¢ Data General

Customer Documentation

Commands, Statements, and Functions
in Business BASIC

Commands, Statements,
and Functions in Business BASIC

093-000351-02

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000351

Copyright © Data General Corporation, 1984, 1989, 1991

All Rights Reserved

Unpublished — All rights reserved under the Copyright laws of the United States
Printed in the United States of America

Rev. 02, May, 1991

Licensed Material — Property of Data General Corporation

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

AViiON, CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,

ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA,
NOVA, PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, BaseLink, BusiGEN,
BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board,

CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite,
COBOL/SMART, COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/286-12c,
DASHER/286-12j, DASHER/386, DASHER/386-16c, DASHER/386-25, DASHER/386-25k,
.DASHER/386sx, DASHER/386SX-16, DASHER/486-25, DASHER/LN, DATA GENERAL/One,
DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS, DG/Fontstyles, DG/GATE,
DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP, ECLIPSE MV/1000,

ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3500,

ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE MV/9500,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000,

ECLIPSE MV/30000, ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000,
GDC/2400, Intellibook, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP,
SLATE, SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4,
UNITE, WALKABOUT, WALKABOUT/SX, and XODIAC are trademarks of Data General Corporation.

386/ix is a trademark of INTERACTIVE System Corporation.
UNIX is a registered trademark of AT&T.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR]
52.227-7013 (May 1987).

Data General Corporation

4400 Computer Drive

Westboro, MA 01580

Commands, Statements, and Functions in Business BASIC
093-000351-02

Revision History: Effective with:

Original Release - December, 1984

First Revision = - December, 1989

Second Revision - May, 1991 Business BASIC for AViiON™ Systems, Rev. 1.10
Business BASIC for INTERACTIVE UNIX Systems,
Rev. 1.10

AOS Business BASIC, Rev. 4.20
AOS/VS Business BASIC, Rev. §5.20
RDOS Business BASIC, Rev. 8.20
DG/RDOS Business BASIC, Rev. 8.30

A vertical bar in the margin of a page indicates substantive technical change from the previous revision.

Preface

This manual describes how to use the commands, statements, and functions available
with Business BASIC. This manual explains these features and how they work on each
of the operating systems supporting Business BASIC—AOS, AOS/VS, AOS/VS 11,
DG/RDOS, RDOS, DG/UX™, and INTERACTIVE UNIX® systems.

Since DG/UX and INTERACTIVE UNIX software are related to UNIX software, this
document sometimes refers to those two software products as UNIX products. These
references are solely for the purpose of improved readability and occur only where
there are no significant differences between DG/UX, INTERACTIVE UNIX, and
UNIX software. UNIX® is a registered trademark of AT&T.

This manual is for the experienced Business BASIC programmer who is familiar with
the particular operating system being used. The programmer who is not familiar with
the operating system should consult the documentation related to the system before
using this manual.

NOTE: INTERACTIVE Systems Corporation has replaced the name 386/ix™ with
INTERACTIVE UNIX. References to INTERACTIVE UNIX and 386/ix refer
to the same product line.

Document Set

Business BASIC is documented by a set of manuals that describe the language, the
operating system features that affect its use, and its utilities. This manual is a
companion manual to Subroutines, Utilities, and Business BASIC CLI. Both of these
manuals apply to Business BASIC on all operating system platforms.

Other manuals in the Business BASIC manual set apply only to certain operating
systems. For information on the other manuals in the set and their ordering numbers,
see the “Related Documents” section at the end of this manual.

Scope

Commands, Statements, and Functions in Business BASIC is a reference manual for
experienced Business BASIC programmers. This manual provides the following
information for each command, statement, and function in Business BASIC:

® Which operating systems it works with

® How to code it

® What it does

® How to use it

You can use these commands, statements, and functions to make your Business

BASIC work easier.

093-000351 Licensed Material-Property of Data General Corporation i

Preface

Organization

The Business BASIC statements, commands, and functions are listed in alphabetical
order in Chapter 1. The commands used to interface with an INFOS® II data base
are listed in Chapter 2.

Terms Used in This Book

The term “AOS/VS” is used to refer to AOS/VS, and AOS/VS 1I systems. In cases
where there are differences between these products, the differences will be noted.

Business BASIC supports two database structures: the PARAM file database structure
~and the logical file database structure. Certain Business BASIC features work with one
database structure and not the other. To distinguish between the two database
formats, this manual uses the terms master file and subfile to refer to files in the
PARAM structure and database file and logical file to refer to files in the logical file
structure. These terms are defined below:

Master file A physical file in the PARAM database structure

Subfile A file within a master file in the PARAM database
structure

Database file A physical file in the logical file database structure

Logical file A file within the a database file in the logical file database
structure

When the term “search path” is used in this book, it has the following meanings:
AOS/VS systems: The directories you have selected using the AOS/VS
SEARCHLIST command.

DG/RDOS systems: In DG/RDOS systems, you do not have a search path, so
Business BASIC searches your directory first and then the library
directory ($SLIB or $LIB3 for triple precision).

UNIX systems: - The directories you have listed in the UNIX BBPATH
environment variable.

When the term “switch” is used, it has the following meanings:

AOS/VS and DG/RDOS systems: A switch that is preceded by a slash.
UNIX systems: An option that is preceded by a hyphen.

The phrase “Business BASIC user’s guide” refers to Business BASIC System
Manager’s Guide if you are using an AOS/VS or DG/RDOS system and Using
Business BASIC on DG/UX™ and INTERACTIVE UNIX® Systems if you are using a
UNIX system.

iv Licensed Material-Property of Data General Corporation 093-000351

Preface

Coding Conventions

The coding conventions used in this manual are described below.

UPPERCASE BOLD Indicates a Business BASIC command, statement, or
function.
lowercase italics Indicates a place holder to be replaced by your variable

name or literal.

Hyphen (-) Between italicized words, indicates one complete entry to
be supplied by the programmer. Do not enter the hyphen.

{1} Enclose a part of the format from which you must make a
single selection. Do not enter the braces.

[1] Enclose an optional part of the format; do not enter the
brackets.

Indicates that the preceding item can be repeated.

The following boxes indicate whether a command, statement, or function is available
on a particular operating system:

AOS/VS DG/RDOS UNIX

If only a UNIX box appears above the “Format” section for a command, that
command is available only on UNIX systems. If all three boxes appear, the command
can be used on all operating systems that run Business BASIC.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please
feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form
(United States only) or contact your local Data General sales representative.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,
free telephone assistance is available with your hardware warranty and with most Data
General software service options. If you are within the United States or Canada,
contact the Data General Service Center by calling 1-800-DG-HELPS. Lines are
open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The center
will put you in touch with a member of Data General’s telephone assistance staff who
can answer your questions.

093-000351 Licensed Material-Property of Data General Corporation v

Preface

For telephone assistance outside the United States or Canada, ask your Data General
sales representative for the appropriate telephone number.

Joining the Users Group |

Please consider joining the largest independent organization of Data General users, the
North American Data General Users Group (NADGUG). In addition to making
valuable contacts, members receive FOCUS monthly magazine, a conference discount,
access to the Software Library and Electronic Bulletin Board, an annual Member
Directory, Regional and Special Interest Groups, and much more. For more
information about membership in the North American Data General Users Group, call
1-800-877-4787 or 1-512-345-5316.

