PS). This number is determined 
by the following formula: 

segment length = (maximum-program-size + 1) • (number-of-jobs) 

where the maximum program size is determined upon execution with the 1M 
switch and is allocated in 512-byte blocks, and the number of jobs is specified at 
execution with the IJ switch. 

15 Returns the memory address of a double-word that is used by SYS(29). On UNIX 
systems, this feature is not supported and always returns 65535. 

16 Reserved. 

17 Reserved. 

18 Reserved. 

19 Returns the memory address of a word containing the address of the current 
user's User Status Table. On UNIX systems, this feature is not supported and 
always returns 65535. 

20 Reserved. 

21 Returns the address of the physical channel number for the push file (BASIC. PS) . 

STMB 1, wordcount, address, destination 
Copies the contents of memory starting at address (word address) for the number of 
words specified in wordcount to the variable or array destination. 

STMB 2, wordcount, address, source 
Copies from source into memory the number of words specified in wordcount. The 
words are stored in memory starting at address (word address). 

STMB 3, byteaddress, destinationS (DGIRDOS only) 

Copies bytes from memory into the string variable or substring destination$ until 
destination$ is full. The copy starts at the byteaddress (word address • 2) position in 
memory. 

093-000351 Licensed Material-Property of Data General Corporation 1-277 



Commands. Statements. and Functions in Business BASIC 

STMB continued 

STMB 3, address, destination$. (AOS/VS and UNIX) 

Copies bytes from memory beginning at address into the string or substring variable 
destination$ until destination$ is full. In AOS. a byte address (word address • 2) is 
supplied for the address argument. In AOS/VS. a word address is supplied and 
converted to a byte. address by Business BASIC. 

STMB 4, byteaddress, source$ (DG/RDOS only) 

Copies the entire contents of the string variable or su1>string source$ into memory 
starting at byteaddress (word address • 2).· . 

STMB 4, address, source$ (AOS/VS and UNIX) 

Copies the entire contents of a string or substring variable source$ into memory 
starting at the address specified. In AOS. a byte address (word address • 2) is 
supplied for the address argument. In AOSNS. a word address is supplied and 
converted to a byte address by Business BASIC. 

STMB 5, wordsize, address, destination (AOS/vS and UNIX) 

Copies the contents of memory into the destination variable. starting at address (word 
address) for the number of words specified in wordsize. The wordsize argument must 
be 1 (for a narrow word) or2 (for a double word). If any other value is used, Error 
37 - User routine occurs. Use STMB 5 when you want to store a double word 
value in the destination variable. 

STMB 6, job-number, error (DG/RDOS only) 

Attaches the specified detached job to the current terminal. returning any error in the 
variable error. Note also that the job which was attached to the current terminal (and 
which issued the STMB 6) becomes detached. Errors you can receive are: 

51 Job not logged on 

70 Invalid job number 

71 Job already attached 

STMB 6, wordsize, address, source (AOS/vS and UNIX) 

Copies from the variable source into memory the number of words specified in 
wordsize. starting at the word address specified. The wordsize argument must be 1 (for 
a narrow word) or 2 (for a double word). If any other value is used. Error 37 -
User routine results. Use STMB 6 to retrieve a double word value from a source 
variable. 

1-278 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands. Statements. and Functions in Business BASIC 

continued STMB 

STMB 7, job-number, error (DGIRDOS. only) 

Forces the specified job to execute a BYE command. returning any error in the 
variable error. Errors you can receive are: 

51 Job .not logged Qn 

70 Invalid job number 

78 MSG in progress 

STMB 8, job-number, error (DGIRDOS only) 

Resets the ON IKEY condition for the specified job. clears the "ignore IKEY" flag. 
and then simulates an interrupt. stopping the program. Errors you can receive are: 

51 Job not logged on 

70 Invalid job number 

STMB 9 
Reserved. 

STMB 10, junction, address, mask 
If function = 1. STMB 10 sets the bits in the word at the specified word address 
according to the bits set in the variable mask. If function = O. STMB 10 clears the 
bits in the word at the specified address according to the bits set in the variable mask. 

STMB 11, stringS, variable1, variable2, variable3 
Scans the contents of string$. puts the number of 1 bits in variable 1. and puts the 
largest consecutive number of 0 bits in variable2. Variable3 is required and is set to O. 
string may be a substring. but it must be word-aligned and of even byte length-that 
is. the subscripts of string$[x,y] must be such that x is odd and y is even. 

STMB 12, job-number (DGIRDOS only) 

Scans the job table for the first available job and executes HELLO for that job. 
Business BASIC returns the number of the job in· the variable job-number. If no 
available job exists, it returns -1 in job-number. Note that when this call finds an 
available job, it starts the job as a detached job. The HELLO program waits 15 
seconds for input and if none is received, it does a BYE for that job. 

STMB 13, job-number, error, flag, stringS (DGIRDOS only) 

Places the contents of string$ into the input buffer for the specified job. Business 
BASIC sets the alternate IKEY or unpend flag value for job-number to the value of 
/lag (0 or 1). and unpends the job. Errors you can receive are: 

093-000351 Ucensed Material-Property of Data General Corporation 1-279 



Commands, Statements, and Functions in Business BASIC 

STMB 

51 Job not logged on 

70 Invalid job number 

72 Job is not waiting on input 

continued 

If you specify any job that is running (other than your own job), you get error = 0 
(successful), unless input for that job is currently being processed, in which case you 
get Error 72 - Job is not waiting on input. If the job to which you send a 
string is waiting on an INPUT statement, but you send it an inappropriate string, it 
displays a prompt for more input (\7). If the job to which you send a string is at the 
asterisk prompt, but you send it an inappropriate command, you receive the error 
message Error 2 - statement of command syntax is invalid. 

If operating system multiplexor support is chosen, using STMB 13 in a tight loop to 
send commands to a job can cause a system hang, due to timing problems associated 
With the . OPEN and . CLOSE system calls. To avoid this problem, you can add a 
DELAY 0 statement after each STMB 13. 

You can use STMB 13 With STMB 12 to start up a job, if one is available. Use 
STMB 13 to supply HELLO with answers to the account name, password, and 
directory/program questions. 

STMB 14, job-number, error, flag (DG/RDOS only) 

Sets the alternate IKEY or unpend flag value for job-number to the value of flag (0 or 
1), and the job acts as if an interrupt occurred. Errors you can receive are: 

51 Job not logged on 

70 Invalid job number 

If you specify any job that is running (other than your own job), regardless of whether 
it is running a program or sitting at the Business BASIC prompt, you get error = 0 
(successful) . 

STMB 15, port-number, characteristics (DG/RDOS only) 

Sets the multiplexor line to the specified line characteristics. Port number 0 
corresponds to multiplexor line 2. If characteristics is set to -1, then Business BASIC 
returns the value to which the line characteristics was last set. For invalid lines, 
characteristics is set to -1. The line characteristics word contains the following: 

Bits 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
o 1 2 3 4 5 678 9 0 1 2 3 4 5 

Content - x x x x xC C C C S SOD P P x (ALM,ULM) 

Content - x x x x C C C C SSP POD x x (ASLM, USAM) 

1-280 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued 

where: 

CCCC = Clock number 

Baud rates corresponding to clock numbers are: 

ALM: depend on how the board is jumpered 

ULM: 
o 0 4 
1 19200 5 
2 50 6 
3 75 7 

ASLM, USAM: 

134.5 
200 
600 
2400 

o 50 4 150 
1 75 5 300 
2 110 6 600 
3 134.5 7 1200 

8 1800 
9 2000 
10 2400 
11 3600 

SS= Number of stop bits 

ALM, ULM: 
00 = 1 stop bit 
01 = 2 stop bits 

ASLM, USAM: 
01 = 1 stop bit 
10 = 1 stop bit 
11 = 2 stop bits 

DD= Number of data bits 

00 = 5 data bits 
01 = 6 data bits 
10 = 7 data bits 
11 = 8 data bits 

PP= Parity type 

ALM, ULM:OO = none 
01 = odd 
10 = even 
11 = mark 

8 9600 
9 4800 
10 1800 
11 1200 

12 4800 
13 7200 
14 9600 
15 19200 

12 2400 
13 300 
14 150 
15 110 

093-000351 Licensed Material-Property of Data General Corporation 

STMB 

1-281 



Commands, Statements, and Functions in Business BASIC 

STMB 

ASLM, USAM: 
00 = odd, disabled 
01 = odd, enabled 
10 = even, disabled 
11 = even, enabled 

continued 

x = Meaningless. The interpreter will disregard these bits and will always return them 
to the user set to O. 

STMB 16, flag 

Sets (flag = 1) or clears (flag = 0) the run-only flag in the current program. If set, 
this flag prevents a file from being listed or modified by non-AA accounts. For 
information about run-only programs, see your Business BASIC user's guide. 

STMB 17 

On AOS/VS and UNIX systems, performs an immediate BYE to log off the current 
job, completes system housekeeping, and returns the user to his previous level. 

On DG/RDOS systems, executes the .RTN system call, which shuts down Business 
BASIC. If you are using Business BASIC multiplexor support, STMB 17 also shuts 
down the multiplexor. 

STMB 18, address. value (DGIRDOS only) 

Returns in value the word stored at address in the operating system's address space. 

STMB 19, port-number. modem-status (DGIRDOS only) 

Sets the multiplexor line to the modem status. Port number 2 corresponds to 
multiplexor line O. If status is set to -1, then Business BASIC returns the value to 
which the modem status was last set. For invalid lines, status is set to -1. 

Note that the interpreter manipulates Request To Send and Data Terminal Ready 
when input and output are performed. Thus, you cannot write a Business BASIC 
program to drive a half-duplex device. STMB 19 is used to reinitialize modem lines 
after the abnormal termination of a job logged on the line. 

1-282 Licensed Material-Property of Data General Corporation 093-000351 



) 

) 

Commands, Statements, and Functions in Business BASIC 

continued STMB 

The modem status word contains the following: 

Bb 0000000000111111 
o 1 2 3 4 5 6 7 8 9 0 1 23 4 5 

Content - x x x x x x x x x x x x x x R D (ALM, ULM) 

Content - x x x x x x x x xx R x x x D x (ASLM, USAM) 

where: 

R = Request To Send 

D = Data Terminal Ready 

x = Meaningless. The interpreter will disregard these bits and will always return them 
to the user set to O. 

STMB 2Q 

Performs an immediate BYE to log off the current job, completes system 
housekeeping, and returns to the log-on banner. 

STMB 21 

Reserved. 

STMB 22, byte-address, string-variable$ 

Returns the byte address of the string variable. 

STMB 23, address, variable 
Returns the word address of the numeric variable in address. 

STMB 24, error, accumulator$ [Jlag) 

(AOSIVS and UNIX) 

(AOSIVS and UNIX) 

(AOSIVS only) 

Performs a system call using the information in the accumulator string. The optional 
flag argument consists of bit flags modifying the other arguments. The value returned 
in error is a system error code or zero. 

093-000351 Ucensed Material-Property of Data General Corporation 1-283 



Commands, Statements, and Functions in Business BASIC 

STMB continued 

NOTE: Do not use STMB 24 to make system calls that can be made with an existing 
Business BASIC statement, utility, or command. Particularly avoid the use of 
STMB 24 system calls to manipulate files that are already being manipulated 
through Business BASIC statements. Mixing STMB 24 with Business BASIC 
statements can cause unpredictable, and probably undesirable, results. 

For example, if you use the OPEN FILE statement to open a file, do not 
close the file by using STMB 24 to issue a ?CLOSE call. You should instead 
use the CLOSE FILE statement. Similarly, use the POSITION FILE 
statement, not STMB 24, to issue a ?SPOS call to position a file pointer. In 
addition, when using terminal type 8, do not use STMB 24 to make a 
?SDLM call to change the delimiter table. Terminal type 8 sets the delimiter 
table for its own purposes. 

On AOS systems, the accumulator (AC) string contents are: 

Bytes 

1-2 

3-4 

5-6 

7-8 

9-10 

Contents 

Contents of ACO for system call. 

Contents of AC 1 for system call. 

Contents of AC2 for system call. 

System call number (system dependent). 

Channel number for I/O calls (this may duplicate the contents of 
an accumulator). 

On AOS/VS systems, the accumulator CAe) string contents are: 

Bytes 

1-4 

5-8 

9-12 

13-14 

15-16 

1-284 

Contents 

Contents of ACO for system call. 

Contents of AC1 for system call. 

Contents of AC2 for system call. 

System call number. 

Channel number for 110 calls. 

Licensed Material-Property of Data General Corporation 093-000351 

• 



) 

\ 
; 

Commands. Statements. and Functions in Business BASIC 

continued STMB 

You can use only Business BASIC channel numbers. not system channel numbers. If 
you need an address for an accumulator. you can use STMB 22 or STMB23 to 
obtain it. When 110 is being performed. the flag argument specifies the Business 
BASIC channel. Depending on the flag. Business BASIC maps this number into the 
appropriate system channel and places the value into the proper accumulator for the 
call. The bit values for flag are as follows: 

Bit Mask Meaning 

15 1 110 call (convert channel and put in AC2). 

14 2 OPEN call returning channel number that must be 
equated to a Business BASIC channel. 

13 4 Reserved; must be O. 

12 8 Convert channel into ACO. 

11 16 Convert channel into AC 1. 

• On AOS/VS systems. when you are using STMB 24 with STMB 22 and STMB 23. 
remember that addresses are 4 bytes long in a 32-bit environment. To alter an 
address. use the SHFT function. Suppose. for example. you have used STMB 22 to 
retrieve the byte address of a string. but the system call requires a word address. You 
should use the following command to shift the address to the right: 
SHFT(byte-address.-1). To change a word address to a byte address. use this 
command: SHFT(word-address .1). . 

STMB 25, user-channel, system-channel 
Maps the user channel to the system channel. making the system channel accessible to 

I the user. On AOS/VS and DG/RDOS systems, this is used to access the push file, 
BASIC.PS. in utilities like RNAM. VAR. and PD. A CLOSE on a user channel 
opened with STMB 25 does not close the physical channel but frees the user channel. 

093-000351 Licensed Material-Property of Data General Corporation 1-285 



Commands, Statements, and Functions in Business BASIC 

STMC Statement and Command 

Performs operating system calls. 

AOSIVS DGIRDOS UNIX 

Format 
STMC type ,error, argument [,argument ... ] 

Arguments 
type 

error 

argument 

What It Does 

A numeric expression or number designating the system call to be 
performed. Each type is discussed below. 

A variable that receives the error returned by the operating 
system. A positive code is returned, so you must negate it to find 
it in the BASIC.ER file. A -1 is returned if the call is successful. 
On UNIX systems, if -60 is returned in the error variable, use 
SYS(42) to retrieve the AOS/VS system error code. If SYS(42) is 
equal to -276, use SYS(43) to determine the error that occurred 
during the STMC. Note that the SYS functions will be set only if 
an undefined error occurs (Le .. the error variable is set to -60). 

A number, numeric expression, or variable that further defines the 
system call. The meaning of argument depends on the type you 
specify. Each STMC requires one or more arguments. For an 
explanation of the required arguments for each system call, see the 
explanation for that type of STMC in Table 1-5. 

The STMC calls allow you to perform operating system calls from within Business 
BASIC. Refer to your operating system reference manual for descriptions of the 
operating system calls, the arguments needed, and the errors returned. 

Business BASIC checks for compatibility of variable types; it does not check to see if 
the variables you use to receive values are large enough. Therefore, if a 36-byte string 
is required and you supply only a 20-byte string, the 16 bytes following the string will 
overwrite part of your program. 

When you use a string literal as an argument, the literal must include a terminating 
null. Without the null, the operating system will read beyond the end of the literal and 
produce erroneous results. In order to pass the literal "ABC," you must write the 
literal as .. ABC<O>" . 

When you use a string variable as an argument to receive a value, fill the variable with 
nulls before using the STMC. 

1-286 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMC 

Table 1-5 Summary of STMC Syntax Formats (Continues) 

STMC Data Type 
Parameter of Its Arguments 

STMC 0, error, jilename$, sectors 

STMC 1, error, directory-name$ 

STMC 2, error, attributes, channel 

STMC 3, error, attributes, channel 

STMC 4, error, numeric-array, channel 

STMC5, error, partition-name$, sectors 

STMC 6, error, /ilename$ 

STMC 7, error, /ilename$ 

STMC8, error,/ilename$ 

STMC 9. error. directory-name$ 

STMC 10, error, oldname$, newname$ 

STMC 11, error, code 

STMC 12, error, program-name$, AClvalue, AC2value 

STMC13, error; program-name$, AClvalue, AC2value 

STMC 14, error, flag 

STMC 15, error, input-console$ 

STMC 16, error, output-console$ 

STMC 17, error, directory-name$ 

STMC18, error, attributes, channel 

STMC 19. error. system$ 

STMC 20. error,devicename$, /lag 

STMC 21, error, linkname$, resolution-name$ 

STMC 22. error, string$ (AOSIVS and UNIX) 

I STMC 22, error, master-directory$ (DGIRDOS) 

STMC 23, error 

STMC24, error 

STMC2S. error, oldname$, newname$ 

STMC 26 error 

) STMC27, error, devicename$ 

093-000351 Ucensed Material-Property of Data General Corporation 1-287 



Commands, Statements, and Functions in Business BASIC 

STMC continued 

STMC 
Parameter 

STMC 28, 

STMC 29, 

STMC 30, 

STMC 31, 

STMC 32, 

STMC 33, 

STMC 34; 

STMC 35, 

STMC 36, 

STMC 37, 

STMC 38, 

STMC 39, 

STMC 40, 

STMC 41, 

STMC 42, 

STMC 43, 

STMC 44, 

STMC 45, 

STMC 46, 

STMC 47, 

STMC 48, 

STMC 49 

STMC 50, 

STMC 51, 

STMC 52, 

STMC 53, 

STMC 54, 

1-288 

Table 1-5 Summary of STMC Syntax Formats (Concluded) 

Data Type 
of Its Arguments 

error 

error, day, month, year-1968 

error, devicename$ 

error, devicename$ 

error, devicename$ 

error, filenameS, buffer 

error, seconds, minutes, hours 

error, linkname$ 

error, channel 

error, frequency 

error, filename$, mask, channel 

error, filenameS, mask, channel 

error, filenameS, mask, channel 

error, filenameS, mask, channel 

error, filenameS, mask, channel 

error 

error, filenameS, mask, channel 

error, filenameS, sectors, date 

error, filenameS, date 

error, filenameS, date 

error, ACO 

Not used 

error, stringS, channel 

error, filenameS, buffer 

error, filenameS, sectors 

error, channel 

error,/ilename$, month, day, year 

Licensed Material-Property of Data General Corporation 093-000351 



\ 

) 

Commands, Statements, and Functions in Business BASIC 

continued STMC 

Arguments that refer to channel numbers may refer to absolute operating system 
channels or to program-relative Business BASIC channels. A negative channel number 
refers to the operating system channel; e,g., -6 refers to operating system channel 6. 
A positive channel number refers to a file opened in the current Business BASIC 
program on this relative channel; e.g., 2 refers to the file opened in the current 
program on channel 2. Channel numbers for STMC calls range from -255 to 15. 
Operating system channel 0 is a special case that is passed as -0 (32768). You should 
use absolute channel numbers only to refer to Business BASIC channel numbers. 

Business BASIC leaves a user and/or system channel allocated when an STMC 
attempts to open a file and fails. Therefore, if an error occurs, you should close the 
channel by using STMC S3 if the channel is negative (Le., a system channel) or by 
using CLOSE FILE (channel) if the channel is positive (i.e., a Business BASIC user 
channel). 

DG/RDOS Systems 

When you access a file through the standard Business BASIC statements (OPEN, 
READ, PRINT, CLOSE, etc.), the interpreter inserts directory specifiers before the 
user-specified filename to indicate the user's current directory, which is stored in the 
User Status Table, or the library directory (e.g., SLIB). This is not necessarily the 
same as the system directory, which is where DG/RDOS looks for files that are being 
created or opened with STMC calls when no directory is specified. Thus, a directory 
should always be specified explicitly when STMC statements are used. 

AOS/VS and UNIX Systems 

When you access a file through the standard Business BASIC statements, Business 
BASIC uses the operating system's search path mechanism. . 

You can explicitly supply directory specifiers only if a special bit in the User Status 
Table is set; otherwise, any filename containing a colon is rejected unless it is in the 
Reserved Filename table. STMC statements and reserved filenames are not handled in 
this manner; if you specify no directory, no directory is specified by the interpreter. 
Thus. the operating system will look for the file in the current system directory, unless 
it is a file that is treated specially by the operating system. Since it is possible to 
change the current system directory at runtime (using !SDIR, DIR, or STMC 9), links 
to reserved files and other special files which are accessed using STMC calls must be 
handled very carefully. 

NOTE: Table 1-5 lists the syntax formats for each STMC. In this table, each string, 
string expression, or substring argument ends with a dollar sign ($); all other 
arguments are numeric. In addition, a string variable or numeric variable is a 
value that the STMC returns. A string expression or numeric expression is a 
value that you assign before executing the STMC; they can be either an 
expression or a variable. Not all the arguments are fully explained in the 
"How To Use It" section, so check the statement's syntax in Table 1-5 if 
you have a question about an argument. 

How to Use It 
This section includes a description of each STMC, its required arguments, and any 
special considerations for performing a particular system call. 

093-000351 Licensed Material-Property of Data General Corporation 1-289 



Commands.Stat~ments. and Functions in Business BASIC 

STMC continued 

STMC 0, error,filename$, sectors 
For AOS/VS systems. ?CREATE creates a contiguous file with all locations initialized 
to O. The maximum value of sectors is 32767. 

For DG/RDOS systems •. CCONT creates a contiguous file with all locations initialized 
to O. 

For UNIX systems. Business BASIC creates a file and initializes locations to make the 
file the desired length. 

STMC 1, error, directory-nameS 
For AOSNS systems. ?CREATE creates a directory name 

For DG/RDOS systems •. CDIR creates a directory name. 

For UNIX systems. Business BASIC creates a subdirectory. 

STMC 2, error, attributes, channel (DGIRDOS only) 

.CHATR changes the attributes for the file opened on channel. 

STMC 3, error, attributes. channel (DGIRDOS only) 

.CHLAT changes the link attributes of the link file opened on channel. 

STMC 4, error, numeric-array, channel (DG/RDOS only) • 

.CHSTS returns the 36-byte status table for the file opened on channel. 

STMC S, error, partition-nameS, sectors 
For AOS/VS, ?CREATE creates a control point directory. 

For DG/RDOS, . CPART creates a subpartition. 

For UNIX, Business BASIC creates a subdirectory and ignores the sectors argument. 

STMC 6, error, filenameS 
For AOS/VS systems, ?CREATE creates a UDF-type file with the user's default ACL, 
an element size of four, and the default number of index levels. 

For DG/RDOS systems, .CRAND creates a random file. 

For UNIX systems, Business BASIC creates a data file with the user's access 
privileges. 

1-290 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued STMC 

STMC7, error, filename$ 
For AOSNS systems, ?CREATE creates aUDF-type file with the user's default ACL, 
an element size of four, and the default number of index levels. 

For DGlRDOS systems, .CREAT creates a sequential file. 

For UNIX systems, Business BASIC creates a data file with the user's access 
privileges. 

STMC 8, error, filename$ 
For AOSNS systems, ?DELETE deletes a file. If the file is a link entry, the 
resolution file is deleted. 

For DGlRDOS systems, .DELET deletes a file. If the file is a link entry, the 
resolution file is deleted. 

• For UNIX systems, Business BASIC deletes a file. If the file is a Business BASIC link 
entry, the resolution file is deleted. 

STMC 9, error, directory-name$ 
For AOS/VS systems, ?DIR changes the working directory to directory-name. Read 
and execute access to directory-name are required. 

For DG/RDOS systems, .DIR changes the current system directory. This does not 
change the default user directory, whichis stored in the User Status Table. 

For UNIX systems, Business BASIC changes the working directory. Search permission 
is required for all components of the destination directory's pathname. 

STMC 10, error, oldname$, newname$ (DGIRDOS only) 

.EQIV renames a device. 

STMC 11, error, code 

For AOSNS systems, ?RETURN terminates Business BASIC, passing the error code 
to the previous . level. 

For DG/RDOS systems, .ERTN performs the same function. 

For UNIX systems, Business BASIC returns control to the calling shell and passes the 
error code to the previous level. 

093-000351 Ucensed Material-Property of Data General Corporation 1-291 



Commands, Statements, and Functions in Business BASIC 

STMC continued 

STMC 12, error, program-name$, AClvalue, AC2value 
For AOS/VS systems, ?PROCESS creates a son process and blocks the current 
Business BASIC process until the son terminates. Values for AC1 and AC2 must be 
given but they are ignored. (Zero is the recommended value for AC1 and AC2.) To 
use this call, you need the ability to create a son process. 

For OG/ROOS systems, .EXBG puts a checkpoint in the background and executes the 
program you specify. Business BASIC itself cannot have checkpoints. 

For UNIX systems, Business BASIC creates a child process and blocks the Business 
BASIC process. AClvalue and AC2value are not required and are ignored. 

STMC 13, error, program-name$, AClvalue, AC2value 
For AOS/VS systems, ?PROCESS creates a son process without blocking the current 
Business BASIC process until the son terminates. Values for AC1 and AC2 must be 
given but they are ignored. To use this call, you need the ability to create an 
unblocked son process. 

For OG/ROOS systems, .EXFG executes program-name in the foreground partition. 
An AC2 value must be given but is ignored. 

For UNIX systems, Business BASIC creates a child process without blocking the 
Business BASIC process. AClvalue and AC2value are not required and are ignored. 

STMC 14, error, flag 
For AOS/VS systems, ?PSTAT determines whether a process has sons. A 1 is 
returned in flag if a son process is found; otherwise, 0 is returned. 

For OG/ROOS systems, .FGND determines whether a foreground program is already 
running. A 1 is returned in flag if a foreground program is found; otherwise, 0 is 
returned. 

For UNIX systems, Business BASIC always returns 0 because a parent process doesn't 
know whether it has children or not. 

STMC 15, error, input-console$ 
For AOS/VS and UNIX systems, this returns "@INPUT." 

For OG/ROOS systems, .GCIN returns the name of the console input device for this 
ground. 

STMC 16, error, output-console$ 
For AOS/VS and UNIX systems, this returns "@OUTPUT." 

1-292 Licensed Material-Property of Data General Corporation 093-000351 



\ 

) 

Commands, Statements, and Functions in Business BASIC 

continued STMC 

For DG/RDOS systems, .GCOUT returns the name of the console output device for 
this ground. 

STMC 17, error, directory-name$ 
For AOS/VSsystems, ?GNAME returns the pathname of the current directory. 

For DG/RDOS systems, .GDIR returns the name of the current Business BASIC 
system directory. 

For UNIX systems, Business BASIC returns the pathname of the current working 
directory. 

STMC 18, error, attributes, channel (DGIRDOS only) 

.GTATR returns the attributes of the file opened on channel. 

STMC 19, error, system$ (DGIRDOS only) 

.GSYS returns the current operating system's name. 

STMC 20, error, devicename$, flag (DGIRDOS only) 

.INIT initializes a device into Business BASIC. flag = -1 specifies full initialization; 
flag <> -1 specifies partial initialization. 

STMC 21, error, linkname$, resolution-name$ 
For AOS/VS systems, ?CREATE creates a link entry. 

For DG/RDOS systems, .LINK creates a link entry. 

I For UNIX systems, Business BASIC creates a link entry. This link file is known only 
to Business BASIC as a link; it does not appear to be a link file to your operating 
system. For more information on Business BASIC link files, see Using Business BASIC 
on DGIUX and INTERACTIVE UNIX Systems. 

STMC 22, error, string$ (AOSIVS and UNIX) 

Causes stringS to have a length of zero. 

STMC 22, error, master-directory$ (DGIRDOS only) 

. MD IR returns the name of the current master directory. 

STMC 23, error (DG/RDOS only) 

.0 D IS disables console keyboard interrupts. 

093-000351 Licensed Material-Property of Data General Corporation 1-293 



CommandS. Statements. and Functions in Business BASIC 

STMC 

STMC24, error 
.OEBL enables console keyboard interrupts. 

STMC 25. erT:or, oldname$, newname$ 
For AOSNS systems. ?RENAME renames a file. 

For DG/RDOS systems •• RENAM renames a file. 

For UNIX systems. Business BASIC renames a file. 

STMC 26, error 
Reserved. 

STMC 27, error, devicename$. 
.RLSE releases a previously initialized device. 

STMC 28, error 

continued 

(DGIRDOS only) 

(DGIRDOS only) 

(DGIRDOS only) 

For AOSNS systems. ?RETURN returns control to the program at the previous push 
level. No error code or message is returned to the previous level. 

For DG/RDOS systems .•• RTN returns control to the program at the previous push 
level. 

For UNIX systems. Business BASIC returns control to the previous level. 

STMC 29, error, day, month, year-l 968 

.SDAY sets the current system date. 

STMC 30, error, devicename$ 
.SPDAdisables spooling for a device. 

STMC 31, error, devicename$ 
.SPEA enables spooling for a device. 

STMC 32, error, devicename$ 
.SPKL kills spooling for a device. 

1-294 Licensed Material-Property of Data General Corporation 

(DGIRDOS only) 

(DGIRDOS·only) 

(DGIRDOS only) 

(DGIRDOS only) 

093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STMC 

STMC 33, error, filename$, buffer (DG/RDOS only) 

.STAT returns the 36-byte status of the file you specify. 

STMC 34, error, seconds, minutes, hours 

. STOD sets the time of day. 

(DG/RDOS only) 

STMC 35, error, linkname$ 

For AOS/VS systems, ?GLINK removes linkname$ if it is a link entry. 

For DO/RDOS systems, . ULNK removes a link entry. 

I For UNIX systems, Business BASIC determines if the file is a Business BASIC link 
file and, if it is, deletes the link file, not the resolution file. It also deletes the 
associated shadow file. For more information on Business BASIC link files and 
shadow files, see Using Business BASIC on DG/UX and INTERACTNE UNIX Systems. 

STMC 36, error, channel 

For AOS/VS systems, ?ESFF updates the disk-resident copy of the file open on 
channel by flushing any modifed shared pages of the file to disk. 

For DO/RDOS systems, .UPDAT updates the disk-resident copy of the file open on 
channel. 

For UNIX systems, Business BASIC flushes any modified shared pages to disk. 

STMC 37, error, frequency 
For AOS/VS systems, ?GHRZ returns the frequency of the system's real-time clock. 

For DO/RDOS systems, .GHRZ returns the frequency of the system's real-time clock. 

I For UNIX systems, returns the system clock frequency. 

STMC 38, error, filename$, mask, channel (AOS/VS and DG/RDOS) 

For AOS/VS systems. ?GOPEN opens a file for direct magnetic tape 110. You must 
include the mask in the STMC 38 format; however, the system ignores it. 

For DG/RDOS systems •. MTOPD opens a file for direct magnetic tape 110. 

093-000351 Licensed Material-Property of Data General Corporation 1-295 



Commands, Statements, and Functions in Business BASIC 

STMC continued 

STMC 39, error, filenameS, mask, channel 

For AOS/VS systems, ?OPEN opens a file exclusively on channel for appending and 
for input and output. The file must exist. 

For DO/RDOS systems,.APPEND opens a file for appending. 

For UNIX systems, Business BASIC opens a file exclusively. 

On UNIX and AOSNS systems, you must include the mask in the STMC 39 format; 
however, the system ignores it. 

STMC 40, error, filenameS, mask, channel 
For AOSNS systems, ?OPEN opens a file exclusively on channel for input and 
output. The file must exist. 

For DO/RDOS systems, .EOPEN opens a: file for exclusive use. 

For UNIX systems, Business BASIC opens a file exclusively. 

On UNIX and AOSNS systems, you must include the mask in the STMC 40 format; 
however, the system ignores it. 

STMC 41, error, filenameS, mask, channel 
For AOSNS systems, ?OPEN opens a file for input only. The file must exist. 

For DO/RDOS systems, .ROPEN opens a file for read-only access. 

For UNIX systems, Business BASIC opens a file in read-only mode. 

On UNIX and AOS/VS systems, you must include the mask in the STMC 41 format; 
however, the system ignores it. 

STMC 42, error, filenameS, mask, channel 
For AOS/VS systems, ?OPEN opens a file for input and output. The file must exist. 

For DO/RDOS systems, .OPEN opens a file for shared access. 

For UNIX systems, Business BASIC opens a file for input and output. 

On UNIX and AOSNS systems, you must include the mask in the STMC 42 format; 
however, the system ignores it. 

1-296 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in BUSiness BASIC 

continued 8TMC 

STMC 43, error 
For AOSNS systems, ?BRKFL terminates .the Business BASIC process and creates a 
break file consisting of the memory image ·of the terminating process. The break file is 
named ?pid#.time.BRK, where pid# is thePID of the terminated process and time is 
in the form hh_mm_ss. 

For DGIRDOS systems, .BREAK terminates Business BASIC and saves an image of 
the Business BASIC interpreter in BREAK.'SV. 

For UNIX systems, Business BASICtermmates the runtime system and creates a 
break file. 

STMC 44, error, jilename$, mask, channel 
For AOSNS systems, ?OPEN opens a file for input and output. The. file must exist. 

For DG/RDOS systems, . TOPEN transparently (without changing the date last written 
or accessed) opens the file you specify for exclusive access. 

For UNIX systems, Business BASIC opens a file for input and output. 

STMC 45, error, jilename$, sectors; date (DG/RDOS only) 

.TCCONT creates a contiguous file transparently (without changing the date last 
written or accessed). The ume/date status area is set to the 6-byte date. 

The format of date for STMCs 45, 46, and 47 is: 

• Bytes 1-2 Julian value, date last accessed 

• Bytes 3-4 Julian value, creation date 

• Bytes 5-6 Julian value, creation time. one-half of seconds past midnight 

STMC 46, error, jilename$,date (DG/RDOS only) 

· TCRND creates a random file transparently (without changing the date last written or 
accessed). Th~ time/date status area is set to the 6-byte date. 

STMC 47, error,jilename$, date (DG/RDOS only) 

· TCRET creates a sequential file transparently (without changing the date last written 
or accessed). The time/date status area is set to the 6-byte date$. 

STMC 48, error, ACO (DG/RDOS only) 

.GMEM gets the· current memory allocation for the current ground. 

093":000351 Licensed Material-Property of Data General Corporation 1-297 



Commands. Statements. and Functions in Business BASIC 

STMC contInued 

STMC 49 

Reserved. 

STMC 50, error, string$, channel 
For AOSNSsystems. ?WRITE writes string$ to the file open on channel. The write is 
data-sensitive. and the maximum length of string$ is 134. 

For DO/RDOS systems •. WRL writes. a line to the file. opened on channel. 

For UNIX systems. Business BASIC performs a data-sensitive write. 

STMC 51, error, jilename$, buffer (DG/RDOS only) 

. RSTAT returns the status of the resolution file when you specify a link entry. 

STMC 52, error, jilename$, sectors 
For AOSNS systems. ?CREATE creates lilename$ with an element size of sectors 
and zero index levels. and writes one byte at the end of· the file to cause AOS/VS to 
allocate space. 

For DO/ROOS systems •• CONN creates a contiguous file without initi~lizing the file to 
nulls. 

. . 

For UNIX systems. Business BASIC creates a file and initializes locations to make the 
file the desired length. 

STMC 53, error, channel (DG/RDOS only) 

.CLOSE closes the file opened on channel. channel must be negative; use the CLOSE 
FILE statement for positive channels. 

• 

STMC 54, error, jilename$, month, day, year (AOS/VS and UNIX) • 

This statementretums the date on which filename$ was last modified. The year 
variable. receives a two-digit version of the year; i.e .• 91. not 1991. If no error occurs, 
error is set to -1. 

1-298 Licensed Materlal,..Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

STMD Statement and Command 

Sends messages to and receives responses from user terminals. 

I DGJRDOS 

Format· 
STMD type ,port-number, argument [,argument ... ] 

Arguments 
type 

port-number 

argument 

What It Does 

The number of the system call to be performed. Only types 0 and 
1 are valid. Both types are discussed below. 

A number, numeric expression, or variable that defines the port 
number of the user terminal you want to contact. 

A number, numeric expression, or variable that further defines the 
system call. The meaning of argument depends on the type you 
specify. Each STMD requires one or more arguments. For an 
explanation of the required arguments for a particular system call, 
see the description for that type of STMD. 

STMD statements and commands allow the system manager (an AA account) to send 
messages to and receive responses from any user's terminal. 

The STMD statements and commands send the message string literally, so if you need 
carriage returns or control characters, you have to enclose their ASCII decimal values 
in angle brackets. For example, <13> causes a carriage return or line feed to occur at 
the position in the message string where it appears. Output of the message string stops 
on a null or end of string, whichever comes first. 

The STMD statements and commands are: 

STMD 0, port-number, 0, message$· 

STMD 0, port-number, wait, message$, reply$ 

STMD 1, port-number, 0, message$ 

STMD 1, port-number, wait, message$, reply$ 

STMD 1 overrides any no-message flag set by the terminal; STMD 0 does not. You 
must supply the port number and your message. 

093-000351 Ucensed Material-Property of Data General Corporation 1-299 



Commands, Statements, and Functi,ons in Business BASIC 
, 

STMD continued 

How to Use It 
You can supply either a 0 for no wait time and no reply, or a numeric expression for 
wait and a string variable repJy$ to receive a reply. If you specify wait and supply a 
string variable reply$, Business BASIC waits for a reply according to the rules of 
TINPUT USING. Each character received into repJy$ updates the current string 
length. If you do not get a reply in the specified amount of time, Business BASIC 
executes the next statement in your program (or returns you to keyboard mode) 
without changing the contents of reply$. You can then check SYS(22) to see if a 
timeout occurred. 

You cannot request a reply from a terminal that is not logged on to Business BASIC if 
you are using operating system multiplexor support. However, if the terminal is logged 
on, you can request STMD with reply. 

During the execution of an STMD, it is as if the job that issued the call had attached 
to the destination terminal. Interrupts are disabled for the job issuing the call. When 
no reply is requested, any characters struck at the destination terminal while the 
message is being displayed will be echoed later at the requesting job's terminal, and 
any input at the requesting terminal will be discarded. 

The example below shows an STMD that forces a message to terminal number 1. The 
bell character «7» is included, along with a carriage return «13». The STMD waits 
30 seconds for a reply; if a timeout occurs, line 110 directs control back to line 100. 
The wait flag is in tenths of seconds. 

0100 STMD 1,1,300,"<13>Tell me your name in 30 seconds!<7>",REPLY$ 
·0110 IF SYS(22)=0 THEN GOTO 0100 
0120 PRINT REPLY$ 

1-300 Licensed Material-Property of Data General Corporation 093-000351 



) I 

Commands, Statements, and Functions in Business BASIC 

STME Statement and Command . 

Performs operating system calls. 

AOSIVS UNIX 

Format 
STME type ,error ,argument (,argument ... ) 

Arguments 
type 

error 

argument 

What It Does 

A numeric expression or number designating the system call to be 
performed. Each type is discussed below; 

A variable that receives the error returned by the operating 
system. A positive code is returned, so you must negate it to find 
it iri the BASIC.ER file. A -1 is returned if the call is successful. 
On UNIX systems, if -276 is returned in the error variable, use 
SYS(43) to retrieve the UNIX system error code that occurred 
during the STME.The SYS functions are set only if an undefined 
error occurs (i.e., the error variable is set to -276). 

A number, numeric expression, or variable that further defines the 
system call. The meaning of argument depends on the type you 
specify. Each STME requires one or more arguments. For an 
explanation of the required arguments for each system call, see the 
explanation for that type of STME in Table 1-6. 

The STME statement allows you to perform operating system calls from within 
Business BASIC. Refer to your operating system reference manual for descriptions of 
the operating system calls, the arguments needed, and the errors returned. 

Contiguous files in AOS/VS are created by specifying an element size large enough for 
the entire file and zero index levels. 

String variables that receive a value must be filled with nulls before the STME is 
performed. You must also Use the DIM (dimension) statement or command to specify 
the exact size stated in your operating system manual in which system calls are 
described. Business BASIC does not check to see if the variables you use to receive 
values are large enough. For this reason, if a 36-byte string is required and you supply 
only a 20-byte string, the 16 bytes following the string may be appended to the string 
and overwrite part of your program. To avoid this problem, include a terminating null 
when you assign string arguments. 

093-000351 Ucensed Material-Property of Data General Corporation 1-301 



Commands, Statements, and Functions in Business BASIC 

STME 

NOTE: 

continued 

Table 1-6 lists the syntax formats for each STME. In this table, each strinS, 
string· expression, or substrins arsument ends with a dollar sian· ($); all other 
arsuments are numeric. In addition, a strins variable or numeric variable is a 
value that the STME returns. A strinS expression or numeric expression is a 
value that you assian before executins the STME; both the string expression 
and the numeric expression can be either an expression ora variable. Since 
the arsuments· are not all fully explained in the "How To Use It" section, 
check the statement's syntax in Table 1"':6 if you have a question about 
whether an arsument requires a numeric or string arsument. 

Before using any STMEcalls you should be thoroughly familiar with system calls. 

1-302 Ucensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued 

STME 
Parameter 

STME 0, 

STME 1, 

STME 2. 

STME 3, 

STME 4, 

STME 5, 

STME 6, 

STME 7. 

STME 8, 

Table 1-6 Summary of STME Syntax Formats 

Data Type 
of Its Arguments 

error, channel, pointer, filenameS, templateS 

error, username$ 

error, PID 

error, messageS 

error, filenameS, pathname$ 

error, bufferS, channel 

error, filenameS, bufferS 

error, filenameS, bufferS 

error, filenameS, sectors, dateS 

STME 9, error, filenameS, dateS 

STME 10, error, pathname$, channel 

STME 11, 

STME 12, 

STME 13, 

STME 14, 

STME 15, 

STME 16, 

STME 17, 

STME 18, 

STME 19, 

STME 20, 

STME 21, 

STME 22, 

STME 23, 

STME 24, 

STME 25, 

STME 26, 

STME 27, 

093-000351 

error, linkname$, resolution-nameS 

error, bufferS 

error, bufferS 

error, bufferS 

error, PID, bufferS 

error, consolename$, bufferS 

error, bufferS 

error, bufferS 

error, program-nameS, bufferS 

error, controlS, sendS 

error, controlS, receiveS 

error, controlS, sendS, receiveS 

error, portname$, local-port-num 

error, global-port-num, PID,local-port-num 

error, portname$, global-port-num 

error, local-port-num, global-port-num 

error, string-variableS, flag 

Licensed Material-Property of Data General Corporation 

STME 

1-303 



Commands, Statements, and Functions in Business BASIC 

STME continued 

How to Use It 
This section includes a description of each STME, its required arguments, and any 
special considerations for performing a particular system call. 

STME 0, error, channel, pointer, jilename$, template$ (AOSIVS only) 

For AOS/VS systems, ?GNFN, starting from the position pointer, returns the next 
filename matching templateS in the directory open on channel. 

STME 1, error, username$ 

For AOS/VS systems, ?GUNM returns the process's username. 

For UNIX systems, getuid(2) returns the process's username. 

STME 2, error, PID 

For AOS/VS systems, ?PNAME returns the process's PIO. 

For UNIX systems, getpid(2) returns the process's PIO. 

STME 3, error, message$ 

?GTMES returns a CLI message. 

STMU 4 performs a similar function on UNIX systems. 

STME 4, error, jilename$, pathname$ 

(AOS/vS only) 

For AOS/VS systems, ?GNAME returns the complete pathname of filenameS. 

For UNIX systems, returns the complete pathname of filename$. 

STME 5, error, buffer$, channel (AOSIVS only) 

?FSTAT returns the status packet for channel in the string variable bufferS. 

STMU 0 performs a similar function on UNIX systems. 

1-304 Licensed Material-Property of Data General Corporation 093-000351 



) 

) 

Commands, Statements, and Functions in Business BASIC 

continued 

STME 6, error, jilename$, buffer$ 
?FSTAT returns the status of a . file to bujjer$. 

STMU 1 performs a similar function on UNIX systems. 

STME 7, error, jilename$, buffer$ 

STME 

(AOS/VS only) 

(AOS/vS only) 

?FSTAT returns the status of the resolution file to bujjer$ when you specify a link 
entry. 

STMU 2 performs a similar function on UNIX systems. 

STME 8, error, jilename$, sectors, date$ (AOS/vS only) 

?CREATE creates a contiguous file of the size specified in sectors. The time/date 
status area is set to the 12-byte date$. 

STMU 3 performs a similar function on UNIX systems. 

This example illustrates the creation of a file named TESTFILE where the last 
accessed date and last modified date are the same as the date created. 

00010 DIM DATE$[12] 
00020 LET E=O 
00030 STMA 12,E,SYS(2) ,SYS(l) ,SYS(3)-1900 :Convert the system date 

:to Julian. 
00040 LET DATE$[l,2)=CHR$(E,2) 
00050 LET DATE$[3,41=CHR$(SYS(0)/2,2) 

00060 LET DATE$[5,8)=DATE$[l,4] 
00070 LET DATE$[9,12]=DATE$[l,4] 
00080 STME 8, E, "TESTFILE<O>" ,4. DATE$ 
00090 END 

STME 9, error, jilename$, date$ 

:Date the file was created. 
:Time file was created in 
: bi-seconds. 
:Date & time last:. accesed. 
:Date & time last modified. 

(AOS/vS only) 

?CREATE creates a file. The time/date status area is set to the 12-byte date$. 

STMU 3 performs a similar function on UNIX systems. 

STME 10, error, pathname$, channel 

For AOS/VS systems, ?GNAM returns the complete pathname of the file open on 
channel. 

093...;000351 Licensed Material-Property of Data General Corporation 1-305 



Commands, Statements. and Functions in B1,lsiness BASIC 

STME continued 

For UNIX systems. returns the complete pathname of the file open on channel. 

STME 11, error, linkname$. resolution-nameS 
For AOS/VS systems, ?GLINK returns the resolution name of a link. 

For UNIX systems, returns the resolution name of a link. 

STME 12, error, bufferS (AOS/vS only) 

?GCHR returns the device characteristics of @INPUT to bufferS (6 bytes). 

STME 13, error, bufferS (AOS/VS only) 

?GCHR returns the device characteristics of @OUTPUT to bufferS (6 bytes). 

STME 14, error, bufferS (AOS/vS only) 

?SCHR sets the device characteristics of @INPUT to bufferS (6 bytes). 

STME 15, error, PID, bufferS (AOS/vS only) 

?SEND sends the message in bufferS to the process identified by PID. 

STME 16, error, consolename$, bufferS (AOS/vS only) 

?SEND sends the message in bufferS to the process controlling the console. 

STME 17, error,buffer$ 
For AOS/VS systems, Business BASIC puts the 2S6-bit (32-byte) delimiter table for 
@INPUT into buffer$. At initialization. this table is all zero bits. This table displays 
the delimiters you have set with an STME 18 statement. 

For UNIX systems, Business BASIC places the delimiter table for standard input in a 
buffer. 

STME 18, error, bufferS 
For AOS/VS systems, Business BASIC sets the 2S6-bit (32-byte) delimiter table for 
@INPUT. 

1-306 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued STME 

For UNIX systems, Business BASIC sets the delimiter table for standard input. 

STME 19, error, program-nameS, bufferS 

For AOS/VS systems, ?PROC executes program-nameS, passing the contents of 
bufferS to the new process as the initial IPC. The Business BASIC process is blocked 
until program-nameS finishes. 

bufferS must end with a <0> if data is stored in the variable. If bufferS is zero length, 
and program-name is :CLI.PR, the AOS/VS CLI is executed much like the current 
implementation using STMC 12. If bufferS contains an AOS/VS CLI command, and 
:CLI.PR is in program-name, the AOS/VS CLI command is executed, and control 
will be passed immediately back to the Business BASIC program after the command 
completes. bufferS may contain several AOS/VS CLI commands separated by 
semicolons. 

program-nameS and bufferS must be string variables; substrings and literals are not 
supported. 

For UNIX systems, program-nameS is executed and receives the contents of bufferS 
as its arguments. Separate each argument from bufferS by one or more spaces. The 
Business BASIC process is blocked until program-nameS finishes. The argument 
program-nameS must be an executable that will process the argument list if supplied 
in bufferS. 

For example, if program-nameS is CLI.PR<O>, there must be an executable called 
CLI. PR that will read the AOS/VS CLI command from its argument list and perform 
the UNIX emulation of the CLI command. 