End of Preface

vi Licensed Material-Property of Data General Corporation . 093-000351

Contents

Chapter 1 Commands, Statements, and Functions

Features Available Only on Some Operating Systemscouiiuennn 1-1
How to Use the Examples in This Chapter o iy 1-1
B (o3 ¢ oY | PP 1-2
PP 1-3
O S P 1-4
S P 1-6
PN 1-8
N 1-9
ABS L e e e e e e 1-10
AERMS o e e e e e e 1-11
N S N 1-13
AND L e e e e e e e e e e 1-16
N N 1-18
AS X i e e e e e 1-22
BB S T AT it e e e e e e 1-26
BLOCK READ ..ttt ittt ittt ittty 1-28
BLOCK WRITE ...ttt ittt ittt ittt i e 1-31
BREAK .. e e e e e 1-34
BYE . e e e e 1-36
CHAIN o i e i i i e e e it e i e 1-37
CHRS . e e 1-39
CLOSE it e e e e e e 1-41
COM P L e e e e e e e 1-43
CON i e e e e 1-45
CRM S L e e e e e 1-47
DA T A e e e 1-49
DEF . e e e e e 1-50
DEL AY . e e e e 1-52
DELETE ... ittt it it i et it i i e e e i e 1-53
DELREC .. i e e e 1-56
DM L e e e 1-58
) 1-62
DO WHILE/UNTIL/END LOOPttt iiiiiiinininentnnnnnas 1-64
EN D o e e e 1-67
END LOOP ..ttt it i i e i e e e i 1-68
ENTER o e e e e e e 1-69
EOF L e e e e e 1-71
ERASE . e e e e 1-72
ERM S e e 1-73
EX T RACT . ittt e i i i e e i e e 1-75
FIL L o e e e e 1-77
FOR..NEXT Lottt e i e i i s e e e 1-79

093-000351 | Licensed Materlal-Property of Data General Corporation vii

Contents

GETREC .« ..\ttt ettt e e e e e e e 1-83
GOSUB...RETURN\ttt ettt ettt 1-85
GOTO vttt e ettt 1-88
GPOS . . ettt et e 1-89
TF... THEN...ELSE ...\ .ttt ettt 1-91
1134 2101 1-96
INPUT USING ..ttt e et ettt et e et 1-100
INT oottt e e 1-102
KADD .\ttt ittt e e e 1-103
14)) 1-108
4.2 11 5 JPP 1-111
415 A 1-114
1362322V 1-118
LEN © ettt et e 1-121
1593 | 1-123
55 £ L 1-126
1033 v (O 1-128
107/ » J 1-130
15070) 9161} He)i SN 1-131
17070} < R 1-135
1503510 2 1 5 N R 1-137
LREAD FILEttt ettt e et e e 1-141
LWRITE FILE ...\ttt ettt et e e e e e 1-143
MAX oottt 1-145
MIN Lottt e e et 1-146
1% (o) » T 1-147
MSG ettt e 1-149
MTDIO ..ttt ettt et e et e e e e e e 1-151
NEW oottt ettt e e 1-156
10 55 A 1-157
0 s S 1-158
ON ERR ..ottt e et ettt e e e e e 1-159
ON...GOTO and ON...GOSUB« turttrrneetineantineeeenaeenns. 1-161
ON TKEY .ttt ittt ettt e ettt 1-163
OPEN FILE ...\ttt ettt ettt e e et e e 1-165
o) - S P 1-171
o) : S 1-173
PACK ottt ettt e e e 1-175
PAGE .\ttt e 1-177
POS L\t 1-178
17013 5§ (o) 53§ 5 1-179
331 A 1-181
PRINT USING ...\ttt et ettt e e e 1-187
PROGRAM DISPLAY ...\ttt eee it aeeetieaeeenns 1-196
1310 § o4 S 1-198
QADD ..\ttt e 1-199
QDIV Lt e 1-201
QLOAD . .ottt et 1-204

viii Licensed Material-Property of Data General Corporation 093-000351

Contents

QMUL ..ottt et e 1-205
QSTOREttt ettt et ettt et 1-207
QSUB 't PP 1-208
RAISE . ..ottt e et ettt e et e 1-210
RANDOMIZE . ..+ttt ettt e et et e et e e e 1-211
23N o O 1-212
READ FILE ...\ttt ettt e e ettt 1-214
REM o\ttt ettt e e et e 1-216
RENAME ..ttt ettt et e et et 1-218
RENUMBER\ttt e ettt e e et e e 1-219
123513 3 No) T 1-222
RESTORE ...\ttt ettt e e ettt et e 1-224
RETURN . ..ottt ettt e ettt 1-226
23 210) 1 1-227
123 0 1-231
RUN @ oottt ettt ettt e 1-233
Vs 1-235
SCANUNTIL ..ttt ettt ettt e e e et ettt 1-237
SCANWHILE\ttt ettt e e et e et e e 1-240
SGN ettt 1-242
32121 3 S 1-243
32 13 1-245
) 2 1-247
o) - S 1-249
STEP .ottt ettt e e e 1-250
STMA .ttt ettt e 1-252
STMB ..ttt e et et et 1-273
3 0. (o 1-286
STMD ..ottt ettt e et et 1-299
STME ..ttt ettt e e e e 1-301
STMU .ttt et ettt e et e e e e 1-314
STOP . o ettt et e e e e 1-316
STRPOS ..ttt ettt ettt e ettt et e 1-317
SWAP .ttt 1-319
4 1-321
TAB .« ..ottt et e 1-326
TINPUT oottt ettt e e e et e e e ettt e 1-327
TRACE ..\ttt ettt e e e ettt 1-329
TRUNS oottt ettt et e et et e e 1-331
UCALL .ttt ettt e e ettt et 1-332
UCMS .ottt et e et 1-333
16 533 1-335
1331 7-V0) QP 1-336
VAL oottt 1-338
VALUE ..ottt e et e e et e et e 1-340
VAR DISPLAY . ..\ttt ettt et ettt e et 1-342
VAR RENAME ..\ttt e et e ettt e 1-345
WRITE FILE ...\ttt e ettt e e et e et e s 1-346
() T 1-349

093-000351 Licensed Material-Property of Data General Corporation ix

Contents

Chapter 2 Statements Related to INFOS Il Files

Argument Pairs e 2-2
Creating an INFOS IT Filettt i i et i et e inneas 2-2
Accessing INFOS IT Files oo vvii ittt ittt etieenaneninnennns 2-3
DBCLOSE ...t e e e e e e 2-5
DB ELETE .. i i e e e i e e e e e e 2-6
DBGET TP 2-7
DBOPEN INFOS . i ittt ittt e et e it e 2-9
DBREAD ... e e e e e e e e 2-12
DBREINS . e e e e e e e 2-13
DBRELEASE .. e e e e e e, 2-14
DBRETRIEVE HIGHKEY P 2-15
DBRETRIEVE KEY ...ttt ittt ittt iiiiiii i iinninnnnnens 2-16
DBRETRIEVE SIDEF iiiiittiititetieietnenenenensneneas 2-17
DBRETRIEVE STATUS ... ittt ettt itnntennnanees 2-18
DBREWRITEcciviiiiiunnnn. e e 2-19
DB S E T ittt e e i e i et e e 2-20
DBSUBINDEX DEFINEttt ittt ieiiinnnienann 2-25
DBSUBINDEX DELETEttt i innnesnnnns 2-26
DBSUBINDEX LINK ...ttt ittt i et anennens 2-27
DBSUBINDEX LINKINIT ... ittt ittt iiiiiieeiennaneeens 2-29
DBSUBINDEX LINKSET ... ittt ittt ennranan 2-30
DBWRITE ...ttt ittt it ittt i ity 2-31

Appendix A System Call Summary A-1
Appendix B Resource Limits B-1
Index

Related Documents

X Licensed Material-Property of Data General Corporation 093-000351

Table 1
Table 1
Table 1-
Table 1
Table 1
Table 1
Table
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table B-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10

093-000351

Contents

Tables

AOS/VS and UNIX Access Modescvvvnnnnennnnnnns 1-167
DG/RDOS Access MOdeS vvv v iiineineiie i nnoennnnns 1-168
Summary of STMA Syntax Formatscvovnunn. 1-253
Summary of STMB Syntax Formats 1-274
Summary of STMC Syntax Formatsccovivenn... 1-287
Summary of STME Syntax Formatsccoiiuinn. 1-303
STMA Summary Tablecciiiiiiiiiiriinnneeann. A-1
STMB Summary Tableoovtiiiii it A-3
STMC Summary Tableciitiiiiiiiiiieinnnernnn.s A-5
STMD Summary Table (DG/RDOS Only)covvuvnnnnn A-8
STME Summary Table (AOS/VS and UNIX Only) A-9
STMU Summary Table (UNIX Only)ovvievu... A-11
Business BASIC Resource Limitsooviiiniinnnnnn. B-1
|]
Figures
Logical AND of Two Numberscoviuiiiiiiinnnnnens 1-13
Powers of 2 (0t0 63) ...oiviin ittt 1-14
BLOCK READ ... it iiiiiiiiittttitnnennsnnnenansenennas 1-29
BLOCK WRITE ...ttt iiititetintnnonneneeneanenesns 1-32
COMP Function in an AND Comparisonc.coveevueenn.. 1-43
Index File Descriptor Stringcoivviiiiii i, 1-105
MTDIO Status Valuescouiitiiiinnrennnnnnneenss 1-153
Logical OR of Two Numbersottt 1-171
The SHFT Functionoiiiit ittt iiiiiiiieennnns 1-245
Logical XOR of Two Numberscciiiiiiineennans 1-349

Licensed Material-Property of Data General Corporation xi

Chapter 1
Commands, Statements,
and Functions

The Business BASIC commands, statements, and functions (referred to collectively
here as “commands”) can often be used on more than one operating system. The
features of some commands, however, are available only on certain operating systems.
In addition, some examples are coded for a specific operating system but can be
modified to work on other operating systems, while other examples work only on the
operating systems specified in the examples’ descriptions. Also, some terms used in
this chapter have different meanings for different operating systems.