Proper usage of STME 19 is illustrated below: 

00030 DIM PROG$[lOO] ,BUFF$[lOO] 
00040 LET ER=O 
00050 LET PROG$=":CLI.PR<O>" 
00060 LET BUFF$="" 
00070 INPUT "COMMAND? ",BUFF$ 
00080 IF LEN(BUFF$)<>O THEN LET BUFF$[O]="<O>" 
00090 STME 19,ER,PROG$,BUFF$ 

Note that BUFF$ is null if you are creating a CLI process to issue multiple 
commands; otherwise, BUFF$ contains the CLI command followed by a null. 

I STME 20, error, controlS, sendS 

The contents of sendS are sent via interprocess communications. ?ISEND is called 
directly on AOS/VS while ?ISEND is emulated on UNIX. 

093-000351 Licensed Material-Property of Data General Corporation 1-307 



Commands, Statements; and Functions in Business BASIC 

STME continued 

control$ is a 24-'character string. On AOS Business BASIC, control$ is formatted as 
follows: 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IDPH I ?IDPL 

9 ?IOPN I ?ILTH 

13 I ?IPTR 

17 I 
21 I 
On AOS!VS and UNIX Business BASIC, control$ is formatted as follows: 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IDPH 

9 ?IOPN I ?ILTH 

13 ?IPTR 

17 0 I ?IRLT 

21 ?IRPT 

You must set the following flags: 

?ISFL 
?IUFL 
?IDPH 
?IDPL 
?IOPN 

1-308 

System Flags 
User Flags 
Destination Port, High 
Destination Port, Low 
Origin Port 

Licensed Material-Property of Data General Corporation 093-000351 

• 



) 

Commands, Statements, and Functions in Business BASIC 

continued STME 

You can set the following flag: 

?IPTR Secondary user flags if the message length is zero. 

Business BASIC calculates the following: 

?ILTH 

?IPTR 

Message length in words. Note that the message will be rounded 
up to an even number of bytes. 

If the message length is nonzero, this points to the message. If the 
message length is zero, the user supplied value (?IPTR) is sent. 

STME 21, error, control$, receive$ 

I ?IREC receives the contents of receive$ via interprocess communications. ?IREC is 
called directly on AOS/VS while ?IREC is emulated on UNIX. 

control$ is a 24-character string. On AOS Business BASIC, control$ is formatted as 
follows: 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IOPH I ?IOPL· 

9 ?IDPN I ?ILTH 

13 I ?IPTR 

17 I 
21 I 

093-000351 Licensed Material-Property of Data General Corporation 1-309 



Commands. Statements. and Functions in Business BASIC 

STME continued 

On AOSNS and UNIX Business BASIC. controlS is formatted as follows: • 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IOPH 

9 ?IDPN I ?ILTH 

13 ?IPTR 

17 0 I ?IRLT 

21 ?IRPT 

You must set the following flags: 

?ISFL 
?IUFL 
?IOPH 
?IOPL 
?IDPN 
?ILTH 

?IPTR 

System Flags 
User Flags 
Origin Port. High 
Origin Port. Low 
Destination Port 
The maximum message length will be set to the current word 
length of receiveS. after receiveS has been truncated to an even 
number of bytes. This means that receiveS should be initialized. 
The message pointer will be set to point to receive$. Note. 
however. that if a zero length message is received. Business BASIC 
will not update receiveS (you can retrieve the contents of ?IPTR). 

control$is updated even if an error occurs. 

STME 22, error, con tro 1$ , sendS, receiveS 
?IS.R sends the contents of sendS via interprocess communications and then receives I 
an interprocess communications message in receiveS. ?IS.R is called directly on 
AOS/VS while ?IS.R is emulated on UNIX. 

1-310 Licensed Material-Property of Data General Corporation 093-000351 



\ 

) 

) 

Commands, Statements, and Functions in Business BASIC 

continued STME 

controlS is a 24-character string. On AOS Business BASIC, controlS is formatted as 
follows: 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IDPHI?IOPH I ?IDPLI?IOPL 

9 ?IOPNI?IDPN I ?ILTH 

13 I ?IPTR 

17 I ?IRLT 

21 I ?IRPT 

• On AOS/VS and UNIX Business BASIC, controlS is formatted as follows: 

Byte # 

1 ?ISFL I ?IUFL 

5 ?IOPH 

9 ?IDPN I ?ILTH 

13 ?IPTR 

17 0 I ?IRLT 

21 ?IRPT 

You must set the following flags: 

?ISFL 
?IUFL 
?IDPH 
?IOPH 
?IDPL 
?IOPL 

093-000351 

System Flags 
User Flags 
Destination Port, High 
Origin Port, High 
Destination Port, Low 
Origin Port, Low 

Licensed Material-Property of Data General Corporation 1-311 



Commands, Statements, and Functions in Business BASIC 

STME 

?IOPN 
?IDPN 

Origin Port 
Destination Port 

continued 

Business BASIC performs the following functions: 

?ILTH 

?IPTR 

?IRLT 

?IRPT 

Send message length in words. Note that the message will be 
rounded up to an even number of bytes. 
If the message length is non-zero, this points to the message. If 
the message length is zero, the user-supplied value is sent. 
This maximum message length will be set to the current word 
length of receive$, truncated to the nearest word boundary. This 
means that receive$ should be initializecJ. 
This message pointer will be set to point to receive$. 

control$ is updated even if an error occurs. 

STME 23, error, portname$, local-port-num 
?CREATE creates an IPC file entry with the appropriate name and local port. 
?CREATE is called directly <,m AOS/VS while ?CREATE is emulated on UNIX. Note • 
that AOS/VS requires you to be in the directory in which Business BASIC was initially 
invoked in order to execute this call successfully. 

STME 24, error, global-port-num, PID, local-port-num 
?GPORT finds the owner of a global port. global-port-num is set before the call. PID 
and local-port are returned. ?GPORT is called directly on AOSNS while ?GPORT is I 
einulated on UNIX. 

STME 25, error, portname$, global-port-num 
?ILKUP looks up a port number. portname$ is set before the call. global-port is 
returned. ?ILKUP is called directly on AOS/VS while ?ILKUP is emulated on UNIX. • 

STME 26, error, local-port-num, global-port-num 
?TPORT translates a port number. local-port-num is set before the call. 
global-port-num is returned. ?TPORT is called directly on AOSNS while ?TPORT is 
emulated on UNIX. 

On UNIX, since a PID is 4 bytes, the global port number contains a unique job 
number for each obit client instead of the PID number. 

1-312 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued STME 

Remember a global port number in AOS/VS is slightly different from one under AOS. 
The 32-bit number is constructed as follows: 

AOSIVS Bits 
0-15 PID # 
16-19 Ring # 
20...;31 Local port # 

In AOS, the ring number does not apply; those bits are always O. 

I Since the global port number is different on each operating system, you should not 
depend on this format. 

STME 27, error, string-variable$, flag 

The contents of string-variable are moved to an I/O buffer for display by the INPUT 
statement. 

When you move a string with STME 27, you can use the screen edit keys to modify 
the contents of the string when you display it using an INPUT statement. This editing 
feature is available only for terminal types 8 and 9. string-variable is the string to be 
displayed; it must not be a literal. flag is a number or numeric variable that controls 
the display of string-variable. When flag is set to 1, string-variable is displayed. When 
flag is set to 0, string-variable is not displayed unless you enter Ctrl-A. 

I NOTE: On AOS/VS systems and UNIX Business BASIC systems executing in DG 
mode, if you press the Carriage Return key while the cursor is positioned 
within the string, the string is truncated at the cursor position. (You receive 
this same result by pressing Carriage Return while in the AOSNS CLI.) 

093-000351 . Licensed Material-Property of Data General Corporation 1-313 



Commands, Statements, and Functions in Business BASIC 

STMU Statement and Command 

Performs operating system calls. 

UNIX 

Format 
STMU type ,error, argument (,argument ... ) 

Arguments 
type 

error 

argument 

What It Does 

A numeric expression or number designating the system call to be 
performed. Each type is discussed below. 

A variable that receives the error returned by the operating 
system. You must use the UERM$ function to obtain the UNIX 
error message. A -1 is returned if the call is successful. 

A number, numeric expression, or variable that further defines the 
system call. The meaning of argument depends on the type you 
specify. Each STMU requires one or more arguments. For an 
explanation of the required arguments for a particular system call, 
see the description for that type of STMU: 

The STMU statement allows you to perform operating system calls from within 
Business BASIC. Refer to your operating system reference manual for descriptions of 
the operating system calls, the arguments needed, and the errors returned. 

How to Use It 
This section includes a description of each STMU and its required arguments. Any 
special considerations for performing a particular system call are noted in the 
explanation of that type of STMU. 

STMU 0, error, bujJer$, channel 
fstat(2) returns to buffer$ the fstat status packet for the file opened on channel. 

STME 5 performs a similar function on AOS/VS systems. 

STMU 1, error, jilename$, bujjer$ 
stat(2) returns the status of filename$ to buffer$. 

STME 6 performs a similar function on AOS/VS systems. 

1-314 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued STMU 

STMU 2, error, filenameS, bufferS 

stat(2) returns to buffer$ the status of the resolution file for the link file specified in 
filename$. 

STME 7 performs a similar function on AOS/VS systems. 

STMU 3, error, filenameS, dateS 
access (2), creat(2), close (2), and utime(2) create filename$ and set the dateltime 
stamp, using the values you specify . 

. I STME 8 and STME 9 perform similar functions on AOS/VS systems. 

STMU 4, error, messageS 

getopt(3C) returns the options (switches) used during invocation of Business BASIC. 

STME 3 performs a similar function on AOS/VS systems. 

STMU 5, error, envvar$, contents$ 

getenv(3C) returns the contents of the environment variable named in envvar$ to the 
contents$ string. Make sure the string contents$ is dimensioned large enough to 
receive the contents of the environment variable requested or an error 34 (Function 
argument error) is returned. 

093-000351 Licensed Material-Property of Data General Corporation 1-315 



Commands, Statements, and Functions in Business BASIC 

STOP 

Stops program execution. 

AOSIVS 

Format 
STOP 

What It Does 

DG/RDOS UNIX 

Statements 

STOP halts the execution ofa program. Usually a program ends when it runs out of 
statements or when it encounters an END statement. STOP is useful for debugging 
programs because it prints out the line number where the stop occurred. 

When BASIC encounters STOP, the program stops and a message appears at your 
terminal: 

STOP AT xxxxx 

where xxxxx is the line number of the STOP statement. The terminal is then put in 
keyboard mode to wait for your next command. 

How to Use It 
Use STOP as a program statement only. It can be its own statement, or either it can 
be a statement after IF ... THEN, or ON ERR ... THEN, or ON IKEY ... THEN. Use 
STOP statements anywhere in a program. 

Example 
Stop on an error, on an IKEY, if the input equals 0, or at the end of the program. 

00010 ON ERR THEN STOP 
00020 ON IKEY THEN STOP 
00030 INPUT X 
00040 IF X=O THEN STOP 
00050 PRINT X 
00060 STOP 

1-316 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

STRPOS Statement and Command 

Finds the starting position of a substring within a string. 

AOSIVS DG/RDOS UNIX 

Format 
STRPOS position,string-expression1 ,string-expression2 [,start,scan-increment] 

Arguments 
position The variable that receives the relative position in string-expression1 

of the first occurrence of string-expression2. 

string-expression String variables, string literals in quotation marks, string 
expressions, or string array elements (UNIX only). 

start An optional argument which indicates where in string-expression1 
to begin the STRPOS operation. 

scan-increment 

What It Does 

An optional argument indicating the increment value for the scan 
pointer after each comparison of string-expression1 to 
string-expression2. The pointer will continue to be incremented 
until a match is found or the end of string-expression1 is reached. 

String-expression1 is scanned for the first occurrence of string-expression2 as a 
substring. When the optional arguments start and scan-increment are present, the scan 
of string-expression1 begins with the relative character at the place indicated by start. 
The pointer for the scan is incremented by scan-increment after each comparison until 
a match is found or the ,nd of string-expression1 is reached. If the entire 
string-expression2 is found within string-expression 1 • position returns the relative 
position of the first character. If string-expression2 is not found within 
string-expression 1 , position returns zero. If both string-expression1 and 
string-expression2 are null, the position returned is 1. If string-expression1 is null and 
string-expression2 is not null, the position returned is O. If string-expression1 is not 
null and string-expression2 is null, the position returned is 1. 

093-000351 Licensed Material-Property of Data General Corporation 1-317 



Commands, Statements, and Functions in Business BASIC 

STRPOS continued 

Examples 
1. Find the first occurrence of string B$ in string A$. Record that position in P. 

00010 DIM A$[100] ,B$[100] 
00020 LET P=O 
00030 INPUT A$,B$; 
00040 STRPOS P,A$,B$ 
00050 PRINT ," P=";P 
00060 GOTO 00030 

* RUN 

? ABCDEFGHIJKLM ? 
? 9876543210 ? 54 
? NOW IS THE ? TH 

KLM 

? THE QUICK ? BROWN 
? ABCDEFGHIJKL ? XYZ 
? ABBCCCDDDDEEEEE ? DDE 

:Must be defined before STRPOS 
:Target string, search string 
:Find B$ in A$ 
:Where was it found? 

results comments 

P= 11 
P= 5 
P= 8 

found it starting in col 11 

P= 0 did not find it 
P= 0 did not find it 
P= 9 

2. This example uses STRPOS to find all occurrences of a string. 

00010 DIM A$[100] ,B$[100] 
00020 LET P=O 
00030 LET S=1 

:Define variable before STRPOS. 
:Scan from first character. 

00040 INPUT A$,B$," INC=",I :Target string, search 
: string, increment. 

00050 STRPOS P,A$,B$,S,I :Find B$ in A$ starting at S in 
:steps of I. 

00060 PRINT" P=";P; 
00070 LET S=P+I 

:Print matching locations. 
:Continue from this location. 

00080 IF P THEN GOTO 00050 :Scan until p=o (end of A$). 
00090 PRINT 
00100 GOTO 00030 

* RUN 
? ABCABCABCABCABCABCABC ? AB INC=1 
P= 1 P= 4 P= 7 P= 10 P= 13 P= 16 P= 19 P= 0 
? ABCABCABCABCABCABCABC ? AB INC=2 
P= 1 P= 7 P= 13 P= 19 P= 0 
? ABCDEFGHIJKL ? XYZ INC=1 
P= 0 
? 
IKEY AT 00040 

* 

1-318 Licensed Material-Property of Data General Corporation 093-000351 



\ 
) 

Commands. Statements. and Functions in Business BASIC 

SWAP Statement and Command 

Executes a utility or another program and then returns to the 
current program. 

AOSNS DG/RDOS UNIX 

Format 

[
"filename" 

SWAP . . 
strmg-varzable 1 ! [ GOTO line-number I] 

THEN CON . 

Arguments 
filename 

string-variable 

line-number 

What It Does 

A literal filename (in quotation marks) for a program file. but not 
for an ASCII listing or source file. The file must contain a 
Business BASIC program or Business BASIC utility program. 

A string variable already dimensioned and assigned a filename 
value. 

A valid line number in the program to which you want to swap. 
Execution begins at line-number rather than the beginning of the 
program. and the program retains the values it had when it was 
saved. 

Like CHAIN • SWAP executes another program from the program that is running. 
However. SWAP does not clear the current program from working storage. After the 
SWAP. you return to the current program. Using SWAP THEN CON starts the new 
program at the point where it last stopped before it was saved and retains the 
variables' values as if a CON had occurred. Using SWAP THEN GOTO line-number 
starts the new program at line-number and retains the values the variables had when 
the program was saved. as if a RUN line-number had occurred. 

SWAP searches for filename in your directory; if not found. it searches the library 
directory (in AOS/VS and UNIX systems. it follows your search path). If SWAP still 
does not find filename. it gives you an error message. SWAP does not change the 
status of files. 

NOTE: During the execution of a SWAP statement. keyboard interrupts are ignored. 
This means that you may not be able to interrupt a series of short programs 
executed using SWAP or CHAIN statements. 

093-000351 Licensed Material-Property of Data General Corporation 1-319 



Commands, Statements, and Functions in Business BASIC 

SWAP continued 

How to Use It 
Use SWAP as a program statement or a keyboard mode command. As a keyboard 
mode command, the keyword SWAP is optional. Enter the filename in quotation 
marks. If used as a keyboard mode command, SWAP executes the new program and 
returns you to keyboard mode, preserving the contents of working storage. If used as 
a program statement, SWAP executes the new program and, when the new program 
stops, returns you to the original program that had the SWAP statement. 

Examples 
1. Start executing PROGI02 at line 100 and then return to line 910. 

00900 
00910 

SWAP "PROG102" THEN GOTO 00100 
PRINT "PROG102 FINISHED" 

2. This example executes PROG3 at the point where it last stopped before it was 
saved. 

"'SWAP "PROG3" THEN CON 

3. This example swaps to the INDEXBLD utility program . 

..... INDEXBLD" 

4. This example swaps to PROG3 and starts at line 200 . 

..... PROG3" THEN GOTO 00200 

1-320 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

SYS Function 

Returns system Information. 

AOSIVS DG/RDOS UNIX 

Format 
SYS(item) 

Arguments 
item A numeric expression or variable for one of the items listed in 

"What It Does." 

What Ii Does 
SYS returns the information indicated by item, where item is one of the following: 

o Time of day since midnight (seconds past 00:00). 

1 Day of the month (1-31). 

2 Month of the year (1-12). 

3 Year in four digits (e.g., 1984). 

4 Terminal port number (-1 if detached or under AOSNS BATCH or UNIX 
background). On DG/RDOS systems: 

Background console = O· 

Foreground console = 1 

Multiplexor consoles = 2 to n 

AOS/VS systems return the console number. You may need to check bit 4 
of SYS(30) to differentiate between physical and virtual consoles. For 
AOS/VS systems, any console not a son of EXEC returns 0 for SYS(4). You 
may need to use SYS(33) to differentiate between devices. 

UNIX systems return the console number specified in the ttymap file. In 
order for a Business BASIC process to be considered a UNIX background 
process, both standard input and standard output must be redirected from 
and to a file, respectively. If the device is not a tty, SYS(4) returns -1. You 
may need to use SYS(33) to differentiate between devices. 

5 CPU time used, in tenths of seconds. 

6 110 usage. (In DG/RDOS systems, the number of system calls made; in 
AOS/VS systems, the number of blocks read or written; in UNIX systems, 
always 0.) 

, 
093-000351 Licensed Materlal-~roperty of Data General Corporation 1-321 



Commands, Statements, and Functions in Business BASIC 

SVS continued 

7 Error code of the last or current error; used with the ERM$ function and 
the error messages in the BASIC.ER file. If SYS(7) = -60, see SYS(31). On I 
AOS/VS and UNIX systems, use SYS(40) and SYS(41) instead of SYS(7), 
and SYS(42) instead of SYS(31). 

8 Channel number of the file most recently referenced in a file 110 statement. 
The value. of SYS(7) is invalid if no runtime error occurred, and the value of 
SYS(8) is invalid if no file was opened. 

9 In DG/RDOS systems, job number; in AOSNS and UNIX systems, PID 
(process 10). 

10 Alternate IKEY or unpend flag; set to 1 if you use the alternate IKEY or 
unpend key. 

11 Global switches used when the Business BASIC system was brought up. 

12 Time of day (seconds past the last minute). 

13 Time of day (minutes past the last hour). 

14 Time of day (hours since midnight). 

15 Status word 1 (from User Status Table). 

16 Status word 2 (from User Status Table). 

17 Program length in bytes. 

18 Data length in bytes. 

19 Maximum program and data length. 

20 Statement number of last error or IKEY. 

21 Current CPU switch settings (always 0 in AOSNS and UNIX systems). 

22 Time remaining after last INPUT or TINPUT (in seconds). 

23 Log-on time (minutes past 00:00). 

24 Current push level. 

25 Processor number (O=single, l=secondary) (always 0 in AOS/VS and UNIX 
systems). 

26 Status of IKEY flag (1 if IKEY occurred). Reset by STMA 8,3. 

27 Time of day as hhmmss (hh is hours, mm is minutes, ss is seconds). 

28 Date as mmddyy (mm is month, dd is day, yy is year). 

29 In DG/RDOS systems, SYS(29) returns a unique number that is determined 
by the number of times the SYS(29) function has been accessed by all jobs. 
In AOSIVS and UNIX systems, SYS(29) returns the process's PID number 
plus a multiple of 1000. That multiple is determined by the number of times 
the SYS(29) function has been accessed by that process. 

1-322 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands. Statements. and Functions in Business BASIC 

continued svs 

30 System status. Business BASIC returns system status information in bit flag 
format as follows: 

Bits 0-3 Reserved 

Bit 4 (2048) Virtual console 

Bit 5 (1024) Reserved 

Bit 6 (512) Single user system 

Bit 7 (256) AOSNS operating system 

Bit 8 (128) Reserved 

Bit 9 (64) AOS operating system 

Bit 10 (32) RDOS operating system 

Bit 11 (16) Reserved 

Bit 12 (8) UNIX operating system 

Bit 13 (4) Quadruple precision 

Bit 14 (2) Triple precision 

Bit 15 (1) Double precision 

I A 257. for example. would signify a double precision system running under 
AOS/VS. because its binary representation would be: 

• 0000000100000001 

I 
31 

See the AND statement for more information about bit positions. 

Used with AERM$ and the error messages in the BASIC.ER file. If SYS(7) 
is -60. SYS(31) returns the AOS/VS or UNIX system error code of the last 
error that occurred. On AOS/VS and UNIX systems. you should also check 
SYS(40). SYS(41). SYS(42). and SYS(43). If SYS(7) is any value other than 
-60. SYS(31) is undefined. If SYS(31) = -276. see SYS(43). 

32 Status word 3 (from User Status Table). 

33 On UNIX systems. returns the device number. If the device is not a tty 
device. SYS (33) returns -1. On AOSNS systems. returns a unique device 
code for each console type under EXEC. If the console is not under EXEC. 
or your process is under BATCH. SYS(33) returns -1. 

34 On AOS/VS and UNIX systems. returns the next available channel number. 
beginning with the lowest number available. If all channels are in use. 
SYS(34) returns -1. 

35-39 Reserved. 

093-000351 Licensed Material-Property of Data General Corporation 1-323 



Commands, Statements, and Functions in Business BASIC 

SYS continued 

40 On AOS/VS and UNIX systems, the error code of the last or current error; 
used with the ERM$ function and the error messages in the BASIC.ER file. 
This function replaces SYS (7) on UNIX systems. If SYS (40) has a negative 
value, use SYS(41) instead. 

41 On AOS/VS and UNIX systems, the error code of the last or current error; 
used with the ERM$ function and the error messages in the BASIC.ER file. 
This function replaces SYS (7) on UNIX systems. If SYS (40) has a negative 
value, use SYS(41) instead. 

42 On AOS/VS and UNIX systems, used with AERM$ and the error messages 
in the BASIC.ER file. This function replaces SYS(31) on UNIX systems. If 
SYS(40) is negative and SYS(41) is -60, SYS(42) returns the AOS/VS or 
UNIX system error code of the last error that occurred. If SYS(41) is any 
value other than -60, SYS(42) is undefined. If SYS(42) = -276, see 
SYS(43). On UNIX systems, if SYS(42) = -276, see SYS(43). 

43 On AOS/VS and UNIX systems, used with UERM$ and the error messages 
in the BASIC.ER file. This function returns UNIX system errors for which 
there is no match in AOS/VS, DG/RDOS, or Business BASIC. If SYS(40) is 
negative, SYS(41) is -60, and SYS(42) is -276, SYS(43) returns the UNIX 
system error code of the last error that occurred. If SYS(41) is any value 
other than -60, SYS(42) and SYS(43) are undefined. If SYS(41) is -60 and 
SYS(42) is any value other than -276, SYS(43) is undefined. 

44-49 Reserved. 

50 On AOS/VS and UNIX systems, returns the function key header. This 
provides you with a more generic way of handling function keys. Thus, you 
can enter STMA 4,6,SYS(50) instead of using STMA 4,6,30 to hardcode 
the Data General function key header. 

51 On UNIX systems, returns the numeric keypad representation of the last 
function key pressed. The function keys 1-15 return the values 1-15; 
shift-function keys 1-15 return 101-115; control-function keys 1-15 return 
201-215; and control-shift-function keys 1-15 return 301-315. (Note: Not 
all terminals support these function keys.) 