Features Available Only on Some Operating Systems

In the “Format” and “Argument” sections of a command description, the features
available only on UNIX systems are called out as follows:

string-expression A string variable, string literal, substring, or string array element
(UNIX only) used to receive the error message; it must be
dimensioned large enough to contain the error message.

In this example, you can use a string array element for string-expression only if you
are using a UNIX system.

In other sections of a command description, information that is applicable only for
specific operating systems is indicated with a phrase like “On AOS/VS and UNIX
systems”

How to Use the Examples in This Chapter

Some examples in this chapter use AOS/VS and DG/RDOS conventions, and others
use UNIX conventions. Unless a particular example states otherwise, if a command is
available on all operating systems, its examples work on all operating systems,
provided you make any changes necessary to conform to an operating system’s
conventions. For example, pathnames in AOS/VS and DG/RDOS use a colon (:) as
the pathname delimiter. UNIX systems use a slash (/) as the pathname delimiter
unless you specified pathname conversion by including the -P option on the command
line you used to execute Business BASIC. To run an AOS/VS example on a UNIX
system, you must change the colons to slashes if you did not specify pathname
conversion when you executed Business BASIC.

For some commands, the format line shows part of the format enclosed in parentheses
(), but the example for that command shows the same portion of the format enclosed
in brackets []. In these cases, the Business BASIC interpreter accepts either
parentheses or brackets as input. If parentheses are used, however, the interpreter
changes them to brackets when you save the program.

093-000351 Licensed Material-Property of Data General Corporation 1-1

Commands, Statements, and Functions in Business BASIC

. (per iOd) . Command

Sends the line in the edit buffer to working storage.

AOS/VS DG/RDOS UNIX

Format
. (period)

What It Does

The . (period) command is a keyboard edit command that works on the edit buffer.
It is part of the “dot editor” group of commands.

When you type a line that causes an error, Business BASIC puts that line into the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed into the edit buffer. The . (period) command sends whatever is currently in
the edit buffer to working storage for interpretation.

How to Use It

Use the . (period) command if you have used .A, .I, or .E to edit the line in the
edit buffer. The . (period) command sends only the current contents of the edit
buffer to working storage.

Example

Correct an incorrect word.

* 10 PRNT “HELLO”

ERROR 2-STATEMENT OR COMMAND SYNTAX IS INVALID
* .E/PRNT/PRINT

10 PRINT "HELLO

E

10 PRINT "HELLO"

* LIST

00010 PRINT "HELLO"

* RUN

HELLO

1-2 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

A Command

Appends a string literal to the line in the edit buffer.

AOS/VS DG/RDOS UNIX

Format

A string

Arguments

string A string literal (without quotation marks) that you want to append
to the line. You must separate string from .A with a delimiter.
Any character (including a blank space) that appears after the .A
is the delimiter.

What It Does

The .A command is a keyboard edit command that works on the line in the edit
buffer. It is part of the “dot editor” group of commands.

When you type a line that causes an error, Business BASIC puts that line into the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed into the edit buffer. The .A command appends to that line whatever you
type for string, but it does not send the line back into working storage for
interpretation. You can send it back with the . (period) command.

How to Use It

The .A command only affects the line currently in the edit buffer. Use the .P
command to see what is in the edit buffer. If you want to append text to a line that is
not in the edit buffer, use the LIST line-number command to put the line in the edit
buffer. (Business BASIC displays the line at your terminal.)

Example

Append a word to an incomplete line.

* 10 PRINT

* LIST

00010 PRINT
*.P

00010 PRINT
*\AX

00010 PRINT X
*

00010 PRINT X
* LIST

00010 PRINT X

093-000351 Licensed Material-Property of Data General Corporation 1-3

Commands, Statements, and Functions in Business BASIC

.C Command

Changes a string in a line in the edit buffer and passes the line
to working storage.

AOS/VS DG/RDOS UNIX

Format
AOS/VS and DG/RDOS Systems:

.C/stringl/string2[/G]

UNIX Systems:

.C/stringl/string2 [{ ;'? }]

Arguments

stringl A string literal (without quotation marks) that is in the line in the
edit buffer.

string2 A string literal (without quotation marks) to which you want to
change stringl.

/G Optional switch to change all occurrences of stringl within the edit
buffer to string2. Without this switch, .C changes only the first
occurrence.

/n Optional switch that allows you to specify which occurrence of

stringl you want to change to string2. You supply a value of 1 to
9 for n. The default value is 1. (UNIX only)

What It Does

The .C command is a keyboard edit command that works on the edit buffer. It is part
of the “dot editor” group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .C command without /G changes the first occurrence of stringl to
string2. The .C command with /G changes all occurrences of stringl to string2. On
UNIX systems, you can enter the .C command with /n in order to change only the
nth occurrence of stringl to string2. Each of these forms automatically passes the line
back to working storage for interpretation. The .C command is the same as the .E
command except that .C passes the line to working storage.

How to Use It

The .C command changes only the line currently in the edit buffer. Use the .P
command to see what is in the edit buffer. Use the LIST command to put a line in
the edit buffer.

1-4 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued .C

Because any character can be used as a delimiter, the .C command can also be used
to change a slash (/). For example, the command line below changes a slash to an
equal sign. A period is the delimiter.

* .C.l.=

Examples

1. Notice in this example that the line number is an integral part of the statement
that is being edited.

* 10 PRINT 10
* LIST

00010 PRINT 10
* .C/10/20
00020 PRINT 10

The first occurrence of a 10 (the line number) is changed to 20. You can use this
technique to duplicate lines of code.

* LIST
00010 PRINT 10
00020 PRINT 10

2. The edit buffer below is vempty because .C sent the buffer contents to working
storage.

* 10 LET X=20

* LIST

00010 LET X=20

* ,C/20/30

00010 LET X=30

* P

Error 73 - Edit buffer is empty-

Display working storage to see the change.

* LIST
00010 LET X=30

3. This UNIX example uses the /n switch to change the second occurrence of stringl
to string2.

* 10 REM STRING1 STRING1
* LIST

00010 STRING1l STRING1

* .C/STRING1/STRING2/2
00010 REM STRING1 STRING2

093-000351 Licensed Materlal-Property of Data Genéral Corporation 1-5

Commands, Statements, and Functions in Business BASIC

.E Command

Changes a string in a line in the edit buffer.

AOS/VS | DG/RDOS UNIX

Format
AOS/VS and DG/RDOS Systems:

.E/stringl/string2[/G]

UNIX Systems:

‘E/stringl/string2 [' ;S }]

Arguments

stringl A string literal (without quotation marks) that is in the line in the
edit buffer.

string2 A string literal (without quotation marks) to which you want to
change stringl.

/G : Optional switch to change all occurrences of stringl to string2
within the edit buffer. Without this switch, .E changes only the
first occurrence.

In Optional switch that allows you to specify which occurrence of

stringl you want to change to string2. You supply a value of 1 to
9 for n. The default value is 1. (UNIX only)

What It Does

The .E command is a keyboard edit command that works on the edit buffer. It is part
of the “dot editor” group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .E command without /G changes the first occurrence of stringl to
string2. The .E command with /G changes all occurrences of stringl to string2. On
UNIX systems, you can enter the .E command with /n in order to change only the
nth occurrence of stringl to string2. The .E command is the same as the .C
command except that .E does not pass the line to working storage.

How to Use It

The .E command changes only the line currently in the edit buffer. The edit buffer
contains either the line you just typed (if it caused an error) or the last line listed.
After using .E, you can use the . (period) command to send the line back to working
storage for interpretation.

1-6 Licensed Materlai-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued .E

Because any character can be used as a delimiter, the .E command can also be used
to change a slash (/). For example, the command line below changes a slash to an
equal sign. A period is the delimiter.

* \E./.=

Examples
1. Change the character string “20” to the character string “30”.

* 10 LET X=20
* LIST

00010 LET X=20
* .E/20/30

00010 LET X=30
*

The . (period) command sends the change to working storage.