52-256 Reserved. 

How to Use It 
Use SYS as a numeric expression wherever numeric expressions are allowed. If you 
don't understand the explanation given or the value received, look up each item or 
consult your system manager. 

Examples 
1. Print the time of day. 

*PRINT SYS(27) 234804 

1-324 Licensed Material-Property of Data General Corporation 093-000351 

I 

I 

I 

I 

I 



) 

Commands, Statements, and Functions in Business BASIC 

continued 

2. Print the date as mmddyy. 

*PRINT SYS(28) 51491 

3. Print the date without delimiters. 

*LIST 
00010 DIM X$[8] 
00020 LET X$=SYS(2) ,"/",SYS(l) ,"/",SYS(3)-1900 
00030 PRINT X$ 

* RUN 
5/14/91 

4. Print the time of day with delimiters. 

* LIST 
00010 DIM X$[8] 
00020 LET X$=SYS(14) ,": ",SYS(13) ,":",SYS(12) 
00030 PRINT X$ 

* RUN 
23:52:31 

093-000351 Licensed Material-Property of Data General Corporation 

SYS 

1-325 



Commands, Statements, and Functions in Business BASIC 

TAB Command 

Sets the tab width. 

AOSIVS DG/RDOS UNIX 

Format 
TAB=width 

Arguments 
width An integer expression greater than 0 and less than or equal to the width 

of the page. 

What It Does 
TAB sets tab stops on a line, allowing width number of characters between them. 
Output from PRINT that is separated by commas will fall into the tabulated print 
zones. See PRINT for more information and for terminal control of output. 

How to Use It 
TAB is a keyboard mode command. To set print zones in a program statement, use 
STMA 4,9. Set your width equal to the number of characters allowed in a print zone. 

Example 
Set TAB width at 10 and print using that width. 

* TAB=10 
* PRINT 1,2,3 1 2 3 
* TAB=lot 
* PRINT 1,2,3 1 2 3 

* 

1-326 Licensed Material-Property of Data General Corporation 093-000351 



\ 
) 

Commands. Statements. and Functions in Business BASIC 

TINPUT Statement and Command 

Performs an INPUT instruction in a specified amount of time. 

AOSNS DG/RDOS UNIX 

Format 

TINPUT time. [FILE(channel).] [USING"".] [@(number) •... ] ! prompt[.variable ... ] [;] ) 
variable [. variable ... ] [;] 

Arguments 
time 

channel 

@(number) 

prompt 

variable 

What It Does 

A numeric expression for the number of tenths of a second to 
wait for input. In AOS/VS and UNIX systems, time is rounded up 
to the nearest second. If -1 is used for time. TINPUT -1 selects 
the default timeout for the device, which is the user's console. 
65535 is the maximum value for time. 

The channel number of a file if you are inputting data from a file; 
the file must be in character format. 

Cursor positioning and terminal control expressions (@ 
expressions) are described with PRINT. 

A string literal in quotation marks that is output as a prompt for 
an input request from a terminal. This prompt replaces the 
question mark (1) prompt. On AOS/VS and DG/RDOS systems, 
you can enclose ASCII values in angle <> brackets within the 
string literal. 

Note: Not all terminals use the same ASCII values to perform the 
same functions. 

A numeric variable, string variable or array variable. depending on 
the values you want to input. You can also use subscripted string 
variables and array variables. Dimension string variables and arrays 
before using them. Any combination of the above is allowed. 

TINPUT performs an INPUT within a specified time. TINPUT USING performs an 
INPUT USING. If the variables in TINPUT are not filled when time is up, they 
remain unchanged. 

NOTE: TINPUT FILE and TINPUT FILE USING are supported only in Business 
BASIC on AOS/VS and UNIX systems. TINPUT FILE uses the multitasking 
facilities of the host operating system. When a TINPUT FILE command 
executes, the timer task counts down in tenths of a second until it reaches 0 
or until the associated TINPUT command completes execution. The precise 
timing of the delay depends on the system load. Thus, devices queried for 
timed input should not rely on an exact timeout interval. 

093-000351 Licensed Material-Property of Data General Corporation 1-327 



Commands. Statements, and Functions in Business BASIC 

TINPUT continued 

How to Use It 
Specify time as a numeric expression for seconds in tenths of a second (e.g .• 100 is 
10 seconds). The function SYS(22) gives you the remaining time on the most recent 
TINPUT. When SYS(22) equals 0, the most recent TINPUT has timed out. 

Example 
Allow 10 seconds for data input. Print the time required for input and print the input. 

DIM A$[132] 
TINPUT 100,USING " ","INPUT DATA: ",A$ 
IF SYS(22)=0 THEN GOTO 00060 

00010 
00020 
00030 
00040 PRINT USING "('YOU TOOK' ,D4.1,' SECONDS TO INPUT:',S80)", 

00050 
00060 
00070 

*RUN 

100-SYS(22) ,A$ 
STOP 
PRINT "TIMEOUT. TRY AGAIN." 
GOTO 00020 

INPUT DATA: TIMEOUT. TRY AGAIN. 
INPUT DATA: THIS IS DATA 
YOU TOOK 6.0 SECONDS TO INPUT: THIS IS DATA 

STOP AT 00050 

* 

1-328 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

TRACE Statement and Command 

Displays the line numbers as statements are executed. 

AOSIVS UNIX 

Format 
AOSIVS Systems: 

TRACE I ~;F I 
UNIX Systems: 

TRACE ION [, "filename"] 
OFF I 

Arguments 
ON Enable the TRACE capability. TRACE displays the line numbers as 

statements are executed. 

OFF Disable the TRACE feature . 

• filename File to which TRACE writes its output. (UNIX only) 

What It Does 
When TRACE is turned on, Business BASIC displays the line numbers of subsequent 
statements as the statements are executed. The line numbers are enclosed in brackets 
to separate them from program output. The line numbers are displayed until a 
TRACE OFF statement or command is supplied. 

TRACE also displays the program name and the date and time when execution begins 
or continues. This message varies slightly, depending on whether you are running, 
swapping, chaining, or returning from a SWAP. 

On UNIX systems, when the optional filename argument is used with the ON 
argument, output from TRACE is directed to that file. The output file should not 
exist; if it does a File already exists error will be returned. If you execute 
TRACE ON with a filename argument while tracing is already on and being directed 
to a file, the first output file will be closed. For example, 

00500 TRACE ON,"TRACEOUT1" 

00900 TRACE ON,"TRACEOUT2" 

093-000351 Licensed Material-Property of Data General Corporation 1-329 



Commands, Statements, and Functions in Business BASIC 

TRACE continued 

TRACEOUT1 will be closed" when line 900 is executed before tracing output begins 
going to TRACEOUT2. 

How to Use It 
TRACE is available· only in Business BASIC interpreters that include the debugging 
features. For more information on how to generate Business BASIC, see your Business 
BASIC user's guide. 

TRACE ON or TRACE OFF can be executed as a statement or command. You can 
track parts of a program by setting TRACE ON and TRACE OFF throughout the 
program. 

Examples 

1. This example illustrates the use of the TRACE statement. 

* LIST 
00010 REM This is a test of the TRACE statement/command 
00020 TRACE ON 
00030 LET X=l 
00040 PRINT "X =";X 
00050 GOTO 00100 
00060 STOP 
00100 TRACE OFF 

* RUN 
[30] [40]X 1 
[50] [100] 

2. This example illustrates the use of the TRACE command when a program is run 
from keyboard mode. 

* ENTER "TRACE$EX2 
* LIST 

00010 REM * TRACE example 2 
00030 LET X=O 
00040 PRINT "X =";X 
00045 LET X=X+1 
00050 IF X<2 THEN GOTO 00040 
* TRACE ON 
* RUN "TRACE$EX2 

[10] [30] [40]X 0 
[45] [50] [40]X 1 
[45] [50] 

1-330 Ucensed Material-Property of Data General Corporation 093-000351 

I 



) 

Commands, Statements, and Functions in Business BASIC 

TRUN$ Function 

Truncates a string. 

AOSNS I. DG/RDOS UNIX 

Format 
string-variable] =TRUN$ (string-variable2 [, 1]) 

Arguments 
string-variable] The variable for the string or substring receiving the truncated 

string. 

string-variable2 The variable for the string or substring to be truncated. It can be 
the same as string-variable]. 

1 An optional 1 causes TRUN$ to truncate at the last nonspace 
character in the string. 

What It Does 
TRUN$ truncates string-variable2 at the first null, form feed, or end-of-line character 
and assigns the truncated string to string-variable]. The end-or-line character is 
Carriage Return in DG/RDOS systems and New Line in AOSNS and UNIX systems. 

TRUN$(string-variable2,l) truncates string-variable2 when it reaches the last 
nonspace character, or when it reaches a null, form feed, or end-or-line character. It 
does this by going as far as the first form feed, null, or end-of-line character and 
moving backwards to the first nonspace character, at which point it truncates 
string-variable2. 

How to Use It 
Use TRUN$ only in LET statements and commands to assign the truncated string to 
string-variable1. Use TRUN$ without the 1 to reduce your string to its current length 
if it is padded to the end with nulls. Use TRUN$ with the 1 to shorten a string that is 
padded to the end with nullS or spaces or use it to cut off trailing spaces. 

Examples 
1. This example shows an untruncated string. 

* DIM A$(512) 
* LET A$=" ABC DEF GHI ",FILL$(O) 
* PRINT LEN(A$) 512 

2. This example truncates the same string. 

* LET A$=TRUN$ (A$) 
* PRINT LEN(A$) 13 

3. This example truncates trailing blanks. 

* LET A$=TRUN$(A$,l) 
* PRINT LEN (A$) 11 

093-000351 Licensed Material-Property of Data General Corporation 1-331 



Commands, Statements, and Functions in Business BASIC 

UCALL Statement and Command 

Calls a subroutine from Business BASIC. 

AOSIVS DG/RDOS UNIX 

Format 
UCALL subroutine [,expression, ... ] 

Arguments 
subroutine 

expression 

What It Does 

A positive integer representing an assembly language subroutine 
number. 

As many as eight optional arguments, separated by commas, to be 
passed to the subroutine. They can be numeric or string variables 
or expressions. They cannot be arrays, only array elements. You 
cannot use statement line numbers. 

On AOS/VS and DG/RDOS systems, UCALL can call an assembly language 

I 

subroutine if your system is generated to include user-written assembly language 
subroutines in USERSUBS. See the manual Business BASIC System Manager's Guide I 
for more information. 

On UNIX systems, UCALL can call C language subroutines. See Using Business 
BASIC on DGIUX and INTERACTIVE UNIX Systems for more information. 

How to Use It 
You must initialize all variable arguments before using them with a UCALL, or an 
error message occurs. You can pass only array elements-not arrays-as arguments. 

See your system manager for a description of any UCALL statements that may be 
implemented on your system. 

1-332 Licensed Material-Property of Data General Corporation 093-000351 



Commands. Statements. and Functions in Business BASIC 

UCM$ Function 

Uncrams a crammed string. 

AOSIVS DG/RDOS UNIX 

Format 
LET string-variable 1 =UCM$ (string-variable2) 

Arguments 
string-variable 1 A string variable or substring to receive the uncrammed string. It 

can be the same as string-variable2. 

string-variable2 The string variable or substring (already crammed) that you want 
to uncram. 

What It Does 
CRM$ shortens a string to save space. and UCM$ is the only way you can 
"unshorten" it correctly. 

Every two bytes of string-variable2 are uncrammed to three bytes and put into 
string-variable 1. If string-variable 1 is not large enough to hold the uncrammed string. 
you will lose some of the string. You can unpack only the following characters: A-Z 
(not lowercase). 0-9. and four special characters. set either by using STMA 10 or the 
default characters-comma (.). decimal point (.). minus sign (-). and space. Any 
character in string-variable2 that is not in this set is uncrammed as a space by default 
(see STMA 10). 

How to Use It 
The UCM$ function is used only in LET statements and commands because you must 
assign the uncrammed string to string-variablel. If string-variablel and 
string-variable2 are the same. then you will lose the crammed version of the string 
when you perform the UCM$ on it. Use theUCM$ function only on strings that have 
been crammed using the CRM$ function. If you use UCM$ on a string that has not 
been crammed. string-variable 1 will contain garbage. 

093-000351 Licensed Material-Property of Data General Corporation 1-333 



Commands, Statements, and Functions in Business BASIC 

UCM$ 

Examples 
1. A legal string crammed and uncrammed. 

* LIST 
00010 DIM X$(6),Y$(9) 
00020 LET Y$= "ABCDEFGHI" 
00030 LET X$=CRM$(Y$) 
00040 LET Y$(1,6)="" 
00050 LET Y$=UCM$(X$) 
00060 PRINT Y$ 

*RUN 
ABCDEFGHI 

* 

continued 

2. An illegal string crammed and uncrammed. The uncrammed string displays blanks 
in place of the illegal characters. 

• LIST 
00010 DIM A$[9] ,B$[6] 
00020 LET A$="AB@CD$EF." 
00030 LET B$=CRM$(A$) 
00040 LET A$=UCM$(B$) 
00050 PRINT A$ 

• RUN 
AB CD EF. 

* 

1-334 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

UERM$ Function 

Puts an error message Into a string. 

UNIX 

Format 
LET string-variable=UERM$ (number) 

Arguments 
string-variable A string variable, substring, or string array element (UNIX only) 

used to receive the error message; it must be dimensioned large 
enough to contain the error message. 

number The record number in the BASIC.ER file for the error message 
you want. 

What It Does 
UERM$ retrieves the error message specified by number. The number is typically 
returned by SYS (43). 

How to Use It 
When you trap errors in your program (by using ON ERR), you can have the 
program print the appropriate error message. Also, you can generate your own unique 
error messages by adding messages to the end of the BASIC.ER file and then using 
number to specify which message to retrieve. 

You can use UERM$ only in LET statements or commands because you have to 
assign the error message to string-variable. The largest error message is 64 bytes long. 

Some error messages generated by a UNIX system have no AOSNS or DG/RDOS 
I equivalent. Use SYS(43) and UERM$ to retrieve these error messages. 

See SYS, AERM$, and ERM$ for more information about how to use error 
functions. 

Example 
This example uses ERM$, AERM$, and UERM$ to retrieve error messages from 
SYS(41), SYS (42) , and SYS(43). 

01000 
01010 
01012 
01014 
01016 
01020 
01025 

REM * error handler 
IF SYS(41)=-60 THEN 

IF SYS(42)=-276 THEN 
LET ER$=UERM$(SYS(43» 

ELSE 
LET ER$=AERM$(SYS(42» 

END IF 
01030 ELSE 
01040 LET ER$=ERM$(SYS(41» 
01050 END IF 

:Same as SYS(7) and SYS(40) 

:Same as SYS(31) 

:Same as SYS(7) and SYS(40) 

093-000351 Licensed Material-Property of Data General Corporation 1-335 



Commands. Statements. and Functions in Business BASIC 

UNPACK Statement and Command 

Decodes a record string. 

AOSNS DG/RDOS UNIX 

Format 

UNPACKl 
format-string-variable I 
"format-string-literal" .string-variable, variable-list 
statement-number 

Arguments 
format-string-variable A string expression containing format information that describes 

the composition of string-variable. 

format-string-literal A string literal in quotation marks that contains format 
information describing the composition of string-variable. 

statement-number The statement number of anRFORM statement. 

string-variable A string variable that contains the values for variable-list. 

variable-list A list of string expressions. numeric expressions. or both. to be 
decoded from string-variable. 

What It Does 
The UNPACK decodes string and numeric information from a record variable 
containing binary information into separate variables. The record string must be filled 
through the last byte to be used with UNPACK. The variable list can be string 
variables. substrings. numeric variables. and arrays. The variables in the variable list 
need not be assigned prior to use of UNPACK; they will be assigned automatically as 
in LET and I/O statements. The format string is a string expression containing format 
characters that define how the expression list should be encoded into the record 
string, The statement number. which can replace the format string. must be that of an 
RFORM statement with an appropriate format string. See RFORM for the list of 
format characters and their interpretation. 

1-336 Licensed Material-Property of Data General Corporation 093-000351 



) 

Commands, Statements, and Functions in Business BASIC 

continued UNPACK 

Example 
Read and decode an employee record into fields: employee number, pay rate, 
overtime rate, deduction array, and tax array. 

00320 RFORM JLL+8L*10@179L*6 
I I I I I I *6 4-byte signed integer elements into TAXES 
I I I I I *pick next field starting with byte 179 
I I I I *10 4-byte signed integer elements into DEDNS 
I I I*skip 8 bytes of record string 
I 1*4-byte signed integer for OTRATE 
1*4-byte signed integer for REGRAT 
*2-byte signed integer for EMPNO 

01100 LREAD FILE[5,RECNO),EMPREC$ 
01110 UNPACK 00320, EMPREC$,EMPNO,REGRAT,OTRATE,DEDNS [1) ,TAXES 

:The array TAXES must have already been dimensioned 

093-000351 Licensed Material-Property of Data General Corporation 1-337 



Commands, Statements, and Functions in Business BASIC 

VAL Function 

Converts a string of digits to a numeric value. 

AOSIVS DG/RDOS UNIX 

Format 
VAL (string-expression, error-code) 

Arguments 
string-expression A string variable or string literal in quotation marks that contains 

the string of digits. The special· characters plus (+), minus (-) and 
decimal point (.) are allowed. 

error-code A numeric variable that either can receive a -1 if an error 
occurred in the conversion or indicates the number of digits to the 
right of the decimal point. Zero is returned if the string is a plus 
sign (+), a minus sign (-), a null string, or a string literal 
containing all spaces. 

What It Does 
VAL converts an alphanumeric string of digits to a numeric value. 

For simple conversion, the string should contain only a signed integer or real number 
(leading spaces and trailing spaces are ignored when processing the string). If the 
string contains a negative number, the value returned will be negative. If the string 
contains a decimal point, the value returned will be an integer and the number of 
digits to the right of the decimal point will be returned in error-code. When the string 
contains an invalid character (other than a minus sign, plus sign, or decimal point), 
error-code returns -1. For example, if the string-literal is "5.32X", the number 
returned is 532 and error-code is -1. Note that error-code is not 2 as you would 
expect. If at least one invalid character is in the string, error-code does not define the 
decimal position. 

VAL returns zero and error-code returns zero when the string is null (empty) or 
contains only spaces. If the string is filled with nulls, the value -1 is returned. For 
example, if the string is FILL$(32), the error code is O. If the string is FILL$(O), the 
error code is -1. If the string equals "", the error code is O. 

How to Use It 
Numbers expressed as string literals or string variables cannot be used in arithmetic 
expressions. They must be converted from their present ASCII code to a numeric 
value. U se VAL to convert a string of ASCII digits to a numeric variable that can be 
used in calculations or arithmetic expressions. 

1-338 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued VAL 

Example 

1. Convert the string INS to a number and print the number with a decimal point 
inserted in the correct position. This example uses valid and invalid values for the 
string literal. 

00010 DIM STRLIT$(10) 
00020 ER = 0 
00030 INPUT STRLIT$ 
00040 NUMBA = VAL(STRLIT$,ER) 
00050 PRINT STRLIT$,NUMBA,ER 
* RUN 
? 36.521 
36.521 36521 3 
* RUN 
? 42.729A 
42.729A 42729 -1 

2. Convert the string INS to a number. Print the number with a decimal point 
inserted in the correct position. This example uses valid and invalid values for the 
string literal. 

* LIST 
00010 LET M=O 
00020 DIM A$ [10]., IN$ [10] 
00030 INPUT IN$ 
00040 LET OUT=VAL(IN$,M) 
00050 IF M=~1 THEN GOTO 00090 
00060 LET A$="D10.",M 
00070 PRINT USING A$,OUT 
00080 STOP 
00090 PRINT "ERROR" 
00100 GOTO 00030 

* RUN' 
? 36.521 

36.521 

STOP AT 00080 
* RUN 
? 42.729A 
ERROR 
? 42.729 

42.729 

STOP AT 00080 

* 

093-000351 Licensed Material-Property of Data General Corporation 1-339 



Commands, Statements, and Functions in Business BASIC 

VALUE Statement and Command 

Converts a string to a number. 

AOSNS DG/RDOS UNIX 

Format 
VALUE value,string,position,scale 

Arguments 
value 

string 

position 

scale 

What it Does 

A numeric variable that receives the signed numeric value of 
string. 

A string expression composed of the ASCII characters 
+-.0123456789 and space. 

An optional numeric variable that. when specified. receives an 
error termination code. position is: 

• Positive if string is terminated with either a space or comma 

• Negative when string is terminated by any character other than 
a space or comma 

• 0 if the conversion reaches the end of the string without error 

An optional numeric variable that. when specified. receives the 
implied decimal point location of string. If scale is a negative 
value, no decimal point was found in string. 

VALUE converts an alphanumeric string of digits to a numeric value. 

For simple conversion. the string should contain only a signed integer or real number 
(leading spaces and trailing spaces are ignored when processing the string). If the 
string contains a negative number, the value returned is negative. If the string contains 
a decimal point (.), the value returned is an integer and the number of digits to the 
right of the decimal point is returned in the scale argument. if it is supplied. If no 
decimal point is found. scale returns a negative number. When the string contains an 
invalid character (other than a minus sign (-). plus sign (+) or decimal point). 
position returns with a negative position. For example. if the string literal is "5.32X", 
the number is 532 and position is -5. position does not return with O. which means 
that the conversion reached the end of the string without error. 

How to Use It 
Numbers expressed as string literals or string variables cannot be used in calculations 
or arithmetic expressions. They must be converted from their present ASCII codes to 
numeric values. Use VALUE to make the conversion. You must assign a starting value 
of zero to value. position. and scale, and dimension string before these variables are 
used in a VALUE statement. 

1-340 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued VALUE 

Since VALUE on UNIX systems can return quad precision numbers, string can 
contain numbers up through the maximum size for quad precision. On AOS/VS and 
DG/RDOS systems, the number in string cannot exceed the maximum size allowed for 
a double precision number. 

Example 
Convert an input string, X$, to a number. Print the converted number, the decimal 
location (scale), and the error termination code. 

00010 DIM X$[20] 
00020 LET Y=O 
00030 LET Z=O 
00040 LET X=O 
00050 PRINT "INPUT STRING VALUE, PRESS ESC TO EXIT" 
00060 INPUT USING "",X$; 
00070 VALUE X,X$,Z,Y 
00080 PRINT, "X=" ;X,"Y=" ;Y,"Z=";Z 
00090 GOTO 00060 

* RUN 
INPUT STRING VALUE, PRESS ESC TO EXIT 

? 123 X= 123 Y=-32765 Z= 0 
? 123.45 X= 12345 Y= 2 Z= 0 
? 123.45,678 X= 12345 Y= 2 Z= 7 
? 987. X= 987 Y= 0 Z= 0 
? .0012 X= 12 Y= 4 Z= 0 
? -235-75 X=-235 Y=-32765 Z=-5 
? 123-ABC X=-123 Y=-32765 Z=-5 
? 123.4-56 X=-123456 Y= 3 Z= 0 
? +123.456 X= 123456 Y= 3 Z= 0 
? X= 0 Y=-32768 Z= 0 
? ABCDEF X= 0 Y=-32768 Z=-1 
? 
IKEY AT 00060 

* 

Unsigned integer. 
Unsigned decimal. 
Signed, stop on comma. 
No decimal places. 
Decimal, leading zeroes. 
More than one sign. 
Error terminator. 
Imbedded sign. 
Leading sign. 
Null input string. 
No valid digi ts. 

093-000351 Licensed Material-Property of Data General Corporation 1-341 



Commands, Statements, and Functions in Business BASIC 

VAR DISPLAY Command 

Displays the variables used in a program. 

UNIX 

Format 
VAR DISPLAY [program-name] 

Arguments 
program-name The name of the program for which you want the list of variables. 

This argument is optional. 

What It Does 
V AR DISPLAY supplies an alphabetical list of. all the variables in a SA VE file or in a 
program in working storage. 

If you are running Business BASIC in DO mode (i.e., you included the -D option I 
when you executed Business BASIC), then the output of VAR DISPLAY is similar to 
the output of the VAR utility. If you are running Business BASIC in non..,.DO mode, 
then the output of VAR DISPLAY appears in a window on the right side of your 
screen. The program name and the number of variables are displayed, and variables 
are listed in alphabetical order . The dimensions of string variables are shown, 

How to Use It 
Use this command in keyboard mode. Press q when you are ready to exit the display 
and return to the Business BASIC prompt. 