* LIST
00010 LET X=30

2. Notice that if the . (period) command is not used, the original value of 20
remains in working storage.

* 10 LET X=20
* LIST

00010 LET X=20
*.P

00010 LET X=20
* \E/20/30

This changes 20 to 30 in the edit buffer.
00010 LET X=30

Display the contents of working storage.

* LIST
00010 LET X=20

3. On UNIX systems, use the /n switch to change the second occurrence of stringl
to string2.

* 10 REM STRING1 STRING1
* LIST

00010 STRING1 STRING1

* .E/STRING1/STRING2/2
00010 REM STRING1 STRING2

093-000351 Licensed Material-Property of Data General Corporation 1-7

Commands, Statements, and Functions in Business BASIC

A ' ' " Command

Changes a line in the edit buffer.

AOS/VS DG/RDOS UNIX

Format

I string

Arguments

string A string literal (without quotation marks) that you want to replace
the current line in the edit buffer.

What It Does

The .I command is a keyboard edit command that changes the line in the edit buffer.
It is part of the “dot editor” group of commands.

The edit buffer contains either the line you just typed (if it caused an error) or the
last line listed. The .I command changes the entire line to string, but it does not pass
the line to working storage for interpretation. ‘

How to Use It

The .I command changes only the line currently in the edit buffer. After using .I, you
must use the . (period) command to send the line back to working storage.
Examplz

Substitute correct syntax for incorrect syntax.

* 10 PRINTHELLO

Error 2 - Statement of command syntax is invalid

* .1 10 PRINT “HELLO”
*

The . (period) command sends the change in the edit buffer to working storage. The
corrected command is displayed, and Business BASIC can now execute the command.

00010 PRINT "HELLO"

* RUN
HELLO

1-8 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

AERM$ Function

Puts an error message into a string.

AOS/VS DG/RDOS UNIX

Format
LET string-variable=AERMS$ (number)

Arguments

string-variable A string variable, substring, or string array element (UNIX only)
used to receive the error message; it must be dimensioned large
enough to contain the error message.

number The record number in the BASIC.ER file for the error message

you want, or the code associated with an error message in an
AOS/VS parameter file.

What It Does

AERMS retrieves the error message specified by number. The number typically comes
from SYS(31) or SYS(42) (AOS/VS and UNIX only). |

How to Use It

When you trap errors in your program (by using ON ERR), you can have the
program print the appropriate error message. Also, you can generate your own unique
error messages by adding messages to the end of the BASIC.ER file and then using
number to specify which message you want to retrieve.

You can use AERMS$ only in LET statements or commands because you have to
assign the error message to a string variable. The largest error message is 64 bytes
long.

See SYS, ERMS$, UERMS for more information on how to use the error-retrieval
functions.

093-000351 Licensed Material-Property of Data General Corporation 1-11

Commands, Statements, and Functions in Business BASIC

AERMS

continued

Examples

1. When Business BASIC encounters an error in this program, control passes to line
500, where the appropriate error code is selected and the error message associated

with that error code is printed.

00010 ON ERR THEN GOTO 00500
00020 DIM ER$(64)

00500 REM ERROR ROUTINE

00510 IF SYS(7)=-60 THEN

00520 LET ER = SYS(31)

00530 LET ER$ = AERMS$ (ER)

00540 ELSE

00550 LET ER=SYS(7)

00560 LET ER$=ERMS$ (ER)

00570 END IF

00580 PRINT "ERROR # ";ER;"= ";ER$
00590 END

2. This example uses ERM$, AERMS$, and UERMS to retrieve error messages from

SYS(41), SYS(42), and SYS(43).

01000 REM * error handler

01010 IF SYS(41)=-60 THEN ~ :Same as SYS(7) and SYS(40)

01012 IF SYS(42)=-276 THEN
01014 LET ER$=UERMS (SYS(43))
01016 ELSE

01020 LET ER$=AERMS$ (SYS(42)) :Same as SYS(31)

01025 END IF

01030 ELSE

01040 LET ER$=ERMS$ (SYS(41)) :Same as SYS(7) and SYS(40)

01050 END IF

1-12 Licensed Material-Property of Data General Corporation

093-000351

Commands, Statements, and Functions in Business BASIC

P -‘ Command

Displays the contents of the edit buffer.

AOS/VS DG/RDOS UNIX

Format
.P

What It Does

The .P command is a keyboard edit command that displays the contents of the edit
buffer. It is part of the “dot editor” group of commands.

When you type a line that causes an error, Business BASIC puts that line in the edit
buffer. When you list the contents of working storage, Business BASIC puts the last
line listed in the edit buffer. Once a line is in the edit buffer, you can edit it using the
A, .C, .E, .1, and . (period) commands.

How to Use vIt

The .P command displays only the contents of the edit buffer. If the edit buffer is
empty, you get Error 73 - Edit buffer is empty. To place a line of code in
the edit buffer, use the LIST command.

Examples
1. In this example, the PRINT command is placed into the edit buffer.

* 10 PRINT X

* LIST

00010 PRINT X
* P

00010 PRINT X

2. In this example, the buffer is empty because LIST has not been used to put the
statement into the edit buffer.

* 10 PRINT X
* P
Error 73 - Edit buffer is empty

093-000351 Licensed Material-Property of Data General Corporation 1-9

Commands, Statements, and Functions in Business BASIC

ABS Function

Returns the absolute value of a number.

AOS/VS DG/RDOS UNIX

Format
ABS (expression)

| Arguments

expression Any numeric expression.

What It Does

ABS returns the absolute (positive) value of a negative or positive number. If
expression is a positive number, ABS returns the number. If expression is negative,
ABS strips the negative sign from the number and returns the resulting positive
number.

How to Use It

You can use the ABS function wherever numeric expressions are allowed. expression
can be: .

A number
A single, double, triple, or quad precision variable assigned a numeric value
A numeric array element

A function

Any combination of these in a numeric expression with arithmetic or relational
operators :

Examples
1. Compute and display the absolute value.
* PRINT ABS(-30) 30

2. Use the absolute value in a computation.

00010 INPUT X,Y
00020 FOR I = ABS(X) TO ABS(Y)
00030 PRINT I
00040 NEXT I
00050 STOP
*RUN

? -3,-6

3

4

5

6

STOP AT 00050

1-10 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

AND Function

Logically compares two expressions.

AOS/VS DG/RDOS UNIX

Format

AND (expressionl,expression2)

Arguments

expressionl,expression2 Numeric expressions or variables to be compared.

What It Does

The AND function is used to compare the bit patterns of two binary expressions. The
binary representations of the two expressions are compared bit by bit. If a bit is set to
1 in both expressions, that bit is set to 1 in the result.

How to Use It

If, for example, the 16-bit value returned by SYS(30) was examined to determine
whether the system was triple precision, the AND function could be used with
SYS(30) and a mask which had the bit representing the value 2 set. The result would
be 0 if the system was not triple precision, or 2 if the system was triple precision.

To check several bits at once, add the masks for the bits together and check the
result of the AND comparison of the summed mask with the value to be examined.
You can use the AND function in any numeric expression.

Figure 1-1 shows the result when the bit values of two expressions are compared using

AND. Figure 1-2 shows the decimal values for each power of 2 from 0 to 63. [|
AND (192, 64)
i5 14 13 12 11 10 9 8 7 6 § 4 3 2 1 0 Power of 2
0 o o o o o o o011 1 0 0 O O 0 O expry = 192
0 o 0o o 0o 0o 0o 0 O 1t O O O o0 o0 o expry = 64
0 0o 0o o o 0 0o o 01t o 0 0 0 o0 O RESULT = 64

Figure 1-1 Logical AND of Two Numbers

093-000351 Licensed Material-Property of Data General Corporation 1-13

Commands, Statements, and Functions in Business BASIC

AND ~ continued
2" Decimal Value 2" Decimal Value
2% 2147483648 263 9223372036854775808
2% 1073741824 262 4611686018427387904
228 536870912 28 2305843009213693952
228 268435456 200 1152921504606846976
227 134217728 269 576460752303423488
228 67108864 288 288230376151711744
228 33554432 287 144115188075855872
224 16777216 208 72057594037927936
22 8388608 268 36028797018963968
222 4194304 284 18014398509481984
22 2097152 263 9007199254740992
220 1048576 282 4503599627370496
219 524288 261 2251799813685248
218 262144 280 1125899906842624
217 131072 24 562949953421312
218 65536 248 281474976710656
218 32768 247 » 14073748835528
214 16384 248 70368744177664
21 8192 248 35184372088832
212 4096 244 17592186044416
AL 2048 24 8796093022208
210 1024 242 4398046511104
29 _ 512 24 2199023255552
28 256 240 1099511627776
27 128 2% 549755813888
26 64 2% 274877906944
28 32 237 137438953472
24 16 2% 68719476736
29 8 2% 34359738368
22 4 234 17179869184
2! 2 2% 8589934592
20 1 292 4292967296

Figure 1-2 Powers of 2 (0 to 63)

1-14 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued AND

Examples
1. Check whether this is a triple precision system.