If there are more variables than can be displayed on one screen, you are prompted 
with the word MORE in the bottom border of the window. At this point, you can press 
q to quit the display, New Line to scroll down one line in the display, or the space 
bar to scroll down one screen. 

1-342 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued VAR DISPLAY 

Example 
In this example, PROG 1 has been loaded into working storage but has not been 

I executed. Since Business BASIC is executing in non-DG mode, the output of VAR 
DISPLAY appears in a window on the right side of the screen. 

* load "PROGl 

* var display 

...-----Variable Name Information-------l 

Program: PROGl 
A$ 
B$ 

C$ 
VARl 

VAR2 

• 

5 VARIABLES 

~ _____ Press any key to continue ______ -; 

At this point, you can press a key to return to the * prompt and run PROG 1. 

* load "PROG! 
* var display 
* run 

A$=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 
B$=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 

* 

093-000351 Licensed Material-Property of Data General Corporation 1-343 



Commands. Statements. and Functions in Business BASIC 

VAR DISPLAY continued 

Now. when you issue the VAR DISPLAY command after PROGl has run. the 
following window is displayed at the right of the screen. 

* load "PROGl 
* var display 

* run 

A$-ABCDEFGHIJ 
B$-ABCDEFGHIJ 

r------ Variable Name Information------t 
Program: PROGl 5 VARIABLES 
A$[80] 
B$[80] 
C$[80] 

VARl[2.3] 
VAR2[lO] 

• 
~ _____ Press any key to continu.~ _____ ~ 

When you press any key. the VAR DISPLAY window at the right of the screen 
disappears and the • prompt returns. . 

1-344 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

VAR RENAME Command 

Changes the names of program variables. 

UNIX 

Format 
VAR RENAME old-variable-name,new-variable-name 

Arguments 
old-variable-name The variable name that you want to change to new-variable-name. 

new-variable-name The new name you want to assign to old-variable-name. 

What It Does 

I V AR RENAME changes the name of a program variable. It is similar to the RNAM 
utility. 

How to Use It 
Use this command in keyboard mode. 

Since renaming of the variable is done in the current program's space, the old 
variable name is not immediately removed. Therefore, if you issue a VAR DISPLAY 
or PROGRAM DISPLAY command after a VAR RENAME but before listing the 
program and re-entering it, the old variable name and the new variable name are both 
in the variable list displayed by VAR DISPLAY. To remove the old variable name 

• from the VAR DISPLAY and PROGRAM DISPLAY output, list the program to a 
file, execute a NEW statement, and then re-enter the program from the file. 

Example 
In this example, you enter an ASCII source file, rename a variable, list the program 
to your screen to verify the change, and then list the program to a file to save the 
change. 

• enter "prog1.sf 
• list 
00010 DIM A$[26] 
00020 LET A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
00030 PRINT A$ 
00040 END 

• var rename AS,ALPHAS 
• list 
00010 DIM ALPHA$[26] 
00020 LET ALPHA$="ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
00030 PRINT ALPHA$ 
00040 END 

• list "newyrog1.sf 

093-000351 Ucensed Material-Property of Data General Corporation 1-345 



Commands, Statements. and Functions in Business BASIC 

WRITE FILE Statement and Command 

Writes length-sensitive output. 

AOSIVS DG/RDOS UNIX 

Format 
WRITE FILE (channel[,byte-position]),expression[,expression ... ] 

Arguments 
channel 

byte-position 

expression 

What It Does 

A numeric expression for the channel number of a file opened for 
random or sequential output. Always enclose the channel number 
in parentheses or square brackets. 

A numeric expression or variable for the relative byte within a file 
to which you want to position the file pointer. 

Any valid numeric or string expression. 

WRITE FILE outputs binary data to any type of file or to your terminal. You 
determine the type of access when you open the file, but WRITE FILE works for 
sequential and random (direct) access. Data can later be retrieved from the file using 
READ FILE. 

The size you specify for byte-position determines the number of bytes output to the 
file. For each variable in a WRITE FILE statement, a specific output will occur; so if 
you have five variables in a WRITE FILE, five separate outputs will occur in 
sequential order (Le., each output is put after the preceding one in the file). The file 
pointer is moved to the end of the last output, so the next output will start where the 
last one stopped. 

How to Use It 
You can write to a file originally opened for sequential access and your program will 
write sequentially on the file. You can also write to a file opened for random access 
starting at some byte position in the file, writing sequentially from that point. If your 
file is a subfile and/or in linked-record format, then you have "records" that are fixed 
in length. A record is a fixed-length area in a linked available record file, subfile. or 
index file. When records have a fixed length, you can easily determine where to 
position the pointer: multiply the total number of bytes per record by the number of 
the record you want to write. 

You can write part of a record or an entire record using one or more variables. If you 
are rewriting a record, you should write an entire record so that you rewrite every 
byte in the record. Since each variable in a WRITE FILE statement is a specific 
output, you can avoid an interrupt that occurs between outputs of a single WRITE 
FILE by using one large variable in a WRITE FILE (a single output cannot be 
interrupted) . 

1-346 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued WRITE FILE 

The byte-position argument enables you to use POSITION FILE and WRITE FILE 
in a single program line. This argument is ignored in statements that perform terminal 
I/O via channel 16. Specifying the argument when the file has been opened in a mode 
that does not allow POSITION FILE causes a runtime error. 

WRITE and WRIT~ FILE(16) output to your terminal and may be used to output 
characters which have special meanings to the PRINT statement. 

Examples 
1. Sequentially fill a file with a string and the array information associated with the 

string. 

*LIST 
00010 OPEN FILE[O,1] ,"FBI" 
00020 DIM S$[15],A[1,2] 
00030 INPUT "SUSPECT'S NAME: ",S$ 
00040 IF S$="END" THEN GOTO 00150 
00060 WRITE FILE[O],S$ 
00070 FOR 1=0 TO 1 
00080 FOR J=O TO 2 
00090 INPUT A[I,J]; 
00100 WRITE FILE[O],A[I,J] 
00110 NEXT J 
00120 NEXT I 
00130 PRINT 
00140 GOTO 00030 
00150 CLOSE 
00160 END 

2. This example writes a six-byte value in both WRITE FILE statements (for triple 
precision systems only). 

00010 OPEN FILE[O,O], "TRIP DATA" 
00020 LET X#=1234567890123 
00030 WRITE FILE[O],X# 
00040 WRITE FILE[O] ,X#+l 

093-000351 Licensed Material-Property of Data General Corporation 1-347 



Commands, Statements, and Functions in Business BASIC 

WRITE FILE continued 

3. Offer a record for rewriting, display the record, then rewrite the record. 

00010 DIM RECORD$(48) :48 bytes + 2 bytes(status)=50-byte records 
00020 OPEN FILE[2,0] ,"DATA" 
00030 INPUT "WHAT RECORD DO YOU WANT TO REWRITE? ", R 
00040 POSITION FILE(2,50*R) :50 is record size, R is record 

:you want. 
00050 READ FILE[2] ,STAT%,RECORD$ :Read 2 bytes into STAT%, 

:rest into RECORD$,then 
00060 PRINT RECORD$ : look at RECORD$. 
00070 INPUT "REWRITE IT? YES(O),NO(l): ",A 
00080 IF A THENGOTO 00400 : If "no" j go to 400. 
00090 INPUT "TYPE NEW RECORD: ", RECORD$ 
00100 POSITION FILE[2,50*R] :00 back to beginning of ·record R. 
00110 WRITE FILE[2],STAT%,RECORD$ :Write new record, over­

:writing old one. 

4. Read a record, display the record, and then rewrite the record. Do the position in 
the READ FILE and WRITE FILE statements. 

00010 DIM RECORD$(48) :48 bytes + 2 bytes (status) 
= 50 bytes 

00020 OPEN FILE(2,0) ,"DATA" 
00030 INPUT "WHAT RECORD DO YOU WANT TO REWRITE: ", R 
00040 READ FILE[2,50*R],STAT%,RECORD$ :50 is record size, R is 

record you want. Read 2 
bytes into STAT% and rest 
into RECORD$. 

00050 PRINT RECORD$ 
00060 INPUT "REWRITE IT? YES(O) , NO(l): ",A 
00070 IF A THEN GOTO 00400 : If "no", go to 400. 
00080 INPUT "TYPE NEW RECORD: ", RECORD$ 
00090 WRITE FILE[2,50*R] ,STAT%,RECORD$ :Position to 

1-348 

:beginning of record R. Write new 
: record. overwriting old one. 

Licensed Material-Property of Data General Corporation 093-000351 



I 

) 

Commands, Statements, and Functions in Business BASIC 

XOR Function 

Performs an exclusive logical OR of two expressions. 

AOSIVS UNIX 

Format 
XOR(expression1, expression2) 

Arguments 
expression1 and expression2 The numeric expressions or variables you want 

compared. 

What It Does 
The exclusive XOR function is used to set bits in a binary expression. The binary 
representations of the two arguments are compared bit by bit. If a bit is set to 0 in 
both expressions, that bit is set to 0 in the result. If a bit is set to 1 in either 
expression, that bit is set to 1 in the result. If a bit is set to 1 in both expressions, 
that bit is set to 0 in the result. 

How to Use It 
Use the XOR function to set bit flags or to combine two sets of flags into a single 
expression. You can use the XOR function in any numeric expression. 

Figure 1-10 shows the result when· the bit values of two· expressions are compared 
using XOR. 

XOR (192. 127) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Power of 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 expr1 = 192 

0 0 0 0 0 0 0 0 0 expr2 = 127 

0 0 0 0 0 0 0 0 0 RESULT = 191 

.. 

Logical XOR of Two Numbers 

Figure 1-10 Logical XOR of Two Numbers 

093-000351 Licensed Material-Property of Data General Corporation 1-349 



Commands, Statements, and Functions in Business BASIC 

XOR continued 

Example 
The XOR function displays the value obtained by clearing the. rightmost seven bits of 
X. 

0.0.0.10. INPUT "Initial value of X: ",X 
0.0.0.20. PRINT "value of Xo.R(X,127): ",Xo.R(X,127) 

• RUN 
Initial value of X: 192 
Value of XOR(X,127): 191 

End of Chapter 

1-350 Ucensed Material-Property of Data General Corporation 093-000351 



) 

Chapter 2 
Statements Related to 

INFOS® II Files 

The statements described in this chapter are used in interfaces between the INFOS® II 
file management system and Business BASIC. INFOS II software is sold as a separate 
product by Data General Corporation for AOS and AOS/VS operating systems. 

The INFOS II system is an indexing system that organizes and manages records of 
information. If you have INFOS II software installed on your system, you can use DB 
statements to access it from within Business BASIC. 

You cannot create an INFOS file with AOSNS Business BASIC. To create your index 
and database, use the AOSNS INFOS utility ICREATE. When this file structure is 
created, Business BASIC lets you manipulate it with all the functions described in 
AOS/VS INFOS® II System User's Manual. 

NOTE: These statements are used to access and modify INFOS files only. Any 
attempt to modify channel strings with Business BASIC LET statements could 
cause inadvertent modification of an index or database. 

Business BASIC imposes a limit of 64 open INFOS II channels for AOS/VS and 16 
open INFOS II channels for AOS. If you exceed this limit, Business BASIC displays 
the error message NO MORE CHANNELS AVAILABLE. 

Business BASIC's INFOS II interface statements are similar to those of other Data 
General products (e.g., COBOL, FORTRAN, and PL/I). The Business BASIC INFOS 
II interface consists of a set of statements that behave like regular Business BASIC 
statements; however, their formats are somewhat different. For easy identification, the 
name of each of these statements begins with DB. 

The following table givej a brief description of each INFOS II statement: 

Statement Description 

DB CLOSE Closes an open INFOS II file. 

DB DELETE Deletes a key and/or record. 

DBGET Gets values returned by INFOS II. 

DBOPEN INFOS Opens an INFOS II index. 

DB READ Reads from an INFOS II file. 

DB REINS Reinstates a logically deleted record. 

DB RELEASE Releases locks and/or position. 

093-000351 Ucensed Material-Property of Data General Corporation 2-1 



Commands, Statements, and Functions in Business BASIC 

Statement 

DB RETRIEVE HIGHKEY 

DB RETRIEVE KEY 

DB RETRIEVE SIDEF 

DB RETRIEVE STATUS 

DB REWRITE 

DBSET 

DB SUBINDEX DEFINE 

DBSUBINDEX DELETE 

DBSUBINDEX LINK 

DBSUBINDEX LINKINIT 

DB SUBINDEX LINKSET 

DBWRITE 

Argument Pairs 

Description 

Retrieves the high key. 

Retrieves the key. 

Retrieves a subindex definition. 

Returns the INFOS II status. 

Rewrites an INFOS II database record. 

Permanently sets an INFOS II parameter. 

Defines a subindex. 

Deletes a subindex. 

Links a subindex. 

Initializes a link subindex string. 

Sets parameters in link subindex string. 

Writes to an INFOS II file. 

Each INFOS II statement has a set of arguments called an argument pair. Argument 
pairs, comparable to switches, alter the statements. Some argument pairs are required 
for particular statements, while others are optional or not applicable. Some examples 
are: 

Argument Pair 

ACCESS=REL 

DUPKEY=NO 

MOTION=BACK 

Definition 

Relative access is requested. 

The specified key is not a duplicate. 

The direction of relative motion is backward. 

Where possible, the statements take default values for argument pairs. You can 
redefine the default values by using the DBSET statement. 

Creating an INFOS II File 
When you create an INFOS II file, two logical structures are defined: an index and a 
database. INFOS II automatically links these two structures to form a single ISAM or 
DB AM file and, using AOS or AOS/VS, allocates space and physically constructs the 
file. 

To create an INFOS II file, use the AOS/VS INFOS II utility ICREATE. You must 
execute ICREATE from the CLI. The format is: 

ICREATE filename 

where filename is the name of the index file. If you do not specify the filename, 
INFOS II prompts you for it. 

Below is a sample ICREATE dialog. See the AOSIVS INFOS® II System User's 
Manual for a complete discussion of ICREATE. 

2-2 Llcen.sed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

****** INFOS FILE CREATION 6/16/82 9:54:15 ****** 

NAME OF FILE TO BE CREATED: ACCOUNTS 
ACCESS METHOD (I=ISAM. D=DBAM) [D] I 

****** DEFINE INDEX FILE ****** 

PAGE SIZE (BYTES) [2048]: 2048 
ROOT MODE SIZE [2042]: 2042 
MAXIMUM KEY LENGTH [255]: 10 
ALLOW DUPLICATE KEYS IN THIS INDEX? (Y OR [N]): N 
ENABLE SPACE MANAGEMENT? (Y OR [N]): N 
ENABLE KEY COMPRESSION? (Y OR [N]): N 
OPTIMIZE RECORD DISTRIBUTION? (Y OR [N]): N 

****** DEFINE INDEX VOLUME(S) ****** 

NUMBER OF VOLUMES TO DEFINE [1]: 1 
VOLUME 1 NAME [VOL01]: VOLOI 
SPECIFY MAXIMUM SIZE? (Y OR [N]): N 
SPECIFY FILE ELEMENT SIZE? (Y OR [N]): N 

****** DEFINE DATABASE FILE ****** 

DATABASE FILE NAME [ACCOUNTS. DB]: ACCOUNTS.DB 
PAGE SIZE (BYTES) [2048]: 2048 
ENABLE SPACE MANAGEMENT? (Y OR [N]): N 
ENABLE DATJI.> RECORD COMPRESSION? (Y OR [N]): N 
OPTIMIZE RECORD DISTRIBUTION? (Y OR [N]): N 

****** DEFINE DATABASE VOLUME(S) ****** 

NUMBER OF VOLUMES TO DEFINE [1]: 1 
VOLUME 1 NAME [VOL01]: VOLOI 
SPECIFY MAXIMUM SIZE? (Y OR [N]): N 
SPECIFY FILE ELEMENT SIZE? (Y OR [N]): N 

Accessing INFOS II Files 

To access an INFOS II index file, you must open it using the DB OPEN statement 
from keyboard mode. Type 

* DBOPEN INFOS filename.string 

where filename is the name of the INFOS II file (named with ICREATE), and string 
is the name of the channel on which the INFOS II file is opened. 

The string is called the channel string. It is similar to the channel number used in 
Business BASIC statements (such as PRINT FILE, READ FILE, and WRITE FILE). 
DBOPEN initializes the channel string. which you use throughout the program to refer 
to the INFOS II file. The following example illustrates how to use DB OPEN. 

093-000351 Licensed Material-Property of Data General Corporation 2-3 



Commands, Statements, and Functions in Business BASIC 

To open an INFOS II file called ACCOUNTS on channel string MASTERS, enter 

... DB OPEN INFOS "ACCOUNTS", MASTERS 

Now you can use any INFOS II statement to manipulate the file. 

Two common statements are DBWRITE and DBREAD. DBWRITE writes records 
and/or keys to an INFOS II .file; DBREAD reads records and/or keys from an INFOS 
II file. 

To write a record to ACCOUNTS, enter 

... DBWRITE MASTERS 

where MASTERS is the channel string referring to the INFOS II file ACCOUNTS. 
DBWRITE rewrites a record to an INFOS II database. 

To read a record from ACCOUNTS,enter 

... DB READ MASTERS 

where MASTERS is the channel string referring to the INFOS II file ACCOUNTS. 

To read the previous record in ACCOUNTS and store it in a string variable called 
MDATAS, enter 

... DB READ MASTERS, ACCESS=REL, MOTION=BACK, REC=MDATAS 

ACCESS=REL indicates relative access (versus keyed). MOTION=BACK indicates 
that the direction of relative motion is backward because the system reads the previous 
record. MOTION cannot be used with the argument pair ACCESS=KEY. 
REC=MDATA$ indicates that MDATAS is the record string because it receives the 
data from the record that the system reads. 

Other common INFOS II operations include deleting keys (DB DELETE) and 
reinstating logically deleted records (DBREINS). You may also want to use more 
advanced INFOS II features. These include defining subindexes (DBSUBINDEX 
DEFINE), retrieving subindex definitions (DB RETRIEVE SIDEF), and linking 
subindexes (DBSUBINDEX LINK). Two INFOS II statements, DBSET and DBGET, 
are not directly related to any particular INFOS II function. DBSET lets you set 
default values for subsequent program statements; DBGET retrieves values returned by 
previous statements. 

The Business BASIC statements used in conjunction with the INFOS II system are 
presented in alphabetical order in the following pages. For more information about the 
INFOS II system, see the AOS/VS INFOS® II System User's Manual. 

Ucensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DBCLOSE Statement 

Closes an open INFOS II file. 

AOSIVS 

Format 
DBCLOSE channel-string 

Arguments 
channel-string 

What it Does 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

DB CLOSE closes an INFOS II file that has been opened with DBOPEN. INFOS II 
automatically writes to the file all modified index and database information currently 
in the system buffer and unlocks· any locked partial and complete data records. The 
CLOSE statement without arguments and the NEW statement also close INFOS II 
files. 

Example 
• 100 DBCLOSE X$ 

093-000351 Ucensed Material-Property of Data General Corporation 2-5 



Commands, Statements, and Functions in Business BASIC 

DB DELETE Statement 

Deletes a key and/or record. 

AOSIVS 

Format 
DB DELETE channel-string[argument pair, ... ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

Any relevant argument pair that can be used with the DBSET 
statement. Argument pairs used with DBDELETE affect the 
program for the DB DELETE statement only, whereas argument 
pairs used with DBSET affect the entire program (see DBSET). 

DBDELETE deletes a key, partial record, or record. 

To specify the scope of a deletion, use the GLOBAL=YES and LOCAL=YES 
argument pairs. GLOBAL argument pairs affect the database (see DBSET). LOCAL 
argument pairs affect the partial record on subsequent DELETE operations. To 
specify the type of deletion (logical or physical), use the DELETE=LOG or 
DELETE=PHYS (the default) argument pair. 

When DBDELETE is used with the DELETE=LOG pair, then either or both of the 
GLOBAL=YES and LOCAL=YES pairs should also be specified. These pairs can be 
included with either the DBDELETE statement or the DBSET statement. If neither 
GLOBAL=YES nor LOCAL=YES is specified, no logical deletion occurs. 

Example 
In this example, the logically deleted key is the one contained in KEYID$. 

·0100 DB DELETE X$,DELETE=LOG,GLOBAL=YES,KEY=KEYID$ 

2-6 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DBGET Statement 

Gets values returned by INFOS II. 

AOSNS 

Format 
DBGET channel-string[,argument pair,,,.] 

Arguments 
channel-string 

argument pair 

093-000351 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

You can use any of the following argument pairs: 

FEEDBACK=numeric-variable 
Stores the feedback value in numeric-variable. 

KEYNO=numeric-variable 
Used with the OCCUR=numeric-variable argument pair; it specifies 
the key level to which the OCCUR=numeric-variable pair applies. 

If you do not use this pair, INFOS II returns the occurrence 
number for the first key (KEYNO=l). 

Note: This pair does not return a value. 

MAXKEYLEN=numeric-variable 
Returns the maximum key length allowed for the last subindex for 
which a DB RETRIEVE SIDEF was performed. 

OCCUR=numeric-variable 
numeric-variable receives the occurrence number of the duplicate 
key. 

PRECLEN=numeric-variable 
Returns the partial record length for the last subindex for which a 
DBRETRIEVE SIDEF statement was performed. 

RNSIZE=numeric-variable 
Returns the next node size for the last subindex in which a 
DB RETRIEVE SIDEF was performed. 

SIFLAG=numeric-variable 
Returns the subindex definition flags for the last subindex for 
which a DB RETRIEVE SIDEF was performed. 

SILEVEL=numeric-variable 
Returns the subindex level where the last INFOS II access 
occurred. 

ST ATUS=numeric-variable 
Returns the INFOS II status. 

Licensed Material-Property of Data General Corporation 2-7 

I 



Commands, Statements. and Functions in Business BASIC 

DBGET continued 

What It Does 
DBGET gets values returned by previous INFOS II statements. DBGET is not directly 
related to any INFOS II function; rather, it lets you access information stored in the 
channel string. 

If an error occurred during execution of the previous INFOS II statement, you can 
still use DBGET to get information in certain cases. For example, if you execute a 
DBRETRIEVE STATUS on a record that has no database record, DBGET returns a 
STATUS value even though the INFOS II error DATABASE RECORD NOT PRESENT 
occurs. 

The returned STATUS value consists of an aggregate of bits. If you use the AND 
function to compare the bit patterns of STATUS with one of the following masks and 
the result is not zero, the condition indicated by the particular mask is present. 

Mask 

1 
2 
4 

32 
64 

If AND(mask, STATUS) < > 0 then 

The data base record is logically deleted. 
The partial record is logically deleted. 
The last (or only) key is a duplicate. 
The access key is linked to a subindex. 
The record is longer than the buffer. 

The returned SIFLAG value consists of an aggregate of bits. If you use the AND 
function to compare the bit pattern of one of the following masks with the bit pattern 
of the value returned from DBGET SIFLAG and the result is not zero, the error 
condition indicated by the particular mask is present. 

Mask 

2048 
16384 

If AND (mask, STATUS) < > 0 then 

Duplicate keys are not allowed. 
Subindexes are not allowed. 

Example 
This statement returns the occurrence number of a duplicate key to OKKUR and the 
status value to STAT. 

7040 DBGET F$,OCCUR=OKKUR,STATUS=STAT 

2-8 licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DBOPENINFOS Statement 

Opens an INFOS II file. 

AOSIVS 

Format 
DB OPEN INFOS filename,channel-string[,argument pair, ... ] 

Arguments 
filename 

channel-string 

argument pair 

093-000351 

The name of the INFOS II index rile you are opening. The 
filename can be a string, a substring, or a literal filename in 
quotes. 

A string variable used by the system to hold channel and other 
information concerning the INFOS II file. Use channel-string in all 
statements referring to the INFOS II file. 

You can use any of the following argument pairs: 

ACCESS=EXCL 
Opens the index and database exclusively. 

ACCESS=E;XCLDB 
Opens the index in shared mode and the database exclusively. 

ACCESS=EXCLI 
Opens the index exclusively and the database in shared mode. 

ACCESS=RDON 
Opens the index and database in read-only mode. 

ACCESS=SHARED 
Opens the index and database in shared mode. 

MAXKEYS=numeric-variable 
Sets the maximum number of levels of keyed access to be used at 
one time (for this channel) to numeric-variable. numeric-variable 
can be a numeric variable, a subscripted numeric variable, or an 
unsigned numeric constant. 

NLOCKS=numeric-variable (AOS only) 
Sets the maximum number of simultaneous locks allowed to the 
number specified in numeric-variable. This argument can be a 
numeric variable, a subscripted numeric variable, or an unsigned 
numeric constant. (This argument pair is accepted but ignored on 
AOS/VS.) 

To lock records, the NLOCKS=numeric-variable argument pair 
must be set to a value greater than zero. Failure to do this returns 
a LOCK LIMIT EXCEEDED error message. When NLOCKS=O, the 
record is still created but it has no locking capability. 

Licensed Material-Property of Data General Corporation 2-9 

I 



Commands, Statements, and Functions in Business BASIC 

DBOPENINFOS continued 

What It Does 
DB OPEN INFOS opens an existing INFOS II index file using a channel string. This is 
similar to the way OPEN opens a Business BASIC file using a channel number. When 
you open a Business BASIC file, you provide the channel numbers. When you use 
DB OPEN to open an INFOS file, you provide a dimensioned string that you will use 
in subsequent INFOS II statements to refer· to the INFOS II index file. DBOPEN 
INFOS initializes channel-string to the following DBSET defaults: 

ACCESS=REL, DELETE=PHYS, GLOBAL=NO, INVERT=NO, LOCAL=NO, LOCK=NO, 
LRECLEN=YES, MOT I ON=FWD, RELLOCK=NO, RELPOS=NO, SDBASE=NO, 

I SETPOS=YES, SPREC=YES, UNLOCK=NO 

How to Use It 
To access an INFOSII file, use DBOPEN INFOS. Under AOS you can use this 
statement to open 16 files simultaneously; the limit on an AOS/VS system is 64. 
Before using the statement, you must: 

1. Create the INFOS II index file using the INFOS II utility ICREATE. 

ICREATE creates two files: filename (index file) and filename.db (database). You 
can then use the statement DBOPEN INFOS filename to open filename. (For a 
complete discussion of ICREATE. see INFOS® II System User's Manual.) 

2. Dimension the channel string. 

To dimension the channel string under AOS, use the formula: 

(16 * MAXKEYS) + 56 

To dimension the channel string under AOS/VS, use the formula: 

(44 * MAXKEYS) + 136 

MAXKEYS is the value of the MAXKEYS argument pair (default=l). 

A channel string is comparable to the channel number in other Business BASIC 
statements (such as PRINT FILE, READ FILE, and WRITE FILE). It provides 
a unique way to reference the INFOS II file. channel-string contains information 
Business BASIC needs to access INFOS II. Once you have opened the INFOS II 
file, use the channel string only in INFOS II statements. Do not alter 
channel-string until you have closed the INFOS II file. The Business BASIC 
INFOS II statements allow you to access a wide range of INFOS II features, so 
you should not need to change the contents of the string. 

Examples 
1. This statement opens the INFOS II index file FILE using CASES$ as the channel 

string. 

* 100 DB OPEN INFOS FILE$,CASES$ 

2-10 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

continued DBOPENINFOS 

2. This statement opens the INFOS II file ACCOUNTS using MASTER$ as the 
channel string. Both the index and database are opened in shared mode. 

* 200 DB OPEN INFOS "ACCOUNTS" ,MASTERS,NLOCKS=l ,MAXKEYS=l , 
ERR=900, ACCESS=SHARED 

093-000351 Licensed Material-Property of Data General Corporation 2-11 



Commands, Statements, and Functions in Business BASIC 

DB READ Statement 

Reads data from an INFOS II file. 

AOSIVS 

Format 
DB READ channel-string[,argument pair, ... ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

Any argument pair that can be used with the DBSET statement. 
Argument pairs used with DBREAD are in effect for the 
DBREAD statement only, whereas argument pairs used with 
DBSET affect the entire program (see DB SET) . 

DB READ reads data from an INFOS II file. 

Examples 
1. This statement reads records in ascending order from the INFOS II file opened on 

MASTER$. 

* 100 DB READ MASTERS,MOTION=FWD 

2. If you are above a subindex, you can use a DBREAD statement with the suppress 
database option (SDBASE=YES) to position to the subindex. 

* 200 DB READ XS,ACCESS=REL,MOTION=DOWNFWD,SDBASE=YES 

2-12 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DBREINS Statement 

Reinstates a logically deleted record. 

AOSIVS 

Format 
DB REINS channel-string[,argument pair, ... ] 

Arguments 
channel-string 

argument pair 

A string used to refer to an open INFOS II file (see DBOPEN 
INFOS). 

Any argument pairs that can be used with the DBSET statement. 
Argument pairs used with DB REINS affect the program for the 
DB REINS statement only, whereas argument pairs used with 
DBSET affect the entire program (see DBSET). 

What It Does 
DBREINS reverses the effect of a logical deletion. 

Example 
• 100 DBREINS X$ 

093-000351 Licensed Material-Property of Data General Corporation 2-13 



Commands. Statements. and Functions in Business BASIC 

DB RELEASE Statement 

Releases locks and/or current position. 

AOSIVS 

Format 
DB RELEASE channel-string[.argument pair .... ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DBOPEN 
INFOS). 

Any relevant argument pairs that can be used with the DBSET 
statement. Argument pairs used with.DBRELEASE affect the 
program for the DB RELEASE statement only. whereas argument 
pairs used withDBSET affect the entire program (see DBSET). 

DB RELEASE releases any locks and/or the current position. 

To specify the functions to be performed. use the RELLOCK and RELPOS argument 
pairs (see DB SET) . 

Example 
This statement releases any locks on the file referenced by X$ but maintains the 
current position within the file. 

• 100 DB RELEASE X$.RELLOCK=YES.RELPOS=NO 

2-14 Ucensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DB RETRIEVE HIGHKEV Statement 

Retrieves the high key. 

AOSIVS 

Format 
DBRETRIEVE HIGHKEY channel-string[,argument pair ... ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DBOPEN 
INFOS). 

Any argument pairs that can be used with the DBSET statement. 
Argument pairs used with DB RETRIEVE HIGHKEY affect the 
program for the DB RETRIEVE HIGHKEY statement only, 
whereas argument pairs used with DBSET affect the entire 
program (see DBSET). 

DBRETRIEVE HIGHKEY retrieves the highest key in the selected subindex. 

INFOS II returns the retrieved key to the string variable specified with the REC 
argument pair (see DBSET), not to one of the string variables specified with the KEY 
argument pair. 

If SETPOS=YES is specified either by a DBSET statement or by a DB RETRIEVE 
HIGHKEY statement, then the current position is set to the highest key in the 
subindex. 

Example 
* 100 DB RETRIEVE HIGHKEY X$ 

093-000351 Licensed Material-Property of Data General Corporation 2-15 



Commands, Statements, and Functions in Business BASIC 

DB RETRIEVE KEY Statement 

Retrieves the key. 

AOSIVS 

Format 
DBRETRIEVE KEY channel-string[,argument pair, . .. ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DBOPEN 
INFOS). 

Any relevant argument pairs that can be used with the DBSET 
statement. Argument pairs used with DB RETRIEVE KEY affect 
the program for the DBRETRIEVE KEY statement only, whereas 
argument pairs used with DBSET affect the entire program (see 
DBSET). 

DB RETRIEVE KEY retrieves the key specified by the ACCESS, MOTION, and/or 
KEY argument pairs (see DBSET). If the user fails to specify the REC argument pair 
in a prior DBSET or in the DB RETRIEVE statement, then the message ERROR 2 -
STATEMENT OR COMMAND SYNTAX IS INVALID is displayed. 

INFOS II returns the retrieved key to the string variable specified with the REC 
argument pair, not to one of the string variables specified with the KEY argument 
pair. 

Example 
This statement returns the first key in the subindex to RECORDS when you are 
positioned above a subindex. 

* 300 DBRETRIEVE KEY X$,MOTION=DOWNFWD,REC=RECORD$ 

2-16 licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DB RETRIEVE SIDEF Statement 

Retrieves a subindex definition. 

AOSIVS 

Format 
DBRETRIEVE SIDEF channel-string [,argument pair, ... ] 

Arguments 
channel-string 

argument pair 

What It Does 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

Any relevant argument pairs that can be used with the DBSET 
statement. Argument pairs used with DB RETRIEVE SIDEF affect 
the program for the DBRETRIEVE SIDEF statement only, 
whereas argument pairs used with DBSET affect the entire 
program. (see DBSET). 

DBRETRIEVE SIDEF retrieves parameters of the subindex definition linked to the 
selected key. The returned INFOS II status indicates whether a given key is linked to 
a subindex. Once you retrieve the subindex definition, you must use DBGET to get 
the returned parameters. 

Example 
• 070 DBRETRIEVE SIDEF MASTERS 

093-000351 Licensed Material-Property of Data General Corporation 2-17 



Commands, Statements, and Functions in Business BASIC 

DB RETRIEVE STATUS Statement 

Returns the INFOS II status. 

AOSIVS 

Format 
DB RETRIEVE STATUS channel-string[,argument pair, .. . ] 

Arguments 
channel-string A string used to refer to an open INFOS II file (see DB OPEN 

INFOS). 

argument pair 

What It Does 

Any relevant DBSET argument pairs. These argument pairs affect 
the program for the DB RETRIEVE statement only. Argument 
pairs used with DBSET affect the entire program (see DBSET). 

DB RETRIEVE STATUS retrieves the INFOS II status for a key and/or record. You 
must assign the status value to a variable. To do this, use the DBGET statement with 
the STATUS=numeric-variable clause (see DBGET). 

Example 
In this program fragment, INFOS II retrieves the status of the file opened on the 
channel string X$ and assigns the status value to STAT. 

* 100 DB RETRIEVE STATUS X$,ACCESS=REL,MOTION=FWD 
* 110 DBGET X$,STATUS=STAT 

2-18 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DB REWRITE Statement· 

Rewrites a record In an INFOS II data base. 

AOSIVS 

Format 
DBREWRITE channel-string[,argument pair, ... ] 

Arguments 
channel-string 

argument pair 

A string used to refer to an open INFOS II file (see DBOPEN 
INFOS). 

Any relevant DBSET argument pairs. These argument pairs affect 
the program for the DB REWRITE statement only. Argument pairs 
used with DBSET affect the entire program (see DBSET). 

What It Does 
DBREWRITE is used to update the contents of an existing data record or partial 
record. Also it is used to write a new data record or partial record for a key that 
currently has no record/partial record associated with it. The updated data record may 
be longer or shorter than its predecessor. 

093-000351 Ucensed Material-Property of Data General Corporation 2-19 



Commands, Statements, and Functions in Business BASIC 

DBSET Statement 

Sets an INFOS II parameter. 

AOSIVS 

Format 
DBSET channel-string[,argument pair, ... ] 

Arguments 
channel-string A string used to refer to an open INFOS II file (see DBOPEN 

INFOS). 

argument pair You can use any of the following argument pairs: 

Argument Pair Description 

ACCESS=KEY Uses keyed access. 

ACCESS=REL Uses relative access. This is the default for DB OPEN. 

ACCESS=RELKEY 

APXKEY=NO 

APXKEY=YES 

DELETE=LOG 

DELETE=PHYS 

DUPKEY=NO 

DUPKEY=YES 

ERR=Une-number 

Uses relative keyed access. 

Does not use approximate keys. 

Uses approximate keys. 

Any future deletions will be logical deletions. 

Any future deletions will be physical deletions. This is 
the default for DBOPEN. 

The specified key is not a duplicate. 

The specified key is a duplicate. Set the occurrence 
number (see OCCUR). 

Sends control to line-number if an error occurs. (See 
the section "What It Does.") 

FEEDBACK=num-variable Sets the feedback numeric-variable for an inverted 

GENKEY=NO 

GENKEY=YES 

GLOBAL=NO 

GLOBAL=YES 

operation. 

Does not use a generic key. 

Uses a generic key. 

Any future locks, deletions, or reinstatements will not 
affect the database. This is the default for DBOPEN. 

Any future locks or deletions will affect the database. 

2-20 Licensed Material-Property of Data General Corporation 093-000351 



) continued 

Argument Pair 

INVERT=NO 

INVERT=YES 

KEY=string-variable 

Commands, Statements, and Functions in Business BASIC 

DSSET 

Description 

Do not perform an inverted write or rewrite. This is 
the default for DB OPEN. 

Perform an inverted write or rewrite. Use FEEDBACK 
to set the database pointer. If you do not use 
SDBASE=YES, INFOS II rewrites the record in the 
database (see SDBASE). 

INFOS II uses the current value of string-variable at 
the time of the . actual "INFOS II statement that 
requires the key. It does not use the value of the 
string set in the DBSET statement (unless this is the 
same value in the statement that requires the key). 
You cannot modify string-variable by INFOS II 
statements. You can modify string-variables only used 
with REC and PREC (discussed below). 

KEYNO=numeric-variable This keyword allows you to specify which level of keys 
will be modified by the applicable keys. It only affects 
the following pairs: 

APXKEY=NO 
APXKEY=YES 
DUPKEY=NO 
DUPKEY=YES 

GENKEY=NO 
GENKEY=YES 
KEY=string-variable 
OCCUR=numeric-variable 

If the KEYNO keyword does not appear on a line, 
then the above keywords affect the first key 
(KEYNO=l). 

LEVELS=numeric-variable Set the number of keyed access levels you will use on 
the next INFOS II access. 

LOCAL=NO 

LOCAL=YES 

LOCK=NO 

LOCK=YES 

LRECLEN=NO 

Do not affect the partial record on subsequent LOCK, 
DELETE, or REINSTATE operations. This is the 
default for DB OPEN. 

Affect the partial record on subsequent LOCK, 
DELETE, or REINSTATE operations. 

Do not lock the accessed position. This is the default 
for DB OPEN. 

Lock the accessed position. When using this option, 
specify either GLOBAL=YES or LOCAL=YES, but 
not both. 

Do not limit the record length on the next INFOS II 
access. 

093-000351 Ucensed Material-Property of Data General Corporation 2-21 



Commands. Statements. and Functions in Business BASIC 

DBSET continued 

Argument Pair Description 

LRECLEN=YES Truncate the returned database recotd.onany 
subsequent reads if it will not completely fit into the 
record string variable (see REC=string-variable below). 
This is the default for DB OPEN. 

MOTION=BACK The direction of relative motion is backward. 

MOTION=DOWN The direction of relative motion is down. 

MOTION=DOWNFWD The direction of relative motion is down and forward; 

MOTION=FWD The direction of relative motion is forward. This is the 
default for DBOPEN. 

MOTION=STATIC The directionofrelative motion is static. 

MOTION=UP The direction of relative motion is up; 

MOTION=UPBACK The direction of relative motion is up and backward. 

MOTION=UPFWD The direction of relative motion is up and forward. 

OCCUR=numeric-variable Set the occurrence numeric-variable for use with 

PREC=string-variable 

REC=string-variable 

RELLOCK=NO 

RELLOCK=YES 

RELPOS=NO 

duplicate keys . 

. Use string-variable to read and write the "partial" 
record. INFOS II uses the current contents of 
string-variable when the record is accessed by INFOS 
II. 

On a read. if string-variable is not long enough to hold 
the entire partial record. INFOS II truncates the 
record. 

Use the specified string to read and write the 
"database" record. As in KEY and PREC. INFOS II 
uses the current contents of the string when the record 
is accessed with INFOS II. 

On the Retrieve Key and Retrieve High Key 
operations. INFOS II stores the returtled key in the 
record string variable. 

Do not release locks on a subsequent DB RELEASE 
statement. This is the default for DB OPEN. 

Release locks on a subsequent DB RELEASE 
statement. 

Do not release the current position on a subsequent 
DBRELEASE statement. This is the default for 
DBOPEN. 

2-22 Ucensed Material-Property of Data General Corporation 093-000351 



continued 

Argument Pair 

RELPOS=YES 

SDBASE=NO 

SDBASE=YES 

SETPOS=YES 

SETPOS=NO 

SPREC=NO 

SPREC=YES 

UNLOCK=NO 

UNLOCK=YES 

What It Does 

Commands, Statements, and Functions in Business BASIC 

DBSET 

Description 

Release the current position on a subsequent 
DBRELEASE statement. 

Do not suppress the database on the following 
operations. This is the default for DBOPEN. 

Suppress the database on the following operations. 

INFOS II automatically suppresses the database if you 
have not specified a string variable prior to the INFOS 
II request. 

Set current position. 

Sets the pointer to the current accessed key after the 
command operation has been performed. 

Do not set current position. This is the default for 
DB OPEN. 

INFOS sets the pointer to the last key where the 
current position was set after the command operation 
is performed. 

Do not suppress the partial record on the following 
operations. 

Suppress the partial record on the following operations. 
This is the default for DBOPEN. 

INFOS II automatically suppresses the partial record if 
you have not specified a string. variable prior to the 
INFOS II request. 

Do not unlock the specified position. This is the 
default for DBOPEN. 

Unlock the specified position. 

DBSET sets INFOS II parameters for the duration of a program. The effect is 
permanent, but only for channel-string specified in the DBSET statement. The 
ERR=line-number argument pair affects the program for the duration of the DBSET 
statement only. It does not set a global ERR=/ine-number parameter for the duration 
of the program. 

If you use DBSET's argument pairs in an INFOS II statement other than DBSET, 
Business BASIC uses those argument pairs for the duration of that statement. 

093-000351 Licensed Material-Property of Data General Corporation 2-23 



Commands, Statements, and Functions in Business BASIC 

DBSET continued 

How to Use It 
Do not use DBSET prior to DBOPEN INFOS. Since DB OPEN INFOS initializes 
values in channel-string that you can set with DBSET, DB OPEN INFOS would 
overwrite options specified first with DBSET (see DB OPEN INFOS). 

You can retrieve certain parameters, particularly FEEDBACK and OCCUR, with the 
DBGET statement and then pass them to another channel-string with DBSET. 
However, if you use the same channel-string for DBGET and DBSET, then the 
correct value is already in place and you do not need the statements. 

Example 
In this program fragment, DBSET sets the record string to RECORDS, the key string 
to KEYIDS, specifies that the pointer should be set to the current accessed key after 
each command operation, and that keyed access is to be used. 

* 100 DBOPEN INFOS FILE$,X$ 
* 200 DBSET X$,REC=RECORD$,KEY=KEYID$,SETPOS=YES,ACCESS=KEY 

2-24 Licensed Material-Property of Data General Corporation 093-000351 



Commands. Statements. and Functions in Business BASIC 

DBSUBINDEX DEFINE Statement 

Defines a subindex. 

AOSIVS I 

Format 
DBSUBINDEX DEFINE channel-string[.argument pair •... J 

Arguments 
channel-string A string used to refer to an open INFOS II file (see DBOPEN 

INFOS). 

argument pair 

What It Does 

Any that can be used with DB SET. plus any of the following: 

ALLOWSI=NO 
Does not allow you to create lower-level subindexes (Le .• 
subindexes below the subindex you are defining). 

ALLOWSI=YES 
Allows you to create lower-level subindexes (Le .• subindexes below 
the level you are defining). 

ALLOWDK=NO 
Does not allow duplicate keys in the subindex. 

ALLOWDK=YES 
Allows duplicate keys in the subindex. 

MAXKEYLEN=numeric-variable 
Sets the maximum key length of the subindex. 

PRECLEN=numeric-variable 
Sets the partial record length. 

RNSIZE=numeric-variable 
Sets the root node size. 

DB SUBINDEX DEFINE defines a new subindex level in the index. INFOS II links 
the key on which you are positioned to the subindex you are defining. 

Example 
This defines a new subindex for the file referenced by XS. Duplicate keys are not 
permitted in the subindex. nor may any subindexes be defined for the new subindex. 

• 160 DBSUBINDEX DEFINE XS.ALLOWSI=NO.ALLOWDK=NO 

093-000351 Licensed Material-Property of Data General Corporation 2-25 



Commands,· Statemepts, and Functions in Business BASIC 

DBSUBINDEX DELETE Statement 

Deletes a subindex. 

AOSIVS 

Format 
DBSUBINDEX DELETE channel-string[,argument pair, ... ] 

Arguments 
channel-string A string used to refer to an open INFOS II file (see DBOPEN 

INFOS). 

argument pair Any that can be used with the DBSET statement. Argument pairs 
used with DBSUBINDEX DELETE affect the program for the 
DBSUBINDEX DELETE statement only.·whereas argument pair 
used with DBSET affect the entire program (see DBSET). 

What It Does 
DB SUBINDEX DELETE performs one of two functions: 

1. Deletes a subindex or its associated database. 

2. Deletes the link between the accessed key and its associated subindex. 

To delete a subindex, two conditions must be met: 

1. No other keys can be linked to the subindex. 

2. No keys in the subindex can be linked to another subindex. 

If both conditions are met, INFOS II deletes the subindex and its associated database 
(except for data records also linked to a different subindex). If one or none of the 
conditions is met, INFOS II deletes the link between the accessed key and its 
associated subindex (it does nothing to the subindex). 

Example 
• 190 DBSUBINDEX DELETE X$ 

2-26 UQensed Material-Property of Data General Corporation 093-000351 



Commands. Statements. and Functions in Business BASIC 

DBSUBINDEX LINK Statement 

Links a subindex. 

AOSIVS 

Format 
DBSUBINDEX LINK channel-string,linksi-string[.argument pair .... ] 

Arguments 
channel-string 

linksi-string 

argument pair 

093-000351 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

A string initialized by DBSUBINDEX LINKINIT and set up by 
DBSUBINDEX LINKSET. 

Any of the following optional keyword and argument pairs: 

SACCESS=access 
Specifies the type of access you use to select the source key. (See 
theDACCESS list below.) 

SMOTION=motion 
Specifies the direction of motion (see DMOTION list below) you 
use to select the source key. 

SSETPOS=NO 
Does not set position to the source key. 

SSETPOS=YES 
Sets position to the source key. 

DACCESS=access 
Specifies the type of access you use to select the destination key. 
access can be: 

KEY keyed 
REL relative 
RELKEY relative keyed 

DMOTION=motion 
Specifies the direction of motion you use to select the destination 
key. where motion is: 

FWD forward 
BACK backward 
UP up 
DOWN down 
UPFWD up and forward 
DOWNFWD down and forward 
UPBACK up and backward 
STATIC no motion 

Licensed Material-Property of Data General Corporation 2-27 



Commands, Statements, and Functions in Business BASIC 

DBSUBINDEX LINK continued 

DSETPOS=NO 
Does not set position to the destination key. 

DSETPOS=YES 
Sets position to the destination key. 

What It Does 
DBSUBINDEX LINK links a key to a subindex that has been previously defined. 
You must provide positioning information for two keys: 

• Source key - a key linked to a subindex (S) 

• Destination key - the key you want to associate with the subindex (D) 

Use DB SUBINDEX LINKSET to select the source and destination keys (see 
DB SUBINDEX LINKSET). 

Example 
* 490 DB SUBINDEX LINK X$ LINKSI$ 

2-28 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

DBSUBINDEX LINKINIT Statement 

Initializes a link subindex string. 

AOSIVS 

Format 
DB SUBINDEX LINKINIT linksi-string[,argument pair , ... ] 

Arguments 
linksi-string 

argument pair 

What It Does 

The string used to specify the index locations that are· to be 
linked. 

Any of the following: 

SLEVELS=numeric-variable 
Sets the maximum number of source key levels. 

D LEVELS=numeric-variable 
Sets the maximum number of destination key levels. 

DB SUBINDEX LINKINIT initializes a string so you can use it with subsequent 
DBSUBINDEX LINKSET statements and with one or more DBSUBINDEX LINK 
statements. 

You must dimension the string variable linksi-string. The size of the string is computed 
as follows: 

AOS systems: 16 * (DLEVELS + SLEVELS) + 40 

AOS/VS systems: 44 * (DLEVELS + SLEVELS) + 92 

If you do not use parameters for SLEVELS and DLEVELS, INFOS II uses the 
default value 1. 

Example 
* 770 DB SUBINDEX LINKINIT MASTER$ 

093-000351 Licensed Material-Property of Data General Corporation 2-29 



Commands, Statements, and Functions in Business BASIC 

DB SUBINDEX LINKSET Statement 

Sets parameters in a link subindex string. 

AOSIVS 

Format 
DB SUBINDEX LINKSET linksi-string[,argument pair , ... ] 

Arguments 
linksi-string 

argument pair 

What It Does 

The string used to specify the index locations that are to be 
linked. 