00010 IF AND(SYS(30),2) THEN

00020 PRINT "This is a triple precision system"
00030 ELSE

00040 PRINT "This is not a triple precision system"
00050 END IF

2. On AOS/VS or DG/RDOS system, check for several of the possible switches used
when Business BASIC was brought up. The /A switch is in the leftmost bit of the
32-bit value returned by SYS(11); this bit is represented by the value 231,

00010 DIM A$(26)

00020 LET SWTCHS=SYS(11)

00030 IF AND(SWTCHS,2°28) THEN LET A$[0]="/D"
00040 IF AND(SWTCHS,2°11) THEN LET A$[O0]="/U"
00050 PRINT "Some of the switches used were: ";A$

On a UNIX system, you would enter the following code for this example:

00010 DIM A$[72]

00020 LET SWTCH=SYS(11l)

00030 IF AND(SWTCH,2°28) THEN LET A$[0]="D"

00040 IF AND(SWICH,2°60) THEN LET A$[0]="d"

00050 PRINT "Some of the switches used were: ";A$

3. If the bits represented by the values 64 and 32 are both set, go to line 100; if one
or the other bit is set, go to line 200; otherwise, fall through to line 50.

00030 IF AND(X,64+32)=64+32 THEN GOTO 00100
00040 IF AND(X,64+32) THEN GOTO 00200
00050 REM Neither of the two bits was set

093-000351 Licensed Material-Property of Data General Corporation 1-15

Commands, Statements, and Functions in Business BASIC

AND Operator

Boolean logical AND — joins two expressions.

AOS/VS DG/RDOS UNIX

Format

expression AND expression

Arguments

expression A numeric or relational expression or a variable. If either
expression evaluates to 0, the result of joining the expressions is
false; otherwise, the result is true.

Relational expressions are two numeric or string expressions
separated by a relational operator. The relational operators are
greater than (>), greater than or equal to (>=), less than (<), less
than or equal to (<=), equal to (=), and not equal to (<).

What It Does

AND joins two expressions into a single expression. When you execute a LET
statement, the expressions joined by the AND function are evaluated and reduced to
0 or 1; the result of the AND is 1 if both expressions are non-zero and is 0 otherwise.
When you execute an IF statement, the expressions united by the AND are evaluated.
Any false expression makes the entire AND expression false.

NOTE: An AND function that logically compares two bit patterns is also available
and is described separately. '

How to Use It

AND may be used any place a numeric expression is valid.

Before the Boolean logic operator is executed, the expressions are evaluated as true or
false, and the operands are reduced to 1 or 0, respectively.

The precedence of all operators is given below.

highest * (exponential)
unary +, unary -, NOT
*, /

1-16 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued AND

Example

When two conditions are met (evaluate to a true value), execute the GOTO.

00010 IF A>1 AND B=2 THEN GOTO 00100

093-000351 Licensed Material-Property of Data General Corporation 1-17

Commands, Statements, and Functions in Business BASIC

ASC Function

Gives the ASCII value of a string.

AOS/VS DG/RDOS UNIX

Format

ASC(string-expression)

Arguments

string-expression A string variable, string literal, substring, or string array element
(UNIX only).

What It Does

The ASC function transfers bytes directly from a string to a numeric variable. Each
byte of a string contains the ASCII value of the character it represents; the several
bytes of a numeric variable contain a binary number which translates directly into the
decimal value displayed by PRINT. The number of characters in a string that ASC
can transfer depends on the precision you are using. Numeric variables hold data in
four bytes in a double precision system, six bytes in triple precision, and 8 bytes in
quad precision. If a string field is shorter than the maximum for the variable’s
precision, the result is justified toward the low-order bytes of the numeric variable;
thus, ASC(“A”) is 65 while ASC(“A<0><0><0>") is 65*224,

If you include the -X option when you execute a UNIX system, the ASC function
performs identically to the ASX function.

How to Use It

Use the ASC function wherever numeric expressions are allowed.

ASC may not change the sign of the value in string-expression. If you use CHRS$ to
put a negative value in a string, and then use ASC to extract the value and place it in
a variable that is less than four bytes in double precision, six bytes in triple precision,
or eight bytes in quad precision, you must correct the value’s sign. However, on UNIX
systems, when you execute Business BASIC with the -X option, the sign is included.

It is sometimes more efficient to pass data to or from files or the common area as
strings. If you use the CHRS$ function to put a binary value into a string, you should
use the ASC function to extract the binary value from that string.

You can use PACK and UNPACK instead of ASC and CHRS$. With PACK and
UNPACK, you have more formatting flexibility (you can use RFORM) and you do
not need to convert numeric signs. No matter what precision you use, Business BASIC
retains the sign.

1-18 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued ASC

Examples
1. Line 30 makes a four-byte string of integer B, and line 100 extracts B from AS$.

00010 DIM A$(12)
00020 INPUT B
00030 LET A$(1,4)=CHRS$(B,4)

00100 LET B=ASC(A$(1,4))

2. Display the decimal ASCII value for the character “A”.
* PRINT ASC(“A”) 65

*

3. This is an example for a triple precision system.

00010 DIM A$(6)

00020 LET X#=123456789012
00030 LET A$=CHRS (X#,6)
00040 LET ANS = ASC(AS3)
00050 PRINT ANS

* RUN

123456789012

4. This example uses a negative number in a double precision system.

00010 DIM X$[9]

00020 LET X$[1,2]=CHR$ (-44,2)

00030 LET X$[3,5]=CHR$ (-44,3)

00035 LET X$([6,9]=CHR$ (-44,4)

00040 LET A%=ASC(X$[1,2])

00050 PRINT "ASC value of a negative value stored in a 2-byte

string = " ;A%
00060 LET A%=0R(A%,—-AND(A%,2°15))
00070 PRINT " value AFTER the sign correction = ";A%

00080 LET A=ASC(X$[3,51)
00090 PRINT "ASC value of a negative value stored in a 3-byte

string = ";A
00100 LET A=OR(A,-AND(A,2°15))
00110 PRINT " value AFTER the sign correction = ";A

00120 LET A=ASC(X$[6,91)
00130 PRINT "ASC value of a negative value stored in a 4-byte
string = ";A

093-000351 Licensed Material-Property of Data General Corporation 1-19

Commands, Statements, and Functions in Business BASIC

ASC continued
* RUN
ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44
ASC value of a negative value stored in a 3-byte
string = 16777172
value AFTER the sign correction = -44
ASC value of a negative value stored in a 4-byte
string = -44
S. This example uses a negative number in a triple precision system.
00010 DIM X$[15]
00020 LET X$[1,2)=CHR$(-44,2)
00030 LET X$[3,5]=CHR$(~44,3)
00035 LET X$[6,9]=CHR$ (-44,4)
00038 LET X$([10,15]=CHR$ (-44,86)
00040 LET A%=ASC(X$[1,2])
00050 PRINT "ASC value of a negative value stored in a 2-byte
string = ";A%
00080 LET A%=OR (A%,-AND(A%,2°15))
00070 PRINT " value AFTER the sign correction = ";A%
00080 LET A=ASC(X$[3,5])
00090 PRINT "ASC value of a negative value stored in a 3-byte
string = ";A
00100 LET A=OR(A,-AND(A,2°15))
00110 PRINT " value AFTER the sign correction = ";A
00120 LET A=ASC(X$[6,9])
00130 PRINT "ASC value of a negative value stored in a 4-byte
string = ";A
00140 LET A=OR(A,-AND(A,27°31))
00150 PRINT " value AFTER the sign correction = ";A
00160 LET A=ASC(X$[10,15])
00170 PRINT "ASC value of a negative value stored in a 6-byte
string = ";A
* RUN
ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44
ASC value of a negative value stored in a 3-byte
string =16777172 ,
value AFTER the sign correction = -44
ASC value of a negative value stored in a 4-byte
string = 4294967252 .
value AFTER the sign correction = -44
ASC value of a negative value stored in a 6-byte
string = -44
1-20 Licensed Materlal-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued ASC

6. This example uses a negative number in a quad precision system.

00010 DIM X$[23]

00020 LET X$[1,2]=CHR$(-44,2)

00030 LET X$([3,5]=CHR$ (-44,3)

00035 LET X$[6,9]=CHR$ (-44,4)

00038 LET X$[10,15]=CHR$ (—-44,8)

00039 LET X$[16,23)=CHR$(-44,8)

00040 LET A%=ASC(X$[1,2])

00050 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 2-BYTE

STRING = ";A%
00060 LET A%=OR (A%,—-AND(A%,2°15))
00070 PRINT " VALUE AFTER THE SIGN CORRECTION = ";A%

00080 LET A=ASC(X$[3,5])
00090 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 3-BYTE

STRING = ";A
00100 LET A=OR(A,-AND(A,2°15))
00110 PRINT " VALUE AFTER THE SIGN CORRECTION = ";A

00120 LET A=ASC(X$[6,9])
00130 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 4-BYTE

STRING = ";A
00140 LET A=OR(A,-AND(A,2°31))
00150 PRINT " VALUE AFTER THE SIGN CORRECTION = ";A

00160 LET A=ASC(X$[10,15])
00170 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN A 6-BYTE

STRING = ";A
00180 LET A=OR(A,-AND(A,27°47))
00190 PRINT " VALUE AFTER THE SIGN CORRECTION = ";A

00200 LET A=ASC(X$[16,23])
00210 PRINT "ASC VALUE OF A NEGATIVE VALUE STORED IN AN 8-BYTE
STRING = ";A

* RUN

ASC value of a negative value stored in a 2-byte
string = 65492
value AFTER the sign correction = -44
ASC value of a negative value stored in a 3-byte
string =16777172
value AFTER the sign correction = -44
ASC value of a negative value stored in a 4-byte
string = 4294967252
value AFTER the sign correction = -44
ASC value of a negative value stored in a 6-byte
string = 281474976710612
value AFTER the sign correction = -44
ASC value of a negative value stored in an 8-byte
string = -44

093-000351 Licensed Material-Property of Data General Corporation 1-21

Commands, Statements, and Functions in Business BASIC

ASX Function

Gives the ASCII value of a string with automatic sign correction.

AOS/VS UNIX

Format

ASX(string—expression)

Arguments

string—expression ~ A string variable, string literal, substring, or string array element
(UNIX only).

What It Does

The ASX function transfers bytes directly from a string to a numeric variable. Each
byte of a string contains the ASCII value of the character it represents; the several
bytes of a numeric variable contain a binary number that translates directly into the
decimal value displayed by PRINT. The number of characters in a string that ASX
can transfer depends on the precision you are using. Numeric variables hold data in
four bytes in a double precision system, six bytes in triple precision, and eight bytes in
quad precision. If a string field is shorter than the maximum for the variable’s
precision, the result is justified toward the low-order bytes of the numeric variable;
thus, ASX(“A”) is 65 while ASX(“A<0><0><0>") is 65*224,

NOTE: On UNIX systems, if you execute Business BASIC with the -X option, the
ASC function and the ASX function perform identically.

How to Use It

Use the ASX function wherever numeric expressions are allowed.

ASX will correct the sign of the value in string-expression if necessary. If you use
CHRS$ to put a negative value in a string, and then use ASX to extract the value and
place it in a variable that is less than four bytes in double precision, six bytes in triple
precision, or eight bytes in quad precision, you do not need to correct the sign as you
would with the ASC function. It is sometimes more efficient to pass data to or from
files or the common area as strings. If you use the CHR$ function to put a binary
value into a string, you would use either the ASX or the ASC function to extract the
binary value from that string.

You can use PACK and UNPACK instead of ASX and CHRS$. With PACK and
UNPACK, you have more formatting flexibility (you can use RFORM).

1-22 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

ASX

Examples

1.

Line 30 makes a four-byte string of integer B,

00010
00020
00030

DIM A$(12)
INPUT B
LET A$(1,4)=CHR$(B,4)

00100 LET B=ASX(A$(1,4))

and line 100 extracts B from AS.

2. Display the decimal ASCII value for the character “A”.
* PRINT ASX(“A”) 65
x
3. This is an example for a triple precision system.
00010 DIM A$(6)
00020 LET X#=123456789012
00030 LET A$=CHR$ (X#,6)
00040 LET ANS = ASX(AS)
00050 PRINT ANS
* RUN
123456789012
4, This example uses a negative number in a double precision system.
00010 DIM X$[9]
00020 LET X$[1,2]=CHR$(-44,2)
00030 LET X$[3,5]=CHR$ (-44,3)
00035 LET X$[6,9]=CHR$ (—-44,4)
00040 LET A%=ASX(X$[1,2])
00050 PRINT "ASX value of a negative value stored in a 2-byte
string = ";A%
00080 LET A=ASX(X$[3,51)
00090 PRINT "ASX value of a negative value stored in a 3-byte
string = ";A
00120 LET A=ASX(X$[6,9])
00130 PRINT "ASX value of a negative value stored in a 4-byte
string = ";A
* RUN
ASX value of a negative value stored in a 2-byte string = -44
ASX value of a negative value stored in a 3-byte string = -44
ASX value of a negative value stored in a 4-byte string = -44
093-000351 Licensed Material-Property of Data General Corporation 1-23

Commands, Statements, and Functions in Business BASIC

ASX

continued

5. This example uses a negative number in a triple precision system.

00010
00020
00030
00035
00038
00040
00050

00080
00090

00120
00130

00160
00170

* RUN

DIM X$[15]

LET X$[1,2]=CHR$(-44,2)

LET X$[3,5]=CHR$ (-44,3)

LET X$[6,9]=CHR$ (-44,4)

LET X$[10,15]=CHR$(-44,6)

LET A%=ASX(X$[1,2])

PRINT "ASX value of a negative value stored
string = ";A%

LET A=ASX(X$[3,51)

PRINT "ASX value of a negative value stored
string = ";A

LET A=ASX(X$[6,9])

PRINT "ASX value of a negative value stored
string = ";A

LET A=ASX(X$[10,15])

PRINT "ASX value of a negative value stored
string = ";A

ASX value of a negative value stored in a 2-byte
ASX value of a negative value stored in a 3-byte
ASX value of a negative value stored in a 4-byte
ASX value of a negative value stored in a 6-byte

in a 2-byte

in a 3-byte

in a 4-byte
in a 6-byte
string = -44
string = -44
string = -44
string = -44

6. This example uses a negative number in a quad precision system (UNIX systems

only).

00010
00020
00030
00035

00038

00039
00040
00050

00080
00090

00120
00130

00160
00170

00200
00210

1-24

DIM X$[23]

LET X$[1,2]=CHR$ (-44,2)

LET X$[3,5]=CHR$ (-44,3)

LET X$[6,9]=CHR$ (-44,4)

LET X$[10,15]=CHR$(-44,6)

LET X$[16,23]=CHRS$(-44,8)

LET A%=ASX(X$[1,2])

PRINT "ASX VALUE OF A NEGATIVE VALUE STORED
STRING = " ;A%

LET A=ASX(X$[3,5])

PRINT "ASX VALUE OF A NEGATIVE VALUE STORED
STRING = ";A

LET A=ASX(X$[6,9])

PRINT "ASX VALUE OF A NEGATIVE VALUE STORED
STRING = ";A

LET A=ASX(X$[10,15])

PRINT "ASX VALUE OF A NEGATIVE VALUE STORED
STRING = ";A

LET A=ASX(X$[16,23])

PRINT "ASX VALUE OF A NEGATIVE VALUE STORED
STRING = ";A

IN A 2-BYTE

IN A 3-BYTE

IN A 4-BYTE

IN A 6-BYTE

IN AN 8-BYTE

Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued ASX
* RUN
ASX VALUE OF A NEGATIVE VALUE STORED IN A 2-byte STRING = -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 3-byte STRING = -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 4-byte STRING = -44
ASX VALUE OF A NEGATIVE VALUE STORED IN A 6-byte STRING = -44

ASX VALUE OF A NEGATIVE VALUE STORED IN A 8-byte STRING = -44

093-000351 Licensed Material-Property of Data General Corporation 1-25

Commands, Statements, and Functions in Business BASIC

BBSTAT Statement and Command

Displays the status of all Business BASIC jobs.