Any of the following optional keyword and argument pairs: 

SKEYNO=numeric-variable 
Specifies that the following parameters in the statement apply to 
the source key level given by numeric-variable. (See DBSET.) 

D KEYNO=numeric-variable 
Specifies that the following parameters in the statement apply to 
the destination key level given by numeric-variable. 

APXKEY=NO 
APXKEY=YES 
DUPKEY=NO 
DUPKEY=YES 
GENKEY=NO 
GENKEY=YES 
KEY=string-variable 
OCCUR=numeric-variable 

DBSUBINDEX LINKSET sets parameters in linksi-string that are used in the 
DB SUBINDEX LINK statement. 

Example 
* 570 DB SUBINDEX LINKSET MASTER$ 

2-30 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

OBWRITE Statement 

Writes a key and/or a record to an INFOS II file. 

AOSIVS 

Format 
DB WRITE channel-string[,argument pair, ... ] 

Arguments 
channel-string 

argument pair 

Example 

A string used to refer to an open INFOS II file (see DB OPEN 
INFOS). 

Any relevant DBSET argument pairs. Argument pairs used with 
DBWRITE affect the program for the DBWRITE statement only, 
whereas argument pairs used with DBSET affect the entire 
program (see DBSET). 

This example causes the data in string RECORD$ to be written to a data record in the 
database file referenced by X$ and the key contained in KEYID$ to be written to the 
index file referenced by X$. 

* 100 DBWRITE X$,ACCESS=KEY,KEY=KEYID$,REC=RECORD$ 

End of Chapter 

093-000351 Licensed Material-Property of Data General Corporation 2-31 





Appendix A 
System Call Summary 

The Business BASIC system calls are listed in this appendix. A brief description is 
given for each syste1p call and an indication of whether the system call can be used 
on AOSNS, DO/RDOS, and/or UNIX systems. 

The types of system calls are: 

STMA 

STMB 

STMC 

STMD 

STME 

STMU 

System Call 

STMA 1 

STMA 2 

STMA 3 

STMA 4 

STMA 5 

093-000351 

Examine or modify aspects of a job, terminal, or system. 

Examine or modify portions of memory. 

Perform operating system calls. 

Send messages to user terminals and receive responses from them. 
(These are available only on DO/RDOS systems.) 

Perform operating system calls. (These are available only on AOSNS 
and UNIX systems.) 

. Perform operating system calls. (These are available only on UNIX 
systems.) 

Table A-1 STMA Summary Table 

Description AOSIVS DG/RDOS UNIX 

Receives a value for a terminal Yes Yes Yes 
type, error code, passed variable, 
or se~ty code. 

Sets a value for a terminal Yes Yes Yes 
type, error code, passed 
variable, or security code. 

Examines a value for a detach key Yes Yes Yes 
(DO/RDOS only), line cancel key, 
unpend key,or interrupt key. 

Sets a value for a detach key Yes Yes Yes 
(DO/RDOS only),line cancel key, 
unpend key,or interrupt key. 

Examines a status flag for a character Yes Yes Yes 
code, lowercase or uppercase 
character, or column counter. 

continues 

Ucensed Material-Property of Data General Corporation A-1 



Commands. Statements, and Functions in Business BASIC 

Table A-1 STMA Summary Table 

System Call Description AOSIVS DG/RDOS UNIX 

STMA 6 Sets to 1 a status flag for a Yes Yes Yes 
character code, lowercase or 
uppercase character, or column 
counter. 

STMA 7 Sets to 0 a status flag for a Yes Yes Yes 
character code, lowercase or 
uppercase character, or column 
counter. 

STMA 8 Resets the FOR/NEXT stack or Yes Yes Yes 
IKEY indicator, or clears the 
input buffer. 

STMA 9 Examines a username or the name Yes Yes Yes 
of an account, the current directory, 
the current program, the current 
default output device, the system 
library directory, or the system 
directory. 

STMA 10 Sets the special characters Yes Yes Yes 
allowed in crammed strings. 

STMA 11 Converts a Julian date to Yes Yes Yes 
month/day/year format. 

STMA 12 Converts a date in month/day/year Yes Yes Yes 
format to a Julian date. 

STMA 13 Translates a string of characters Yes Yes Yes 
using a table set up by the user. 

STMA 14 Translates ASCII to EBCDIC, Yes Yes Yes 
EBCDIC to ASCII, lowercase to 
uppercase, or uppercase to lowercase. 

STMA 15 Compares two strings and retrieves Yes Yes Yes 
a match if there is one. 

STMA 16 Detaches a job. Yes 

STMA 17 Attaches a job or process to a Yes 
specified port. 

STMA 18 Examines, assigns, or frees a Yes 
reserved file or device. 

STMA 19 Generates system errors. Yes Yes Yes 

STMA 20 Passes a user library file to Yes Yes Yes 
Business BASIC. 

STMA 21 Passes information for the Yes Yes Yes 
SFORM.SL subroutine. 

concluded 

A-2 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

Table A-2 STMB Summary Table 

System Call Description AOSIVS DG/RDOS UNIX 

STMB 0 Retrieves a word address. Yes Yes Yes 

STMB 1 Copies the contents of memory Yes Yes Yes 
from an address. 

STMB 2 Copies words into memory. Yes Yes Yes 

STMB 3 Copies bytes from memory. Yes Yes Yes 

STMB 4 Copies the contents of a Yes Yes Yes 
string into memory. 

STMB 5 Copies the contents of memory Yes Yes 
(narrow word or double word). 
(Not available on AOS.) 

STMB 6 Copies 1 or 2 words (up to 32 bits) Yes Yes Yes 
into memory. (Not available on 
AOS.) Attaches a detached job 
to your terminal (OG/ROOS and 
ROOS). 

STMB 7 Forces a job to BYE off the system. Yes 

STMB 8 Resets ON IKEY for a job, clears the Yes 
"ignore IKEY" flag, and stops the 
program. 

STMB 9 Not used. 

STMB 10 Sets or clears bits in a word. Yes Yes Yes 

STMB 11 Tallies the 1 bits; tallies contiguous Yes Yes Yes 
o bits for a string. 

STMB 12 Scans the job table for the first Yes 
available job and executes HELLO 
for that job. Returns -1 if no 
available job exists. 

STMB 13 Places the contents of a Yes 
string into the input buffer for the 
specified job. 

STMB 14 Sets the job to act as if an Yes 
interrupt occurred. 

STMB 15 Sets the multiplexor line Yes 
characteristics. 

STMB 16 Sets or clears the run only flag in Yes Yes Yes 
your program. 

continues 

093-000351 Licensed Material-Property of Data General Corporation A-3 



Commands, Statements, and Functions in Business BASIC 

Table A-2 STMB Summary Table 

Sy,tem Call Description AOSIVS DG/RDOS UNIX 

STMB 17 In DO/RDOS, shuts down the Yes Yes Yes 
multiplexor and executes RTN. 
In AOSNS and UNIX, 
identical to STMB 20. I STMB 18 
Returns the word stored at a Yes 
specified address in the operating 
system's address space. 

STMB 19 Sets the specified multiplexor Yes 
line to the specified modem status. 

STMB 20 Performs an immediate BYE to Yes Yes Yes 
log off the current job. 

STMB 21 Not used. 

STMB 22 Returns the byte address of a string. Yes Yes 

STMB 23 Returns the word address of a Yes Yes 
numeric variable. 

STMB 24 Performs a system call using Yes 
information in an accumulator string. 

STMB 2S Maps the user channel to the Yes Yes Yes 
system channel. 

concluded 

A-4 Ucensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

Table A-3 STMC Summary Table 

System Call Description AOSIVS DG/RDOS UNIX 

STMC 0 Creates a contiguous file with all Yes Yes Yes 
locations initialized to O. 

STMC 1 Creates a subdirectory. Yes Yes Yes 

STMC 2 Changes the attributes for the Yes 
file open on a channel. 

STMC 3 Changes the link attributes of the file Yes 
open on a channel. 

STMC 4 Returns the 36-byte status table for Yes 
the file open on a specified channel. 

STMC 5 In AOS/VS, creates a control point Yes Yes Yes 
directory. In DG/RDOS, creates a 
subpartition. In UNIX, creates a 
subdirectory . 

STMC 6 In AOS/VS and UNIX, creates a Yes Yes Yes 
file. In DG/RDOS, creates 
a random file. 

I 
STMC 7 In AOSIVS and UNIX, creates a Yes Yes Yes 

file. In DG/RDOS, creates I 
a sequential file. 

STMC 8 Deletes a file. Yes Yes Yes 

STMC 9 Changes the current system directory. Yes Yes Yes 

STMC 10 Renames a device. Yes 

STMC 11 Terminates Business BASIC, Yes Yes Yes 
passing the error code to the 
previous level. 

STMC 12 In AOS/VS and UNIX, creates a son Yes Yes Yes 
process and blocks Business BASIC 
until the son terminates. In DG/RDOS, 
checkpoints the background and 
executes the program you specify. 

STMC 13 In AOS/VS and UNIX, creates a son Yes Yes Yes 
process without blocking Business 
BASIC. In DG/RDOS, executes a 
program in the foreground partition. 

STMC 14 In AOSIVS and UNIX, determines Yes Yes Yes 
whether a process has sons. In 
DG/RDOS, determines whether a 
foreground program is running. 

continues 

093-000351 licensed Material-Property of Data General Corporation A-5 



Commands, Statements, and Functions in Business BASIC 

Table A-3 STMC Summary Table 

System Call Description AOSIVS DG/RDOS UNIX 

STMC 15 In AOSNS and UNIX, returns Yes Yes Yes 
"t/IIINPUT." In DO/RDOS, returns 
the name of the console input 
device for thi5 ground. 

STMC 16 In AOS/VS and UNIX, this call Yes Yes Yes 
returns "tI!IOUTPUT." In DO/RDOS, 
returns the name of the console 
output device for this ground. 

STMC 17 Returns the name of the current Yes Yes Yes 
Business BASIC system directory. 

STMC 18 Returns the attributes of the Yes 
file open on channel. 

STMC 19 Returns the current operating Yes 
system's name. 

STMC 20 Initializes a device into the system. Yes 

STMC 21 Creates a link entry. Yes Yes Yes 

STMC 22 In AOSNS and UNIX, gives Yes Yes Y~ 

a string a length of zero. In 
DO/RDOS, returns the name 
of the current master device. 

STMC 23 Disables console keyboard interrupts. Yes 

STMC 24 Enables console keyboard interrupts. Yes 

STMC 25 Renames a file. Yes Yes Yes 

STMC 26 Closes all files currently Yes 
open in this ground. 

STMC 27 Releases a previously initialized device. -- Yes 

STMC 28 Returns control to the program Yes Yes Yes 
at the previous push level. 

STMC 29 Sets the current system date. Yes 

STMC 30 Disables spooling for a device. Yes 

STMC 31 Enables spooling for a device. Yes 

STMC 32 Kills spooling for a device. Yes 

STMC 33 Returns the 18-byte status of Yes 
the file you specify. 

STMC 34 Sets the time of day. Yes 

continues 

A-6 Licensed Material-Property of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

. Table A-3 STMC Summary Table 

System Call Description AOS/VS DG/RDOS UNIX 

STMC 35 Removes a link entry. Yes Yes Yes 

STMC 36 Updates the disk resident copy Yes Yes Yes 
of the file open on channel. 

STMC 37 Returns the frequency of the Yes Yes Yes 
system's real-time clock. 

STMC 38 Opens a file for direct 
magnetic tape I/O. 

Yes Yes I 
STMC 39 Opens a file for appending. Yes Yes Yes 

STMC 40 Opens a file for exclusive use. Yes Yes Yes 

STMC 41 In AOS/VS, opens a file for input Yes Yes Yes 
only. In DG/ROOS opens a file for I read-only access. In· UNIX, opens a 
file in read-only mode. 

STMC 42 In AOS/VS and UNIX, opens a file Yes Yes Yes 
for input and output. In DG/RDOS, 
opens a file for shared access. 

STMC 43 Terminates Business BASIC and Yes Yes Yes 
saves a break file. 

STMC 44 In DG/RDOS, opens a file for Yes Yes Yes 
exclusive access transparently. In 
AOS/VS and UNIX, opens 
the file for input and output. 

STMC 45 Transparently creates a contiguous file. -- Yes 

STMC 46 Transparently creates a random file. Yes 

STMC 47 Transparently creates a sequential file. Yes 

STMC 48 Gets the current memory allocation Yes 
for the current ground. 

STMC 49 Not used. 

STMC 50 Writes a line to the file open Yes Yes Yes 
on a specified channel. 

STMC 51 Returns the status of the resolution Yes 
file when you specify a link entry. 

STMC 52 Creates a contiguous file without Yes Yes Yes 
initializing the file to nulls. 

STMC 53 Closes the file open on a channel. Yes 

STMC 54 Gets the date last modified for a file. Yes Yes I 
concluded 

093-000351 Licensed Material-Property of Data General Corporation A-7 



Commands, Statements, and Functions in Business BASIC 

Table A-4 STMD Summary Table (DG/RDOS Only) 

System Can Description 

STMD 0 Sends a message and can receive a reply, but can't override a no-message 
flag set by the terminal. 

STMD 1 Sends a message and can receive a reply; can also override a no-message 
flag set by the terminal. 

A-8 Licensed Material-Property of Data General Corporation 093-000351 



Commands. Statements. and Functions in Business BASIC 

Table ~5 STMESummary Table (AOSIVS and UNIX Only) 

System Call Description AOSIVS UNIX 

STME·O Starting from a specified position. 
returns the next filename matching 

Yes I 
the template in the directory 
open on channel. 

STME 1 Returns the process's username. Yes Yes 

STME 2 Returns the process's PIO. Yes Yes 

STME 3 Returns a CLI message. Yes 

STME 4 Returns the completepathname Yes Yes 
of filename. 

STME5 Returns the 23-word (46-byte) status Yes 
packet for channel in the string 
variable bul/er$. 

STME 6 Returns the status of a file. Yes 

STME 7 Returns the status of the· resolution file Yes 
when you specify a link entry. 

STME 8 Creates a contiguous file. Yes 

STME 9 Creates a file. Yes 

STME 10 Returns the complete pathname Yes Yes 
of the file open on channel. 

STME 11 Returns the resolution name of a link. Yes Yes 

STME 12 Returns the device Yes 
characteristics of .INPUT. 

STME 13 RetUrns the device Yes 
characteristics of ~UTPUT. 

STME 14 Sets the device Yes 
characteristics of .INPUT. 

STME 15 Sends a message to a specified process. Yes 

STME 16 Sends a message to the process Yes 
controlling the console. 

STME 17 Returns the 256-bit (32-byte) delimiter Yes Yes 
table for .INPUT (AOS/VS) or I stdin (UNIX) into a specified variable. 

continues 

093-000351 Ucensed Material-Property of· Data General Corporation A-9 



Commands. Statements. and Functions in Business .BASIC 

Table A-5 STME Summary Table (AOSIVS and UNIX Only) 

System Call Description AOSIVS UNIX 

STME 18 - Sets the 256-bit (32-byte) Yes Yes 

I SThfE 19 

delimiter table for .INPUT (AOSIVS)or 
stdin (UNIX). 

Executes a specified program passing a Yes Yes 
string to the new process as the 
initial IPC. 

• STME 20 Sends a string via interprocess Yes Yes 
communications. 

• STME 21 Receives the contents of a string via Yes Yes 
interprocess communications. 

• STME 22 Sends the contents of a string via Yes Yes 
interprocess communications. and then 
receives an interprocess communications 
message. 

• STME 23 Creates an IPC file entry with the Yes Yes 
appropriate name and local port. 

I 
STME 24 Finds the owner of a global port. Yes Yes 

STME 25 Looks up a port number. Yes Yes 

STME 26 Translates a port number. Yes Yes 

STME 27 Moves contents of a string to Yes Yes 
an 110 buffer. 

concluded 

A-10 Licensed Material-Property .of Data General Corporation 093-000351 



Commands, Statements, and Functions in Business BASIC 

Table A-6 STMU Summary Table (UNIX Only) 

System Call Description 

STMU 0 Returns the fstat status packet to buffer$ for the file opened on 
channel. 

STMU 1 Returns the status of a filename. 

STMU 2 Returns the status of the resolution file for a link entry. 

STMU 3 Creates a file with a time and date. 

STMU 4 Returns the switches used during invocation of Business BASIC. 

STMU 5 Returns the contents of the specified environment variable. • 
End of Appendix 

093-000351 Licensed Material-Property of Data General Corporation A-11 





• 
• 

Appendix B 
Resource Limits 

The Business· BASIC resource limits vary depending on which operating system you 
use. This appendix shows the resource limits for Business BASIC running on AOS/VS, 
DG/RDOS. and UNIX systems. 

Table B-1 Business BASIC Resource Limits 

Feature UNIX . AOS/VS DG/RDOS 

Attacmng/detc/.ching allowed No No Yes 

INFOS interface implemented No Yes No 

Combined program and data space 512 Kbytes 256 Kbytes 22-38 Kbytes 

Number of channels per user1 Op. syStem 150 16 

Number of channels systemwide Op. system 255 x number 256 
of processes 

Length of program statement 256 256 132 

Screenedit available Yes Yes No 

Number of user. variables per program 8192 348 348 

Variable name length 32 6 6 

GOSUB nesting levels 32 32 8 

DEF nesting levels 26 4 4 

FOR ... NEXT nesting levels 32 32 8 

Maximum line number2 99999 32767 32767 

continues 

1 You can have 150 channels under Business BASIC. If you use the INFOS inter­
face, you can also have 64 INFOS channels. --

2 DG/RDOS and RDOS can have up to 32,767 line numbers. The maximum for 
AOS is 9,999. 

093-000351 Licensed Material-Property of Data General Corporation 8-1 



Commands, Statements, and Functions in Business BASIC 

Table B-1 Business BASIC Resource Limits 

Feature UNIX AOSIVS DG/RDOS 

Size of common area 2048 512 512 

• Highest precision allowed Quad (8 bytes) Triple (6· bytes) Triple (6· bytes) 

Maximum index file size 128 Mbytes 128 Mbytes 32 Mbytes 

Maximum data file· size Op. system 2 Gbytes 32 Mbytes 

Maximum string length 522 Kbytes 65,535 bytes 32,767 bytes 

Number of expressions allowed in 16 2 2 
MAX and MIN comparisons 

Number of variables allowed in 16 1 1 
DEFstatements 

concluded 

End of Appendix 

B-2 Licensed Material-Property of Data General Corporation 093-000351 



Index 

Symbols 
. (period) command. 1-2 

.A command. 1-3 

.C command. 1,,4 

.E command. 1-6 

.1 command. 1-8 

.Pcommand. 1-9 

$LFfABLE. format of entry. 1-139 

A 
ABS function. 1-10 

Absolute value. 1-10 

Access modes for AOSNS and UNIX 
files. 1-166 

Access modes for DG/RDOS files. 
1-168 

Access types for files. 1-166 

Accessing INFOS II file. 2-3 

Add using quad precision. 1-199 

Adding key to index file. 1-103 

AERM$ function. 1-11 

Ampersand (It) suffix. for variable. 
1-123 

AND function. bit comparison. 1-13 

AND operator. Boolean logical. 1-16 

Arrays. dimensioning. 1-58. 1-60 

ASC function. 1-18 

ASCII. obtaining value for string. 1-18 

Assembly language subroutines. calling. 
1-332 

ASX function. 1-22 

B 
BASIC,ER file. 1-11. 1-73. 1-286. 

1~301. 1""'322. 1-335 

BB subroutines 
entering into a program. 1-69 
GETREC.SL. 1-56. 1-83 
LFDATA.SL. 1-139 
line numbers for. 1-86 

BBPATH environment variable. iv 

BBSTAT statement/command. 1-26 

Binary value. putting into string. 1-39 

Bit patterns 
comparing with AND. 1-13 
comparing with OR. 1-173 
comparing with XOR. 1-349 

Blank line. printing. 1-183 

BLOCK READ statement/command. 
1-28 

BLOCK WRITE statement/command. 
1-31 

Boolean 
AND. 1-16 
NOT. 1-158 
OR. 1-173 

BREAK statement (UNIX only). 1-34 

Business BASIC. logging out of. 1-36 

BYE statement/command. 1-36 

Boolean functions. AND. 1-16 

c 
Calling the UNIX shell. 1-243 

Cassette tape. controlling 1/0. 1-151 

CHAIN statement/command. 1-37 

Changing directories. 1-62 

Channel number. assigning. 1-165 

Channel string. 2-3 

Characters. cramming. 1-47 

CHR$ function. 1-39 

Clearing working storage. 1-156 

CLOSE statement/command. 1-41 

Comments (REM statement). 1-216 

Common area 
retrieving blocks from. 1-28 

093-000351 LIcensed Material-Property of Data General Corporation Index-1 



writing blocks to, 1-31 

COMP function, 1-43 

Comparing bit patterns 
with AND, 1-13 
with OR, 1-171 
withXOR, 1-349 

Comparing expressions 
Boolean AND, 1-16 
with OR, 1-173 

CON command, 1-45 

Condition, in an IF statement, 1-91 

Continuing executioIl, 1-45 

Control 
transfer with GOSUB, 1-85 
transfer with GOTO, 1-88 
transfer with IFITHEN/ELSE, 1-91 
transfer with ON ... GOTO/GOSUB, 

1-161 
transfer with RETURN, 1-226 

Converting quad precision to· double 
precision, 1-207 

Crammed strings, characters allowed, 
1-262 

Creating an INFOS II file, 2-2 

CRM$ function, 1-47 

Cursor positioning, with PRINT FILE, 
1-184 

D 
Data . 

gettiilg records from a file, 1-83 
input, 1-28 . 
output, 1-31 

DATA statement, 1-49 
assigning values to variables, 1-212 
resetting list pointer, 1-224 

Database file, iv 

Database structures, iv 

Date, Julian, 1-263 

DB CLOSE statement, 2-5 

DBDELETE statement, 2-6 

DBGET statement, 2-7 

DBOPEN INFOS statement, 2-9 

DBREAD statement, 2-12 

DBREINS statement, 2-13 

DBRELEASE statement, 2-14 

DB RETRIEVE HIGHKEY statement, 
2-15 

DBRETRIEVE. KEY statement, 2-16 

DB RETRIEVE SIDEF statement, 2..;.17 

DB RETRIEVE STATUS statement, 
2-18 

DB REWRITE statement, 2-19 

DBSET statement, 2-20 

DB SUBINDEX DEFINE statement, 
2-25 

DB SUBINDEX DELETE statement. 
2-26 

DBSUBINDEX LINK statement, 2-27 

DB SUBINDEX LINKINIT statement. 
2-29 

DBSUBINDEX LINKSET statement, 
2-30 

DBWRITE statement, 2-31 

Debugging, 1-316 

Declaring, arrays, strings, and variables, 
1-59 

Decrementing loop control variable, 
1-79, 1-157 

DEF statement, 1-50 

DELAY statement/command, 1-52 

DELETE. statementlconimand, 1-53 

Deleted-record chain. adding a record 
to, 1-56 

Deleting key from index file, 1-108 

Deleting program statements, 1-72 

DELREC statement/command, 1-56 

Descriptor string, for index file, 1-103, 
1-108, 1-111, 1-114, 1-118 

Device 
opening in access mode, 1-165 
printing formatted output, 1-187 

DIM statement/command, 1-58 

Dimensioning, arrays, strings, and 
variables, 1-59 

DIR statement/command, 1-62 

Directory 
changing, 1-62 
display pathname, 1-62 

Divide using quad precision, 1"':201 

DO loops. 
definiIlg in a UNIX program, 1-64 

Index-2 Ucensed Materlal.,.Property of Data General Corporation 093-000351 



terminating in a UNIX program. 1-34. 
1-68 

DO statement. obtaining status of stack. 
1-197 

DO WHILE statement for UNIX. 1-64 

Duplicate keys. 1-103 

E 
EBCDIC. 1-265 

EDIT utility, 1-216 

Edit buffer 
appending to the current line. 1-3 
changing a line in. 1-8 
changing a string in. 1-4. 1-6 
displaying contents of. 1-9 
placing code in. 1-9 
placing program contents in. 1-127 
sending a line to working storage. 1-2 

END LOOP statement. 1-68 
for UNIX. 1-64 

END statement. 1-67 

ENTER statement/command. 1-69 

EOF function. 1-71 

ERASE statement/command. 1-72 

ERMS function. 1-73 

Error 
forcing (UNIX only). 1-210 
trapping in a program. 1-159 

Error messages 
retrieving with AERMS. 1-11 
retrieving with ERMS. 1-73 
retrieving with UERM$, 1-335 

Exclusive logical OR, 1-349 

Executing a program. 1-233 

EXTRACT statement. 1-75 

F 
File 

access modes (AOS/VS and UNIX). 
1-166 

access modes (DG/RDOS). 1-168 
and character data input. 1-100 
and data-sensitive input. 1-96 
closing. 1-41 
creating an INFOS II file. 2-2 
deleting. 1-53 

end oi. 1-71 
INFOS II files. 2-1 
keyed index. 1-104 
locking and unlocking. 1-132 
obtaining status of locks (UNIX only), 

1-135 
opening a logical file, 1-137 
opening in access mode, 1-165 
pointer position, 1-89, 1-179 
printing formatted output. 1-187 
printing output to, 1-181 
protecting a saved file. 1-198 
reading length-sensitive data. 1-214 
renaming, 1-218 
retrieving blocks from. 1-28 
retrieving records from. 1-83 
types of access. 1-166 
types of open. 1-166 
writing blocks to. 1-31 
writing header and program contents 

to. 1-128 
writing length-sensitive data to, 1-346 
writing program contents to. 1-126 

File pointer position 
obtaining. 1-89 
setting. 1-179 
state after BLOCK WRITE. 1-31 

FILLS function. 1-77 

Finding key in index file. 1-111 

Flags. 1-258 

FOR loops 
defining. 1-79 
nesting. 1-80 

FOR loops. ending. 1-157 

FOR. .. NEXT statement. 1-79 
obtaining status of stack, 1-196 

Forcing an error (UNIX only). 1-210 

Format. defining for record string, 
1-227 

Function. defining. 1-50 

G 
GETREC statement/command, 1-83 

and KADD, 1-105 

GETREC.SL subroutine. and GETREC, 
1-56, 1-83 

GOSUB statement, obtaining status of 
stack. 1-196 

GOSUB ... RETURN statement. 1-85 
and IF/THEN/ELSE, 1-92 

093-000351 Licensed Material-Property of Data General Corporation Index-3 



OCTO statement. 1-88 
and IFITHEN/ELSE. 1.;...92 
and PROTECT. 1-198 

GPOS function. 1-89 

I 
I/O 

composing a record string for. 1-175 
to and from tape. 1-151 

IF ... THEN ... ELSE statement. 1-91 

INPUT statement/command. 1-96 

Inclusive logical OR. 1-171 

Incrementing loop control variable; 
1-79. 1-157 

Index file 
adding key. 1-103 
c1.eleting key. 1-108 
finding a key. 1-111 
finding next key. 1-114 
finding previous key. 1-118 

Index file descriptor string. 1-103. 
1...:108. 1-111. 1-114. 1-118 

Input 
character data. 1-100 
from a file or common area. 1-28 
from terminal or file. 1-96 
length-sensitive data. 1-214 
specifying values for READ 

statements. 1-49 
timed. 1-327 

INPUT USING statement/command. 
1-100 

INT function. 1-102 

Interrupt 
disabling of. 1-259 
trapping. 1-163 

Interrupt key. 1-257 

J 
Julian date. 1-263 

K 
KADD statement/command. 1-103 

KDEL statement/command. 1~108 

Key 
adding to index file. 1-.103 
deleting from index file. 1-108 
finding in index file. 1-111 
finding next. 1-114 
finding previous. 1-118 

KFIND statement/command. 1-111 

KNEXT statement/command. 1-114 

KPREV statement/command. 1-118 

L 
Largest numeric expression. finding. 

1-145 

LEN function. 1-121 

LET statement/command, 1-123 

LFDATA.SL subroutine. and LOPEN 
FILE. 1-139 

Library directory. loading a. SAVE file 
from. 1-130 

Line numbers. renumbering, 1-219 

Linked-available-record, 1-83 

LIST command. 1-126. 

LISTH command. 1-128 

LOAD command. 1-130 

LOCK/UNLOCK· statement/command. 
1-131 

Locks. checking status of (UNIX only). 
1-135 

LOCKS command. 1~135 

Logging out of BB. 1-36 

Logical file. iv 

Logical file database structure. iv 
database file. iv 
logical file. iv 

Logical-file-number. obtaining. 1-137 

LOPEN FILE statement/command. 
1-137 

LREAD FILE statement/command. 
1-141 

L WRITE FILE statement/command. 
1-143 

Index-4 Ucensed Material-Property of Data General. Corporation 093-000351 



M 
Magnetic tape, controlling 110, 1-151 

Master file, iv 

MAX function, 1-145 

Merging program statements, 1-69 

Messages, sending (DG/RDOS only), 
1-299 

MIN function, 1-146 

MOD function, 1-147 

MSG command, 1-149 

MTDIO statement/command, 1-151 
status values, 1-153 

Multiply using quad precision, 1-205 

N 
Nesting 

FOR loops, 1-80 
functions, 1-50 

NEW statement/command, 1-156 

Next key in index file, 1-114 

NEXT statement, 1-157 

NOT operator, Boolean logical, 1-158 

Numeric expressions 
comparing bits with AND, 1-13 
comparing bits with OR, 1-171 
comparing with XOR, 1-349 
converting from string, 1-340 
converting from string of digits, 1-338 
converting to string, 1-39 
finding largest, 1-145 
finding remainder, 1-147 
finding smallest, 1-146 
integer square root of, 1-249 
loading into string variables, 1-204 
obtaining sign of, 1-242 
one's complement, 1-43 
shifting bits left or right, 1-245 
truncating, 1-102 

o 
ON ERR statement, 1-159 

obtaining line number of, 1-196 

ON IKEY statement, 1-163 
obtaining line number, 1-196 

ON ... GOSUB statement, 1-161 

ON ... GOTO statement, 1-161 

OPEN FILE statement/command, 1-165 

Open types for files, 1-166 

Opening a file, 1-165 

Opening a logical file, 1-137 

Operating system limits, B-1 

Operators 
AND, 1-16 
NOT, 1-158 
OR, 1-173 
precedence of, 1-16, 1-158, 1-173 

Option (UNIX switch), iv 

OR function, 1-171 

OR operator, Boolean logical, 1-173 

Output 
length-sensitive, 1-346 
to a file or common area, 1-31 

p 
PACK statement/command. 1-175 

and RFORM, 1-227 

Page, setting width for output, 1-177 

PAGE command, 1-177 

PARAM files, iv 
adding key to index, 1-104 
and GETREC, 1-56, 1-83 
deleting key from index, 1-109 
finding next key, 1-116 
master file, iv 
subfile, iv 

Parse, 1-336 

Percent sign (%) filename prefix, 1-233 

Percent sign (%) suffix, for variables, 
1-123 

Pointer, positioning in a file, 1-179 

POS function, 1-178 

POSFL.SL, and POSITION FILE, 
1-179 

POSITioN FILE statement/command, 
1-179 

Pound sign (#) filename prefix, 1-233 

Pound sign (#) suffix, for variables, 
1-123 

Powers of two, 1-13 

093-000351 Licensed Material-Property of Data General Corporation Index-5 



Precedence of operators, 1-16, 1-158, 
1-173 

Precision, 1-18 
indicating with suffix, 1-123 

Previous key in index file, 1-118 

PRINT statement/command, 1-181 

PRINT USING statement, 1-187 

Process, sending message to, 1-149 

PROGRAM DISPLAY command, 1-196 

Program library, running a program, 
1-233 

Programs 
calling a subroutine, 1-85 
continuing execution after stopping, 

1-45 
determining size of, 1-247 
displaying line numbers, 1-329 
displaying variables used in, 1-342 
ending execution of, 1-67 
erasing statements, 1-72 
executing from BB, 1-37 
executing utilities from, 1-319 
listing contents of, 1-126 
listing header and contents of, 1-128 
merging with working storage, 1-69 
remarks in, 1-216 
renaming, 1-218 
renaming variables in, 1-345 
renumbering lines in, 1-219 
replacing if saved, 1-222 
retrieving SAVE file, 1-130 
running, 1-233 
saving, 1-235 
stepping through execution, 1-250 
stopping execution, 1-316 
trapping an error in, 1-159 
trapping an interrupt in, 1-163 

PROTECT command, 1-198 

Q 
QADD statement/command, 1-199 

QDIV statement/command, 1-201 

QLOAD statement/command, 1-204 

QMUL statement/command, 1-205 

QSTORE statement/command, 1-207 

QSUB statement/command, 1-208 

Quad precision 
adding, 1-199 

converting into double precision, 
1-207 

dividing, 1-201 
multiplying, 1-205 
subtracting, 1-208 

R 
RAISE statement, 1-210 

Random number 
generating, 1-231 
reseeding generator, 1-211 

RANDOMIZE statement/command, 
1-211 

READ statements, specifying values for 
variables, 1-49 

READ FILE statement/command, 1-214 

READ statement, 1-212 

Reading a logical record, 1-141 

Reading from tape, 1-151 

Record string 
composing, 1-175 
defining a format, 1-227 
packing, 1-175 
unpacking, 1-336 

Records 
deleting from logical file, 1-56 
locking and unlocking, 1-132 
reading, 1-141 
skipping on tape, 1-151 
writing, 1-143 

Relative byte pointer, obtaining, 1-89 

REM statement, 1-216 

Remainder, 1-147 

RENAME statement/command, 1-218 

Renaming variables, 1-345 

RENUMBER command, 1-219 

Replace, line, 1-8 

REPLACE statement/command, 1-222 

Resource limits, B-1 

RESTORE statement/command, 1-224 

Retrieving a SAVE file, 1-130 

RETURN statement, 1-226 
and GOSUB, 1-85 

Rewinding a tape, 1-151 

RFORM statement, 1-227 

Index-6 Licensed Material-Property of Data General Corporation 093-000351 



RND function. 1-231 
and RANDOMIZE. 1,...211 

RUNcormnand. 1-233 

s 
SAVE file 

protecting. 1-198 
replacing, 1-222 
retrieving. 1-130 

SAVE files 
displaying information about. 1-196 
generating. 1-235 

SAVE statement/command. 1-235 

SCANUNTIL statement. 1-237 

SCANWHILE statement, 1-240 

Search path. iv 

SEARCHLIST AOSNS cormnand. iv 

Setting tab width. 1-326 

SGNfunction, 1-242 

SHELL statement/command. 1-243 

SHFT function. 1-245 

SIZE command. 1-247 

Smallest numeric expression. finding. 
1-146 

SQR function. 1-249 

Stack status 
for DO. 1-197 
for FOR ... NEXT. 1-196 
for GOSUB. 1-196 

Status flags. 1-258 

Status values for MTDIO. 1-153 

STEP command. 1-250 

STMA statement/command. 1-252 
summary. A-1 

STMB statement/command. 1-273 
summary. A-3 

STMC statement/command. 1-286 
summary. A-5 

STMD statement/command. 1-299 
summary. A-8 

STME statement/command. 1-301 
summary. A-9 

STMU statement/command. 1-314 
summary. A-11 

STOP statement. 1-316 

Stopped program. continuing execution. 
1-45 

String 
converting digits to numeric value. 

1-338 
converting to number. 1-340 
cramming. 1-47 
current length of. 1-121 
dimensioning. 1-58 
extracting the next field from. 1-75 
filling with a value. 1-77 
obtaining ASCII value of. 1-18 
position of substring in. 1-178 
scanning for substring. 1-237. 1-240 
scanning while matching substring. 

1-:-240 
starting position of substring. 1-317 
truncation. 1-331 
uncramming. 1-333 

String· variables. loading numeric 
expressions into. 1-204 

STRPOS statement/command. 1-317 

Subfile. iv 

Subroutine 
calling assembly language. 1-332 
returning from. 1-226 
transferring control to. 1-161 
transfers within a program. 1-85 

Subtracting using quad precision. 1-208 

SWAP statement/command. 1-319 

Switch. iv 

SYS function. 1-321 

SYS(7). and ERMS. 1-73 

SYS(20). and RAISE. 1-210 

SYS(22). and TINPUT. 1-328 

SYS(26). and ON IKEY. 1-163 

SYS(31). and AERMS. 1-11 

SYS(40). and ERMS. 1...;73 

SYS(41). andERMS. 1.-73 

SYS(42). and AERMS. 1-:11. 

SYS(43). and UERMS. 1-335 

System calls 
STMA. 1-252. A-l 
STMB. 1-273. A-3 
STMt. 1-286. A-5 
STMD. 1-299. A-8 
STME. 1-301, A-9 
STMU. 1-314, A-11 

093-000351 Licensed Material-Property of Data General Corporation Index-7 



System information, obtaining, 1-321 

System library, running a program, 
1-233 

T 
TAB command, 1-326 

Tab zones, printing in, 1-182 

Terminal 
and character data input, 1-100 
and data-sensitive input, 1-96 
printing formatted output, 1-187 
printing output to, 1-181 
sending message to, 1-149 
setting width for output, 1-177 
writing header program contents to, 

1-128 
writing length-sensitive data to, 1-346 
writing program contents to, 1-126 

Terminal characteristics, and PRINT 
FILE, 1-184 

Terminal control 
and PRINT FILE, 1-185 
with PRINT FILE, 1-183 

Terminals, sending messages (DG/RDOS 
only), 1-299 

Terminating DO loops, in UNIX, 1-34, 
1-68 

Terminating program execution, 1-67 

Terminators for INPUT FILE, 1-97 

TINPUT statement/command, 1-327 

TRACE statement/command, 1-329 

Transfer of control 
with GOSUB, 1-85 
with GOTO, 1-88 
with IF/THEN/ELSE, 1-91 
with ON ... GOTO/GOSUB, 1-161 
with RETURN, 1-226 

Trapping an error, 1-159 

Trapping an interrupt, 1-163 

TRUN$ function, 1-331 

Truncating a number, 1-102 

u 
UCALL statement/command, 1-332 

UCM$ function, 1-333 

UERM$ function, 1-335 
and STMU, 1-314 

UNPACK statement/command, 1-336 
and RFORM, 1-227 

Unpend key, 1-258 

UNTIL statement for UNIX, 1-64 

User-defined function, 1-50 

Utilities 
executing from BB, 1-37 
executing from programs, 1-319 

v 
VAL function, 1-338 

VALUE statement/command, 1-340 

VAR DISPLAY command, 1-342 

VAR RENAME command, 1-345 

Variables 
assigning DATA· statement values to, 

1-212 
assigning values to, 1-123 
displaying for programs, 1-342 
renaming, 1-345 
specifying values for READ, 1-49 

w 
Working storage 

adding program statements to, 1-69 
clearing, 1-156 
determining size of, 1-247 
displaying information on programs, 

1-196 
loading saved program, 1-130 
sending a line to, 1-2, 1-4 
writing contents to SAVE file, 1-235 

WRITE FILE statement/command, 
1-346 

Writing a logical record, 1-143 

Writing length-sensitive data, 1-346 

Writing to tape, 1-151 

x 
XFER command, and MTDIO, 1-154 

XOR function, 1-349 

Index-8 UcensedMaterlal-Property of Data General Corporation 093-000351 



Related Documents 

Subroutines, Utilities, and the Business BASIC CLI 093-000389 

Defines each Business BASIC subroutine, utility, and CLI command. It is an alpha­
beticalreference manual for programmers. 

Using Business BASIC on DG/UX" and INTERACTIVE UNIX- Systems 093,.000685 

Describes how to load and generate Business BASIC on DO/UX and INTERAC­
TIAVE UNIX systems. It is intended for the system manager or system operator. 

Business BASIC System Manager's Guide 093-000388 

Describes how to load and generate Business BASIC on AOS, AOSNS, AOSNS II, 
ROOS, and DO/ROOS systems. It is intended for the system manager or system op­
erator. 

Learning Business BASIC 093-000684 

Acquaints experienced programmers with Business BASIC operations and programming 
procedures for DG/UX and 386/ix systems. It provides an overview of the commands, 
functions, subroutines, and utilities available to programmers. 

Programming with Business BASIC 093-000480 

Acquaints experienced programmers with Business BASIC operations and programming 
procedures for AOS, AOSNS, RooS, and DO/RDOS systems. It provides an over­
view of the commands, functions, subroutines, and utilities available to programmers. 

AOS INFOS® II System User's Manual 093-000152 

Provides information 9n using the AOS INFOS II file management system. 

AOSIVS INFOS® II System User's Manual 093-000299 

Provides information on using the AOSNS INFOS II file management system. 

Business BASIC Summary 069-000263 

Summarizes Business BASIC commands, statements, functions, and utilities in a 
pocket-sized book for programmers using AOS, AOSNS, ROOS, and DO/ROOS sys­
tems. 

DASHER® D2 File Maintenance and Screen Maintenance Template 093-000212 

DASHER® DiOO File Maintenance and Screen Maintenance Template 093-000265 

DASHER® D210/211 D410/D460 CFM and CSM Template 093-000409 

DASHER® D21O/211 D410/D460 SM and FM Template 093-000410 

093-000351 Ucensed Material-Property of Data General Corporation RD-1 





TO ORDER 
1. An order can be placed with the TIPS group in two ways: 

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to 
include ,shipping charges and local sales tax. If applicable. write in your tax exempt number in the space 
provided on the order form. 

Send your order form with payment to: Data General Corporation 
A TIN: Educational ServiceslTIPS G 15 5 
4400 Computer Drive 
Westboro. MA 01581-9973 

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for 
by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST. 

METHOD OF PAYMENT 
2. As a customer. you have several payment options: 

a) Purchase Order - Minimum of $50. If ordering by mail. a hard copy of the purchase order must 
accompany order . 

b) Check or Money Order - Make payable to Data General Corporation. 
c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders. 

SHIPPING 
3. To determine the charge for UPS shipping and handling. check the total quantity of units in your order and 

refer to the following chart: 
Total Quantity 
1-4 Units 
5-10 Units 
11-40 Units 
41-200 Units 
Over 200 Units 

Shipping & Handling Charge 
$5.00 
$8.00 

$10.00 
$30.00 

$100.00 

If overnight or second day shipment is desired. this information should be indicated on the order form. A 
separate charge will be determined at time of shipment and added to your bill. 

VOLUME DISCOUNTS 
4. The TIPS discount schedule is based upon the total value of the order. 

Order Amount Discount 
$1-$149.99 0% 
$150-$499.99 10% 
Over $500 20% 

TERMS AND CONDITIONS 
5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be' adhered 

to at all times. 

DELIVERY 
6. Allow at least two weeks for delivery. 

RETURNS 
7. Items ordered through the TIPS catalog may not be returned for credit. 
8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at 

(508) 870-1600 to notify the TIPS department of any problems. 

INTERNATIONAL ORDERS 
9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary 

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the 
appropriate DG Subsidiary or Representative for processing. 





TIPS ORDER FORM 
Mail To: Data General Corporation 

Attn: Educational Services/TIPS G155 
4400 Computer Drive 
Westboro, MA 01581 - 9973 

ATTN: ATTN: 
----------------------------------~-- ------~--------------------------------~ ADDRESS ADDRESS (NO PO BOXES) _________ --1 

CITY CITY ______ --'-_________ ---i 
STATE __________ ZIP _____ STATE __________ ZI 

Priority Code ___ ----'--- (See label on back of catalog) 

Authorized Signature of Buyer Title 
(Agrees to terms conditions on reverse side) 

o UPS 
1-4 Items 
5-10 Items 
11-40 Items 
41-200 items 

. ',: 

AIlIl 
$ 5.00 
$ 8.00 
$ 10.00 
$ 30.00 

Order Amount 
$0 - $149.99 
$150 - $499.99 
Over $500.00 

o Purchase Order Attached ($50 minimum) 
P.O. number Is . (Include hardcopy P.O.) 

o Check or Money Order Enclosed 
o Visa 0 MasterCard ($20 minimum on credit 

Save 
0% 
10% 
20% 

Account Number Expiration Date 

I I I I I II I I I I r I I I I I I II I I 

Authorized Signature 
(Credit card orders without signature and expiration date cannot be processed.) 

Date Phone (Area Code, Ext. 

Tax Exempt # 
or Sales Tax 
(If aPplicable) 

ORDER TOTAL 

TOTAL - See C 

THANK YOU FOR YOUR ORDER 

+ 

+ 

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. 
PLEASE ALLOW 2 WEEKS FOR DELIVERY. 

NO REFUNDS NO RETURNS. 

,; Data General Is required by law to collect applicable sales or 
.use tax on all purchases sflipped to states where DG maintains 
a place of business, which covers all 50 states. Please include 
your local taxes when determining the total value of your order. 
If.you are uncertain about the correct tax amount, please call 
508-870-1600. . 



Form 702 
Rev. 8/87 

DATA GENERAL CORPORATION 
TECHNICAL INFORMATION AND. PUBLICATIONS SERVICE 

TERMS AND CONDITIONS· 
Data General Corporation ("DGC") provides Its Technlcallnformatlon and Publications Service (TIPS) solely In accordance 
with the following terms and conditions and more specifically to the Customer signing. the Educational Services TIPS Order 
Form. These terms and conditions apply to all orders, telephone, telex,or mall. By accepting these products the Customer 
accepts and agrees to be bound by thes.e terms and conditions. 

1. CUSTOMER CERTIFICATION 
Customer hereby certifies that It Is the owner or lessee of the DGCequipment and/or licensee/sub-licensee of the software 
which Is the subject matter of the publication (s) ordered hereunder. 

2. TAXES 
Customer shall be responsible for all taxes, Including taxes paid or payable by DGC for products or services supplied under 
this Agreement, exclusive of taxes based on DGC's net Income, unless Customer provides written proof of exemption. 

3. DATA AND PROPRIETARY RIGHTS 
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall 
abide by such markings. DGC retains for Itself exclusively all proprietary rights (Including manufacturing rights) In and to all 
designs, engineering details and other data pertaining to the products described In such publication. Licensed software 
materials are provided pursuant to the terms and conditions of the Program License Agreement (PlA) between the Customer 
and DGC and such PlA Is made a part of and Incorporated Into this Agreement by reference. A copyright notice on any data 
by Itself does not constitute or evidence a publication or public disclosure. 

4. liMITED MEDIA WARRANTY 
DGC warrants the Cli Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a 
period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided 
It Is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and 
DGC's sole obligation and liability for defective media. This limited media warranty does not apply If the media has been 
damaged by accident, abuse or misuse. 

5. DISCLAIMER OF WARRANTY 
EXCEPT FOR THE liMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT liMITED TO, WARRANTIES .OF MERCHANTABILITY AND FITNESS FOR 
PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, Cli MACROS OR MATERIALS SUPPLIED HEREUNDER. 

6. liMITATION OF liABiliTY 
A. CUSTOMER AGREES THAT DGC'S LIABiliTY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT liMITED TO 
LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHAll NOT 
EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR. PUBLICATION OR Cli MACRO INVOLVED. 
THIS liMITATION OF liABiliTY SHAll NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY 
DGC'S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHAll DGC BE LIABLE 
FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT 
NOT liMITED TO lOST PROFITS AND DAMAGES RESULTING FROM lOSS OF USE, OR lOST DATA, OR 
DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY 
THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY. 

B. ANY ACTION AGAINST DGC MUST BE. COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION 
ACCRUES. 

7. GENERAL 
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational 
Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. excluding its conflict of 
law rules. Such contract Is not assignable. These terms and conditions constitute the entire agreement between the parties 
with respect to the subject matter hereof and supersedes all prior oral or written communications. agreements and 
understandings. These terms and conditions shall prevail notwithstanding any different. conflicting or additional terms and 
conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different. conflicting. or 
additional terms. 

8. IMPORTANT NOTICE REGARDING AOSIVS INTERNALS SERIES (ORDER #1865 & #1875) 
Customer understands that Information and material presented in the AOSIVS Internals Series documents may be specific to 
a particular revision of the product. Consequently user programs or systems based on this Information and material may be 
revision-locked and may not function properly with prior or future revisions of the product. Therefore. Data General makes no 
representations as to the utility of this Information and material beyond the current revision level which Is the subject of the 
manual. Any use thereof by you or your company Is at your own risk. Data General disclaims any liability arising from any such 
use and I and my company (Customer) hold Data General completely harmless therefrom. 





Cut here and Insert In binder spine pocket 

t. DataGeneral 
Data General Corporation, Westboro, Muuc:hUHttI 01580 