AOS/VS UNIX

Format
BBSTAT

What It Does

BBSTAT displays the following information about all current Business BASIC processes:

e PID
® Username
® Console name

e Current program name

How to Use It

BBSTAT may be used in keyboard mode or as a statement.

If there is more data than can be displayed on one screen, Business BASIC prompts
you with the word MORE at the bottom of the screen. At this point, press any key to
scroll down one screen.

Examples

1. On AOS/VS systems, BBSTAT produces the following display, which always
includes information on the Business BASIC process issuing the BBSTAT
command. Processes are sorted by PID, in ascending order. Each section is
described after the display.

* BBSTAT
49 FRANK6 VCON4 SCRATCH
58 BARRY8 CON7 ARO02
61 JOHNS8 CON24 APOO5
70 TEMP 8 CON32 MAINMENU
a. b. c. d.
Column Description
a. The PID number
b. Business BASIC user name
c. Console name
d. Program name

1-26 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

BBSTAT

2. This example shows the BBSTAT display that appears on a UNIX system. The
columns and their descriptions are the same as they were in the previous example.

* BBSTAT
7895 BARRYS
8213 FRANKS6
8226 JOHNSS8
8237 MARY 8
093-000351

/dev/ttypl
/dev/tty01
/dev/ttyp4
/dev/ttyl0

SCRATCH
ARMENU
APOO1
GLMENU

Licensed Material-Property of Data General Corporation 1-27

Commands, Statements, and Functions in Business BASIC

l BLOCK READ Statement and Command

Retrieves blocks from a file or common area.

AOS/VS DG/RDOS UNIX

Format
BLOCK READ [FILE(channel[,start]),]variable

Arguments

channel Channel number of a file, expressed as a number or numeric
expression.

start Block number from which to start reading, if reading from a file.
start can be a number or numeric expression. This argument is
optional. When it is not given, the value 0 is used to indicate the
beginning of the file.

variable A string variable or string array element (UNIX only) dimensioned

to at least 512 bytes, or an array variable for an array that holds
at least 512 bytes. Error 55 - Block I/0 error is generated if
the variable is less than 512 bytes.

What It Does

Use BLOCK READ to read data from the common area, and BLOCK READ FILE
to read data from a file. Blocks are 512 bytes. Whenever you use BLOCK READ to
read from a file or common area, you read no less than 512 bytes into your variable.
See Appendix B for the size of the common area on your operating system.

BLOCK READ FILE reads as many blocks from a file as the string variable or array
can hold. If string variable A$ is dimensioned to 1,536 bytes, BLOCK READ FILE
reads three blocks into it; however, if A$ is 1,535 bytes long, only two blocks are
read. BLOCK READ FILE starts reading blocks sequentially from the block number
you specify 'in start. The byte position in the file (GPOS) after a BLOCK READ
FILE is undefined.

Under DG/RDOS, if the string variable is larger than the number of bytes read, the
l variable is padded with nulls; under AOS/VS and UNIX it is not. For example, if you
dimension AS$ to 512 bytes, but your program reads only 256 bytes, under DG/RDOS
the last 256 bytes of A$ contain nulls; under AOS/VS and UNIX, they contain what
they contained prior to the BLOCK READ. If you write programs under AOS/VS or
UNIX, you may want to fill the string with nulls prior to the BLOCK READ to avoid
having garbage in the last part of the string after reading the last block in a file.

BLOCK READ (without FILE) reads from the common area. (You cannot specify
start and channel without FILE.) Each job has its own common area that can be
used to pass information between programs during SWAP and CHAIN statements. See
Appendix B for the size of the common area on your operating system.

1-28 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued BLOCK READ

BLOCK READ FILE is equivalent to DG/RDOS block I/O—not buffered. There
could be a problem if the same file is opened for another type of 1/O that is buffered.
This is not a Business BASIC problem, but rather a problem inherent with combining
buffered and unbuffered I/O to the same file. The statements in Business BASIC that
use buffered I/O are READ FILE, WRITE FILE, LREAD FILE, LWRITE FILE,
PRINT FILE, and INPUT FILE. Do not mix the BLOCK READ/WRITE FILE
statements with the buffered I/O statements.

Number of

T 1 | T
| | | |
movarame (€ 0> 1 e 210 34 >
| | |
1 1 T
| | |

Size of string
or array variable | - | | |

In bytes 511 1023 1535 2047

|
|
I
[
|

512 1024 1536 2048

Figure 1-3 BLOCK READ

How to Use It

To read blocks from a file, first open the file and assign a channel number to it. You
can specify the block number at which to begin reading in the start field. BLOCK
READ FILE reads sequentially from that point.

The size of the variable determines the number of blocks that are transferred. String
variables must be dimensioned to at least 512 bytes. If you make them larger,
BLOCK READ FILE reads in as many entire blocks as the string variable can hold.
The same is true for arrays. For numeric arrays, each element holds 4 bytes in a
double precision system, 6 bytes in a triple precision system, and 8 bytes in a
quadruple precision system.

The data you put in the common area stays there until you log off or until a program
overwrites the common area with BLOCK WRITE. Many utilities and CLI commands
use BLOCK WRITE and thus overwrite the common area.

093-000351 Licensed Material-Property of Data General Corporation 1-29

Commands, Statements, and Functions in Business BASIC

BLOCK READ

continued

Examples

1. Line 30 sends X$ into the common area, where OPEN finds it. OPEN uses a
BLOCK READ to read X$, then puts a new X$ back into the common area with
a BLOCK WRITE. Line 50 reads the new X8$.

00005 REM--WRITE X$ TO COMMON

00007 REM--WHERE OPEN MAY FIND IT.

00010 DIM X$(512)

00020 LET X$="SUB1,5,SUB2,5,PHYS,6",FILLS$(0)
00030 BLOCK WRITE X$

00040 SWAP "OPEN"

00050 BLOCK READ X$

2. Line 40 starts at block 0 in file 0 and reads 2 blocks into AR. Array AR is 4
times 64, or 256 elements.

00010 REM —— READ BLOCKS FROM "INFO" INTO ARRAY AR
00020 DIM AR(3,63)

00030 OPEN FILE(0,0),"INFO"

00040 BLOCK READ FILE(0,0),AR

00050 PRINT AR

00060 CLOSE FILE(O)

1-30 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

BLOCK WRITE Statement and Command

Outputs blocks of data to a file or common area.

AOS/VS DG/RDOS UNIX

Format
BLOCK WRITE [FILE(channel|,start]),]variable

Arguments

channel Channel number of a file, expressed as a number or numeric
expression.

start The number of the first block in the file to receive output,
expressed as a number or numeric expression. This argument is
optional. When it is not given, the value 0 is used to indicate the
beginning of the file.

variable A string variable or string array element (UNIX only) dimensioned

to at least 512 bytes, or an array variable that holds at least 512
bytes. Error number 5§ is generated if the variable is less than 512
bytes.

What It Does

BLOCK WRITE writes data to the common area. BLOCK WRITE FILE writes
blocks of data to a file. A block is 512 bytes. Whenever you use BLOCK WRITE to
write to a file or to the common area, you write at least 512 bytes of data. See
Appendix B for the size of the common area on your operating system.

BLOCK WRITE FILE writes blocks to a file indicated by channel beginning at the
block specified by start. BLOCK WRITE FILE writes as many blocks to a file as
variable can hold. If string-variable A$ is dimensioned to 1,536 bytes, BLOCK
WRITE FILE writes three blocks into it. However, if A$ is 1,535 bytes long, only two
blocks are written.

For numeric arrays, each element holds 4 bytes in a double precision system, 6 bytes
in a triple precision system, and 8 bytes in a quadruple precision system.

You can start at any block number and write sequentially from that point. The file
position pointer (GPOS) is undefined after a BLOCK WRITE FILE statement.

BLOCK WRITE (without FILE) outputs the contents of variable to the common
area. Figure 1-4 shows the number of blocks written from variable, depending on the
number of bytes in the string or array variable.

093-000351 Licensed Material-Property of Data General Corporation 1-31

Commands, Statements, and Functions in Business BASIC

BLOCK WRITE continued

l I | | I
blocks written [€— 0 7= 1 11— 2 1>e— 31— 4 1>
| | |
i i |
| |

to file

Size of string
or array variable
in bytes 5

|
1 1023 1535 2047

512 1024 1536 2048

|
}
|
|
1

Figure 1-4 BLOCK WRITE

BLOCK WRITE is equivalent to DG/RDOS block I/O (not buffered). A problem
might occur if the same file is opened for another type of 1/O that is buffered. This is
not a Business BASIC problem, but rather a problem inherent with combining
buffered and unbuffered 1/0 to the same file under DG/RDOS. The statements in
Business BASIC that use buffered I/O are READ FILE, WRITE FILE, LREAD
FILE, LWRITE FILE, PRINT FILE, and INPUT FILE. Do not mix the BLOCK
READ/WRITE FILE statements with the buffered 1/0 statements.

How to Use It

To write blocks to a file, you must open the file and assign a channel number to it.
You can specify where to begin the write operation in the file by indicating a block
number in start. The default for start is the first block in the file.

The size of variable determines the number of blocks written. If the variable is 512
bytes or more in length, but less than 1,024 bytes, only one block is written (i.e., only
the first 512 bytes of variable are written). If variable is 1,024 bytes or more, but less
than 1,536 bytes, only two blocks are written, etc.

The information you send to the common area with a BLOCK WRITE stays in the
common area until you do another BLOCK WRITE to the common area or until you
log off. The common area is always open and ready for use. Many utilities and CLI
commands use BLOCK WRITE and thus overwrite the common area.

1-32 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

BLOCK WRITE

Examples

1. Line 30 sends X$ into the common area, where OPEN finds it. OPEN uses a
BLOCK READ to read X$, then puts a new X$ back into the common area with
a BLOCK WRITE. Line 50 reads the new XS§.

00005
00007
00010
00020
00030
00040
00050

REM--WRITE X$ TO COMMON

REM--WHERE OPEN MAY FIND IT.

DIM X$(512)

LET X$="SUB1,5,SUB2,5,PHYS,6",FILL$(0)
BLOCK WRITE X$

SWAP "OPEN"

BLOCK READ X$

2. This example reads 2 blocks from TEMP and writes them to FINAL, using N for
a block counter.

00010
00020
00030
00040
00050
00200
00210
00220

093-000351

OPEN FILE (0,0),"TEMP"

OPEN FILE (1,0),"FINAL"
LET N=1

DIM X$(1024)

BLOCK READ FILE(O,N),X$

BLOCK WRITE FILE(1,N),X$

LET N=N+2
GOTO 00080

Licensed Material-Property of Data General Corporation 1-33

Commands, Statements, and Functions in Business BASIC

BREAK

Statement

Terminates the DO loop currently executing.

AOS/VS UNIX

Format
BREAK

What It Does

The BREAK statement terminates the most recently started DO loop and transfers
control to the statement following the end of the loop. If no matching END LOOP,
WHILE, or UNTIL statement terminates the loop, Error 96 — DO with no
matching END LOOP, WHILE or UNTIL is raised.

How to Use It

You can code the BREAK statement within or, by using a GOTO statement, outside
the DO loop you want to terminate. In either case, execution resumes at the
statement following the end of the loop. Both methods are illustrated below.

Examples

1. The BREAK statement is within the DO loop.

00010
00020
00030
00040
00050
00060
00070
00080

* RUN
I’m in
I’m in
I’m in
I‘’m in

X=1
DO
PRINT "I’m in the DO loop"
LET X=X+1
IF X=5 THEN BREAK
WHILE (X<10)
PRINT "This line prints after the BREAK statement."
STOP

the DO loop
the DO loop
the DO loop
the DO loop

This line prints after the BREAK statement.
Stop at 00080

1-34

Licensed Materlal-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

continued

BREAK

2. Here BREAK is used to terminate a DO loop that reads single characters from a

: OPEN data file
: BREAK out of loop when we get

an error
\
\ DO loop
/
/

: Report any errors other than
: end of file

data file.
00010 DIM AS$[1l],ER$[80]
00020 OPEN FILE[O],"example"
00030 ON ERR THEN BREAK
00040 DO
00050 READ FILE[O],A$
00060 WRITE A$
00070 END LOOP
00080 IF SYS(7)<>-6 THEN
00090 LET ER$=ERMS$ (SYS (7))
00100 PRINT "Error: ";ERS$
00110 STOP
00120 ELSE
00130 PRINT "End of file reached"
00140 CLOSE FILE([O]
00150 END IF
00160 END
* RUN
Here is line 1 of the file
Here is line 2 of the file
Here is line 3 of the file
Here is line 4 of the file
Here is line 5 of the file
End of file reached
*

093-000351

Licensed Material-Property of Data General Corporation 1-35

Commands, Statements, and Functions in Business BASIC

BYE Statement and Command

Logs a user out of Business BASIC.

AOS/VS DG/RDOS UNIX

Format
BYE

What It Does

BYE terminates a Business BASIC session. In DG/RDOS, typing BYE returns you to
the logon banner. In AOS/VS and UNIX systems, BYE terminates your current
Business BASIC process. For example, if you go to Business BASIC from the AOS/VS
CLI, BYE returns you to the AOS/VS CLI. If you log on to Business BASIC directly,
BYE logs you off. On UNIX systems, BYE returns you to the calling shell process.

How to Use It

Type BYE as a keyboard command, or precede it with a line number as a program
statement.

1-36 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

CHAIN Statement and Command

Executes a utility or another program.

AOS/VS DG/RDOS UNIX

Format

“filename” CON

CHAIN { stnng-expresszon] THEN

{ GOTO line-number}

Arguments

filename A literal for a saved file but not for an ASCII listing or source
file. The file must contain a Business BASIC program.

string-expression A string variable, string literal, or string array element (UNIX
only) you’ve already dimensioned and to which you have assigned
the value of filename.

line-number A valid line number in the program you are chaining to. Execution

' begins at the line number rather than the beginning of the
program, and the program’s variables retain the values they had
when the program was saved. '

What It Does

Use CHAIN to execute another program from the program that is running.

CHAIN searches your directory for filename; if the file is not found, it searches the
library directory (in AOS/VS and UNIX systems, it follows your search path). If
Business BASIC finds the new program, it clears your currently running program from
working storage, loads the new program into your working storage, and executes the
new program. If it does not find the new program, your currently running program
remains in working storage, and you get Error 10 — File does not exist.

By default, the program chained to runs from the lowest line number in the program,
and all variables are cleared as if a RUN had occurred. If you specify THEN GOTO
line-number or THEN CON in a CHAIN statement, Business BASIC acts as if you
used the CON command, and all variables retain the values they had when the
program was saved. CHAIN does not change the status of files. Opened files remain
open and current file position pointers are maintained.

Note: During the execution of a CHAIN statement, keyboard interrupts are
ignored. This means that you may not be able to interrupt a series of short
programs executed using SWAP or CHAIN statements.

093-000351 Licensed Material-Property of Data General Corporation 1-37

Commands, Statements, and Functions in Business BASIC

CHAIN continued

How to Use It

CHAIN may be a program statement or a keyboard mode command. To start the new
program at the beginning, use CHAIN without THEN CON or THEN GOTO. To
resume execution of the new program from its point of interruption, use CHAIN
THEN CON. To start execution at a certain line number, use CHAIN THEN GOTO
line-number. If you want the new program to execute and then return to the original
calling program, use SWAP instead of CHAIN.

Examples

1. Executes program PROG102.

00090 CHAIN "PROG1lO02"

2. Executes SCRATCH from where it stopped before it was saved.
*CHAIN "SCRATCH” THEN CON

3. Executes PROG3 starting at line 100.

00010 DIM NAME$ (10)
00020 LET NAME$="PROG3"
00030 CHAIN NAME$ THEN GOTO 00100

1-38 Licensed Material-Property of Data General Corporation 093-000351

Commands, Statements, and Functions in Business BASIC

CHR$ ‘ Function

Puts the binary value of a number into a string.

AOS/VS DG/RDOS UNIX

Format
CHRS (expression|[,byte])

Arguments
expression Any numeric expression.
byte Optional number of bytes up to and including the maximum

number of bytes allowed by your operating system (for example,
triple precision). If you do not include byte, a one-byte string is
formed.

What It Does

The CHR$ function transfers bytes directly from a numeric expression to a string
variable. Each byte of a string contains the ASCII value of the character it represents;
the several bytes of a numeric variable contain a binary number that translates directly
into the decimal value displayed by PRINT. Numeric variables hold data in four bytes
in a double precision system, six bytes in triple precision, and eight bytes in quadruple
precision. See Appendix B to determine the highest precision allowed by your
operating system. Thus, the maximum number of bytes of expression tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>